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Asymptotically Optimal Matching of Multiple
Sequences to Source Distributions
and Training Sequences

Jayakrishnan Unnikrishnan, Member, IEEE

Abstract— Consider a finite set of sources, each producing
independent identically distributed observations that follow a
unique probability distribution on a finite alphabet. We study the
problem of matching a finite set of observed sequences to the set
of sources under the constraint that the observed sequences are
produced by distinct sources. In general, the number of sequences
N may be different from the number of sources M, and only some
K < min{M, N} of the observed sequences may be produced by
a source from the set of sources of interest. We consider two
versions of the problem—one in which the probability laws of
the sources are known and another in which the probability
laws of the sources are unspecified but one training sequence
from each of the sources is available. We show that both these
problems can be solved using a sequence of tests that are allowed
to produce no-match decisions. The tests ensure exponential
decay of the probabilities of incorrect matching as the sequence
lengths increase, and minimize the no-match decisions. Both the
tests can be implemented using variants of the minimum weight-
matching algorithm applied to a weighted bipartite graph. We
also compare the performances obtained using these tests with
those obtained using tests that do not consider the constraint that
the sequences are produced by distinct sources. For the version
of the problem in which the probability laws of the sources are
known, we compute the rejection exponents and error exponents
of the tests and show that the tests that make use of the constraint
have better exponents than the tests that do not make use of this
information.

Index Terms— Hypothesis testing, error exponents, statistical
classification, bipartite matching.

I. INTRODUCTION

LASSICAL multi-hypothesis testing [2] addresses the
Cfollowing problem: Given probability distributions of
M sources and one observation sequence (or string), decide
which of the M sources produced the sequence. Classical
statistical classification [3] also addresses the same problem
with the only difference that the probability distributions of
the sources are not known exactly, but instead, have to be
estimated from training sequences produced by the sources.
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Figure 1 illustrates these classical problems. In this paper we
study a generalization of these problems which is relevant in
applications like de-anonymization of anonymized data [1].
Instead of one observation sequence, suppose that you are
given N observation sequences, subject to the constraint that
each sequence is produced by a distinct source. We consider
the task of matching the sequences to the correct sources
that produced them, as illustrated in Figure 2. Focusing on
finite alphabet sources, we study these matching problems
as composite hypothesis testing problems. We refer to the
first problem, in which the distributions of the sources are
known, as the matching problem with known sources, and
the second problem in which only training sequences under
the sources are given, as the matching problem with unknown
sources. We obtain solutions to both these problems that are
asymptotically optimal in error probability as the length of the
sequences increases to infinity.

The main difference between these problems and the
standard multi-hypothesis testing and classification problems
is the constraint that the observation sequences are produced
by distinct sources. It is clear that in the absence of such
a constraint, these problems are just repeated versions of
the standard problems. The constraint adds more structure to
the solution and leads to an improvement in classification
accuracy. We use large deviations analysis to quantify the
improvement in performance in terms of the asymptotic rate
of decay of the error probabilities and the probabilities of
rejection of the optimal tests with and without the con-
straints. We obtain asymptotically optimal solutions to these
matching problems using a generalization of the approach of
Gutman [4], who solved the classical statistical classification
problem.

Our primary motivation for studying these problems comes
from studies on privacy of anonymized databases. In recent
years, many datasets containing information about individuals
have been released into public domain in order to provide open
access to statistics or to facilitate data mining research. Often
these databases are anonymized by suppressing identifiers
that reveal the identities of the users, like names or social
security numbers. Nevertheless, recent research (see [5], [6])
has revealed that the privacy offered by such anonymized
databases may be compromised if an adversary correlates the
revealed information with publicly available databases. In our
recent work [1], we studied the privacy of anonymized user
statistics in the presence of auxiliary information. We showed

0018-9448 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



UNNIKRISHNAN: ASYMPTOTICALLY OPTIMAL MATCHING OF MULTIPLE SEQUENCES TO SOURCE DISTRIBUTIONS AND TRAINING SEQUENCES 453

Source PMFs Observed string

%51 . Y1

H2

M3 .

123,78 ‘
(a)

Fig. 1.

Source strings Observed string

1 . Y1

132‘

T3

™ @

()

Tllustration of the matching tasks in classical multihypothesis testing and statistical classification. (a) Multihypothesis testing: Match observed string

to correct source probability mass function (PMF). (b) Statistical classification: Match observed string to the training string from the correct source.
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Illustration of the matching tasks in the problems studied in this paper. (a) Matching problem (P1): Match observed strings to correct source PMFs.

(b) Matching problem (P2): Match observed strings to the training strings from the correct sources.

that anonymized statistical information about a set of users can
be easily de-anonymized by an adversary who has access to
independent auxiliary observations about the users. The task
of the adversary is to match the auxiliary information to the
anonymized statistics, which is exactly the problem that is
studied in the current paper. Another related application of
the matching problem is in matching statistical profiles of
users obtained from two different sources. For example, one
could obtain location statistics of a set of users either from
connections to WiFi access points, or from connections to
mobile towers. It is interesting to try to match users across
these two datasets, using the statistics of their location pat-
terns. Alternatively, the user statistics could be the frequency
distributions of words used by users on two different blog
websites. The matching task then is to identify users who have
accounts on both websites. Matching users across two different
datasets increases the net information available about the users
which in turn can be used to improve accuracy of targeted
services.

Asymptotically optimal hypothesis testing has a long history
in literature (see [7]-[10]). However, hypothesis testing of
multiple sequences under the constraint that each sequence
is produced by a distinct source, has been studied only rarely.
The prior knowledge of the constraint on the sequences is
expected to improve the accuracy of the hypothesis test.
However, the task of identifying the optimal solution is now
much more complicated as there are a combinatorial number
of hypotheses. It is not immediately clear what is the best
strategy to adopt. A naive strategy is to try to classify each
sequence individually; but that is not expected to yield high
accuracy as the constraints are not intelligently exploited.
In [11, Ch. 10] the matching problem with known distributions
was studied for the special case of M = N, where the analysis
was performed by reducing the problem to a multi-hypothesis
testing problem. The same problem was solved in [12] for
M = N = 2 under a different optimality criterion from that
used in this paper. In the first part of this paper we study this
problem under a different optimality criterion, and identify an
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optimal solution for general M and N. We also provide a
quantitative comparison of the performance obtained with our
optimal solution, with that of a test that ignores the constraint
on the sequences. These results quantify the improvement in
performance that can be obtained by exploiting the constraint
on the sequences. In the second part of this paper we study
the problem of matching one set of sequences to another set
of sequences. The approach we adopt in most of this paper is
a generalization of that adopted by Gutman in [4], who solved
the matching problem with unknown source distributions
for N = 1. Gutman showed that if a “no-match” decision
is allowed, it is possible to guarantee exponential decay of all
misclassification probabilities at a desired rate. In the second
part of this paper we simplify the structure of Gutman’s
solution and show that his method can be generalized to
solve the matching problem with unknown source distributions
for general N. We also demonstrate that although there are
a combinatorial number of hypotheses for these problems,
simple polynomial-time algorithms can be used to identify the
optimal solutions.

The rest of the paper is organized as follows. After introduc-
ing our notation, we state the problems in mathematical form
in Section II. We present our solution to the generalization of
the hypothesis testing problem in Section III and our solution
to the generalization of the statistical classification problem
in Section IV. In addition to identifying the optimal solutions,
we also compare the performances of these solutions with
those of solutions that do not explicitly take into account the
constraint on the distinctness of the sources that produced
the sequences. We discuss practical aspects of implementing
the test and conclude in Section V. For ease of reading, we
relegate proofs of all results to the appendix.

Notation: For a finite alphabet Z, we use P(Z) to
denote the set of all probability distributions defined on Z.
We interchangeably use the words sequence and string to refer
to an ordered list of elements from Z. For any string s € Z",
we use 'y € P(Z) to denote the empirical distribution of the
string defined as

17!
N2 == Tisi =z}, Z
(2) "i;{s 2}, ze€

For y1 € P(Z) and z € Z we use 1 (z) to denote the probability
mass at z under p. For a string s € Z", we use u(s) to denote
the probability of observing s at the output of a source that
generates n observations i.i.d. according to law u. We use
H (u) to denote the Shannon entropy

H(u) = z —u(z)log u(z).

zeZ
For v, u € P(Z) we use

_ v(@)
Dllp) = Zezzv(zmgﬂ(zf

to denote the Kullback-Leibler divergence between probability
distributions v and u. Throughout the paper we use log to
refer to logarithm to the base 2. We use [N] :={1,2,..., N}
and Sym([N]) to denote the set of all permutations on [N],

ie., if ¢ € Sym([N]) then o is a one-to-one mapping
from [N] onto itself.

II. PROBLEM STATEMENT

Consider a set of independent sources each producing i.i.d.
data according to distinct but unknown probability distribu-
tions on a finite alphabet Z. Let & C P(Z) denote the set
of probability distributions followed by these sources. Let
M C U and N C U be such that MNN = K. Let |M| = M,
IN]= N and |K| = K. We are concerned with the following
two problems.

(P1) Known Sources: Let M = {u1, u2, ..., tm}. Sup-
pose M, N and K are known but N and K are
not. Further, suppose a set S = {y1,¥2,..., YN}
of unlabeled sequences of length n each generated
independently under a distinct distribution in N is
given. Identify the K sequences in S that were
generated under distributions in M, and match each
of these sequences to the correct distribution in M
that generated it.

(P2) Unknown Sources: Suppose the distributions are
unknown, but M, N and K are known. Given a set
S = {x1,x2,...,xy} of unlabeled sequences of
length n each generated under a distinct distribution
in M, and a set S; = {y1, y2, ..., yn} of unlabeled
sequences of length n each generated under a
distinct distribution in AN, identify the K sequences
in S that were generated by distributions in C
and match each of them to the sequence in &
that was generated under the same distribution.
The information in S; and S are assumed to be
independent of each other.

As mentioned earlier, such problems arise in the fields of
de-anonymization of databases, and of identification of users
from the statistics of their data. For example, S; and &>
in problem (P2) could be two anonymized databases of data
belonging to known sets of users. It may be known that the
two sets of users are identical, in which case M = N = K,
or it may be that the second set of users is a subset of the
first set, in which case M D N = K. In some other cases,
the sets M and A might not be subsets but the statistician
may have an estimate for the number K of common users in
the two sets, i.e., the size of K. Problem (P1) arises when
the statistical behavior of the data belonging to the first set
of users is known accurately. As stated above, for simplifying
the analysis, in both these problems we have assumed that the
sample size of all sequences are equal, and that the alphabet Z
is a finite set. In Section V we discuss how the analyses and
results can be generalized to the setting in which the sequence
lengths are not equal, or when the alphabet is continuous.

Both problems (P1) and (P2) can be visualized as variants
of the following problem. Let Vi, V» be two sets of objects
with |Vi| = M and [V,| = N. Consider a complete bipartite
graph G [13] with vertices YV = V| U )V, such that every
vertex in V] is connected to every vertex in V, by an edge, as
illustrated in Figure 3. The objective is to identify a matching!

LN matching in a graph is a set of edges such that no two edges in the set
share a common vertex.
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Vl VQ

Fig. 3. A complete bipartite graph. Every vertex in V| is connected by an
edge to every vertex in V.

of cardinality K in the graph G that satisfies some conditions.
In problem (P1), the set V} = M and V, = S, and in
problem (P2) the set V| = S; and V, = &. Illustrations
of these matching problems are shown in Figure 2. More pre-
cisely, these problems are multi-hypothesis testing problems,
where each hypothesis corresponds to a potential matching of
cardinality K on the graph G. Thus, for each problem, there
are a total of J = (1}?) (%)K ! different hypotheses. We let
‘H1, Ha, ..., Hy denote an enumeration of the hypotheses for
each problem. We use the same notation for the hypotheses in
both problems; it should always be clear from context what is
intended. It is to be noted that in both problems the hypotheses
are composite. In problem (P1), the sequences in S that do not
follow a distribution in X are allowed to have any distribution.
In problem (P2) the probability distributions of each source
could lie anywhere in P(Z).

We seek decision rules for these problems that admit
exponential decay of error probabilities as a function of n
under each hypothesis. For this purpose, for each problem, we
allow a no-match decision, i.e., rejection of all J hypotheses.
Thus a decision rule for problem (P1) is given by a partition

Q= (Q,Q,...,Q75,Qr) of Z! = (ZY)V the space of
vectors of the form yi, y2,...,yn, into (J + 1) disjoint
cells Qp,Qo, ..., Qy, Qr, where Q is the acceptance region

for hypothesis H, for £ € [J], and Qr = 7! — Ué{zlﬂg
is the rejection zone. Similarly, a decision rule for prob-
lem (P2) is given by a partition Q = (Q1,Q, ..., Qy, Qr)
of Z = (Z"M x (Z")N the space of vectors of the form
X1,X2, > XM> V1> V2, ---, YN, into (J + 1) disjoint cells
Q1,Q,...,Q7,Qr, where Q; is the acceptance region for
hypothesis Hy, and Qr = Z — ngng is the rejection
zone. In both these problems, we consider an error event
err under hypothesis H, to denote a decision in favor of a
wrong hypothesis Hy where k # £. We denote a decision
in favor of rejection by rej. Note that a decision in favor
of rejection does not correspond to an error event under any
hypothesis. Thus, using the notation x = (x1, x2, ..., x)) and
y = (1, y2,...,YN), the probability of error of the decision
rule Q under hypothesis H; is given by

J
Po(err/He) = Py, 1y € |J (1

k=1
kAL

for problem (P1), and by

J
Po(err/He) = Py, { (x, y) € | J )
=

for problem (P2). Here Py, indicates the probability measure
under hypothesis H,. For both problems, we consider a
generalized Neyman-Pearson criterion wherein we seek to
ensure that all error probabilities decay exponentially in n with
some predetermined slope 4, and simultaneously minimize the
rejection probability subject to these constraints. Specifically,
we seek optimal decision rules Q such that Vi/ C P(2)

1
lim inf ——log Po(err/He) > A, € €[J], 3)

n—00 n

and Qp is minimal. The quantity on the left hand side
of (3) is called the error exponent under hypothesis H;. The
optimality criterion for Problem (P2) is defined analogously.
This approach for identifying an optimal test with rejection
was introduced by Gutman in [4] when he solved Problem (P2)
for N=K = 1.

We define rejection probabilities and rejection exponents
analogously to error probability and error exponents. The
probability of rejection of the decision rule € under hypothesis
‘H¢ is given by

Pa(rej/Hy) = Pr, {y € Qx} @)
for both problem (P1) and by
Pa(rej/He) = Py {(x, y) € Qr} Q)

for problem (P2). The rejection exponents capture the rate of
decay of the rejection probabilities and are defined as

1
lim inf —— log Po(rej/Hy). 6)
n—00 n

Some special cases of problem (P1) are listed below.

1) If M > 2 and N = K = 1, this is just the classical
M-ary hypothesis testing problem, with rejection.

2) For general M, N, K, a variant of this hypothesis testing
problem without rejection is discussed in [12]. The
special case of M = N = K = 2 is considered in
detail. In this case there are exactly two hypotheses.
The authors solve the problem of optimizing one type
of error exponent under a constraint on the other type
of error exponent.

Specific versions of problem (P2) have been studied in the

past. Some special cases of interest are listed below.

1) When N = K = 1, this is the problem studied by
Gutman in [4]. The results and approach of the present
paper are largely based on [4].

2) For M = N = K we studied problem (P2) in a recent
work [1].

In the present paper, we generalize these works to arbitrary
choices of M, N and K.

The main tools we use for proving the results in this
paper are the method of types [14] and Sanov’s theorem [15]
(see also [16]). The following lemma (see [14, Ch. 11]
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for a proof) gives a bound on the probability of observing
a sequence with a specific type, or equivalently, a specific
empirical distribution.

Lemma 1: Let Y be a finite set and s € Y" be an arbitrary
string of length n with entries in Y. Let y € Y" be a random
string drawn i.i.d. under probability law v € P(Y). Then

V4
5 (DT )+ EEED )

<P, =T} < 27?7
where I's and Ty represent the empirical distributions of
s and y respectively. O

Sanov’s theorem is a statement on the behavior of the
probability as n — oo. It characterizes the large deviations
behavior of the empirical distribution of an i.i.d. sequence as
stated below.

Theorem 2.1 (Sanov [15]): Let Y be a finite set. For any
vePXY)ify e Y" is a random sequence of length n drawn
i.i.d. under v, and A C P(Y) such that A is the closure of its
interior, then

lim l logP{I'y € A} = —meiED(,qu). O

n—oon U
The main result of Section IV is based on the following

lemma which gives a bound on large-deviations of a pair of
empirical distributions.

Lemma 2: Let Y be a finite set. For i = 1,2 let y; € Y"
denote a length n string drawn i.i.d. under v € P(Y). Further
assume that y1 and y, are mutually independent. Then we have

2
1
lim ——1logP(> DTy lI3(Ty, +Ty) =4} > 4. O

n—oo n N

We provide a prc;(;f in the appendix.

It is possible to generalize Sanov’s theorem to the infinite
alphabet setting in which Y is countably or uncountably
infinite (see [16]). However, in this paper we focus only on the
finite alphabet setting. The analysis of error probabilities and
optimal tests in the continuous alphabet setting is much more
involved, and are typically based on Cramer’s theorem [16].
We present discussions on potential extensions of the results
of this paper to other settings, including that of continuous
alphabets, in Section V.

Before we present the solutions, we summarize the main
results below.

« Optimal test for the matching problem (P1) with known

source distributions, given in Theorem 3.1.

« Comparison of error exponents and rejection exponents
of the optimal test with the test that ignores constraints
on sequences.

o Optimal test for the matching problem (P2) with
unknown source distributions, given in Theorem 4.1.

III. OPTIMAL MATCHING WITH KNOWN DISTRIBUTIONS

In this section we solve problem (P1). As described
in Section II we use the optimality criterion based on error
exponents given in (3). Let M = {ui, u2,..., um} C
P(Z) as before. Let G be the graph in Figure 3 with
V1 and V, respectively representing M and S, both of
which are described in the statement of problem (P1).
Let M, C {1,2,...,M} x {1,2,..., N} with [M;] = K

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 1, JANUARY 2015
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Fig. 4. The weighted complete bipartite graph G for problem (P1). The
weight of the edge between the i-th vertex in Vj and the j-th vertex in V),
is given by (10). The matching corresponding to the hypothesis H in (9) is
given by the minimum weight matching on this graph with cardinality K.

denote the matching on the complete bipartite graph G under
hypothesis H¢. Any edge e € M, can be represented as
e = (e1, ep) with the understanding that the edge connects
le, and ye, in graph G. Thus, under hypothesis H, we have

K={ue :ecM}=MnNN

representing the probability distributions followed by the
sources that produced the sequences in {y., : ¢ € M¢}. There
are M — K sources in M \ K, which do not produce any
sequence in S, and there are N — K sequences in S that are
produced by sources in N\ K.

Let
DH) = > DTy, lu). ®)
(i, ))eM¢
Consider the estimate for the hypothesis given by
H = H(y) = arg min D(Hc) )

He

where the minimization is performed over all hypotheses.
As each hypothesis is represented by a matching on G with
cardinality equal to K, the estimate of (9) can be interpreted
as the hypothesis corresponding to the minimum weight
cardinality-K matching [13] on G with appropriate weights
assigned to the edges in G. For y; € M and y; € S we let
the weight w;; of the edge between them to be

wij = D(Ty, || 1)- (10)

Weight w;; can be interpreted as a measure of the difference
between distributions x; and I'y;. Figure 4 shows the graph G
with weights added to the edges.

We will now show that a test based on the estimate of
in (9) is asymptotically optimal. For proving optimality we
restrict ourselves to tests that are based only on the empirical
distributions of the observations. Let I'y denote the collection
of empirical distributions:

Ty := (Ty, Typs s Tyy) -
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The restriction to tests based on empirical distributions is
justified in the asymptotic setting because of the following
lemma.

Lemma 3: Let Q = (Q1,Q,...,Qy,Qr) be a decision
rule based only on the distributions {u1, u2,..., 1up}
and {y1,¥2,...,YnN}. Then there exists a decision rule
A = (A1, A2, ..., Ay, AR) based on the sufficient statistics
Ty such that

1 1
lim inf —— log Pa(err/He) = hm 1nf ——log Pg(err/Hy),
n

n—o00o

1 1
lim inf —— log Pa(rej/He) > hm 1nf ——log Pq(rej/Hy),
n

n—oo

forall € € J] and for all choices of U. (I

We provide a proof in the appendix. Thus this lemma
suggests that if one is interested only in optimizing error
exponents and rejection exponents, then tests based only on
I'y are sufficient.

Following Gutman [4], in order to prove optimality we allow
for a no-match zone, i.e., we allow a decision in favor of
rejecting all the M hypotheses. For this purpose, we need to
identify the hypothesis corresponding to the second minimum
weight matching in G. Let

H =H(x, y) = argmin D(H;)

He#H

where H is defined in (9). The choices of H and H have
a simple interpretation in terms of maximum generalized
likelihoods [2] as shown in the lemma below. _

Lemma 4: The selections 'H defined in (9) and H defined
in (11) can be expressed as

(1)

H="H; and H="H; (12)
where
{ =argmax  max_ Py, (y1,¥2, ..., YN)
NCP@)
tel/l MNN=K

¢ = argmax max_ Py, (y1,y2,...,¥N8). O

NcP2)

telJ)H, #'H MAN =K

The above lemma is proved in the appendix. It is easy to
be see that in the special case that M > N = K, the set /' is
fixed and thus the second minimization over the choice of
distributions in A/ is not necessary. In such a case the choice
of H can be interpreted as a simple maximum likelihood
hypothesis. The optimal test with rejection can be described
in terms of H and H as shown in the following theorem.

Theorem 3.1: Let M = {1, 12, ..., um} C P(Z) be a
known set of M distinct probability distributions on the finite
alphabet Z. Let Q = (Q1, Qp, ..., Qy, Q) be a decision rule
based on the collection Uy of empirical distributions such that

Pa(err/He) < 27" forall € € [J] (13)
and for all choices of distributions in N\ K.

Let ﬂ. 1 N|Z| log(n+1)
n

Ae=1{y:D(H) =7, H="Hc},eJ]
and

Ar =1{y:D(H) <7}

(P(2))?

Ly

Ly

Lpr

Bio

Fig. 5. Illustration of the decision regions for the optimal test of Theorem 3.1
for M = N = K = 2, which means that J = 2. Here we define
Ty = {(vi,v2) : Z(zj)er D(jllu;) < A}. Assuming M; denotes the
matching in which y; is matched to y;, and My denotes the matching in
which yp is matched to u» and y, to u1q, it follows that (u, o) € T and
(¢2, 11) € T». We use Bjpp to denote the hyperplane separating L and Ly
defined as By = {(v], 1) : Z(i e D@jllui) = Z(, eM, Djllui)}
or equivalently, Bjp = {(vy,v2) : zZeZ(”l(Z) — 1 (2)) log ,u1(z) = 0}.
Then the optimal decision regions of Theorem 3.1 can be expressed as
Aj={y:Ty e L;} for i € {1,2, R}, where L; are as shown in the figure.
Furthermore, if T'y lies to the left of Bj; in the figure, then = Hy and if
T'y lies to the right of By, then = Hs.

Then

tel[J],YUCPQ)
(14)

1
lim inf —— log Pp(err/H¢) = 4,
n— 00 n

and

Ar C Qg. (15)

O

We provide a proof to the theorem in the appendix. From
the definition of D(H¢) in (8) it is clear that the decision
regions A,’s and Ag proposed in Theorem 3.1 depends on
the sequences in y only through I'y. An illustration of the
various decision regions of the optimal test as functions of
I'y is provided in Figure 5 for a specific example. From the
condition of (15) it is obvious that the probability of rejection
of the decision rules under the decision rule A is lower than
the probability of rejection under the decision rule Q. Thus
the optimality result implies that the test A has lower rejection
probabilities, as defined in (4), than any test € that satisfies
an exponential decay of error probabilities as in (13).

The test can be explained in words as follows. First identify
the hypotheses corresponding to the minimum weight match-
ing and the second minimum weight matching of cardinality
K in G. Accept the former hypothesis if the weight corre-
sponding to the latter exceeds the threshold A, and reject
all hypotheses if the threshold is not exceeded. When
M > N = K, the result of Lemma 4 implies that this test
leads to a rejection if the weights corresponding to the two
most likely hypotheses, H and 'H, are below a threshold, or
equivalently, if the observations can be well-explained by two
or more hypotheses.

We note that the threshold 7 appearing in the definition of
A satisfies 1 — 1 as n — o0. Using Sanov’s theorem we
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Fig. 6. [Illustration of the Oy sets defined in (16) on the probability simplex
P(Y). In the above figure, the sets Q,(z1) and Qp(w2) touch each other
and hence f = Ey(zy, ) as defined in (17). If in addition f = # then
n=_C(y,m2).

show in the proof that the choice of decision regions ensures
that the error-exponent constraint of (14) is satisfied. We also
observe that the offset between 4 and 1 is just N times the
offset in the exponent appearing in the first inequality of (7)
which bounds the probability of observing a type. This offset
is introduced to ensure that the condition (15) is satisfied,
as detailed in the proof.

A. Comparison With the Unconstrained Problem

As we mentioned earlier, the problem studied in this section
differs from ordinary multiple hypothesis testing because of
the prior knowledge that the strings in S were generated by
distinct sources. It is interesting to compare the performance
obtained by using the optimal test that makes use of this
information with the performance of the optimal test that one
would have to use in the absence of this prior information.
Before we proceed we need to introduce some new notations.
Let 7, 71, 72 € P(Y) be distinct probability mass functions
with complete supports on Y. For any # > 0 we define

Qy(@) :=={v e P(Y): Dvlim) < n}, (16)

and

Ey(my, m) =sup{f = 0: Qp(m2) N Qy(my) = 0}.

The function E, (7, m2) is strictly monotonically decreasing
in # in the interval n € (0, D(z2||w1)) (see [14, Sec. 11.7],
[17, Sec. 3.2], [18]). Moreover, if n > D(xy|x1), then
Ey(z1,m3) = 0. The Chernoff information [14] between
71 and 7 is defined as

a7)

C(arm2) =~ inf log >z ()T ()
’ yeY

It is well known [14], [17] that

Ec(x),m) (71, m2) = C(m1, m2).

These quantities are illustrated in Figure 6.

Below we provide two comparisons, the first being a com-
parison of the rejection regions in the two cases, and the
second, a comparison of the error exponents obtained by tests
that do not allow for a rejection region.

1) Comparison of Rejection Regions: In the absence of
prior knowledge that the strings in S were generated by
distinct sources, one is forced to repeatedly perform optimal
multihypothesis testing on each string in S. In other words,
for each string s in S, one repeats the optimal solution
of Theorem 3.1 assuming that the second set S is a singleton
comprising the single string s. These individual solutions can
then be combined to obtain a solution to the original problem
as follows.

Assume M > N =
0 : [N]— [M] defined by

K. Consider the function

o (i) =argmin D(T'y, |lxj), forall i € [N].
JjelM]

(18)

Thus the function & gives the best matching of each string to
one of the sources in M. In fact, it can be shown that & (i)
is the maximum likelihood source that produced y;, just as
in Lemma 4. If & is a one-to-one function, then it corresponds
to a valid hypothesis for the matching problem. We call this
hypothesis H°. If & is not a one-to-one function, or if H%
does not correspond to the true hypothesis, then the strings are
not correctly matched and hence in this case an error occurs.
Furthermore, in order to satisfy the error exponent constraint,
one is forced to reject whenever the individual hypothesis
test on any of the N strings leads to a rejection. Let

DTy, Nl ),

W; = min i €[N]
JEIM\o (i)

The solution to the overall problem is now given by

A¥ ={y:min@; >1H =He, ell] (19
— i€[N]

where the superscript of uc indicates that the solution is

unconstrained and

AY ={y: min w; <7} (20)
= ie[N]

where 7 = 1 — ‘leoiﬂ, is the optimal choice for the

threshold obtained from Theorem 3.1 when the set of strings is

a singleton. The probability of error of this solution is given by

Ppuc (errIHg)
= Py, {yi is incorrectly matched for some i € [N]}
N
< z P3¢, {yi is incorrectly matched}
i=1
where the inequality follows via the union bound. By the
result of Theorem 3.1, each term in the above summation
decays exponentially in n with exponent A and thus we have

1
lim inf ——log Ppuc(err|He) > 4.

n— 00 n

Thus this solution meets the same error exponent constraint
as the optimal solution of Theorem 3.1 that one can use when
the constraint on the strings is known a priori. However, the
rejection regions for the optimal test is a strict subset of the
rejection region of (20), as is evident from the conclusion
of Theorem 3.1. For large n, we have A ~ 1 &~ ], and
thus the sizes of the rejection regions can be significantly
different. The significance can be quantified by comparing
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the probability of rejection of the two tests. For large n, it
is easier to look at the large deviations behavior of these
probabilities for which we use rejection exponents. To keep
the presentation simple, in the rest of this section, we focus
on the setting in which M = N = K. Furthermore, we
assume that the probability distributions in M are distinct.
Let ¢/ € Sym([N]),i € [J] where J = N! denote an
enumeration of all possible bijections from [N] onto itself, i.e.,

¢! [N~ [N], ie€l[J]

represents a unique permutation of [N] for each i. For
each i let u” denote the product distribution Hgiqry X
Hai@) X =+ Hgi(n)- 1t follows, via a straightforward applica-
tion of Sanov’s theorem that the rejection exponents of the
optimal test given in Theorem 3.1 and the test AYC given
in (19) and (20) can be expressed as follows:

1
lim inf —— log P (rej/Hy)
n—oo n

min E;(u°,1°) if C* <
i.jeld]

i) @h
00 else
where C* = min C(,u"[, ,u”j), and
i,jelJ]
i#]
. 1 .
lim inf —— log Ppuc(rej/Hy)
n—00 n
in E;(ui, 1;) if CU%* < 2
min, A wj) i
= i (22)
o) else

where CY%* = r‘ni[111v ] C(ui, uj). Thus the important quantities
i,je

L
that determine tﬁé rejection exponent in the former case
are the minimum value of the E; function and Chernoff
information measured between pairs of 4 distributions, and
in the latter case, the same functions measured between pairs
of u; distributions. These quantities can differ significantly as
we illustrate in Example 3.1 later in the paper.

2) Comparison of Error Probabilities Without Rejection:
An alternative version of the problem studied in this section is
to try to identify an optimal test that does not allow rejection
as a test outcome. When M > N = K, the problem studied
here is just a standard multihypothesis testing problem with
J different hypotheses, one corresponding to each permutation
of N distributions from the set {u1, u2,..., up}. In this
setting, the solution H given by (9) is in fact the maximum-
likelihood solution as shown in (12) in Lemma 4. Also, by
applying Lemma 4 to the setting in which N = 1, it follows
that the solution & of (18) can be expressed as

() = argmax g (). (23)

J€elM]
Thus the solution ¢ of (18) is the maximum likelihood (ML)
solution for the problem studied in this paper when the
constraint on the strings is unknown, i.e., it is the ML solution
when each string has to be independently classified to one
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TABLE I
PROBABILITY MASS FUNCTIONS ILLUSTRATED
1 2
(a) PMFs z11 AND up. (b) PMFs 4% AND u°
(a)

M1
w2 | 1—p

D wlH =

00 01 10 11
ue | 21 =p) 3(p) s(1=p) | 5(p)
p | A=p3i | QA=p)i (p)%

of the sources without any constraints. For classical multi-
hypothesis testing problems without rejection, the maximum
likelihood solution is known to be asymptotically optimal
in terms of maximizing the worst-case error exponent [19]
among all hypotheses. Furthermore, the value of the error
exponent is given by the Chernoff information [19]. In fact
it is straightforward to show that

1 —~
lim inf ——log Py, {H # H¢} = C*, forall £ € [J].

n— 00 n

(24)

Furthermore, if ¢ € Sym([N]) denotes the permutation
function such that y; is drawn from source u,¢(;) under
hypothesis H¢, then

N
1
lim inf —=log Py, | J(G(0) # o/ ()}=C", forall £ € [J]
n—o0 n g iz

(25)

where @ is given by (18).

Comparing with (21) and (22) we see that the the Chernoff
informations C* and CY%* which determine the error expo-
nents for these tests are equal to the critical values of the error
exponent constraints 4 in the test with rejection, below which
the rejection exponent is co. In the following example we show
that the Chernoff informations C* and CY°* for the constrained
and unconstrained problems can be significantly different.
Thus the optimal error exponents and rejection exponents in
the constrained setting can be significantly higher than those
in the constrained setting.

Example 3.1: As a simple example, suppose M = N =
K =2, and Z = {0, 1}. Let uy be given by the Bernoulli
distribution with parameter % and uy a Bernoulli distribution
with parameter p. In this case J = N! = 2 and the two
possible permutations are o' and o where o' is the identity
function on {1,2} and

¢>(1)=2 and 6%(2) = 1.

In this case the distributions ,u"l = p1 X uy and ,u"2 =
o X ui. These distributions are illustrated in Table I.

According to the definitions, in this case, the Chernoff
informations are given by

C* = Cu® 1) and CY* = C(u1, u2).

These quantities are illustrated as a function of p in Figure 7.
As we see in the figures these quantities are different for all
p # % and the difference can be significant. O
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Fig. 7. Comparison of Chernoff informations CY%* and C* for a simple
example with M = N = K = 2 and x| given by the Bernoulli distribution
with parameter % and u, the Bernoulli distribution with parameter p.

Thus we conclude from Example 3.1 and the results of (21),
(22), (24), and (25), that by using the unconstrained solution
rather than the constrained solution we get a performance
improvement in terms of the error exponent. However, the
unconstrained solution has a practical advantage over the
optimal solution in terms of the computational complexity of
the algorithm for determining the solution, as we elaborate
in Section V.

IV. OPTIMAL MATCHING WITH
UNKNOWN DISTRIBUTIONS

In this section we solve problem (P2). The structure of the
solution is very similar to that we obtained in Section III.
As before we use the optimality criterion based on error
exponents given in (3). In this section we use G to denote the
graph in Figure 3 with V; and V), respectively representing
S1 and Sy, both of which are described in the statement of
problem (P2). Let M, C {1,2,..., M} x {1,2,..., N} with
IM¢] = K denote the matching on G under hypothesis Hy.
Analogous to our notation in Section III, edge e € M, can
be represented as e = (eq, e2) with the understanding that
the edge connects x,, and y,, in graph G. Recall that M
(V) represents the probability distributions followed by the M
(N) sources that produced the sequences in S (S2), and that
MNN = K with || = K. Thus there are M — K sequences
in §; and N — K sequences in &> that are not produced by
sources in K.

Let

DH)) = D DTyl +Ty)
(@, j)eMe

+D(Ty,; | 3(Ty, +Ty))). (26)
Consider the estimate for the hypothesis given by
H= arg min D(H¢) 27
He

This test can be interpreted as a minimum weight cardinality-
K matching [13] on the complete bipartite graph G with
appropriate weights assigned to the edges in G. For x; € &)
and y; € & let the weight w;; of the edge between them be
given by

wij = D(Ty 15Ty + Ty)) + DTy, 3Ty, +Ty))).  (28)
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Fig. 8. The weighted complete bipartite graph G for problem (P2). The
weight of the edge between the i-th vertex in V| and the j-th vertex in V;
is given by (28). The matching corresponding to the hypothesis H in (27) is
given by the minimum weight matching on this graph with cardinality-K .

As the sequences x; and y; have equal lengths, the quantity
%(in +T'y;) appearing in (28) can be interpreted as the
empirical distribution of the concatenation of x; and y;. Thus
weight w;; can be interpreted as the sum of two quantities —
the first quantity representing a measure of the difference
between sequence x; and the concatenated sequence, and
the second quantity representing a measure of the differ-
ence between y; and the concatenated sequence. Effectively,
w;j can be interpreted as a different distance measure between
sequences x; and y;. Figure 8 shows the graph G with weights
added to the edges.

We will now show that a test based on the estimate of
H in (27) is asymptotically optimal. For proving asymptotic
optimality we restrict ourselves to tests that are based only on
the empirical distributions of the observations. Let I'yy denote
the collection of empirical distributions:

Txy = (Txps Tags oo os Ty Ty Ty oo, Ty ).

The restriction to tests based on empirical distributions is
justified in the asymptotic setting because of the following
lemma.

Lemma 5: Let Q = (Q1,Qp,...,Q7,Qr) be a deci-
sion rule based only on the sequences {x1,x2,...,xXm}
and {y1,¥2,...,YnN}. Then there exists a decision rule
A = (A1, A2, ..., Ay, AR) based on the sufficient statistics
I'xy such that

1 1
lim inf —— log P (err/H,) > lim inf —— log Po(err/Hy),
— 00 n

n— 00 n n
1 1
lim inf ——log Pa(rej/H¢) > lim inf —— log Po(rej/He).
n—o00 n n—oo n
forall € € [J] and all U C P(2) O

We provide a proof in the appendix. Note that Ag and Qg
are finite sets, thus their cardinality is well-defined.

In order to ensure exponential decay of the error
probabilities at a prescribed exponential rate, we allow a
no-match zone, i.e., we allow a decision in favor of rejecting
all the M hypotheses. For this purpose, we need to identify
the hypothesis corresponding to the second minimum weight
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matching in G. Let

H = argmin D(Hy)
Hf#":z
where H is defined in (27). As in Section III, the choices
of H and H have a simple interpretation. based on maximum
generalized likelihoods as was the case in Lemma 4.

Lemma 6: The selections H defined in (27) and H defined
in (29) can be expressed as

(29)

'ﬁ:argmax max Py, (1, ..., xN, V1,...,98),  (30)
tels]) MNcP@)
IMNN|=K
H= arg max max_ _ Py, Gr, ..o, xn, 1, .., y8). (31D
: ~ MNCP(Z ]
celnH AR NG R
O
The above lemma is proved in the appendix.

As in Section III, the optimal test with rejection can be
stated in terms of 7 and H as described in the following
theorem.

Theorem 4.1: Let Q = (Q1,Q,...,Qy,Qr) be a
decision rule based on the collection Uxy of empirical
distributions such that

(32)

and for all choices of distributions in K, M\ K, and N'\ K.
Let :1' —)_ (M+N)|Z|log(n+1)
—

Pa(err/He) <27, forall €€ [J]

Ae=1{@,y): DH) =L, H="He, CelJl,
and
Agr = {(x,y) : D(H) < }.
Then
lim inf —% log Pa(err/He) > 4, € €[J1,YU CPZ) (33)
and

Ar C Qpg. (34)

d
We provide a proof to the theorem in the appendix. From
the definition of D(H) in (26) it is clear that the decision
regions Ay’s and Apg proposed in Theorem 4.1 depends
on the sequences in x and y only through I'yy. From the
condition of (34) it is obvious that the probability of rejection
of the decision rules under the decision rule A is lower than
the probability of rejection under the decision rule Q. Thus
the optimality result implies that the test A has lower rejection
probabilities, as defined in (5), than any test Q that satisfies an
exponential decay of error probabilities as in (32). For N =1,
this result is similar to that given by Gutman in [4, Th. 2].
However, the rejection condition in this solution is different
from that provided by Gutman and can be interpreted as the
condition under which the second lowest weight matching has
a weight below a threshold.
The test can be explained in words as follows. First identify
the hypothesis corresponding to the minimum weight matching
and the second minimum weight matching of cardinality

K in G. Accept the former hypothesis if the weight corre-
sponding to the latter exceeds the threshold 7, and reject all
hypotheses if the threshold is not exceeded. In the case of
M = N = K, it follows via Lemma 6 that the optimal
choice of the hypothesis is given by the maximum generalized
likelihood hypothesis, and that a no-match decision is selected
when the second highest generalized likelihood exceeds a
threshold. In other words, this test leads to a rejection if the
observations can be well-explained by two or more hypotheses.

We note that the threshold 1 appearing in the definition
of Ag satisfies 2 — 1 as n — 00. Using a generalization
of Lemma 2 we show in the proof that the choice of decision
regions ensures that the error-exponent constraint of (33) is
satisfied. We also observe that the offset between 4 and A
is just (M + N) times the offset in the exponent appearing
in the first inequality of (7) which bounds the probability of
observing a type. This offset is introduced to ensure that the
condition (34) is satisfied. The detailed arguments are in the
proof.

A. Comparison With the Unconstrained Problem

As in Section III, it is interesting to compare the solution
of Theorem 4.1 with the solution that one would have to use
without the prior knowledge that the strings in Sy (also Sp)
are produced by distinct sources. We follow the same steps
as in Section III-A. Assume M = N = K. In the absence of
prior knowledge, a reasonable strategy is to try to sequentially
match each string in Sy to some string in Sy. For each i € [N]
define

& (i)=argmin D(T'y, [ 3(T; +Ty,)) + D(Ty; 13 (T; +T,)).
J€ElM]

(35)

The function & maps every string in S to some string
in S;. If ¢ is a one-to-one function, then it corresponds
to a valid hypothesis for the matching problem. We call
this hypothesis H°. If 5 is not a one-to-one function, or if
HC does not correspond to the true hypothesis, then the strings
are not correctly matched and hence in this case an error
occurs. Furthermore, in order to satisfy the error exponent
constraint, one is forced to reject whenever the individual
hypothesis test on any of the N strings in S; leads to a
rejection. For i € [N], let

D= _min  D(ly] 3T +T3))+D(Ty, |5 (T +Ty,)).

JelMN\o

The solution to the overall problem is now given by

AP ={(x,y): min i = THC =He), € elJ] (36)
- 1S

where the superscript of uc indicates that the solution is
unconstrained and

AR = {(x,y) : min @ <7) (37

where 7= 1 — W*'l)lz‘nw, is the optimal choice for the
threshold obtained from Theorem 4.1 when the second set
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of strings &> is a singleton. The probability of error of this
solution is given by

Ppuc (errIHg)
= Py, {yi is incorrectly matched for some i € [N]}
N
< z P3¢, {yi is incorrectly matched}
i=1
where the inequality follows via the union bound. By the result
of Theorem 4.1, each term in the above summation decays
exponentially in n with exponent A and thus we have

1
lim inf ——log Ppuc(err|He) > A.

n— 00 n

Thus this solution meets the same error exponent constraint
as the optimal solution of Theorem 4.1 that one can use when
the constraint on the strings is known a priori. However, the
rejection regions for the optimal test is a strict subset of the
rejection region of (37), as is evident from the conclusion
of Theorem 4.1. These regions can be visualized using the
graph G of Figure 8. The rejection region Ag of the optimal
test of Theorem 4.1 corresponds to all sequences (x, y) such
that there are two cardinality K matchings on G with weight
less than or equal to £ where the weight of a matching is given
by (8). However, the rejection region A'Y of the unconstrained
solution is the set of all (x, y) such that some node on the
right hand partition has two edges with weight less than or
equal to 7. For large n, we have Ir~T~ A, and thus the
sizes of the rejection regions can be significantly different.
As in Section III-A.1, it is possible to use Sanov’s theorem to
quantify the significance by comparing the rejection exponents
of the two tests. Similarly it is possible to compare error expo-
nents obtained by tests that do not allow rejection. However,
the analysis is much more involved as in the problem (P2) we
now have two strings from each source, and hence analytical
expressions for the rejection exponents are difficult to obtain.
We therefore avoid the details in this paper.

V. PRACTICAL ASPECTS, EXTENSIONS
AND CONCLUSIONS

We proposed asymptotically optimal solutions to two
hypothesis testing problems that seek to match unlabeled
sequences of observations to labeled source distributions or
training sequences. Under the constraint that the observed
sequences are drawn from distinct sources, the structure of
the optimal solution is significantly different from the uncon-
strained solution, and can lead to significant improvement in
performance as we saw in Sections III-A and IV-A.

An important practical aspect is that of the complexity of
the algorithms required to identify the optimal solutions of
Theorem 3.1 and 4.1. The unconstrained solutions of (18)
and (35) are straightforward to identify because these can
be obtained by sequentially matching each string in S or &2
to one of the M sources in M or one of the M strings
in S;. This leads to a time-complexity of O (M N). The optimal
(constrained) solutions are in general more complex to identify
as a combinatorial optimization problem has to be solved
to identify H and H defined in ), 27), (11) and (29).

Nevertheless, these solutions can be identified by solving
minimum weight bipartite matching problems on the graphs G
which can be executed efficiently in polynomial-time.

The first step in implementing the solutions to
problems (P1) and (P2) is to identify the estimates
of (9) and (27). As discussed earlier, the task of identifying
these estimates is equivalent to solving a minimum weight
cardinality-K matching problem on a weighted complete
bipartite graph. If M = N = K, then this problem can
be solved using the Hungarian algorithm [20], which has a
time-complexity of O(N3) (see [21] and references therein).
When M # N, the Hungarian algorithm can be adapted to
run in O(MNK) as detailed in [22]. Thus the complexity of
this algorithm is roughly K times more than that of the naive
unconstrained algorithm. This problem can also be solved
using a polynomial time algorithm based on the theory of
matroids (see [23, Ch. 8]). In practice the complexity can often
be reduced significantly. For instance, in the solution of (9), if
some empirical distribution I'y; is not absolutely continuous
with respect to some u;, then the edge connecting the
corresponding vertices in G can be removed, as it will never
be selected in the minimum weight matching. The same step
can be performed if the empirical distributions I'y; and I'y;
have disjoint supports in the solution of (27). If the number of
remaining edges in the graph is E, then, when M = N = K,
the Hungarian algorithm can be adapted to run with a
complexity of O(EN + N2 log N) [24] and when M # N,
with a complexity of O(EK + K?*log(min{M, N})) [22].
Once the matchings H of (9) and (27) are identified, the
matchings corresponding to (11) and (29) can also be
identified in polynomial time. A naive algorithm for this
would be to sequentially repeat the same algorithms on the
graphs obtained by removing edges appearing in H one at
a time from the graph G. The minimum weight matching
obtained in all repetitions would correspond to the minimum
weight matching on the original graph § that is not identical
to H. In many practical applications this step is unnecessary
as rejecting all hypotheses is not acceptable. In such cases one
can use the estimates of (9) and (27). A practical application
of such a solution and experimental evaluation of the method
is reported in [1] where M = N = K ~ 1500 and for
M = N = K ~ 47000 in [25].

The proposed solution can be extended in many directions.
An important generalization is with respect to the requirement
that all sequences have the same sample size. In practice, this
is often not the case. For example in problem (P1), it might
be the case that each string y; has a length n; = a;n with
a; > 1. In such a case it might be possible to extend the
result of Theorem 3.1 by adapting the definitions of D(Hy)
in (8) to

D(Hp) = D a;D(Ty,llu)
(i, j)eM¢

and redefining the threshold 7 in the statement of the theorem

~ N ,
to 7 = 4 — ZZi= gt Ny ihis definition the optimality
result of Theorem 3.1 is expected to hold. Moreover the

maximum likelihood interpretation of Lemma 4 continues to
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hold for M > N = K. Alternatively, if all n; > n and all n;
are approximately equal, then the test proposed in Theorem 3.1
can still be used, and the probability of error and probability
of rejection are expected to be lower than those expected when
n; = n for all i.

Similarly, the solution to problem (P2) can be generalized
to the scenario in which the sequences have distinct lengths
by following Gutman [4]. Let n] = ain denote the length
of sequence x; € S; and nl = ajy. n denote the length of
sequence y; € Sy with al’.‘ > 1 and o’ > 1 for all i, j. Then
the definition of D(H,) in (26) can be changed to

n* niTy, + 0Ty,
PO _zD(pX’_”M)

n x Y
e i
ni ni Ty, —i—n?l“yi
+Lp(r,|——
n ! nt + n;

and the threshold 7 in the statement of Theorem 3.1 can be
changed to

~ 1Z| (Zg‘il log(n} + 1) + XV log(n) + 1))
T=A- .
n

With this definition the optimality result of Theorem 4.1 is
n'l»*l"X[Jrn‘]‘.'l"yi

expected to hold. It can be noted that e
it

= I'y,; where

tij is the concatenation of x; and y;.

Throughout this paper we focused on source probability
distributions supported on a finite alphabet Z. It might be
possible to extend some of these results to probability distrib-
utions on continuous alphabets. For the problem with known
sources studied in Sgction III, we know from Lemma 4, that
the choices H and H correspond to the maximum-likelihood
hypothesis, and the second most likely hypothesis. Hence, even
for continuous alphabets, these hypotheses can be identified
using standard techniques [2]. However, we recall that the
optimal test of Theorem 3.1 requires us to compare D(H)
to a threshold. For continuous distributions the empirical
distributions are in general not absolutely continuous with
respect to the true distributions and thus D is always oo.
Thus the definition of the decision regions for the optimal
test have to be modified by replacing the Kullback Leibler
divergence with some appropriately defined function of the
log-likelihood function and by setting the thresholds intelli-
gently. A potential approach is to adapt the method proposed
for binary hypothesis testing in [26] to multiple hypothesis.
The analysis of the error exponents and rejection exponents
in such continuous alphabet problems are typically performed
using Cramer’s theorem rather than Sanov’s theorem. The error
exponent result of (24) is expected to continue to hold for a
test that always decides in favor of H without rejection.

The results of Section IV are more difficult to general-
ize to source distributions on continuous alphabets, because,
in general, the empirical distributions of all sequences are
expected to have mutually disjoint supports. However, if the
source distributions are constrained to lie in some parametric
family, for example, an exponential family [2] such as the class
of Gaussian distributions of unknown means and variances

equal to unity, it might be possible to identify optimal proce-
dures via the maximum generalized likelihood interpretation
of Lemma 6. This idea of restricting to finite dimensional
parametric families is similar to the dimensionality reduction
approach prescribed in [10] for universal hypothesis testing.
Theses ideas are also useful in applications in which the
alphabet size |Z| is large. As described in [10], test statistics
for hypothesis testing problems on large alphabets suffer from
large variance for moderate sequence lengths, and thus lead
to poor error probability performances. Dimensionality reduc-
tion techniques like those proposed in [10] are an effective
technique to address these concerns.

The solutions proposed in this paper for i.i.d. sources can
also be easily extended to finite memory Markov sources on
finite alphabets following the approach in [4]. Furthermore,
it is possible to study the weak-convergence behavior of the
test statistics of (9) and (27) following the method outlined
in [27]. Using such an analysis it is possible to estimate the
error probabilities for finite sample sizes.
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APPENDIX

For proving the various results we need some new notation
and a few lemmas. For any sequence s € Z" we use T; to
denote the type class of s, i.e., the set of all sequences of
length n with the same empirical distribution as s. The fol-
lowing lemmas are well known. For proofs see [14]. The first
lemma below is just a restatement of Lemma 1.

Lemma A.1: For every p € P(Z) and every s € Z",

L onD(@ilp) —nD(T,p)
mz < Pp(TS) <2
where P, denotes the probability measure when all observa-
tions in s are drawn i.i.d. according to law p. O

Lemma A.2: For any sequence s € Z" and any v € P(Z2)
we have

v(s) < 27T, O
The following lemma is easy to see.
Lemma A.3: For finite set Z, we have

z 2—n(H(Ty) < (n+ 1)|Z\_

seZh
Proof: Let P, denote the set of all types with denomina-
tor n. Let T(P) be the set of sequences in Z" with type P.
We have

z 7—n(H(Ts)) _ Z |T(P)|27"H(P) (38)
seZn PeP,
(a) (%)
<S> 1=IPl <+ D? (39
PeP,
where (a) and (b) follow from [14, Ch. 11]. |

The following lemma is also required for some proofs.
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Lemma A.4: For ui,ua,...,un € PZ) let P9 =
U1 X W2 X ...un denote the product distribution. For
n € P(ZN), let & denote the product distribution obtained
from the marginals of @, i.e, T = m, X w2, X ...7TN,,
where wy, . denotes the marginal distribution of & with respect
to the k-th component. Then we have

D(# | uP*?) < D(x || P,
Proof: We know that

logz (X1, X2,..., XnN)
D [|1P*%) = Ex, x,....x
b2 N HiE[N] ,Ui(Xi)
where (X1, X2, ..., Xn) has joint distribution 7. Simplifying
we have
D(x || 1P"o%)

— Eyx, x, x.log 7(X1,X2,..., XN)
BBt Hie[N] m;, (X;)

HiE[N] ﬂi,.(Xi)
1 il S
" Og( Hie[zv] wi(Xi) )

r(X1,X2,...,XN)
= EX1,X2,...,XN 10g D(”i,.”ﬂi)
Hie[N] mi, (Xi) ie[zN]
= D> HX) - H(X1,X2,....Xn)+ > D(xi.l|u)
ie[N] ie[N]
> > D(m |lui) = DG || uP9).
ie[N]

where H(.) denotes Shannon entropy and the inequality
follows a well known information theoretic inequality between
the joint Shannon entropy of random variable and the sum of
their individual Shannon entropies [14]. [ |

A. Proof of Lemma 2
Let A={(x,y):xe¥Y", yeY" andD(T, ||%(FX +Iy)+
D(Fy||%(1"x +TIy)) > 2}. Then we have

P{1.y2) € A} = D v(@)(y)
(x,y)€A

@ z 2=2nH(§(T+Ty))
- (x,y)eA
— z Z—H(H(Fx)'f‘H(ry))
(x,y)eA
9=n(D(Tx || 5 (Tx+Ty)+D(Ty [ 5 (Tx+Ty)))

(%) z o—n(H(Tx)+H(T))+7)

(x,y)eA
S 2—}’12 Z 2—}’1H(FX) Z 2—}’1H(Fy)
xeY yeY

< i 4 12V

where (a) follows from Lemma A.2 applied to the concatena-
tion of x and y, (b) from the definition of A, and (c¢) from
Lemma A.3. Thus

1
lim ——logP{(y1, y2) € A} > 4.
n—»oo n

B. Proof of Lemma 3

Consider an arbitrary tuplet of sequences (y1, ¥2, ..., YN)-
Let T = (Ty,, ..., Tyy) denote the joint type-class of all the
sequences, i.e., it is the set of all tuplets of sequences with the
same joint type as (y1, y2,..., YN):

T ={(z1,...,28) 1 zi C Z"andl';, =Ty, for all i € [N]}.
Any (¥},¥5,...,yy) € T belongs to exactly one of the
sets Qp,Q),...,Q7,Qr. We modify the decision rule Q

as follows. For any joint type 7 we let Ay include T if
Q¢ contains the most number of the sequences of T, for
¢ ef{l,2,...,J, R}. In case of ties we break them arbitrarily
and include T in exactly one of the A¢’s.

Let qiy denote the probability distribution of the source that
produced sequence y; under hypothesis H,. For any hypothesis
‘He with € € [J] and any joint type T C Ay with k € [J]U{R}
we have by Lemma A.1 and definition of Ag:

1
PH({Qk} > PHf{Qk NT} > J——HPHf{T}

(a) 2—n(5(n)+2§\/:1 D(r)'j ”l]i)))
>

- J+1
where (a) follows via the first inequality in the statement of
Lemma A.l1 with §(n) = M Combining the above
result along with the definition of A, and Lemma A.1, we
have

(40)

Py (A} = D Py T}
T:TCAx
@ 3 ,(Z oy lg)))
T:TCAx
> 20 4 1Py, ()
T:TCAx
722" (J + 1Py, (1}

(b)
=

IA

where (a) follows via the second inequality in Lemma A.1l
and (b) via (40). The quantity 7, represents the number of
joint types of length n. Since IOgTT” — 0 [14] and d(n) — 0
we obtain the inequality relations claimed in the lemma by
choosing k € [J] and k = R.

C. Proof of Lemma 4
Under H, let

IL=4{:

3 No edge in My is incident on y;}.

Also let g;' denote the probability distribution of the source
that produced sequence y;. We have

argmax max_ Py, (yi,¥y2,...,yn8)
telJ] NcP(@2) ¢
MNN=K

= arg max Z IOgHﬂi(yj(k))

LU (i jyeM, k=1
n
Yy
+> max log | B EHIG))
je[)(qj k=1
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Dargmax > S ary, () log(ui(2)
telJ]

(i./)eMe \zeZ
n
+ > log [ Ty (v k)
jq{j k=1
= argmax (=H(Ty) = DIy llu) = D H(Ty))
UL G jyemy jett
=argmin Y DTy llu)+ D, H(Ty)
LT (i jrem, jeN]
= arg min D(H;)
telJ]

where (a) follows from the fact that the likelihood of a string
is maximized by the empirical distribution.

D. Proof of Theorem 3.1
As before, let

If = {j : No edge in M is incident on y;}
denote the indices of the N — K sequences in S that are
produced by sources in N\ K. Similarly, let

Iﬁ = {j : No edge in M is incident on x}.
denote the indices of the M — K sources in M\ K. We continue
to use ¢; to denote the probability distribution of the source
that produced sequence y;. Let

Ae={y:DMH) =7}, e[l

The probability of error of decision rule A under hypothesis
‘H, is given by

J

Pa(err/He) =Py, {y € U Akt < Py, (Ag).

k=1
kAL

We observe that D(Hy) in the definition of A¢ is a sum of the
Kullback Leibler divergences between the empirical distribu-
tions of each y; and some ;. The empirical distributions of
each y; can be interpreted as the marginal of a joint empirical
distribution of y interpreted as a sequence of length n drawn
from ZV. We also note that 4 — 4 and n — oco. The result
of (14) follows directly by applying Sanov’s theorem [16]
combined with the conclusion of Lemma A.4.

For proving (15) we observe that for any test based on
empirical distributions, we have

N
274 > Po(err/He) = Z quy'(yj)
Uk Qxk j=1

where we use q; (s) to denote the probability that sequence s
was generated i.id. under law gj. Simplifying further

we have,
2= > a7 oo [Ta)on
Ukt Qi ielf JEIL
(é) Z 2—nzi51§(D(l"yil\q;v)+6(n))
TCUk¢ka
SO LT

" el (Dr,/lg)+5m))
5" el (D(Fy} Hq}')+(5(n))

where (a) follows from Lemma A.1 with T = (Ty,, ..., Tyy)
Zj1 1
and o(n) = EHEUED and (v, 35,0, ¥0) € Uk
and all distributions in A"\ £ C P(Z) are arbitrary. If we
specifically choose A/ \ K such that q]y. =TI, forall j e ny
we get !
y
b= Y (Drylla)) + No)
j¢lt
which further implies that
Uj2Qj C Ag. (41)

Now let
Hence,

Combining with (41) we get

Ae=0jzeNj DNz Urj Qi D Qp
and thus

A% =UrAr = UrAp D UpQyp = Q5.
Hence

Ag C Qg.

E. Proof of Lemma 5

This proof is very similar to that of Lemma 3. Let
(X1, %2, ..., XM, Y1, ¥2,...,YN) be an arbitrary tuplet of
sequences. Let T = (Ty,, ..., Txy, Ty, ..., Tyy) denote the
joint type-class of all the sequences, defined similarly to the
definition in the proof of Lemma 3 as

T = {(wla"',wMazla'°',ZN) : wiazj Czn’rwi = FX,‘
and I';; =T, for all i € [M], j € [N]}.

Any (x{,X5, ..., X}, ¥}, Y5, ---»¥y) € T belongs to exactly
one of the sets Qp, Qj, ..., Q7, Qr. We modify the decision
rule Q as follows. For any joint type T we let A, include T
if Q¢ contains the most number of the sequences of T, for
¢e{l,2,...,J, R}. In case of ties we break them arbitrarily
and include T in exactly one of the A/’s.

Under hypothesis Hy, let g denote the probability dis-
tribution of the source that produced sequence x; and qiy
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denote the probability distribution of the source that produced
sequence y;. For any hypothesis £ € [J] and any joint
type T C Ay with k € [J]U {R} we have by Lemma A.l
and definition of Ag:

1

5 (00X, DIy laf) ), DT, la)))

>
- J+1

where d(n) = w. Combining the above result
along with the definition of Ay and Lemma A.1, we have

P, {Ak} = D Py dT)

TCAg

2 2‘"(2?11 DI lgH)+X ), DTy, la)))
TCAg

D 20T + 1Py, ()

TCAg

72" (J + 1Py, ()

IA

IA

IA

where 7, represents the number of joint types of length n.
Since IOgTT” — 0 [14] and d(n) — O the results follow by
choosing k € [J] and k = R.

FE. Proof of Lemma 6

We know that there are M — K sequences in Sy and N — K
sequences in S that are not produced by sources in K. We
represent the indices of these sequences under hypothesis H,
by the following notation

I)f = {j : No edge in M, is incident on x;} 42)

and

If, = {j : No edge in My is incident on y;}. (43)

Furthermore, we let g denote the probability distribution
of the source that produced sequence x; and qiy denote the
probability distribution of the source that produced
sequence ;.

We first observe that if x,y € Z" are two length n
strings drawn under the same distribution from P(Z), then
the maximum likelihood distribution that produced it is given
by %(Fx +T'y), the empirical distribution of the concatenated
string. In other words

argmax p(x)u(y) = 3(Ty +Ty) (44)

ueP(2)

Now we have

log Py, (X1, %2, ..., XM, Y1, Y25 - - YN)

Ty ()4
= > Slog g @) O

(i,j)eMy zeZ

+ D> log (g} (2))" @

iell zeZ

+ 2> loglq] )"

iclt
jel zeZ

By (44)
max  log Py, (X1, X2, ..., XM, Y1, V2, - -,
A, log H, (X1, X2 Ms Y1, )2 YN)
IMNN|=K
> S (Fx,' (2) + Fy;(Z))”(r'*i(z”r’f(z”
— Og - 4
(i,j)eMy zeZ 2
+ DD log (Ty, ()"
iell zeZ
+ 37 > log (T, (@)@
jelf z€Z
Hence
argmax max logPy, (x1, ..., XM, V1s .-,
fge[l] A,  log H, (X1 M Y1 YN)
IMNN|=K

= arg min Z {DC4 15Ty +Ty)))
tets] ;4
(i,j)eM¢

+D(Ty, [|5(Ty, + Ty}
ED LS WL
ie[M] J€EIN]
=argmin > {D(ylI3(Ty, +Ty,))
VT G jyeme
+D(Ty, [I5(Ty, +Ty,)}
where the last step follows from the fact that the sum of

the entropy terms is equal for all hypotheses. The conclusion
of (30) follows directly, and that of (31) by a similar argument.

G. Proof of Theorem 4.1

We use the notation of If and ny introduced in (42) and (43).
Furthermore, as before let g (respectively qiy ) denote the
probability distribution of the source that produced sequence
xi (yi)-

This proof is very similar to that of Theorem 3.1. Define

Ae={@x.y): D(He) = 2}, € € []].

Clearly,
Aj C Agforall j#¢
and hence
UjpeAj C Ujze (Migj Ax) C Ac
Therefore,

INCULAESD I | FACHN | KCH)

Ukze Ak ielf Jjelf
[T 42 Ge)ges e
EEMf
(@) :
<D g [0
A¢ iel! jel!
[T @, ®enaz, Ger) (45)
EEMf
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where (a) follows from the fact that under H, for all e € My
we have g} = q2,. It My = {e!, &2, ..., eX}, let

A= {1, X025 5 XK Vols Y25 o5 k) 1 (X, Y) € Ach.

From the definition of /~\g it is evident glat for a fixed
matching M, the membership of (x, y) in A¢ depends only

on A¢. Hence (45) becomes:

Patert/He) < D T 48 (el (ve)

K[ eEM(

b
(S) Z H 2—2nH(%(FX€I+Fy82))

X{ EEMf

Z 2—2}’1 ZeEM[ H(% (erl +l"y82 ))

Ac

where (b) follows from Lemma A.2. Note that

2H((Ts, +Ty,)) = H(Ty,) + H(Ty,)

+D(Ty, 13Ty, +Ty,))
+D(Ty,, 3Ty, +Ty,))

Thus

Pp(err/He) < 227”'1*” e, (H e +H(Tey))
Ac

<2 (1) ™

_ 27111 (n + 1)2K\2|
< 2711(/1+0(l°%))

where (c) follows from Lemma A.3. This proves (33). This
proof can be interpreted as an extension of Lemma 2 to K
pairs of empirical distributions.

For proving (34) we observe that for any test based on
empirical distributions, we have

27 > Po(err/Hy)
M N
= > Jlaeo][]a0on
Uk20Q i=1 j=1

> Jlare [[aon

Uizt iel! jelt

H qz (xe, )qz (Vey)

eEM[
@ —n Y. _e(D(Ty;llgi)+0(n))
> z 2 iely i1
T CUpr Qe
51 et (P 1))
51 Zeetty (D Ty g2+ DTy gty )+20m))
5" eyt (DT lg)0(m)
5, DI (D(ry} |\q~,‘-‘)+a(n))

S e, (P a0 1z 200

with T =
|Z] log(n+1)

where (a) follows from Lemma A.l

(Txys s Taygs Tyys o5 Tyy)  and  S(n) .
and (X[, X}, ..., X}, Vs Y5> Yy) € Urze€ and all
distributions in U C P(Z) are arbitrary. If we specifically
choose U such that g;, = %(F"él + Fyéz) for all e € Mg, and

g =Ty foralli e I{ and g = Ty, forall j € I we get

2= > (DM 13Ty, +T,)

ecM,
+D(Ty, 1Ty + ryéz))) + (M + N)3(n)

which further implies that

Uj2eQ; C A (46)
Now let

Kg =N j#;{ j-
Hence,

UeAe = {(x, ) : D(H) = 7} = UfA,.

Combining with (46) we get

Ae=0NjzeRj D Njse Untj QD Q

and thus
A% =UpAr = ngg D UeQp = Q%.
Hence
Ag C Qpg.
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