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Abstract. We prove that iterated Whitehead products of length .nC1/ vanish in any value
of an n-excisive functor in the sense of Goodwillie. We compare then different notions
of homotopy nilpotency, from the Berstein–Ganea definition to the Biedermann–Dwyer
one. The latter is strongly related to Goodwillie calculus and we analyze the vanishing of
iterated Whitehead products in such objects.
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Introduction

Goodwillie calculus, [8, 9], gives a systematic way to approximate a functor (say
from spaces to spaces) by a tower of functors satisfying higher excision properties.
When applied to the identity functor, this tower reflects remarkable periodicity
properties, as investigated by Arone and Mahowald, [2]. More recently Bieder-
mann and Dwyer, [5], used the stages of the very same tower to construct (simpli-
cial) algebraic theories in the sense of Lawvere, [15]. The homotopy algebras over
these theories are called homotopy nilpotent groups, and the class of nilpotency
corresponds exactly to the chosen stage of the Goodwillie tower.

Our objectives in this article are twofold. First we investigate why n-excisive
functors should be related to homotopy nilpotency in the classical sense. In the
early sixties, Berstein and Ganea introduced a concept of nilpotent loop spaces, [4].
They require that an iterated commutator map be trivial up to homotopy, which im-
plies in particular that iterated Samelson products vanish in the loop space �X ,
or equivalently, that iterated Whitehead products vanish in X . Already G. White-
head [20] had the insight that the (J. H. C.) Whitehead products satisfy identities
which reflect commutator identities for groups. Work of Hopkins, [12], drew re-
newed attention to such questions by relating this classical nilpotency notion with
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120 B. Chorny and J. Scherer

the Nilpotence Theorem of Devinatz, Hopkins, and Smith, [7]. We prove the fol-
lowing.

Theorem 2.1. Let F be any n-excisive functor from the category of pointed spaces
to pointed spaces. Then all .nC 1/-fold iterated Whitehead products vanish in
F.X/ for every finite space X .

Our result shows in fact that �F.X/ is a homotopy nilpotent loop space in
the sense of Ganea and Bernstein for every n-excisive functor F and every finite
space X .

The difficulty of the proof resides in finding a way to take into account the global
property of the functor (to be n-excisive) and not to focus on a particular value
F.X/. Except for this, the proof uses the general theory of Goodwillie calculus.

In the second part of the article we look more closely at the relationship between
the different types of homotopy nilpotency available on the market. We start with
the classical algebraic theory Niln describing nilpotent groups of class � n, and
observe that Berstein–Ganea nilpotent loop spaces are Niln-algebras in the ho-
motopy category of spaces. We show that homotopy Niln-algebras in the sense
of Badzioch, [3], are always homotopy nilpotent in the sense of Biedermann and
Dwyer. Finally, both are Niln-algebras in the homotopy category of spaces, so that
the vanishing of Whitehead products applies to all kinds of homotopy nilpotent
groups that appeared so far in the literature, and in particular to the Biedermann–
Dwyer ones.

Theorem 2.1 can be rephrased thus as follows: All .nC 1/-fold iterated White-
head products vanish in X if�X is a homotopy nilpotent group of class � n. This
provides a positive answer to a question asked by the authors of [5] and the proof
depends on a non-trivial computation of sets of components they perform.

1 Samelson and Whitehead products

We recall briefly the definition of Samelson and Whitehead products and construct
a “universal space” built from wedges of spheres in which higher Whitehead prod-
ucts vanish.

Let X be a pointed space. Given ˛ 2 �aC1X and ˇ 2 �bC1X , take the ad-
joint classes ˛0 2 �a.�X/ and ˇ0 2 �b.�X/. The composite of the product map
˛0 � ˇ0 W Sa � Sb ! �X ��X with the commutator map�X ��X ! �X is
null-homotopic when restricted to the wedge Sa _ Sb and thus factors through
SaCb , uniquely up to homotopy. This factorization represents the Samelson prod-
uct h˛0; ˇ0i 2 �aCb�X and the adjoint class is the so-called Whitehead product
Œ˛; ˇ� 2 �aCbC1X .
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Goodwillie calculus and Whitehead products 121

Remark 1.1. Iterated Whitehead products can be computed as adjoint to iterated
Samelson products. For example a triple Whitehead product of the form ŒŒ˛; ˇ�; 
�

coincides with the adjoint of the Samelson product hh˛0; ˇ0i; 
 0i. Let us also men-
tion that the order of the classes in a Whitehead product does not matter (up to a
sign). We will therefore concentrate on one standard choice of bracketing.

By definition, the Whitehead product Œ�1; �2� of the two canonical inclusions
�1 W S

a ,! Sa _ Sb and �2 W Sb ,! Sa _ Sb is the attaching map of the top cell in
Sa�Sb . Moreover, any Whitehead product Œ˛; ˇ� W SaCbC1 ! X factors through
Œ�1; �2�. This motivates the construction of a space built from wedges of spheres
which will be crucial for understanding when certain iterated Whitehead prod-
ucts vanish. We consider n C 1 positive integers k1; : : : ; knC1 and the wedge of
nC 1 spheres W D _Ski . Denote by �i W Ski ! W the wedge summand inclu-
sion. If P .nC 1/ denotes the poset of subsets of nC 1 D ¹1; : : : ; nC 1º, define
the .nC1/-cube of pointed spaces V W P .nC1/n¹;º ! Spaces� by sending a sub-
set S � nC 1 to

W
i 62S S

ki . Adding W as initial value V.;/ makes this diagram
a strongly homotopy co-Cartesian cube as defined by Goodwillie in [9, p. 647],
i.e. all 2-dimensional faces are homotopy pushouts. We let Q be the homotopy
inverse limit of V , and to fix a representative we take Q to be the inverse limit of
the fibrant replacement V

�
,! OV of this diagram in the injective model structure,

[10, 13]. We will also write abusively V.i/ instead of V.¹iº/ to ease the notation.

Example 1.2. When n D 1, we have two spheres Sk1 and Sk2 . The diagram V

is the pull-back diagram Sk1 ! �  Sk2 and Q D Sk1 � Sk2 . The Whitehead
product of the summand inclusions is trivial in Q.

The looped diagram �V is easier to analyze since the loop space on a wedge
of spheres splits by the Hilton–Milnor Theorem, see the original article [11] or
Milnor’s unpublished article in [1]. So-called “basic words” w in x1; : : : ; xnC1

form a basis of the free Lie algebra generated by x1; : : : ; xnC1 and each of these
determines a Whitehead product in �N.w/.S

k1 _ � � � _ SknC1/ where N.w/ plus
the number of letters in w is the sum of as many ki ’s as there are xi ’s in w plus 1.
For example, when n D 2, the basic word x1x2x3 corresponds to the Whitehead
product ŒŒ�1; �2�; �3� represented by a map Sk1Ck2Ck3�2 ! Sk1 _Sk2 _Sk3 . The
Hilton–Milnor Theorem then states that

�.Sk1 _ � � � _ SknC1/ '
Y
w

�SN.w/:

Lemma 1.3. The loop space �Q is homotopy equivalent to a product of loop
spaces on spheres, namely

Q
�SN.w/ where the product is taken over all basic

words in at most n of the letters x1; : : : ; xnC1.
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122 B. Chorny and J. Scherer

Proof. We identify�Q with the homotopy inverse limit of the diagram�V , each
value of which splits as a product of loop spaces on spheres:

�V.S/ '
Y
i 62S

�Ski � � � � �

Y
w2WS

�SN.w/

where WS is the subset of those basic words written with all xi ’s with i 62 S . We
observe that each map �V.S/! �V.T /, with S � T , is the projection on the
summands �SN.w/ corresponding to the basic words not written with the letters
in T . Therefore the diagram �V is a hypercube of which the homotopy inverse
limit is the product of all

Q
w2WS

�SN.w/ with S ¤ ;.

For any choice of bracketing nC 1 elements there is an .nC 1/-fold Whitehead
product w W Sk1C���CknC1�n ! W . We denote by Cw the homotopy cofiber of w.

Lemma 1.4. The .nC1/-fold Whitehead product ŒŒ: : : ŒŒ�1; �2�; �3�; : : : �; �nC1� van-
ishes in Q.

Proof. This Whitehead products vanishes inQ if and only if the adjoint Samelson
product vanishes in �Q. Since �Q splits as a product of loop spaces on spheres,
it is sufficient to prove that the projection on each factor is null-homotopic. By
Lemma 1.3 each factor already appears in �V.S/ for some non-empty subset S ,
so that, by adjunction again, it is enough to show that the image in V.i/ of our
.nC1/-fold Whitehead product vanishes for any 1 � i � nC1. This is so because
the image of �i in V.i/ is the trivial map and any Whitehead product involving the
trivial map is null-homotopic.

2 The values of n-excisive functors

We perform our main computation in this section. Let F be an n-excisive functor
from pointed spaces to pointed spaces (so F sends strongly homotopy co-Cartes-
ian .nC 1/-cubes to homotopy Cartesian ones). We prove that all .n C 1/-fold
Whitehead products vanish in F.X/ for any space X . Because it is very difficult
to use the global property of excision by focusing on one single value of the functor
F , we will use pointed representable functors RX , defined by

RX .Y / D map�.X; Y /:

For any pointed space A a natural transformation RX ^ A! F corresponds by
adjunction to a map A! hom.RX ; F /, i.e. to a map A! F.X/ by the enriched
Yoneda Lemma, see [14, 2.31]. Any functor G has a universal n-excisive approx-
imation G ! PnG, see [9].
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Goodwillie calculus and Whitehead products 123

Theorem 2.1. Let F be any n-excisive functor from the category of pointed spaces
to pointed spaces. Then all .nC 1/-fold iterated Whitehead products vanish in
F.X/ for every finite space X .

Proof. Let us fix homotopy classes of maps ˛i W S
ki ! F.X/ for 1 � i � nC 1.

We need to prove that the iterated Whitehead product

ŒŒ: : : ŒŒ˛1; ˛2�; ˛3�; : : : �; ˛nC1�

is zero. This product is represented by a map

Sk1C���CknC1C1 w
�!

nC1_
iD1

Ski D W ! F.X/

which is null-homotopic if it factors through the homotopy cofiber Cw of the
“universal” .nC 1/-fold Whitehead product w. The use of representable func-
tors translates then as follows: We need to show that any natural transformation
� W RX ^W ! F factors through RX ^ Cw . As F is n-excisive, there exists a
natural transformation Pn.R

X ^W /! F such that the composite

RX
^W ! Pn.R

X
^W /! F

coincides with � up to homotopy. It is thus enough to construct a natural transfor-
mation RX ^ Cw ! Pn.R

X ^W /.
Smashing the diagram V with a representable functor, we obtain a hypercube

RX ^ V of functors, which is strongly homotopy co-Cartesian since V is so. We
focus on the natural transformations RX ^W ! RX ^ V.i/. If c D dimX , and
Y is a k-connected space with k � c, then RX .Y / is .k � c/-connected and
.RX ^W /.Y /! .RX ^ V.i//.Y / is .k � c C ki /-connected. Let G denote the
homotopy inverse limit of the diagram of functors RX ^ V .

The generalized Blackers–Massey Theorem [8, Theorem 2.3] implies that the
natural transformation � W RX^W ! G is Œ.nC1/k�.nC1/cC

P
ki�n�-connec-

ted when evaluated at a k-connected space with k � c. This implies that RX ^W

and G agree to order n in the terminology of [9, Definition 1.2, Proposition 1.6],
so that Pn.R

X ^W / ' Pn.G/.
Lemma 1.4 yields a map Cw ! Q such that W ! Cw ! Q is the natural

map from W to the homotopy inverse limit of the diagram V (we fix the model
Cw D W [w D

k1C���CknC1C2 for the homotopy cofiber so that the factorization
is strict). We interpret this map as a map from the constant diagram Cw to a fibrant
replacement OV of V in the injective model category of hypercubical diagrams.
Smashing with a representable functor, we get a natural transformation

RX
^ Cw ! RX

^ V :
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124 B. Chorny and J. Scherer

Taking homotopy inverse limits, we obtain finally a natural transformation

RX
^ Cw ! G

such that the compositeRX ^W ! RX ^Cw ! G coincides with � . The natural
transformation

RX
^ Cw ! G ! PnG ' Pn.R

X
^W /

is the one we needed to conclude.

Remark 2.2. The proof of Theorem 2.1 easily generalizes to show that iterated
generalized Whitehead products vanish. It suffices to replace the Hilton Splitting
Theorem for loop spaces on a wedge of spheres by Milnor’s generalized version
for wedges of suspensions.

3 Nilpotent groups and algebraic theories

Let us first recall the classical concept of algebraic theory due to Lawvere [15] and
some of its modern variations.

Definition 3.1. A small category T is an algebraic theory if the objects of T are
indexed by natural numbers ¹T0; T1; : : : ; Tn; : : :º and for all n 2 N the n-fold cat-
egorical coproduct of T1 is naturally isomorphic to Tn. The algebraic theory T is
simplicial if it is a (pointed) simplicial category, i.e. T is enriched over sSets�

Let C be a category. A C-algebra over a theory T is a functorAWT op ! C taking
coproducts in T into products in C.

If T is a simplicial algebraic theory and C D sSets�, then we distinguish be-
tween strict and homotopy simplicial algebras, which are simplicial functors

AWT op
! C

taking coproducts in T to products in C strictly or up to homotopy, respectively.

The categories of simplicial algebras and homotopy simplicial algebras were
compared by Badzioch in [3]. He proved that any homotopy algebra can be rigid-
ified to a strict algebra.

Of central interest for us will be algebras over algebraic theories defined in the
homotopy category of simplicial sets C D Ho.sSets�/. We call them algebras up to
homotopy, in order to distinguish them from the homotopy algebras defined above.
There is a natural way to associate to every homotopy algebra A, an algebra up to
homotopy: just compose the functor A with the product preserving functor

�W sSets� ! Ho.sSets�/:
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Goodwillie calculus and Whitehead products 125

Formally, we need to choose homotopy inverse maps

fk W A.k/! A.1/k and gk W A.1/
k
! A.k/

and replace each morphismA.h/ W A.m/! A.n/ by the composite fnıA.h/ıgm.
The converse is not true of course, and we will encounter examples of algebras up
to homotopy which cannot be upgraded to homotopy algebras.

Lawvere in his seminal article [15] has discovered the fundamental fact that an
algebraic theory defining a variety as the category of algebras is the dual of the
subcategory of finitely generated free algebras in this variety. In this work we will
look closer into the algebraic theories defining the concepts of groups and nilpotent
groups of class � n in various settings.

Thus, we will consider the category Niln whose objects are the natural numbers
0; 1; 2; : : : and morphisms k ! l are group homomorphisms

Fk=�nC1Fk ! Fl=�nC1Fl :

By identifying the object k with the free nilpotent groups Fk=�nC1Fk of class n,
one embeds Niln as a full subcategory of the category of groups. In fact, as nilpo-
tent groups of class � n, the group Fk=�nC1Fk is free in the sense that it can
be identified with the coproduct of k copies of Z D F1=�nC1F1. The set of mor-
phisms from 1 to k is precisely the group Fk=�nC1Fk . When n D1, we think
of the objects of Nil1 to be the free groups Fk . A Niln-algebra in Sets is thus a
product preserving contravariant functor N WNilop

n ! Sets.

Proposition 3.2. A Niln-algebra is a nilpotent group of class � n.

Because it will play an important role in the sequel, let us be precise and say
explicitly how the group structure arises and why it is nilpotent. By abuse of no-
tation we write also N for the value N.1/. The multiplication m W N �N ! N

is the morphism corresponding to the product of the two generators of F2 in the
quotient F2=�nC1F2 and the inverse is the morphism N ! N corresponding to
the inverse of the generator of F1. It is easy to check that this equips N with a
group structure. This is in fact equivalent to the structure of a Nil1-algebra: Given
k elements n1; : : : ; nk 2 N and a word w in k letters, the product w.n1; : : : ; nk/

can be read off from the morphismN k ! N corresponding tow. The claim about
the nilpotency class follows then from the fact that all words of the form

ŒŒ: : : ŒŒx1; x2�; x3�; : : : �; xnC1�

are identified to 1 in FnC1=�nC1FnC1. Hence any iterated commutator of length
� nC 1 must be trivial in a Niln-algebra.
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126 B. Chorny and J. Scherer

Remark 3.3. A Niln-algebra in the category of simplicial sets, i.e. a product pre-
serving contravariant functor N WNilop

n ! sSets, is a simplicial nilpotent group of
class � n. In particular when nD 1, we are considering simplicial abelian groups,
i.e. generalized Eilenberg–Mac Lane spaces, so-called “GEMs”, see for example
[6]. Schwede also considers such objects and compares them stably, [19, Exam-
ple 7.4], with a category of modules over a Gamma-ring.

Badzioch’s rigidification result states in this context that any homotopy Niln-al-
gebra is homotopy equivalent to a strict Niln-algebra. Again for n D 1, this means
that all homotopy Nil1-algebras are homotopy equivalent to GEMs. This is not
quite what we would like to study when we are speaking about a homotopy version
of abelian topological groups (what we understand under this name is rather an
infinite loop space). The notion of Niln-algebras in simplicial sets is thus too rigid
and we will need to relax it a little.

4 Nilpotent groups in the homotopy category

In the next section we will turn to the solution Biedermann and Dwyer found to
describe homotopy nilpotency. But before we do that, we first describe the most
naive way to define nilpotency in homotopy theory.

Definition 4.1. A nilpotent group up to homotopy of class � n is a product pre-
serving contravariant functor N WNilop

n ! Ho.Spaces�/.

How do these nilpotent groups up to homotopy look like? They are pointed
spaces G together with a homotopy associative multiplication and a homotopy
inverse (i.e. group-like H -spaces) coming from the morphisms in Nilop

n .2; 1/ and
Nilop

n .1; 1/ described in the previous section, such that all higher commutator maps
of order nC 1 are null-homotopic. Berstein and Ganea, [4, Definition 1.7], give a
definition of nilpotency for group like spaces by requiring that the .nC 1/-st com-
mutator map be null-homotopic. Their work predates by two years the introduction
by Lawvere of algebraic theories, and is therefore not stated in the language we
have used, but it is equivalent.

Proposition 4.2. A nilpotent group up to homotopy is a homotopy nilpotent group
in the sense of Berstein and Ganea.

Example 4.3. When n D 1, a loop space is abelian (nilpotent of class � 1) up
to homotopy if the commutator map �X ��X ! �X is null-homotopic, i.e. if
the product is homotopy commutative. Thus any double loop space is abelian up
homotopy. When n D1, groups up to homotopy are simply group objects in the
homotopy category, i.e. homotopy associative H -spaces with inverse.
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Goodwillie calculus and Whitehead products 127

These examples show that the Berstein–Ganea definition is too flexible. When
looking at loop spaces, the filtration given by nilpotency up to homotopy interpo-
lates roughly between loop spaces and double loop spaces. However it allows us
to read off the vanishing of iterated Samelson products. The following result is
basically [4, Theorem 4.6].

Proposition 4.4. Let X be a pointed space and assume that the loop space �X is
nilpotent up to homotopy of class � n. Then all .n C 1/-fold iterated Whitehead
products vanish in X .

Proof. The vanishing of iterated Whitehead products is equivalent to the vanishing
of iterated Samelson products in the loop space. This follows now directly from the
fact that in a Niln-algebra in the homotopy category the .nC 1/-fold commutator
map .�X/nC1 ! �X is null-homotopic by definition.

Example 4.5. Porter proved that S3 is nilpotent up to homotopy of class 3, [16].
There is a non-trivial 3-fold Whitehead product in BS3, but all 4-fold products
vanish. However, the compact Lie group S3 is not nilpotent as a group. More gen-
erally, Rao proved that compact Lie groups are nilpotent up homotopy if and only
if their integral homology is torsion free, [17]. The if part is due to Hopkins, [12].

5 Enriched homotopy nilpotent groups

This section finally introduces the “correct” homotopy nilpotent groups. We recall
their definition, show that iterated Samelson products vanish in such spaces, and
compare them to homotopy Niln-algebras and spaces which are nilpotent up to
homotopy in the sense of Berstein and Ganea.

In their recent work [5], Biedermann and Dwyer define homotopy nilpotent
groups as homotopy Gn-algebras in the category of pointed spaces, where Gn is a
simplicial algebraic theory constructed from the Goodwillie tower of the identity.
Concretely G

op
n is the simplicial category whose objects are 0; 1; 2; : : : and such

that the simplicial set of morphisms G
op
n .k; l/ is the space of natural transforma-

tions Y
k

�.Pn.id//inj
!

Y
l

�.Pn.id//inj

The functor Pn.id/ lives in the category of functors from finite pointed spaces
to pointed spaces, and .Pn.id//inj denotes the fibrant replacement in the injective
model structure. Hence a homotopy nilpotent group of class � n is the value at 1
of a simplicial functor QX from G

op
n to pointed spaces which commutes up to homo-

topy with products. Homotopy algebras in an enriched context have been studied
by Rosický in [18].
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128 B. Chorny and J. Scherer

Proposition 5.1. A homotopy Niln-algebra is always a homotopy Gn-algebra. Both
of them are Niln-algebras up to homotopy.

Proof. The space of maps from k to 1 in the algebraic theory Gn, which is by
definition the space of all natural transformations from .�Pn.id//k to �Pn.id/, is
identified as the space �Pn.id/.

W
k S

1/, see [5, Corollary 4.7]. Biedermann and
Dwyer’s main computation shows that the group of connected components coin-
cides with the free nilpotent group of class n on k generators:

�0Gn.k; 1/ Š �0

�
�Pn.id/.

W
k S

1/
�
Š Fk=�nC1Fk :

There is hence a functor of simplicial algebraic theories �0WGn ! Niln. Thus any
homotopy Niln-algebra can be seen as a homotopy Gn-algebra by pulling back
along �0.

Consider now a homotopy nilpotent group �X of class � n given as the value
at 1 of a homotopy Gn-algebra QX W G op

n ! Spaces�. The composite diagram

F W G
op
n ! Spaces� ! Ho.Spaces�/

is now simply a diagram

F W Nilop
n ! Ho.Spaces�/

as we keep from the simplicial data only one homotopy class of maps

QX.k/! QX.l/

for each connected component of Gn.k; l/'�Pn.id/.
W

k S
1/l . The second claim

then follows from the general procedure we described in Section 3 to get an algebra
up to homotopy from a homotopy algebra.

Theorem 5.2. Let �X denote a homotopy nilpotent group of class � n. Then all
.nC 1/-fold iterated Whitehead products vanish in X .

Proof. The Berstein–Ganea Proposition 4.4 implies the vanishing of all iterated
Whitehead products of length nC 1 in X .

Remark 5.3. Observe here that a homotopy nilpotent group of class n is also a
homotopy nilpotent group of class 1 since we have a map of algebraic theories
G1 ! Gn. This means that a homotopy nilpotent group of class n has the homo-
topy type of a loop space and the multiplication derived from the algebraic theory
is this precise loop multiplication. This is what allows us to use the Berstein–Ganea
result in the last line of the previous proof.
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Goodwillie calculus and Whitehead products 129

Example 5.4. Homotopy abelian groups, that is homotopy G1-algebras, are infinite
loop spaces and homotopy groups, i.e. homotopy G1-algebras, are loop spaces.
This is why the notion of homotopy nilpotency of Biedermann and Dwyer is bet-
ter than the others. It interpolates between the “right” notions of groups and abelian
groups in homotopy theory. In particular, BU is homotopy abelian, but not a ho-
motopy Nil1-algebra, and �2S4 is abelian up to homotopy, but not a homotopy
abelian group. This illustrates how the different notions of nilpotency differ.

Remark 5.5. Biedermann and Dwyer prove that any n-excisive functor F from
the category of pointed spaces to pointed spaces produces examples of homo-
topy nilpotent groups: �F.X/ is homotopy nilpotent of class � n for any finite
space X , see [5, Corollary 9.3]. Hence Theorem 5.2 gives an alternative proof
of Theorem 2.1. Biedermann and Dwyer also claim that all homotopy nilpotent
groups are given as values of loops on n-excisive functors. This implies that both
theorems are in fact equivalent.
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is greatly acknowledged by the first author, who visited the second author in order
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