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1 Introduction

The discovery of a new scalar resonance at the LHC marked an important step towards our

comprehension of the dynamics hiding behind electroweak symmetry breaking (EWSB).

The remarkable compatibility of its properties with those of the Standard Model (SM)

Higgs boson and the absence of any new physics predicted by many beyond-the-Standard-

Model (BSM) scenarios are forcing us to deeply reconsider the role of naturalness in the

dynamics of this particle. A concrete realization of naturalness is offered by the composite
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Higgs scenario: a new strongly coupled sector confining at the TeV scale and inducing the

spontaneous breaking of a global symmetry can produce a light pseudo Nambu-Goldstone

boson (pNGB) Higgs at 125 GeV, [7]. Probing the compositeness of the newly discovered

scalar is therefore a crucial task for understanding how natural its features are. This is

indeed the main question we would like to address in this paper: assuming naturalness as

a good guiding principle for the existence of a new strongly coupled physics at the TeV

scale, how can the presently available LHC data be used to test the validity of our notion

of naturalness?

A possible way to answer this question is to study the phenomenological properties

and the possibility of a direct discovery of other composite resonances generated by the

strong sector. In particular, one of the robust predictions of this class of theories is the

existence of spin-1 resonances excited from the vacuum by the conserved currents of the

strong dynamics. They form multiplets of the unbroken global symmetry and can behave

rather differently from the heavy Z ′ states in weakly coupled extensions of the SM. These

vectors, in fact, interact strongly with the longitudinally polarized W and Z bosons and

the Higgs and thus tend to be broader than the weakly coupled ones. The strength of

their interactions with the SM fermions depends on whether these latter participate to the

strong dynamics or are purely elementary states. A simple possibility is that SM fermions

couple to the EWSB dynamics according to their masses, so that the lightest ones are

the most weakly coupled. This idea has an elegant implementation in the framework of

partial compositeness [8] and can give a qualitative understanding of the hierarchies in

the Yukawa matrices of the SM fermions in terms of RG flows [11, 12]. A second robust

characteristic of composite Higgs models is the existence of spin-1/2 resonances, the top

partners. In the most natural realizations, these fermionic states are lighter then the heavy

vector particles, [15–20]. In a natural scenario we therefore expect the phenomenology of

spin-1 states to be significantly affected by the presence of lighter composite fermions.

In this work, we study the phenomenology of spin-1 resonances in composite Higgs

theories by means of a simplified description based on an effective Lagrangian, focussing

on their interaction with lighter top partners. This is aimed at capturing the main features

relevant for the production and decay of the heavy vectors at high-energy colliders and their

effects in low-energy experiments, avoiding the complications of a full model. Although

simplified, our procedure will be sophisticated enough to properly include those aspects

which are distinctive predictions of the class of theories under consideration, such as for

example the pNGB nature of the Higgs boson. We will focus on the minimal SO(5) ×
U(1)X/SO(4)×U(1)X composite Higgs model and consider vector triplets transforming as

a (3,1) and (1,3) of SO(4) ∼ SU(2)L×SU(2)R and vector singlets transforming only under

the unbroken U(1)X . We will study in detail the interactions of these bosonic states with

top partners and include the effects implied by the partial compositeness of SM fermions.

The importance of lighter composite fermions on the phenomenology of vector resonances

has been pointed out also in [31] and in [35]; this latter considered the case of a SU(2)L
charged heavy spin-1 state. Our approach, however, differs for the method used in deriving

the effective Lagrangian and for taking into account all the spin-1 resonances in the simplest

representations of H.

– 2 –



J
H
E
P
1
2
(
2
0
1
4
)
1
2
6

Our construction provides a benchmark model to be used in searches for heavy spin-1

states at the LHC and at future colliders. A simple kinematic model based on the width

and the production cross section times decay branching ratio (σ×BR) is sufficient to guide

searches for narrow resonances in individual channels and to set limits, see the discussion

in [24]. However, combining the results obtained in different final states as well as inter-

preting the limits on σ ×BR in explicit models of BSM physics and developing a detailed

analysis of the interaction with lighter fermionic states requires an underlying dynamical

description, such as the one given by a simplified Lagrangian. Here we provide such a

dynamical description for spin-1 resonances coupled to lighter top partners appearing in a

natural and sufficiently large class of composite Higgs theories. Our simplified Lagrangian

fully takes into account the non-linear effects due to multiple Higgs vev insertions and does

not rely on an expansion in v/f , where v is the electroweak scale and f is the decay con-

stant of the pNGB Higgs. In the limit v/f � 1, it can be matched onto the more general

one of [24], which covers a more ample spectrum of possibilities in terms of a larger number

of free parameters. In this sense, the main virtue of our model is that of describing the

phenomenology of spin-1 resonances in composite Higgs theories in terms of a minimal set

of physical quantities: one mass and one coupling strength for each heavy vector. Express-

ing the experimental results in such a restricted parameter space is thus extremely simple

and gives an immediate understanding of the reach of current searches in the framework

of strongly interacting models for EWSB. It also provides an immediate way to test how

natural the Higgs sector is expected to be.

This paper is organized as follows. In section 2, we review the most important charac-

teristics of the minimal composite Higgs model that are relevant for our construction and

we analyse the dynamical assumptions that justify our effective Lagrangian approach. In

section 3, we introduce the models for the three vector resonances under consideration and

we discuss their mass spectrum and physical interactions.1 The main production mecha-

nisms and decay modes are discussed in section 4, where we describe the most important

channels that can be relevant for a future discovery at the LHC. The presently available

8 TeV LHC data are used to derive exclusion limits on the parameter space of our models

in section 5. Our conclusions are finally summarized in section 6.

2 Behind the models

Our main purpose is to introduce an effective Lagrangian description of the interactions

between heavy vectors and top partners in the minimal composite Higgs scenario. We

aim at deriving a simplified model, based on a minimal set of free parameters, which is

suitable for studying the production and decay of these new heavy states at colliders, but

still capable of capturing the most important features of the underlying strong dynamics.

We will indeed make some robust assumptions on the symmetry structure of the theory,

dictated by the pNGB nature of the Higgs, and some plausible dynamical assumptions on

its spectrum, dictated by naturalness arguments, that can provide enough information to

determine the most prominent phenomenological aspects of these constructions.

1Part of the results appearing in this section has already been presented in [36].
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2.1 The symmetry structure and the degrees of freedom

We start analysing the basic features of the minimal composite Higgs model that will have

relevant consequences for the phenomenology of the heavy resonances. We assume the

existence of a new strongly interacting sector with an approximate global symmetry in

the UV, G = SO(5) × U(1)X , spontaneously broken to H = SO(4) × U(1)X ∼ SU(2)L ×
SU(2)R×U(1)X at an energy scale f .2 The four Goldstone bosons, Πâ, resulting from the

spontaneous breaking of the global symmetry transform as a (2,2)0 under the linearly-

realized unbroken subgroup, H; in the absence of an explicit breaking of SO(5) they are

exactly massless. The SM electroweak bosons gauge the SU(2)L × U(1)Y subgroup of the

global group, thus introducing a preferred orientation in the coset space SO(5)/SO(4) with

respect to the global SO(4). The misalignment between the direction fixed by the local

group and the vacuum where the theory is realized can be conveniently parametrized by an

angle θ, which serves as an order parameter for EWSB, [2]. The interaction between the

Goldstone bosons and the SM fields explicitly breaks the global symmetry and generates

a potential for the Higgs at loop level resulting in a non-vanishing vev for its modulus.

As a consequence, three Goldstone bosons are eaten to give mass to the SM gauge bosons

and a massive Higgs field, h(x), remains in the spectrum. The misalignment angle can be

identified as θ = 〈h〉 /f and the electroweak scale is dynamically generated at v = f sin θ.

It is convenient to introduce the parameter

ξ = sin2 θ =

(
v

f

)2

(2.1)

characterising the separation between the electroweak and the strong scale; in a natural

theory, we expect ξ ∼ 1, but it is conceivable that a small amount of tuning can give rise to

ξ � 1. In particular, compatibility with the constraints coming from electroweak precision

tests and Higgs coupling measurements generically implies ξ . 0.2, [24, 37, 39].

In this framework, we will construct effective Lagrangians respecting the non-linearly

realized SO(5) global group using the standard CCWZ formalism, as developed in [3]

and [4]. According to this procedure, a Lagrangian invariant under the global SO(5) can

be written following the rules of a local SO(4) symmetry; the basic building blocks are

given by the Goldstone boson matrix, U(Π), and the dµ and Eµ symbols, resulting from

the Maurer-Cartan form U †DµU , which are reviewed in appendix A.

Considering now the degrees of freedom, they comprise elementary states, which in-

clude the gauge bosons Wµ and Bµ and the SM fermions, and composite states, which,

besides the pNGB Higgs and the longitudinally polarized W and Z bosons, include par-

ticles with specific transformation properties under the unbroken SO(4). As regards the

interactions between these two sectors, the gauge bosons couple through the gauging of

the SM subgroup of G, whereas the elementary fermions couple linearly to the composite

dynamics, according to the paradigm of partial compositeness, [6]. Since this linear interac-

tion is responsible for generating the masses of leptons and quarks, we expect the heaviest

2The abelian group U(1)X must be included in order to reproduce the correct hypercharge of the fermion

fields, which is given by Y = T 3
R +X, T 3

R being the third generator of SU(2)R.
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SM fermions to be more strongly coupled to the new sector and to have the strongest

interactions with the composite resonances. At the energy scale that can be probed at

the LHC, it is therefore a well justified approximation to consider all leptons and quarks,

except for the heaviest doublet qL = (tL, bL) and the right-handed top quark tR, to be

fully elementary and massless, so that we can neglect their linear coupling to the strong

dynamics. On the other hand, the top-bottom doublet is taken to have a direct linear

interaction with an operator OR, transforming in a representation rO of SO(5) × U(1)X ,

so that in the UV the Lagrangian is:

L = yLq̄
α
L∆α,IOOR

IO + h.c. = yL(Q̄L)IOOR
IO + h.c. , (2.2)

where IO denotes the indices of the operator OR and (Q̄L)IO = q̄αL∆α,IO indicates the

embedding of qL into a full representation of SO(5), as discussed in [13]. This kind of

mixing explicitly breaks the global symmetry of the strong dynamics, yL∆ being a spurion

under G, generating a contribution to the Higgs potential via loop effects. In order to

obtain a sufficiently light Higgs, we therefore expect yL to be a relatively small parameter.

The choice of the representation rO does not depend on the details of the low-energy physics

and it is to some extent free. Many possibilities have been studied in the literature, [1, 26];

for simplicity, we will only consider the minimal case where rO = 52/3, so that the form of

the embedding will be unambiguously fixed:

(Q5
L)I =

1√
2

(ibL bL itL − tL 0)T , (2.3)

which formally transforms under g ∈ SO(5) as (Q5
L)I → gJI (Q5

L)J and has X-charge equal

to 2/3. As regards the tR, we will consider two different scenarios. First, we will assume

that this particle arises as a composite resonance of the strong sector, transforming like

a singlet under SO(4) and with hypercharge 2/3. Then, similarly to what happens to

the heaviest doublet, we will be interested in studying the phenomenological implications

of a partially composite tR, for reasons that will become clear in the following. In this

particular case, the tR is assumed to be linearly coupled to an operator OL of the strong

sector transforming as a 52/3, with the UV lagrangian

L = yRt̄R∆IOIL + h.c. = yR(Q̄5
R)IOIL + h.c., (2.4)

where the embedding is in this case fixed by the standard model quantum numbers to be:

(Q5
R)I = (0 0 0 0 tR)T . (2.5)

(Q5
R)I formally transforms under SO(5) like (Q5

L)I and has X-charge 2/3. The parameter

yR is expected to be of the order of the corresponding yL in order to accommodate a

reasonably tuned light Higgs in the spectrum.

We have discussed all the basic ingredients of the model, concerning both the new

symmetries and the particles we have to deal with. In this work, as highlighted in the In-

troduction, we will be mainly interested in studying the phenomenology of composite spin-1

states, ρµ, focusing on triplets transforming as a (3,1)0 and (1,3)0 under the unbroken
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SO(4) × U(1)X and on vector singlets, which are left invariant by SO(4) and transform

only under the abelian group U(1)X , analysing in detail their interplay with lighter spin-

1/2 heavy states.

2.2 Dynamical assumptions

Since we aim at building a simplified description of the interactions between vectors and

top partners, we need to make some generic assumptions on the dynamics of the strong

sector that can guide us in the construction of an effective Lagrangian and can give a basic

understanding of its regime of validity. Following the SILH approach, [14], we can broadly

parametrize the new confining dynamics with a mass scale m∗ and a coupling g∗, which

are related by the NDA estimate

m∗ ∼ g∗f, (2.6)

reproducing the usual relation between the Goldstone boson decay constant and the mass

of the composite states. We will however generalize this simple approximation, taking

into account both the theoretical implications of naturalness and the constraints coming

from electroweak precision tests. On the theoretical level, in fact, we naturally expect

the fermionic resonances to be light, since they are directly responsible for cutting off the

quadratically divergent contributions to the Higgs mass coming from the SM top quark

loops, as explained in [15–20]. In particular, a reasonably tuned pNGB Higgs generically

requires top partners to have a mass around 1 TeV. On the other hand, as described also

in appendix B, vector resonances contribute at tree level to the Ŝ parameter, thus implying

their mass to be generically bigger than 2 TeV.

These considerations are the main reason for parametrizing the confining dynamics

with two different scales, a lighter one for the spin-1/2 and a heavier one for the spin-

1 resonances, pointing towards a natural scenario where the phenomenology of vector

particles can be considerably affected by the presence of a lower-lying layer of fermionic

states. We therefore introduce a mass scale, mψ, and a coupling, gψ, for the top partners,

such that

mψ = aψgψf, (2.7)

and a mass scale, mρ, and a coupling, gρ, for the vector resonances, with the analogous

relation

mρ = aρgρf, (2.8)

where aψ and aρ are O(1) parameters, as implied by NDA. Supposing the fermionic scale

to be smaller than the vector scale therefore implies the obvious relation between the two

couplings of the new dynamics:

gψ <
aρ
aψ
gρ. (2.9)

In particular, a naturally light composite Higgs generically requires the fermionic coupling

constant to be favoured in the range 1 . gψ . 3. We will be mainly interested in studying

how these assumptions on the strong sector can be tested in the context of a phenomeno-

logical model for the production of heavy spin-1 states and their decay to top partners and

SM particles.

– 6 –
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We have some other considerations to make on the two scales in order to justify our

effective Lagrangian approach. Following the criterion of partial UV completion, firstly

introduced in [2], we assume that the bosonic resonances we want to study have a mass

Mρ much lower than the vector scale and bigger than the fermionic scale, mψ < Mρ � mρ,

so that we can integrate out all the heavier states and write a Lagrangian in an expansion

of Mρ/mρ. This approximation obviously starts loosing its validity as soon as the mass

separation becomes smaller, mψ � Mρ ∼ mρ, in which case the interference effects with

other resonances become non-negligible and our analysis is only a qualitative description of

the underlying dynamics. We apply this point of view to the triplets in the representation

(3,1)0, ρLµ , and (1,3)0, ρRµ , and to the singlet, ρXµ , building one model for each of them.

In every case we will suppose that the other two vectors have a mass Mρ ∼ mρ, so that

they belong to the tower of heavier resonances that are being integrated out, resulting in

a great simplification of the phenomenology. This assumption is dictated mainly by the

need of building the simplest description of the interplay between heavy vectors and top

partners and we have no deep reasons for excluding the opposite case, namely that the spin-

1 resonances are almost degenerate in mass. We will however make some comments about

this possibility in appendix D, showing under which conditions the mutual interaction

between the vectors can be safely neglected even when their spectrum is degenerate.

Finally, we must discuss the role of the fermionic scale in our effective expansion. In

fact, since we are about to derive a phenomenological Lagrangian which is valid up to the

first vector resonance, we should in principle include its interactions with all the fermions

at the scale mψ and falling into various representations of the unbroken SO(4). In order to

avoid the complications arising from such a full model, we will only take into account the

lightest heavy fermions, assuming that their mass satisfies the condition MΨ < mψ, so that

the decay channel of the vectors to these fermionic states is the most favoured one among

the decays to other resonances. Under this conditions, we can more safely neglect the

remaining tower of spin-1/2 states. For our construction to be fully meaningful, we need

a criterion to understand under which representation of SO(4) the lightest heavy fermions

should transform. This is easily found by noticing that in explicit models the lightest

fermionic resonances that must be present in the spectrum are the top partners falling into

the representations of H that can be excited from the vacuum by the operators OR and OL
linearly coupled to the qL doublet and the tR, when this latter is partially composite, [16].

Since we chose rO = 52/3 for both cases, we can decompose OR and OL under SO(4),

obtaining 52/3 = 42/3 + 12/3, therefore justifying the introduction of top partners in the

fourplet and in the singlet of the unbroken group. Moreover, we must notice that limiting

our analysis to the lightest fermionic resonances becomes a very crude approximation when

MΨ ∼ mψ, requiring a more complete construction; we leave this study to future work,

with the aim to provide in the present analysis a simplified model with a few degrees of

freedom and parameters that can be more thoroughly used to guide searches of new physics

at the LHC.

We now have all the elements to derive a phenomenological Lagrangian describing

the interplay between vector and fermion resonances, based on symmetry principles and

general reasonable assumptions on the nature of the strong dynamics. In conclusion, we

– 7 –
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will write three models, one for a ρLµ and top partners in the fourplet, one for a ρRµ and

again top partners in the fourplet, and a last one for a ρµX and top partners in the singlet.

3 The models

After the clarification of the symmetries and the dynamical assumptions behind our ap-

proach, we are now in a good position for explicitly introducing the Lagrangians for the

three vector resonances. We will devote this section to describe the three models and some

of their basic phenomenological characteristics.

3.1 A Lagrangian for ρLµ

We start considering a theory for the (3,1)0 triplet and top partners in the fourplet,

introducing therefore the fermionic field

Ψ =
1√
2


iB − iX5/3

B +X5/3

iT + iX2/3

−T +X2/3

 , (3.1)

which has X-charge 2/3. The vector resonance transforms non-homogeneously under the

unbroken SO(4),

ρLµ → h(Π, g)ρLµh
†(Π, g)− ih(Π, g)∂µh

†(Π, g), (3.2)

where h(Π, g) ∈ SO(4), as described in appendix A. The partner field transforms instead

linearly, so that

Ψ→ h(Π, g)Ψ, (3.3)

and it decomposes into two doublets under SU(2)L × U(1)Y , the (T,B) doublet with the

same quantum numbers of top and bottom quarks and the (X5/3, X2/3) doublet with an

exotic particle of charge 5/3 and a second top-like resonance, X2/3.

Following now the CCWZ prescription and considering the tR a full composite conden-

sate of the strong sector, at leading order in the derivative expansion the Lagrangian is:

LL = Llight + LΨ + LρL , (3.4)

where the three different contributions stand for:

Llight =
f2

4
(dâµ)2 − 1

4
W a
µνW

aµν − 1

4
BµνB

µν + ψ̄γµ(i∂µ + gel
σa

2
W a
µPL + g′elY Bµ)ψ

+ iq̄L /DqL + it̄R /DtR,

LΨ = Ψ̄γµ(i∇µ +Xg′elBµ −MΨ)Ψ +
[
ic1Ψ̄i

R/ditR + yLf(Q̄5
L)IUIiΨ

i
R

+yLc2f(Q̄5
L)IUI5tR + h.c.

]
,

LρL = −1

4
ρaLµνρ

aLµν +
m2
ρL

2g2
ρL

(gρLρ
aL
µ − EaLµ )2 + c3Ψ̄iγµ(gρLρ

aL
µ − EaLµ )T aLij Ψj .

(3.5)
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In the first Lagrangian, containing the kinetic terms of the elementary sector, the composite

Goldstone bosons and third family quarks, we have collectively indicated with ψ all the

massless fermions, namely the leptons and the first two quark families, so that the ψ field

has to be understood as a sum over these different species. The second Lagrangian, LΨ, on

the other hand, describes the kinetic term of the top partners and their interactions with

third family quarks, which are generated in the IR by the UV Lagrangian (2.2). We have

used the notation of appendix A to indicate the CCWZ covariant derivative, ∇µ, which is

necessary to respect the non-linearly realised SO(5), and we have added the contribution

of the Bµ field in order to preserve the SM gauge invariance. Finally, the last Lagrangian,

LρL , introduces the kinetic and mass terms of the vector resonance and its interaction

with the top partners. In particular, since ρL transforms non-homogeneously under the

unbroken SO(4), the field strength must be

ρaLµν = ∂µρ
aL
ν − ∂νρaLµ + gρLε

aLbLcLρbLµ ρ
cL
ν . (3.6)

We note that additional higher derivative operators can in general be included in the

previous Lagrangian and they can play a relevant role at energies of order of the resonances

mass, as discussed for example in [2]. We will omit them for simplicity, referring to [24] for

a more complete discussion of the effects of these additional terms on the phenomenology

of vector resonances.

From eq. (3.5), we immediately see that the only source of interactions among the

composite ρL and the elementary gauge fields is the ρL−W and the ρL−B mass mixings

that follow from the mass term in LρL . Given the expression of the CCWZ connections,

the global mass matrix of spin-1 fields (W,B, ρL) is non-diagonal and must be diagonalised

by a proper field rotation, in order to obtain the couplings and the Lorentz structure of

the vertices in the mass eigenstate basis. Similarly, the mass matrix of these spin-1/2 fields

arising from the Lagrangian LΨ is in general non-diagonal and we need another rotation,

on the fermionic sector, in order to describe the particle spectrum.

Before discussing the two rotations, let us first count how many parameters appear in

our Lagrangian. There are eight couplings, (gel, g
′
el, gρL , c1, c2, c3, yL, f), two mass scales,

(mρL ,Mψ), and the misalignment angle, that can be conveniently traded for the variable

ξ, for a total of eleven free parameters. Notice that we have listed the NG decay constant

f as a coupling, since it controls the strength of the NG boson interactions. The couplings

gel and g′el arise as a result of the weak gauging of the SM subgroup of H, gρL instead sets

the strength of the interactions between the vectors and other composite states, including

the Higgs and the longitudinally polarized W and Z bosons, whereas c1, c2 and c3 are

O(1) parameters, as suggested by power counting. All the Lagrangian input parameters

can be re-expressed in terms of physical quantities in the mass eigenstate basis. Three

of them must be fixed in order to reproduce the basic electroweak observables, which we

conveniently choose to be GF , αem and mZ . Of the remaining eight input parameters,

ξ controls the modifications of the Higgs couplings from the SM values and is thus an

observable, c2 will be fixed in order to reproduce the physical top mass and the other

six can be traded for the following physical quantities: the masses of two top partners,

for instance mX5/3
and mB, the mass of the charged heavy vector and its couplings to

– 9 –
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elementary fermions and to the top-bottom pair, and finally the coupling of one heavy

fermion to a gauge boson and top quark.

In order to fix three of the input parameters in terms of GF , αem and mZ , we need

the expression of the latter in terms of the former. It turns out that GF and αem are very

simple to compute and read:

GF =
1√

2f2ξ
,

1

4παem
=

1

g2
el

+
1

g2
ρL

+
1

g′2el
=

1

g2
+

1

g′2
, (3.7)

where we have conveniently defined the SM coupling g and g′ as

1

g2
≡ 1

g2
el

+
1

g2
ρL

, g′ ≡ g′el. (3.8)

It is important to notice that αem does not get corrections after EWSB at any order in ξ,

due to the surviving electromagnetic gauge invariance. The formula for GF can be most

easily derived by integrating out first the composite ρ using the equations of motion at

leading order in the derivative expansion, ρaLµ = EaLµ + O(p3). From equation (3.5), one

can then see that the low-energy Lagrangian for the elementary fields contains one extra

operator, (ELµν)2, which however does not contribute to GF . This means that the expression

of GF in terms of the elementary parameters does not receive any tree-level contribution

from the composite ρ, hence the simple formula in (3.7). Finally, the expression for mZ

is in general quite complicated and can be obtained only after the rotation to the mass

eigenstate basis; we will not report it here, but we will discuss its approximation while

describing the physical spectrum of our theory. By making use of such a formula and of

equation (3.7), for given values of the other input parameters, we can fix gel, g
′
el and f so

as to reproduce the experimental values of GF , αem and mZ .

We now discuss the rotation to the mass eigenstate basis and the physical spectrum of

the model. As regards the fermionic mass matrix, it has already been extensively analysed

in [1] and we will not examine here the details, limiting ourselves to report the basic results.

After the diagonalization, it is straightforward to derive the masses of the top quark and

of the four top partners; they are found to be:

mtop =
c2yLf√

2

MΨ√
M2

Ψ + y2
Lf

2

√
ξ [1 +O(ξ)] , mX5/3

= mX2/3
= MΨ,

mT =
√
M2

Ψ + y2
Lf

2 −
y2
Lf

2
(
M2

Ψ −
(
c2

2 − 1
)
y2
Lf

2
)

4
(
M2

Ψ + y2
Lf

2
)3/2 ξ +O(ξ2), mB =

√
M2

Ψ + y2
Lf

2,

(3.9)

where we have listed the expressions at leading order in ξ. The lightest top partners are

X5/3 and X2/3, whose mass is exactly equal to the Lagrangian parameter MΨ and does not

receive any correction after EWSB; in particular the X5/3 particle cannot mix because of its

exotic charge and it is left invariant by the rotation. The B fermion is the heaviest particle

and also in this case its mass is not altered after EWSB. The T partner, on the other hand,

is relatively lighter than B, due to O(ξ) corrections, whereas the bottom quark remains

massless, since we are not including the linear coupling of bR to the strong sector. This
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latter interactions will in general induce small corrections to the above relations of order

O(mb/mtop). In order to obtain the correct order of magnitude for the top mass, we expect

yL ∼ yt, where yt is the top Yukawa coupling. We will use the above expression for mtop

in the following in order to fix the parameter c2 to reproduce the top quark mass. Finally,

neglecting EWSB effects, we can find very simple expressions for the rotation angles; the

mass matrix is in fact diagonalised by the following field rotation:

tL →
MΨ√

y2
Lf

2 +M2
Ψ

tL −
yLf√

y2
Lf

2 +M2
Ψ

TL, bL →
MΨ√

y2
Lf

2 +M2
Ψ

bL −
yLf√

y2
Lf

2 +M2
Ψ

BL,

(3.10)

with the TL and BL particles transforming orthogonally. The right-handed tR, TR and BR
and the top partner X 2

3
are instead left unchanged.

Let us now focus on the spin-1 sector of the theory. The mass term of the Lagrangian

can be written as

Lmass = X+M2
±X

− +
1

2
X0M2

0X
0, (3.11)

where X± = (X1 ± iX2)/
√

2, with X1,2 = {W 1,2, ρ1,2
L }, and X0 = {W 3, ρL, B}. The mass

matrix therefore decomposes in a 2× 2 charged block, M2
±, and a 3× 3 neutral block, M2

0 .

The expression for the charged sector is

M2
± =


g2

el

4g2
ρL

(
g2
ρL
f2ξ +A(ξ)m2

ρL

)
− gel

2gρL
B(ξ)m2

ρL

− gel

2gρL
B(ξ)m2

ρL
m2
ρL

 , (3.12)

while the neutral block can be easily found to be

M2
0 =



g2
el

4g2
ρL

(
g2
ρL
f2ξ +A(ξ)m2

ρL

)
− gel

2gρL
B(ξ)m2

ρL

gelg
′
el

4g2
ρL

(
m2
ρL
− f2g2

ρL

)
ξ

− gel

2gρL
B(ξ)m2

ρL
m2
ρL

−
g′el

2gρL
C(ξ)m2

ρL

gelg
′
el

4g2
ρL

(
m2
ρL
− f2g2

ρL

)
ξ −

g′el

2gρL
C(ξ)m2

ρL

(g′el)
2

4g2
ρL

(
g2
ρL
f2ξ −D(ξ)m2

ρL

)

 ,

(3.13)

where we have expressed the misalignment angle θ as a function of ξ, according to equa-

tion (2.1), and we have defined the functions

A(ξ) =
(

2
√

1− ξ + 2− ξ
)
, B(ξ) =

(
1 +

√
1− ξ

)
,

C(ξ) =
(

1−
√

1− ξ
)
, D(ξ) =

(
2
√

1− ξ − 2 + ξ
)
.

(3.14)

It is now straightforward to analytically diagonalise the two matrices, but in general the

expressions for the eigenvalues and the eigenvectors are quite complicated. It is thus more

convenient to perform a numerical diagonalization, unless specific limits are considered in

which expressions simplify. We will provide in appendix E a Mathematica code which makes

such a numerical diagonalization for given values of the input parameters and generates
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all the relevant couplings and masses. In the rest of our study, however, we will work in

the limit ξ � 1, which, besides being experimentally favoured, can also lead to simple

analytical formulae for the physical couplings between the heavy triplet and the other

particles in our theory. We will therefore expand the mass matrix and its eigenvectors and

eigenvalues at leading order in ξ so that our approximation will break down when ξ & 0.4,

in which case the corrections coming from subsequent powers in the expansion become

non-negligible.

The spectrum of the spin-1 sector is easily found once the mass matrix is diagonalised

at linear order in ξ; after EWSB, the only massless state is the photon, since it is the

gauge field associated with the unbroken U(1)em, whereas for the remaining massive bosons

we get:3

m2
W =

g2

4
f2ξ, m2

Z =
g2 + g′2

4
f2ξ,

M2
ρ±L

= M2
ρ0L

=
g2
ρL

g2
ρL
− g2

m2
ρL
− g2ξ

4

(
f2g2 − 2m2

ρL

g2 − g2
ρL

)
,

(3.15)

where we have used the SM couplings g and g′ introduced in equation (3.8). As it is

clear from the previous expression, the masses of the W and Z bosons originate only after

EWSB; if we now define the electroweak scale as v =
√
ξf , through equation (3.7), then

mW and mZ have formally the same expression as in the SM.4 The masses of the heavy

triplet arise instead at zeroth order in ξ and get corrections after EWSB; at leading order in

ξ, these corrections are equal for the two charged and the neutral resonances, since they do

not depend on g′, which is the only parameter in the bosonic sector to break the custodial

symmetry. This degeneracy will be in general removed by O(ξ2) contributions.

Once the form of the rotation to the mass eigenstate basis is derived, it is straightfor-

ward to obtain the physical interactions between the vector resonances, the SM fields and

the top partners. We will focus in the following on trilinear vertices, which are the most

relevant ones for studying the production and decay of heavy spin-1 states at the LHC,

and we will refer to appendix C for the expression of the Lagrangian and the couplings in

the mass eigenstate basis.

We start analysing some qualitative features of the interactions among the vector

resonances, the gauge bosons and the Higgs field. We notice first of all that the Lorentz

structure of the vertices involving the heavy spin-1 states and two gauge bosons is the same

as the one for triple gauge vertices in the SM. This is because the kinetic terms for both

composite and elementary fields in eq. (3.5) imply interactions of the SM type, since LL has

been truncated to two derivatives interactions, and rotating to the mass eigenbasis does

not obviously change their Lorentz structure. Moreover, the values of the gρ+LWZ , gρ+LWH ,

3Here and in the following we will generically indicate with mρ the lagrangian parameters corresponding

to the mass of one of the vector resonances and with Mρ the corresponding physical masses obtained by

inverting the expressions of the latter in terms of the former.
4With this choice, the O(ξ2) corrections appear in mW and mZ , but not in v. One could equivalently

define v through the formula mW = gv
2

, so that GF in equation (3.7) deviates from its SM expression at

O(ξ2), once rewritten in terms of v.
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gρ0LWW and gρ0LZH
couplings can be easily extracted by using the Equivalence Theorem

for MρL � mZ/W ; in this limit, the leading contribution to the interaction comes from the

longitudinal polarizations of the SM vector fields and the overall strength equals that of the

coupling of one ρLµ to two NG bosons, ρLµππ, up to small corrections of orderO(m2
Z/W /M

2
ρL

).

As it can be directly seen from equation (3.5), the ρLµππ coupling is proportional to gρLa
2
ρL

,

where the O(1) parameter aρL = mρL/(gρLf) is introduced analogously to eq. (2.6) in order

to enforce the NDA relation between the mass and coupling of the resonance. The free

parameter gρL plays therefore a dominant role in setting the strength of the interaction

between the vectors and the SM gauge fields and Higgs.

The interactions of the heavy vectors with the SM leptons and first two quark families,

on the other hand, follow entirely from the universal composite-elementary mixing, that

is from the elementary component of the heavy spin-1 mass eigenstate. As a consequence,

the three couplings gρ+LffL
, gρ0LffL

and gρ0LffY
do not depend on the fermion species and

are therefore universal. After rotation to the mass eigenstate basis, the first two couplings

scale like ∼ g2/gρL , whereas the last one is of order ∼ g′2/gρL . Moreover, since the ρLµ
triplet mixes with the elementary Wµ before EWSB and with the gauge field Bµ only after

EWSB, the functions gρ+LffL
and gρ0LffL

arise at zeroth order in ξ and they are equal

up to O(ξ) terms, since the breaking of the custodial symmetry due to the hypercharge

g′ enters only through EWSB effects. The coupling gρ0LffY
is instead generated only by

the ρLµ − Bµ mixing and is therefore proportional to ξ, so that its contribution to the

interaction between the neutral vector and massless fermions is sub-leading. From the

above discussions it obviously follows that, in the limit gρL � g, the heavy resonances are

most strongly coupled to composite states, namely the longitudinal W and Z bosons and

the Higgs, whereas their coupling strength to lighter fermions is extremely weak.

Let us now consider the interactions among the heavy triplet and the partially compos-

ite top-bottom pair and the tR. Besides the universal terms in the functions gρ+L tb
, gρ0LtLtL

and gρ0LbLbL
coming from the vector elementary-composite mixing, these couplings also re-

ceive an additional contribution before EWSB, due to the fermionic mixing, from the direct

interaction of the vector resonances with top partners proportional to the O(1) parameter

c3. The heaviest SM quarks are thus effectively more strongly coupled to the resonances

than the lighter ones. After rotation to the mass eigenstate basis, all the previous functions

scale in the same way and are of order

gρ+L tb
∼ g2

gρL
+ c3gρL

y2
Lf

2

y2
Lf

2 +M2
Ψ

. (3.16)

As regards the tR, the additional contributions to the function gρ0LtRtR
must arise only

after EWSB, because this particle is a singlet under the unbroken group H, whereas the ρLµ
resonance has isospin 1 under the SU(2)L subgroup of SO(4). Isospin conservation therefore

forbids any new interaction coming both from the term proportional to the parameter c1

in LΨ and from the term proportional to c3 in LρL before EWSB, so that this coupling

does not receive a relevant enhancement for small values of the misalignment angle.

The last set of interactions that has a prominent role in the phenomenology of compos-

ite vectors is that involving the top partners; we start considering how the spin-1 resonances
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couple with a heavy fermion and one third family quark. Before EWSB, the only couplings

allowed by isospin conservation are gρ+LTLbL
, gρ+LBLtL

, gρ0LTLtL
, gρ0LBLbL

; they are generated

by the last term in LρL , since the kinetic terms are invariant under the rotation in the

fermionic sector and the interaction ic1Ψ̄i/d
i
tR in LΨ can only contribute after EWSB.

Once the rotation to the mass eigenstate basis is performed, all the previous couplings

scale obviously like

gρ+LTLbL
∼ c3gρL

yLfMΨ

y2
Lf

2 +M2
Ψ

, (3.17)

and will receive further O(ξ) corrections for non-zero values of the misalignment angle.

We thus expect the decay channels to T b̄, Bt̄, T t̄ and Bb̄ to play an important role in the

decay of the heavy vectors, especially for large values of the strong coupling constant gρL
and for high degrees of quark compositeness. All the remaining couplings between a spin-1

resonance, a top partner and a third family quark must originate after EWSB, since at

least an insertion of the Higgs vev is needed to conserve the isospin, so that they will in

general give a sub-dominant contribution to the phenomenology of vector resonances.

We now consider the couplings between two heavy fermions and one heavy boson.

The same analysis made for the previous situation is valid also in this case and we still

expect the dominant interaction to be given by the term proportional to c3 in LρL . The

universal contribution due to the elementary-composite mixing in the top partners kinetic

term scales indeed like g2/gρL and the direct interaction between spin-1 and spin-1/2

resonances induces an additional contribution proportional to gρL . For large values of

the strong coupling constant, the universal piece will therefore be suppressed whereas the

second will be enhanced, analogously to what happens for the partially composite quarks.

The functions generated before EWSB are those allowed by isospin conservation, namely

gρ+LTLBL
, gρ0LTLTL

, gρ0LBLBL
, which all scale like

gρ+LTLBL
∼ g2

gρL
+ c3gρL

M2
Ψ

y2
Lf

2 +M2
Ψ

, (3.18)

and gρ+LX 2
3
X 5

3

, gρ+LTRBR
, gρ0LX 5

3
X 5

3

, gρ0LX 2
3
X 2

3

, gρ0LTRTR
and gρ0LBRBR

, which instead are all

of order

gρ+LX 2
3
X 5

3

∼ g2

gρL
+ c3gρL . (3.19)

These second set of couplings does not receive any contribution from the rotation angles

in eq. (3.10) because the X2/3, TR and BR fields are left invariant by the rotation in the

fermionic sector before EWSB. We therefore expect the decay channel of vectors to TB̄,

T T̄ , BB̄, X 2
3
X̄ 5

3
, X 5

3
X̄ 5

3
and X 2

3
X̄ 2

3
to be the most important one, when kinematically

allowed, among the decays to two top partners. The other possible decay channels will

instead be suppressed by the small value of ξ since they must originate only after EWSB.

We have finally summarized these results in table 1, where we have listed all the

relevant couplings arising before EWSB, neglecting the O(ξ) corrections.
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Couplings Scaling

gρ+LWLZL
, gρ+LWLH

, gρ0LWLWL
, gρ0LZLH

a2
ρL
gρL

gρ+LffL
, gρ0LffL

g2

gρL

gρ+L tb
, gρ0LtLtL

, gρ0LbLbL
g2

gρL
+ c3gρL

y2
Lf

2

y2
Lf

2 +M2
Ψ

gρ+LTLbL
, gρ+LBLtL

, gρ0LTLtL
, gρ0LBLbL

c3gρL
yLfMΨ

y2
Lf

2 +M2
Ψ

gρ+LTLBL
, gρ0LTLTL

, gρ0LBLBL
g2

gρL
+ c3gρL

M2
Ψ

y2
Lf

2 +M2
Ψ

gρ+LX 2
3
X 5

3

, gρ+LTRBR
, gρ0LX 5

3
X 5

3

, gρ0LX 2
3
X 2

3

, gρ0LTRTR
, gρ0LBRBR

g2

gρL
+ c3gρL

Table 1. List of the couplings arising before EWSB and their scaling with the strong coupling

constant gρL in the mass eigenstate basis, for the ρµL resonance coupled to top partners.

3.2 A Lagrangian for ρRµ

We now introduce the Lagrangian for the (1,3)0 vector resonance coupled to top partners

in the fourplet, with fully composite tR; it is given by:

LR = Llight + LΨ + LρR , (3.20)

where Llight and LΨ have the same expression as in eq. (3.5), whereas LρR is

LρR = −1

4
ρaRµν ρ

aRµν +
m2
ρR

2g2
ρR

(gρRρ
aR
µ − EaRµ )2 + c4Ψ̄iγµ(gρRρ

aR
µ − EaRµ )T aRij Ψj . (3.21)

The theory possesses again eleven parameters with mρR , gρR and c4 indicating respectively

the mass and strong coupling constant of the ρµR resonance and the O(1) parameter which

plays the analogous role of c3. As in the previous case, we can re-express all the Lagrangian

input parameters in terms of physical quantities and fix gel, g
′
el and f in order to reproduce

the experimental values of α, GF and mZ , as described in eq. (3.7). We can define the SM

g and g′ weak couplings as

g ≡ gel
1

g′2
≡ 1

g′el
2 +

1

g2
ρR

, (3.22)

so that, differently to the ρLµ case, we can now identify g as the elementary gauge coupling

constant.

Due to the interaction between the composite ρR and the elementary gauge fields

induced by the ρR − W and ρR − B mixings, the mass matrix of the bosonic sector of

the theory is again non-diagonal. Analogously to eq. (3.11), we can introduce the 2 × 2

charged block

M2
± =


g2

el

4g2
ρR

(
g2
ρR
f2ξ −D(ξ)m2

ρR

)
− gel

2gρR
C(ξ)m2

ρR

− gel

2gρR
C(ξ)m2

ρR
m2
ρR

 (3.23)
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and the 3× 3 neutral block

M2
0 =



(g′el)
2

4g2
ρR

(
g2
ρR
f2ξ −D(ξ)m2

ρR

)
−

g′el

2gρR
C(ξ)m2

ρR

gelg
′
el

4g2
ρR

(
m2
ρR
− f2g2

ρR

)
ξ

−
g′el

2gρR
C(ξ)m2

ρR
m2
ρR

− gel

2gρR
B(ξ)m2

ρR

gelg
′
el

4g2
ρR

(
m2
ρR
− f2g2

ρR

)
ξ − gel

2gρR
B(ξ)m2

ρR

g2
el

4g2
ρR

(
g2
ρR
f2ξ +A(ξ)m2

ρR

)

 ,

(3.24)

that can be diagonalized numerically with the code provided in appendix E. The spectrum

contains the massless photon, the W and Z boson, whose masses, at linear order in ξ, get

the same expression as in eq. (3.15), and the right-handed triplet with masses

M2
ρ±R

= m2
ρR

+O(ξ2), Mρ0R
=

g2
ρR

g2
ρR
− g′2

m2
ρR
− g′2ξ

4

(
f2g′2 − 2m2

ρR

g′2 − g2
ρR

)
+O(ξ2). (3.25)

We see that the mass of the charged heavy vector coincides with the Lagrangian parameter

mρR , up to O(ξ2) corrections, and that the spectrum is degenerate even at zeroth order in

ξ due to the dependence on g′ which explicitly breaks the custodial symmetry.

We can easily derive the couplings of the spin-1 resonance to SM particles and top

partners in the mass eigenstate basis once the rotation is performed; we will briefly describe

their most important features, stressing the main differences from the left-handed vector.

Following the same reasoning of the previous analysis, we can verify that the functions

gρ+RZW
, gρ+RWH , gρ0RWW , gρ0RZH

scale all like a2
ρR
gρR , in the limit when the Equivalence

Theorem is a very good approximation, namely M
ρ
±/0
R

� mW/Z . As regards the fully

elementary fermions, the universal composite-elementary mixing is such that also the cou-

plings gρ+RffL
, gρ0RffL

and gρ0RffY
scale in the same way as in left-handed case. However,

since the ρRµ triplet mixes with the elementary Wµ field after EWSB and with the gauge

boson Bµ before EWSB, the couplings gρ+RffL
and gρ0RffL

arise at linear order in ξ and

are no longer equal due to the effects of the hypercharge g′, whereas the gρ0RffY
function,

induced only by the ρRµ −Bµ mixing, is generated at zeroth order in ξ and gives the most

relevant contribution. As a consequence, the charged heavy vectors couple very weakly

to the lightest SM fermions, contrary to the ρLµ resonance. Finally, the couplings to the

partially composite tL and bL are enhanced by the interaction proportional to c4. However,

being ρR an SU(2)L singlet, before EWSB it can couple only to the SU(2)L singlet current

(tt̄+ bb̄), so that the enhancement in gρ+Rtb
is proportional to ξ and therefore suppressed by

the small value of the misalignment angle. On the other hand, the couplings gρ0RtLtL
and

gρ0RbLbL
are allowed by isospin conservation even at zeroth order in ξ and they scale like

their left-handed counterparts.

Considering now the couplings to one top partner and one third family quark, the

functions arising before EWSB are gρ+RX 2
3L
bL

, gρ+RX 5
3L
tL

, gρ0RTLtL
and gρ0RBLbL

and again

they are generated by the interaction proportional to c4. Differently to the previous case,

the charged resonance will therefore be more strongly coupled to X 2
3
b̄ and X5/3t̄, since it

can interact only to the SU(2)L singlet current (X 2
3
b̄+X 5

3
t̄) at zeroth order in ξ. For the
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Couplings Scaling

gρ+RWLZL
, gρ+RWLH

, gρ0RWLWL
, gρ0RZLH

a2
ρR
gρR

gρ0RffY
g′2

gρR

gρ0RtLtL
, gρ0RbLbL

g′2

gρR
+ c4gρR

y2
Lf

2

y2
Lf

2 +M2
Ψ

gρ+RX 2
3L
bL

, gρ+RX 5
3L
tL

c4gρR
yLf√

y2
Lf

2 +M2
Ψ

gρ0RTLtL
, gρ0RBLbL

c4gρR
yLfMΨ

y2
Lf

2 +M2
Ψ

gρ+RX 2
3L
BL

c4gρR
MΨ√

y2
Lf

2 +M2
Ψ

gρ0RTLTL
, gρ0RBLBL

g′2

gρR
+ c4gρR

M2
Ψ

y2
Lf

2 +M2
Ψ

gρ+RX 5
3L
TL

, gρ+RX 5
3R
TR

, gρ+RX 2
3R
BR

, gρ0RX 5
3
X 5

3

, gρ0RX 2
3
X 2

3

, gρ0RTRTR
, gρ0RBRBR

g′2

gρR
+ c4gρR

Table 2. List of the couplings arising before EWSB and their scaling with the strong coupling

constant gρR in the mass eigenstate basis, for the ρµR resonance coupled to top partners.

neutral vector, on the other hand, the decays to T t̄ and Bb̄ will still be the most important

one among the heavy-light channels, analogously to the ρLµ heavy vector. Finally, as regards

the couplings to two top partners, the situation is similar to the previous one: the relevant

interactions of the neutral resonance are the same as the ones listed for the left-handed

case, whereas the charged ρ+
R will couple preferably to X 2

3
B̄ and X 5

3
T̄ , again because of

the different quantum numbers of the left-handed and right-handed vectors.

We have summarized all the relevant couplings for this second model in table 2, where

their scaling with gρR is given neglecting corrections arising after EWSB.

3.3 Two Lagrangians for ρXµ

We consider now the phenomenology of a spin-1 resonance transforming only under the

abelian U(1)X as a gauge field,

ρXµ → ρµ + ∂µα
X , (3.26)

with αX ∈ U(1)X , and interacting with top partners in the singlet of SO(4), T̃ . This vector

has very different properties with respect to the left-handed and right-handed cases; we

expect it to be more strongly coupled to particles which do not transform under SO(4),

tR and T̃ , so that its phenomenology can be significantly different if the tR belongs to the

composite sector or if it is an elementary state linearly coupled to the new dynamics. We

explore both these possibilities building two models, M1
X for the first situation and M2

X

for the second. The Lagrangians for the two models read, respectively,

LM1
X

= Llight + L
T̃ 1 + Lρ1X , LM2

X
= Llight + L

T̃ 2 + Lρ2X , (3.27)
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with

L
T̃ 1 =

¯̃
Ti /DT̃ −MΨ

¯̃
T T̃ +

[
yLf(Q̄5

L)IUI5T̃R + yLc2f(Q̄5
L)IUI5tR + h.c.

]
,

Lρ1X = −1

4
ρXµνρ

Xµν +
m2
ρX

2g2
ρX

(gρXρ
X
µ − g′elBµ)2 + c5t̄Rγ

µ(gρXρ
X
µ − g′elBµ)tR

+ c6
¯̃
Tγµ(gρXρ

X
µ − g′elBµ)T̃ ,

(3.28)

and

L
T̃ 2 =

¯̃
Ti /DT̃ −MΨ

¯̃
T T̃ +

[
yLf(Q̄5

L)IUI5T̃R + yRf(Q̄5
R)IUI5T̃L + h.c.

]
,

Lρ2X = −1

4
ρXµνρ

Xµν +
m2
ρX

2g2
ρX

(gρXρ
X
µ − g′elBµ)2 + c6

¯̃
Tγµ(gρXρ

X
µ − g′elBµ)T̃ .

(3.29)

The Lagrangians L
T̃ 1 and L

T̃ 2 contain the kinetic term of the top partner and its interaction

with the tR allowed by the symmetries; the fermion mass matrix is in general non-diagonal

and must be diagonalised in both cases. The Lagrangians Lρ1X and Lρ2X describe the kinetic

term of the vector singlet, with the field strength ρXµν obviously defined as

ρXµν = ∂µρ
X
ν − ∂νρXµ ,

and its direct coupling with T̃ . In model M1
X also a direct coupling with tR is present

whereas the same interaction is forbidden for a partially composite tR. The ρXµ mixes in

every case with the abelian gauge field Bµ, which is needed to preserve invariance under

U(1)X , so that the mass matrix of the neutral spin-1 sector must be diagonalised by a field

rotation. The two models have nine parameters in common, g, g′el and f , that will be fixed

to reproduce the experimental values of α, GF and mZ according to eq. (3.7), ξ, yL, the

mass scales MΨ and mρX , the strong coupling gρX and the O(1) parameter c6. Model M1
X

has two additional parameters, c2, which must be fixed in order to reproduce the top mass,

and c5; apart from ξ which is an observable, the six unfixed parameters could be traded for

the mass of the heavy fermion, m
T̃

, and its coupling to a gauge boson and top quark, the

mass of the heavy vector, its coupling to leptons, to the top quark and to the T̃ particle.

Model M2
X, on the other hand, has one additional parameter, yR; in this case we will fix

yL to reproduce the top mass and the remaining free parameters can be expressed in terms

of physical quantities similarly to the M1
X case.

We discuss now the rotation to the mass eigenstate basis and the spectrum of the

models. As regards model M1
X, the mass matrix of the fermionic sector has already been

analysed in [1], which we refer for the details. We just report here the expressions for the

masses of the top quark and T̃ at leading order in ξ,

mtop =
c2yLf√

2

√
ξ, m

T̃
= MΨ +

y2
Lf

2

4MΨ
ξ, (3.30)

and we notice that the two fields do not mix before EWSB, because the mass matrix is

diagonal when ξ = 0. On the other hand, the mass matrix in model M2
X is(

t̄L
¯̃
TL

) 0 −yLf√
2

√
ξ

f
√

1− ξyR −MΨ

( tR
T̃R

)
, (3.31)
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with eigenvalues

mtop =
yLyRf

2
√
ξ

√
2
√
yR2f2+MΨ

2
, m

T̃
=

√
f2yR2+MΨ

2 −
f2
(
2f2yR

4 −MΨ
2
(
yL

2 − 2yR
2
))

4
(
f2yR2 +MΨ

2
)3/2 ξ,

(3.32)

which receive further corrections from higher orders in an expansion in ξ. In this case, the

field rotation needed to diagonalise the mass matrix before EWSB is

tR →
MΨ√

y2
Rf

2 +M2
Ψ

tR −
yRf√

y2
Rf

2 +M2
Ψ

T̃R, (3.33)

with the orthogonal transformation for the T̃R field. Considering, on the other hand, the

spin-1 sector, the mass matrix is the same for both models and, in the basis of eq. (3.11),

it is given by:

M2
0 =



1

4
g2

elf
2ξ 0 −1

4
gelg

′
elf

2ξ

0 m2
ρX

−
g′el

gρX
m2
ρX

−1

4
gelg

′
elf

2ξ −
g′el

gρX
m2
ρX

(g′el)
2

4

(
4m2

ρX

g2
ρX

+ f2ξ

)
 , (3.34)

where we notice that the zero entries are due to the absence of mixing of the ρXµ singlet

with W 3
µ . The spectrum of the neutral sector contains the massless photon, the W and Z

boson, whose masses have the same expressions as in eq. (3.15) at linear order in ξ, and

the vector singlet, with mass

M2
ρX

=
g2
ρX

g2
ρX
− (g′)2m

2
ρX

+
(g′)4

g2
ρX
− (g′)2

f2ξ

4
+O(ξ2), (3.35)

where we have defined the SM coupling g′ as in eq. (3.22), with gρR replaced by gρX .

Once the rotation is performed, it is straightforward to derive the couplings of the

vector singlet to the heavy fermions and SM particles in the mass eigenstate basis; we

discuss here their basic phenomenological features, stressing the differences with respect

to the left-handed and right-handed cases. First of all, the couplings to gauge bosons and

fully elementary fermions are the same in both models. Since ρXµ is not charged under

SO(4), it cannot couple directly with the longitudinally polarized W and Z bosons, so that

the functions gρXWW and gρXZH arise only because of the mixing with the Bµ gauge field

and must be generated after EWSB. They scale like g′2/gρX ξ and are therefore strongly

suppressed, contrary to what happens for ρLµ and ρRµ . The couplings to elementary fermions,

on the other hand, behave similarly to the previous cases: they are generated only because

of the universal composite-elementary mixing and scale like g′2/gρX . In particular, the

function gρXffY is produced before EWSB, because the mixing with Bµ arises at zeroth

order in ξ, whereas gρXffL must be proportional to ξ, since the singlet does not mix

with W 3
µ .
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Couplings Scaling M1
X Scaling M2

X

gρXffY
g′2

gρX

g′2

gρX

gρX tRtR
g′2

gρX
+ c5gρX

g′2

gρX
+ c6gρX

y2
Rf

2

y2
Rf

2 +M2
Ψ

g
ρX T̃RtR

c6gρX
yRfMΨ

y2
Rf

2 +M2
Ψ

g
ρX T̃LT̃L

g′2

gρX
+ c6gρX

g′2

gρX
+ c6gρX

g
ρX T̃RT̃R

g′2

gρX
+ c6gρX

g′2

gρX
+ c6gρX

M2
Ψ

y2
Rf

2 +M2
Ψ

Table 3. List of the couplings arising before EWSB and their scaling with the strong coupling

constant gρX in the mass eigenstate basis, for the ρµX resonance in models M1
X and M2

X.

The two models differ in the couplings of the vector singlet to the top quark and

T̃ , as it can be seen from table 3, where we have summarized the scaling of the relevant

couplings arising before EWSB. In both models, the function gρX tRtR , besides the universal

contribution from the elementary-composite mixing, receives an additional enhancement

which in model M1
X is due to the direct interaction proportional to c5 and in model M2

X

results from the interaction proportional to c6 as a consequence of the fermionic rotation.

The coupling g
ρX T̃LtL

must be generated in both cases at linear order in ξ, since tL and

T̃L do not mix before EWSB, whereas the function g
ρX T̃RtR

arises after EWSB in model

M1
X, because in this case tR and T̃R mix when ξ 6= 0, and before EWSB in model M2

X,

since now the two fields mix even before EWSB and the coupling is proportional to the

rotation angle. Finally, as regards the interaction between the vector singlet and two

top partners, following the same reasoning, it is clear that the function g
ρX T̃LT̃L

must be

the same for both models, whereas the coupling g
ρX T̃RT̃R

receives the contribution of the

rotation angle before EWSB in model M2
X, which is instead absent if the tR is a full singlet

of the strong dynamics.

As a result of the previous analysis, we expect a relevant decay channel of the vector

singlet to be tt̄ in both models; among the channels involving the top partners, T̃
¯̃
T has great

importance in both cases, whereas T̃ t̄ is suppressed by the small value of ξ in model M1
X and

is instead enhanced in model M2
X. This features will lead to a different phenomenology

for the two models, so that the vector singlet is particularly sensitive to the degree of

compositeness of the tR quark.

4 Production and decay of vector resonances at the LHC

We discuss in this section the main LHC production mechanisms and the decay channels

of the vector resonances under consideration. We will parametrize the production cross

section in terms of some fundamental functions that can be computed with a Monte Carlo

code, like MadGraph5 [42], and some universal couplings, whose expressions can be derived

either analytically or numerically once the rotation to the mass eigenstate basis has been
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performed. This procedure is very useful to scan the parameter space of the theories, as we

shall see when discussing the bounds from LHC direct searches. We will then study the most

relevant decay channels and introduce an efficient analytical computation of the branching

ratios with the FeynRules package, [41], as functions of the couplings in appendix C.

4.1 Production cross section

The main production mechanisms of the vector resonances at the LHC, at a center of mass

energy of
√
s = 8 TeV, are Drell-Yan processes and VBF. Under the validity of the Narrow

Width Approximation (NWA), each production rate can be factorized into an on-shell cross

section times a decay branching fraction. For the Drell-Yan case, the on-shell cross sections

are controlled by the universal couplings gρ+ffL, gρ0ffL, gρ0ffY and can be written as

σ(pp→ ρ+ +X) = g2
ρ+ffL · σud̄,

σ(pp→ ρ− +X) = g2
ρ+ffL · σdū,

σ(pp→ ρ0 +X) = g2
ρ0uu · σuū + g2

ρ0dd · σdd̄,

(4.1)

where ρ stands for ρL, ρR or ρX and gρ0uu and gρ0dd are the coupling strength of respectively

up- and down-type fermions to the resonance,

gρ0uu =

[(
1

2

(
gρ0ffL − gρ0ffY

)
+

2

3
gρ0ffY

)2

+

(
2

3
gρ0ffY

)2
]1/2

,

gρ0dd =

[(
−1

2

(
gρ0ffL − gρ0ffY

)
− 1

3
gρ0ffY

)2

+

(
−1

3
gρ0ffY

)2
]1/2

.

(4.2)

We have furthermore defined the partonic cross sections as

σud̄ =
∑
ψu,ψd

σ(pp→ ψuψ̄d → ρ+ +X) |gρ+ffL=1 ,

σdū =
∑
ψu,ψd

σ(pp→ ψdψ̄u → ρ0 +X) |gρ+ffL=1 ,

σuū =
∑
ψu

σ(pp→ ψuψ̄u → ρ0 +X) |gρ0uu=1 ,

σdd̄ =
∑
ψd

σ(pp→ ψdψ̄d → ρ0 +X) |gρ0dd=1 ,

(4.3)

where we have schematically indicated ψu = u, c and ψd = d, s. The total production

rates (4.1) are thus simply given in terms of the fundamental cross sections, which include

the contributions of all the initial partons and can be computed with a Monte Carlo code,

appropriately rescaled by the couplings gρ+ffL, gρ0uu and gρ0dd.

Analogously, the VBF production cross sections are controlled by the couplings gρ+WZ ,

gρ0WW and can be parametrized as

σ(pp→ ρ+ +X) = g2
ρ+WZ · σW+Z ,

σ(pp→ ρ− +X) = g2
ρ+WZ · σW−Z ,

σ(pp→ ρ0 +X) = g2
ρ0WW · σWW ,

(4.4)
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Figure 1. Fundamental cross sections as functions of the physical mass of the resonance at
√
s =

8 TeV. Left panel: fundamental cross sections for the DY process. Right panel: fundamental cross

sections for the VBF process.

with the fundamental cross sections now given by:

σW+Z = σ(pp→W+Z → ρ+ +X) |gρ+WZ=1 ,

σW−Z = σ(pp→W−Z → ρ− +X) |gρ+WZ=1 ,

σW+W− = σ(pp→W+W− → ρ0 +X) |gρ0WW=1 .

(4.5)

Again, once these cross sections are computed numerically at the partonic level, we can get

the total production rates by simply rescaling with the couplings of the vectors to gauge

bosons which are easily computed in the mass eigenstate basis. Finally, since both the

couplings of the resonance to lighter quarks and to gauge bosons depend on ξ, gρ and Mρ,

the production cross section for Drell-Yan and VBF processes is a function of only these

three parameters.

We now discuss the relevance of these two production mechanisms for the three vectors

in our models. In general, we expect the fundamental cross sections for the VBF process

to be much smaller than the corresponding ones for the DY process. In fact, DY is a

one-body process and the corresponding cross section goes like ∼ g4/g2
ρ, whereas VBF

is a three-body process, so that the cross section is further suppressed by a phase space

factor and scales like ∼ g4/((16π2)2g2
ρ). This is confirmed by a quantitative estimation of

the two mechanisms, as it can be seen in figure 1, where the various fundamental cross

sections are plotted as a function of the resonance mass. The relative importance of the

two complete production rates depends however on the coupling strengths that rescale

the partonic cross sections. Since the couplings of the resonances to elementary fermions

decrease with increasing gρ, the Drell-Yan process is smaller for larger values of the strong

coupling constant. On the other hand, the couplings to longitudinally polarized gauge

bosons increase with gρ, so that the VBF mechanism can have a chance to compete with

the DY one for more strongly coupled scenarios. The total production cross sections for

the two processes are illustrated in figures 2 and 3, where we plot the contours of constant

cross sections, both for DY and VBF processes, for the three heavy vectors in the (Mρ, gρ)

plane. In every case, in order to enforce the NDA relation (2.8) between the coupling and
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Figure 2. Contours of constant cross section (blue lines for the DY process, red dashed lines for the

VBF process) in the plane (Mρ, gρ) for the production of the charged (left panel) and neutral (right

panel) left-handed (top) and right-handed (bottom) vector triplets. The yellow region corresponds

to ξ > 0.4, the light blue one to ξ > 1.
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the mass, we have rescaled ξ as

ξ = a2
ρ

1√
2GF

(
gρ
Mρ

)2

, (4.6)

and we have fixed aρ = 1, for illustration. We have also indicated the region of the

parameter space where the value of ξ exceeds 1, and is therefore not allowed, and the

region where ξ exceeds 0.4, which corresponds to the experimentally disfavoured limit

where our analytical expressions for the couplings at leading order in ξ start losing their

validity. From figure 2, we see that, despite the suppressed couplings of the resonances

to elementary fermions, the DY cross section for both the charged and neutral ρLµ vector

dominates over the VBF one even for large gρ and increases for smaller values of the

strong coupling, since in that limit the couplings to SM fermions get larger as a result

of the larger elementary-composite mixing. The VBF cross section increases for higher

values of gρ, but remains nevertheless sub-dominant in all regions of the parameter space

where ξ < 0.4. Analogous considerations are valid also for the production cross section

of the neutral ρRµ ; the shapes of the contours are similar, but the overall size of the cross

section is smaller by a factor ∼ (g′/gρ)
2. As regards the charged ρRµ vector, the couplings

to the SM fermions are weaker than the previous cases, since they arise after EWSB; as

a result, the two production rates are both very small and comparable, so that in this

case the VBF mechanism competes with the DY in every region of the parameter space.

Since for both mechanisms the production cross section is extremely small, however, this

resonance is produced at low rate at the LHC and is much more difficult to discover.

Finally, the vector singlet will be mostly produced by DY process, as shown in figure 3,

since it does not interact with longitudinally polarized gauge bosons before EWSB and the

VBF cross section is therefore further suppressed. These results on the behaviour of the

production cross sections for the various kinds of vector resonances are in agreement with

those obtained in a similar context in [27–32].

4.2 Branching ratios

We now turn to the study of the vector resonances decays. Following our natural assump-

tions on the dynamics of the strong sector, we consider the top partners to be the lightest

heavy states and we fix for illustration MΨ = 800 GeV. This value for the masses of the X 5
3

and X 2
3

fields is in agreement with the bounds coming from the LHC direct searches of new

exotic quarks of charge 5/3, [44], and automatically satisfies the bounds from searches of

other top-like fermions, which are generally weaker. Under these conditions, we will study

the most relevant decay channels of the heavy bosons and how the presence of the lighter

top partners affects their branching ratios. All the partial decay widths described in this

section can be computed analytically by using the Feynrules package once the couplings

in appendix C are derived at leading order in ξ.

We start considering the case of the neutral right-handed and left-handed vector res-

onances; their decay widths are very similar, since they couple to the same top partners

fields before EWSB and their couplings to gauge bosons and SM fermions are comparable.

We have therefore shown in figure 4 the different branching ratios as a function of the
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Figure 3. Contours of constant cross section (blue lines for the DY process, red dashed lines for

the VBF process) in the plane (MρX , gρX ) for the production of the vector singlet. The yellow

region corresponds to ξ > 0.4, the light blue one to ξ > 1.

Figure 4. Decay branching ratios of the neutral left-handed vector as a function of the resonance

mass for gρL = 3, MΨ = 800 GeV and two different sets of the free parameters. The various curves

correspond to the following decay channels: WW +Zh (blue), tt̄+ bb̄ (red), l+l− (brown), uū+ dd̄

(cyan), X 5
3
X̄ 5

3
+X 2

3
X̄ 2

3
(purple), T T̄+BB̄ (orange), X 2

3
T̄ (yellow), X 2

3
t̄ (magenta), T t̄+Bb̄ (green).

resonance mass only for ρ0
L, omitting the analogous case of ρ0

R, for the benchmark value of

the strong coupling constant gρL = 3 and varying ξ as in eq. (4.6). The importance of the

different decay channels depends obviously on the choice of the various free parameters of

the theory; in particular, aρL , c3 and yL play a dominant role in setting the strength of the

interaction with gauge bosons, third family quarks and heavy fermions, whereas we do not

expect c1 to give a relevant contribution to the different decays. We have thus set c1 = 1

and shown the branching ratios for two different choices of the remaining parameters that
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change the behaviours of the branching ratios as a function of MρL . In the first case, the

three relevant parameters are all set to one, according to the most natural expectations dic-

tated by NDA. We see that in the lower mass region, MρL < 2MΨ, the dominant decays are

WW/Zh, tt̄/bb̄ and T t̄/Bb̄,5 whereas above threshold, MρL > 2MΨ, the vector resonance

will mainly decay to pairs of heavy fermions, in particular X 2
3

and X 5
3
. The relevance of

the light decay channels below threshold, when the free parameters are chosen so as to

perfectly match their NDA estimate, has also been pointed out in [8]. The situation can

be considerably changed with a slight violation of NDA, as shown for the second choice

of free parameters, aρ = 0.5 and c3 = 3. In this case, the decay width to gauge bosons

and Higgs is extremely reduced in the lower mass region, since their couplings now get

smaller, and the heavy vector mainly decays to two tops or two bottoms, whereas above

threshold the decays to two 5/3 charged exotic states and to two top-like X 2
3

particles

remain still the dominant ones. We notice that for this particular choice of parameters

the fermionic elementary-composite mixing is stronger, so that the couplings of the vector

resonance to a heavy fermion and a third family quark are weaker than the corresponding

couplings to two tops or bottoms. The branching ratio for the heavy-light decay channels is

therefore reduced, whereas the tt̄ and bb̄ decays are considerably enhanced. In both cases,

the branching ratios for decays to leptons and first two quark families are instead strongly

suppressed, as expected, as well as the decays to the top partners whose couplings to the

heavy vectors are not allowed by isospin conservation before EWSB. We note finally that

the branching fractions to WW and Zh are equal to a very good approximation, as implied

by the Equivalence Theorem, which works well since MρL � mW/Z for the chosen values

of parameters. The approximate custodial symmetry also implies that BR(tt̄) ∼ BR(bb̄)

and BR(uū) ∼ BR(dd̄) ∼ 3BR(l+l−).

As concerns the decay channels of the charged left-handed and right-handed vector

resonances, their behaviour is now completely different, as implied by their different quan-

tum numbers. The branching ratios for both cases are shown in figure 5, for the same

value of the strong coupling as before and the same two sets of free parameters, the first

one fully matching the NDA estimate, the second one slightly departing from the natural

expectations. The decay to two gauge bosons, WZ, and to Wh is dominant in the low

mass region for both resonances when aρ = 1, but a soon as aρ gets smaller and c3/4 is

increased this channel is strongly suppressed. The tb̄ decay becomes the most important

one in the low mass region when aρ = 0.5 and c3 = 3, for the ρ+
L particle, as implied

by partial compositeness, whereas it is always sub-dominant for the ρ+
R case, because of

its suppressed couplings to third family quarks. The heavy-light decay channel for the

charged left-handed vector is again reduced for the second choice of parameters because,

analogously to its neutral counterpart, for smaller values of aρL the couplings to one heavy

fermion and a third family quark are weaker. Above threshold, the most relevant decay

channel of the left-handed vector is that involving two top partners, for every choice of the

free parameters. This latter charged vector will in fact mainly decay to X 5
3
X̄ 2

3
, with almost

unit branching ratio. Among the ρ+
R decays involving top partners, on the other hand, the

5For the importance of heavy-light decay channels in a similar context, see for example [33].
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Figure 5. Decay branching ratios of the charged left-handed (top) and right-handed (bottom)

vectors as a function of the resonance mass for gρL/R
= 3, MΨ = 800 GeV and two different sets

of the free parameters. The various curves correspond to the following decay channels: WZ +Wh

(blue), tb̄ (red), lν (cyan), ud̄ (brown), X 5
3
X̄ 2

3
(purple), TB̄ (orange), X 5

3
T̄ + X 2

3
B̄ (yellow),

X 5
3
t̄+X 2

3
b̄ (magenta), T b̄+Bt̄ (green).

dominant ones are the channels X 5
3
t̄/X 2

3
b̄, which is kinematically favoured since it opens

up as soon as MρR > MΨ, and X 5
3
T̄ /X 2

3
B̄. They are both dominant above the threshold

for the first choice of parameters, whereas in the second case the decay to X 5
3
t̄/X 2

3
b̄ is the

most relevant one among all the others for every value of the resonance mass. Finally, the

decay to leptons and first two quark families are again suppressed, but the branching ratios

for the ρ+
R are much smaller, since its couplings to fully elementary fermions are further

suppressed by a factor of ξ.

We finally discuss the most important decay channels of the singlet in the two models

M1
X and M2

X; the branching ratios are shown in figure 6, for gρX = 3. In both models,

the decays to lighter SM fermions, gauge bosons and Higgs are always suppressed, due to

their extremely weak couplings to the vector resonance; the parameter aρX therefore does

not play any major role in improving the relevance of the WW and Zh channels. The

most important decays are thus tt̄, T̃ t̄ and T̃
¯̃
T , as expected. In the M1

X case, the two

important parameters are c5 and c6; setting them to one, as illustration, shows that, below

the threshold for the production of two heavy fermions, the singlet mainly decays to two

tops, whereas above the threshold the channel to two top partners becomes the dominant
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Figure 6. Decay branching ratios of the vector singlet as a function of the resonance mass for

gρX = 3 and MΨ = 800 GeV in models M1
X (left panel) and M2

X (right panel). The various

curves correspond to the following decay channels: WW +Zh (blue), tt̄ (red), l+l− (cyan), uū+dd̄

(brown), bb̄ (purple), T̃ t̄ (orange), T̃
¯̃
T (green).

one. The decay width to one top partner and the top quark, on the other hand, is smaller

since it is generated only after EWSB. The situation is different in model M2
X; after setting

the relevant parameter c6 to one, we see that the channel T̃ t̄ is the most important one

below the threshold, because it now arises before EWSB. When MρX > 2MΨ, on the other

hand, the decay to two top partners is still the most relevant, even if now the channel

involving the top and T̃ is stronger than in the previous model.

5 Bounds from LHC direct searches

Many searches of spin-1 resonances have been performed by the ATLAS and CMS collab-

orations, with the data collected at the 8 TeV LHC, both for neutral and charged heavy

vector particles. The main decay channels that have been considered for the charged reso-

nance can be summarized as follows:

• the decay to third family quarks, ρ+ → tb̄, both by ATLAS in [58] and CMS in [51],

• the leptonic decay ρ+ → lν̄, by ATLAS in [57] and by CMS in [53],

• the fully hadronic decay to gauge bosons, ρ+ → WZ → jj, by CMS in [48] and

in [49],

• the fully leptonic decay to gauge bosons, ρ+ → WZ → 3lν, by ATLAS in [59] and

by CMS in [52].

As regards the searches of new neutral resonant states, the decay channels which have been

extensively analysed by the two experiments are:

• the leptonic decay, ρ0 → l+ l̄−, by ATLAS in [55] and by CMS in [45],

• the decay to two tops, ρ0 → tt̄, by ATLAS in [54] and by CMS in [47],
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• the decay channels to two τ leptons, ρ0 → τ τ̄ , bt ATLAS in [56],

• the semi-leptonic decay to two gauge bosons, ρ0 →WW → lν̄jj, by CMS in [46],

• the fully hadronic decay to two gauge bosons, ρ0 →WW → jj, by CMS in [48].

The results of these searches are all presented as limits on the production cross section

times branching ratio, σ × BR, as a function of the resonant mass. This allows us to

recast very easily these analyses as exclusion regions in the parameter space of our models:

once the cross section is computed semi-analytically with the method described in the

previous section and the branching ratios are derived as a function of the couplings, we

can immediately compare the theoretical predictions with the experimental data. Similar

exclusion contours on the parameters of a vector resonance, charged under SU(2)L, have

already been presented in [24], without considering the effects of partial compositeness or

lighter heavy fermions. We will show how these bounds are altered by the stronger coupling

of third family quarks to the resonance and by the presence of lighter top partners, for which

we will conveniently choose again MΨ = 800 GeV, and compare them with the indirect

information coming from the resonances contribution to Electroweak Precision Observables,

derived in appendix B. In deriving the exclusion bounds on the parameters of our models,

we will finally take into account only the DY production mechanism and compute the total

production cross section without considering the contribution of the VBF process, this

latter being much smaller than the DY one.

We finally stress that the results presented in this section are based on the validity

of the Narrow Width Approximation. This latter assumes that the production rate can

be factorized into an on-shell cross section times a decay branching ratio and neglects the

interference with the SM background. Experimental analyses performed by following this

approach must be carried out consistently with its underlying assumptions, namely that

the limits on the production rate of the new particles should be set by focussing on the

on-shell signal region; for a detailed discussion of these aspects see ref. [24]. We will take

into account the limitations of the NWA approach by showing in the exclusion plots the

contours of constant Γ/Mρ in the parameter space of our models. In the region where this

ratio is less the 10%, the resonance is narrow enough for the Narrow Width Approximation

to be a reliable estimate of the production rate, otherwise a more refined description must

be considered in order to analyse the results of the experimental searches.

5.1 Bounds on ρLµ

We start the study of the experimental constraints on the parameters of our models by

considering the case of the left-handed heavy vector. The tree-level exchange of this particle

contributes to the Ŝ and W parameters [38–40], among which the most stringent bounds

come from the first one, since W is smaller by a factor of g2/g2
ρL

. In figure 7 we show the

excluded regions in the (MρL , gρL) plane from four different direct searches, one for each

of the main decay channels considered by the experimental groups, and we compare them

with the limits coming from the Ŝ variable. We also show how the bounds change for two

different choices of the free parameters: in one case, we fix aρL = c3 = yL = 1; in the second
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Figure 7. Excluded regions in the (MρL , gρL) plane for the charged left-handed vector resonance

for two different sets of the free parameters and for MΨ = 800 GeV. The exclusions are derived from

the ρ+ → tb̄ searches in [51] (blue), the ρ+ → lν̄ searches in [53] (red), the ρ+ →WZ → jj searches

in [48] (purple) and the ρ+ →WZ → 3lν searches in [59] (green). The plot also shows the contours

of constant Γ/MρL (dashed black lines), of constant ξ (dashed blue lines) and of constant gΨ (dashed

red lines). The region on the left of the thick black line is excluded by experimental constraints on

the Ŝ parameter. The yellow region corresponds to ξ > 0.4, the light blue one to ξ > 1.

case we have analysed the set aρL = c3 = 0.5, yL = 3. The variable ξ always scales as in

eq. (4.6). Only the bounds for the charged heavy vector case are presented, for illustration;

the exclusion limits for the neutral resonance are similar and are not reported here.

Let us discuss the results for the first choice of parameters. The searches of a heavy vec-

tor decaying to gauge bosons, which subsequently decay fully leptonically or fully hadron-

ically, give the most important constraints in the low mass region, MρL < 2MΨ, since

for the chosen value of aρL the branching ratio of the WZ channel is still dominant be-

low the threshold. These searches do not give any information in the high mass region,

mρL > 2MΨ, however, due to the opening of the X 5
3
X̄ 2

3
channel, which significantly reduce

the branching ratio to gauge bosons. On the other hand, despite the suppressed couplings

to the vector resonance of SM leptons, the searches in the lν̄ channel are competitive with

the previous ones and can also provide exclusion limits above the threshold for small values

of the strong coupling constant. From figure 7, we also see how the direct results compete

with the indirect bounds from the Ŝ parameter; this latter excludes the mass of the heavy

resonance up to ∼ 1.8 TeV and still gives the most powerful information on the parameter

space of the model.

These bounds derived for the charged left-handed heavy vector, for aρL = 1, agree with

the results obtained in analogous contexts; the relevance of the experimental searches in

the gauge bosons and leptonic channels was for instance already discussed in [24]. However,

taking into account the enhanced coupling of third family quarks to the resonance, we see
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that exclusion limits can be obtained below threshold and for small values of gρL also from

the tb̄ search, which does not give any constraint when treating the top-bottom doublet as

fully elementary.

Figure 7 also shows different contours in the plane (MρL , gρL) which provides infor-

mation on the validity of the NWA approach and of our theoretical assumptions based on

naturalness requirements. The curves corresponding to the contours of constant Γ/MρL

show that the experimental constraints are always confined in the region when this ratio is

smaller than 10%, so that the NWA works well for all the four main searches. The dashed

blue lines, on the other hand, correspond to contours of constant ξ and give thus informa-

tion on the amount of tuning required for different combination of the mass and coupling

of the heavy resonance. The most natural region compatible with the experimental con-

straints on ξ is the window between ξ ∼ 0.1 and ξ ∼ 0.2, a portion of which is already

excluded by the direct searches below the threshold; below the ξ ∼ 0.1 line, more tuning is

required to accommodate a reasonably light Higgs in the spectrum, so that these regions

correspond to the more unnatural ones where our hypothesis of lighter top partners is no

longer justified. Contours of constant gΨ are also shown; the fermionic coupling constant

can be in fact derived, using both eq. (2.7) and eq. (2.8), as

gΨ =
aρL
aΨ

MΨ

MρL

gρL ; (5.1)

we have shown the lines corresponding to the naturally favoured values gΨ = 1 and gΨ = 2

fixing aΨ = aρL for illustration. We see that the preferred natural window corresponds

also to the portion of parameter space where the fermionic coupling is in its theoretically

expected range; the region where gΨ . 1, on the other hand, coincides with the unnatural

one, where ξ assumes very small values and the lightness of top partner can no longer be

justified by naturalness arguments.

We focus now on the exclusion limits for the second set of parameters. In this case,

the values of aρL and c3 are reduced and yL is instead incremented in order to show the

effects on the bounds of the reduced interaction strength between gauge bosons and heavy

vectors, on one side, and of a higher top quark degree of compositeness, on the other side.

Since now the branching ratio to gauge bosons is suppressed even in the low mass region,

no excluded region can be extracted from any of the searches involving the WZ decay

channel. On the other hand, the experimental analyses in tb̄ channel provide a bigger

exclusion limit with respect to the previous case, due to the bigger value of yL which now

increases the strength of the interaction between the charged resonance and the qL doublet

despite the reduced value of c3. The constraints coming from the lν̄ searches are still

competitive and important above the threshold, so that this decay channel is extremely

powerful in providing information on the physics of new heavy states or for a potential

discovery. Another main difference with respect to the previous study is that, choosing

aρL = 0.5, the limit coming from the Ŝ parameter is reduced by a factor of two, excluding

the mass of the heavy vector up to ∼ 1 TeV. When the aρL parameter is lower than one, we

therefore find that the direct searches are much more competitive and can exclude portions

of the parameter space beyond the reach of indirect information.
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Figure 8. Excluded regions in the (MρR , gρR) plane for the neutral right-handed vector resonance

for two different sets of the free parameters and for MΨ = 800 GeV. The exclusions are derived

from the ρ0 → ll̄ searches in [45] (in red for c4 = 1, in blue for c4 = 0) and the ρ0 → WW → lνjj

searches in [46] (in green for c4 = 1, in orange for c4 = 0). The plot also shows the contours of

constant Γ/MρR (dashed black lines), of constant ξ (dashed blue lines) and of constant gΨ (dashed

red lines). The region on the left of the thick black line is excluded by experimental constraints on

the Ŝ parameter. The yellow region corresponds to ξ > 0.4.

As regards the NWA approach, also in this case the bounds are well constrained in the

region where this approximation is reliable and valid. The natural window 0.1 . ξ . 0.2 is

now achieved in more strongly coupled scenarios, due to the reduced value of aρL , and still

part of it is excluded by the two shown searches. The contours of constant gΨ are derived

again for aΨ = aρL and, as before, the less fine-tuned region coincides with higher values

of the fermionic coupling.

5.2 Bounds on ρRµ

We consider now the bounds on the parameter space of the right-handed resonance. This

heavy particle contributes at tree level to the Ŝ and Y parameters; this latter being sup-

pressed by a factor of g′2/g2
ρR

, we again expect the most stringent limit on the mass of

the new state to come from the Ŝ variable. Since the total production cross section of

the charged right-handed vector is very small, for both VBF and DY mechanisms at the

LHC, we can only extract bounds on the model parameters for the neutral ρ0
R; these are

shown in figure 8, as excluded regions in the (MρR , gρR) plane for two different sets of the

free parameters and recasting the results of the searches in the lepton channel and in the

semi-leptonic WW channel. We have presented the different exclusion contours for two

values of c4, when it is vanishing and when it is 1, in order to clearly analyse the effects of

the lighter top partners on the bounds from direct searches.
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Let us start briefly considering the case in which aρR = 1 and yL = 1. For these values

of the free parameters, the WW channel provides constraints in the low mass region, anal-

ogously to the left-handed resonance, and it is not sensitive to the portion of parameter

space above the threshold 2MΨ. In the extreme situation where c4 = 0 and the direct cou-

pling to top partners is completely eliminated, the constraints are obviously much stronger

and they gradually reduce as c4 is increased and the branching ratios for the top partners

channels become important. As regards the experimental search in the leptonic channel,

the bounds can give exclusions above the threshold and again they are stronger for small

c4, as expected. We note also the main difference between the right-handed and the left-

handed case: the production cross section for the ρR resonance being smaller by a factor

(g′/gρ)
2, the bounds in the parameter space of the right-handed vector are in general much

weaker than those of the left-handed counterpart. Finally, the NWA approach works well

also in this situation, the excluded regions being confined in the portion of the (MρR , gρR)

plane where Γ/MρR < 0.1. The discussion on the natural window and the comparison with

the limits from the Ŝ variable are similar to the ρL case.

We discuss now how the bounds change for aρR = 0.5 and yL = 3. As expected, no

exclusion contours can be derived from the WW search channel, since the branching ratios

to gauge bosons are now suppressed. The only bounds come from the analysis performed

with the ll decay channel; for c4 = 0, they are much stronger, whereas, when the decay

to top partners and third family quarks are enhanced with c4 = 1, a very tiny region of

parameter space is excluded. This is again due to the smaller production cross section

that makes this resonance in general much harder to constrain and to discover with respect

to the previous one. The NWA is again well satisfied and the region where our natural

assumptions are well justified has the same behaviour as the analogous left-handed case.

We finally notice that no exclusion regions can be derived from the experimental search

of neutral resonances in the tt̄ channel. The experiments performed using this particular

decay are indeed much less sensitive than the others, so that, despite the enhanced coupling

strength of the top quark to the neutral vector, we find no bounds even for high degrees of

top compositeness and for larger values of c4. For this reasons, we do not expect this final

state to be enough powerful for the discovery of a neutral spin-1 particle.

5.3 Bounds on ρXµ

The experimental searches for a neutral heavy resonance can also be recast as a bound on

the parameter space of the vector singlet. This heavy particle contributes only to the Y

parameter, which however always gives very weak constraints; in this case, the exclusion

limits from direct searches are therefore the most relevant ones and electroweak precision

measurements have very little exclusion power.6 The excluded regions in the (MρX , gρX )

plane are presented in figure 9, both for model M1
X and M2

X and for different values of

6Since the vector singlet does not contribute to the Ŝ parameter, our theoretical picture of heavier spin-

1 resonances and lighter top partners could be not so well justified for this particle, allowing the possible

existence of a vector which is as light as or lighter than the spin-1/2 resonances. Consistency with the idea

that the new strong sector should be characterised by only two mass scales and that all spin-1 heavy states

should behave similarly, however, leads us to consider also the singlet to belong to the tower of heavier

resonances at the mρ scale.
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Figure 9. Excluded regions in the (MρX , gρX ) plane for the vector singlet in models M1
X (left) and

M2
X (right), fixing MΨ = 800 GeV. The exclusions are derived from the ρ0 → ll̄ searches in [45].

Left panel: in red the excluded region for c5 = 1, in green for c5 = 0.5, in blue for c5 = 0. Right

panel: in red the excluded region for c6 = 1, in green for c6 = 0.5, in blue for c6 = 0. The plot also

shows the contours of constant Γ/MρX (dashed black lines), of constant ξ (dashed blue lines) and

of constant gΨ (dashed red lines). The yellow region corresponds to ξ > 0.4.

the free parameters. In both cases, the most relevant experimental search is always the

decay channel to the ll final state, since the searches involving the decay to WW do not

obviously give any constraint, due to the extremely weak coupling strength of the singlet

to the W boson. We will therefore fix aρX = 1 in all the cases considered, since different

values of this parameter will only alter the shape of the contours of constant ξ and gΨ,

but will not significantly change the exclusion contours. Despite the enhanced coupling

strength to top quarks, finally, the searches with the tt̄ final state produce no limits on the

parameter space of the two models, similarly to the right-handed neutral resonance.

Considering now the specific results for model M1
X, we have fixed yL = 1 and shown

the bounds for three different values of c5. The most stringent constraints on the parameter

space of the singlet are obviously obtained when c5 = 0; in this extreme case, the direct

coupling to the tR quark is suppressed and the branching ratio to leptons increases, so that

the experimental search under consideration gives stronger bounds. Increasing c5, on the

other hand, makes the bounds much weaker and for c5 = 1 only a very tiny portion of

parameter space is excluded. This is due again to the g′ suppression in the coupling of the

vector singlet to lighter quarks, which makes the total production cross section smaller than

the left-handed case. All the exclusion regions are concentrated in the low mass region,

MρX < MΨ, and abruptly end when MρX = 2MΨ, due to the opening of the decay channel

to two top partners.

The situation is similar for model M2
X; we have shown the exclusion regions for aρX =

yR = 1 and for three values of the free parameter c6, ranging from 0 to 1. When c6 is
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vanishing, the bounds are much stronger and they can extend above the threshold due

to the absence of a direct interaction with the T̃ heavy fermion. Increasing c6 makes the

exclusion limits weaker; the bounds are now confined in the low mass region and are less

stringent than the neutral left-handed case due to the hypercharge suppression.

Finally, the NWA approach is reliable for both models. In figure 9, we have in fact

shown the contours of constant Γ/MρX only for c5 = 1 and c6 = 1, corresponding to the

excluded region in red. The contours for the other two smaller values of these parameters,

corresponding to the excluded regions in blue and green, lie outside the portion of the

(MρX , gρX ) plane which is presented. Therefore, the bounds corresponding to c5 = 0, 0.5

and to c6 = 0, 0.5 automatically satisfy the requirements of a narrow resonance, whereas

the bound for c5 = 1 and c6 = 1 lie completely in the portion of parameter space where

the total decay width in units of MρX is less than 10%. Also in this final case the NWA is

therefore a valid prescription for analysing the experimental results. For both models, the

natural window where our theoretical assumptions are well justified is excluded in the low

mass region, but still allowed for larger values of the resonant mass and for more strongly

coupled scenarios.

6 Conclusions

In this paper we have introduced a simplified description based on an effective low-energy

Lagrangian of the phenomenology of heavy vector resonances in the minimal composite

Higgs model, studying their interaction with lighter top partners. Our approach is based

on two classes of assumptions, one regarding the symmetry structure of the theory and one

regarding its dynamical features. As concerns the symmetries, we considered the minimal

case of a new confining dynamics with an approximate global G = SO(5)×U(1)X symmetry

spontaneously broken to H = SO(4) × U(1)X . The Higgs boson emerges as pNGB and

the electroweak scale is dynamically generated via loop effects. In this framework, we

focussed on heavy vector triplets, transforming as a (3,1) and (1,3), and on heavy vector

singlets, transforming as a (1,1) of SO(4). Following the paradigm of partial compositeness,

we introduced a linear coupling to the strong sector for the top-bottom doublet and we

considered the tR to be a bound state of the strong dynamics, except in one case in which we

studied the implications of a partially composite tR quark. In this scenario, we characterised

the couplings of heavy vectors to top partners in the singlet and in the fourplet of SO(4).

In the most natural realizations of the composite Higgs idea these are indeed the lightest

fermionic resonances that must be present in the spectrum. We constructed four simplified

models which are suitable for studying the phenomenology of heavy vectors, capturing the

most important features of the underlying symmetry structure.

As concerns the dynamics, we parametrised the new strong sector with two mass

scales, a heavier one for vector resonances, mρ, and a lighter one for fermionic resonances,

mψ. We have clarified under which conditions our effective Lagrangian description is

a good approximation of the full underlying dynamics and what its regime of validity

is. Our simplified approach is in fact reliable whenever the mass of the heavy vector

satisfies the relation mψ < Mρ � mρ, in which case, using the criterion of partial UV
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completion [2], the tower of the remaining and unknown resonances can be integrated

out of the spectrum. Our approximate models provide therefore a systematic simplified

description of the phenomenology of spin-1 heavy states in an expansion of Mρ/mρ. These

constructions loose their validity as soon as Mρ ∼ mρ, in which case using an effective

Lagrangian is formally inappropriate. However, we expect our approach to provide a good

interpretation of the experimental results, at least qualitatively, also in this second case. We

have assessed this issue considering the particular situation in which two vector resonances

of the composite tower are present in the spectrum. We show in appendix D that neglecting

the spectrum degeneracy is a reliable approximation for a basic quantitative description of

their phenomenology.

One of the most important simplification of our procedure is to describe the phe-

nomenology of heavy vectors in terms of a manageable set of free parameters. Once the

basic electroweak observables and the top mass are fixed, we are left with one mass and one

coupling for each resonance, the misalignment angle and some additional O(1) parameters

controlling the interaction with top partners and SM fermions. Of these, c1 has no role in

the production and decay of the vector resonances, so that their phenomenology can be

significantly affected only by the remaining (c3, yL) for ρLµ , (c4, yL) for ρRµ , (c5, c6, yL) in

model M1
X and (c6, yR) in model M2

X. In this sense, the effective Lagrangian approach

based on specific underlying assumptions on the symmetry structure of the theory has the

virtue of expressing all the couplings of the vectors to top partners and SM particles in

terms of only these quantities. This reduces considerably the degrees of freedom that one

would have in a complete model-independent procedure, like in [24, 25], and allows us to

formulate a consistent description of the interaction with lighter fermions, which neces-

sarily requires some knowledge of the underlying symmetries, [1]. Our model-dependent

approach is therefore essential in order to capture the most important features of the inter-

play between heavy vectors and top partners, that would be impossible to analyse without

any robust assumption on the symmetry structure of the theory.

For each resonance, we studied the main phenomenological features, analysing the mix-

ing angles, the spectrum and the most important couplings arising before EWSB. We have

shown that the left-handed and right-handed vectors couple strongly to the longitudinally

polarized W and Z bosons and Higgs, thanks to the Equivalence Theorem, and that they

both couple very weakly to fully elementary SM fermions. Concerning their interaction

with top partners and third family quarks, conservation of isospin gives the most impor-

tant rationale to extract the relevant couplings: only those conserving isospin without any

Higgs vev insertion can arise before EWSB and the corresponding decay channels give a

dominant contribution to the decay width. We have also considered the very different case

of the singlet, which has peculiar properties with respect to the other resonances. It cou-

ples very weakly both to SM fermions and to gauge bosons, whereas it interacts strongly

with the tR and the top partner T̃ , with interaction strength depending on whether the

tR is partially composite or not. This vector is also special since it does not give any

contribution to the Ŝ parameter, so that direct searches are the most important mean to

constrain its parameter space. We have finally studied the decay branching ratios of all the

three vectors, noticing the dominance of the top partner decay channel above the threshold
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Mρ = 2Mψ and studying the relevance of the decays to SM particles below the threshold

for different values of the free parameters.

Using our effective Lagrangian description, we have devised an efficient semi-analytical

method to compare the theoretical predictions of our models with the LHC data on direct

searches of vector resonances. These latter are given as exclusion limits of σ × BR as a

function of the resonance mass, under the validity of the Narrow Width Approximation.

In order to compute the total production cross section, we have numerically calculated the

parton level contribution once for all, setting the relevant trilinear couplings to unity, and

we have then rescaled with the analytical expression of the couplings at linear order in ξ.

We have also studied the main production mechanisms, DY and VBF, noticing that the

former is the most relevant one in all cases of interest. Following this method, it is very

fast to analytically recast the experimental searches as bounds on the parameter space

of the resonances, once the LHC data are rescaled with the BRs that can be computed

analytically in our models. The calculation of the cross sections as well as the numerical

diagonalization of the vector mass matrices, at every order in ξ, have been implemented in

a Mathematica notebook that is available on a dedicated website, [43].

We have applied this methodology to extract exclusion limits on the parameter space

of our models using the presently available 8 TeV LHC data. The results can be found

in figures 7, 8 and 9, where exclusion regions are shown for some relevant direct searches

of heavy vectors. We have analysed what information can be obtained from the decay

channels considered by the experimental groups for different values of the free parameters

of the theories. For the left-handed vector, we concluded that the most constraining decay

channels at the LHC are WZ and lν̄, when the free parameters are chosen so as to respect

the NDA estimate. A slight violation of NDA, obtained by reducing aρL , shows, however,

that the decay channels to gauge bosons can give no bound at all and that a very important

decay channel that can be extensively studied in the future is the tb̄, since partially compos-

ite quarks are more strongly coupled to the heavy vectors than to the other SM fermions.

The situation is similar for the neutral right-handed resonance; again, for values of the free

parameters respecting the NDA expectations, the WW and the ll̄ channels give the most

stringent bounds, whereas reducing the value of aρR shows that exclusion regions can be

drawn only from the leptonic decay channel. As regards the searches with a tt̄ final state,

in this case they do not provide any constraint, since the production cross section for ρRµ
is smaller than the corresponding one for the left-handed vector by a factor (g′/g)2. This

suppression is the reason why the enhanced coupling to top quarks does not improve the

sensitivity of this channel. Finally, considering the ρXµ case, the most constraining decay

channel is the ll̄, since the couplings of the singlet to W bosons are very weak. Also in this

case, the tt̄ channel does not give any significant bound, the production cross section being

again reduced by a factor (g′/g)2. The suppression in the production cross sections of the

right-handed vector and of the singlet is in general the reason why the bounds for the ρRµ
and ρXµ resonances are much weaker than the bounds on ρLµ , making them more difficult

to constrain or discover at the LHC. Finally, all these results can be readily interpreted

as a test of our notion of naturalness and of our dynamical assumptions on the nature

of the strong dynamics. We have shown the most natural expected window of parameter
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space and considered how the data already exclude part of it in the low-mass and small

coupling region. But for bigger values of the mass and for more strongly coupled scenarios,

there is still room for a natural realization of the composite Higgs idea with heavier vectors

decaying to lighter top partners.
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A CCWZ variables

We report in this appendix some important formulae related to the CCWZ formalism that

are used in the main text. We indicate with T â (â = 1, · · · , 4) the broken generators

parametrizing the coset SO(5)/SO(4) and with T aL/aR (aL/aR = 1, 2, 3) the SO(4) unbro-

ken generators, whose expressions can be found in [1]. The 5× 5 Goldstone boson matrix,

U(Π) = ei
√

2/fΠâT â , has the following form in the unitary gauge:

U =


I3

cos
(
θ + h

f

)
sin
(
θ + h

f

)
− sin

(
θ + h

f

)
cos
(
θ + h

f

)
 , (A.1)

with the dâµ, EaLµ and EaRµ variables defined by the relation:

− iU †DµU = dâµT
â + EaLµ T aLL + EaRµ T aR . (A.2)

Dµ is the SM covariant derivative containing the elementary gauge fields,

Dµ = ∂µ − igel
W i
µ

2
σi − ig′elY Bµ, (A.3)

where i = 1, 2, 3 and σi are the Pauli matrices.

The d and E symbols, on the other hand, can be easily computed once U(Π) is known;

up to quadratic order in the unitary gauge their expression is given by:

dâµ = Aâµ +

√
2

f
∂µh+

√
2

2f
h(δaLâAaLµ − δaRâAaRµ ),

EaLµ = AaLµ − δaLâ
√

2

2f
hAâµ,

EaRµ = AaRµ − δaRâ
√

2

2f
hAâµ,

(A.4)
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where we have defined the Kronecker δâi, for a generic index i = 1, 2, 3, as:

δiâ =

{
1 if â = i

0 if â 6= i or â = 4
.

We notice that in this work we always use the expression of the connection truncated at

quadratic order, as in equations (A.4), since we are mainly interested in trilinear couplings

and we are neglecting the contribution of dimension-6 operators.

The external gauge fields appearing in the formulae for the d and E symbols, for a

given value of the angle θ, have the following forms:

Aâµ =
sin θ√

2
(δâigelW

i
µ − δâ3g′elBµ), A4̂

µ = 0,

AaLµ = δaLi
(

1 + cos θ

2

)
gelW

i
µ + δaL3

(
1− cos θ

2

)
g′elBµ,

AaRµ = δaRi
(

1− cos θ

2

)
gelW

i
µ + δaR3

(
1 + cos θ

2

)
g′elBµ,

(A.5)

where gel and g′el are the weak coupling of the elementary sector.

Under a global transformation g ∈ SO(5), the Goldstone boson matrix transforms as:

U(Π)→ gU(Π)h†(Π, g), (A.6)

where h(Π, g) ∈ SO(4). As a consequence of eq. (A.2), the previous relation implies the

following transformation rules for d and E:

dâµ → h(Π, g)dâµh
†(Π, g)

E
aL/R
µ → h(Π, g)E

aL/R
µ h†(Π, g)− ih(Π, g)∂µh

†(Π, g),
(A.7)

showing that both these variables transform under a local SO(4) symmetry when acted

upon with g. Since in particular E
aL/R
µ behaves like a gauge field under h(Π, g), we can

introduce the covariant derivative

∇µ = ∂µ − iEaLµ T aL − iEaRµ T aR (A.8)

and a field strength

EL/Rµν = ∂µE
L/R
ν − ∂νEL/Rµ + i[EL/Rµ , EL/Rν ]

EL/Rµν → h(Π, g)EL/Rµν h†(Π, g),
(A.9)

where E
L/R
µ = E

aL/R
µ T aL/R .
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B Contribution to the electroweak precision observables

In this appendix, we briefly study the contribution to the Electroweak Precision Observ-

ables generated by integrating out at tree level the vectors in our models. In general,

the deviations from the SM in the vector boson vacuum polarization amplitudes can be

described by four effective form factors: Ŝ, T̂ ,W and Y . New physics contributions to the

four parameters can be expressed as a function of the Wilson coefficients of the leading

dimension-6 operators obtained by integrating out the BSM sector. If the BSM sector

respects the custodial symmetry, as in the case of the minimal composite Higgs model, T̂

is vanishing and we are left with the remaining three oblique parameters. In the SILH

basis, [14], Ŝ comes from the linear combination of OW +OB, W and Y on the other hand

are generated by O2W and O2B respectively. In order to get the Wilson coefficients of these

dimension-6 operators, we integrate out the ρ resonances using the EOM at O(p3):

ρaL/aRµ = EaL/aRµ − 1

M2
ρL/R

∇µEaL/aR µν +O(p5), ρXµ = Bµ −
∂µB

µν

M2
ρX

+O(p5); (B.1)

we have to keep up to three derivative terms in the EOM, because the operators O2W and

O2B include six derivatives according to the SILH power counting (gauge fields count as

one derivative). Once evaluated on the equation of motions, we obtain from the Lρ term

in eqs. (3.5), (3.21), (3.27), the following low-energy Lagrangian:

L6 = − 1

4g2
ρL

(EaLµν )2 − 1

4g2
ρR

(EaRµν )2 − 1

4g2
ρX

BµνBµν −
1

2

1

M2
ρL
g2
ρL

∇µEaLµν∇ρEaLρν

− 1

2

1

M2
ρR
g2
ρR

∇µEaRµν∇ρEaRρν −
1

2

1

M2
ρX
g2
ρX

∂µB
µν∂ρB

ρ
ν + · · · ,

(B.2)

where the dots imply terms more than quadratic in the field strength and with at least

four partial derivatives. The first two terms will give rise to OW and OB and the last two

terms will instead lead to O2W , O2B. To see this explicitly, we rewrite the formulae for the

Eµ connections in terms of the Higgs current; the relevant terms are

EaLµ = δaLigelW
i
µ +

i

f2
H†

σa

2

←→
DµH + · · · ,

E3R
µ = g′elBµ +

i

f2
H†

1

2

←→
DµH + · · · ,

(B.3)

and, after substituting in B.2, we get:

L6 =
ig

g2
ρL
f2
H†

σa

2

←→
D µHDνW a

µν +
ig′

g2
ρR
f2
H†

1

2

←→
D µH∂νB

µν − 1

2

g2

g2
ρL
M2
ρL

DµW a
µνDρW

aρν

− 1

2

g′2

g2
ρR
M2
ρR

∂µBµν∂ρB
ρν − 1

2

g′2

g2
ρX
M2
ρX

∂µBµν∂ρB
ρν . (B.4)

From the previous formulae, we can immediately find the expression of the three oblique

parameters:

Ŝ = cW +cB = a2
ρL

m2
W

M2
ρL

+a2
ρR

m2
W

M2
ρR

, W =
g2m2

W

g2
ρL
M2
ρL

, Y =
g′2m2

W

g2
ρR
M2
ρR

+
g′2m2

W

g2
ρX
M2
ρX

. (B.5)
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C Couplings

In this appendix, we give some technical details on the structure of the Lagrangian in the

mass eigenstate basis, for the case of a heavy vector triplet and a heavy vector singlet. We

will focus on trilinear interactions, neglecting for simplicity the quartic vertices.

We start considering the Lagrangian of a vector triplet with top partners in the four-

plet, LTρ . Without making explicit reference to the representation under which the spin-1

resonances fall, we can rewrite in full generality the Lagrangian after rotation to the mass

eigenstate basis as a set of three fields, the charged ρ±µ and the neutral ρ0
µ, interacting with

the SM particles and the top partners. The couplings between the heavy vectors and the

other bosons and fermions are in general a function of all the free parameters of the theory

and they explicitly depend on the model under consideration; we will name them gρ+ij , for

the couplings of the charged pair, and gρ0ij , for the couplings of the neutral state, where

i and j generically stand for two particles the resonance interacts with. We can therefore

introduce the following decomposition for LTρ :

LTρ = LTgbh + LTef + LTtb + LTTPtb + LTTP , (C.1)

where LTgbh contains the interactions between the ρ’s and the gauge bosons and between the

ρ’s, the Higgs and a gauge boson, whereas LTef , LTtb, LTTPtb and LTTP comprise, respectively,

the couplings of the spin-1 heavy states to fully elementary fermions, to top and bottom

quarks, to one top partner and one heavy quarks and finally to two top partners. It is

straightforward to derive the form of the different contributions in the mass eigenstate

basis and in the unitary gauge; we find:7

LTgbh = igρ0WW

[
(∂µW

+
ν − ∂νW+

µ )Wµ−ρ0ν +
1

2
(∂µρ

0
ν − ∂νρ0

µ)Wµ+W ν− + h.c.

]
+ igρ+WZ

[
(∂µρ

+
ν − ∂νρ+

µ )Wµ−Zν − (∂µW
−
ν − ∂νW−µ )ρµ+Zν (C.2)

+(∂µZν − ∂νZµ)ρµ+W ν− + h.c.
]

+ gρ0ZHhρ
0
µZ

µ + gρ+WH(hρ+
µW

−
µ + h.c.),

LTef =
1√
2
gρ+ffL(ρ+

µ ψ̄uγ
µPLψd + h.c.)

+ ρ0
µψ̄uγ

µ

[
1

2
(gρ0ffL − gρ0ffY )PL + gρ0ffYQ[ψu]

]
ψu (C.3)

+ ρ0
µψ̄dγ

µ

[
−1

2
(gρ0ffL − gρ0ffY )PL + gρ0ffYQ[ψd]

]
ψd,

LTtb =
1√
2
gρ+tb(ρ

+
µ t̄Lγ

µbL + h.c.)

+ gρ0tLtLρ
0
µt̄Lγ

µtL + gρ0tRtRρ
0
µt̄Rγ

µtR + gρ0bLbLρ
0
µb̄Lγ

µbL, (C.4)

7All interaction terms between SM fermions and spin-1 resonances in this Lagrangian are flavor diagonal.

This follows from assuming that all the lightest fermions are fully elementary: in absence of elementary-

composite fermion mixings one can always make fields rotations to diagonalize the fermionic kinetic terms

in flavor space. By allowing for some degrees of compositeness for leptons and the first two quark families

and thus for non-vanishing elementary-composite couplings λ, the Lagrangian C.1 is valid up to O(λ) in

the weak interaction eigenbasis for the fermions. In this basis the fermion masses are not diagonal in flavor

space. After rotating the fermion fields to diagonalize the mass matrices, a VCKM matrix appear in the

vertex ρ+µ ψ̄uψd, while the interactions of ρ0 remain diagonal.
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LTTPtb =
1√
2

[
ρ+
µ

(
gρ+TLbL T̄Lγ

µbL + gρ+X 2
3L
bLX̄ 2

3
Lγ

µbL + gρ+BLtL t̄Lγ
µBL

+gρ+X 5
3L
tLX̄ 5

3
Lγ

µtL + gρ+BRtR t̄Rγ
µBR + gρ+X 5

3R
tRX̄ 5

3
Rγ

µtR

)
+ h.c.

]
+ ρ0

µ

(
gρ0TLtL T̄Lγ

µtL + gρ0X 2
3L
tLX̄ 2

3
Lγ

µtL + gρ0BLbLB̄Lγ
µbL

+gρ0TRtR T̄Rγ
µtR + gρ0X 2

3R
tRX̄ 2

3
Rγ

µtR + h.c.

)
, (C.5)

LTTP =
1√
2

[
ρ+
µ

(
gρ+TLBL T̄Lγ

µBL + gρ+X 2
3L
BLX̄ 2

3
Lγ

µBL + gρ+X 5
3L
TLX̄ 5

3
Lγ

µTL

+(L↔ R) + gρ+X 5
3
X 2

3

X̄ 5
3
γµX 2

3

)
+ h.c.

]
+ ρ0

µ

(
gρ0TLTL T̄Lγ

µTL+gρ0X 2
3L
TL(X̄ 2

3
Lγ

µTL+h.c.)+gρ0BLBLB̄Lγ
µBL+(L↔ R)

+gρ0X 2
3
X 2

3

X̄ 2
3
γµX 2

3
+ gρ0X 5

3
X 5

3

X̄ 5
3
γµX 5

3

)
. (C.6)

We make some comments on the parametrization chosen in the previous formulae. As

regards the couplings to fully elementary fermions, we have collectively indicated with ψu
(ψd) any of the SM up-type quarks and neutrinos (down-type quarks and charged leptons)

and we have introduced their charge through the function Q[ψu] (Q[ψd]). The form chosen

for LTef is convenient for the implementation of the models in a Mathematica code, since the

couplings to different kinds of leptons and quarks can be easily and unambiguously derived

from the universal functions gρ+/0ffL and gρ+/0ffY . The top-bottom doublet and the tR
are instead treated differently, as seen in equation (C.4); we introduce specific couplings for

every vertex between the heaviest quarks and the spin-1 resonances, in order to take into

account the enhancement in the interactions due to partial compositeness. Finally, in the

last term of the Lagrangian, LTTP , we have differentiated the couplings of the heavy vectors

to left-handed and right-handed top partners, because they are in general expected to be

different. The only exceptions are the interactions involving only the exotic X 5
3

and the

top-like X 2
3
, namely gρ0X 2

3
X 2

3

, gρ0X 5
3
X 5

3

and gρ+X 5
3
X 2

3

; in this case the couplings to states

of different chirality are equal since these X5/3 top partner is left invariant by the rotation

in the fermionic sector, whereas the X2/3L and X2/3R fields transforms in the same way

under the fermionic rotation, [1].

We finally consider the Lagrangian for the singlets: a neutral vector resonance inter-

acting with a fermionic heavy state, both being invariant under the unbroken SO(4). The

Lagrangian can be decomposed analogously to the previous formulae as:

LSρ = LSgbh + LSef + LStb + LSTPtb + LSTP . (C.7)

The first three terms have the same expressions as the Lagrangian for the neutral heavy

state, ρ0
µ, in LTρ . The last two contributions can be instead easily rewritten after rotations

to the mass eigenstate basis and specifically depend on the choice of the representation for
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the top partner; we find:

LSTPtb = ρ0
µ

(
g
ρ0T̃LtL

¯̃
TLγ

µtL + g
ρ0T̃RtR

¯̃
TRγ

µtR + h.c.
)
, (C.8)

LSTP = ρ0
µ

(
g
ρ0T̃LT̃L

¯̃
TLγ

µT̃L + g
ρ0T̃RT̃R

¯̃
TRγ

µT̃R

)
. (C.9)

As before, the couplings are a function of all the free input parameters of the theory and

we find different expressions if the tR is fully composite or only partially composite.

D Effects of a degenerate spectrum

In this appendix, we clarify the phenomenological effects of relaxing the assumption that

one vector resonance is much lighter and the other two belong to the tower of states that

are integrated out. We want to analyse the possible consequences of having an almost

degenerate spectrum and, for simplicity, we will not consider the most complicated case in

which all the three heavy states are present together. We will only analyse, instead, the

simpler situation in which two resonances are degenerate and the other one is heavier and

is thus integrated out. We therefore introduce the three following cases,

(I) (ρL, ρR) with Lagrangian LL+R = Llight + LΨ + LρL + LρR ,
(II) (ρL, ρX) with Lagrangian LL+X = Llight + LΨ + L

T̃ 1 + LρL + Lρ1X ,

(III) (ρR, ρX) with Lagrangian LR+X = Llight + LΨ + L
T̃ 1 + LρR + Lρ1X ;

(D.1)

in all combinations the tR quark arises as a singlet of the composite dynamics, so that we

have considered only the interference with model M1
X in (II) and (III).

When considering the degeneracy of the particle spectrum, there are different effects on

our analysis of direct searches that we must take into account with respect to the situations

studied in the main text. First of all, we expect that the expressions of the couplings in the

mass eigenstate basis will be corrected and that the more degenerate the spectrum is, the

stronger these corrections will be. Secondly, the branching ratios will change as well, due to

the opening of new decay channels, a heavy-light one, with a vector resonance decaying to

a second heavy vector and a gauge boson, and a heavy-heavy one, which involves a vector

state decaying to other two heavy spin-1 resonances. These two classes of modifications

could significantly alter the results concerning the bounds on the free parameters of our

models; we will analyse them in the following, showing that considering only one resonance

at a time and integrating out the other two is a good basic approximation for interpreting

the experimental data.

Let us start considering how the couplings change in case (I). The spectrum now

contains two charged and two neutral heavy vector particles. The mass matrix is given by

a 3 × 3 charged block and a 4 × 4 neutral block, whose expressions is not reported here,

but can be found in [36], where also some of the modified couplings in the mass eigenstate

basis are given. Since the ρRµ and ρLµ resonances belong to different representations of the

unbroken SO(4), all the corrections to the couplings in appendix C must arise after EWSB

and are therefore suppressed. As a consequence, we do not expect that the degeneracy of
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the resonances masses will induce important differences on the branching ratios that have

already been analysed in this work, so that no relevant modifications on the bounds can

be induced by the changes in the couplings.

In case (II) and (III), on the other hand, one charged and two neutral vector resonances

are present. The charged block of the mass matrix is not affected by the interference

with the singlet, which mixes only with the Bµ boson, so that no modification is induced

on the couplings of the charged vector. The neutral block, on the other hand, becomes

now a 4 × 4 matrix and, after rotation to the mass eigenstate basis, the couplings of the

neutral resonances will be indeed modified with respect to the situation considered in the

main text. In particular, in model (II) these corrections must be suppressed by ξ, since

ρLµ mixes with Bµ only after EWSB, whereas in model (III) both ρ3
R and ρX mix with Bµ

before EWSB, therefore inducing interference effects that can have important consequences

on their phenomenology. We conclude that the approximate description adopted in the

main text works well for case (II), even with a degenerate spectrum, whereas in case

(III) the bounds and branching ratios should be corrected if the two resonances have

comparable masses.

We now study more quantitatively the effects of the spectrum degeneracy on the

branching ratios, analysing, as illustration, the cascade decay of one heavy vector to a

second spin-1 resonance and a gauge boson. We want to estimate the branching ratio of

this process in the three cases, so as to understand how much the decay widths analysed in

this work can be altered by the opening of this new decay channel. From triple vector cou-

plings in the kinetic terms of the Lagrangians in (D.1), an additional interaction between

two heavy vectors is generated; we can write it as follows:

LXYM = igX+Y −M0

[
(∂µX

+
ν − ∂νX+

µ )Y µ−M0ν − (∂µX
−
ν − ∂νX−µ )Y µ+M0ν

+ (∂µY
+
ν − ∂νY +

µ )Xµ−M0ν − (∂µY
−
ν − ∂νY −µ )Xµ+M0ν

+ (∂µM
0
ν − ∂νM0

µ)(Xµ+Y ν− −Xµ−Y ν+)
]
,

(D.2)

when X is different from Y , and

LXXM = igX+X−M0

[
(∂µX

+
ν − ∂νX+

µ )Xµ−M0ν − (∂µX
−
ν − ∂νX−µ )Xµ+M0ν

+
1

2
(∂µM

0
ν − ∂νM0

µ)(Xµ+Xν− −Xµ−Xν+)

]
,

(D.3)

when X = Y . We have indicated with X, Y and M any of (W/Z, ρ+, ρ0). As a result,

when one of the two vectors is relatively heavier than the other one, the channels ρ+
1 →

ρ0
2W

+, ρ0
1 → ρ+

2 W
− and ρ+

1 → ρ+
2 Z open up (ρ1 and ρ2 stand for the vectors in different

representations for each of the three cases considered). In order to illustrate the relevance

of these cascade decays, we focus on the two following sets of benchmark values

(I) mρL = 1.5mρR = 1.5 gρRf , gρL = gρR ≡ gρ ,
(III) mρR = 1.5mρX = 1.5 gρXf , gρR = gρX ≡ gρ ,

(D.4)
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Figure 10. Cascade decay branching ratios as a function of the heavier resonance mass, for the

benchmark value gρ = 3, for case (I) (left plot) and case (III) (right plot) of eq. (D.4). The blue

line corresponds to BR(ρ+
1 →W+ρ0

2) and the red curve corresponds to BR(ρ+
1 → ρ+

2 Z).

and we show in figure 10 the relative branching ratios as a function of the resonant mass,

for illustration, fixing to 1 all the O(1) parameters controlling the couplings to top part-

ners. The results in case (II) are very similar to case (I) and the corresponding branching

ratios are not shown. We see that the branching ratios are very tiny for cases (I), due to

the fact that the mixing between a charged and a neutral state or between two charged

states belonging to different representation of H arises at O(ξ) after EWSB. The situa-

tion is different for case (III); the branching ratio is now considerably bigger, even if the

coupling between two different heavy vectors arises again at O(ξ). This is a consequence

of the small couplings of the charged right-handed resonance to SM fermions: since the

branching ratios for its decay to both elementary and partially composite fermions are

strongly suppressed, the decay channel to the lighter vector and a W boson is much more

competitive. As expected, in case (III) the corrections to the branching ratios are therefore

more important. However, these corrections will not have relevant consequences on the ex-

clusion plots we derived in the main text. These latter are in fact obtained for the neutral

right-handed vector which is not affected by the presence of the relatively lighter ρXµ since

no couplings involving two neutral heavy vectors can be induced in our models. We thus

conclude that our estimate of the branching ratios and relative bounds on the parameter

space of the models is a good approximation for all the resonances, even neglecting their

possible degeneracy.

E The MadGraph5 model

The four models discussed in this paper have been implemented in the parton level gen-

erator MadGraph5 for the simulation of Monte Carlo events. All the trilinear interaction

vertices involving vector resonances, SM particles and top partners have been introduced

in the UFO file, following the conventions of appendix C.

A Mathematica calculator is also provided, which performs a numerical diagonalization

of the vector mass matrix and computes all the physical quantities, masses and trilinear

couplings between heavy vectors and SM particles, after the input parameters are specified.

This code also implements the numerical diagonalization of the fermionic mass matrices
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in the top partner sector and computes the trilinear couplings between heavy resonances,

top partners and partially composite SM fermions to full order in ξ. The semi-analytical

formulae for the computation of the cross sections and the partial decay widths described

in the main text can be also derived with this program.

We also stress that our numerical code has been designed not only to simulate the

production and decay of vector resonances, but also to study WW scattering processes at

the LHC and at future colliders. In order for these processes to be suitably simulated in

the presence of vector resonances, also the modifications to the couplings gHWW , gHZZ ,

gHHWW , gHHZZ and gHHH after rotation to the mass eigenstate basis must be properly

taken into account. The corrections to the first four couplings are numerically calculated

by the Mathematica file and in particular the vertices gHHWW and gHHZZ are the only

four-particles interactions that are numerically derived by the calculator. On the other

hand, the modification of the trilinear Higgs coupling gHHH for the minimal model with

elementary fermions embedded in the vector representation of SO(5) (MCHM5) has been

derived analytically in [34] to all orders in ξ and it is implemented in the code accordingly.

All the available software can be downloaded in a single package from the HEPMDB

website [43] and the instruction on how to run the calculator can be found in the README

file which is provided with the program.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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