000205398 001__ 205398
000205398 005__ 20181203023753.0
000205398 022__ $$a0010-0757
000205398 02470 $$2ISI$$a000347246500008
000205398 0247_ $$2doi$$a10.1007/s13348-013-0102-7
000205398 037__ $$aARTICLE
000205398 245__ $$aConditionally flat functors on spaces and groups
000205398 269__ $$a2015
000205398 260__ $$bSpringer-Verlag Italia Srl$$c2015$$aMilan
000205398 300__ $$a12
000205398 336__ $$aJournal Articles
000205398 520__ $$aConsider a fibration sequence of topological spaces which is preserved as such by some functor , so that is again a fibration sequence. Pull the fibration back along an arbitrary map into the base space. Does the pullback fibration enjoy the same property? For most functors this is not to be expected, and we concentrate mostly on homotopical localization functors. We prove that the only homotopical localization functors which behave well under pull-backs are nullifications. The same question makes sense in other categories. We are interested in groups and how localization functors behave with respect to group extensions. We prove that group theoretical nullification functors behave nicely, and so do all epireflections arising from a variety of groups.
000205398 6531_ $$aLocalization
000205398 6531_ $$aFlatness
000205398 6531_ $$aFiberwise localization
000205398 6531_ $$aVariety of groups
000205398 700__ $$uHebrew Univ Jerusalem Gigat Ram, Einstein Inst Math, IL-91904 Jerusalem, Israel$$aFarjoun, Emmanuel Dror
000205398 700__ $$aScherer, Jerome
000205398 773__ $$j66$$tCollectanea Mathematica$$k1$$q149-160
000205398 909C0 $$xU10968$$0252139$$pUPHESS
000205398 909CO $$pSV$$particle$$ooai:infoscience.tind.io:205398
000205398 917Z8 $$x144617
000205398 937__ $$aEPFL-ARTICLE-205398
000205398 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000205398 980__ $$aARTICLE