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Hydrogen adatoms and other species covalently bound to graphene act as resonant scattering centers
affecting the electronic transport properties and inducing Anderson localization. We show that attractive
interactions between adatoms on graphene and their diffusion mobility strongly modify the spatial
distribution, thus fully eliminating isolated adatoms and increasing the population of larger size adatom
aggregates. Such spatial correlation is found to strongly influence the electronic transport properties of
disordered graphene. Our scaling analysis shows that such aggregation of adatoms increases conductance
by up to several orders of magnitude and results in significant extension of the Anderson localization length
in the strong localization regime. We introduce a simple definition of the effective adatom concentration x⋆,
which describes the transport properties of both random and correlated distributions of hydrogen adatoms
on graphene across a broad range of concentrations.
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Graphene has unveiled a plethora of unconventional
transport phenomena [1–3], such as the universal minimal
conductivity [4], Klein tunneling [5], and the anomalous
quantum Hall effect [6,7]. On the applied side, graphene is
interesting because of its exceptionally high charge-carrier
mobility, which is typically limited by the presence of
various types of disorder. Resonant scattering impurities,
such as chemical functionalization defects [8] and dislo-
cations [9], show the most pronounced effects on charge-
carrier transport in graphene. Hydrogen adatoms represent
a prototypical resonant scattering impurity, which can
be experimentally introduced in a controlled fashion [10]
and allows for a simple theoretical description [11]. A
hydrogen adatom covalently binds to a single carbon atom
of graphene resulting in rehybridization into the sp3 state,
thus effectively removing that site from the honeycomb
network of pz orbitals. This gives rise to a zero-energy state
localized around the defect, and results in the resonant
scattering of charge carriers.
At a fundamental level, the classical scaling theory of

Anderson transition predicts complete localization of
the electronic spectrum in two dimensions, regardless
of the amount of disorder [12]. For hydrogenated
graphene, a model based on massless Dirac fermions
with δ-function point potentials confirms this prediction
of the unitary class, though in 2D systems localization
lengths can be strongly energy-dependent and,
eventually, very large [13]. However, no unanimous
consensus has been reached since experiments on
hydrogenated graphene point towards metal-insulator
transition, theoretically justified by the presence of
electron-hole puddles (2D percolation class) [14–17].

Early works treating finite concentrations of resonant
impurities in graphene assumed that the total scattering
cross section deviates little from the incoherent addition of
the individual cross sections, for example in the Boltzmann
equation framework [18]. This picture is valid for low
defect concentrations, low charge-carrier densities, and
random adatom distributions. A better description requires
including the effect of coherent superposition of wave
functions scattered by distinct adatoms [8,19–21]. This is
particularly important when impurities are in proximity
to each other, with the limiting case being the formation
of compact clusters in which hydrogen adatoms populate
neighboring carbon atoms [22–24]. Indeed, the overall short-
range attractive interaction between individual hydrogen
adatoms on graphene [25,26], combined with their relatively
high diffusion mobility at room temperature [27–29], sug-
gests a high degree of spatial correlation between adatoms.
In this Letter, we address the effects of spatial correlation

of resonant impurities on electronic transport in graphene.
The equilibrium configurations of hydrogen adatoms on
graphene, obtained by means of Monte Carlo simulations,
show a strong tendency towards aggregation into small
clusters essentially eliminating isolated adatoms. Electronic
transport properties investigated using the Landauer-
Büttiker approach complemented with kernel polynomial
method calculations show that aggregation dramatically
increases both the conductivity and the localization length.
We propose a unified framework to account for the effects
of spatial correlation of resonant scattering centers on
electronic transport in graphene.
Upon adsorption, a hydrogen adatom covalently binds

to a single carbon atom of graphene changing its
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hybridization state to sp3 and its coordination sphere to
tetrahedral as shown in Fig. 1(a) [30]. The covalent binding
of a second adatom to the nearest neighbor carbon atom
partially releases the elastic energy due to the change of
coordination sphere, thus resulting in effective attractive
interaction between adatoms [25,26]. This suggests that the
interaction between adatoms can be accurately described
using a short-ranged pair potential. In our study, we expand
an Ising-like interaction energy E up to the second nearest-
neighbor term

E ¼ γ1
X

hi;ji
sisj þ γ2

X

hhi;jii
sisj; ð1Þ

where γ1 and γ2 are the corresponding first and second
nearest-neighbor parameters. Here, si ¼ 1 if a carbon atom i
is populated by an adatom, otherwise si ¼ 0. Parameters γ1
and γ2 are obtained by fitting the interaction energies of
adatoms calculated from first principles [31] for a set of
small adatom aggregates shown in Fig. 1(b). Under the
assumption of single-side functionalized graphene, the
obtained parameters γ1 ¼ −1.182 eV and γ2 ¼ 0.484 eV
[41] signify a considerable first-nearest-neighbor attraction
alongside a weaker second-nearest-neighbor repulsion. The
excellent agreement between the interaction energy ~E, esti-
mated using the fitted γ1 and γ2, and the first-principles values
EDFT, confirms the applicability of the short-range pair
potential form (1) for describing small clusters [Fig. 1(c)].
In order to assess the effect of interaction between

adatoms on their spatial distribution and transport proper-
ties we perform Monte Carlo simulations using the intro-
duced pair potential (1). The simulations employ a
Monte Carlo move based on the displacement of a
randomly selected adatom to a random unoccupied carbon
atom in combination with the Metropolis acceptance
criterion [42]. We considered models containing up to

NC ¼ 106 carbon atoms (165 × 165 nm2) and adatom
concentrations x ¼ NH=NC ranging from 0.1% to 10%.
All simulations have been performed at T ¼ 300 K. A
representative configuration of randomly distributed ada-
toms [Fig. 2(a)] is compared with a configuration obtained
from a Monte Carlo simulation [Fig. 2(b)] at x ¼ 5%.
Further details are revealed by comparing the cluster size
distributions PðnÞ [Fig. 2(c)], with adatoms populating
neighboring carbon atoms being assigned to the same
cluster. In the case of a random distribution, most adatoms
are isolated (n ¼ 1), while the occurrence of clusters
(n > 1) is merely a probabilistic effect. In contrast, no
isolated adatoms are found in the presence of interactions,
with the most abundant species being adatom dimers
(n ¼ 2). The size distribution for the correlated case shows
a longer tail with a significant probability of observing up
to n ¼ 6 clusters. The dependence of PðnÞ on adatom
concentration x is relatively weak [Fig. 2(d)].
We now focus on electronic and transport properties

calculated using the nearest-neighbor tight-binding
Hamiltonian for pz orbitals

H ¼ −t
X

hi;ji
½c†i cj þ H:c:� ð2Þ

with the hopping integral constant t ¼ 2.7 eV [2]. An
adsorbed hydrogen atom is modeled by excluding the pz
orbital of the carbon atom to which it is bound as a

FIG. 1. (a) Atomic structure of a hydrogen adatom covalently
bound to graphene. (b) Structures of small clusters of hydrogen
adatoms used for fitting the pair potential of Eq. (1). (c) Predicted
energy ~E of aggregation of hydrogen adatoms as a function of
aggregation energy EDFT calculated from first principles for the
set of adatom clusters shown in (b).

FIG. 2 (color online). Representative configurations of (a)
randomly distributed and (b) correlated hydrogen adatoms on
graphene at x ¼ 5% concentration. (c) Comparison of random
and correlated adatoms cluster size distributions PðxÞ at x ¼ 5%
concentration. (d) Cluster size distributions PðxÞ of correlated
hydrogen adatoms at different concentrations. All correlated
configurations are obtained by means of Monte Carlo simulations
carried out at T ¼ 300 K.
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consequence of sp3 hybridization, making it similar to a
vacancy defect [27,30,43]. We stress that adatoms do not
introduce coupling between the sites owing to the same
sublattice of the bipartite lattice of graphene, thus main-
taining electron-hole symmetry of the electronic spectrum.
Figures 3(a) and 3(b) compare the density of states (DOS)
of graphene with random and correlated distributions of
adatoms at different concentrations. In the case of a random
distribution, one observes a strong peak at E ¼ 0 due to
the resonant modes originating from isolated adatoms
[19,43]. The corresponding wave function is localized
on the sublattice opposite to that of the carbon atom
binding the adatom and decays from the defect position
[44]. At high adatom concentrations, x > 1%, the E ¼ 0
peak is accompanied by flat density regions at higher
energies with a noticeable overall renormalization of the
DOS, in agreement with previous calculations [43]. In
comparison, the DOS calculated for the correlated impurity
configurations shows a less intense peak at E ¼ 0 and an
increased weight for −0.9t < E < 0.9t that is more evident
at higher concentrations. This change is a direct conse-
quence of different cluster size distributions. The dominant
cluster type in the case of the correlated adatom distribution
is the dimer (n ¼ 2), which is known to be nonresonant
[11,24,45], meaning that no localized states emerge at any
energy. The local density of states (LDOS) calculated on
neighboring atoms of an isolated single adatom shows a
singularity at E ¼ 0 [Fig. 3(c)]. In contrast, an enhance-
ment of the LDOS in a broad energy region −t < E < t is

observed on certain carbon atoms in the vicinity of the
adatom dimer [Fig. 3(d)]. The numerical LDOS for selected
impurities compared to the results of analytical Green’s
function calculations shows no discrepancies [45].
Based on these observations we conclude that the

residual peak at E ¼ 0 in the case of the correlated
distribution is due to the n > 2 adatom aggregates, which
locally break the bipartite symmetry of graphene (that is,
populate different number of sites in the two sublattices).
This gives rise to resonant modes at E ¼ 0 akin to isolated
adatoms. All odd-n aggregates and certain configurations
of even-n clusters lead to resonant modes at E ¼ 0. Judging
by the cluster size distributions [Fig. 2(d)], the largest
contribution comes from adatom trimers. This suggests
that adatom aggregation has strong effects on the electronic
transport properties, which are governed by resonant
scattering resulting from the local bipartite symmetry
breaking by adatoms and their aggregates. We investigate
the electronic transport properties by performing a scaling
analysis of conductivity g using the Landauer-Büttiker
approach [46]. In this approach, the conductance GðEÞ
is given as GðEÞ ¼ G0TðEÞ, where G0 is the conductance
quantum and TðEÞ is the transmission probability across
the scattering region at energy E. We assume a two-terminal
device configuration with a scattering region of width
W ¼ 40 nm perpendicular to the current direction, and of
variable length 1 nm < L < 60 nm. The scattering region is
attached to pristine graphene contacts and populated by
adatoms according to concentrations and statistical distri-
butions discussed above. Further details of our methodology
are given in the Supplemental Material [31].
The characteristic functional laws for the conductivityg ¼

G × L=W in the ballistic, diffusive, and localized transport
regimes are g∝L, g¼ const and g∝ expð−L=ξlocÞ, respec-
tively, where ξloc is the localization length. In the localized
regime lnðgÞ follows a broad positively skewed distribution,
which means that g can show strong fluctuations depending
on the exact configuration of defects, especially in the
presence of strong localization [47]. An estimate of the
mean value for such a distribution is given by the typical
conductivity gtyp ¼ exphlnðgÞi [47,48]. In our scaling analy-
sis, gtyp has been obtained averaging over 9600 disorder
realizations. Figures 4(a) and 4(b) show gtyp as a function of
scattering region lengthLat different energies for the random
and correlated impurity distributions, both at x ¼ 5% con-
centration. We observe a short transition from ballistic to
diffusive and subsequently to localized regime within the
first 10 nm. The crossover lengths are expected to be of the
order of the elastic mean free path ξel and localization length
ξloc, respectively. The general trend is that the localized
regime isaccentuatedat lowenergy,whereasathigherenergy
the onset of exponential decay occurs at larger L and the
absolute slope of the conductance curves is smaller. The
scaling of g also depends strongly on the impurity concen-
tration. For low adatom concentrations (x≲ 0.5%) the

FIG. 3 (color online). Density of states of graphene in the
presence of (a) randomly distributed and (b) correlated hydrogen
adatoms at different concentrations. Local density of states on
carbon atoms in the vicinity of (c) an isolated hydrogen adatom
and (d) a dimer of hydrogen adatoms. In panels (c) and (d) LDOS
referred to as “analyt.” have been obtained using the analytical
Green’s function calculations [45].
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onsetof the localized regime isonlyobservable in thevicinity
of the Dirac energy (see Supplemental Material [31] for
complete results).
We stress that the conductance curves vary smoothly in

the whole range of E and x, never showing singularities
which would indicate a phase transition such as the metal-
insulator transition (MIT). Thus, we ascribe the nonob-
servance of the localized regime to an insufficient scattering
region length of our model, which is shorter than ξloc for
some choices of E and x, as also pointed out in Ref. [49].
From Figs. 4(a) and 4(b) it follows that the presence of
spatial correlation between adatoms enhances the conduct-
ance by up to 5 orders of magnitude in the vicinity of the
Dirac point (E ¼ 2.7 meV). This is a direct consequence
of the suppressed weight of low-energy resonant states, as
explained above. A closely related effect is a significant
increase of the localization length ξloc at all energies upon
adatom aggregation. ξloc was obtained by fitting conduct-
ance curves to the expected law gtyp ∝ expð−L=ξlocÞ [50],
and is shown in Fig. 5(a). At x ¼ 5%, the localization
length is well defined for the entire range of investigated
energies −1 eV < E < 1 eV, whereas at lower concentra-
tions it is well defined only in proximity of the Dirac point
(see Supplemental Material [31]). However, as long as a
finite positive ξloc can be determined, it proves to be up to
an order of magnitude larger for the correlated adatom
distribution compared to the random case.
Our Landauer-Büttiker results are complemented by the

Kubo formula calculations based on the kernel polynomial

method (KPM) [51]. This approach allows for a direct
calculation of the DOS and conductivity independent of
sample geometry and contacts. Figures 4(c) and 4(d) show
the conductivity g for adatom concentrations x ¼ 0.5% and
x ¼ 5%, and both random and correlated adatom distribu-
tions. In comparison to the Landauer-Büttiker ansatz, the
results are similar at both concentrations, confirming the
enhancement of conductivity upon aggregation of adatoms.
In addition, one can observe a monotonic increase of the
conductivity and, consequently, localization length with
energy. Following the classical Boltzmann theory, this is
due to the inverse proportionality of conductivity to the T
matrix [8]. Equivalently, this refers to reduced scattering as
the Fermi energy moves away from an impurity resonance.
We note, however, that the type of disorder affects the
energy dependence of the localization length as reported in
Refs. [49] and [52]. The only qualitative difference between
the Landauer-Büttiker and KPM results appears when
the charge-carrier energy E falls into the resonant peak
region where the KPM conductivity exceeds the Landauer-
Büttiker results. This can be proven to be an effect of the
increased DOS due to the formation of an impurity band.
While the KPM conductivity reflects the excess of states at
the Fermi energy, in the Landauer-Büttiker ansatz the
number of charge carriers is limited by the DOS of the
pristine graphene leads, and subsequently the conductivity
is determined only by the mean free path and the locali-
zation length of the scattering region. We note that upon
doping the leads, the LB conductivity at low energies
increases while the localization length is unaffected (see
Supplemental Material [31]).
On the basis of the identification of resonant adatom

clusters we introduce an effective concentration

x⋆ ¼ 1

NC

X

i

NijnAi − nBi j; ð3Þ

FIG. 4 (color online). (a),(b) Averaged conductivity gtyp for the
random and correlated adatoms distributions, respectively, as a
function of scattering region length L at different energies E and at
x ¼ 5% concentration. (c),(d)Conductivityg asa functionof energy
E calculated using the kernel polynomial method for both adatom
distributionsat concentrationx ¼ 0.5%andx ¼ 5.0%, respectively.
The dashed lines show the minimum conductivity g ¼ 4=π.

lo
c

lo
c

x
x

x

x x

FIG. 5 (color online). (a) Localization length ξloc as a function
of charge-carrier energy E for the case of random and correlated
adatom distribution at x ¼ 5%. (b) Charge-carrier localization
length ξloc at low energy (E ¼ 10−3t ¼ 2.7 meV) as a function of
simple concentration x and effective concentration x⋆ for the
random and correlated distributions.
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where Ni is the number of instances of the cluster
configuration i, and nAi (nBi ) is the number of adatoms
bound to carbon atoms in sublattice AðBÞ in this configu-
ration. As discussed above, the main contribution to x⋆
comes primarily from adatom trimers, the smallest clusters
locally breaking the bipartite symmetry of graphene. We
assume that the contribution of nonresonant clusters to
the total scattering cross section can be neglected. It should
be stressed that this approach accounts for the diverse
scattering effect of different clusters. In order to validate
the applicability of effective concentration x⋆, we compare
ξlocðxÞ with ξlocðx⋆Þ at low charge-carrier energy for the
correlated impurity case [Fig. 5(b)]. One can see that
replacing x with effective concentration x⋆ brings
ξlocðx⋆Þ evaluated for the case of the correlated impurity
distribution in good agreement with ξlocðxÞ calculated for
the random distribution. The agreement is particularly good
in the low concentration regimewhere randomly distributed
impurities consist almost exclusively of isolated monomers.
Deviations at higher adatom concentrations can be ascribed
to the intercluster interference effects, which become
important at the reduced average distance between the
clusters.
To summarize, spatial correlation between resonant

scattering impurities, such as hydrogen adatoms, has
pronounced effects on the electronic transport properties
of disordered graphene. Hydrogen adsorbed on graphene
has a strong tendency toward aggregation, resulting in the
formation of small clusters and fully eliminating isolated
adatoms. Some of the larger clusters, notably trimers, are
responsible for the residual resonant scattering, but the
overall conductance and localization length dramatically
increases upon aggregation. Within the range of parameters
investigated in our work, we find no metal-insulator
transition, with the graphene spectrum being fully local-
ized. The predicted effects of adatom aggregation can be
investigated experimentally by varying the temperature
regimes, since the diffusion of hydrogen adatoms occurring
at normal conditions can be effectively suppressed at low
temperatures. Alternatively, time-resolved transport mea-
surements should evince a rise in conductivity upon
formation of adatom clusters.
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