Fast and Highly Chemoselective Alkynylation of Thiols with Hypervalent lodine Reagents Enabled through a Low Energy Barrier Concerted Mechanism

Reto Frei, ${ }^{\dagger}$ Matthew D. Wodrich, Durga Prasad Hari, Pierre-Antoine Borin, Clément Chauvier, and Jérôme Waser*
Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015 Lausanne, Switzerland

(S) Supporting Information

Abstract

Among all functional groups, alkynes occupy a privileged position in synthetic and medicinal chemistry, chemical biology, and materials science. Thioalkynes, in particular, are highly useful, as they combine the enhanced reactivity of the triple bond with a sulfur atom frequently encountered in bioactive compounds and materials. Nevertheless, general methods to access these compounds are lacking. In this article, we describe the mechanism and full scope of the alkynylation of thiols using ethynyl benziodox- olone (EBX) hypervalent iodine reagents. Computations led to the discovery of a new, three-atom concerted transition state with a very low energy barrier, which rationalizes the high reaction rate. On the basis of this result, the scope of the reaction was extended to the synthesis of aryl- and alkyl-substituted alkynes containing a broad range of functional groups. New sulfur nucleophiles such as thioglycosides, thioacids, and sodium hydrogen sulfide were also alkynylated successfully to lead to the most general and practical method yet reported for the synthesis of thioalkynes.

INTRODUCTION

One of the most important tasks of organic chemistry is discovering practical and general methods for introducing functional groups into molecules to modify their properties and to serve as a platform for further modifications. At a time when research in neighboring fields such as medicine, biology, or materials science is becoming increasingly molecular, easy-toperform transformative reactions that do not require highly specialized synthetic skills have a particularly broad impact. Among all functional groups in organic chemistry, alkynes occupy a privileged position in this respect. ${ }^{1}$ Despite being one of the simplest functional groups with only two carbon atoms, the reactivity of the triple bond makes alkynes exceptionally useful in organic chemistry. They have found applications in bulk chemical synthesis based on acetylene gas ${ }^{2}$ as well as in fine chemistry for the stereoselective construction of the carbon backbone of complex natural products ${ }^{3}$ and in a myriad of complexity-enhancing metal-catalyzed cyclization reactions to access carbo- and heterocycles. ${ }^{4}$ Most importantly, the utility of alkynes has now crossed the boundaries of organic chemistry: their electronic properties have led to widespread applications in organic materials and dyes ${ }^{5}$ and the [3+2] cycloaddition with azides is now recognized as one of the best biorthogonal conjugation method to modify biomolecules and polymers. ${ }^{6}$ The latter transformation is particularly representative of how discoveries in fundamental organic reactivity can strongly
impact neighboring research areas. When considering the importance of alkynes for progress in numerous fields of molecular sciences, the development of new methods to access them efficiently under user-friendly conditions is highly desirable.

Among the different classes of alkynes, those directly substituted by a heteroatom are especially interesting for two reasons: ${ }^{7}$ (1) the electron-rich heteroatom makes the triple bond more reactive, allowing new chemical transformations and (2) they constitute value-added building blocks, as heteroatoms are essential for the physical and biological properties of small molecules. In short, they bring together the new properties conferred by heteroatoms with the exceptionally rich chemistry of alkynes (Scheme 1). Nevertheless, the synthetic potential of heteroatom-substituted alkynes has long remained underdeveloped due to the absence of convenient methods to access these often sensitive compounds. The coupling of heteroatoms with acetylides is indeed not favorable, as both fragments are inherently nucleophilic and an Umpolung of the reactivity is required.

In the specific case of nitrogen-substituted alkynes (ynamines and ynamides), however, the situation has changed dramatically in the last two decades, when new synthetic methods for the

[^0]Scheme 1. Heteroatoms-Substituted Alkynes: The Best of Two Worlds, but How To Access Them?

alkynylation of nitrogen with either hypervalent iodine reagents or terminal and halogeno alkynes in the presence of copper catalysts were developed. ${ }^{8}$ Ynamides in particular are now intensively used in modern synthetic chemistry. ${ }^{7, \mathrm{~d}}$ In contrast, the chemistry of thioalkynes is still underdeveloped. This is surprising considering the importance of sulfur in drugs, materials and biomolecules. ${ }^{9}$ In fact, the high nucleophilicity of thiols has led to the development of very efficient methods for the formation of $S-S$ (oxidative disulfide formation), $S-C\left(\mathrm{sp}^{3}\right)$ (alkylation, thiol-ene) and $\mathrm{S}-\mathrm{C}\left(\mathrm{sp}^{2}\right)$ (thiol-yne) bonds. ${ }^{10}$ All of these reactions are routinely used for important transformations in chemical biology and materials science. Until very recently, the direct synthesis of thioalkynes from thiols, on the other hand, has been limited to addition-elimination reactions on alkynyl or alkenyl halides under strongly basic conditions (Scheme 2). ${ }^{11}$ The most commonly used methods permitting

Scheme 2. Method To Access Thioalkynes Based on Umpolung of Sulfur or Alkyne

access have been based on the reaction of terminal alkynes with activated sulfur derivatives bearing a leaving group, such as chloride, tosyl or cyano, or disulfides. ${ }^{12}$ This lack of efficient synthetic methods under mild conditions has clearly limited the applications of potentially very useful thioalkynes in synthetic and medicinal chemistry.

In 2013, the first efficient metal-catalyzed examples of alkynylation of thiols appeared using copper, palladium or nickel catalysts. ${ }^{13}$ Nevertheless, these transformations still required the use of a transition metal catalyst, and the scope of thiols described in these works remained limited to very simple thiophenols and aliphatic thiols ${ }^{13 a}$ or to thioglycosides, ${ }^{13 b, c}$ respectively. The same year, our group reported the first method for the alkynylation of thiols using 1-[(triisopropylsilyl)ethynyl]-1,2-benziodoxol-3(1H)-one (TIPSEBX, $\left.\mathbf{1 a}, \mathrm{R}=\mathrm{Si}^{i} \mathrm{Pr}_{3}\right) .{ }^{14}$ In contrast to previously published methods, the reaction was efficient and user-friendly, leading to the complete alkynylation of aromatic and aliphatic thiols in less than 1 min at room temperature in an open flask. Furthermore, selective alkynylation of thiols was possible in the presence of numerous functional groups such as halogens,
alcohols, carboxylic acids, electron-rich aromatic groups or free amines. Nevertheless, two aspects of the developed methodology were not fully satisfying: (1) The mechanistic basis of the extreme efficiency of the reaction could not be rationalized. An in-depth understanding of the alkynylation would be highly useful for further development. (2) The reaction was limited to the transfer of silyl acetylenes on thiols as nucleophiles. Although we demonstrated that the obtained products could easily be deprotected and functionalized, this made our approach less convergent and attractive if the introduction of functionalized alkyne groups is desired. Furthermore, the alkynylation of other sulfur nucleophiles such as thioacetals, thioacids or sulfides salts would also be important in extending the range of accessible thioalkynes.

In this article, we address both issues. On the basis of the isolated side products and computational studies, we propose a mechanism for the reaction. In particular, computations showed that a concerted transition state between the deprotonated thiol and the iodine reagent was possible, leading to an exceptionally low ($10.8 \mathrm{kcal} / \mathrm{mol}$) activation energy for the alkynylation using silylated EBX reagents. This type of mechanism has never been proposed for the alkynylation of nucleophiles using hypervalent iodine reagents and is expected to change the way many researchers think about these transformations. We then report an extension of the alkynylation reaction to the use of aryl and functionalized alkyl acetylenes and further extend the scope of thiols to thioglycosides, thioacids and sufide salts, resulting in the most general and practical thiol alkynylation method reported to date.

RESULTS AND DISCUSSION

Mechanism and Computational Studies. Investigating the reaction mechanism of the alkynylation with TIPS-EBX (1a) is particularly challenging because of the fast rate: even 10 s after addition of the reagent, full conversion of thiol 2 was already observed when using 1,1,3,3-tetramethyl guanidine (TMG) as a base (eq 1). Furthermore, low-temperature

experiments are difficult because of low solubility of the hypervalent iodine reagent below $0{ }^{\circ} \mathrm{C}$. Nevertheless, control experiments showed that no or very little alkynylation was observed in the absence of a base. In this case, oxidative dimerization to form disulfide 4 was the major process. In addition, no reaction or interaction was observed by NMR between reagent $\mathbf{1 a}$ and TMG. These results permit the reasonable assumption that deprotonation of thiol 2 to form thiolate $\mathbf{2}^{\prime}$ is required for the reaction to occur (Scheme 3).

From this point forward, a first possible mechanism would be substitution on iodine to give intermediate a_{1}, followed by reductive elimination (pathway a, blue in Scheme 3). This mechanism is well-established in hypervalent iodine chemistry, especially with aryliodonium salts. ${ }^{15}$

Alternatively, a single electron transfer mechanism (SET) has also been proposed. ${ }^{16}$ Nevertheless, in the case of the alkynylation reaction, no radical intermediate could be trapped when using TEMPO as a reagent and the reaction occurred

Scheme 3. Initial Speculative Mechanism for the Alkynylation Reaction

with the same yield and reaction time. Although this experiment is naturally not sufficient to exclude a SET pathway, it is also important to note that most reactions of hypervalent iodine reagents occurring via a SET pathway require activation of the reagent by a Lewis or Brønsted acid to accelerate electron transfer, ${ }^{16}$ and the alkynylation reaction occurs only under basic conditions.

Nevertheless, alkynyliodonium salts constitute a unique class of hypervalent iodine reagents, as the β-carbon of the alkyne has very strong electrophilic character. ${ }^{17}$ In this case, an alternative mechanism is possible: conjugate addition of the thiolate $\mathbf{2}^{\prime}$ on EBX $\mathbf{1}$ to give a vinyl benziodoxolone intermediate \mathbf{b}_{1} (pathway b, red in Scheme 3). From $\mathbf{b}_{1}, \alpha-$ elimination of iodobenzoate 5 followed by a 1,2 -shift of either the sulfur or silicium substituent gave thioalkyne 3 . In fact, this type of mechanism was proposed by Ochiai and co-workers in the case of carbon nucleophiles based on the isolation of $\mathrm{C}-\mathrm{H}$ insertion products originating from carbene intermediate $\mathbf{b}_{2} .{ }^{18}$ Importantly, such insertion products could be observed only when carbon-substituted alkynyliodonium salts were used in the reaction, as the 1,2 -shift of silyl groups was faster than insertion reactions.

To establish if Ochiai's mechanism was also correct in the case of sulfur nucleophiles, we decided to investigate Me-EBX ($\mathbf{1 b}$) as a reagent, as the methyl group was expected to have a very low migrating aptitude. This reagent was easily synthesized using the one-step protocol recently developed by Olofsson and co-workers. ${ }^{19}$ Surprisingly, the desired alkynylation product $\mathbf{3 b}$ could still be isolated in 70% yield, although the reaction was less clean than usual (eq 2). In particular, a polar side product with NMR signals in accordance with vinyl benziodoxolone 6 could be observed, although the small quantities of 6 formed did not allow us to isolate this product in pure form at this stage. Compound $\mathbf{6}$ most likely originated from protonation of intermediate \mathbf{b}_{1}. Consequently, we hypothesized that its formation could be favored if only a catalytic amount of base was used. Indeed, this was the case and we were pleased to see that 6 precipitated directly from the reaction mixture in 20% yield as a single Z isomer when only 10 $\mathrm{mol} \%$ of TMG was used (eq 3). The isolation of 6 constituted

strong support for the conjugate-addition/ α-elimination/1,2shift mechanism. Furthermore, the relatively good yield of isolated alkynylation product was in accordance with a shift of the sulfur atom, as the migration of the methyl group was expected to be too slow to be productive.

Nevertheless, no intermediate could be observed in the case of TIPS-EBX (1a). To gain a more comprehensive understanding of the mechanistic details leading to thioalkyne formation, density functional theory (DFT) computations were undertaken using benzyl thiol (2) as a substrate. As described above, in the most likely scenario, a deprotonated thiol directly attacks TIPS-EBX (1a). This occurs either by direct attack onto the hypervalent iodine atom (pathway a in Scheme 3) or through a conjugate addition (pathway \mathbf{b} in Scheme 3). Computations (at the PBE0-dDsC/TZ2P//M06-2X/def2-SVP theoretical level, see Computational Details for additional information) designed to probe the potential energy surface revealed two low-energy van der Waals complexes that roughly correspond to the entry points into the two mechanistic pathways \mathbf{a} and \mathbf{b}. The first, \mathbf{a}_{0} in Figure 1, is a lower energy

Figure 1. Computed geometries (M06-2X/def2-SVP level) of the van der Waals complexes a_{0} and b_{0} for TIPS-EBX (1c) and thiolate 2^{\prime}. Free energies computed at the PBE0-dDsC/TZ2P//M06-2X/def2SVP level and include solvation correction in THF determined using COSMO-RS.
conformation in which the sulfur atom and the iodine atom are in close proximity $(2.913 \AA)$. However, the sulfur atom is not exactly opposite to the aryl ring as generally expected for interaction of nucleophiles with hypervalent iodine reagents, but instead lies in a position roughly equidistant between the iodine $(2.913 \AA)$ and α-carbon $(3.128 \AA)$ atoms of the acetylene. A second complex (\mathbf{b}_{0} in Figure 1), lying $\sim 15.8 \mathrm{kcal} /$ mol higher in energy, was found to correspond to the aforementioned conjugate addition pathway \mathbf{b}. Here, the sulfur atom of the deprotonated thiol can clearly participate in a direct attack on the β-carbon of the acetylene unit.

Figure 2. Reaction free energy profile [PBE0-dDsC/TZ2P//M06-2X/def2-SVP level in implicit THF solvent (COSMO-RS)] for the two possible mechanistic pathways a (blue) and \mathbf{b} (red) for the reaction of TIPS-EBX (1a) with thiolate $\mathbf{2}^{\prime}$. *Positive deltaE at the M06-2X/def2-SVP level.

Our initial assumption was that complex a_{0} (depicted in blue) is the reactant species leading to formation of a $S-I$ bond, as represented by intermediate \mathbf{a}_{1}. To our surprise, no minima containing a formal $\mathrm{S}-\mathrm{I}$ bond could be located on the potential energy surface (Figure 2, blue pathway). Instead, the quasitriangular atomic arrangement between the sulfur, iodine, and α-carbon atoms results in a direct addition of the sulfur onto the α-carbon atom of the acetylene unit with simultaneous breaking of the $\mathrm{C}-\mathrm{I}$ bond. ${ }^{20}$ This process is associated with a quite modest $\mathbf{a}_{\text {TS1 }}$ barrier height of only $10.8 \mathrm{kcal} / \mathrm{mol}{ }^{21}{ }^{21}$ Upon formation of the new $\mathrm{S}-\mathrm{C}$ bond (Figure 3, $\mathrm{a}_{\mathrm{TS} 1}$ in blue), the thioalkyne-iodobenzoic acid complex a_{305} is spontaneously formed in a highly exergonic process. Importantly, we find no computational evidence predicting formation of a stable intermediate, which is in agreement with of our failure to isolate any side products with TIPS-EBX (1a) as reagent.

The conjugate addition pathway b (Figure 2, red pathway), begins from the higher energy ($+15.8 \mathrm{kcal} / \mathrm{mol}$, red) van der Waals complex $\mathbf{b}_{\mathbf{0}}$. Here, the reaction proceeds as originally proposed by Ochiai. ${ }^{18}$ Formation of the new $\mathrm{S}-\mathrm{C}$ bond occurs in a facile process, requiring only $\sim 7.2 \mathrm{kcal} / \mathrm{mol}$ of energy $\left(\mathbf{b}_{\mathrm{TS} 1}\right)$. In contrast to the previously discussed pathway, the β carbon conjugate addition route \mathbf{b} does lead to the formation of the expected intermediate species \mathbf{b}_{1}. However, the TS barrier associated with cleavage of the $\mathrm{I}-\mathrm{C}$ bond ($\mathbf{b}_{\mathrm{TS} 2}$, Figure 3) is negligible $(\Delta G=-0.7 \mathrm{kcal} / \mathrm{mol}$ at the PBEO-dDsC/TZ2P// M06-2X/def2-SVP level, $\Delta E=+0.3 \mathrm{kcal} / \mathrm{mol}$ at the M06-2X/ def2-TZVP//M06-2X/def2-SVP level), meaning the species is likely short-lived, making experimental characterization, observation or even protonation highly unlikely. As in pathway a, formation of the final product complex is highly exergonic, proceeding via a 1,2 -shift of the silicium atom. No minima corresponding to a free carbene $\mathbf{b}_{\mathbf{2}}$ could be located on the potential energy surface.

From the reaction free energy profile in Figure 2, it is clear that both the \mathbf{a} (blue) and \mathbf{b} pathway (red) mechanisms are easily accessible at room temperature. While the β-conjugate addition pathway \mathbf{b} involves a slightly lower TS barrier $\mathbf{b}_{\text {TS }}$ corresponding to $\mathrm{S}-\mathrm{C}$ bond formation, the lower relative

Figure 3. Computed geometries (M06-2X/def2-SVP level) of the relevant structures.
energy of the α-addition van der Waals complex \mathbf{a}_{0} (blue, Figure 1) results in pathway a being the overall energetically preferred reaction mechanism by $12.2 \mathrm{kcal} / \mathrm{mol}$. This is highly interesting, considering that a mechanism involving addition to the α-carbon atom concerted with elimination of the iodine has never seriously been considered for alkynyl hypervalent iodine reagents.

To ensure that other mechanisms that include either direct attack by a protonated thiol or explicit involvement of the base (TMG) are not more energetically favorable, we computed a number of additional pathways (see SI for details). However,

Figure 4. Reaction free energy profile [PBE0-dDsC/TZ2P//M06-2X/def2-SVP level in implicit THF solvent (COSMO-RS)] for the two possible mechanistic pathways a (blue) and \mathbf{b} (red) for the reaction of Me-EBX (1b) with thiolate $\mathbf{2}^{\prime}$.
none were found to be energetically competitive with the direct attack of thiolate mechanism described above. As an example, direct attack by the protonated thiol species involves a TS barrier of $32.6 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{S}-\mathrm{C}$ bond formation. This compares quite unfavorably to the $10.8 \mathrm{kcal} / \mathrm{mol}$ barrier seen when the deprotonated thiol is involved in a direct attack type mechanism. ${ }^{22}$

The computational results obtained for the reaction of TIPSEBX (1a) are highly interesting. Nevertheless, they seemed to be in contradiction with the isolation of side product 6 when Me-EBX (1b) was used (eq 3), as $\mathbf{6}$ would be generated from very short-lived intermediate \mathbf{b}_{1} via the least favored pathway \mathbf{b}. To see if this result could be rationalized by computation, we also examined the reaction free energy profile for Me-EBX (1b) (Figure 4). Like for TIPS-EBX (1a) (Figure 2), a mechanism featuring attack on the α-carbon is favored based on enhanced stability of the prereaction van der Waals complex \mathbf{a}_{0} and $\mathbf{b}_{\mathbf{0}}$. In contrast, however, the TS barrier associated with formation of the $S-C$ bond ($\mathbf{a}_{\mathrm{TS} 1}$ and $\mathbf{b}_{\mathrm{TS} 1}$, Figure 4) lie relatively close to each other (within $5 \mathrm{kcal} / \mathrm{mol}$ at the PBE0-dDsC/TZ2P level and within $2 \mathrm{kcal} / \mathrm{mol}$ at the M06-2X/def2-TZVP level). ${ }^{23}$ Since this first transition state represents the highest point along the reaction pathway for both mechanisms, it can be envisaged that a small percentage of reactions proceed via the red pathway a, as opposed to the more energetically favorable blue pathway b. Furthermore, a significant $\mathbf{b}_{\mathrm{TS} 2}$ barrier height $(+5.7 \mathrm{kcal} / \mathrm{mol})$ is obtained, in contrast to the reaction with silylated reagent $\mathbf{1 c}$. This enhanced barrier, probably due to the less favorable shift of the sulfur group in this case, likely equates to a longer-lived intermediate that can be protonated and observed as 6 (eq 3).

When comparing the lowest energy pathway a for the reaction of TIPS-EBX (1a) and Me-EBX (1b), a strong accelerating effect of the silicium atom (about $5 \mathrm{kcal} / \mathrm{mol}$) is apparent. Although understanding fully this effect will require more in-depth studies, some insights can already be gained by
looking closely at the unsymmetrical structure of transition state $\mathrm{a}_{\mathrm{TS} 1}$. Indeed, the sulfur atom is already in close proximity to the α carbon atom of the alkyne, and the geometry around the β carbon is strongly distorted from sp to sp^{2}. This would lead to the formation of a partial charge on the β carbon. Indeed, calculations indicated an iterative Hirshfeld charge of -0.82 at this position in the case of TIPS-EBX (1a) (Figure 2). In contrast, no strong charge transfer was observed in the case of Me-EBX ($\mathbf{1 b}$) (charges of -0.27 and -0.12 at the α and β positions, respectively, Figure 4). Silicium is well-known to stabilize negative charges on adjacent carbons (α-silicium effect). ${ }^{24}$ Consequently, a lower activation barrier could be expected in this case through transition state stabilization.

SCOPE EXTENSION

The previous method developed in our group was very efficient using TIPS-EBX (1a) as a reagent. However, to introduce a fluorophore or other functional groups on the alkyne, two further steps were required (silyl deprotection and cycloaddition), making the approach less convergent. ${ }^{14 a}$ Furthermore, sensitive substrates could potentially not resist in the desilylation step using basic TBAF. Consequently, it would be highly desirable to install the desired functionality on the alkyne on the cyclic hypervalent iodine reagent before carrying out the thioalkynylation reaction. On the basis of the side reactions observed by Ochiai and co-workers with alkyl-substituted alkynyliodonium salts and carbon nucleophiles, ${ }^{18}$ a generalization of the scope appeared highly challenging to us when we started this project. However, the surprisingly good results obtained with Me-EBX (1b) during our mechanistic investigations and the very low activation energies obtained by computation indicated that sulfur nucleophiles should behave differently and have a much broader scope in the alkynylation reaction. To test this hypothesis, benziodoxolone hypervalent iodine reagents were first synthesized via Olofsson's one-step method starting from alkynyl boronic esters (eq 4). ${ }^{19}$ This

protocol turned out to be very efficient and easily scalable giving the EBX reagents in $71-95 \%$ yield in up to 9 g scale in the case of Me-EBX (1b). Nevertheless, in case of more functionalized alkynes, it was not possible to access the very sensitive alkynyl boronic esters. In this case, the use of more stable silylated alkynes gave the desired products in 27-47\% yield. Importantly, EBX reagents bearing functional groups such as alkenes, alkynes, halogens, azides or alcohols were synthesized for the first time. Although the yield was moderate, the procedure was easily scalable to the multigram scale and the enhanced stability of benziodoxolone compared to alkynyliodonium salts allowed easy purification by column chromatography to obtain pure reagents 1 . A significant amount of silyl acetylenes could also be recovered. ${ }^{25}$

Due to the significance of aromatic thiols as important structural motifs in the synthesis of pharmaceutical, natural, and medicinal compounds and the excellent results obtained in our previous work, we decided to start our investigation with this class of substrates. o-Bromo thiophenol 8 was chosen as a substrate for studying the different EBX reagents, as the bromo group constitutes an ideal handle for further functionalization. In the case of aliphatic EBX reagents, we found that TBD (1,5,7-triazabicyclo[4.4.0]dec-5-ene) was superior to TMG as a base and THF was still the optimal solvent. When EBX reagent $\mathbf{1 b}$ was added to the mixture consisting of o-bromo thiophenol (8), TBD, and THF at room temperature and stirred for 5 min in an open flask, the corresponding thioalkynylated product 9a was obtained in 93% yield (Table 1, entry 1). Noteworthy, the reaction was not affected by the water which was added to increase the solubility of the formed thiolate salts in certain cases. The alkynylation with longer alkyl chains (entries 2 and 3) or a tert-butyl group (entry 4) proceeded in quantitative yields. At this point, the use of functionalized alkyl-EBX reagents was investigated for the first time (entries 5-9).

We were pleased to see that the alkynylation with reagents bearing an alkene, an alkyne, a chloride, an azide or a free alcohol proceeded in $87-98 \%$ yield. The fact that functional groups are tolerated both on the thiol and alkyne reagent makes the method more attractive for the synthesis of thioalkynes. Finally, the alkynylation was not limited to the transfer of aliphatic alkynes: mesityl-substituted product $9 \mathbf{j}$ was also obtained in quantitative yield (entry 10).

Inspired by the efficiency of the thioalkynylation reaction (Table 1), we further studied the use of EBX reagents for the multiple alkynylation of benzene-1,3,5-trithiol (10) (eq 5). In

Table 1. Scope of EBX Reagents with \boldsymbol{o}-Bromo Thiophenol ${ }^{a}$

${ }^{a} O$-Bromo thiophenol ($8,0.30-0.80 \mathrm{mmol}$), alkyne transfer reagent ($1,0.33-0.88 \mathrm{mmol})$, base $(0.30-0.80 \mathrm{mmol})$, THF $(3.75-10.0 \mathrm{~mL})$, $23{ }^{\circ} \mathrm{C}$, 5 min , open flask. ${ }^{b}$ Isolated yield after purification by column chromatography.
this context, TIPS-EBX ($\mathbf{1 a}$) and EBX reagents $\mathbf{1 g}$ and $\mathbf{1 k}$ were examined. We were able to isolate the corresponding triplealkynylated products 11a-c in $96 \%, 87 \%$ and 88% yield, respectively. Due to the efficiency of the reaction and the versatility of the introduced functional groups, the method is highly useful for the synthesis of dendrimers with potential applications in materials science or drug delivery.

To further demonstrate the utility of the synthesized thioalkyne products, we investigated their transformation into other useful building blocks. We first examined the transformation of thioalkyne $\mathbf{9 b}$ into the corresponding benzothio-
phene 12 using a protocol developed by Knochel and coworkers (eq 6). ${ }^{26}$ The addition of ${ }^{i} \mathrm{PrMgCl} \cdot \mathrm{LiCl}$ in THF to $\mathbf{9 b}$

followed by $\mathrm{CuCN} \cdot 2 \mathrm{LiCl}$ afforded the 3 -alkyl benzothiophene 12 in 83% yield after 24 h . Thiolakyne $9 \mathbf{k}$, easily obtained from the alkynylation of thiophenol with reagent 1d, was subjected to acid hydrolysis to furnish the corresponding thioester 13 in 93% yield (eq 7). ${ }^{27}$

After having successfully extended the scope of the alkynylation to alkyl- and aryl-substituted EBX reagents in the case of thiophenols, we turned to aliphatic thiols (Scheme 4). (4-Methoxyphenyl)methanethiol (14) was alkynylated successfully, furnishing alkynylation products $\mathbf{1 7 a}-\mathrm{d}$ in $59-84 \%$ yield (Scheme 4A). ${ }^{28}$ Again, long and short alkyl chains, as well as a chloride and an alcohol, were well tolerated on the reagent, although the yields were lower than in the case of thiophenols. As a second important class of aliphatic thiols, we decided to turn to thioglycosides (Scheme 4B). These compounds are key building blocks in carbohydrate synthesis and exhibit important biological activities. ${ }^{29}$ Recently, Messaoudi and co-workers reported the alkynylation of protected and unprotected thioglycosides using transition metal catalysts. ${ }^{13 b, c}$ Our metal free thioalkynylation method provides a valuable alternative
that avoids the use of expensive or toxic metal catalysts, ligands, base and higher temperature. Furthermore, only the synthesis of aromatic alkynes had been reported to date. Using our method, protected thioglycoside 15a was alkynylated with TIPS-EBX ($\mathbf{1 b}$) and reagents $\mathbf{1} \mathbf{j}$ and $\mathbf{1 k}$ in a few minutes at room temperature to afford the corresponding products $18 a-c$ in $45-84 \%$ yield. Protection of the hydroxy groups of the carbohydrate was not required: products 18 d and 18 e bearing four free hydroxy groups were also obtained in 81% and 60% yields, respectively.

After demonstrating that the reaction protocol worked well with simple aliphatic thiols and thioglycosides, we studied the alkynylation of a cysteine containing dipeptide 16a (TrpCys). In fact, cysteine is one of the natural amino acids and plays a key role in the activity and structure of proteins. It is also an ideal entry for bioconjugation reactions. ${ }^{9,30}$ As shown in Scheme 4C, the reaction worked efficiently for a variety of EBX reagents. Substituents containing an alkyl chain without (product 19a) or with additional functional groups (products $\mathbf{1 9 b - e}$) were tolerated including a chloro, an ether, ${ }^{31}$ an azido and a hydroxy group. Finally, a mesityl-substituted alkyne group could also be introduced in 80% yield (product 19f). The selective alkynylation of dipeptide 16a with different functionalized alkynes is an important preliminary result in view of the modification of more complex molecules, such as peptides and proteins. In addition, the alkynylation of N -unprotected cysteine ester $\mathbf{1 6 b}$ with ${ }^{\text {t Bu-EBX (}}$ (1f) gave exclusively thiol alkynylation in 94% yield.

As a last example of more complex aliphatic thiol, angiotensin-converting enzyme (ACE) inhibitor Captopril (20), which is used as a drug to treat hypertension, ${ }^{32}$ was

Scheme 4. Scope of the Alkynylation for Benzylic Thiol 14 (A), Thioglycosides 15 (B), and Amino Acid Derivative 16 (C) ${ }^{\text {a }}$

${ }^{a}$ See Supporting Information for experimental details (solvents, base).
successfully alkynylated with $\mathbf{1 e}$ to give the corresponding thioalkyne 21 in 94% yield (eq 8). This result demonstrated that free carboxylic acid groups were tolerated in the alkynylation reaction.

To further demonstrate the generality of the alkynylation reaction, we studied two classes of sulfur nucleophiles which were not included in our previous studies: thiocarboxylic acids and sodium hydrogen sulfide, the simplest of all sulfur nucleophiles (Scheme 5). Thiocarboxylates are less nucleophilic

Scheme 5. Alkynylation of Thioacids 22 (A) and Sodium Hydrogen Sulfide (23) (B)

B. NaSH (23)

25c, 30\%

25d, 74\%

than thiolates. Nevertheless, TIPS-EBX (1a) was again an excellent reagent for the alkynylation of thiobenzoic acid (22a) giving the desired product 24a in 94% yield. Electron-donating and -withdrawing groups were well tolerated on the benzene ring (products $\mathbf{2 4 b} \mathbf{- d}$). On the other hand, thioesters derived from aliphatic alkynes were unstable under the reaction conditions, and ketone product 26, probably resulting from the hydration of the triple bond, was instead isolated in 45% yield. Only very low yields were obtained in the case of aliphatic thioacids (results not shown). Unlike other thiols, the alkynylation of thioacids did not require the use of base, probably due to the higher acidity of these substrates.

Due to the significant properties of diethynyl sulfides in material and interstellar chemistry, ${ }^{33}$ we then attempted their synthesis through the alkynylation of sodium hydrogen sulfide. The resulting one-step protocol would be unprecedentedly fast
to access this class of compounds. The double alkynylation worked for all three classes of alkynes: silyl (product 25a), alkyl (product $\mathbf{2 5 b}$) and aryl (product $\mathbf{2 5 c}$). The lower yield of the latter is probably due to the low solubility of the reagent Ph EBX (10). The reaction also worked for the introduction of a propargylic ether (product 25d) or an alcohol (product 25e). ${ }^{34}$

We then examined if the alkynylation method could be extended to selenium nucleophiles. In fact, alkynyl selenium compound 28 was obtained in 45% yield from phenylselenol (27) without further optimization of the reaction conditions. This preliminary result is promising for the development of a more general method for the alkynylation of selenols.

CONCLUSION

In summary, in this manuscript we described the first computational studies of the alkynylation of thiols using ethynyl benziodoxolone (EBX) reagents. An unprecedented concerted mechanism involving the sulfur, iodine and α-carbon atoms of the alkyne was discovered by computation, leading directly to the alkynylation products with a low activation barrier. In case of silyl-substituted EBX reagents, the activation energy was exceptionally low ($10.8 \mathrm{kcal} / \mathrm{mol}$), which made this pathway the most favorable according to the computations and may explain the high rate observed for the reaction. For the case of alkyl-substituted reagents, a second mechanism involving conjugate addition, followed by simultaneous α elimination of iodobenzoic acid and sulfur 1,2 -shift was also found to be competitive. This latter result rationalizes the isolation of small amounts of vinyl benziodoxolone intermediate 6 resulting from conjugate addition of benzylthiol (2) on Me-EBX (1b) followed by protonation.

The unique properties of thiolates in reaction with EBX reagents led us to anticipate that the transformation may have a broader scope than reactions involving carbon nucleophiles. This was indeed the case, and we could use, for the first time, functionalized alkyl- and aryl-substituted EBX reagents for the alkynylation of both aromatic and aliphatic thiols. Functional groups such as alkenes, alkynes, ethers, chlorides, azides and alcohols were tolerated on the alkynes. In addition to simple thiophenols and benzylic thiols, the alkynylation of cysteine in a dipeptide, thioglycosides, thiobenzoic acid derivatives and sodium hydrogen sulfide was also successful. The practical and user-friendly character of the method (5 min reaction time, open-flask, water tolerance, room temperature) and a deeper understanding of the reaction mechanism have set the stage for a broader application in the functionalization of materials and biomolecules in the future.

COMPUTATIONAL DETAILS

All geometries were optimized using Truhlar's M06-2 X^{35} density functional with the def2-SVP basis set in Gaussian09. ${ }^{36}$ M06-2X computations employed the "Ultrafine" grid to remove known problems with the size of the integration grid for this functional family. ${ }^{37}$ To obtain refined energy estimations that explicitly account for nonbonded interactions, a density dependent dispersion correction ${ }^{38}$ was used appended to the PBEO^{39} functional (PBEO$\mathrm{dDsC})$. PBE $0-\mathrm{dDsC}$ single point computations made use of the slater-
type orbital 3- ζ basis set, TZ2P, as implemented in ADF. ${ }^{40}$ To confirm the accuracy of the PBEO-dDsC computations, a second set of single point energies was obtained at the M06-2X/def2-TZVP level. All reported free energies include the effects of solvation (in THF) using the implicit continuum model for realistic solvents ${ }^{41}$ (COSMO-RS), also as implemented in ADF, as well as free energy correction derived from M06-2X/def2-SVP computations. Iterative Hirshfeld charges ${ }^{42}$ were computed using $\mathrm{Q}-\mathrm{Chem}^{43}$ at the M06-2X/def2-SVP level.

ASSOCIATED CONTENT

(5) Supporting Information

Experimental procedures and analytical data for all new compounds. Additional computational, data including Cartesian coordinates of relevant compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

jerome.waser@epfl.ch.

Present Address

${ }^{\dagger}$ Bern University of Applied Sciences, Solothurnstrasse 102, CH-2504 Biel, Switzerland.

Notes

The authors declare no competing financial interest.

- ACKNOWLEDGMENTS

We thank EPFL and F. Hoffmann-La Roche Ltd for financial support. The work of R.F. was further supported by a Marie Curie International Incoming Fellowship (Grant Number 331631) of the 7th Framework Program of the European Union and the work of M.D.W. by ERC (European Research Council, Starting Grant iTools4MC, number 334840). M.D.W. thanks Prof. Clémence Corminboeuf (EPFL) for helpful suggestions and comments. The Laboratory for Computational Molecular Design at EPFL is acknowledged for providing computational resources. Dr. Gergely Tolnai from Eötvös Loránd University in Hungary is acknowledged for the synthesis of reagent $\mathbf{1 n}$ during his stay in our laboratory.

- REFERENCES

(1) Acetylene Chemistry: Chemistry, Biology and Material Science; Diederich, F., Stang, P. J., Tykwinski, R. R., Eds.; Wiley-VCH: Weinheim, 2005.
(2) (a) Schobert, H. Chem. Rev. 2014, 114, 1743. (b) Trotus, I. T.; Zimmermann, T.; Schuth, F. Chem. Rev. 2014, 114, 1761.
(3) (a) Frantz, D. E.; Fassler, R.; Carreira, E. M. J. Am. Chem. Soc. 2000, 122, 1806. (b) Trost, B. M.; Weiss, A. H. Adv. Synth. Catal. 2009, 351, 963.
(4) (a) Zeni, G.; Larock, R. C. Chem. Rev. 2004, 104, 2285. (b) Michelet, V.; Toullec, P. Y.; Genet, J. P. Angew. Chem., Int. Ed. 2008, 47, 4268. (c) Jimenez-Nunez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326. (d) Godoi, B.; Schumacher, R. F.; Zeni, G. Chem. Rev. 2011, 111, 2937.
(5) (a) Bunz, U. H. F. Chem. Rev. 2000, 100, 1605. (b) Liu, J. Z.; Lam, J. W. Y.; Tang, B. Z. Chem. Rev. 2009, 109, 5799. (c) Yella, A.; Lee, H. W.; Tsao, H. N.; Yi, C. Y.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W. G.; Yeh, C. Y.; Zakeeruddin, S. M.; Gratzel, M. Science 2011, 334, 629.
(6) (a) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004. (b) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596. (c) Tornoe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057. (d) Meldal, M.; Tornoe, C. W. Chem. Rev. 2008, 108, 2952. (e) Agard, N. J.; Prescher, J. A.; Bertozzi, C. R. J. Am. Chem. Soc. 2004, 126, 15046. (f) Sletten, E. M.; Bertozzi, C. R. Angew. Chem., Int. Ed. 2009,

48, 6974. (g) Thirumurugan, P.; Matosiuk, D.; Jozwiak, K. Chem. Rev. 2013, 113, 4905.
(7) (a) Shindo, M. Tetrahedron 2007, 63, 10. (b) Kondoh, A.; Yorimitsu, H.; Oshima, K. Chem.—Asian J. 2010, 5, 398. (c) Evano, G.; Coste, A.; Jouvin, K. Angew. Chem., Int. Ed. 2010, 49, 2840. (d) DeKorver, K. A.; Li, H. Y.; Lohse, A. G.; Hayashi, R.; Lu, Z. J.; Zhang, Y.; Hsung, R. P. Chem. Rev. 2010, 110, 5064. (e) Wang, X. N.; Yeom, H. S.; Fang, L. C.; He, S. H.; Ma, Z. X.; Kedrowski, B. L.; Hsung, R. P. Acc. Chem. Res. 2014, 47, 560.
(8) (a) Murch, P.; Williamson, B. L.; Stang, P. J. Synthesis 1994, 1255. (b) Witulski, B.; Stengel, T. Angew. Chem., Int. Ed. 1998, 37, 489. (c) Frederick, M. O.; Mulder, J. A.; Tracey, M. R.; Hsung, R. P.; Huang, J.; Kurtz, K. C. M.; Shen, L. C.; Douglas, C. J. J. Am. Chem. Soc. 2003, 125, 2368. (d) Dunetz, J. R.; Danheiser, R. L. Org. Lett. 2003, 5, 4011. (e) Hamada, T.; Ye, X.; Stahl, S. S. J. Am. Chem. Soc. 2008, 130, 833. (f) Evano, G.; Jouvin, K.; Coste, A. Synthesis 2013, 45, 17. (g) Evano, G.; Gaumont, A. C.; Alayrac, C.; Wrona, I. E.; Giguere, J. R.; Delacroix, O.; Bayle, A.; Jouvin, K.; Theunissen, C.; Gatignol, J.; Silvanus, A. C. Tetrahedron 2014, 70, 1529.
(9) (a) Zambrowicz, B. P.; Sands, A. T. Nat. Rev. Drug Discovery 2003, 2, 38. (b) Paquette, L. A. Sulfur-Containing Reagents; Wiley: Chichester, 2009. (c) Masella, R. Glutathione and Sulfur Amino Acids in Human Health and Disease; Wiley: Hoboken, 2009. (d) Hoyle, C. E.; Lowe, A. B.; Bowman, C. N. Chem. Soc. Rev. 2010, 39, 1355.
(10) (a) Hoyle, C. E.; Bowman, C. N. Angew. Chem., Int. Ed. 2010, 49, 1540. (b) Hoogenboom, R. Angew. Chem., Int. Ed. 2010, 49, 3415. (c) Lowe, A. B.; Hoyle, C. E.; Bowman, C. N. J. Mater. Chem. 2010, 20, 4745. (d) Stephanopoulos, N.; Francis, M. B. Nat. Chem. Biol. 2011, 7, 876. (e) Stenzel, M. H. ACS Macro Lett. 2012, $2,14$.
(11) Selected examples: (a) Ziegler, G. R.; Welch, C. A.; Orzech, C. E.; Kikkawa, S.; Miller, S. I. J. Am. Chem. Soc. 1963, 85, 1648. (b) Marchueta, I.; Montenegro, E.; Panov, D.; Poch, M.; Verdaguer, X.; Moyano, A.; Pericas, M. A.; Riera, A. J. Org. Chem. 2001, 66, 6400.
(c) Ni, Z.; Wang, S.; Mao, H.; Pan, Y. Tetrahedron Lett. 2012, 53, 3907. In addition, an interesting example of the reaction of thioethers with alkynyliodonium salts to give thioalkynes has been reported by Ochiai and co-workers: (d) Ochiai, M.; Nagaoka, T.; Sueda, T.; Yan, J.; Chen, D. W.; Miyamoto, K. Org. Biomol. Chem. 2003, 1, 1517.
(12) Selected examples: (a) Braga, A. L.; Reckziegel, A.; Menezes, P. H.; Stefani, H. A. Tetrahedron Lett. 1993, 34, 393. (b) Bieber, L. W.; da Silva, M. F.; Menezes, P. H. Tetrahedron Lett. 2004, 45, 2735. (c) Arisawa, M.; Fujimoto, K.; Morinaka, S.; Yamaguchi, M. J. Am. Chem. Soc. 2005, 127, 12226. (d) Godoi, B.; Speranca, A.; Back, D. F.; Brandao, R.; Nogueira, C. W.; Zeni, G. J. Org. Chem. 2009, 74, 3469. (e) Chandanshive, J. Z.; Bonini, B. F.; Gentili, D.; Fochi, M.; Bernardi, L.; Franchini, M. C. Eur. J. Org. Chem. 2010, 6440.
(13) (a) Yang, Y.; Dong, W.; Guo, Y.; Rioux, R. M. Green Chem. 2013, 15, 3170 . (b) Brachet, E.; Brion, J.-D.; Alami, M.; Messaoudi, S. Adv. Synth. Catal. 2013, 355, 2627. (c) Brachet, E.; Brion, J.-D.; Alami, M.; Messaoudi, S. Chem.-Eur. J. 2013, 19, 15276.
(14) (a) Frei, R.; Waser, J. J. Am. Chem. Soc. 2013, 135, 9620. First synthesis of EBX reagents: (b) Ochiai, M.; Masaki, Y.; Shiro, M. J. Org. Chem. 1991, 56, 5511. (c) Zhdankin, V. V.; Kuehl, C. J.; Krasutsky, A. P.; Bolz, J. T.; Simonsen, A. J. J. Org. Chem. 1996, 61, 6547. Selected other examples of reactions with EBX reagents: (d) Brand, J. P.; Charpentier, J.; Waser, J. Angew. Chem., Int. Ed. 2009, 48, 9346. (e) Fernandez Gonzalez, D.; Brand, J. P.; Waser, J. Chem--Eur. J. 2010, 16, 9457. (f) Nicolai, S.; Piemontesi, C.; Waser, J. Angew. Chem., Int. Ed. 2011, 50, 4680. (g) Li, Y.; Brand, J. P.; Waser, J. Angew. Chem., Int. Ed. 2013, 52, 6743. (h) Chen, C. C.; Waser, J. Chem. Commun. 2014, 50, 12923. (i) Liu, X.; Wang, Z.; Cheng, X.; Li, C. J. Am. Chem. Soc. 2012, 134, 14330. (j) Wang, Z.; Li, X.; Huang, Y. Angew. Chem., Int. Ed. 2013, 52, 14219. (k) Collins, K. D.; Lied, F.; Glorius, F. Chem. Commun. 2014, 50, 4459. (1) Feng, C.; Loh, T.-P. Angew. Chem., Int. Ed. 2014, 53, 2722. (m) Huang, H.; Zhang, G.; Gong, L.; Zhang, S.; Chen, Y. J. Am. Chem. Soc. 2014, 136, 2280. (n) Nierth, A.; Marletta, M. A. Angew. Chem., Int. Ed. 2014, 53, 2611. (o) Xie, F.; Qi, Z.; Yu, S.; Li, X. J. Am. Chem. Soc. 2014, 136, 4780. (p) Silva, L. F., Jr; Utaka, A.; Calvalcanti, L. Chem. Commun. 2014, 50, 3810. (q) Wu, X.; Shirakawa,
S.; Maruoka, K. Org. Biomol. Chem. 2014, 12, 5388. (r) Ariafard, A. ACS Catal. 2014, 4, 2896. (s) Jeong, J.; Patel, P.; Hwang, H.; Chang, S. Org. Lett. 2014, 16, 4598. (t) Lu, B.; Wu, J.; Yoshikai, N. J. Am. Chem. Soc. 2014, 136, 11598. (u) Wang, Z.; Li, L.; Huang, Y. J. Am. Chem. Soc. 2014, 136, 12233.
(15) (a) Lancer, K. M.; Wiegand, G. H. J. Org. Chem. 1976, 41, 3360. (b) Wang, B. J.; Graskemper, J. W.; Qin, L. L.; DiMagno, S. G. Angew. Chem., Int. Ed. 2010, 49, 4079. (c) Pinto de Magalhães, H.; Lüthi, H. P.; Togni, A. Org. Lett. 2012, 14, 3830. (d) Malmgren, J.; Santoro, S.; Jalalian, N.; Himo, F.; Olofsson, B. Chem.-Eur. J. 2013, 19, 10334. General reviews on hypervalent iodine: (e) Kita, Y.; Koser, G. F.; Ochiai, M.; Tohma, H.; Varvoglis, A.; Wirth, T.; Zhdankin, V. V. In Hypervalent Iodine Chemistry: Modern Developments in Organic Synthesis; Topics in Current Chemistry; Springer: Berlin, 2002; Vol. 224. (f) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299. (g) Zhdankin, V. V. Hypervalent Iodine Chemistry: Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds. Wiley: Weinheim, 2013.
(16) Dohi, T.; Ito, M.; Yamaoka, N.; Morimoto, K.; Fujioka, H.; Kita, Y. Tetrahedron 2009, 65, 10797.
(17) Zhdankin, V. V.; Stang, P. J. Tetrahedron 1998, 54, 10927.
(18) (a) Ochiai, M.; Kunishima, M.; Nagao, Y.; Fuji, K.; Shiro, M.; Fujita, E. J. Am. Chem. Soc. 1986, 108, 8281. (b) Ochiai, M.; Ito, T.; Takaoka, Y.; Masaki, Y.; Kunishima, M.; Tani, S.; Nagao, Y. J. Chem. Soc., Chem. Commun. 1990, 118.
(19) Bouma, M. J.; Olofsson, B. Chem.-Eur. J. 2012, 18, 14242.
(20) The concerted nature of this mechanism can clearly be seen via examination of the intrinsic reaction coordinate (IRC). Selected IRC structures are provided in the Supporting Information.
(21) Computed free energies at the M06-2X/def2-TZVP//M06-2X/ def2-SVP level in implicit THF solvent (COSMO-RS) yielded the same trends, albeit with a slightly lower energy difference between the two pathways (Energy $\mathrm{a}_{\mathrm{TS} 1}, 11.8 \mathrm{kcal} / \mathrm{mol} ; \mathrm{b}_{\mathrm{TS} 1}, 20.1 \mathrm{kcal} / \mathrm{mol}$; difference, $8.3 \mathrm{kcal} / \mathrm{mol}$. See Supporting Information for details.
(22) Computation of the transition state $\mathrm{a}_{\mathrm{TS} 1}$ for other nucleophiles was also done in order to better understand the observed chemioselectivity. With methanol and dimethyl phosphite, no transition state could be located. Higher energies were observed for methylamine and acetate as nucleophiles $(+30.8$ and $+18.1 \mathrm{kcal} / \mathrm{mol}$, respectively). In contrast, a low energy transition state ($+12.2 \mathrm{kcal} /$ mol) was observed in the case of deprotonated dimethyl phosphite. Indeed, the facile alkynylation of this class of nucleophiles was recently reported by our group (ref 14h). See Supporting Information for details.
(23) Computed free energies at the M06-2X/def2-TZVP//M06-2X/ def2-SVP level in implicit THF solvent (COSMO-RS): $\mathrm{a}_{\mathrm{TS} 1}, 18.9 \mathrm{kcal} /$ $\mathrm{mol} ; \mathrm{b}_{\mathrm{TS} 1}, 20.8 \mathrm{kcal} / \mathrm{mol}$; difference, $1.9 \mathrm{kcal} / \mathrm{mol}$. In addition, the difference in free energies obtained using B3LYP-dDsC and B3LYPD3 methods was situated in between the other results (4.3 and 3.3 $\mathrm{kcal} / \mathrm{mol}$, respectively). Nevertheless, the importance of the threeatom concerted pathway should not be overestimated at this stage. See Supporting Information for details.
(24) (a) Zhang, S.; Zhang, X.-M.; Bordwell, F. G. J. Am. Chem. Soc. 1995, 117, 602. (b) Römer, B.; Gatev, G. G.; Zhong, M.; Brauman, J. I. J. Am. Chem. Soc. 1998, 120, 2919.
(25) See Supporting Information for further details.
(26) Kunz, T.; Knochel, P. Angew. Chem., Int. Ed. 2012, 51, 1958.
(27) Braga, A. L.; Martins, T. L. C.; Silveira, C. C.; Rodrigues, O. E. D. Tetrahedron 2001, 57, 3297.
(28) Thiol 14 was chosen as starting material due to its higher boiling point and simpler NMR spectrum when compared to benzyl thiol (2). Comppound 17 d was obtained using the corresponding EBX reagent 1 m bearing a free alcohol.
(29) (a) Driguez, H. Thiooligosaccharides in Glycobiology. In Glycoscience Synthesis of Substrate Analogs and Mimetics; Springer Verlag: Berlin, 1997; Vol. 187, pp 85-116. (b) Pachamuthu, K.; Schmidt, R. R. Chem. Rev. 2005, 106, 160.
(30) (a) Lundblad, R. L. Chemical Reagents for Protein Modification; 3rd ed.; CRC Press: Boca Raton, FL, 2005. (b) Hermanson, G. T.

Bioconjugate Techniques; 2 ${ }^{\text {nd }}$ ed.; Academic Press: San Diego, CA, 2008.
(31) Alkyne 19c was obtained using the corresponding EBX reagent In bearing a protected propargylic alcohol.
(32) Migdalof, B. H.; Antonaccio, M. J.; McKinstry, D. N.; Singhvi, S. M.; Lan, S. J.; Egli, P.; Kripalani, K. J. Drug Metab. Rev. 1984, 15, 841.
(33) (a) Lee, A. W. M.; Yeung, A. B. W.; Yuen, M. S. M.; Zhang, H.; Zhao, X.; Wong, W. Y. Chem. Commun. 2000, 75. (b) Matzger, A. J.; Lewis, K. D.; Nathan, C. E.; Peebles, S. A.; Peebles, R. A.; Kuczkowski, R. L.; Stanton, J. F.; Oh, J. J. J. Phys. Chem. A 2002, 106, 12110. (c) Lewis, K. D.; Wenzler, D. L.; Matzger, A. J. Org. Lett. 2003, 5, 2195. (d) Lewis, K. D.; Rowe, M. P.; Matzger, A. J. Tetrahedron 2004, 60, 7191. (e) Gleiter, R.; Werz, D. B. Chem. Rev. 2010, 110, 4447. (f) Su, Q.; Zhao, Z. J.; Xu, F.; Lou, P. C.; Zhang, K.; Xie, D. X.; Shi, L.; Cai, Q. Y.; Peng, Z. H.; An, D. L. Eur. J. Org. Chem. 2013, 2013, 1551.
(34) At the current stage of development, the reaction is limited to the synthesis of symmetrical diynes.
(35) (a) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215. (b) Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 15.
(36) Gaussian 09, Revision D.01; Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, M. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc.: Wallingford CT, 2009.
(37) Wheeler, S. E.; Houk, K. N. J. Chem. Theory Comput. 2010, 6, 395.
(38) (a) Steinmann, S. N.; Corminboeuf, C. J. Chem. Theory Comput. 2011, 7, 3567. (b) Steinmann, S. N.; Corminboeuf, C. J. Chem. Phys. 2011, 134, 044117. (c) Steinmann, S. N.; Corminboeuf, C. Chimia 2011, 65, 240. (d) Steinmann, S. N.; Corminboeuf, C. J. Chem. Theory Comput. 2010, 6, 1990.
(39) (a) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. (b) Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110, 6158.
(40) (a) te Velde, G.; Bickelhaupt, F. M.; van Gisbergen, S. J. A.; Fonseca Guerra, C.; Baerends, E. J.; Snijders, J. G.; Ziegler, T. J. Comput. Chem. 2001, 22, 931. (b) Fonseca Guerra, C.; Snijders, J. G.; te Velde, G.; Baerends, E. J. Theor. Chem. Acc. 1998, 99, 391.
(41) Klamt, A. WIREs Comput. Mol. Sci. 2011, 1, 699.
(42) (a) Hirshfeld, F. L. Theor. Chim. Acta 1977, 44, 129. (b) Bultinck, P.; Van Alsenoy, C.; Ayers, P. W.; Carbo-Dorca, R. J. Chem. Phys. 2007, 126, 144111. (c) For a discussion on the advantages of iterative Hirshfeld charges see: Gonthier, J. F.; Steinmann, S. N.; Wodrich, M. D.; Corminboeuf, C. Chem. Soc. Rev. 2012, 41, 4671.
(43) Shao, Y.; Molnar, L. F.; Jung, Y.; Kussmann, J.; Ochsenfeld, C.; Brown, S. T.; Gilbert, A. T. B.; Slipchenko, L. V.; Levchenko, S. V.; O’Neill, D. P.; DiStasio, R. A.; Lochan, R. C.; Wang, T.; Beran, G. J. O.; Besley, N. A.; Herbert, J. M.; Lin, C. Y.; Van Voorhis, T.; Chien, S. H.; Sodt, A.; Steele, R. P.; Rassolov, V. A.; Maslen, P. E.; Korambath, P. P.; Adamson, R. D.; Austin, B.; Baker, J.; Byrd, E. F. C.; Dachsel, H.; Doerksen, R. J.; Dreuw, A.; Dunietz, B. D.; Dutoi, A. D.; Furlani, T. R.; Gwaltney, S. R.; Heyden, A.; Hirata, S.; Hsu, C. P.; Kedziora, G.; Khalliulin, R. Z.; Klunzinger, P.; Lee, A. M.; Lee, M. S.; Liang, W.; Lotan, I.; Nair, N.; Peters, B.; Proynov, E. I.; Pieniazek, P. A.; Rhee, Y. M.; Ritchie, J.; Rosta, E.; Sherrill, C. D.; Simmonett, A. C.; Subotnik, J. E.; Woodcock, H. L.; Zhang, W.; Bell, A. T.; Chakraborty, A. K.; Chipman, D. M.; Keil, F. J.; Warshel, A.; Hehre, W. J.; Schaefer, H. F.;

Kong, J.; Krylov, A. I.; Gill, P. M. W.; Head-Gordon, M. Phys. Chem.
Chem. Phys. 2006, 8, 3172.

Supporting Information for

Fast and Highly Chemoselective Alkynylation of Thiols with Hypervalent Iodine Reagents Enabled Through a Low Energy Barrier Concerted Mechanism
Reto Frei, \dagger Matthew D. Wodrich, Durga Prasad Hari, Pierre-Antoine Borin, Clément Chauvier and Jérôme Waser*
Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015 Lausanne, Switzerland jerome.waser@epfl.ch

(194 pages)

Table of Contents

1. Computational Details S3
2. General Methods S24
3. Preparation of Reagents S25
4. Preparation of Substrates S44
5. Alkynylation Reaction S47
6. Transformations of Thioalkynes S77
7. Spectra of New Compounds S79

1. Computational Details

Figure S1. Electronic energies along the intrinsic reaction coordinate for the a pathway. Computations at the M06-2X/def2-SVP level.

Figure S2. Selected geometries along the IRC for the a pathway. Structures correspond to labels from figure S 1 .

TS+6

TS+

Table S1. Electronic energies, free energy corrections, and solvation corrections for relevant compounds using the TIPS-EBX reagant. PBE0-dDsC/TZ2P and M06-2X/def2-TZVP electronic energies obtained from single point computations on M06-2X/def2-SVP geometries. ${ }^{1}$

Compound	M06-2X/def2SVP Electronic Energy (hartree)	$\begin{gathered} \text { M06-2X/def2- } \\ \text { SVP Free } \\ \text { Energy } \\ \text { Correction } \\ \text { (hartree) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { M06-2X/def2- } \\ & \text { TZVP Electronic } \\ & \text { Energy (hartree) } \end{aligned}$	PBE0- dDsC/TZ2P Electronic Energy (hartree)	COSMO-RS Solvation Energy $(\mathrm{kcal} / \mathrm{mol})$
a0	-2106.082266	0.440280	-2107.606383	-16.332255	-52.866
b_{0}	-2106.074669	0.441889	-2107.598451	-16.315327	-48.750
aTS1	-2106.066858	0.438536	-2107.587790	-16.318528	-49.640
bTS1	-2106.064275	0.443031	-2107.584800	-16.306042	-48.055
b_{1}	-2106.090006	0.441073	-2107.608545	-16.327049	-51.620
$\mathrm{b}_{\text {TS2 }}$	-2106.089913	0.442080	-2107.608026	-16.328147	-52.324
a3.5	-2106.187915	0.442548	-2107.702682	-16.413023	-50.590
$\mathrm{b}_{3} \cdot 5$	-2106.177060	0.438296	-2107.694266	-16.408391	-53.279

Table S2. Reaction free energies (in $\mathrm{kcal} / \mathrm{mol}$) for the \mathbf{a} and \mathbf{b} pathways using the TIPS-EBX reagent. PBE0-dDsC/TZ2P and M06-2X/def2-TZVP free energies include free energy corrections obtained from M06-2X/def2-SVP computations and solvation corrections (in THF) from COSMO-RS (at the PBE0-dDsC/TZ2P theoretical level).

Reaction	PBE0-dDsC Free Energy	M06-2X Free Energy
$\mathbf{a}_{\mathbf{0}} \rightarrow \mathbf{a}_{\text {TS }}$	10.75	13.80
$\mathbf{a}_{\text {TS }} \rightarrow \mathbf{a}_{\mathbf{3}} \cdot 5$	-57.73	-70.53
$\mathbf{b}_{\mathbf{0}} \rightarrow \mathbf{b}_{\text {TS1 }}$	7.24	9.98
$\mathbf{b}_{\text {TS1 }} \rightarrow \mathbf{b}_{\mathbf{1}}$	-17.98	-19.69
$\mathbf{b}_{\mathbf{1}} \rightarrow \mathbf{b}_{\mathbf{T S} 2}$	-0.76	0.25
$\mathbf{b}_{\mathbf{T S} 2} \rightarrow \mathbf{b}_{\mathbf{3} \cdot 5}$	-53.68	-57.45
$\mathbf{a}_{\mathbf{0}} \rightarrow \mathbf{b}_{\mathbf{0}}$	15.75	10.10
$\mathbf{a}_{\mathbf{T S} 1} \rightarrow \mathbf{b}_{\text {TS }}$	11.04	6.28

Table S3. Electronic energies, free energy corrections, and solvation corrections for relevant compounds using the Methyl-EBX reagant. ${ }^{1}$

Compound	M06-2X/def2-SVP Electronic Energy (hartree)	M06-2X/def2-SVP Free Energy Correction (hartree)	M06-2X/def2- TZVP Electronic Energy (hartree)	PBE0- dDsC/TZ2P Electronic Energy (hartree)	COSMO-RS Solvation Energy (kcal/mol)
$\mathbf{a}_{\mathbf{0}}$	-1501.355114	0.209054	-1502.419519	-9.927595	-51.671
$\mathbf{b}_{\mathbf{0}}$	-1501.348373	0.210347	-1502.413181	-9.916865	-48.546
$\mathbf{a}_{\text {TS1 }}$	-1501.330293	0.208068	-1502.393028	-9.905776	-48.827
$\mathbf{b}_{\text {TS1 }}$	-1501.332390	0.211039	-1502.395983	-9.904429	-46.844
\mathbf{b}_{1}	-1501.364149	0.212440	-1502.424548	-9.930714	-49.940
$\mathbf{b}_{\text {TS2 }}$	-1501.351776	0.208410	-1502.411644	-9.909202	-55.178

[^1]| $\mathbf{a}_{3} \cdot 5$ | -1501.452165 | 0.210268 | -1502.509091 | -10.005636 | -51.947 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{b}_{3} \cdot \mathbf{5}$ | -1501.445995 | 0.208701 | -1502.504574 | -10.003114 | -51.747 |

Table S4. Reaction free energies (in $\mathrm{kcal} / \mathrm{mol}$) for the \mathbf{a} and \mathbf{b} pathways using the MethylEBX reagent. PBE0-dDsC/TZ2P and M06-2X/def2-TZVP free energies include free energy corrections obtained from M06-2X/def2-SVP computations and solvation corrections (in THF) from COSMO-RS (at the PBE0-dDsC/TZ2P theoretical level).

Reaction	PBE0-dDsC Free Energy	M06-2X Free Energy
$\mathbf{a}_{0} \rightarrow \mathbf{a}_{\text {TS1 }}$	15.92	18.85
$\mathbf{a}_{\text {TS }} \rightarrow \mathbf{a}_{3} \cdot 5$	-64.40	-74.57
$\mathbf{b}_{\mathbf{0}} \rightarrow \mathbf{b}_{\text {TS1 }}$	9.94	12.93
$\mathbf{b}_{\text {TS }} \rightarrow \mathbf{b}_{\mathbf{1}}$	-18.71	-20.14
$\mathbf{b}_{\mathbf{1}} \rightarrow \mathbf{b}_{\text {TS }}$	5.73	0.33
$\mathbf{b}_{\text {TS } 2} \rightarrow \mathbf{b}_{\mathbf{3} \cdot 5}$	-55.32	-54.70
$\mathbf{a}_{\mathbf{0}} \rightarrow \mathbf{b}_{\mathbf{0}}$	10.67	7.91
$\mathbf{a}_{\text {TS }} \rightarrow \mathbf{b}_{\text {TS1 }} \mathbf{a}^{\mathbf{a}}$	4.69	1.99

${ }^{\text {a }}$ In addition calculation at the B3LYP-dDsC and B3LYP-D3 level gave energies of 4.33 and $3.28 \mathrm{kcal} / \mathrm{mol}$ respectively.

Table S5. Reaction free energies (in $\mathrm{kcal} / \mathrm{mol}$) for the a pathways using the TIPS-EBX reagent and different nucleophiles. PBE0-dDsC/TZ2P free energies include free energy corrections obtained from M06-2X/def2-SVP computations and solvation corrections (in THF) from COSMO-RS (at the PBE0-dDsC/TZ2P theoretical level).

Reaction	Nucleophile	PBE0-dDsC Free Energy
$\mathbf{a}_{0} \rightarrow \mathbf{a}_{\text {TS1 }}$	MeOH	Not located
$\mathbf{a}_{0} \rightarrow \mathbf{a}_{\text {TS1 }}$	MeNH_{2}	+30.8
$\mathbf{a}_{0} \rightarrow \mathbf{a}_{\text {TS1 }}$	Acetate	+18.1
$\mathbf{a}_{0} \rightarrow \mathbf{a}_{\text {TS1 }}$	$\mathrm{HP}(\mathrm{O})(\mathrm{OMe})_{2}$	Not located
$\mathbf{a}_{0} \rightarrow \mathbf{a}_{\text {TS1 }}$	$-\mathrm{P}(\mathrm{O})(\mathrm{OMe})_{2}$	+12.2

Scheme S1. Alternative mechanistic pathways involving participation of the base.
b) Lewis base activation

Further reactions on this intermediate
c) H-bond activation

Further reactions on this intermediate
d) protonation

Further reactions on this intermediate

Table S6. Highest energy points on potential energy surface leading to formation of thioalkynes with TMS-EBX.

Mechanistic Pathway	Highest Energy Value on PES $(\mathbf{k c a l / m o l})$
Direct Attack (discussed in manuscript)	9.4
Lewis Base Activation	14.9
H-bond Activation	13.1
Protonation	47.2

Cartesian Coordinates of Relevant Compounds

$\left.\begin{array}{lccc}\text { 62 } & & & \\ \text { AO } & - \text { TIPS } & & \\ \text { C } & 0.00761 & -0.50119 & -0.12839 \\ \text { S } & -1.54444 & 2.11166 & 0.81379 \\ \text { C } & -1.58265 & 2.36457 & -0.98721 \\ \text { I } & 1.11052 & 0.91818 & 0.91545 \\ \text { C } & 4.03583 & 0.16549 & 1.26576 \\ \text { C } & 5.22483 & -0.56318 & 1.18742 \\ \text { C } & 2.87919 & -0.36166 & 0.70101 \\ \text { C } & 5.24830 & -1.80161 & 0.55221 \\ \text { H } & 6.11038 & -0.11520 & 1.64231 \\ \text { C } & 2.88171 & -1.59918 & 0.06270 \\ \text { C } & 4.07735 & -2.31724 & -0.00823 \\ \text { H } & 6.17801 & -2.37086 & 0.49123 \\ \text { H } & 1.96761 & -2.00409 & -0.37454 \\ \text { H } & 4.08989 & -3.28884 & -0.50676 \\ \text { C } & 4.01459 & 1.52706 & 1.96834 \\ \text { O } & 5.05014 & 1.95513 & 2.44925 \\ \text { O } & 2.86190 & 2.07694 & 1.96759 \\ \text { C } & -0.65855 & -1.30664 & -0.76087 \\ \text { Si } & -1.80244 & -2.45433 & -1.64628 \\ \text { C } & -1.40363 & -2.30970 & -3.50183 \\ \text { C } & -1.39408 & -0.84972 & -3.96938 \\ \text { H } & -2.19784 & -2.85271 & -4.04723 \\ \text { C } & -0.05426 & -2.96912 & -3.81116 \\ \text { C } & -3.59806 & -2.02718 & -1.17690 \\ \text { C } & -3.65991 & -1.33812 & 0.19409 \\ \text { H } & -4.09876 & -3.01177 & -1.09709 \\ \text { C } & -4.35237 & -1.20329 & -2.22500 \\ \text { C } & -1.40573 & -4.22089 & -1.05749 \\ \text { H } & -0.32442 & -4.35803 & -1.23633 \\ \text { C } & -2.17146 & -5.26800 & -1.87223 \\ \text { C } & -1.66478 & -4.39045 & 0.44178 \\ \text { C } & -2.95046 & 2.31355 & -1.64282 \\ \text { H } & -1.13245 & 3.33982 & -1.24238 \\ \text { H } & -0.96221 & 1.60070 & -1.49048 \\ \text { C } & -4.14115 & 2.27659 & -0.91056 \\ \text { C } & -5.37773 & 2.23690 & -1.55810 \\ \text { C } & -5.44945 & 2.23046 & -2.94986 \\ \text { C } & -3.03696 & 2.31732 & -3.04361 \\ \text { H } & -1.11737 & -3.73716 & -4.27754\end{array}\right) 0.070130$
$\left.\begin{array}{lccc} & & & \\ \text { 62 } & & \\ \text { A_TS1-TIPS } & & \\ \text { C } & 0.12497 & -0.37979 & -0.59944 \\ \text { S } & -0.78602 & -2.35245 & -1.29791 \\ \text { C } & -1.45144 & -2.74401 & 0.34942 \\ \text { I } & 2.00638 & -1.38546 & -0.47819 \\ \text { C } & 4.56173 & -0.03758 & 0.40668 \\ \text { C } & 5.40473 & 0.99182 & 0.83065 \\ \text { C } & 3.22651 & 0.25834 & 0.16582 \\ \text { C } & 4.91103 & 2.28216 & 1.00284 \\ \text { H } & 6.44819 & 0.72764 & 1.01255 \\ \text { C } & 2.70409 & 1.53978 & 0.32121 \\ \text { C } & 3.56489 & 2.55333 & 0.74651 \\ \text { H } & 5.57411 & 3.08314 & 1.33561 \\ \text { H } & 1.64992 & 1.73278 & 0.11766 \\ \text { H } & 3.17112 & 3.56357 & 0.87713 \\ \text { C } & 5.10734 & -1.45772 & 0.20422 \\ \text { O } & 6.28781 & -1.66304 & 0.43913 \\ \text { O } & 4.22323 & -2.27484 & -0.20298 \\ \text { C } & -0.44761 & 0.70311 & -0.35193 \\ \text { Si } & -1.64593 & 2.05563 & -0.16394 \\ \text { C } & -1.81917 & 2.40209 & 1.70928 \\ \text { C } & -2.03777 & 1.10873 & 2.50253 \\ \text { H } & -2.70359 & 3.05332 & 1.84189 \\ \text { C } & -0.58599 & 3.13555 & 2.24901 \\ \text { C } & -3.32941 & 1.67792 & -0.99469 \\ \text { C } & -3.12573 & 0.74384 & -2.19463 \\ \text { H } & -3.71489 & 2.64902 & -1.36044 \\ \text { C } & -4.36999 & 1.08320 & -0.04232 \\ \text { C } & -0.91804 & 3.61931 & -0.98889 \\ \text { H } & 0.05951 & 3.76831 & -0.49542 \\ \text { C } & -1.77750 & 4.86227 & -0.74289 \\ \text { C } & -0.66180 & 3.41591 & -2.48389 \\ \text { C } & -2.93542 & -2.50811 & 0.53668 \\ \text { H } & -1.24216 & -3.80573 & 0.56228 \\ \text { H } & -0.90488 & -2.15701 & 1.10609 \\ \text { C } & -3.84536 & -2.63046 & -0.52014 \\ \text { C } & -5.21382 & -2.47005 & -0.30712 \\ \text { C } & -5.70095 & -2.17464 & 0.96608 \\ \text { H } & -3.43705 & -2.21034 & 1.81040 \\ \text { H } & -0.66731 & 3.32441 & 2.53861\end{array}\right) 2.074230$

$\begin{aligned} & 62 \\ & \text { A_35-TIPS } \end{aligned}$			
C	-1.95407	-0.33338	-1.12674
S	-2.15209	-1.63564	-2.18561
C	-1.24705	-2.96589	-1.28118
1	1.57604	-0.62852	-3.03131
C	2.32633	0.58242	-0.28609
C	3.04163	1.47393	0.52519
C	2.66784	0.53420	-1.64006
C	4.07090	2.26444	0.02374
H	2.74384	1.52883	1.57417
C	3.68593	1.33374	-2.16593
C	4.39671	2.19251	-1.33068
H	4.61327	2.94288	0.68527
H	3.91344	1.28874	-3.23160
H	5.19526	2.81104	-1.74526
C	1.22731	-0.26745	0.39644
O	0.60799	0.31570	1.31073
O	1.10768	-1.43176	-0.00464
C	-1.83718	0.62675	-0.37775
Si	-1.72633	2.16098	0.65193
C	-1.88399	1.82821	2.52788
C	-2.23563	0.36323	2.80587
H	-2.73272	2.46449	2.84468
C	-0.65284	2.23899	3.34315
C	-3.31118	3.12140	0.15674
C	-3.33374	3.50651	-1.32409
H	-3.30239	4.04765	0.76301
C	-4.56551	2.31916	0.51717
C	-0.18311	3.17902	0.21447
H	0.59089	2.71955	0.85045
C	-0.33554	4.65674	0.58878
C	0.26506	3.02317	-1.24190
C	-1.94355	-3.36580	-0.01409
H	-1.21957	-3.78912	-2.00990
H	-0.23427	-2.58790	-1.07950
C	-3.02051	-4.26084	-0.02956
C	-3.67827	-4.60027	1.14963
C	-3.26850	-4.03780	2.36045
C	-1.53447	-2.80376	1.20111
C	-2.20094	-3.14156	2.38057
H	-3.34758	-4.68772	-0.98181
H	-4.51480	-5.30193	1.12576
H	-3.78508	-4.29796	3.28673
H	-0.68563	-2.11036	1.19426
H	-1.88110	-2.69092	3.32217
H	-5.48492	2.88025	0.27546
H	-4.59002	1.37413	-0.04896
H	-4.60119	2.06171	1.58680
H	-4.27715	4.01261	-1.59396
H	-2.50539	4.18023	-1.58792
H	-3.24316	2.60911	-1.95760
H	-2.41811	0.19991	3.88268
H	-3.12617	0.02818	2.25129
H	-1.38971	-0.26312	2.48694
H	-0.83574	2.07644	4.41948
H	0.20782	1.62886	3.03652
H	-0.39392	3.30072	3.20890
H	0.61425	5.19910	0.44415
H	-1.09284	5.15211	-0.04150
H	-0.64143	4.79852	1.63748
H	1.28750	3.41601	-1.38245
H	0.26619	1.96996	-1.55630
H	-0.40211	3.56952	-1.92870

I	-0.74217	-1.90481	-0.83210
C	1.12019	-1.32012	-0.12438
C	-1.73856	-0.42079	0.32873
O	-2.92346	-2.26360	-1.31049
C	-3.77680	-1.52320	-0.68582
O	-4.98621	-1.57813	-0.76550
C	-3.11736	-0.49470	0.22205
C	-3.85821	0.42878	0.96011
H	-4.94548	0.37426	0.88060
C	-3.20506	1.37720	1.74930
H	-3.78994	2.10245	2.31824
C	-1.81086	1.42174	1.79569
H	-1.25427	2.18398	2.34839
C	-1.04064	0.50427	1.07388
H	0.05271	0.61184	1.09135
C	2.19618	-0.98724	0.35239
S	1.65664	2.50882	1.56335
C	1.33193	3.52311	0.06674
H	1.01380	4.53753	0.35793
H	2.25982	3.63493	-0.52164
C	0.27677	2.91448	-0.81680
C	0.60046	1.88442	-1.71311
H	1.63929	1.55274	-1.78014
C	-0.37872	1.27582	-2.49469
H	-0.09832	0.48389	-3.19356
C	-1.71674	1.66350	-2.38219
H	-2.48875	1.16789	-2.97451
C	-2.05345	2.68413	-1.49422
H	-3.09658	2.99012	-1.38683
C	-1.06440	3.30611	-0.73078
H	-1.33617	4.09677	-0.02613
Si	3.85751	-0.80967	1.18469
C	3.59965	-0.94628	3.06240
C	2.72799	0.16046	3.66220
H	4.61638	-0.86461	3.49311
C	3.03341	-2.32495	3.42496
C	4.75087	-2.40278	0.60390
H	4.06454	-3.23575	0.83528
C	6.06144	-2.62594	1.36378
C	4.98541	-2.39321	-0.90906
C	4.92767	0.64443	0.58628
C	5.22473	1.71267	1.64453
C	4.35601	1.28705	-0.68109
H	5.88260	0.14795	0.32634
H	5.04273	2.05590	-1.07290
H	4.17507	0.55044	-1.48060
H	3.39899	1.76470	-0.42127
H	6.00095	2.40376	1.27404
H	4.31063	2.29476	1.84788
H	5.59107	1.27734	2.58848
H	2.63697	0.02225	4.75315
H	3.12318	1.16584	3.46527
H	1.71623	0.14401	3.22750
H	2.87594	-2.40542	4.51307
H	2.05676	-2.48011	2.93847
H	3.69383	-3.15078	3.11979
H	6.57108	-3.54344	1.02375
H	6.76180	-1.78918	1.20431
H	5.90008	-2.71645	2.44900
H	5.45203	-3.33364	-1.24821
H	4.04273	-2.26321	-1.46182
H	5.65900	-1.57098	-1.20182

62			
B_TS1 - TIPS			
1	-1.19629	-1.49772	-1.23452
C	0.77703	-1.32884	-0.65939
C	-2.09693	-0.44846	0.40392
O	-3.49378	-1.41574	-1.75113
C	-4.23673	-0.79992	-0.91514
O	-5.43239	-0.57362	-0.99254
C	-3.47003	-0.30740	0.31312
C	-4.12713	0.30820	1.38040
H	-5.20917	0.42374	1.29349
C	-3.40535	0.75629	2.48309
H	-3.92235	1.24266	3.31261
C	-2.01807	0.59554	2.53061
H	-1.44812	0.96300	3.38579
C	-1.33606	-0.02210	1.48127
H	-0.25235	-0.13010	1.48672
C	1.66216	-0.51430	-0.27576
S	1.11084	1.90687	0.08968
C	0.18470	2.03073	-1.47347
H	0.60471	2.86325	-2.06507
H	0.35875	1.11748	-2.06968
C	-1.31223	2.24790	-1.36142
C	-2.16815	1.75603	-2.35579
H	-1.74601	1.18798	-3.18950
C	-3.54790	1.94219	-2.28121
H	-4.19988	1.49727	-3.03459
C	-4.09811	2.64563	-1.21162
H	-5.18071	2.75786	-1.13349
C	-3.25577	3.15360	-0.22206
H	-3.67891	3.68858	0.63140
C	-1.87836	2.94938	-0.29087
H	-1.21427	3.29812	0.50282
Si	3.45944	-0.33475	0.16255
C	3.66693	-0.03520	2.03714
C	3.02114	1.23405	2.60129
H	4.76260	0.04502	2.17802
C	3.17071	-1.25620	2.82303
C	4.21699	-2.06329	-0.18507
H	3.55883	-2.77406	0.34422
C	5.64012	-2.20687	0.36192
C	4.17047	-2.41571	-1.67415
C	4.41875	0.89701	-0.93587
C	4.73808	2.24873	-0.29204
C	3.73679	1.10407	-2.29287
H	5.37749	0.37080	-1.11143
H	4.38175	1.69119	-2.96866
H	3.49393	0.15459	-2.79306
H	2.79683	1.65504	-2.14494
H	5.38274	2.84981	-0.95628
H	3.80368	2.80485	-0.12004
H	5.26214	2.13829	0.67053
H	3.29561	1.36222	3.66270
H	3.31239	2.13975	2.05349
H	1.92398	1.17339	2.53878
H	3.28491	-1.09650	3.90837
H	2.10086	-1.43240	2.62417
H	3.70927	-2.17869	2.56123
H	6.04931	-3.21063	0.15431
H	6.32282	-1.47882	-0.10783
H	5.68942	-2.04678	1.44992
H	4.52941	-3.44425	-1.85121
H	3.14550	-2.33921	-2.06644
H	4.81540	-1.74132	-2.26214

62			
B_TS2 - TIPS			
1	-0.89562	-2.00565	-0.27064
C	1.46123	-1.42644	-0.18543
C	-2.16541	-0.87469	1.02682
O	-3.58220	-2.02442	-1.21197
C	-4.28524	-1.34519	-0.44109
O	-5.48343	-1.04787	-0.51321
C	-3.52611	-0.73302	0.77790
C	-4.25577	0.04542	1.68654
H	-5.31764	0.15886	1.46117
C	-3.65409	0.63878	2.79085
H	-4.24779	1.24499	3.47860
C	-2.28830	0.45987	3.01907
H	-1.80190	0.91887	3.88205
C	-1.53438	-0.30392	2.13235
H	-0.46324	-0.44265	2.28676
C	1.71371	-0.12598	-0.06472
S	0.69443	1.33340	0.13789
C	-0.26099	1.37100	-1.43871
H	0.23461	2.08431	-2.11501
H	-0.19757	0.37270	-1.88719
C	-1.69965	1.76607	-1.22239
C	-2.73127	1.04159	-1.82814
H	-2.50933	0.12889	-2.38623
C	-4.06246	1.42832	-1.66314
H	-4.85670	0.81385	-2.08718
C	-4.37273	2.53797	-0.88074
H	-5.41581	2.82160	-0.72976
C	-3.35157	3.25857	-0.26018
H	-3.59035	4.11676	0.37137
C	-2.02389	2.87586	-0.43181
H	-1.22649	3.43595	0.06446
Si	3.59610	0.10403	0.06821
C	3.97558	0.30440	1.93300
C	3.02711	1.28357	2.63510
H	5.00813	0.69429	2.01275
C	3.90444	-1.05798	2.63370
C	4.56002	-1.41864	-0.55373
H	4.13299	-2.26800	0.00492
C	6.05379	-1.30804	-0.22752
C	4.35378	-1.69590	-2.04466
C	4.17721	1.61956	-0.94694
C	4.18427	2.94900	-0.18681
C	3.39259	1.76854	-2.25543
H	5.22514	1.37180	-1.20255
H	3.85250	2.53003	-2.90753
H	3.32725	0.82917	-2.82292
H	2.36516	2.09267	-2.03618
H	4.60716	3.75402	-0.81178
H	3.15666	3.24001	0.08181
H	4.77730	2.89773	0.73900
H	3.30793	1.40781	3.69451
H	3.01295	2.27811	2.16832
H	1.99402	0.89972	2.61386
H	4.04396	-0.94841	3.72220
H	2.91864	-1.52319	2.46743
H	4.66507	-1.76235	2.26708
H	6.59221	-2.22134	-0.53140
H	6.51943	-0.46692	-0.76746
H	6.24166	-1.15287	0.84587
H	4.84851	-2.63610	-2.34090
H	3.28490	-1.78345	-2.28748
H	4.78945	-0.89271	-2.66198

$\begin{aligned} & 62 \\ & \text { B_35 - TIPS } \end{aligned}$			
1	0.82404	-3.12097	-2.07083
C	1.23190	1.31448	0.75103
C	0.46955	-2.81227	-0.00279
O	-1.06323	-0.59719	-1.39694
C	-1.54508	-1.17118	-0.40529
O	-2.70454	-1.13160	0.03833
C	-0.56003	-1.99349	0.46065
C	-0.72690	-1.89751	1.85060
H	-1.55539	-1.27590	2.19535
C	0.11001	-2.56275	2.73964
H	-0.03443	-2.45062	3.81620
C	1.12478	-3.38629	2.24940
H	1.78489	-3.92599	2.93167
C	1.29568	-3.52276	0.87421
H	2.07538	-4.17463	0.47769
C	0.04905	1.50251	1.00187
S	-1.57138	1.76574	1.39027
C	-2.28033	2.07704	-0.28869
H	-1.75529	2.94877	-0.70085
H	-2.07419	1.18042	-0.89456
C	-3.74916	2.34601	-0.12404
C	-4.64643	1.27137	-0.05411
H	-4.23542	0.25730	-0.12832
C	-6.00837	1.51798	0.11490
H	-6.70393	0.67777	0.16428
C	-6.48730	2.82495	0.22036
H	-7.55569	3.01004	0.35066
C	-5.59537	3.89544	0.16047
H	-5.96152	4.92075	0.24456
C	-4.23229	3.65391	-0.00663
H	-3.52855	4.48925	-0.05009
Si	2.99246	1.08256	0.27262
C	3.91296	0.11602	1.64632
C	3.13385	0.13957	2.96670
H	4.86712	0.65673	1.79213
C	4.23735	-1.32655	1.24910
C	3.07980	0.18517	-1.39455
H	2.97358	-0.88579	-1.14445
C	4.44644	0.38876	-2.05899
C	1.92169	0.53883	-2.33441
C	3.77329	2.82208	0.17918
C	3.73664	3.50104	1.55185
C	3.10147	3.70481	-0.87534
H	4.83088	2.66841	-0.10718
H	3.52638	4.72318	-0.87247
H	3.21638	3.29542	-1.88941
H	2.02115	3.79100	-0.67503
H	4.18944	4.50631	1.51238
H	2.69557	3.61620	1.89508
H	4.27683	2.92089	2.31565
H	3.70729	-0.35142	3.77134
H	2.89356	1.16328	3.29166
H	2.17796	-0.39638	2.85387
H	4.77430	-1.84476	2.06192
H	3.31380	-1.89196	1.05316
H	4.86102	-1.38312	0.34420
H	4.53978	-0.23669	-2.96195
H	4.58174	1.43733	-2.37238
H	5.28688	0.13672	-1.39076
H	2.04191	0.01091	-3.29593
H	0.94936	0.23656	-1.91263
H	1.88729	1.61893	-2.55299

35			
$\mathrm{a}_{0}-$ R=Methyl			
I	0.88458	-0.73501	-0.08159
C	-0.49172	0.79511	-0.31004
S	-1.57801	-2.26922	-0.14014
C	-2.49773	-1.33418	1.11799
C	3.77113	0.22788	0.11812
C	4.86901	1.09082	0.15239
C	2.49517	0.75910	-0.04543
C	4.68784	2.46505	0.02391
H	5.85177	0.63348	0.28240
C	2.29493	2.13093	-0.17565
C	3.40085	2.98275	-0.13980
H	5.54715	3.13837	0.05056
H	1.28929	2.53407	-0.30299
H	3.25242	4.06016	-0.24128
C	3.98291	-1.28484	0.26030
O	5.12141	-1.70276	0.40240
O	2.89922	-1.95354	0.21076
C	-1.34784	1.65275	-0.38041
C	-3.64429	-0.46402	0.63053
H	-2.92226	-2.04352	1.84993
H	-1.81642	-0.68464	1.69599
C	-4.14749	-0.54713	-0.67139
C	-5.23694	0.23140	-1.06790
C	-5.84176	1.11518	-0.17375
C	-4.25479	0.43570	1.51732
C	-5.33991	1.21749	1.12544
H	-3.64571	-1.23287	-1.35730
H	-5.61551	0.14807	-2.08936
H	-6.69276	1.72384	-0.48628
H	-3.86483	0.51936	2.53605
H	-5.79615	1.91112	1.83552
C	-2.40219	2.65881	-0.47774
H	-3.35361	2.17637	-0.74799
H	-2.54688	3.17077	0.48431
H	-2.15972	3.41255	-1.24090

35			
$\mathrm{~b}_{0}-$ R=Methyl			
l	-1.49657	1.73626	0.57577
C	0.56754	1.69702	0.60080
C	-1.61749	0.20840	-0.91549
O	-3.73307	1.50235	0.25784
C	-4.09855	0.63955	-0.62694
O	-5.23441	0.37174	-0.96247
C	-2.92384	-0.08082	-1.27563
C	-3.11028	-1.07027	-2.24149
H	-4.13858	-1.29958	-2.52661
C	-2.00902	-1.72800	-2.78998
H	-2.16162	-2.51029	-3.53598
C	-0.71540	-1.40886	-2.37488
H	0.17190	-1.93485	-2.73729
C	-0.49367	-0.41270	-1.41862
H	0.54100	-0.22289	-1.10186
C	1.78005	1.60575	0.57150
S	2.76305	-1.60426	-1.05641
C	2.34458	-1.99174	0.68550
H	2.92421	-2.87109	1.01981
H	2.63081	-1.16154	1.35859
C	0.87844	-2.27768	0.90063
C	0.09635	-1.52340	1.78250
H	0.57190	-0.72155	2.35433
C	-1.27607	-1.75787	1.91523
H	-1.87143	-1.14222	2.59444
C	-1.89113	-2.75997	1.16927
H	-2.96632	-2.92943	1.25286
C	-1.11588	-3.53724	0.30248
H	-1.59007	-4.32110	-0.29302
C	0.24722	-3.29600	0.17056
H	0.85256	-3.85075	-0.55064
C	3.22392	1.44128	0.49324
H	3.40912	0.51454	-0.10417
H	3.69217	2.29903	-0.00984
H	3.66239	1.32991	1.49501

35			
$\mathrm{a}_{\text {TS } 1}$ - R=Methyl			
I	1.02859	-0.90253	0.50778
C	-0.64767	0.20721	-1.10224
S	-1.82399	-1.77012	-1.32441
C	-2.47434	-1.58012	0.37167
C	3.59260	0.35460	0.47549
C	4.48455	1.36603	0.83721
C	2.33173	0.71838	0.01991
C	4.10967	2.70335	0.74008
H	5.46746	1.04995	1.19170
C	1.92441	2.04528	-0.08921
C	2.83440	3.03849	0.27864
H	4.81055	3.49111	1.02397
H	0.92264	2.28364	-0.45515
H	2.53696	4.08622	0.20079
C	4.00198	-1.12073	0.58452
O	5.12430	-1.38151	0.99047
O	3.08117	-1.91801	0.22367
C	-1.12348	1.35233	-1.30130
C	-3.45707	-0.44759	0.53003
H	-2.96744	-2.52706	0.64539
H	-1.64308	-1.43701	1.08154
C	-4.61721	-0.39647	-0.25421
C	-5.53782	0.63646	-0.10388
C	-5.31086	1.65117	0.82916
C	-3.23510	0.57939	1.45234
C	-4.15258	1.62075	1.60339
H	-4.76527	-1.17184	-1.00974
H	-6.43504	0.65894	-0.72619
H	-6.02801	2.46659	0.94178
H	-2.31803	0.56864	2.04601
H	-3.95382	2.41730	2.32340
C	-2.39221	1.95555	-1.75759
H	-3.03560	1.19232	-2.23526
H	-2.94694	2.36318	-0.89642
H	-2.23427	2.78551	-2.46381

35			
b $_{\text {TS } 1}-\mathrm{R}=$ Methyl			
l	-1.15410	1.69528	0.37074
C	0.85083	1.53231	0.38078
C	-1.64179	0.13152	-1.01683
O	-3.53047	1.64621	0.25820
C	-4.04485	0.77388	-0.51685
O	-5.22512	0.55396	-0.73413
C	-2.99267	-0.07323	-1.23909
C	-3.34762	-1.08032	-2.13833
H	-4.41424	-1.23969	-2.30848
C	-2.35945	-1.83241	-2.77296
H	-2.64209	-2.62175	-3.47267
C	-1.00911	-1.58804	-2.51148
H	-0.22702	-2.18686	-2.98334
C	-0.62327	-0.58687	-1.61655
H	0.43650	-0.42483	-1.38277
C	2.04719	1.17761	0.31718
S	2.76752	-0.97687	-0.69177
C	2.35131	-1.85082	0.86360
H	2.97012	-2.76061	0.92886
H	2.61191	-1.21964	1.73085
C	0.89686	-2.23177	0.95043
C	-0.00432	-1.50956	1.74001
H	0.37020	-0.67213	2.33471
C	-1.36638	-1.81820	1.74352
H	-2.05900	-1.21885	2.33944
C	-1.85009	-2.86721	0.96450
H	-2.91771	-3.09285	0.94736
C	-0.95635	-3.61170	0.19114
H	-1.32712	-4.42981	-0.43062
C	0.39825	-3.29363	0.18326
H	1.09203	-3.84400	-0.45772
C	3.43585	1.54644	0.68516
H	3.90210	0.75376	1.28586
H	4.05229	1.66130	-0.21562
H	3.42364	2.49111	1.25264

35			
$\mathrm{~b}_{2}-\mathrm{R}=$ Methyl			
I	-0.09943	1.36403	-1.08330
C	1.51888	2.49163	-0.18443
C	-0.16703	-0.79712	-1.26989
O	-2.74067	0.46544	-1.15609
C	-2.75898	-0.76984	-0.99241
O	-3.69181	-1.51874	-0.67607
C	-1.38517	-1.46812	-1.20184
C	-1.36045	-2.86342	-1.32014
H	-2.32723	-3.36431	-1.23874
C	-0.16936	-3.55639	-1.50729
H	-0.17537	-4.64515	-1.59831
C	1.03672	-2.85578	-1.57884
H	1.98000	-3.38609	-1.72639
C	1.04107	-1.46710	-1.46062
H	1.97934	-0.91481	-1.50015
C	2.52182	1.98737	0.54637
S	3.00833	0.28111	0.82313
C	2.20665	-0.05892	2.44625
H	2.83639	-0.82406	2.92231
H	2.27691	0.86112	3.04393
C	0.78706	-0.53677	2.32607
C	-0.27534	0.37029	2.27055
H	-0.06527	1.44120	2.34123
C	-1.58047	-0.07568	2.05695
H	-2.39185	0.64397	1.93764
C	-1.84576	-1.43865	1.93334
H	-2.85483	-1.77441	1.69088
C	-0.79295	-2.35193	2.01252
H	-0.98818	-3.41847	1.88567
C	0.51202	-1.90414	2.19754
H	1.33806	-2.62045	2.21812
C	3.44624	2.99041	1.21106
H	3.47021	2.83469	2.30302
H	4.47756	2.87114	0.84360
H	3.10746	4.01558	1.01125

35			
b $_{\text {TS2 }}-$ R=Methyl			
I	-0.31561	1.23805	-1.65068
C	1.87787	2.95373	0.07141
C	-0.37692	-0.87855	-1.48847
O	-3.07752	0.19961	-0.94477
C	-2.96139	-1.03031	-0.88686
O	-3.78614	-1.89406	-0.54128
C	-1.53803	-1.60897	-1.22630
C	-1.40954	-3.00669	-1.18924
H	-2.33147	-3.55029	-0.97609
C	-0.19272	-3.65041	-1.37842
H	-0.13481	-4.74091	-1.33849
C	0.95702	-2.89305	-1.60876
H	1.92715	-3.37550	-1.74866
C	0.86316	-1.50604	-1.66644
H	1.75149	-0.90010	-1.84879
C	2.79355	2.35814	0.80163
S	2.92583	0.59587	0.57967
C	2.21358	-0.01138	2.17066
H	2.87572	-0.83111	2.48334
H	2.32830	0.80638	2.89649
C	0.79092	-0.48713	2.08547
C	-0.26166	0.41776	1.90449
H	-0.04251	1.48345	1.79777
C	-1.57451	-0.03600	1.80006
H	-2.38085	0.65985	1.56657
C	-1.85521	-1.39981	1.90989
H	-2.87536	-1.75398	1.75584
C	-0.81197	-2.30512	2.09334
H	-1.02131	-3.37557	2.13637
C	0.50435	-1.85293	2.16925
H	1.32298	-2.56880	2.28383
C	3.74091	3.10280	1.70436
H	3.63964	2.73975	2.73840
H	4.77547	2.92705	1.37726
H	3.53416	4.18192	1.69403

35			
$\mathrm{a}_{3 \cdot 5}-\mathrm{R}=$ Methyl			
I	-1.73195	0.11662	-2.13224
C	1.97592	0.19127	-1.42058
S	1.83021	1.81727	-1.86988
C	1.21000	2.53548	-0.28668
C	-1.02942	-1.89475	0.13844
C	-1.00678	-3.19013	0.67847
C	-1.62261	-1.73867	-1.11709
C	-1.55274	-4.28239	0.01430
H	-0.51605	-3.29254	1.64783
C	-2.15577	-2.83144	-1.81114
C	-2.12805	-4.10222	-1.24421
H	-1.52250	-5.27453	0.46982
H	-2.59347	-2.67988	-2.79857
H	-2.55289	-4.94705	-1.79057
C	-0.37716	-0.77347	0.99927
O	0.48789	-1.18317	1.79893
O	-0.78128	0.38104	0.80810
C	2.08110	-0.97501	-1.09792
C	2.26109	2.55423	0.78456
H	0.90457	3.55291	-0.57222
H	0.33497	1.94209	0.02267
C	3.24518	3.55106	0.80933
C	4.23330	3.55425	1.79017
C	4.25195	2.54873	2.75919
C	2.28170	1.54650	1.75726
C	3.27878	1.55104	2.73525
H	3.23526	4.32899	0.04051
H	4.99153	4.34048	1.79930
H	5.02616	2.54560	3.52974
H	1.52075	0.75707	1.75523
H	3.28436	0.75787	3.48540
C	2.16494	-2.36131	-0.64862
H	3.19249	-2.74915	-0.71435
H	1.82412	-2.38359	0.39946
H	1.49708	-3.00987	-1.23615

35			
$\mathrm{~b}_{3.5}-$ R=Methyl			
l	-2.89563	-2.25129	0.90395
C	3.32814	-0.37016	1.21630
C	-2.66233	-0.29794	1.70312
O	-1.30214	-0.33225	-0.94034
C	-1.74567	0.76027	-0.54082
O	-1.80085	1.85008	-1.12763
C	-2.22311	0.78920	0.94414
C	-2.15096	2.03077	1.59303
H	-1.83274	2.87008	0.97291
C	-2.46572	2.18358	2.93875
H	-2.38071	3.16276	3.41467
C	-2.89499	1.07894	3.67510
H	-3.15117	1.17726	4.73208
C	-3.00480	-0.16164	3.05249
H	-3.35473	-1.02947	3.61299
C	2.16443	-0.66736	1.40408
S	4.90057	0.13551	0.84144
C	4.73238	0.40635	-0.98745
H	5.67017	0.91465	-1.25438
H	4.71302	-0.58109	-1.46703
C	3.52276	1.21170	-1.34912
C	2.33476	0.55900	-1.69473
H	2.32036	-0.53224	-1.75524
C	1.15843	1.27452	-1.91003
H	0.21969	0.75224	-2.10811
C	1.16496	2.66366	-1.78530
H	0.21889	3.19315	-1.90747
C	2.35134	3.32845	-1.46708
H	2.36065	4.41641	-1.36913
C	3.52304	2.60687	-1.24343
H	4.44285	3.12385	-0.95560
C	0.75251	-0.98338	1.59586
H	0.19449	-0.83147	0.65216
H	0.60793	-2.02652	1.91202
H	0.29981	-0.32225	2.35040

2. General Methods

Technical grade solvents were used for quantitative flash chromatography. HPLC grade solvents purchased from Sigma-Aldrich or freshly distilled solvents were used for flash chromatography for compounds undergoing full characterization. Reaction solvents were dried by passage over activated alumina under nitrogen atmosphere $\left(\mathrm{H}_{2} \mathrm{O}\right.$ content $<30 \mathrm{ppm}$, Karl-Fischer titration). We note; however, that the thiol-alkynylation reaction gives identical results when using HPLC grade THF purchased from Sigma-Aldrich or dried THF from the solvent system. Commercially available reagents were purchased from Acros, Aldrich, Fluka, VWR, Aplichem or Merck and used without any further purification. Chromatographic purification was performed as flash chromatography using Macherey-Nagel silica 40-63, 60 \AA, using the solvents indicated as eluent with 0.1-0.5 bar pressure. TLC was performed on Merck silica gel 60 F254 TLC plates and visualized with UV light and permanganate stain. Melting points were measured on a calibrated Büchi B-540 melting point apparatus using open glass capillaries. ${ }^{1} \mathrm{H}$ NMR spectra were measured on a Brucker DPX-400 400 MHz spectrometer, all signals are reported in ppm with the corresponding internal solvent peak or TMS as standard. The data is being reported as $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=\operatorname{triplet}, \mathrm{q}=$ quadruplet, $q i=$ quintet, $\mathrm{m}=$ multiplet or unresolved, $\mathrm{br}=$ broad signal, coupling constant(s) in Hz , integration; interpretation). ${ }^{13} \mathrm{C}$ NMR spectra were carried out with ${ }^{1} \mathrm{H}$-decoupling on a Brucker DPX-400 100 MHz . All signals are reported in ppm with the corresponding internal solvent signal or TMS as standard. Infrared spectra were obtained on a JASCO FT-IR B4100 spectrophotometer with an ATR PRO410-S and a ZnSe prisma and are reported as cm^{-1} ($\mathrm{w}=$ weak, $\mathrm{m}=$ medium, $\mathrm{s}=$ strong, $\mathrm{sh}=$ shoulder). High resolution mass spectrometric measurements were performed by the mass spectrometry service of ISIC at the EPFL on a MICROMASS (ESI) Q-TOF Ultima API.

3. Preparation of Reagents

1-[(Triisopropyllsilyl)ethynyl]-1,2-benziodoxol-3(1H)-one (1a)

Following a reported procedure, ${ }^{2} \mathrm{NaIO}_{4}(77.2 \mathrm{~g}, 0.361 \mathrm{~mol}, 1.0$ equiv) and 2-iodobenzoic acid (7) ($89.5 \mathrm{~g}, 0.361 \mathrm{mmol}, 1.0$ equiv) were suspended in 30% (v:v) aq. AcOH (700 mL) under air in a 4-neck sulfonation flask equipped with a mechanic stirrer, a thermometer and a condenser. The mixture was vigorously stirred and refluxed for 4 h . The reaction mixture was then diluted with cold water (500 mL) and allowed to cool to room temperature, protecting it from light. After 45 min , the suspension was added to water $(1.5 \mathrm{~L})$ and the crude product was collected by filtration, washed on the filter with ice water ($3 \times 300 \mathrm{~mL}$) and cold acetone (3 x 300 mL), and air-dried in the dark overnight to give 2-iodosylbenzoic acid ($77.3 \mathrm{~g}, 0.292 \mathrm{~mol}$, 81% yield) as a colorless solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 8.02(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{Ar} H), 7.97(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 7.85(\mathrm{dd}, J=8.2,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.71(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{ArH}){ }^{13}{ }^{1} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 167.7,134.5,131.5,131.1,130.4,126.3,120.4$. IR v 3083 (w), 3060 (w), 2867 (w), 2402 (w), 1601 (m), 1585 (m), 1564 (m), 1440 (m), 1338 (s), 1302 (m), 1148 (m), 1018 (w), 834 (m), 798 (w), 740 (s), 694 (s), 674 (m), 649 (m). The values of the NMR spectra are in accordance with reported literature data. ${ }^{2}$

Following a modified reported procedure, ${ }^{3}$ trimethylsilylacetylene ($30.3 \mathrm{ml}, 213 \mathrm{mmol}, 1$ equiv) was charged in a 4 -neck 500 mL flask equipped with a thermometer, a dropping funnel, an agitator magnetic and a nitrogen arrival. THF (330 mL) was added via a dropping funnel and the reaction was cooled to $-78{ }^{\circ} \mathrm{C} .{ }^{n} \mathrm{BuLi}(86 \mathrm{~mL}, 0.21 \mathrm{mmol}, 0.98$ equiv) was added and the reaction was stirred for 5 minutes at $-78^{\circ} \mathrm{C}$, then warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for 5 minutes. The reaction was then cooled back to $-78{ }^{\circ} \mathrm{C}$ and ${ }^{i} \mathrm{Pr}_{3} \mathrm{SiCl}$ (29) ($45.5 \mathrm{~mL}, 213$ mmol, 1 equiv) was added dropwise via a dropping funnel. The mixture was then allowed to warm to r.t. and stirred overnight. A saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(300 \mathrm{~mL})$ was added and the

[^2]reaction was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 300 \mathrm{~mL})$. The organic layer was dried over MgSO_{4}, filtered and concentrated. Distillation of the crude product ($1.4 \mathrm{mbar}, 55^{\circ} \mathrm{C}$) afforded trimethylsilyl (triisopropylsilyl) acetylene (30) $(51.4 \mathrm{~g}, 203 \mathrm{mmol}, 95 \%)$ as a colorless liquid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.08(\mathrm{~m}, 21 \mathrm{H}$, TIPS), 0.18 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{TMS}$). The values of the NMR spectra are in accordance with reported literature data. ${ }^{3}$

Caution: reaction carried out behind a safety shield! Following a modified reported procedure, ${ }^{4}$ 2-iodosylbenzoic acid ($26.4 \mathrm{~g}, 100 \mathrm{mmol}, 1.0$ equiv) was charged in a four-neck flat-bottom flask equipped with a thermometer, a dropping funnel, a mechanic stirrer and a nitrogen arrival. The system was flushed with N_{2} by three vacuum/ N_{2} cycles. Anhydrous acetonitrile (350 mL) was then canulated. The reaction mixture (white suspension) was cooled to $4{ }^{\circ} \mathrm{C}$ and then trimethylsilyltriflate ($20.0 \mathrm{~mL}, 110 \mathrm{~mol}, 1.1$ equiv) was added dropwise for 15 min via a dropping funnel. The dropping funnel was rinsed with anhydrous acetonitrile (10 $\mathrm{mL})$. No increase of temperature was observed. The ice bath was removed and the reaction stirred for 15 min . Trimethylsilyl)(triisopropylsilyl)acetylene (30) (28.0 g, $110 \mathrm{mmol}, 1.1$ equiv) was added dropwise via dropping funnel over 15 min (the colorless suspension was converted to a yellow solution). The dropping funnel was rinsed with anhydrous acetonitrile $(10 \mathrm{~mL})$ and the reaction was stirred for 30 min . Then pyridine ($9.9 \mathrm{~mL}, 25 \mathrm{mmol}, 1.1$ equiv) was added dropwise via a dropping funnel over 5 min . After 15 min , the reaction mixture was transferred in a one-neck 1L flask and reduced under reduced pressure until a solid was obtained. The solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL})$ and transferred in a 2L separatory funnel. The organic layer was added and washed with $1 \mathrm{M} \mathrm{HCl}(150 \mathrm{~mL})$ and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL})$. The organic layers were combined, washed with a saturated solution of $\mathrm{NaHCO}_{3}(2 \times 250 \mathrm{~mL})$, dried over MgSO_{4}, filtered and the solvent was evaporated under reduced pressure. The resulting solid (44.8 g) was then recristallized in $\mathrm{CH}_{3} \mathrm{CN}(110 \mathrm{~mL})$. The colorless solid obtained over cooling down was then filtered over Büchner, washed with hexanes (2 x 40 mL) and dried for 1 h at $40^{\circ} \mathrm{C}$ at 5 mbar . TIPS-EBX (1a) ($36.2 \mathrm{~g}, 84.5 \mathrm{mmol}, 85 \%$) was obtained as white crystals. Mp $173-177{ }^{\circ} \mathrm{C}$ (decomposition). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.37$ (m, $1 \mathrm{H}, \mathrm{ArH}$), 8.28 (m, $1 \mathrm{H}, \mathrm{ArH}$), 7.72 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{ArH}$), 1.13 (m, $21 \mathrm{H}, \mathrm{TIPS}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.4,134.5,132.3$, $131.4,131.4,126.1,115.6,113.9,64.7,18.4,11.1$. The values of the NMR spectra are in accordance with reported literature data. ${ }^{4}$

[^3]
Propynyl-1,2-benziodoxol-3(1H)-one (1b)

Following a slightly modified procedure, ${ }^{5}$ 2-iodobenzoic acid (7) ($1.07 \mathrm{~g}, 4.30 \mathrm{mmol}, 1.00$ eq.), para-toluenesulfonic acid monohydrate ($\left.\mathrm{TsOH}_{2} \mathrm{H}_{2} \mathrm{O}, 818 \mathrm{mg}, 4.30 \mathrm{mmol}, 1.00 \mathrm{eq}.\right)$ and meta-chloroperoxybenzoic acid (m CPBA- $70 \%, 1.17 \mathrm{~g}, 4.73 \mathrm{mmol}, 1.10 \mathrm{eq}$.) were dissolved in dichloromethane (7 mL) and 2,2,2-trifluoroethanol (7 mL). The mixture was stirred at room temperature under nitrogen for 1 hour, after which propynyl-1-boronic acid pinacol ester ($4.85 \mathrm{~g}, 21.2 \mathrm{mmol}, 1.40$ eq.) was added in one portion. The reaction mixture was stirred for 2.5 hours at room temperature, filtered and concentrated in vacuo. The resulting oil was dissolved in dichloromethane (30 mL) and under vigorous stirring, saturated aq. NaHCO_{3} (30 mL) was added. The mixture was stirred for 15 minutes, the two layers were separated and the aqueous phase was extracted with additional portions of dichloromethane ($3 \times 25 \mathrm{~mL}$). The combined organic layers were washed with brine (25 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by flash column chromatography (ethyl acetate) to afford $\mathbf{1 b}(1.03 \mathrm{~g}, 3.60 \mathrm{mmol}, 84 \%)$ as a white solid. $\mathrm{R}_{f}(\mathrm{EtOAc})=0.10 \mathrm{Mp}$ $124-150{ }^{\circ} \mathrm{C}$ (decomposition). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.41-8.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 8.22-$ $8.14(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.79-7.68(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCCH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ MHz): δ 166.7, 134.8, 132.5, 131.6, 126.4, 115.6, 105.1, 39.0, 5.7. IR v 2183 (w), 1607 (s), $1559(\mathrm{~m}), 1350(\mathrm{~m}), 746(\mathrm{~m}), 730(\mathrm{~m}) . \mathrm{HRMS}(\mathrm{ESI}) \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{IO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$calc. $=286.9564$; $[\mathrm{M}+\mathrm{H}]^{+}$obs. $=286.9561$.

[^4]
Octynyl-1,2-benziodoxol-3(1H)-one (1d)

Following a slightly modified procedure, ${ }^{7}$ a solution of 1-octyne (31) $(747 \mathrm{mg}, 6.78 \mathrm{mmol}$, 1.00 eq.) and dry diethyl ether (7.0 mL) was cooled to $-78^{\circ} \mathrm{C}$, at which temperature 1.6 M $n \mathrm{BuLi}$ in hexanes ($4.24 \mathrm{~mL}, 6.78 \mathrm{mmol}, 1.00$ eq.) was added dropwise. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 90 minutes and then canullated into a to $-78{ }^{\circ} \mathrm{C}$ pre-cooled solution consisting of triisopropyl borate ($1.56 \mathrm{~mL}, 6.78 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) and dry diethyl ether (7.0$ mL). The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 2 hours, after which 2.0 M HCl in diethyl ether ($3.73 \mathrm{~mL}, 7.46 \mathrm{mmol}, 1.10 \mathrm{eq}$.) was added. The cooling bath was removed and the mixture was stirred for an additional 60 minutes. After filtration and solvent removal, Kugelrohr distillation ($75{ }^{\circ} \mathrm{C}$ at 0.6 mbar) furnished pure diisopropyloct-1-ynylboronate (32, $940 \mathrm{mg}, 3.95 \mathrm{mmol}, 58 \%$ yield) as a colorless liquid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 4.55$ (sept, $2 \mathrm{H}, J=6.2 \mathrm{~Hz},{ }^{\mathrm{i}} \mathrm{Pr}-\mathrm{CH}$), $2.27\left(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}\right.$, propargyl CH_{2}), 1.60-1.48 (m, 2 H , CH_{2}), 1.45-1.24 (m, $\left.6 \mathrm{H}, \mathrm{CH}_{2}\right), 1.19\left(\mathrm{~d}, 12 \mathrm{H}, J=6.2 \mathrm{~Hz},{ }^{\mathrm{i}} \mathrm{Pr}^{2} \mathrm{CH}_{3}\right), 0.89(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}$, alkyl CH_{3}). The values of the ${ }^{1} \mathrm{H}$ NMR spectrum are in accordance with reported literature data. ${ }^{8}$

Following a slightly modified procedure, ${ }^{5}$ 2-iodobenzoic acid (7) ($692 \mathrm{mg}, 2.79 \mathrm{mmol}, 1.00$ eq.), para-toluenesulfonic acid monohydrate ($\left.\mathrm{TsOH}_{2} \mathrm{H}_{2} \mathrm{O}, 531 \mathrm{mg}, 2.79 \mathrm{mmol}, 1.00 \mathrm{eq}.\right)$ and meta-chloroperoxybenzoic acid (m CPBA- $70 \%, 756 \mathrm{mg}, 3.07 \mathrm{mmol}, 1.10 \mathrm{eq}$.) were dissolved in dichloromethane $(4.5 \mathrm{~mL})$ and 2,2,2-trifluoroethanol (4.5 mL). The mixture was stirred at room temperature under nitrogen for 1 hour, after which diisopropyloct-1-ynylboronate (32, $930 \mathrm{mg}, 3.90 \mathrm{mmol}, 1.40 \mathrm{eq}$.) was added in one portion. The reaction mixture was stirred for 2 hours at room temperature, filtered and concentrated in vacuo. The resulting oil was dissolved in dichloromethane (30 mL) and under vigorous stirring, saturated aq. NaHCO_{3} (30 mL) was added. The mixture was stirred for 15 minutes, the two layers were separated and the

[^5]aqueous layer was extracted with additional portions of dichloromethane ($3 \times 10 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by flash column chromatography (ethyl acetate) to afford 1d (940 $\mathrm{mg}, 2.64 \mathrm{mmol}, 95 \%)$ as a white solid. $\mathrm{R}_{f}(\mathrm{EtOAc})=0.25 . \mathrm{Mp} 50-63{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 400 MHz): $\delta 8.42-8.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}$), 8.20-8.13 (m, $1 \mathrm{H}, \mathrm{Ar} H$), 7.78-7.69 (m, $2 \mathrm{H}, \mathrm{ArH}$), 2.59 (t, $2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CCCH}_{2}$), 1.70-1.58 (m, 2 H), 1.51-1.39 (m, 2 H), 1.38-1.26 (m, 4 H), $0.94-0.86\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 166.7$, 134.7, 132.5, 131.7, 131.6, 126.3, 115.7, 109.9, 39.4, 31.3, 28.7, 28.3, 22.6, 20.6, 14.1. IR v 2930 (w), 2858 (w), 2166 (w), 1619 (s), 1561 (w), 1439 (w), 1331 (m), 1297 (m), 832 (w), 748 (m). HRMS (ESI) $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{IO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$calc. $=357.0346 ;[\mathrm{M}+\mathrm{H}]^{+}$obs. $=357.0339$.

Hexadecynyl-1,2-benziodoxol-3(1H)-one (1e)

To a mixture of trimethylsilylacetylene ($8.33 \mathrm{~g}, 85.0 \mathrm{mmol}, 1.20 \mathrm{eq}$.$) and dry THF (46 \mathrm{~mL}$) was added at $-78{ }^{\circ} \mathrm{C}$ under nitrogen 2.5 M nBuLi in hexanes ($33.9 \mathrm{~mL}, 85.0 \mathrm{mmol}, 1.20 \mathrm{eq}$.) over a 10 minute time period. The resulting light yellow solution was stirred at $-78^{\circ} \mathrm{C}$ for 60 minutes, after which a mixture consisting of 1-bromotetradecane 33 ($19.6 \mathrm{~g}, 70.7 \mathrm{mmol}, 1.00$ eq.), hexamethylphosphoramide (HMPA, $14.2 \mathrm{~mL}, 78.0 \mathrm{mmol}, 1.10 \mathrm{eq}$.) and dry THF (23 mL) was slowly added via cannula over a 20 minute time period. The reaction mixture was stirred for 60 minutes at $-78{ }^{\circ} \mathrm{C}$, followed by 24 hours of stirring at room temperature. The reaction was quenched at $0{ }^{\circ} \mathrm{C}$ with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and diluted with water (10 mL) and EtOAc (50 mL). The two layers were separated and the aq. layer was extracted with additional portions of EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layers were washed with water ($2 \times 100 \mathrm{~mL}$), brine (100 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The light brown crude liquid was finally pushed through a small plug of silica gel with pentane as eluent to afford pure hexadec-1-yn-1-yltrimethylsilane (34, $19.3 \mathrm{~g}, 65.5 \mathrm{mmol}$, 92.7% yield) as a colorless liquid. $\mathrm{R}_{f}($ pentane $)=0.78 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 2.19(\mathrm{t}$,
$\left.2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CCCH}_{2}\right), 1.54-1.44\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.42-1.18\left(\mathrm{~m}, 22 \mathrm{H}, \mathrm{CH}_{2}\right), 0.87(\mathrm{t}, 3 \mathrm{H}, J$ $=6.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $0.13(\mathrm{~s}, 9 \mathrm{H}, \mathrm{TMS}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right):{ }^{9} \delta 107.7,84.3,32.2$, 29.9, 29.8, 29.7, 29.6, 29.3, 29.0, 28.9, 22.9, 20.0, 14.3, 0.3. IR v 2924 (m), 2854 (m), 2175 (w), 1461 (w), 1249 (w), 910 (w), 841 (s), 761 (w), 736 (m). HRMS (ESI) $\mathrm{C}_{19} \mathrm{H}_{38} \mathrm{AgSi}^{+}$ $[\mathrm{M}+\mathrm{Ag}]^{+}$calc. $=401.1794 ;[\mathrm{M}+\mathrm{Ag}]^{+}$obs. $=401.1798$.

Following a slightly modified procedure, ${ }^{5}$ 2-iodobenzoic acid (7) ($8.00 \mathrm{~g}, 32.2 \mathrm{mmol}, 1.00$ eq.), para-toluenesulfonic acid monohydrate ($\left.\mathrm{TsOH} \mathrm{H}_{2} \mathrm{O}, 6.13 \mathrm{~g}, 32.2 \mathrm{mmol}, 1.00 \mathrm{eq}.\right)$ and meta-chloroperoxybenzoic acid (m CPBA- $70 \%, 8.74 \mathrm{~g}, 35.5 \mathrm{mmol}, 1.10$ eq.) were dissolved in dichloromethane (60 mL) and 2,2,2-trifluoroethanol (60 mL). The mixture was stirred at room temperature under nitrogen for 1 hour, after which hexadec-1-yn-1-yltrimethylsilane ($\mathbf{3 4}, 13.3 \mathrm{~g}, 45.1 \mathrm{mmol}, 1.40 \mathrm{eq}$.) was added in one portion. The reaction mixture was stirred for 14 hours at room temperature, filtered and concentrated in vacuo. The resulting oil was dissolved in dichloromethane (400 mL) and under vigorous stirring, saturated aq. NaHCO_{3} $(400 \mathrm{~mL})$ was added. The mixture was stirred for 60 minutes, the two layers were separated and the aqueous layer was extracted with additional portions of dichloromethane (3×100 $\mathrm{mL})$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by flash column chromatography (ethyl acetate) to afford $\mathbf{1 e}(6.02 \mathrm{~g}, 12.9 \mathrm{mmol}, 40 \%)$ as a white solid. $\mathrm{R}_{f}(\mathrm{EtOAc})=0.36 . \mathrm{Mp} 102.6-105.3^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.44-8.37(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 8.21-8.14(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 7.80-7.70$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{Ar} H$), $2.59\left(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CCCH}_{2}\right), 1.65\left(\mathrm{p}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CCCH}_{2} \mathrm{CH}_{2}\right.$), 1.52$1.40(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.19\left(\mathrm{~m}, 20 \mathrm{H}, \mathrm{CH}_{2}\right), 0.86\left(\mathrm{t}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right){ }^{5} \delta 166.6,134.7,132.5,131.7,131.6,126.2,115.7,109.9,39.5,32.1,29.8$, 29.7, 29.6, 29.5, 29.2, 29.1, 28.3, 22.8, 20.6, 14.3. IR v 2924 (s), 2853 (m), 2166 (w), 1649 $(\mathrm{m}), 1623(\mathrm{~m}), 1439(\mathrm{w}), 908(\mathrm{~m}), 736(\mathrm{~s})$. HRMS (ESI) $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{IO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$calc. $=$ $469.1598 ;[\mathrm{M}+\mathrm{H}]^{+}$obs. $=469.1614$.

[^6]
3,3-Dimethylbutynyl-1,2-benziodoxol-3(1H)-one (1f)

Following a slightly modified procedure, ${ }^{5}$ 2-iodobenzoic acid (7) (1.64 g, $6.59 \mathrm{mmol}, 1.00$ eq.), para-toluenesulfonic acid monohydrate ($\mathrm{TsOH} \mathrm{H}_{2} \mathrm{O}, 1.25 \mathrm{~g}, 6.59 \mathrm{mmol}, 1.00 \mathrm{eq}$.) and meta-chloroperoxybenzoic acid (m CPBA- $70 \%, 1.79 \mathrm{~g}, 7.25 \mathrm{mmol}, 1.10$ eq.) were dissolved in dichloromethane (12 mL) and 2,2,2-trifluoroethanol (12 mL). The mixture was stirred at room temperature under nitrogen for 1 hour, after which diisopropyl (3,3-dimethylbut-1-yn-1yl)boronate ($\mathbf{3 5}, 1.94 \mathrm{~g}, 9.23 \mathrm{mmol}, 1.40 \mathrm{eq}$.) was added in one portion. The reaction mixture was stirred for 1 hour at room temperature, filtered and concentrated in vacuo. The resulting oil was dissolved in dichloromethane (120 mL) and under vigorous stirring, saturated aq. $\mathrm{NaHCO}_{3}(120 \mathrm{~mL})$ was added. The mixture was stirred for 60 minutes, the two layers were separated and the aqueous layer was extracted with additional portions of dichloromethane (3 x 50 mL). The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by flash column chromatography (ethyl acetate) to afford $\mathbf{1 f}(2.06 \mathrm{~g}, 6.28 \mathrm{mmol}, 95 \%)$ as a white solid. $\mathrm{R}_{f}(\mathrm{EtOAc})=0.36 . \mathrm{Mp} 189-192{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.39-8.33(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H)$, 8.13-8.07 (m, $\left.1 \mathrm{H}, \mathrm{Ar} H\right)$, 7.78-7.66 (m, $2 \mathrm{H}, \mathrm{ArH}), 1.34(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 166.7,134.7,132.4,131.6$, 131.5, 126.0, 117.5, 115.7, 38.2, 30.6, 29.7. IR v 3463 (w), 2971 (w), 2171 (w), 1646 (s), 1622 (s), 1440 (w), 1332 (m), 1248 (m), 913 (w), 832 (m), 745 (s). HRMS (ESI) $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{IO}_{2}{ }^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}$calc. $=329.0033 ;[\mathrm{M}+\mathrm{H}]^{+}$obs. $=329.0023$.

(Oct-6-en-1-ynyl)-1,2-benziodoxol-3(1H)-one (1g)

To a mixture of trimethylsilylacetylene ($7.23 \mathrm{~g}, 73.6 \mathrm{mmol}, 1.20$ eq.) and dry THF (40 mL) was added at $-78{ }^{\circ} \mathrm{C}$ under nitrogen 2.5 M nBuLi in hexanes ($31.9 \mathrm{~mL}, 80.0 \mathrm{mmol}, 1.30 \mathrm{eq}$.) over a 10 minute time period. The resulting light yellow solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 60 minutes, after which a mixture consisting of 6-bromohexene (36) ($10.0 \mathrm{~g}, 61.3 \mathrm{mmol}, 1.00$ eq.), hexamethylphosphoramide (HMPA, $12.0 \mathrm{~mL}, 67.5 \mathrm{mmol}, 1.10 \mathrm{eq}$.) and dry THF (20 mL) was slowly added via cannula over a 20 minute time period. The reaction mixture was stirred for 60 minutes at $-78{ }^{\circ} \mathrm{C}$, followed by 24 hours of stirring at room temperature. The reaction was quenched at $0{ }^{\circ} \mathrm{C}$ with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and diluted with water (5 mL) and EtOAc (50 mL). The two layers were separated and the aq. layer was extracted with additional portions of EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layers were washed with water ($2 \times 100 \mathrm{~mL}$), brine (100 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The light brown crude liquid was finally pushed through a small plug of silica gel with pentane as eluent to afford pure trimethyl(oct-7-en-1-yn-1-yl)silane (37, $10.6 \mathrm{~g}, 58.8 \mathrm{mmol}$, 95.9% yield) as a colorless liquid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 5.79$ (ddt, $1 \mathrm{H}, J=16.9$, $10.2,6.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}$), $5.04-4.91\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right), 2.22\left(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, 2.11-2.01 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.58-1.43 (m, $4 \mathrm{H}, \mathrm{CH}_{2}$), 0.14 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{TMS}$). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ MHz): $\delta 138.8,114.7,107.6,84.5,33.3,28.2,28.1,19.9,0.3$. The values of the NMR spectra are in accordance with reported literature data. ${ }^{10}$

Following a slightly modified procedure, ${ }^{5}$ 2-iodobenzoic acid (7) $(9.82 \mathrm{~g}, 39.6 \mathrm{mmol}, 1.00$ eq.), para-toluenesulfonic acid monohydrate ($\mathrm{TsOH} \mathrm{H}_{2} \mathrm{O}, 7.53 \mathrm{~g}, 39.6 \mathrm{mmol}, 1.00 \mathrm{eq}$.) and meta-chloroperoxybenzoic acid (m CPBA- $70 \%, 10.7 \mathrm{~g}, 43.6 \mathrm{mmol}, 1.10 \mathrm{eq}$.) were dissolved in dichloromethane (73 mL) and 2,2,2-trifluoroethanol (73 mL). The mixture was stirred at room temperature under nitrogen for 1 hour, after which trimethyl(oct-7-en-1-yn-1-yl)silane ($\mathbf{3 7}, 10.0 \mathrm{~g}, 55.4 \mathrm{mmol}, 1.40 \mathrm{eq}$.) was added in one portion. The reaction mixture was stirred for 14 hours at room temperature, filtered and concentrated in vacuo. The resulting oil was dissolved in dichloromethane (700 mL) and under vigorous stirring, saturated aq. NaHCO_{3} (700 mL) was added. The mixture was stirred for 1 hour, the two layers were separated and the aqueous layer was extracted with additional portions of dichloromethane ($3 \times 200 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by flash column chromatography (ethyl acetate) to afford $\mathbf{1 g}$ (2.60

[^7]$\mathrm{g}, 7.34 \mathrm{mmol}, 19 \%$) as a white solid. In addition, starting trimethyl(oct-7-en-1-yn-1-yl)silane $(35,3.20 \mathrm{~g}, 17.7 \mathrm{mmol})$ was recovered and re-submitted to the above described conditions to afford additional $\mathbf{1 g}(1.18 \mathrm{~g}, 3.33 \mathrm{mmol}, 28 \%)$ as a white solid, giving an overall yield of 27% brsm. $\mathrm{R}_{f}(\mathrm{EtOAc})=0.34 . \mathrm{Mp} 48-58{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.43-8.36(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{Ar} H$), 8.21-8.13 (m, $1 \mathrm{H}, \mathrm{Ar} H$), 7.80-7.69 (m, $2 \mathrm{H}, \mathrm{Ar} H$), 5.81 (ddt, $1 \mathrm{H}, J=17.0,10.2,6.7$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}$), 5.10-4.95 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}$), 2.61 (t, $2 \mathrm{H}, J=7.0 \mathrm{~Hz}$), 2.17-2.07 (m, 2 H), 1.73-1.51 (m, 4 H$).{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 166.7$, 138.1, 134.8, 132.5, 131.6, 131.6, 126.2, 115.7, 115.2, 109.5, 39.7, 33.2, 28.1, 27.7, 20.4. IR v 3294 (w), 2912 (w), 2869 (w), 1731 (w), 1650 (w), 1625 (w), 1447 (m), 1250 (w), 1101 (s), 1018 (m), 747 (s). HRMS (ESI) $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{IO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$calc. $=355.0189 ;[\mathrm{M}+\mathrm{H}]^{+}$obs. $=355.0182$.

4-(Prop-2-yn-1-yloxy- but-1-yn-1-yl)-1,2-benziodoxol-3(1H)-one (1h)

A $50-\mathrm{mL}$ flame-dried two-necked round-bottomed flask equipped with a magnetic stirring bar, a rubber septum and a nitrogen inlet adapter was charged with silane $\mathbf{3 8}(2.00 \mathrm{~g}, 14.1$ mol, 1.00 eq.) and dry DCM (30 mL). The clear colorless solution was cooled to $0^{\circ} \mathrm{C}$ and tetrabutylammonium hydrogensulfate $(0.239 \mathrm{~g}, 0.703 \mathrm{mmol}, 0.05 \mathrm{eq}$.$) and \mathrm{NaOH}(1.12 \mathrm{~g}$, $28.1 \mathrm{mmol}, 2.00$ eq.) were added to the mixture. After stirring at $0^{\circ} \mathrm{C}$ for 5 minutes, propargyl bromide ($2.09 \mathrm{~g}, 14.1 \mathrm{mmol}, 1.00 \mathrm{eq}$.) was added. The resulting yellow reaction mixture was continuously stirred at $0{ }^{\circ} \mathrm{C}$ under nitrogen and monitored by TLC (EtOAc :Pentane 30:1, KMnO_{4} staining). After $2 \mathrm{~h}, 30 \mathrm{~mL}$ of water was added to the reaction mixture at $0{ }^{\circ} \mathrm{C}$ and the aqueous layer was extracted with 30 mL of DCM . The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude yellow oil was purified by flash chromatography columns using EtOAc:Pentane 1:299 as mobile phase to afford pure trimethyl(4-(prop-2-yn-1-yloxy)but-1-yn-1-yl)silane (39, $0.245 \mathrm{~g}, 1.36$ mmol, 10% yield) as a colorless liquid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 4.17(\mathrm{~d}, 2 \mathrm{H}, J=2.3$
$\left.\mathrm{Hz}, \mathrm{CCCH}_{2} \mathrm{O}\right), 3.64\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 2.53\left(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.43(\mathrm{t}, 1$ $\mathrm{H}, J=2.4 \mathrm{~Hz}, \mathrm{CCH}), 0.14(\mathrm{~s}, 9 \mathrm{H}, \mathrm{TMS}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 103.3,86.0,79.6$, 74.7, 68.2, 58.3, 21.2, 0.19. IR v 3291 (w), 2932 (w), 2859 (w), 2179 (w), 1612 (w), 1511 (m), 1250 (s), 1104 (m), 1036 (w), 843 (s), 761 (w).

Following a slightly modified procedure, ${ }^{5}$ 2-iodobenzoic acid (7) $(0.211 \mathrm{~g}, 0.832 \mathrm{mmol}, 1.00$ eq.), para-toluenesulfonic acid monohydrate ($\left.\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}, 0.160 \mathrm{~g}, 0.832 \mathrm{mmol}, 1.00 \mathrm{eq}.\right)$ and meta-chloroperoxybenzoic acid (m CPBA- $70 \%, 0.226 \mathrm{~g}, 0.915 \mathrm{mmol}, 1.10$ eq.) were dissolved in dichloromethane $(1.5 \mathrm{~mL})$ and 2,2,2-trifluoroethanol $(1.5 \mathrm{~mL})$. The mixture was stirred at room temperature under nitrogen for 1 hour, after which trimethyl(4-(prop-2-yn-1-yloxy)but1 -yn-1-yl)silane ($\mathbf{3 9}, 0.210 \mathrm{~g}, 1.17 \mathrm{mmol}, 1.40 \mathrm{eq}$.) was added in one portion. The reaction mixture was stirred for 14 h at room temperature, filtered and concentrated in vacuo. The resulting oil was dissolved in dichloromethane $(15 \mathrm{~mL})$ and under vigorous stirring, saturated aq. $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ was added. The mixture was stirred for 1 h , the two layers were separated and the aqueous layer was extracted with additional portions of dichloromethane (3 x 15 mL). The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by flash column chromatography (ethyl acetate) to afford $\mathbf{1 h}(0.177 \mathrm{~g}, 0.500 \mathrm{mmol}, 60 \%)$ as a colorless oil. $\mathrm{R}_{f}(\mathrm{EtOAc})=0.1 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, 400 MHz): $\delta 8.30$ (dd, $1 \mathrm{H}, J=7.3,1.8 \mathrm{~Hz}, \mathrm{Ar} H), 8.23$ (dd, $1 \mathrm{H}, J=8.3,1.1 \mathrm{~Hz}, \mathrm{ArH}$), 7.76$7.69(\mathrm{~m}, 1 \mathrm{H}, \operatorname{Ar} H), 7.66(\mathrm{td}, 1 \mathrm{H}, J=7.3,1.1 \mathrm{~Hz}, \operatorname{Ar} H), 4.19(\mathrm{~d}, 2 \mathrm{H}, J=2.4 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{CCH}\right), 3.72\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.85\left(\mathrm{t}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.47(\mathrm{t}$, $1 \mathrm{H}, J=2.4 \mathrm{~Hz}, \mathrm{CCH}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 167.1,134.8,132.1,131.5,131.3$, 126.8, 115.8, 105.6, 79.1, 75.2, 67.3, 58.3, 40.8, 21.8. IR v 3465 (w), 3253 (w), 2920 (w), 2870 (w), 2175 (w), 1611 (s), 1330 (m), 1298 (m), 1100 (s), 832 (m), 748 (s). HRMS (ESI) $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{IO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$calc. $=354.9826 ;[\mathrm{M}+\mathrm{H}]^{+}$obs. $=354.9824$.

(5-Chloropent-1-ynyl)-1,2-benziodoxol-3(1H)-one (1i)

Following a slightly modified procedure, ${ }^{5}$ 2-iodobenzoic acid (7) ($3.76 \mathrm{~g}, 15.2 \mathrm{mmol}, 1.00$ eq.), para-toluenesulfonic acid monohydrate ($\mathrm{TsOH} \mathrm{H}_{2} \mathrm{O}, 2.88 \mathrm{~g}, 15.2 \mathrm{mmol}, 1.00 \mathrm{eq}$.) and
meta-chloroperoxybenzoic acid (m CPBA- $70 \%, 4.11 \mathrm{~g}, 16.7 \mathrm{mmol}, 1.10$ eq.) were dissolved in dichloromethane (30 mL) and 2,2,2-trifluoroethanol (30 mL). The mixture was stirred at room temperature under nitrogen for 1 hour, after which 5-chloro-1-pentynyl-1-boronic acid pinacol ester ($4.85 \mathrm{~g}, 21.2 \mathrm{mmol}, 1.40 \mathrm{eq}$.) was added in one portion. The reaction mixture was stirred for 90 minutes at room temperature, filtered and concentrated in vacuo. The resulting oil was dissolved in dichloromethane (15 mL) and under vigorous stirring, saturated aq. $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ was added. The mixture was stirred for 10 minutes, the two layers were separated and the aqueous layer was extracted with additional portions of dichloromethane (3 x 15 mL). The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vасиo. The crude product was purified by flash column chromatography (ethyl acetate) to afford $\mathbf{1 i}(3.76 \mathrm{~g}, 10.8 \mathrm{mmol}, 71 \%)$ as a white solid. $\mathrm{R}_{f}(\mathrm{EtOAc})=0.15 . \mathrm{Mp} 138.5-141.7^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.41-8.34(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 8.22-8.13(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.82-7.68$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{ArH}$), $3.71\left(\mathrm{t}, 2 \mathrm{H}, J=6.1 \mathrm{~Hz}, \mathrm{ClCH}_{2} \mathrm{CH}_{2}\right.$), $2.82\left(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CCCH}_{2} \mathrm{CH}_{2}\right.$), 2.18-2.05 (m, $2 \mathrm{H}, \mathrm{ClCH}_{2} \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 166.8,134.9,132.5,131.6$, 131.6, 126.4, 115.8, 107.1, 43.4, 41.2, 30.7, 18.0. IR v 2942 (w), 2866 (w), 2171 (w), 2091 (w), 1727 (w), 1617 (s), 1556 (w), 1441 (w), 1339 (m), 1213 (w), 1023 (w), 846 (w), 742 (s). HRMS (ESI) $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{ClIO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$calc. $=348.9487 ;[\mathrm{M}+\mathrm{H}]^{+}$obs. $=348.9484$.

(4-Azidobut-1-ynyl)-1,2-benziodoxol-3(1H)-one (1j)

Following a slightly modified procedure, ${ }^{11}$ triphenylphosphine ($\left.27.7 \mathrm{~g}, 105 \mathrm{mmol}, 1.00 \mathrm{eq}.\right)$ was added at $0{ }^{\circ} \mathrm{C}$ to a colorless solution of 4-(trimethylsilyl)but-3-yn-1-ol $\mathbf{4 0}$ ($15.0 \mathrm{~g}, 105$ $\mathrm{mmol}, 1.00 \mathrm{eq}$.) in THF (400 mL). After dissolution, imidazole ($7.18 \mathrm{~g}, 105 \mathrm{mmol}, 1.00 \mathrm{eq}$.) and iodine ($26.8 \mathrm{~g}, 105 \mathrm{mmol}, 1.00 \mathrm{eq}$.) were added to the mixture. The cooling bath was removed after 5 minutes and the reaction mixture was stirred at room temperature for 2 hours. Next, the mixture was diluted with diethyl ether (300 mL) and extracted with 10% aq.

[^8]$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(300 \mathrm{~mL})$. The aq. layer was washed with additional portions of diethyl ether (2 x 100 mL) and the combined organic layers were washed with brine (300 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The resulting white suspension was filtered and the filtrate was purified by Kugelrohr distillation ($95{ }^{\circ} \mathrm{C}$ at 0.5 mbar) to furnish pure (4-iodobut-1-yn-1-yl)trimethylsilane ($25.3 \mathrm{~g}, 100 \mathrm{mmol}, 95.2 \%$ yield) as a colorless liquid. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 3.19\left(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{I}\right), 2.76(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{I}\right), 0.13$ (s, 9 H , TMS). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta 105.1,86.8,25.2,1.1,0.1$. The values of the NMR spectra are in accordance with reported literature data. ${ }^{12}$
0.5 M sodium azide in DMSO ($220 \mathrm{ml}, 110 \mathrm{mmol}, 1.10 \mathrm{eq}$.) was added to (4-iodobut-1-yn-1yl)trimethylsilane ($25.2 \mathrm{~g}, 99.9 \mathrm{mmol}, 1.00 \mathrm{eq}$.) and the reaction mixture was stirred for 24 hours at room temperature. The mixture was next slowly added to ice water (500 mL) and extracted with diethyl ether ($3 \times 200 \mathrm{~mL}$). The combined organic layers were washed with water ($2 \times 100 \mathrm{~mL}$), brine (100 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The light yellow crude liquid was finally pushed through a small plug of silica gel with pentane as eluent to afford pure (4-azidobut-1-yn-1-yl)trimethylsilane (41, $15.8 \mathrm{~g}, 94.5 \mathrm{mmol}$, 94.6% yield) as a colorless liquid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 3.36(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}$), $2.50\left(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}\right.$), $0.14(\mathrm{~s}, 9 \mathrm{H}, \mathrm{TMS}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}): \delta 102.7,87.3,49.8,21.1,-0.1$. The values of the ${ }^{1} \mathrm{H}$ NMR spectrum are in accordance with reported literature data. ${ }^{13}$

Following a slightly modified procedure, ${ }^{5}$ 2-iodobenzoic acid (7, $15.9 \mathrm{~g}, 64.0 \mathrm{mmol}, 1.00$ eq.), para-toluenesulfonic acid monohydrate ($\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}, 12.2 \mathrm{~g}, 64.0 \mathrm{mmol}, 1.00 \mathrm{eq}$.) and meta-chloroperoxybenzoic acid (m CPBA- $70 \%, 17.4 \mathrm{~g}, 70.5 \mathrm{mmol}, 1.10$ eq.) were dissolved in dichloromethane $(120 \mathrm{~mL})$ and 2,2,2-trifluoroethanol $(120 \mathrm{~mL})$. The mixture was stirred at room temperature under nitrogen for 1 hour, after which (4-azidobut-1-yn-1$\mathrm{yl})$ trimethylsilane ($\mathbf{4 1}, 15.0 \mathrm{~g}, 90.0 \mathrm{mmol}, 1.40 \mathrm{eq}$.$) was added in one portion. The reaction$ mixture was stirred for 14 hours at room temperature, filtered and concentrated in vacuo. The resulting oil was dissolved in dichloromethane (750 mL) and under vigorous stirring, saturated aq. $\mathrm{NaHCO}_{3}(750 \mathrm{~mL})$ was added. The mixture was stirred for 1 hour, the two layers were separated and the aqueous layer was extracted with additional portions of dichloromethane ($3 \times 250 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered

[^9]and concentrated in vacuo. The crude product was purified by flash column chromatography (ethyl acetate) to afford $\mathbf{1 j}(9.20 \mathrm{~g}, 27.0 \mathrm{mmol}, 42 \%)$ as a light beige solid. In addition, starting (4-azidobut-1-yn-1-yl)trimethylsilane ($\mathbf{4 1}, 1.81 \mathrm{~g}, 10.8 \mathrm{mmol}$) was recovered and resubmitted to the above described conditions to afford additional $\mathbf{1 j}$ ($953 \mathrm{mg}, 2.79 \mathrm{mmol}, 36 \%$) as a light beige solid, giving an overall yield of $47 \% \mathrm{brsm} . \mathrm{R}_{f}(\mathrm{EtOAc}: \mathrm{MeOH} 9: 1)=0.47 . \mathrm{Mp}$ $114-125{ }^{\circ} \mathrm{C}$ (explosive decomposition). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.32$ (dd, $1 \mathrm{H}, J=7.0$, $2.1 \mathrm{~Hz}, \operatorname{Ar} H), 8.21(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}, \mathrm{Ar} H), 7.79-7.63(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Ar} H), 3.54(\mathrm{t}, 2 \mathrm{H}, J=6.5$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 2.85\left(\mathrm{t}, 2 \mathrm{H}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 167.2$, $134.9,132.3,131.5,131.4,126.8,115.8,104.5,49.4,42.7,21.5$. IR v 3452 (w), 2170 (w), 2112 (s), 1647 (s), 1624 (s), 1439 (w), 1331 (m), 1297 (m), 835 (w), 749 (m). HRMS (ESI) $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{IN}_{3} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$calc. $=341.9734 ;[\mathrm{M}+\mathrm{H}]^{+}$obs. $=341.9734$.

5-Pentanolethynyl-1,2-benziodoxol-3(1H)-one (1k)

Following a slightly modified procedure, ${ }^{14} 2.5 \mathrm{M} \mathrm{nBuLi}$ in hexanes ($39.2 \mathrm{~mL}, 98.0 \mathrm{mmol}$, 2.20 eq.) was added at $-78{ }^{\circ} \mathrm{C}$ under nitrogen to a mixture of hept-6-yn-1-ol (42) (5.00 g, 44.6 $\mathrm{mmol}, 1.00 \mathrm{eq}$.$) and dry THF (150 \mathrm{~mL}$), followed by 4-dimethylaminopyridine (DMAP, 1.36 $\mathrm{g}, 11.1 \mathrm{mmol}, 0.25 \mathrm{eq}$.$) . The mixture was stirred at -78{ }^{\circ} \mathrm{C}$ for 60 minutes, after which trimethylsilyl chloride (TMS-Cl, $20.4 \mathrm{~mL}, 156 \mathrm{mmol}, 3.50 \mathrm{eq}$.$) was added dropwise. The$ cooling bath was removed and the reaction stirred for 2 hours. Next, 1.0 N aq. $\mathrm{HCl}(50 \mathrm{~mL})$ was added and the solution was stirred vigorously for 30 minutes at room temperature. The mixture was diluted with EtOAc (200 mL) and extracted. The aqueous layer was extracted with additional portions of EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layers were washed with sat. aq. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, brine (50 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by flash column chromatography (pentane:EtOAc 4:1) to afford 7-(trimethylsilyl)hept-6-yn-1-ol (43, $8.22 \mathrm{~g}, 43.5 \mathrm{mmol}, 97 \%$) as a colorless oil.

[^10]${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 3.61\left(\mathrm{t}, 2 \mathrm{H}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 2.21(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}$, CCCH_{2}), 1.73 (bs, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}$), 1.61-1.48 (m, 4 H), 1.48-1.38 (m, 2 H), 0.11 (s, $9 \mathrm{H}, \mathrm{TMS}$). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 107.4,84.6,62.8,32.3,28.5,25.1,19.9,0.3$. The values of the ${ }^{1} \mathrm{H}$ NMR spectrum are in accordance with reported literature data. ${ }^{15}$

Following a slightly modified procedure, ${ }^{5}$ 2-iodobenzoic acid (7) (7.69 g, $31.0 \mathrm{mmol}, 1.00$ eq.), para-toluenesulfonic acid monohydrate ($\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}, 5.90 \mathrm{~g}, 31.0 \mathrm{mmol}, 1.00 \mathrm{eq}$.) and meta-chloroperoxybenzoic acid (m CPBA- $70 \%, 8.41 \mathrm{~g}, 34.1 \mathrm{mmol}, 1.10$ eq.) were dissolved in dichloromethane (57 mL) and 2,2,2-trifluoroethanol (57 mL). The mixture was stirred at room temperature under nitrogen for 1 hour, after which 7-(trimethylsilyl)hept-6-yn-1-ol (43, $8.00 \mathrm{~g}, 43.4 \mathrm{mmol}, 1.40 \mathrm{eq}$.) was added in one portion. The reaction mixture was stirred for 18 hours at room temperature, filtered and concentrated in vacuo. The resulting oil was dissolved in dichloromethane (500 mL) and under vigorous stirring, saturated aq. NaHCO_{3} $(500 \mathrm{~mL})$ was added. The mixture was stirred for 60 minutes, the two layers were separated and the aqueous layer was extracted with additional portions of dichloromethane (3 x 150 $\mathrm{mL})$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by flash column chromatography (EtOAc:MeOH 95:5) to afford $\mathbf{1 k}(3.56 \mathrm{~g}, 9.94 \mathrm{mmol}, 32 \%)$ as a white solid. $\mathrm{R}_{f}(\mathrm{EtOAc}: \mathrm{MeOH} 9: 1)=0.24 \mathrm{Mp}$ $115-120{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.33(\mathrm{dd}, 1 \mathrm{H}, J=7.2,2.0 \mathrm{~Hz}, \mathrm{Ar} H), 8.15(\mathrm{~d}, 1 \mathrm{H}$, $J=8.0 \mathrm{~Hz}, \mathrm{Ar} H), 7.79-7.64(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 3.66\left(\mathrm{t}, 2 \mathrm{H}, J=5.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 2.59(\mathrm{t}, 2 \mathrm{H}, J=$ $\left.6.9 \mathrm{~Hz}, \mathrm{CCCH}_{2}\right), 1.73-1.49\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{CH}_{2}\right.$ and OH$) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 167.0$, $134.8,132.3,131.6,131.5,126.5,115.7,109.7,62.3,39.2,32.1,28.0,25.3,20.6$. IR v 3351 (w), 2934 (w), 2170 (w), 1623 (s), 1585 (m), 1561 (w), 1439 (w), 1333 (m), 1300 (w), 1058 (w), 911 (m), $832(\mathrm{w}), 732(\mathrm{~s}), 689(\mathrm{~m})$. HRMS (ESI) $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{IO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$calc. $=359.0139$; $[\mathrm{M}+\mathrm{H}]^{+}$obs. $=359.0136$.

[^11]
1-[2,4,6-Trimethylphenylethynyl]-1,2-benziodoxol-3(1H)-one (11)

Following a reported procedure, ${ }^{2} \mathrm{NaIO}_{4}(77.2 \mathrm{~g}, 0.361 \mathrm{~mol}, 1.0$ equiv) and 2-iodobenzoic acid (7) ($89.5 \mathrm{~g}, 0.361 \mathrm{mmol}, 1.0$ equiv) were suspended in 30% (v:v) aq. AcOH (700 mL) under air in a 4-neck sulfonation flask equipped with a mechanic stirrer, a thermometer and a condenser. The mixture was vigorously stirred and refluxed for 4 h . The reaction mixture was then diluted with cold water (500 mL) and allowed to cool to room temperature, protecting it from light. After 45 min , the suspension was added to water $(1.5 \mathrm{~L})$ and the crude product was collected by filtration, washed on the filter with ice water ($3 \times 300 \mathrm{~mL}$) and cold acetone (3 x 300 mL), and air-dried in the dark overnight to give 2-iodosylbenzoic acid ($77.3 \mathrm{~g}, 0.292 \mathrm{~mol}$, 81% yield) as a colorless solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 8.02$ (dd, $J=7.7,1.4 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{Ar} H$), 7.97 (m, $1 \mathrm{H}, \mathrm{Ar} H$), 7.85 (dd, $J=8.2,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.71 (td, $J=7.6,1.2 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{ArH}){ }^{13}{ }^{1} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta$ 167.7, 134.5, 131.5, 131.1, 130.4, 126.3, 120.4. IR v 3083 (w), 3060 (w), 2867 (w), 2402 (w), 1601 (m), 1585 (m), 1564 (m), 1440 (m), 1338 (s), 1302 (m), 1148 (m), 1018 (w), 834 (m), 798 (w), 740 (s), 694 (s), 674 (m), 649 (m). The values of the NMR spectra are in accordance with reported literature data. ${ }^{2}$

Following a reported procedure, ${ }^{16}$ mesityl iodide (44) ($1.05 \mathrm{~g}, 4.27 \mathrm{mmol}, 1$ equiv) was dissolved in $\mathrm{Et}_{3} \mathrm{~N}$ (10 mL) (without prior drying). After three freeze-thraw-pump cycle, $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ ($30 \mathrm{mg}, 0.42 \mathrm{mmol}, 0.1$ equiv) and $\mathrm{CuI}(16 \mathrm{mg}, 0.84 \mathrm{mmol}, 0.2$ equiv) were added under N_{2}. After the addition of trimethylsilylacetylene ($1.2 \mathrm{~mL}, 8.5 \mathrm{mmol}, 2$ equiv), the green suspension was stirred at RT for 1 h . The reaction mixture was reduced under vacuum, dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL}$), washed with 5% EDTA solution (30 mL) and water (30 mL). The organic layers were them dried over MgSO_{4}, filtered and reduced under vacuum. The

[^12]resulting oil was purified by column chromatography (PET) to afford $\mathbf{4 5}$ ($526 \mathrm{mg}, 2.43 \mathrm{mmol}$, 66%) along with 15% of starting material. $\mathrm{R}_{\mathrm{f}} 0.5$ (PET). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.87$ (s, $2 \mathrm{H}, \mathrm{ArH}$), $2.41\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.28(\mathrm{~s}, 9 \mathrm{H}, \mathrm{TMS})$. Used without further purification.

Following a reported procedure, ${ }^{16}$ trimethylsilyl triflate ($212 \mu \mathrm{~L}, 1.15 \mathrm{mmol}, 1.1$ equiv) was added to a suspension of 2-iodosylbenzoic acid ($1.00 \mathrm{~g}, 1.05 \mathrm{mmol}$, 1 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4 mL) at RT. The resulting yellow mixture was stirred for 1 h , followed by the dropwise addition of (mesitylethynyl)trimethylsilane (45) $(250 \mathrm{mg}, 1.15 \mathrm{mmol}, 1.1$ equiv) dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. The resulting suspension was stirred for 6 h at RT. A saturated solution of $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was then added and the mixture was stirred vigorously. The layers were separated and the organic layer was washed with sat. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, dried over MgSO_{4}, filtered and evaporated under reduced pressure. The resulting solid was recrystallized in $\mathrm{CH}_{3} \mathrm{CN}$ (ca 20 ml). The mother liquors were concentrated and and the obtained solid recrystallized in $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL})$. Both solids were combined, washed with pentane and dried under high vacuum to afford $\mathbf{1 1}(120 \mathrm{mg}, 0.307 \mathrm{mmol}, 30 \%)$ as a tan solid. $\mathrm{Mp} 171-175{ }^{\circ} \mathrm{C}$ (decomposition). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (ca $0.01 \mathrm{mmol} / \mathrm{ml}$) $\delta 8.38(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 8.28$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{ArH}$), $7.72(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.92(\mathrm{~s}, 2 \mathrm{H}, \mathrm{MesH}), 2.45\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.31(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.7,142.1,140.5,134.5,132.2,131.5,131.3,128.0$, 126.2, 117.5, 116.5, 105.1, 55.6, 21.4, 21.0. IR 2979 (w), 2916 (w), 2247 (w), 2131 (w), 1650 (m), 1623 (m), 1562 (w), 1439 (w), 1333 (w), 1292 (w), 1212 (w), 1146 (w), 1008 (w), 906 (s), 855 (w), 833 (w), 729 (s), $647(\mathrm{~m})$. The data are in accordance with reported literature. ${ }^{16}$

(4-Hydroxybut-1-yn-1-yl)-1,2-benziodoxol-3(1H)-one (1m)

Following a slightly modified procedure, ${ }^{5}$ 2-iodobenzoic acid (7) ($10.2 \mathrm{~g}, 40.2 \mathrm{mmol}, 1.00$ eq.), para-toluenesulfonic acid monohydrate ($\mathrm{TsOH}, 7.64 \mathrm{~g}, 40.2 \mathrm{mmol}, 1.00 \mathrm{eq}$.) and metachloroperoxybenzoic acid (mCPBA-70\%, $10.9 \mathrm{~g}, 44.2 \mathrm{mmol}, 1.10$ eq.) were dissolved in dry dichloromethane $(70 \mathrm{~mL})$ and 2,2,2-trifluoroethanol $(70 \mathrm{~mL})$. The mixture was stirred at room temperature under nitrogen for 1 h , after which 4-(trimethylsilyl)but-3-yn-1-ol (46) (8.00 g,
56.2 mmol, 1.40 eq.) was added in one portion. The reaction mixture was stirred for 17 hours at room temperature, filtered and concentrated in vacuo. The resulting oil was dissolved in dichloromethane $(150 \mathrm{~mL})$ and under vigorous stirring, saturated aq. $\mathrm{NaHCO}_{3}(150 \mathrm{~mL})$ was added. The mixture was stirred for 15 minutes, the two layers were separated and the aqueous layer was extracted with additional portions of dichloromethane ($3 \times 100 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by flash column chromatography (ethyl acetate then flushed with acetone) to afford a white solid, which was further purified by trituration in pentane, filtered, washed twice with pentane and then dried under air to afford $\mathbf{1 m}(4.24 \mathrm{~g}, 40.2 \mathrm{mmol}, 33 \%)$ as a white solid. Analytically pure sample was obtained by recrystallization in $\mathrm{EtOH} / \mathrm{AcOEt}$ (6/4). Mp $165-174{ }^{\circ} \mathrm{C}$ (decomposition). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$): $\delta 8.33$ (dd, $J=8.2,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.10(\mathrm{dd}, J=7.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{ddd}, J=8.2,7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{td}, J=7.2,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.07(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{td}, J=6.4,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d d_{6} : ${ }^{6} \delta$ 166.1, 134.7, 132.2, 131.1, 127.5, 115.7, 106.2, 59.3, 40.7, 24.2. IR v 3143 (w), 2983 (w), 2363 (m), 2337 (w), 2166 (w), 1605 (s), 1557 (m), 1436 (w), 1347 (s), 1044 (s), 988 (w), 831 (m), 738 (s). HRMS (ESI) $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{IO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$calc. $=$ 316.9669 ; obs. $=316.9679$.

3-(Benzyloxy)-3-methyl-but-1-yn-1-yl)-1,2-benziodoxol-3(1H)-one (1n)

47 (850 mg , $4.90 \mathrm{mmol}, 1.00 \mathrm{eq}$.) was dissolved in 10 mL of dry THF. Next, ${ }^{n} \mathrm{BuLi}(2.5 \mathrm{M}$ in hexane, $5.1 \mathrm{~mL}, 13 \mathrm{mmol}, 2.6 \mathrm{eq}$.) was added through syringe dropwise over 10 minutes and the reaction mixture was stirred for another 10 minutes to get a brownish-red solution. Next, TMSCl ($0.70 \mathrm{~mL}, 5.5 \mathrm{mmol}, 1.1 \mathrm{eq}$.) was added dropwise to get a clear solution and the reaction mixture was stirred for 1.5 h at $0^{\circ} \mathrm{C}$. The resulting reaction mixture was continuously stirred at room temperature for 2.5 h until a white solid precipitated. It was then diluted with
hexane (30 mL), washed with water ($3 \times 20 \mathrm{~mL}$), brine (20 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by flash chromatography using EtOAc:Pentane 1:20 as mobile phase to afford (3-(benzyloxy)-3-methylbut-1-yn-1yl)trimethylsilane ($362 \mathrm{mg}, 1.47 \mathrm{mmol}, 33 \%$), which was used directly in the next step.

Trimethylsilyltriflate ($1.60 \mathrm{~mL}, 8.56 \mathrm{mmol}, 1.1 \mathrm{eq}$.$) was added dropwise to a stirred solution$ of 2-iodosylbenzoic acid (48) ($2.12 \mathrm{~g}, 7.99 \mathrm{mmol}, 1.0$ eq.) in acetonitrile (40 mL) at $0{ }^{\circ} \mathrm{C}$. After 15 minutes, (3-(benzyloxy)-3-methylbut-1-yn-1-yl)trimethylsilane ($2.07 \mathrm{~g}, 8.89 \mathrm{mmol}$, 1.05 eq.) was added dropwise, followed, after 30 min , by the addition of pyridine (6 mL). The mixture was stirred for 20 minutes. The solvent was then removed under reduced pressure and the crude oil was dissolved in dichloromethane $(100 \mathrm{~mL})$. The organic layer was washed with $0.5 \mathrm{M} \mathrm{HCl}(100 \mathrm{~mL})$ and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. The organic layers were combined, washed with a saturated solution of $\mathrm{NaHCO}_{3}(2 \times 100 \mathrm{~mL})$, brine (100 mL), dried over MgSO_{4}, filtered and the solvent was evaporated under reduced pressure. Recrystallization from hot EtOAc afforded 1n ($770 \mathrm{mg}, 0.183 \mathrm{mmol}, 23 \%$) as a light yellow solid. Mp 146.6-148.0 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 8.39$ (dd, $1 \mathrm{H}, J=7.3,1.8 \mathrm{~Hz}$, $\mathrm{Ar} H$), 8.11 (dd, $1 \mathrm{H}, J=8.2,1.1 \mathrm{~Hz}, \mathrm{Ar} H), 7.78-7.62(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.39-7.31(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}$), 7.31-7.27 (m, 1H, $\mathrm{Ar} H), 4.70\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 1.69\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}): \delta 166.6,138.3,135.0,132.6,131.7,131.4,128.6,127.9,127.6,126.1,115.8,110.0$, 71.9, 67.2, 45.5, 28.8. IR v 2986 (w), 2868 (w), 2159 (w), 1618 (s), 1561 (m), 1446 (w), 1330 (m), 1299 (m), 1224 (m), 1159 (m), 1054 (m), 888 (w), 834 (m), 742 (s). HRMS (ESI) $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{IO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$calc. $=421.0295 ;[\mathrm{M}+\mathrm{H}]^{+}$obs. $=421.0305$.

1-[Phenylethynyl]-1,2-benziodoxol-3(1H)-one (Ph-EBX, 10)

Following a reported procedure, ${ }^{16}$ trimethylsilyltriflate ($1.60 \mathrm{~mL}, 8.56 \mathrm{mmol}, 1.1$ eq.) was added dropwise to a stirred solution of 2-iodosylbenzoic Trimethylsilyl triflate ($7.50 \mathrm{~mL}, 41.5$ mmol, 1.1 equiv) was added to a suspension of 2-iodosylbenzoic acid (48) ($10.0 \mathrm{~g}, 37.7$ mmol, 1 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at RT . The resulting yellow mixture was stirred for 1 h , followed by the dropwise addition of trimethyl(phenylethynyl)silane (49) ($8.10 \mathrm{~mL}, 41.5$ mmol, 1.1 equiv) (slightly exothermic). The resulting suspension was stirred for 6 h at RT,
during this time a white solid was formed. A saturated solution of $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ was then added and the mixture was stirred vigorously. The resulting suspension was filtered on a glass filter of porosity 4 . The two layers of the mother liquors were separated and the organic layer was washed with sat. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, dried over MgSO_{4}, filtered and evaporated under reduced pressure. The resulting mixture was combined with the solid obtained by filtration and boiled in $\mathrm{CH}_{3} \mathrm{CN}(300 \mathrm{~mL})$. The mixture was cooled down, filtered and dried under high vacuum to afford $\mathbf{1 0}(6.08 \mathrm{~g}, 17.4 \mathrm{mmol}, 46 \%)$ as a colorless solid. Mp (Dec.) 155 - $160^{\circ} \mathrm{C}$ (lit $\left.153-155^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (ca $0.03 \mathrm{mmol} / \mathrm{ml}$) $\delta 8.46(\mathrm{~m}, 1 \mathrm{H}$, ArH), $8.28(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.80(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.63(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.48(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.9,134.9,132.9,132.5,131.6,131.3$. 130.8, 128.8, 126.2, $120.5,116.2,106.6,50.2$. Consistent with reported data. ${ }^{16}$

4. Preparation of Substrates

2-((S)-2-(((benzyloxy)carbonyl)amino)-3-(1H-indol-3-yl)propanamido)-3-

 mercaptopropanoate) (16a)

To a mixture of L-cysteine ethyl ester hydrochloride (51) (1.90 g, $10.0 \mathrm{mmol}, 1.00 \mathrm{eq}.), N$ -carbobenzyloxy- L-tryptophan (50) ($4.06 \mathrm{~g}, 12.0 \mathrm{mmol}, 1.20 \mathrm{eq}$.$) and HOBt hydrate (2.37 \mathrm{~g}$, $15.0 \mathrm{mmol}, 1.50$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added at $0{ }^{\circ} \mathrm{C}$ EDC hydrochloride ($2.30 \mathrm{~g}, 12.0$ $\mathrm{mmol}, 1.20 \mathrm{eq}$.) in one portion. The resulting suspension was stirred for 10 minutes at $0^{\circ} \mathrm{C}$, after which DIPEA ($5.24 \mathrm{~mL}, 30.0 \mathrm{mmol}, 3.00 \mathrm{eq}$.) was slowly added. The ice bath was removed and the reaction mixture was stirred at room temperature for 17 h . Next, the solvent was evaporated under reduced pressure. The resulting oil was dissolved in EtOAc (250 mL) and extracted with 5% aq. $\mathrm{KHSO}_{4}(3 \times 75 \mathrm{~mL}), 5 \%$ aq. $\mathrm{NaHCO}_{3}(2 \times 50 \mathrm{~mL})$ and brine (50 $\mathrm{mL})$. The organic layer was dried over MgSO_{4}, filtered and concentrated in vacuo. The crude white solid was purified by flash chromatography (pentane:EtOAc 2:1 to 3:2) to afford 16a as a white solid ($1.32 \mathrm{~g}, 2.81 \mathrm{mmol}, 28 \%)$. Rf (EtOAc:pentane 1:1) $=0.81 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}): \delta 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 7.40-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 1 \mathrm{H})$, $7.11(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.07(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}), 6.60(\mathrm{~d}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}), 5.45(\mathrm{~d}, 1 \mathrm{H}, J=$ $7.5 \mathrm{~Hz}), 5.13$ (s, 2 H), 4.67 (dt, $J=7.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.61-4.51(\mathrm{~m}, 1 \mathrm{H}), 4.24-4.05(\mathrm{~m}, 2 \mathrm{H})$, 3.42 (dd, $1 \mathrm{H}, J=14.7,5.4 \mathrm{~Hz}), 3.18(1 \mathrm{H}, J=14.6,7.0 \mathrm{~Hz}), 2.96-2.68(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{t}, 3 \mathrm{H}$, $\left.J=7.1 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) 1.02(\mathrm{t}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{SH}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 171.3$, $169.5,156.1,136.3,136.1,128.7,128.4,128.3,127.5$, 123.4, 122.6, 120.0, 118.9, 111.4, $110.2,67.3,62.1,55.6,53.9,28.4,26.7,14.3$. The characterization data is in accordance with reported literature values. ${ }^{17}$

[^13]
3-Methoxybenzothioic S-acid (22b)

Following a slightly modified reported procedure, ${ }^{18}$ thioacetamide ($0.380 \mathrm{~g}, 5.00 \mathrm{mmol}, 1.00$ eq.) and chloride 52 ($3.54 \mathrm{~mL}, 5.00 \mathrm{mmol}, 1.00 \mathrm{eq}$.) were dissolved in dry benzene (4 mL). The resulting mixture was stirred for 3 h at $30^{\circ} \mathrm{C}$. Then, $10 \% \mathrm{NaOH}(6 \mathrm{~mL})$ was added to the mixture, the resulting biphasic mixture was stirred for 30 minutes and subsequently acidified by adding 1 M aq. KHSO_{4}. The emulsion was extracted with EtOAc (80 mL) and brine (100 mL). The organic phase was dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude oil was finally pushed through a small plug of silica gel (pentane/EtOAc 5:1 to $1: 1$) to yield a second crude mixture, which was concentrated under reduced pressure and then, dissolved in DCM. The organic layer was extracted with sat. aq. NaHCO_{3} (2×15 mL) and the combined aq. layers were acidified by adding aq. 1 M HCl . The resulting mixture was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$), after which the combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure to afford $\mathbf{2 2 b}(0.270 \mathrm{~g}, 1.60$ mmol, 32%) as a yellow oil. Rf (pentane/EtOAc 1:1, a smear) $=0.57 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400\right.$ MHz): $\delta 7.49$ (ddd, $J=7.7,1.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.38(\mathrm{dd}, J=2.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.35$ ($\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H$), 7.13 (ddd, $J=8.3,2.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H$), $5.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{S} H), 3.83$ (s, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 190.1,159.8,137.9,129.8,120.7,120.4,111.9$, 55.5. IR v 2963 (w), 2943 (w), 2836 (w), 2565 (w), 2255 (w), 1675 (m), 1584 (m), 1486 (m), 1261 (s), 909 (m), 780 (s), 731 (s), 696 (s). HRMS (ESI) $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~S}^{+}[\mathrm{M}+]$ calc. $=168.0245$; $[\mathrm{M}+]$ obs. $=167.0180$.

4-Methoxybenzothioic S-acid (22c)

[^14]Following a slightly modified reported procedure, ${ }^{18}$ 4-methoxybenzoyl chloride (53) (2.08 g, $12.0 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) and dry toluene (10.0 \mathrm{~mL}$) were added in an under vacuum flame-dried 25 mL round bottom flask at room temperature. To this clear colorless solution was added thioacetamide ($0.924 \mathrm{~g}, 12.1 \mathrm{mmol}, 1.00 \mathrm{eq}$.) in one portion. The reaction mixture was then stirred at $30^{\circ} \mathrm{C}$ for 3 h . The oil bath was then removed and 10 minutes later, $10 \%(\mathrm{w} / \mathrm{w}) \mathrm{aq}$. $\mathrm{NaOH}(9 \mathrm{~mL})$ was added in one portion. The bi-phasic mixture was stirred for 30 minutes at room temperature and then acidified with 1.0 M aq. KHSO_{4}. The mixture was then extracted with $\mathrm{EtOAc}\left(2 \times 10 \mathrm{~mL}\right.$). The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude yellow oil was then purified by flash column chromatography (Pentane:EtOAc 9:1) to afford 22c $(0.493 \mathrm{~g}, 2.93 \mathrm{mmol}, 25 \%)$ as a yellow light crystals. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.89-7.83(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.96-6.88(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{Ar} H$), 4.47 (bs, $1 \mathrm{H}, \mathrm{SH}$), $3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH} 3\right.$). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 188.7,164.3$, 130.3, 129.6, 114.0, 55.7. The ${ }^{13} \mathrm{C}$ NMR data is in accordance with reported literature values. ${ }^{18}$

4-Nitrobenzothioic S-acid (22d)

54

22d
Following a slightly modified reported procedure, ${ }^{18}$ 4-nitrobenzoyl chloride (54) (5 g, 26.4 $\mathrm{mmol}, 1.00$ eq.) was added in an under vacuum flame dried 25 mL round bottom flask to a suspension of thioacetamide ($2.02 \mathrm{~g}, 24.4 \mathrm{mmol}, 1.00 \mathrm{eq}$.) and dry toluene (20.0 mL) at room temperature. The light yellow reaction mixture was stirred at $30^{\circ} \mathrm{C}$ for 3 h and then cooled to $0{ }^{\circ} \mathrm{C}$. At $0{ }^{\circ} \mathrm{C}, 10 \%(\mathrm{w} / \mathrm{w})$ aq. $\mathrm{NaOH}(14 \mathrm{~mL})$ was added in one portion. The bi-phasic mixture was stirred for 30 minutes at $0{ }^{\circ} \mathrm{C}$ and then acidified with 1.0 M aq. KHSO_{4}. The mixture was diluted with water then extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude yellow oil was then purified by flash column chromatography using pentane:EtOAc 4:1. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.35-8.30(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 8.10-8.04(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 4.82(\mathrm{bs}, 1 \mathrm{H}, \mathrm{SH})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 188.6,151.0,141.1,129.0,124.2$. The ${ }^{13} \mathrm{C}$ NMR data is in accordance with reported literature values. ${ }^{18}$

5. Alkynylation Reaction

General Procedure A (GPA): 2-Bromothiophenol Alkynylation

The following general procedure was utilized to determine the representative thiophenol scope for the thiol-alkynylation reaction with R-EBX reagents ($\mathbf{1 b}$ to $\mathbf{1 1}$). A 25 mL round bottom flask was charged with a magnetic stirring bar, 2-bromothiophenol (0.300 to 0.800 $\mathrm{mmol}, 1.00 \mathrm{eq}$.) and triazabicyclodecene (TBD, 0.300 to $0.800 \mathrm{mmol}, 1.00 \mathrm{eq}$.). The mixture was dissolved in THF (3.75 to 10.0 mL) to achieve a thiol concentration of 80 mM . Upon dissolution, the corresponding R-EBX reagents ($\mathbf{1 b}$ to $\mathbf{1 1}, 0.330$ to $0.880 \mathrm{mmol}, 1.10 \mathrm{eq}$.) were added as a solid in one portion. The resulting reaction mixture was stirred with an open flask for 5 minutes at room temperature and worked-up and purified as indicated.

General Procedure B (GPB): Benzene-1,3,5-trithiol Alkynylation

The following general procedure was utilized to alkynylate benzene-1,3,5-trithiol using REBX reagents ($\mathbf{1 a}, \mathbf{1 g}$, and $\mathbf{1 k}$). A 25 mL round bottom flask was charged with a magnetic stirring bar, benzene-1,3,5-trithiol (10) ($52.3 \mathrm{mg}, 0.300 \mathrm{mmol}, 1.00 \mathrm{eq}$.) and triazabicyclodecene (TBD, $125 \mathrm{mg}, 0.900 \mathrm{mmol}, 3.00 \mathrm{eq}$.). The mixture was dissolved in THF (5.0 mL) and water (0.5 mL). Upon dissolution, the corresponding R-EBX reagents ($11 \mathbf{a}-\mathbf{c}, 0.990 \mathrm{mmol}, 3.30 \mathrm{eq}$.) were added as a solid in one portion. The resulting reaction mixture was stirred with an open flask for 5 minutes at room temperature and then quenched by adding water (10 mL). The mixture was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$) and the combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The resulting crude product was purified as indicated.

General Procedure C (GPC): Alkynylation of Protected Thioglycosides

A 25 mL round bottom flask was charged with a magnetic stirring bar, thiosugar 15a (146 $\mathrm{mg}, 0.400 \mathrm{mmol}, 1.00 \mathrm{eq}$.) , TMG ($60.0 \mu \mathrm{~L}, 0.480 \mathrm{mmol}, 1.20 \mathrm{eq}$.) and THF (5.0 mL). After stirring the resulting solution for 5 minutes at room temperature, R-EBX (1) (0.440 mmol , 1.10 eq.) was added as a solid in one portion. The resulting reaction mixture was stirred for 5 minutes at room temperature. Next, the mixture was diluted with water (10 mL) and extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude reaction mixture was purified by flash chromatography.

General Procedure D (GPD): Alkynylation of Unprotected Thioglycosides

A 25 mL round bottom flask was charged with a magnetic stirring bar, thiosugar 15b (87.0 $\mathrm{mg}, 0.400 \mathrm{mmol}, 1.00 \mathrm{eq}$.) and THF (5.0 mL). After stirring the resulting solution for 5 minutes at room temperature, R-EBX (1) ($0.440 \mathrm{mmol}, 1.10 \mathrm{eq}$.) was added as a solid in one portion. The resulting reaction mixture was stirred for 5 minutes at room temperature. Next, the reaction mixture was evaporated under reduced pressure and then crude mixture was washed with 5% aq. $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ and extracted with $\mathrm{EtOAc}(3 \times 15 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude reaction mixture was purified by flash chromatography.

General Procedure E (GPE): Alkynylation of Cysteine Containing Dipeptide 16

A 25 mL round bottom flask was charged with a magnetic stirring bar, TrpCys dipeptide $\mathbf{1 6}$ ($94.0 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00 \mathrm{eq}$), TMG ($30.0 \mu \mathrm{~L}, 0.240 \mathrm{mmol}, 1.20 \mathrm{eq}$.) and THF (5.0 mL). After stirring the resulting solution for 5 minutes at room temperature, R-EBX (1) (0.220 mmol, 1.10 eq.) was added as a solid in one portion. The resulting reaction mixture was stirred for 5 minutes at room temperature. Next, the mixture was diluted with water (10 mL) and extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude reaction mixture was purified by flash chromatography.

General Procedure F (GPF): Alkynylation of Sodium Hydrogen Sulfide (23)

A 25 mL round bottom flask was charged with a magnetic stirring bar, sodium hydrogen sulfide (23) ($11.2 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00 \mathrm{eq}$.), TMG ($60.0 \mu \mathrm{~L}, 0.480 \mathrm{mmol}, 2.40 \mathrm{eq}$.$) and$ $\mathrm{MeOH}(5.0 \mathrm{~mL})$. After stirring the resulting solution for 5 minutes at room temperature, REBX (1) ($0.440 \mathrm{mmol}, 2.20$ eq.) was added as a solid in one portion. The resulting reaction mixture was stirred for 5 minutes at room temperature. Next, the reaction mixture was evaporated under reduced pressure and then crude mixture was washed with 5% aq. NaHCO_{3} $(15 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude reaction mixture was purified by flash chromatography.

Benzyl(prop-1-yn-1-yl)sulfane (3b)

A 25 mL round bottom flask was charged with a magnetic stirring bar, benzylmercaptane (2) ($50 \mathrm{mg}, 0.40 \mathrm{mmol}, 1.00 \mathrm{eq}$.), TMG ($60.0 \mu \mathrm{~L}, 0.480 \mathrm{mmol}, 1.20 \mathrm{eq}$.) and THF (5.0 mL). After stirring the resulting solution for 5 minutes at room temperature, Me-EBX (1b) (126 mg , $0.440 \mathrm{mmol}, 1.10 \mathrm{eq}$.$) was added as a solid in one portion. The resulting reaction mixture was$ stirred for 5 minutes at room temperature. Next, the mixture was diluted with water (10 mL) and extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude reaction mixture was purified by flash chromatography using pentane as mobile phase affording $\mathbf{3 b}$ ($45 \mathrm{mg}, 0.28 \mathrm{mmol}, 70 \%$) as a colorless oil. Rf (pentane, KMnO_{4} staining) $=0.47 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.38-7.26$ ($\mathrm{m}, 5 \mathrm{H}, \mathrm{Ar} H$), $3.90\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 1.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): δ 137.1, 129.1, 128.6, 127.7, 91.4, 67.4, 40.2, 5.1. IR v 3062 (w), 3031 (m), 2919 (m), 2850 (w), 1606 (w), 1495 (m), 1450 (s), 1240 (m), 1072 (w), 1028 (w), 768 (s). The characterization data is in accordance with reported literature values. ${ }^{19}$

(E)-2-((2-(benzylthio)-2-(triisopropylsilyl)vinyl)iodonio)benzoate (6)

2

$10 \mathrm{~mol} \%$ TMG THF

20\%

A 25 mL round bottom flask was charged with a magnetic stirring bar, benzylthiol (2) (47.0 $\mu \mathrm{L}, 0.400 \mathrm{mmol}, 1.00 \mathrm{eq}$.), TMG ($5.0 \mu \mathrm{~L}, 0.040 \mathrm{mmol}, 0.1 \mathrm{eq}$.) and THF (5.0 mL). After stirring the resulting reaction mixture for 5 minutes at room temperature, Me-EBX (126 mg , $0.440 \mathrm{mmol}, 1.10 \mathrm{eq}$.) was added as a solid in one portion. The resulting solution was stirred for 1 h at room temperature. Next, the obtained precipitate was collected and washed several times with hexane and dried under vacuum to afford $\mathbf{6}$ in 20% yield as a white solid. Melting

[^15]point $=154.1-158.0{ }^{\circ} \mathrm{C}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.47(\mathrm{dd}, 1 \mathrm{H}, J=7.5,1.8 \mathrm{~Hz}, \mathrm{ArH})$, 7.62 (td, $1 \mathrm{H}, J=7.3,1.0 \mathrm{~Hz}, \mathrm{Ar} H)$, 7.52 (ddd, $1 \mathrm{H}, J=8.1,7.1,1.8 \mathrm{~Hz}, \mathrm{Ar} H), 7.31-7.23$ (m, $6 \mathrm{H}, \mathrm{Ar} H), 6.46\left(\mathrm{q}, 1 \mathrm{H}, J=1.3 \mathrm{~Hz}\right.$, alkene H), $4.10\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 2.53(\mathrm{~d}, 3 \mathrm{H}, J=1.3 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right):{ }^{6} \delta 166.9,159.5,135.9,133.5,133.3,130.8,129.1,128.8$, 128.1, 125.6, 113.9, 98.1, 37.2, 25.2. IR v 3430 (w), 3060 (w), 1602 (s), 1550 (m), 1435 (w), 1359 (m), 1227 (w), 1096 (w), 1004 (w), 831 (w), 747 (s). HRMS (ESI) $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{IO}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$ calc. $=410.9910 ;$ obs. $=410.9928$.

(2-Bromophenyl)(prop-1-yn-1-yl)sulfane (9a)

Following general procedure GPA, the reaction was carried out using 2-bromothiophenol (8, $119 \mathrm{mg}, 0.600 \mathrm{mmol})$. Upon reaction completion, the mixture was concentrated in vacuo and purified by flushing the crude oil dissolved in minimum amounts of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ through a small plug of silica gel using pentane:EtOAc 199:1 as mobile phase affording 9a ($126 \mathrm{mg}, 0.555$ $\mathrm{mmol}, 93 \%)$ as a clear colorless oil. R_{f} (pentane) $=0.61 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.70$ (dd, $1 \mathrm{H}, J=8.0,1.6 \mathrm{~Hz}, \operatorname{Ar} H$), 7.47 (dd, $1 \mathrm{H}, J=7.9,1.3 \mathrm{~Hz}, \mathrm{Ar} H$), 7.34 (ddd, $1 \mathrm{H}, J=8.0$, $7.4,1.3 \mathrm{~Hz}, \mathrm{Ar} H), 7.06\left(\mathrm{ddd}, 1 \mathrm{H}, J=7.9,7.4,1.6 \mathrm{~Hz}, \mathrm{Ar} H\right.$), $2.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 135.4,132.6,128.1,127.1,126.8,119.2,97.5,63.7,5.4$ IR v 3059 (w), 2913 (w), 1563 (w), 1447 (s), 1430 (s), 1104 (w), 1019 (s). HRMS (ESI) $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrS}^{+}[\mathrm{M}+\mathrm{H}]^{+}$ calc. $=226.9525 ;[\mathrm{M}+\mathrm{H}]^{+}$obs. $=226.9519$.

(2-Bromophenyl)(oct-1-yn-1-yl)sulfane (9b)

Following general procedure GPA, the reaction was carried out using 2-bromothiophenol (8, $159 \mathrm{mg}, 0.800 \mathrm{mmol})$. Upon reaction completion, the mixture was concentrated in vacuo and purified by flushing the crude oil dissolved in minimum amounts of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ through a small plug of silica gel using pentane:EtOAc 199:1 as mobile phase affording 9b ($233 \mathrm{mg}, 0.784$ $\mathrm{mmol}, 98 \%)$ as a clear colorless oil. $\mathrm{R}_{f}($ pentane $)=0.64 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.71$ (dd, $1 \mathrm{H}, J=8.0,1.6 \mathrm{~Hz}, \mathrm{Ar} H$), 7.48 (dd, $1 \mathrm{H}, J=7.9,1.3 \mathrm{~Hz}, \operatorname{ArH}$), 7.35 (ddd, $1 \mathrm{H}, J=8.0$, $7.4,1.3 \mathrm{~Hz}, \mathrm{Ar} H), 7.06$ (ddd, $1 \mathrm{H}, J=7.7,7.6,1.6 \mathrm{~Hz}, \mathrm{ArH}$), $2.49(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}$, CCCH_{2}), 1.68-1.58 (m, 2 H), 1.52-1.42 (m, 2 H), 1.41-1.26 (m, 4 H), 0.93 (t, $3 \mathrm{H}, J=6.9 \mathrm{~Hz}$,
$\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 135.6,132.6,128.0,127.0,126.7,119.2,102.1$, 64.5, 31.4, 28.7, 28.6, 22.7, 20.4, 14.2. IR v 2930 (m), 2858 (w), 1740 (m), 1712 (s), 1447 (s), 1373 (s), 1286 (m), 1253 (m), 1123 (m), 1020 (s), 909 (w). HRMS (ESI) $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{BrS}^{+}[\mathrm{M}+\mathrm{H}]^{+}$ calc. $=297.0307 ;[\mathrm{M}+\mathrm{H}]^{+}$obs. $=297.0297$.

(2-Bromophenyl)(hexadec-1-yn-1-yl)sulfane (9c)

Following general procedure GPA, the reaction was carried out using 2-bromothiophenol (8, $100 \mathrm{mg}, 0.500 \mathrm{mmol}$). Upon reaction completion, the mixture was concentrated in vacuo and purified by flushing the crude oil dissolved in minimum amounts of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ through a small plug of silica gel using pentane:EtOAc 499:1 as mobile phase affording 9c ($201 \mathrm{mg}, 0.490$ $\mathrm{mmol}, 98 \%)$ as a clear colorless oil. R_{f} (pentane) $=0.71 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.70$ (dd, $1 \mathrm{H}, J=8.0,1.6 \mathrm{~Hz}, \mathrm{Ar} H$), 7.47 (dd, $1 \mathrm{H}, J=7.9,1.3 \mathrm{~Hz}, \mathrm{Ar} H$), 7.34 (td, $1 \mathrm{H}, J=7.7,1.4$ $\mathrm{Hz}, \mathrm{Ar} H), 7.06(\mathrm{td}, 1 \mathrm{H}, J=7.7,1.6 \mathrm{~Hz}, \mathrm{Ar} H), 2.48\left(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CCCH}_{2} \mathrm{CH}_{2}\right), 1.63(\mathrm{p}$, $2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CCCH}_{2} \mathrm{CH}_{2}$), 1.51-1.40 (m, 2 H), $1.39-1.20(\mathrm{~m}, 20 \mathrm{H}), 0.90(\mathrm{t}, 3 \mathrm{H}, J=6.8$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right){ }^{9}{ }^{9} \delta$ 135.7, 132.6, 128.0, 127.1, 126.8, 119.3, 102.1, 64.5, 32.1, 29.9, 29.8, 29.7, 29.5, 29.3, 29.1, 28.7, 22.9, 20.5, 14.3. IR v 2923 (s), 2853 $(\mathrm{m}), 1447(\mathrm{~m}), 1429(\mathrm{w}), 1020(\mathrm{w}), 745(\mathrm{~s})$. HRMS (ESI) $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{BrS}^{+}[\mathrm{M}+\mathrm{H}]^{+}$calc. $=$ $409.1559 ;[\mathrm{M}+\mathrm{H}]^{+}$obs. $=409.1548$.

(2-Bromophenyl)(3,3-dimethylbut-1-yn-1-yl)sulfane (9d)

Following general procedure GPA, the reaction was carried out using 2-bromothiophenol (8, $100 \mathrm{mg} 0.500 \mathrm{mmol})$. Upon reaction completion, the mixture was concentrated in vacuo and purified by flushing the crude oil dissolved in minimum amounts of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ through a small plug of silica gel using pentane:EtOAc 499:1 as mobile phase affording 9d ($134 \mathrm{mg}, 0.498$ mmol, quant.) as a clear colorless oil. R_{f} (pentane) $=0.85 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ $7.65(\mathrm{dd}, 1 \mathrm{H}, J=8.0,1.6 \mathrm{~Hz}, \mathrm{Ar} H), 7.47(\mathrm{dd}, 1 \mathrm{H}, J=7.9,1.3 \mathrm{~Hz}, \mathrm{Ar} H), 7.36(\mathrm{ddd}, 1 \mathrm{H}, J=$ 8.0, $7.4,1.3 \mathrm{~Hz}, \operatorname{Ar} H)$, 7.10-7.02 (m, $1 \mathrm{H}, \mathrm{Ar} H), 1.36(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ MHz): $\delta 135.7,132.6,128.1,127.1,126.5,119.3,109.7,63.5,31.0,29.2$. IR v 2968 (w), 1575
(w), 1446 (s), 1430 (m), 1251 (w), 1019 (m), 745 (s). HRMS (ESI) $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{BrS}^{+}[\mathrm{M}+\mathrm{H}]^{+}$calc. $=268.9994 ;[\mathrm{M}+\mathrm{H}]^{+}$obs. $=268.9986$.

(2-Bromophenyl)(oct-7-en-1-yn-1-yl)sulfane (9e)

Following general procedure GPA, the reaction was carried out using 2-bromothiophenol (8, $100 \mathrm{mg}, 0.500 \mathrm{mmol}$). Upon reaction completion, the mixture was concentrated in vacuo and purified by flushing the crude oil dissolved in minimum amounts of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ through a small plug of silica gel using pentane:EtOAc 299:1 as mobile phase affording $9 \mathbf{9}(137 \mathrm{mg}, 0.465$ mmol, 93%) as a clear colorless oil. R_{f} (pentane) $=0.69 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.68$ (dd, $1 \mathrm{H}, J=8.0,1.6 \mathrm{~Hz}, \mathrm{Ar} H$), 7.48 (dd, $1 \mathrm{H}, J=7.9,1.3 \mathrm{~Hz}, \mathrm{Ar} H$), 7.34 (ddd, $1 \mathrm{H}, J=8.0$, $7.4,1.3 \mathrm{~Hz}, \mathrm{Ar} H$), 7.06 (ddd, $1 \mathrm{H}, J=7.7,7.6,1.6 \mathrm{~Hz}, \mathrm{Ar} H$), 5.83 (ddt, $1 \mathrm{H}, J=16.9,10.2$, $6.7 \mathrm{~Hz}, \mathrm{CHCH}_{2}$), $5.09-4.95\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2}\right), 2.50\left(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CCCH}_{2} \mathrm{CH}_{2}\right), 2.16-$ $\left.2.06\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.72-1.50\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}^{(} \mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 138.5,135.6$, 132.6, 128.1, 127.1, 126.8, 119.3, 114.9, 101.8, 64.7, 33.3, 28.2, 28.1, 20.3. IR v 3062 (w), 2859 (w), 1736 (w), 1706 (m), 1447 (m), 1430 (m), 1174 (w), 1019 (m), 912 (m), 745 (s). HRMS (ESI) $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{BrS}^{+}[\mathrm{M}+\mathrm{H}]^{+}$calc. $=295.0151 ;[\mathrm{M}+\mathrm{H}]^{+}$obs. $=295.0152$.

(2-Bromophenyl)(4-(prop-2-yn-1-yloxy)but-1-yn-1-yl)sulfane (9f)

Following general procedure GPA, the reaction was carried out using 2-bromothiophenol (8, $60 \mathrm{mg}, 0.30 \mathrm{mmol}$). Upon reaction completion, the mixture was concentrated in vacuo and purified by flushing the crude oil dissolved in minimum amounts of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ through a small plug of silica gel using pentane:EtOAc 99:1 as mobile phase affording 9 ($84.1 \mathrm{mg}, 0.285$ $\mathrm{mmol}, 95 \%$) as a clear colorless oil. R_{f} (pentane:EtOAc 25:1) $=0.49 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ MHz): $\delta 7.71$ (dd, $1 \mathrm{H}, J=8.0,1.5 \mathrm{~Hz}, \mathrm{ArH}$), 7.47 (dd, $1 \mathrm{H}, J=7.9,1.3 \mathrm{~Hz}, \mathrm{Ar} H$), 7.35 (ddd, $1 \mathrm{H}, J=7.9,7.4,1.4 \mathrm{~Hz}, \operatorname{Ar} H$), 7.06 (ddd, $1 \mathrm{H}, J=7.9,7.4,1.6 \mathrm{~Hz}, \operatorname{Ar} H$), $4.22(\mathrm{~d}, 2 \mathrm{H}, J=$ $2.4 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CCH}$), $3.74\left(\mathrm{t}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{CCCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right.$), $2.79(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}$, $\mathrm{CCCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $2.47\left(\mathrm{t}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CCH}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 135.1$, 132.6, 128.2, 127.3, 127.0, 119.4, 98.2, 79.5, 74.9, 67.9, 66.3, 58.4, 21.7. IR v 3294 (w), 2912
(w), 2869 (w), 1735 (w), 1611 (w), 1447 (m), 1357 (w), 1250 (w), 1102 (s), 1018 (m), 747 (s). $\mathrm{HRMS}(\mathrm{ESI}) \mathrm{C}_{13} \mathrm{H}_{12} \mathrm{BrOS}^{+}[\mathrm{M}+\mathrm{H}]^{+}$calc. $=294.9787 ;[\mathrm{M}+\mathrm{H}]^{+}$obs. $=294.9783$.

(2-Bromophenyl)(5-chloropent-1-yn-1-yl)sulfane (9g)

Following general procedure GPA, the reaction was carried out using 2-bromothiophenol (8, $100 \mathrm{mg}, 0.500 \mathrm{mmol}$). Upon reaction completion, the mixture was concentrated in vacuo and purified by flushing the crude oil dissolved in minimum amounts of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ through a small plug of silica gel using pentane:EtOAc 299:1 as mobile phase affording $\mathbf{9 g}(126 \mathrm{mg}, 0.436$ $\mathrm{mmol}, 87 \%)$ as a clear colorless oil. $\mathrm{R}_{f}($ pentane $)=0.51 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.66$ (dd, $1 \mathrm{H}, J=8.0,1.5 \mathrm{~Hz}, \mathrm{Ar} H$), 7.48 (dd, $1 \mathrm{H}, J=7.9,1.3 \mathrm{~Hz}, \mathrm{Ar} H$), 7.36 (ddd, $1 \mathrm{H}, J=8.0$, $7.4,1.4 \mathrm{~Hz}, \mathrm{Ar} H), 7.07$ (ddd, $1 \mathrm{H}, J=8.0,7.4,1.6 \mathrm{~Hz}, \mathrm{ArH}$), $3.70(\mathrm{t}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right), 2.70\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CCCH}_{2} \mathrm{CH}_{2}\right), 2.11-2.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CCCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 135.1,132.7,128.2,127.3,126.8,119.4,99.7,66.1,43.7,31.2,17.8$. IR v 2959 (w), 1574 (w), 1446 (s), 1430 (m), 1289 (w), 1019 (m), 746 (s). HRMS (ESI) $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BrClS}^{+}[\mathrm{M}+\mathrm{H}]^{+}$calc. $=288.9448 ;[\mathrm{M}+\mathrm{H}]^{+}$obs. $=288.9436$.

(4-Azidobut-1-yn-1-yl)(2-bromophenyl)sulfane (9h)

Following general procedure GPA, the reaction was carried out using 2-bromothiophenol (8, $119 \mathrm{mg}, 0.600 \mathrm{mmol})$. Upon reaction completion, the mixture was concentrated in vacuo and purified by flushing the crude oil dissolved in minimum amounts of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ through a small plug of silica gel using pentane:EtOAc 199:1 as mobile phase affording $\mathbf{9 h}(153 \mathrm{mg}, 0.542$ $\mathrm{mmol}, 90 \%$) as a clear colorless oil. R_{f} (pentane:EtOAc 30:1) $=0.48 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ MHz): $\delta 7.68$ (dd, $1 \mathrm{H}, J=8.0,1.5 \mathrm{~Hz}, \mathrm{Ar} H$), 7.49 (dd, $1 \mathrm{H}, J=7.9,1.3 \mathrm{~Hz}, \mathrm{ArH}$), 7.36 (ddd, $1 \mathrm{H}, J=8.0,7.4,1.3 \mathrm{~Hz}, \mathrm{Ar} H$), 7.08 (ddd, $1 \mathrm{H}, J=8.0,7.4,1.6 \mathrm{~Hz}, \mathrm{Ar} H), 3.51(\mathrm{t}, 2 \mathrm{H}, J=6.8$ $\mathrm{Hz}, \mathrm{CCCH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}$), $2.77\left(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CCCH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta$ 134.7, 132.8, 128.2, 127.5, 127.0, 119.5, 97.4, 67.8, 49.9, 21.5. IR v 2932 (w), 2103 (s), 1574 (w), 1447 (s), 1429 (m), 1301 (w), 1257 (m), 1105 (w), 1018 (m), 744 (s). HRMS (ESI) $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{AgBrN}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Ag}]^{+}$calc. $=387.8668 ;[\mathrm{M}+\mathrm{Ag}]^{+}$obs. $=387.8661$.

7-((2-Bromophenyl)thio)hept-6-yn-1-ol (9i)

Following general procedure GPA, the reaction was carried out using 2-bromothiophenol (8, $119 \mathrm{mg}, 0.600 \mathrm{mmol}$). Upon reaction completion, the mixture was concentrated in vacuo and purified by flushing the crude oil dissolved in minimum amounts of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ through a small plug of silica gel using pentane:EtOAc 7:2 as mobile phase affording 9i ($175 \mathrm{mg}, 0.585$ mmol, 98%) as a light yellow oil. R_{f} (pentane:EtOAc 7:3) $=0.33 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ MHz): $\delta 7.66$ (d, $1 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{Ar} H$), 7.45 (dd, $1 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{Ar} H$), 7.33 (t, $1 \mathrm{H}, J=7.6$ $\mathrm{Hz}, \mathrm{Ar} H$), 7.04 (td, $1 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{Ar} H), 3.65\left(\mathrm{t}, 2 \mathrm{H}, J=5.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 2.48(\mathrm{t}, 2 \mathrm{H}, J=$ $6.7 \mathrm{~Hz}, \mathrm{CCCH}_{2}$), $1.99\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 1.70-1.45(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 135.4, 132.5, 128.0, 127.1, 126.7, 119.2, 101.7, 64.7, 62.7, 32.2, 28.4, 25.1, 20.4. IR v 3366 (w), 2938 (w), 2861 (w), 1447 (m), 1430 (w), 1019 (m), 907 (m), 730 (s). HRMS (ESI) $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{BrNaOS}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$calc. $=320.9919 ;[\mathrm{M}+\mathrm{Na}]^{+}$obs. $=320.9928$.

(2-Bromophenyl)(mesitylethynyl)sulfane (9j)

Following general procedure GPA, the reaction was carried out using 2-bromothiophenol (8, $100 \mathrm{mg}, 0.500 \mathrm{mmol}$). Upon reaction completion, the mixture was concentrated in vacuo and purified by flushing the crude oil dissolved in minimum amounts of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ through a small plug of silica gel using pentane:EtOAc 499:1 as mobile phase affording $\mathbf{9 j}$ ($165 \mathrm{mg}, 0.499$ mmol, quant.) as a light brown oil. R_{f} (pentane) $=0.47 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.88$ $(\mathrm{d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}, \mathrm{Ar} H), 7.55(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{Ar} H), 7.39(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{Ar} H), 7.18-$ $7.07(\mathrm{~m}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}, \operatorname{Ar} H), 6.96(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 2.52\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH} H_{3}\right), 2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 140.9,138.6,135.4,132.7,128.1,127.8,127.2,126.9,119.4$, 119.3, 97.6, 81.2, 21.4, 21.2. IR v 2914 (w), 2153 (w), 1610 (w), 1574 (w), 1446 (s), 1429 (m), 1019 (s), $852(\mathrm{~m}), 744$ (s). HRMS (ESI) $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{BrS}^{+}[\mathrm{M}+\mathrm{H}]^{+}$calc. $=331.0151$; $[\mathrm{M}+\mathrm{H}]^{+}$ obs. $=331.0149$.

Phenyl(oct-1-yn-1-yl)sulfane (9k)

Benzenethiol ($0.522 \mathrm{~mL}, 5.10 \mathrm{mmol}, 1.00 \mathrm{eq}$.) was dissolved in dry THF (64 mL). Next, TBD ($0.700 \mathrm{~g}, 5.10 \mathrm{mmol}, 1.00 \mathrm{eq}$.) was added and the mixture was stirred for 5 min at room temperature, after which Hex-EBX (1d) ($2.00 \mathrm{~g}, 5.61 \mathrm{mmol}, 1.10 \mathrm{eq}$.) was added and the resulting mixture was stirred for 10 min at room temperature. The mixture was concentrated under reduced pressure and the crude product was purified by flash chromatography (pentane/EtOAc 1:0 to $100: 1$) to afford $9 \mathbf{k}(0.670 \mathrm{~g}, 3.08 \mathrm{mmol}, 60 \%)$ as colorless oil. Rf (pentane/EtOAc 100:1, KMnO_{4}) $=0.98 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.47-7.41(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{Ar} H)$, 7.39-7.30 (m, $2 \mathrm{H}, \mathrm{ArH}$), 7.25-7.17 (m, $1 \mathrm{H}, \mathrm{ArH}$), 2.48 (t, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CCCH}_{2}$), 1.70-1.57 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.55-1.42 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.42-1.27 (m, $4 \mathrm{H}, \mathrm{CH}_{2}$), $0.94(\mathrm{t}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 133.9,129.1,126.1,125.8,100.2,64.6,31.4,28.7$, 28.6, 22.6, 20.4, 14.1. IR v 2957 (w), 2932 (w), 2859 (w), 2249 (w), 1584 (w), 1479 (w), 1442 (w), 1025 (w), 907 (s), 730 (s), 689 (w). HRMS (ESI) $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$calc. $=219.1202$; $[\mathrm{M}+\mathrm{H}]^{+}$obs. $=219.1199$

1,3,5-Tris(((triisopropylsilyl)ethynyl)thio)benzene (11a)

Following our recently developed thiol-alkynylation procedure for TIPS-EBX (1a), ${ }^{17}$ a 25 mL round bottom flask was charged with a magnetic stirring bar, benzene-1,3,5-trithiol (52.3 mg , $0.300 \mathrm{mmol}, 1.00$ eq.) and 1,1,3,3-tetramethylguanidine (TMG, $137 \mu \mathrm{~L}, 1.08 \mathrm{mmol}, 3.60 \mathrm{eq}$.). The mixture was dissolved in THF (5.0 mL) and water (0.5 mL). Upon dissolution, TIPSEBX ($\mathbf{1 a}, 424 \mathrm{mg}, 0.990 \mathrm{mmol}, 3.30 \mathrm{eq}$.) was added as a solid in one portion. The resulting reaction mixture was stirred with an open flask for 5 minutes at room temperature and then quenched by adding water (10 mL). The mixture was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$) and the combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The
resulting crude product was purified by column chromatography (pentane) affording 11a (205 $\mathrm{mg}, 0.287 \mathrm{mmol}, 96 \%)$ as a white solid. $\mathrm{R}_{f}($ pentane $)=0.81$. Melting point $=109.1-111.6^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.39(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar} H), 1.21-1.09\left(\mathrm{~m}, 63 \mathrm{H}\right.$, TIPS). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 136.1,120.9,105.5,89.8,18.8,11.5$. IR $\vee 2943(\mathrm{~m}), 2865(\mathrm{~m}), 2095$ (w), 1557 (w), 1463 (w), 996 (w), 882 (s), 858 (s). HRMS (APPI) $\mathrm{C}_{39} \mathrm{H}_{66} \mathrm{~S}_{3} \mathrm{Si}_{3}{ }^{+}[\mathrm{M}]^{+}$calc. $=$ 714.3634; [M] ${ }^{+}$obs. $=714.3616$.

1,3,5-Tris(oct-7-en-1-yn-1-ylthio)benzene (11b)

Following general procedure GPB, the crude product was purified by column chromatography (pentane:EtOAc 199:1) affording 11b (128 mg, $0.260 \mathrm{mmol}, 87 \%$) as a colorless oil. R_{f} (hexane) $=0.79 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.23(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar} H), 5.81$ (ddt, $3 \mathrm{H}, \mathrm{J}=16.9,10.2,6.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}$), $5.09-4.93\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right), 2.47(\mathrm{t}, 6 \mathrm{H}, J=$ $\left.6.8 \mathrm{~Hz}, \mathrm{CCCH}_{2}\right), 2.15-2.05\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 1.68-1.49\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 100\right.$ MHz): $\delta 138.4,136.5,120.2,114.9,101.4,63.9,33.3,28.2,28.1,20.4$. IR v 3075 (w), 2937 (m), 2862 (m), 2094 (w), 1556 (s$), 1411$ (m), 994 (m), 912 (s$), 840$ (m), 786 (m). HRMS (APPI) $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~S}_{3}{ }^{+}[\mathrm{M}]^{+}$calc. $=492.1979 ;[\mathrm{M}]^{+}$obs. $=492.1977$.

7,7',7'-(Benzene-1,3,5-triyltris(sulfanediyl))tris(hept-6-yn-1-ol) (11c)

Following general procedure GPB, the crude product was purified by column chromatography (EtOAc to EtOAc:MeOH 98:2) affording 11c (133 mg, $0.264 \mathrm{mmol}, 88 \%$) as a colorless oil. $\mathrm{R}_{f}(\mathrm{EtOAc})=0.26 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.22(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArH}), 3.64(\mathrm{t}$, $6 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}$), $2.46\left(\mathrm{t}, 6 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CCCH}_{2}\right.$), $1.97(\mathrm{bs}, 3 \mathrm{H}, \mathrm{OH}), 1.69-1.44(\mathrm{~m}$, $\left.18 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 136.4,120.3,101.4,63.9,62.7,32.3,28.5,25.3$, 20.5. IR v 3337 (w), 2937 (w), 2861 (w), 1556 (m), 1411 (w), 1057 (w), 903 (w), 732 (s). HRMS (ESI) $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{NaO}_{3} \mathrm{~S}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$calc. $=527.1719 ;[\mathrm{M}+\mathrm{H}]^{+}$obs. $=527.1711$.

Alkynylation of (4-methoxyphenyl)methanethiol (14)

(4-Methoxybenzyl)(prop-1-yn-1-yl)sulfane (17a)

A 25 mL round bottom flask was charged with a magnetic stirring bar, 4methoxybenzylmercaptane (14) ($79.0 \mathrm{mg}, 0.500 \mathrm{mmol}, 1.00$ eq.) and dry THF (6.25 mL) at room temperature. The flask was capped with a glass stopper and heated at $40{ }^{\circ} \mathrm{C}$. After 1
minute, the glass stopper was quickly removed and TMG ($63.5 \mu \mathrm{~L}, 0.500 \mathrm{mmol}, 1.00 \mathrm{eq}$.) was added. The mixture was stirred (capped again) for 30 seconds, after which Me-EBX (1b) $(157 \mathrm{mg}, 0.549 \mathrm{mmol}, 1.10 \mathrm{eq}$.$) was added in one portion. The resultant mixture was stirred at$ $50^{\circ} \mathrm{C}$ for exactly 2 minutes. Next, the mixture was diluted with water (10 mL) and extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude was then purified by flash column chromatography using EtOAc:pentane 1:99 as mobile phase affording $\mathbf{1 7 a}(72.8 \mathrm{mg}, 0.379 \mathrm{mmol}, 77 \%)$ as a colorless oil. Rf (EtOAc:pentane 1:24, KMnO_{4} staining $)=0.24 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$: $\delta 7.31-7.23(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 6.93-6.83(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 3.88\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 3.81(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 1.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 159.2,130.2,129.1,114.0$, 91.2, 67.6, 55.3, 39.7, 5.1. IR v 2913 (w), 1610 (m), 1510 (s), 1463 (w), 1302 (w), 1248 (s), $1177(\mathrm{~m}), 1034(\mathrm{~m}), 832(\mathrm{~m}) . \operatorname{HRMS}(\mathrm{ESI}) \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{OS}^{+}[\mathrm{M}+\mathrm{H}]^{+}$calc. $=193.0682 ;[\mathrm{M}+\mathrm{H}]^{+}$ obs. $=193.0684$.
(4-Methoxybenzyl)(oct-1-yn-1-yl)sulfane (17b)

A 25 mL round bottom flask was charged with a magnetic stirring bar, 4methoxybenzylmercaptane (44) ($79.0 \mathrm{mg}, 0.500 \mathrm{mmol}, 1.00$ eq.) and dry THF (6.25 mL) at room temperature. The flask was capped with a glass stopper and heated at $40{ }^{\circ} \mathrm{C}$. After 1 minute, the glass stopper was quickly removed and TMG ($63.5 \mu \mathrm{~L}, 0.500 \mathrm{mmol}, 1.00$ eq.) was added. The mixture was stirred (capped again) for 30 seconds, after which Hex-EBX (1d) ($196 \mathrm{mg}, 0.550 \mathrm{mmol}, 1.10 \mathrm{eq}$.) was added in one portion. The resultant mixture was stirred at room temperature for 5 minutes. Next, the mixture was diluted with water (10 mL) and extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude was then purified by flash column chromatography using EtOAc:pentane $1: 99$ as mobile phase affording $\mathbf{1 7 b}(111 \mathrm{mg}, 0.422$ mmol, 84%) as a colorless oil. Rf (pentane, KMnO_{4} staining) $=0.31 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400\right.$ MHz): $\delta 7.26-7.19(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.87-6.80(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 3.84\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 3.77(\mathrm{~s}, 3$ $\left.\mathrm{H}, \mathrm{OCH}_{3}\right), 2.25\left(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CCCH}_{2}\right), 1.50-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.18(\mathrm{~m}, 6 \mathrm{H}), 0.88(\mathrm{t}, 3$ $\left.\mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta 159.2,130.2,129.2,114.0,96.0$, 68.3, 55.3, 39.9, 31.5, 28.8, 28.6, 22.7, 20.2, 14.2. IR v 2934 (m), 2857 (w), 1611 (w), 1511
(s), 1463 (w), 1303 (w), 1249 (s), 1176 (w), 1036 (m), 831 (m). HRMS (ESI) $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{OS}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}$calc. $=263.1464 ;[\mathrm{M}+\mathrm{H}]^{+}$obs. $=263.1461$.

(5-Chloropent-1-yn-1-yl)(4-methoxybenzyl)sulfane (17c)

A 25 mL round bottom flask was charged with a magnetic stirring bar, 4methoxybenzylmercaptane (44) ($79.0 \mathrm{mg}, 0.500 \mathrm{mmol}, 1.0$ eq.), DBU ($75.0 \mu \mathrm{~L}, 0.500 \mathrm{mmol}$, 1.00 eq.) and dry THF (6.25 mL) at room temperature. After stirring the reaction mixture for 30 seconds at room temperature, $\mathrm{ClC}_{3}-\mathrm{EBX}(\mathbf{1} \mathbf{j})(192 \mathrm{mg}, 0.550 \mathrm{mmol}, 1.10 \mathrm{eq}$.$) was added as$ a solid in one portion. The resulting reaction mixture was stirred for 5 minutes at room temperature. Next, the mixture was diluted with water (10 mL) and extracted with EtOAc (3 x 15 mL). The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude was then purified by flash column chromatography using EtOAc:pentane 1:99 as mobile phase affording $\mathbf{1 7 c}(97.1 \mathrm{mg}, 0.381 \mathrm{mmol}, 76 \%)$ as a colorless oil. Rf (EtOAc:pentane 1:19, KMnO_{4} staining $)=0.68 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.32-7.21(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{Ar} H), 6.97-6.82(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.82\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 3.55(\mathrm{t}, 2 \mathrm{H}, J$ $\left.=6.4 \mathrm{~Hz}, \mathrm{ClCH}_{2}\right), 2.48\left(\mathrm{t}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{CCCH}_{2}\right), 1.91\left(\mathrm{p}, 2 \mathrm{H}, J=6.5 \mathrm{~Hz}, \mathrm{ClCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 159.2,130.2,128.9,114.0,93.8,69.7,55.3,43.7,39.6,31.4$, 17.6. IR v 2942 (w), 2865 (w), 2104 (w), 1703 (w), 1600 (m), 1510 (m), 1463 (w), 1255 (s), $1214(\mathrm{~m}), 1168$ (s), 1032 (m), 886 (s). HRMS (ESI) $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{ClOS}^{+}[\mathrm{M}+\mathrm{H}]^{+}$calc. $=255.0605$; $[\mathrm{M}+\mathrm{H}]^{+}$obs. $=255.0600$.

4-((4-Methoxybenzyl)thio)but-3-yn-1-ol (17d)

A 25 mL round bottom flask was charged with a magnetic stirring bar, 4methoxybenzylmercaptane (44) ($79.0 \mathrm{mg}, 0.500 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) and dry THF (6.25 \mathrm{~mL}$) at room temperature. The flask was capped with a glass stopper and heated at $40{ }^{\circ} \mathrm{C}$. After 1 minute, the glass stopper was quickly removed and TMG ($63.5 \mu \mathrm{~L}, 0.500 \mathrm{mmol}, 1.00 \mathrm{eq}$.) was added. The mixture was stirred (capped again) for 30 seconds, after which OH-ethylEBX (1m) ($174 \mathrm{mg}, 0.550 \mathrm{mmol}, 1.10 \mathrm{eq}$.) was added in one portion. It took 10 minutes for
all the OH -ethyl-EBX (1m) to dissolve and form a clear reaction mixture. The resultant mixture was stirred at room temperature for 10 minutes. Next, the mixture was diluted with water (10 mL) and extracted with EtOAc (3 x 10 mL). The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude was then purified by flash column chromatography using EtOAc:pentane $3: 7$ as mobile phase affording 17d (64.8 mg , $0.291 \mathrm{mmol}, 59 \%$) as a colorless oil. Rf (EtOAc:pentane 3:7, KMnO_{4} staining) $=0.45 .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 7.29-7.22(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.91-6.84(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 3.88(\mathrm{~s}, 2 \mathrm{H}$, ArCH_{2}), $3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.64\left(\mathrm{t}, 2 \mathrm{H}, J=6.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 2.54(\mathrm{t}, 2 \mathrm{H}, J=6.2 \mathrm{~Hz}$, CCCH_{2}), 1.78 (bs, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}$). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta 159.3,130.3,128.9,114.1$, $92.3,71.0,61.2,55.4,39.6,24.7$. IR v 3387 (w), 2910 (w), 1610 (m), 1510 (s), 1243 (s), 1177 $(\mathrm{m}), 1033(\mathrm{~s}), 834(\mathrm{~m})$. HRMS (ESI) $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$calc. $=223.0787$; $[\mathrm{M}+\mathrm{H}]^{+}$obs. $=$ 223.0784.
($2 R, 3 R, 4 S, 5 R, 6 S)$-2-(Acetoxymethyl)-6-(((trimethylsilyl)ethynyl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate (18a)

Following general procedure GPC, the crude reaction mixture was concentrated in vacuo and purified by flash chromatography using EtOAc:pentane $2: 5$ as mobile phase affording 18a $(183 \mathrm{mg}, 0.336 \mathrm{mmol}, 84 \%)$ as a white solid. $\mathrm{Rf}\left(E t O A c: p e n t a n e ~ 2: 5, \mathrm{KMnO}_{4}\right.$ staining $)=0.7$. Melting point $=87.2-89.6{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 5.30-5.17\left(\mathrm{~m}, 2 \mathrm{H}, H_{2} \& H_{3}\right),{ }^{20}$ 5.09 (dq, $\left.1 \mathrm{H}, J=9.6,5.1,4.6 \mathrm{~Hz}, H_{4}\right), 4.61-4.51\left(\mathrm{~m}, 1 \mathrm{H}, H_{l}\right), 4.26(\mathrm{dd}, 1 \mathrm{H}, J=12.5,4.8$ $\left.\mathrm{Hz}, H_{6}\right), 4.13\left(\mathrm{dd}, 1 \mathrm{H}, J=12.5,2.1 \mathrm{~Hz}, H_{6}\right), 3.76\left(\mathrm{ddd}, 1 \mathrm{H}, J=10.1,4.7,2.2 \mathrm{~Hz}, H_{5}\right), 2.08$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{COCH}_{3}$), $2.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right.$), $2.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right.$), 2.01 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{COCH}_{3}$), 1.121.07 (m, 21 H, TIPS). ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right.$): $\delta 170.8,170.4,169.4,169.0,102.4,89.0$, 85.1, 76.6, 74.0, 70.0, 67.9, 62.1, 20.9, 20.8, 20.8, 20.7, 18.7, 11.4. IR v 2923 (w), 2863 (w), 2102 (w), 1756 (s), 1742 (s), 1365 (w), 1362 (w), 1231 (s), 1207 (s), 1103 (m), 1053 (s), 914 (w), 884 (w), 860 (w). HRMS (ESI) $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{NaO}_{9} \mathrm{SSi}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$calc. $=567.2055 ;[\mathrm{M}+\mathrm{Na}]^{+}$ obs. $=567.2034$.

[^16](2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-((4-azidobut-1-yn-1-yl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate (18b)

Following general procedure GPC, the crude reaction mixture was concentrated in vacuo and purified by flash chromatography using EtOAc:pentane 1:2 as mobile phase affording 18b $(81.0 \mathrm{mg}, 0.177 \mathrm{mmol}, 45 \%)$ as a colorless oil. $\mathrm{Rf}\left(\right.$ EtOAc:pentane 1:2, KMnO_{4} staining $)=$ 0.35. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 5.27-5.18\left(\mathrm{~m}, 2 \mathrm{H}, H_{3} \& H_{2}\right){ }^{20}{ }^{20} 5.15-5.07\left(\mathrm{~m}, 1 \mathrm{H}, H_{4}\right)$, 4.54-4.45 (m, $\left.1 \mathrm{H}, H_{l}\right), 4.24\left(\mathrm{dd}, 1 \mathrm{H}, J=12.5,4.9 \mathrm{~Hz}, H_{6}\right), 4.13(\mathrm{dd}, 1 \mathrm{H}, J=12.5,2.3 \mathrm{~Hz}$, H_{6}), $3.74\left(\mathrm{ddd}, 1 \mathrm{H}, J=10.0,4.9,2.3 \mathrm{~Hz}, H_{5}\right) 3.42\left(\mathrm{t}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}\right.$), $2.62(\mathrm{t}, 2$ $\left.\mathrm{H} J=6.7 \mathrm{~Hz}, \mathrm{CCCH}_{2}\right), 2.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right)$, $1.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 170.7,170.3,169.4,169.1,95.2,84.1$, 76.5, 74.0, 69.6, 67.9, 65.2, 62.1, 49.6, 21.4, 20.8, 20.7, 20.7, 20.7. IR v 2360 (w), 2111 (w), 1751 (s), 1433 (w), 1370 (m), 1228 (s), 1059 (m), 914 (w). HRMS (ESI) $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{NaO}_{9} \mathrm{~S}^{+}$ $[\mathrm{M}+\mathrm{Na}]^{+}$calc. $=480.1047 ;[\mathrm{M}+\mathrm{Na}]^{+}$obs.$=480.1051$.
($2 R, 3 R, 4 S, 5 R, 6 S$)-2-(acetoxymethyl)-6-((7-hydroxyhept-1-yn-1-yl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate (18c)

Following general procedure A , the crude reaction mixture was concentrated in vacuo and purified by flash chromatography using EtOAc: pentane 1:2 as mobile phase affording 18c ($156 \mathrm{mg}, 0.328 \mathrm{mmol}, 82 \%$) as colorless oil. $\mathrm{Rf}\left(E t O A c: p e n t a n e ~ 2: 1, \mathrm{KMnO}_{4}\right.$ staining $)=0.5$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 5.25\left(\mathrm{dt}, 2 \mathrm{H}, J=18.6,9.3 \mathrm{~Hz}, H_{3} \& H_{2}\right),{ }^{20} 5.12(\mathrm{t}, 1 \mathrm{H}, J=$ $\left.9.6 \mathrm{~Hz}, H_{4}\right), 4.44\left(\mathrm{~d}, 1 \mathrm{H}, J=9.3 \mathrm{~Hz}, H_{l}\right), 4.26\left(\mathrm{dd}, 1 \mathrm{H}, J=12.4,4.9 \mathrm{~Hz}, H_{6}\right), 4.16(\mathrm{dd}, 1 \mathrm{H}, J$ $\left.=12.4,2.2 \mathrm{~Hz}, H_{6}\right), 3.76\left(\mathrm{ddd}, 1 \mathrm{H}, J=10.0,4.9,2.3 \mathrm{~Hz}, H_{5}\right), 3.67(\mathrm{t}, 2 \mathrm{H}, J=6.1 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 2.37\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CCCH}_{2}\right), 2.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right)$, 2.03 (s, $3 \mathrm{H}, \mathrm{COCH}_{3}$), 2.01 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{COCH}_{3}$), 1.77 ($\mathrm{bs}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}$), 1.65-1.46 (m, 6 H , CH_{2}). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \cdot{ }^{9} \delta 170.8,170.4,169.7,169.4,99.4,83.9,76.4,74.1,69.7$
68.0, 62.8, 62.2, 61.9, 32.4, 28.1, 25.1, 20.9, 20.8, 20.8, 20.3. IR v 2942 (w), 2196 (w), 1756 (s), 1373 (m), 1229 (s), 1053 (m), 915 (w). HRMS (ESI) $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{O}_{10} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$calc. $=$ 475.1632; $[\mathrm{M}+\mathrm{H}]^{+}$obs. $=475.1624$.
(2R,3S,4S,5R,6S)-2-(hydroxymethyl)-6-(((trimethylsilyl)ethynyl)thio)tetrahydro-2H-pyran-3,4,5-triol (18d)

Following general procedure GPD, the crude reaction mixture was concentrated in vacuo and purified by flash chromatography using DCM:methanol 10:1 as mobile phase affording 18d $(122 \mathrm{mg}, 0.324 \mathrm{mmol}, 81 \%)$ as a white solid. $\mathrm{Rf}\left(\mathrm{DCM}: m e t h a n o l 10: 1, \mathrm{KMnO}_{4}\right.$ staining $)=$ 0.45. Melting point $=120.1-122.3{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right):^{20} \delta 4.36(\mathrm{~d}, 1 \mathrm{H}, J=9.4$ Hz, H_{1}), $3.87\left(\mathrm{dd}, 1 \mathrm{H}, J=12.1,2.0 \mathrm{~Hz}, H_{6}\right.$), $3.63\left(\mathrm{dd}, 1 \mathrm{H}, J=12.1,6.1 \mathrm{~Hz}, H_{6}\right), 3.54(\mathrm{t}, 1 \mathrm{H}$, $\left.J=9.1 \mathrm{~Hz}, H_{2}\right), 3.40\left(\mathrm{t}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}, H_{5}\right), 3.37-3.32\left(\mathrm{~m}, 1 \mathrm{H}, H_{3}\right), 3.29-3.22\left(\mathrm{~m}, 1 \mathrm{H}, H_{4}\right)$, 1.17-1.07 (m, 21 H, TIPS). ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right): \delta 100.9,93.1,88.3,82.8,79.3$, 73.4, 71.3, 63.1, 19.1, 12.6. IR v 3381 (s), 3256 (m), 2108 (w), 1464 (m), 1367 (w), 1058 (s), 994 (s), 884 (s), $782(\mathrm{~m}) . \operatorname{HRMS}(\mathrm{ESI}) \mathrm{C}_{17} \mathrm{H}_{32} \mathrm{NaO}_{5} \mathrm{SSi}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$calc. $=399.1632 ;[\mathrm{M}+\mathrm{Na}]^{+}$ obs. $=399.1632$.

(2S,3R,4S,5S,6R)-2-(hexadec-1-yn-1-ylthio)-6-(hydroxymethyl)tetrahydro-2H-pyran-

3,4,5-triol (18e)

Following general procedure GPD, the crude reaction mixture was concentrated in vacuo and purified by flash chromatography using EtOAc:pentane $10: 1$ to $20: 1$ as mobile phase affording 18e ($100 \mathrm{mg}, 0.240 \mathrm{mmol}, 60 \%$) as a white solid. Rf (EtOAc:pentane 10:1, KMnO_{4} staining $)=0.22$. Melting point $=74.5-77.2^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right): 4.28(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$ $\left.=9.2 \mathrm{~Hz}, H_{l}\right), 3.87\left(\mathrm{dd}, 1 \mathrm{H}, J=12.1,2.0 \mathrm{~Hz}, H_{6}\right), 3.66\left(\mathrm{dd}, 1 \mathrm{H}, J=12.1,5.5 \mathrm{~Hz}, H_{6}\right), 3.47$ (t, 1 H, J = 9.0 Hz, H2), $3.39\left(\mathrm{t}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}, H_{5}\right), 3.36-3.32\left(\mathrm{~m}, 1 \mathrm{H}, H_{3}\right), 3.30-3.25(\mathrm{~m}, 1$
$\left.\mathrm{H}, H_{4}\right)^{17}, 2.32\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CCCH}_{2} \mathrm{CH}_{2}\right), 1.52\left(\mathrm{dt}, 2 \mathrm{H}, J=14.1,6.7 \mathrm{~Hz}, \mathrm{CCCH}_{2} \mathrm{CH}_{2}\right)$, 1.47-1.34 (m, 2 H), 1.36-1.22 (m, 20 H), $0.90\left(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right){ }^{9} \delta$ 98.2, 88.1, 82.6, 79.4, 73.3, 71.3, 65.0, 62.9, 33.1, 30.8, 30.8, 30.7, $30.5,30.3,30.0,29.8,23.8,21.0,14.4$. IR v 3363 (m), 2937 (s), 2842 (m), 2189 (w), 1636 (w), 1455 (m), 1046 (s), 760 (s). HRMS (ESI) $\mathrm{C}_{22} \mathrm{H}_{41} \mathrm{O}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$calc. $=417.2669 ;[\mathrm{M}+\mathrm{H}]^{+}$ obs. $=417.2672$.

Ethyl 2-((S)-2-(((benzyloxy)carbonyl)amino)-3-(1H-indol-3-yl)propanamido)-3-(hexadec-1-yn-1-ylthio)propanoate (19a)

Following general procedure GPE, the crude reaction mixture was concentrated in vacuo and purified by flash chromatography using EtOAc:pentane 2:5 as mobile phase affording 19a $(114 \mathrm{mg}, 0.165 \mathrm{mmol}, 83 \%)$ as a white solid. $\mathrm{Rf}\left(\right.$ EtOAc:pentane $2: 5, \mathrm{KMnO}_{4}$ staining $)=$ 0.42. Melting point $=129.0-131.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, 1$ $\mathrm{H}, J=7.9 \mathrm{~Hz}), 7.42-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.19(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.15-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.60(\mathrm{~d}, 1 \mathrm{H}$, $J=7.4 \mathrm{~Hz}), 5.50(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 5.18-5.07(\mathrm{~m}, 2 \mathrm{H}), 4.80-4.70(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 1 \mathrm{H})$, 4.28-4.00 (m, 2 H), $3.40(\mathrm{~d}, 1 \mathrm{H}, J=13.4 \mathrm{~Hz}$), $3.20(\mathrm{dd}, 1 \mathrm{H}, J=14.6,7.4 \mathrm{~Hz}), 3.03(\mathrm{~d}, 2 \mathrm{H}, J$ $=4.8 \mathrm{~Hz}$), $2.07\left(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CCCH}_{2} \mathrm{CH}_{2}\right), 1.44-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.19(\mathrm{~m}, 25 \mathrm{H})$, $0.88\left(\mathrm{t}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right):{ }^{9} \delta 171.1,169.4,156.0$, 136.4, 136.3, 128.7, 128.3, 128.2, 127.6, 123.6, 122.5, 120.0, 118.9, 111.4, 110.4, 95.0, 67.2, 67.0, 62.0, 55.6, 52.4, 37.3, 32.1, 29.8, 29.8, 29.7, 29.5, 29.3, 29.0, 28.8, 28.7, 22.8, 20.0, 14.3, 14.2. IR v 3300 (m), 2923 (s), 2853 (w), 1724 (m), 1652 (m), 1544 (s), 1461 (w), 1254 $(\mathrm{m}), 1043$ (w). HRMS (ESI) $\mathrm{C}_{40} \mathrm{H}_{56} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$calc. $=690.3935$; $[\mathrm{M}+\mathrm{H}]^{+}$obs. $=$ 690.3945 .

Ethyl 2-((S)-2-(((benzyloxy)carbonyl)amino)-3-(1H-indol-3-yl)propanamido)-3-((5-chloropent-1-yn-1-yl)thio)propanoate (19b)

Following general procedure GPE, The crude reaction mixture was concentrated in vacuo and purified by flash chromatography using EtOAc:pentane $1: 2$ to $1: 1$ as mobile phase affording 19b ($77.0 \mathrm{mg}, 0.135 \mathrm{mmol}, 68 \%$) as a white solid. Rf (EtOAc:pentane $1: 2, \mathrm{KMnO}_{4}$ staining) $=0.2$. Melting point $=141.3-143.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.27(\mathrm{~s}, 1 \mathrm{H})$, $7.65(\mathrm{~d}$, $1 \mathrm{H}, J=7.9 \mathrm{~Hz}$), 7.39-7.29 (m, 6 H), 7.18 (ddd, I H, $J=8.1,6.9,1.2 \mathrm{~Hz}$), 7.13-7.02 (m, 2 H), 6.67 (d, $1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 5.56(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 5.15-5.09(\mathrm{~m}, 2 \mathrm{H}), 4.76(\mathrm{dt}, 1 \mathrm{H}, J=7.5$, $4.9 \mathrm{~Hz}), 4.57(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 4.27-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.53\left(\mathrm{t}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)$, 3.38 (dd, $1 \mathrm{H}, J=14.9,5.2 \mathrm{~Hz}), 3.20(\mathrm{dd}, 1 \mathrm{H}, J=14.5,7.3 \mathrm{~Hz}), 3.07-2-95(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{t}$, $\left.2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CCCH}_{2} \mathrm{CH}_{2}\right), 1.82\left(\mathrm{p}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CCCH}_{2} \mathrm{CH}_{2}\right), 1.26(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 171.2,169.4,156.0,136.4,136.3,128.6$, $128.3,128.2,127.5,123.6,122.4,119.9,118.8,111.4,110.2,92.7,68.6,67.2,62.1,55.6$, $52.3,43.7,37.2,31.2,28.6,17.4,14.1$. IR v 3061 (w), 2955 (w), 1716 (s), 1672 (s), 1513 (s), 1453 (m), 1343 (m), 1223 (s), 1031 (m), 748 (s). HRMS (ESI) $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{ClN}_{3} \mathrm{NaO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$ clac. $=592.1643 ;[\mathrm{M}+\mathrm{Na}]^{+}$obs. $=592.1637$.

Ethyl 3-((3-(benzyloxy)-3-methylbut-1-yn-1-yl)thio)-2-((S)-2-
(((benzyloxy)carbonyl)amino)-3-(1H-indol-3-yl)propanamido)propanoate (19c)

Following general procedure GPE, The crude reaction mixture was concentrated in vacuo and purified by flash chromatography using EtOAc:pentane $1: 3$ as mobile phase affording 19c $(104 \mathrm{mg}, 0.162 \mathrm{mmol}, 81 \%)$ as a light yellow oil. $\mathrm{Rf}\left(\right.$ EtOAc:pentane 2:5, KMnO_{4} staining $)=$ 0.24. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 7.43-7.25(\mathrm{~m}, 11$ H), $7.20(\mathrm{t}, 1 \mathrm{H}, J=7.4,1.2 \mathrm{~Hz}$), $7.12(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~d}, 1 \mathrm{H}, J=7.6$ $\mathrm{Hz}), 5.55(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 5.18-5.11(\mathrm{~m}, 2 \mathrm{H}), 4.75(\mathrm{dt}, 1 \mathrm{H}, J=7.3,5.2 \mathrm{~Hz}), 4.62-4.51$ $(\mathrm{m}, 3 \mathrm{H}), 4.24-4.10(\mathrm{~m}, 2 \mathrm{H}), 3.45-3.30(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{dd}, 1 \mathrm{H}, J=14.6,7.3 \mathrm{~Hz}), 3.15-3.00$ $(\mathrm{m}, 2 \mathrm{H}), 1.53(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH} 3), 1.25\left(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}): \delta 171.3,169.3,156.0,139.0,136.3,136.2,128.6,128.4,128.3,128.2,127.8,127.5$, $123.5,122.4,119.9,118.8,111.4,110.1,96.4,73.2,71.4,67.2,66.5,62.1,55.6,51.9,37.6$, 28.9, 28.8, 28.5, 14.1. IR v 3322 (m), 3061 (w), 2984 (m), 2935 (w), 2167 (w), 1709 (s), 1668 (s), 1498 (s), 1457 (m), 1232 (s), 1149 (s), 1051 (s), 746 (s). HRMS (ESI) $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}$calc. $=642.2632 ;[\mathrm{M}+\mathrm{H}]^{+}$obs. $=642.2610$.

Ethyl 3-((4-azidobut-1-yn-1-yl)thio)-2-((S)-2-(((benzyloxy)carbonyl)amino)-3-(1H-indol-

3-yl)propanamido)propanoate (19d)

Following general procedure GPE, The crude reaction mixture was concentrated in vacuo and purified by flash chromatography using EtOAc:pentane $2: 3$ as mobile phase affording 19d (67 $\mathrm{mg}, 0.12 \mathrm{mmol}, 60 \%$) as a light yellow color solid. Rf (EtOAc:pentane 2:3, KMnO_{4} staining) $=0.5$. Melting point $=112.1-115.3^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.13(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}$, $1 \mathrm{H}, J=7.2 \mathrm{~Hz}$), 7.42-7.28 (m, 6 H), 7.19 (ddd, $1 \mathrm{H}, J=8.2,7.1,1.2 \mathrm{~Hz}$), 7.15-7.05 (m, 2 H), 6.59 (d, 1 H, $J=7.5 \mathrm{~Hz}$), 5.54 (d, $1 \mathrm{H}, J=7.9 \mathrm{~Hz}$), $5.17-5.07$ (m, 2 H), 4.78 (dt, $1 \mathrm{H}, J=7.5$, $4.9 \mathrm{~Hz}), 4.57(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 4.25-4.03(\mathrm{~m}, 2 \mathrm{H}), 3.45-3.35(\mathrm{~m}, 1 \mathrm{H}), 3.26-3.16(\mathrm{~m}, 3 \mathrm{H})$, 3.13-2.96 (m, 2 H), $2.33\left(\mathrm{t}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{CCCH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}\right.$), $1.26(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 171.2,169.3,156.0,136.4,136.3,128.6,128.3$, $128.2,127.6,123.7,122.4,119.9,118.8,111.4,110.2,90.6,70.4,67.2,62.1,55.6,52.5,49.7$, 36.9, 28.7, 20.9, 14.2. IR v 3324 (w), 2929 (w), 2076 (w), 1718 (m), 1672 (m), 1512 (m), $1220(\mathrm{~m}), 778(\mathrm{~s}) . \operatorname{HRMS}(\mathrm{ESI}) \mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{NaO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$calc. $=585.1891$; $[\mathrm{M}+\mathrm{Na}]^{+}$obs. $=$ 585.1897.

Ethyl 2-((S)-2-(((benzyloxy)carbonyl)amino)-3-(1H-indol-3-yl)propanamido)-3-((7-hydroxyhept-1-yn-1-yl)thio)propanoate (19e)

Following general procedure GPE, The crude reaction mixture was concentrated in vacuo and purified by flash chromatography using EtOAc:pentane $2: 1$ as mobile phase affording 19e $(84.0 \mathrm{mg}, 0.145 \mathrm{mmol}, 73 \%)$ as a white solid. $\mathrm{Rf}\left(E t O A c: p e n t a n e ~ 2: 1, \mathrm{KMnO}_{4}\right.$ staining $)=$ 0.59. Melting point $=123.5-124.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.25(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, 1$ $\mathrm{H}, J=7.9 \mathrm{~Hz}), 7.40-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.18(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.15-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.65(\mathrm{~d}, 1 \mathrm{H}$, $J=7.1 \mathrm{~Hz}), 5.59(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 5.17-5.08(\mathrm{~m}, 2 \mathrm{H}), 4.76(\mathrm{dt}, 1 \mathrm{H}, J=7.5,5.2 \mathrm{~Hz}), 4.56$ (d, 1 H, $J=6.7 \mathrm{~Hz}$), 4.23-4.08 (m, 2 H), 3.62 (t, $2 \mathrm{H}, J=6.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}$), 3.44-3.28 (m, 1 H), 3.20 (dd, $1 \mathrm{H}, J=14.6,7.5 \mathrm{~Hz}$), $3.10-2.91(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CCCH}_{2}\right), 1.77$ (bs, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 1.52(\mathrm{p}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 1.47-1.35(\mathrm{~m}, 4 \mathrm{H}), 1.25(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 171.3,169.5,156.1,136.4,136.3,128.7$, $128.3,128.2,127.6,123.7,122.4,119.9,118.9,111.4,110.3,94.9,67.4,67.2,62.7,62.1$, 55.6, 52.5, 37.1, 32.2, 28.7, 28.2, 25.0, 20.0, 14.2. IR v 3340 (w), 2938 (w), 1731 (s), 1671 (s), 1512 (m), 1218 (m), 1032 (w), 752 (s). HRMS (ESI) $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$calc. $=$ 580.2476; $[\mathrm{M}+\mathrm{H}]^{+}$obs. $=580.2472$.

Ethyl 2-((S)-2-(((benzyloxy)carbonyl)amino)-3-(1H-indol-3-yl)propanamido)-3((mesitylethynyl)thio)propanoate (19f)

Following general procedure GPE, The crude reaction mixture was concentrated in vacuo and purified by flash chromatography using EtOAc:pentane 1:2 as mobile phase affording 19 f (98 $\mathrm{mg}, 0.16 \mathrm{mmol}, 80 \%)$ as a white solid. $\mathrm{Rf}\left(\mathrm{EtOAc}\right.$:pentane $1: 2, \mathrm{KMnO}_{4}$ staining $)=0.32$. Melting point $=147.0-149.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~d}, 1 \mathrm{H}, J$ $=7.9 \mathrm{~Hz}), 7.39-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.18(\mathrm{ddd}, 1 \mathrm{H}, J=8.1,7.0,1.2 \mathrm{~Hz}), 7.09(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz})$, 7.01 (s, 1 H), 6.83 ($\mathrm{s}, 2 \mathrm{H}$), $6.76(\mathrm{~d}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 5.46(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 5.14-5.04$ (m, 2 H), 4.81 (dt, $1 \mathrm{H}, J=7.3,5.0 \mathrm{~Hz}), 4.57(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 4.18-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.38-3.27$ (m, 1 H), 3.27-3.06 (m, 3 H), 2.34 ($\mathrm{s}, 6 \mathrm{H}, 2 \times \mathrm{ArCH}_{3}$), 2.26 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}$), 1.17 (t, $3 \mathrm{H}, \mathrm{J}=$ $\left.7.1 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): 171.3, 169.4, 156.0, 140.8, 138.1, 136.3, 136.3, 128.6, 128.3, 128.2, 127.8, 127.5, 123.4, 122.4, 119.9, 119.8, 118.8, 111.4, 110.2, 91.1, 84.4, 67.2, 62.1, 55.7, 52.2, 38.2, 28.4, 21.4, 21.1, 14.0. IR v 3301 (m), 2161 (w), 1729 (m), 1692 (m), 1646 (s), 1536 (s), 1250 (s), 1041 (m), 904 (s), 853 (w). HRMS (ESI) $\mathrm{C}_{35} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$calc. $=612.2527 ;[\mathrm{M}+\mathrm{H}]^{+}$obs. $=612.2538$.

(R)-2-Amino-1-((3,3-dimethylbut-1-yn-1-yl)thio)hexan-3-one (19g)

A 25 mL round bottom flask was charged with a magnetic stirring bar, L-cysteine ethyl ester hydrochloride (16b) ($74.3 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.00 \mathrm{eq}$.), TMG ($110 \mu \mathrm{~L}, 0.880 \mathrm{mmol}, 2.20 \mathrm{eq}$.),

THF (5.0 mL) and water (0.5 mL). After stirring the resulting solution for 5 minutes at room temperature, ${ }^{\text {t }} \mathrm{Bu}$-EBX ($\mathbf{1 f}$) ($131 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.00 \mathrm{eq}$.) was added as a solid in one portion. The resulting reaction mixture was stirred for 10 minutes at room temperature. Next, the mixture was diluted with water (10 mL) and extracted with EtOAc (3 x 15 mL). The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude oil was purified by flash chromatography using EtOAc:pentane $1: 1$ as mobile phase affording 19 g ($86.0 \mathrm{mg}, 0.375 \mathrm{mmol}, 94 \%$) as a colorless oil. Rf (EtOAc:pentane 1:1, KMnO_{4} staining $)=0.48 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 4.20\left(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{COCH}_{2} \mathrm{CH}_{3}\right), 3.79$ (dd, $\left.1 \mathrm{H}, J=8.2,4.2 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{~S}\right), 3.12\left(\mathrm{dd}, 1 \mathrm{H}, J=13.2,4.2 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{~S}\right), 2.75(\mathrm{dd}, 1 \mathrm{H}$, $J=13.2,8.2 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{~S}$), $1.88\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 1.28\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.20(\mathrm{~s}, 9$ $\left.\mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 173.4,102.9,66.0,61.5,54.2,40.6,31.0,28.8$, 14.3. IR 3386 (w), 2972 (m), 2869 (w), 2362 (w), 1738 (s), 1598 (w), 1459 (w), 1368 (w), 1251 (s), 1191 (s), 1107 (w), 1030 (m), 859 (w). HRMS (ESI) $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$calc. $=$ 230.1209; $[\mathrm{M}+\mathrm{H}]^{+}$obs. $=230.1212$.
(S)-1-((S)-3-(Hexadec-1-yn-1-ylthio)-2-methylpropanoyl)pyrrolidine-2-carboxylic

A 25 mL round bottom flask was charged with a magnetic stirring bar, captopril (20) (130 $\mathrm{mg}, 0.600 \mathrm{mmol}, 1.00$ eq.) and triazabicyclodecene (TBD, $167 \mathrm{mg}, 0.600 \mathrm{mmol}, 1.00$ eq.). The mixture was dissolved in THF (7.0 mL) and water (0.5 mL) to achieve a thiol concentration of 80 mM . Upon dissolution, the corresponding R-EBX reagent ($\mathbf{1 e}, 309 \mathrm{mg}$, $0.660 \mathrm{mmol}, 1.10 \mathrm{eq}$.) was added as a solid in one portion. The resulting reaction mixture was stirred in an open flask for 5 minutes at room temperature and then quenched by adding 1.0 M aq. $\mathrm{HCl}(15 \mathrm{~mL})$. The mixture was extracted with $\mathrm{EtOAc}(3 \mathrm{x} 15 \mathrm{~mL})$ and the combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by column chromatography (pentane:EtOAc 20:1 to 7:3) affording 21 (247 mg , $0.563 \mathrm{mmol}, 94 \%$) as a white solid. R_{f} (pentane:EtOAc $1: 1$ and 1% acetic acid) $=0.37$. Melting point $=60.4-63.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 11.0(\mathrm{bs}, 1 \mathrm{H}, \mathrm{COOH}), 4.58$ (dd, $1 \mathrm{H}, J=7.9,3.5 \mathrm{~Hz}, \mathrm{NCH}$), 3.78-3.69 (m, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 3.68-3.59 (m, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 3.14-
3.03 (m, 1 H), 2.91 (dd, $1 \mathrm{H}, J=13.0,8.8 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{~S}$), 2.67 (dd, $1 \mathrm{H}, J=13.0,5.4 \mathrm{~Hz}$, $\mathrm{CHCH}_{2} \mathrm{~S}$), $2.26\left(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CCCH}_{2} \mathrm{CH}_{2}\right.$), 2.23-1.96(m, 4 H), 1.47 (p, 2 H, $J=7.0 \mathrm{~Hz}$, $\left.\mathrm{CCCH}_{2} \mathrm{CH}_{2}\right), 1.40-1.14(\mathrm{~m}, 25 \mathrm{H}), 0.85\left(\mathrm{t}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}^{\mathrm{N}} \mathrm{NR}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}):{ }^{9} \delta 175.4,174.5,95.0,68.0,59.4,47.6,38.5,38.2,32.0,29.8,29.7,29.4,29.2,29.0$, 28.9, 28.3, 24.9, 22.8, 20.2, 16.9, 14.2. IR v 2927 (w), 2855 (w), 1722 (w), 1633 (w), 1465 (w), 1442 (w), 1195 (w), 908 (s), 732 (s). HRMS (ESI) $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{NO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$calc. $=$ 438.3036; $[\mathrm{M}+\mathrm{H}]^{+}$obs. $=438.3032$.

Alkynylation of Thioacids

S-((Triisopropylsilyl)ethynyl) benzothioate (24a)

Benzothioic acid (22a) ($100 \mathrm{mg}, 0.707 \mathrm{mmol}, 1.00$ eq.) was dissolved in dry THF (9 mL) and TIPS-EBX (1c) ($300 \mathrm{mg}, 0.707 \mathrm{mmol}, 1.00 \mathrm{eq}$.) was added to the solution. The resulting mixture was stirred for 20 minutes at room temperature. Next, the mixture was concentrated under reduced pressure. The crude oil was purified by flash chromatography (pentane) to afford 24a ($213 \mathrm{mg}, 0.668 \mathrm{mmol}, 94 \%$) as a yellow oil. Rf $\left(\right.$ pentane $/$ EtOAc $\left.10: 1, \mathrm{KMnO}_{4}\right)=$ 0.76. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): ~ \delta ~ 7.96-7.79(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 7.67-7.55(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.52-$ 7.38 (m, $2 \mathrm{H}, \mathrm{ArH}$), 1.15 (m, $21 \mathrm{H}, \mathrm{TIPS}$). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta 187.5,135.4$, 134.3, 129.0, 127.4, 109.4, 85.8, 18.6, 11.3. IR v 2943 (w), 2866 (w), 2105 (w), 1704 (m), 1462 (w), 1203 (m), 1178 (w), 884 (s), 859 (s), 735 (m), 675 (s). HRMS (ESI) $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{OSSi}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}$calc. $=319.1546 ;[\mathrm{M}+\mathrm{H}]^{+}$obs. $=319.1532$.

S-((Triisopropylsilyl)ethynyl) 3-methoxybenzothioate (24b)

3-Methoxybenzothioic acid (22b) ($100 \mathrm{mg}, 0.594 \mathrm{mmol}, 1.00 \mathrm{eq}$.) was dissolved in dry THF (8 mL) and TIPS-EBX (1a) ($255 \mathrm{mg}, 0.594 \mathrm{mmol}, 1.00 \mathrm{eq}$.) was added to the solution. The resulting mixture was stirred for 4 h at room temperature. Next, the mixture was concentrated under reduced pressure. The crude oil was purified by flash chromatography (pentane/EtOAc 99:1 to $5: 1$) to afford $\mathbf{2 4 b}$ ($167 \mathrm{mg}, 0.479 \mathrm{mmol}, 80 \%$) as a colorless oil. Rf (pentane/EtOAc $\left.5: 1, \mathrm{KMnO}_{4}\right)=0.81 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.49-7.41(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 7.37(\mathrm{t}, J=1.3$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar} H$), $7.37-7.33(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 7.13$ (ddd, $J=8.3,2.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 3.82(\mathrm{~s}, 3$ $\left.\mathrm{H}, \mathrm{OCH}_{3}\right), 1.16(\mathrm{~m}, 21 \mathrm{H}, \mathrm{TIPS}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 187.2,156.0,136.6,130.0$, 120.8, 119.9, 111.5, 109.3, 86.0, 55.4, 18.6, 11.3. IR v 2945(w), 2867 (w), 2255 (w), 2106 (w), 1702 (w), 1464 (w), 1264 (w), 906 (s), 728 (s). HRMS (ESI) $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{SSi}^{+}[\mathrm{M}+\mathrm{H}]^{+}$calc. $=349.1652 ;[\mathrm{M}+\mathrm{H}]^{+}$obs. $=349.1655$.

S-((Triisopropylsilyl)ethynyl) 4-methoxybenzothioate (24c)

4-Methoxybenzothioic acid (22c) ($93.0 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.00$ eq.) was dissolved in dry THF $(5.0 \mathrm{~mL})$ and TIPS-EBX (1a) ($171 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.00 \mathrm{eq}$.) was added to the solution. The resulting mixture was stirred for 1 h at room temperature. Next, the mixture was concentrated under reduced pressure. The crude oil was purified by flash chromatography (pentane/EtOAc 99:1 to $5: 1$) to afford $\mathbf{2 4 c}$ ($123 \mathrm{mg}, 0.353 \mathrm{mmol}, 88 \%$) as a colorless oil. Rf (pentane/EtOAc 19:1, KMnO_{4}) $=0.8 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.87-7.79(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.97-6.88(\mathrm{~m}, 2$ $\mathrm{H}, \mathrm{ArH}), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.21-1.09(\mathrm{~m}, 21 \mathrm{H}, \mathrm{TIPS}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta$ 185.6, 164.6, 129.8, 128.1, 114.3, 108.8, 86.4, 55.7, 18.7, 11.4. IR v 2944 (w), 2866 (w), 2105 (w), 1703 (m), 1600 (m), 1508 (w), 1463 (w), 1265 (m), 1214 (m), 1168 (s), 1030 (w), 886 (s), 859 (s). HRMS (ESI) $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NaO}_{2} \mathrm{SSi}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$calc. $=371.1471$; $[\mathrm{M}+\mathrm{Na}]^{+}$obs. $=$ 371.1479 .

S-((Triisopropylsilyl)ethynyl) 4-nitrobenzothioate (24d)

4-Nitrobenzothioic acid (22d) ($81.0 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.00$ eq.) was dissolved in dry THF (5.0 mL) and TIPS-EBX (1a) ($171 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) was added to the solution. The$ resulting mixture was stirred for 1 h at room temperature. Next, the mixture was concentrated under reduced pressure. The crude oil was purified by flash chromatography (pentane/EtOAc 99:1 to $5: 1$) to afford $\mathbf{2 4 d}$ ($135 \mathrm{mg}, 0.371 \mathrm{mmol}, 93 \%$) as colorless oil. Rf (pentane/EtOAc 19:1, KMnO_{4}) $=0.81 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.36-8.30(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 8.07-8.00(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{Ar} H), 1.20-1.05(\mathrm{~m}, 21 \mathrm{H}, \mathrm{TIPS}) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta 186.8,151.0,139.9$, 128.5, 124.4, 111.4, 84.0, 18.7, 11.3. IR v 2945 (w), 2866 (w), 2108 (w), 1705 (m), 1531 (m), 1351 (m), 1194 (m), 900 (m), 860 (s), 844 (s). HRMS (ESI) $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{AgNO}_{3} \mathrm{SSi}^{+}[\mathrm{M}+\mathrm{Ag}]^{+}$calc. $=470.0370 ;[\mathrm{M}+\mathrm{Ag}]^{+}$obs. $=470.0385$.

S-(2-oxooctyl) benzothioate (26)

Benzothioic acid (22a) ($100 \mathrm{mg}, 0.740 \mathrm{mmol}, 1.00 \mathrm{eq}$.) was dissolved in dry THF (9.5 mL) and Hex-EBX (1d) ($260 \mathrm{mg}, 0.740 \mathrm{mmol}, 1.00 \mathrm{eq}$.) was added. The resulting mixture was stirred for 20 minutes at room temperature. Next, the mixture was concentrated under reduced pressure and purified by column chromatography (pentane/EtOAc 99:1) to afford the 26 (90.0 $\mathrm{mg}, 0.330 \mathrm{mmol}, 45 \%)$ as a yellow light oil. $\mathrm{R}_{\mathrm{f}}=($ pentane $/ \mathrm{EtOAc} 9: 1)=0.4 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.06-7.88(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 7.64-7.49(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 7.50-7.37(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{Ar} H), 3.91\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{SCH} \mathrm{CO}_{2}\right), 2.60\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{COCH}_{2}\right), 1.76-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.39-$ $1.15(\mathrm{~m}, 6 \mathrm{H}), 0.86\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 204.2,190.5,136.2$, 133.8, 128.7, 127.4, 41.8, 38.9, 31.5, 28.8, 23.8, 22.5, 14.0. IR v 2929 (w), 2857 (w), 1719 (w), 1664 (s), 1450 (w), 1208 (s), 1177 (w), 914 (s), 774 (m), 688 (s), 649 (m). HRMS (ESI) $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$calc. $=265.1257 ;[\mathrm{M}+\mathrm{H}]^{+}$obs. $=265.1256$.

Bis((triisopropylsilyl)ethynyl)sulfane (25a)

Following general procedure GPF, the crude reaction mixture was concentrated in vacuo and purified by flash chromatography using pentane affording $\mathbf{2 5 a}(60.0 \mathrm{mg}, 0.152 \mathrm{mmol}, 76 \%)$ as a colorless oil. Rf (pentane, KMnO_{4} staining) $=0.85 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 1.07(\mathrm{~s}$, $42 \mathrm{H}, \mathrm{TIPS}) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta 100.6,87.9,18.7,11.4$. IR $\vee 2944(\mathrm{~m}), 2862(\mathrm{~m})$, 2099 (w), 1464 (w), 989 (w), 883 (m), 844 (s). HRMS (ESI) $\mathrm{C}_{22} \mathrm{H}_{43} \mathrm{SSi}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$calc. $=$ $395.2619 ;[\mathrm{M}+\mathrm{H}]^{+}$obs. $=395.2601$.

Di(hexadec-1-yn-1-yl)sulfane (25b)

Following general procedure GPF, the crude reaction mixture was concentrated in vacuo and purified by flash chromatography using pentane affording $\mathbf{2 5 b}(62.0 \mathrm{mg}, 0.131 \mathrm{mmol}, 66 \%)$ as a white solid. Rf (pentane, KMnO_{4} staining) $=0.8$. Melting point $=35.2-37.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 2.30\left(\mathrm{t}, 4 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CCCH}_{2} \mathrm{CH}_{2}\right), 1.52(\mathrm{p}, 4 \mathrm{H}, J=7.3 \mathrm{~Hz}$, $\mathrm{CCCH}_{2} \mathrm{CH}_{2}$), 1.43-1.31(m, 4 H$), 1.29-1.22(\mathrm{~m}, 40 \mathrm{H}), 0.88\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) .^{9} \delta 96.4,62.6,32.1,29.9,29.8,29.8,29.8,29.7,29.5,29.3,29.0$, 28.5, 22.9, 20.2, 14.3. IR $v 2931$ (s), 2853 (s), 2200 (w), 1466 (m), 722 (w). HRMS (ESI) $\mathrm{C}_{32} \mathrm{H}_{58} \mathrm{~S}[\mathrm{M}+]$ calc. $=474.4259 ;[\mathrm{M}+]$ obs. $=474.4250$.

Bis(phenylethynyl)sulfane (25c)

Following general procedure GPF, the crude reaction mixture was concentrated in vacuo and purified by flash chromatography using pentane affording $\mathbf{2 5 c}(14 \mathrm{mg}, 0.060 \mathrm{mmol}, 30 \%)$ as a colorless oil. Rf (pentane, KMnO_{4} staining $)=0.77 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.52-7.43$ (m, $4 \mathrm{H}, \mathrm{Ar} H), 7.38-7.29(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar} H) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta 132.1,129.2,128.5$, 122.3, 94.8, 72.1. IR v 3060 (w), 2925 (s), 2854 (m), 2176 (w), 1597 (w), 1489 (s), 1444 (m).The characterization data is in accordance with reported literature values. ${ }^{21}$

Bis(3-(benzyloxy)-3-methylbut-1-yn-1-yl)sulfane (25d)

[^17]

Following general procedure GPF, the crude reaction mixture was concentrated in vacuo and purified by flash chromatography using EtOAc:pentane 1:50 as mobile phase affording 25d $(56.0 \mathrm{mg}, 0.148 \mathrm{mmol}, 74 \%)$ as a colorless oil. Rf $\left(\mathrm{EtOAc}:\right.$ pentane $1: 60 \mathrm{KMnO}_{4}$ staining $)=$ 0.5. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 7.32-7.23$ (m, $8 \mathrm{H}, \mathrm{ArH}$), 7.22-7.16 (m, $2 \mathrm{H}, \mathrm{ArH}$), 4.54 (s, $4 \mathrm{H}, 2 \times \mathrm{ArCH}_{2}$), 1.59 (s, $12 \mathrm{H}, 4 \times \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta 138.8,128.5$, 127.9, 127.6, 97.9, 71.5, 68.0, 66.9, 28.6. IR v 2986 (m), 2170 (w), 1735 (w), 1470 (w), 1462 (w), 1382 (m), 1234 (m), 1156 (s), 1055 (s), 900 (m), 738 (s). HRMS (ESI) $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~S}$ [M+] calc. $=378.1654 ;[\mathrm{M}+]$ obs. $=378.1653$.

7,7'-thiobis(hept-6-yn-1-ol) (25e)

Following general procedure GPF, the crude reaction mixture was concentrated in vacuo and purified by flash chromatography using EtOAc:pentane $1: 1$ as mobile phase affording $\mathbf{2 5 e}$ ($41.0 \mathrm{mg}, 0.162 \mathrm{mmol}, 81 \%$) as a light yellow solid. Rf (EtOAc:pentane 1:1, KMnO_{4} staining $)=0.16$. Melting point $=37.2-39.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 3.64(\mathrm{t}, 4 \mathrm{H}, J$ $=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}$), $2.33\left(\mathrm{t}, 4 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CCCH}_{2} \mathrm{CH}_{2}\right.$), $1.64\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 1.61-1.51$ $(\mathrm{m}, 8 \mathrm{H}), 1.51-1.42(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 96.1,62.9,62.9,32.3,28.1$, 25.1, 20.2. IR v 3350 (m), 2937 (s), 2862 (s), 2195 (w), 1731 (w), 1459 (m), 1329 (m), 1058 (s), $757(\mathrm{~m})$. HRMS (ESI) $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NaO}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$calc. $=277.1233$; $[\mathrm{M}+\mathrm{Na}]^{+}$obs. $=$ 277.1237.

7-(Phenylselanyl)hept-6-yn-1-ol(28)

A 25 mL round bottom flask was charged with a magnetic stirring bar, benzeneselenol (27) ($42.0 \mu \mathrm{~L}, 0.400 \mathrm{mmol}, 1.00 \mathrm{eq}$.), TMG ($60.0 \mu \mathrm{~L}, 0.480 \mathrm{mmol}, 1.20$ eq.) and THF (5.0 mL). After stirring the resulting solution for 5 minutes at room temperature, $\mathrm{C}_{5}-\mathrm{OH}-\mathrm{EBX}(\mathbf{1 k})(158$ $\mathrm{mg}, 0.440 \mathrm{mmol}, 1.10 \mathrm{eq}$.) was added as a solid in one portion. The resulting reaction mixture was stirred for 10 minutes at room temperature. Next, the mixture was diluted with water (10 mL) and extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude oil was purified by flash chromatography using EtOAc:pentane $1: 2$ as mobile phase affording $28(45.0 \mathrm{mg}, 0.178$ $\mathrm{mmol}, 45 \%)$ as a colorless oil. $\mathrm{Rf}\left(\mathrm{EtOAc}\right.$:pentane 1:2, KMnO_{4} staining $)=0.58 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.48-7.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.26-7.20(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.20-7.13(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{Ar} H), 3.58\left(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 2.40\left(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CCCH}_{2} \mathrm{CH}_{2}\right), 1.60-1.48$ $(\mathrm{m}, 4 \mathrm{H}), 1.48-1.39(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 129.5$, 129.4, 128.7, 126.9, 104.4, 62.9, 57.9, 32.3, 28.6, 25.1, 20.7. IR v 3356 (m), 3066 (w), 2944 (m), 2861 (m), 2180 (w), 1583 (w), 1477 (m), 1438 (m), 1328 (w), 1068 (m), 1024 (m), 736 (s). HRMS (ESI) $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{OSe}^{+}[\mathrm{M}+\mathrm{H}]^{+}$calc. $=269.0439 ;[\mathrm{M}+\mathrm{H}]^{+}$obs. $=269.0445$.

6. Transformation of Thioalkynes

3-Hexyl-benzothiophene (12)

Following a slightly modified procedure, ${ }^{22}$ the bromide $9 \mathbf{~ (~} 230 \mathrm{mg}, 0.774 \mathrm{mmol}, 1.00 \mathrm{eq}$.) was added to a flame-dried 25 mL round bottom flask and dissolved in dry THF (1.55 mL). To the clear colorless solution was added $2.0 \mathrm{M}^{i} \mathrm{PrMgCl} \cdot \mathrm{LiCl}$ in $\mathrm{THF}(426 \mu \mathrm{~L})$ at room temperature under nitrogen and the light yellow reaction mixture was stirred at room temperature for 4 h . Next, a solution of the copper catalyst ($1.0 \mathrm{M}, 232 \mu \mathrm{~L}, 0.232 \mathrm{mmol}$, 0.300 eq. prepared from 66.6 mg of $\mathrm{CuCN}, 63.0 \mathrm{mg}$ of LiCl in 0.74 mL of dry THF) was added dropwise via a syringe. The light yellow reaction mixture was further stirred for 24 h at room temperature under nitrogen. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ using an ice/water bath and quenched with half sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude was purified by flash column chromatography using pentane affording 12 (140 mg , $0.642 \mathrm{mmol}, 83 \%)$ as a colorless oil. $\mathrm{Rf}($ pentane $)=0.75 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.91-$ 7.86 (m, $1 \mathrm{H}, \mathrm{Ar} H), 7.80-7.75$ (m, $1 \mathrm{H}, \mathrm{ArH}$), 7.44-7.33 (m, $2 \mathrm{H}, \mathrm{ArH}$), 7.09 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}$), 2.89-2.82 (m, $2 \mathrm{H}, \mathrm{ArCH}_{2}$), 1.82-1.72 (m, 2 H), 1.50-1.29 (m, 6 H), 0.97-0.89 (m, 3 H , $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 140.6,139.3,137.4,124.2,123.8,123.0,121.9$, 120.9, 31.9, 29.4, 29.3, 28.7, 22.8, 14.3. IR v 2926 (s), 2856 (m), 1460 (m), 1429 (m), 843 (w). HRMS (ESI) $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$calc. $=219.1202 ;[\mathrm{M}+\mathrm{H}]^{+}$obs. $=219.1204$.

S-phenyl octanethioate (13)

Following a reported procedure, ${ }^{23}$ octynyl(phenyl)sulfane ($87.0 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.00 \mathrm{eq}$.) and p-TsOH ($84.0 \mathrm{mg}, 0.440 \mathrm{mmol}, 1.00 \mathrm{eq}$.) were dissolved in dry DCM (2 mL) to which

[^18]0.4 g of silica gel was added. The resulting suspension was heated at $40^{\circ} \mathrm{C}$ and stirred for 10 h (after 1 h the color of the mixture became orange). Then, DCM (5 mL) was added and the silica gel was removed by filtration and the mixture was concentrated under reduced pressure. The crude oil was purified by column chromatography (pentane/EtOAc 15:1) to afford $\mathbf{1 3}$ ($97.0 \mathrm{mg}, 0.411 \mathrm{mmol}, 93 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 7.63-7.42(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{Ar} H), 2.66\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 1.80-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.15(\mathrm{~m}, 8 \mathrm{H}), 0.91(\mathrm{t}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right.$,): $\delta 197.5,134.5,129.3,129.1,128.0,43.7,31.6,29.5$, $28.5,25.6,22.6,14.1$. The characterization data is in accordance with reported literature values. ${ }^{24}$

[^19]
[^0]: Received: August 13, 2014
 Published: November 1, 2014

[^1]: ${ }^{1}$ ADF computes energies relative to basic atom fragments, rather than to separated particles (e.g., nuclei and electrons), as is done in Gaussian. This gives rise to the magnitude difference in the reported M06-2X (computed in Gaussian) and PBE0-dDsC (computed in ADF) electronic energies. Note that absolute electronic energies computed using different density functionals cannot be directly compared with one another.

[^2]: ${ }^{2}$ Kraszkiewicz, L.; Skulski, L. Arkivoc 2003, 6, 120.
 ${ }^{3}$ Helal, C J.; Magriotis, P. A.; Corey, E. J. J. Am. Chem. Soc. 1996, 118, 10938.

[^3]: ${ }^{4}$ Brand, J. P.; Waser, J. Synthesis 2012, 44, 1155.

[^4]: ${ }^{5}$ Bouma, M. J.; Olofsson, B. Chem. Eur. J. 2012, 18, 14242.
 ${ }^{6}$ One aromatic carbon signal was not resolved.

[^5]: ${ }^{7}$ Brown, H. C.; Bhat, N. G.; Srebnik, M. Tetrahedron Lett. 1988, 29, 2631.
 ${ }^{8}$ Morita, R.; Shirakawa, E.; Tsuchimoto, T.; Kawakami, Y. Org. Biomol. Chem. 2005, 3, 1263.

[^6]: ${ }^{9}$ Some signals were not resolved at 100 MHz .

[^7]: ${ }^{10}$ Urabe, H.; Sato, F. J. Am. Chem. Soc. 1999, 121, 1245.

[^8]: ${ }^{11}$ Rodier, F.; Rajzmann, M.; Parrain, J. L.; Chouraqui, G.; Commeiras, L. Chem. Eur. J. 2013, 19, 2467.

[^9]: ${ }^{12}$ Berkessel, A.; Kramer, J.; Mummy, F.; Neudorfl, J. M.; Haag, R. Angew. Chem. Int. Ed. 2013, 52, 739.
 ${ }^{13}$ Diaz, L.; Bujons, J.; Casas, J.; Llebaria, A.; Delgado, A. J. Med. Chem. 2010, 53, 5248.

[^10]: ${ }^{14}$ Peixoto, P. A.; Richard, J. A.; Severin, R.; Chen, D. Y. Org. Lett. 2011, 13, 5724.

[^11]: ${ }^{15}$ Rodier, F.; Rajzmann, M.; Parrain, J. L.; Chouraqui, G.; Commeiras, L. Chem. Eur. J. 2013, 19, 2467.

[^12]: ${ }^{16}$ Brand, J. P.; Chevalley, C.; Scopelliti, R.; Waser, J. Chem. Eur. J. 2012, 18, 5655.

[^13]: ${ }^{17}$ Frei, R.; Waser, J. J. Am. Chem. Soc. 2013, 135, 9620.

[^14]: ${ }^{18}$ Toriyama, M.; Kamijo, H.; Motohashi, S.; Takido, T.; Itabashi, K. Phosphorus, Sulfur, Silicon Relat. Elem. 2003, 178, 1661.

[^15]: ${ }^{19}$ Levanova, E. P.; Grabel'nykh, V. A.; Vakhrina, V. S.; Russavskaya, N. V.; Albanov, A. I.; Rozentsveig, I. B.; Korchevin, N. A. Russ. J. Gen. Chem. 2014, 84, 439.

[^16]: ${ }^{20}$ Hydrogens were assigned by analogy with similar compounds reported in the literature : Floyd, N.; Vijayakrishnan, B.; Koeppe, J. R.; Davis, B. G. Angew. Chem., Int. Ed.2009, 48, 7798.

[^17]: ${ }^{21}$ Voets, M.; Smet, M.; Dehaen, W. J. Chem. Soc., Perkins Trans. 1 1999, 1473.

[^18]: ${ }^{22}$ Kunz, T.; Knochel, P. Angew. Chem., Int. Ed. 2012, 51, 1958.
 ${ }^{23}$ Braga, A. L.; Martins, T. L. C.; Silveira, C. C.; Rodrigues, O. E. D. Tetrahedron 2001, 57, 3297.

[^19]: ${ }^{24}$ Gersch, M.; Gut, F.; Korotkov, V. S.; Lehmann, J.; Böttcher, T.; Rusch, M.; Hedberg, C.; Waldmann, H.; Klebe, G.; Sieber, S. A. Angew. Chem., Int. Ed. 2013, 52, 3009.

