Gaussian distribution for the divisor function and Hecke eigenvalues in arithmetic progressions

We show that, in a restricted range, the divisor function of integers in residue classes modulo a prime follows a Gaussian distribution, and a similar result for Hecke eigenvalues of classical holomorphic cusp forms. Furthermore, we obtain the joint distribution of these arithmetic functions in two related residue classes. These results follow from asymptotic evaluations of the relevant moments, and depend crucially on results on the independence of monodromy groups related to products of Kloosterman sums.


Published in:
Commentarii Mathematici Helvetici, 89, 4, 979-1014
Year:
2014
Publisher:
Zurich, European Mathematical Soc
ISSN:
0010-2571
Keywords:
Laboratories:




 Record created 2015-02-20, last modified 2018-01-28

External link:
Download fulltext
n/a
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)