000205316 001__ 205316
000205316 005__ 20180913062959.0
000205316 0247_ $$2doi$$a10.1016/j.solmat.2014.11.006
000205316 022__ $$a0927-0248
000205316 02470 $$2ISI$$a000348015100025
000205316 037__ $$aARTICLE
000205316 245__ $$aAmorphous silicon-germanium for triple and quadruple junction thin-film silicon based solar cells
000205316 269__ $$a2015
000205316 260__ $$aAmsterdam$$bElsevier$$c2015
000205316 300__ $$a7
000205316 336__ $$aJournal Articles
000205316 500__ $$aIMT-NE Number : 771
000205316 520__ $$aWe study amorphous silicon-germanium (a-SiGe:H) as intrinsic absorber material for thin-film silicon-based triple and quadruple junction solar cells. First, we present the development of a-SiGe:H single junction devices, in particular the Ge-content grading in the absorber layer, the influence of the Ge-content on electrical properties and (infra)red-response, and the influence of using different types of players. We subsequently show the incorporation of optimized single-junction devices in triple junction cells and discuss the interplay between Ge-content and intermediate reflector thickness. For triple junction devices with amorphous silicon (a-Si:H) top cells, a-SiGe:H middle cells and microcrystalline silicion (mu c-Si:H) bottom cells, we obtained an initial efficiency of 13.6% and an efficiency of 11.3% after light-soaking. We also present a quadruple junction device with an a-Si:H top cell, a low Ge-content a-SiGe:H second cell, and mu c-Si:H third and bottom cells. In this device configuration, we obtained an open-circuit voltage as high as 2.57 V. The performance of these cells was limited by not yet optimized current matching, leading nevertheless to an initial efficiency of 10.1%. A brief roadmap towards quadruple-junction devices with stabilized efficiencies of 14% is also outlined. (C) 2014 Elsevier B.V. All rights reserved.
000205316 6531_ $$aThin-film Si
000205316 6531_ $$aSilicon-germanium
000205316 6531_ $$aMultijunctions
000205316 6531_ $$aAlloyed materials
000205316 6531_ $$aLight management
000205316 700__ $$aSchuettauf, Jan-Willem
000205316 700__ $$aNiesen, Bjoern
000205316 700__ $$aLoefgren, Linus
000205316 700__ $$aBonnet-Eymard, Maximilien
000205316 700__ $$aStuckelberger, Michael
000205316 700__ $$aHaenni, Simon
000205316 700__ $$0243397$$aBoccard, Mathieu$$g190360
000205316 700__ $$aBugnon, Gregory
000205316 700__ $$0243398$$aDespeisse, Matthieu$$g190362
000205316 700__ $$0243396$$aHaug, Franz-Josef$$g190209
000205316 700__ $$aMeillaud, Fanny
000205316 700__ $$0243401$$aBallif, Christophe$$g100192
000205316 773__ $$j133$$q163-169$$tSolar Energy Materials And Solar Cells
000205316 8564_ $$s575437$$uhttps://infoscience.epfl.ch/record/205316/files/paper_771.pdf$$yPublisher's version$$zPublisher's version
000205316 909C0 $$0252194$$pPV-LAB$$xU11963
000205316 909CO $$ooai:infoscience.tind.io:205316$$pSTI$$particle
000205316 917Z8 $$x190055
000205316 937__ $$aEPFL-ARTICLE-205316
000205316 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000205316 980__ $$aARTICLE