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ABSTRACT

We propose to use non-negative matrix factorization (NMF) to es-
timate the unknown pairwise distances and reconstruct a distance
matrix for microphone array position calibration. We develop new
multiplicative update rules for NMF with incomplete input matrix
that take into account the symmetry of the distance matrix. Addi-
tionally, we develop a convex matrix completion method which is
related to an l2-regularized symmetric NMF. Thorough experiments
demonstrate that the proposed methods lead to substantial improve-
ment over the state-of-the-art techniques in a wide range of signal-
to-noise and unknown-distance ratios. The convex symmetric matrix
completion method was found to be the most robust method with less
computational cost.

Index Terms – Ad hoc array calibration, Non-negative matrix
factorization, Euclidean Distance Matrix, Convex optimization

1. INTRODUCTION

Ad hoc microphone arrays are at the heart of ubiquitous sensing
for future sound technologies. Application of microphones in an ad
hoc setup enables high-quality acquisition of distant sound in a dis-
tributed and flexible infrastructure. The distant acquisition is widely
used for source localization and separation [1–5], videoconferencing
and distant speech recognition in multiparty environments [6–9]. A
fundamental step to enable processing of an array of distant record-
ings is to account for the acoustic sampling effect via calibration of
the microphone positions. Calibration is often achieved in two steps:
estimation of the distances between the pairs of microphones and re-
construction of the array geometry given all the pairwise distances.
In a scenario where the microphones are distributed randomly in a
possibly large deployment area, the conventional techniques for dis-
tance estimation may fail to measure all the pairwise distances. This
can happen due to device malfunctioning or architectural barriers.
Furthermore, some of the microphones deployed far apart deterio-
rate in capturing the sound energy leading to a locality constraint in
distance estimation. Hence, the main goal of this work in to develop
a method for microphone array calibration using an incomplete set
of pairwise distances which is robust against measurement noise.

The classic multi-dimensional scaling (MDS) method is a com-
mon technique to reconstruct the microphone array geometry [10].
This method applies a double centering transformation to subtract
the row and column means of the distance matrix. Then a low-
rank projection is applied to extract the relative microphone posi-
tions. If some of the pairwise distances are missing, an extension

of this method called MDS-MAP can be used. This method ap-
proximates the unknown distances by the shortest path defined as
the minimum sum of the distance measures of the constituent edges
of the microphones. Recent advances incorporate the properties of
the Euclidean distance matrix through definition of the appropriate
cost functions via the algebraic s-stress method [11] and formulate
efficient optimization schemes for finding the geometry via semidef-
inite programming (SDP) [12]. State-of-the-art microphone array
calibration methods are often very sensitive to unreliably-measured
or missing distances. There is very little work to address the problem
of unknown pairwise distances. In [13], a joint source localization
and microphone calibration algorithm is proposed using the bilinear
optimization approach. This algorithm is able to handle missing dis-
tances, but it requires a minimum of five microphones and thirteen
sound source events.

In this paper, we rely on the characteristics of Euclidean distance
matrix (EDM) to estimate the unknown pairwise distances. The ma-
trix consisting of the squared pairwise distances has very low rank
(explained in Section 2.1). Candès et al. [14] showed that a small
random fraction of the entries are sufficient to reconstruct a low-rank
matrix exactly. Drineas et al. [15] exploited the low rank property to
complete the distance matrix, but the full set of EDM properties are
not incorporated. In our earlier work [16], we extended their ap-
proach by developing a EDM matrix completion algorithm within
the framework proposed by Keshavan et al. [17]. In this paper, we
study the application of non-negative matrix factorization (NMF) in
low-rank matrix completion for distance matrix reconstruction and
calibration. Although NMF has been previously used in various ap-
plications within the speech community, such as speech enhance-
ment [18] and source separation [19], the current work is the first to
address the microphone array calibration. We derive the procedure
for EDM matrix factorization taking into account the symmetric con-
straint in multiplicative rules [20]. We further elaborate on convex
relaxation of our objective using an energy constraint on the latent
factors. We extend the optimization via alternative direction of mul-
tiplier method (ADMM) [21] and develop the convex optimization
procedure for reconstruction of symmetric matrices. The matrix re-
construction is followed by EDM projection to find the microphone
coordinates. We analyze the performance of each method in various
noisy conditions at different ratios of missing distances. The impor-
tance of incorporating the EDM properties and the connectivity of
the array with respect to the number of microphones are explicitly
quantified.

The rest of the paper is organized as follows: In Section 2, we
define the calibration problem from a subset of the pairwise dis-



tances. The procedure for reconstructing a low-rank matrix via NMF
with missing entries is elaborated in Section 3 where the multiplica-
tive update rules for symmetric NMF and the convex relaxation are
explained along with the EDM projection. The experiments are pre-
sented in Section 4 and the conclusions are drawn in Section 5.

2. DISTANCE-BASED CALIBRATION

The problem of distance-based microphone array calibration is
to find the Cartesian coordinates of the microphones, xi ∈ Rκ, i ∈
{1, . . . , N} based on a subset of observed pairwise distances, dij =
‖xi − xj‖ where ‖.‖ stands for the Euclidean norm. This problem
is formalized as the following:

X̂ = arg min
X

X
(i,j)∈E

`
‖xi − xj‖22 − d2ij

´2
; (1)

X ∈ RN×κ denotes the position matrix formed as [x1, . . . ,xN ]T

where .T is the transpose operator and E denotes the set of known
pairwise distances1. The algorithmic approaches to reach the objec-
tive of (1) requires all the pairwise distances. The goal of this paper
is to enable microphone array calibration from a small subset of pair-
wise distances, i.e. |E| � N2 where | · | denotes the cardinality of
a set. The key idea to handle this problem is to exploit the proper-
ties of the squared distance matrix to recover the unknown distances
prior to position estimation.

2.1. The Low-rank Squared Distance Matrix

Consider a matrix M ∈ RN×N consisting of the squared pair-
wise distances between N microphones defined as M =

ˆ
d2
ij

˜
, The

matrix M has rank at most η = κ + 2 [15]. Due to the rank
deficiency, there is a strong dependency among the entries of the
squared distance matrix andO(ηN) measurements suffice to recover
the missing components [14].

In addition to the low-rank property, the squared distance matrix
is a Euclidean distance matrix (EDM) which possesses additional
structures. These structures should be incorporated to recover the
matrix components. A common technique for low-rank matrix ap-
proximation relies on non-negative matrix factorization (NMF). In
the following Section 2.2, we elaborate on the theory of NMF of
partially-given matrices. Generalization of the proposed approach to
include the EDM properties is explained in Section 3.

2.2. NMF Formulation with Missing Entries

The standard NMF is developed for matrices with known entries.
In this section, we use NMF as a matrix completion method where a
low-rank approximation of a distance matrix is obtained using only
a subset of the entries, which are known. Let M ∈ RN×N be the
squared distance matrix of rank η. We define a matrix ME consists
of the observed squared pairwise distances, d2

ij , (i, j) ∈ E and zeros
as the unknown components.

To apply NMF, a fidelity measures is required to obtain a cost
function to quantify the goodness of the approximation. Various fi-
delity measures, such as Kullback-Leibler (KL) divergence and Eu-
clidean distance, have been used in the literature, where one of these
measures may be preferred depending on a given application. In this
paper, we limit the discussions to KL divergence as it was observed
to yield more accurate calibration performance in our experiments.

1Dropping the square power on distances as (‖xi − xj‖ − dij) leads to
the maximum likelihood estimation of the microphone coordinates, however
achieving the exact solution is algorithmically more complex. Hence, the
squared distance formulation (1) is often considered [22].

We define the following cost function to apply NMF with missing
entries:

Ŵ , Ĥ = arg min
W ,H≥0

KL (ME‖W H) , (2)

where W ∈ RN×η , H ∈ Rη×N are both element-wise non-
negative defined as W ,H ≥ 0, and KL (ME‖WH) denotes the
generalized KL divergence:

KL (ME‖WH) =
X

(i,j)∈E

 
Mij log

Mij

(WH)ij
−Mij + (WH)ij

!
.

After solving (2), the unknown entries of ME are recovered as M̂ =

Ŵ Ĥ . Eq. (2) can be solved using an iterative gradient descent
method with an adaptive learning rate [20]. Following this method,
we can write:

Wia = Wia − γ (Wia)
∂KL (ME‖WH)

∂Wia

Haµ = Haµ − γ (Haµ)
∂KL (ME‖WH)

∂Haµ
,

(3)

where the learning rate γ is defined as:

γ (Wia) =
WiaP
µ
Haµ

, γ (Haµ) =
HaµP
i
Wia

, ∀(i, j) ∈ E. (4)

Substituting (4) in (3) leads to multiplicative update rules that guar-
antee the convergence to a local minimum of the cost function in (2)
[20]. In Section 3, we elaborate on the procedure of recovering Eu-
clidean distance matrices via non-negative matrix factorization and
a closely related convex non-negative matrix completion approach.

3. EDM-NMF PROCEDURE

We start by revising the multiplicative update rules of the stan-
dard NMF for symmetric matrices in Section 3.1. Then, the convex
formulation and full EDM projection are presented in Sections 3.2–
3.3.

3.1. The Multiplicative Symmetric NMF Algorithm

The standard NMF algorithm recovers a low-rank matrix with
components as close as possible to the known entries. However,
the recovered matrix does not necessarily correspond to a Euclidean
distance matrix; for example, EDMs are symmetric matrices and this
additional structure is not included in the matrix factorization algo-
rithm. Hence, we modify the NMF multiplicative update rules [20]
to have, as output, matrices that are closer to EDMs. More specifi-
cally, the NMF objective is formulated with an additional symmetric
constraint as follows:

Ŵ , Ĥ = arg min
W ,H≥0

KL (ME‖W H) + KL
`
ME‖(W H)T´ . (5)

It may be noted that (5) is just one way to incorporate the symmetric
property which was found to be very effective in our experiments
(c.f. Fig. 2). Following the method presented in Section 2.2, we can
derive multiplicative update rules to solve (5), which are given as:

Wia ←−Wia

"P
µHaµ(ME)iµ (1/(WH)iµ + 1/(WH)µi)

2
P
ν Haν

#

Haµ ←− Haµ
»P

iWia(ME)iµ (1/(WH)iµ + 1/(WH)µi)

2
P
kWka

–
;

(6)

Staring from non-negative initialization, convergence to non-negative
factorization is guaranteed. The Eq. (6) is referred to as the mul-
tiplicative NMF or shortly NMF-MUL during the experimental
evaluation presented in Section 4.



It is worth to mention that the above update rules can be eas-
ily modified to take into account the sparsity of the latent factors.
One common method for this purpose is to regularize the NMF cost
function with weighted l1-norm (sum of the absolute values of the
elements) of H or W using the basis pursuit framework [19]. As
we will empirically observe in Section 4, the sparsity regularization
is particularly helpful when the ratio of the missing entries is high.

3.2. Convex Relaxation and Optimization via ADMM

The non-convex problem stated in (5) can be relaxed as

arg min
W H≥0

KL (ME‖W H)+KL
`
ME‖(W H)T´+λ

2

`
‖W ‖2F + ‖H‖2F

´
,

(7)
where λ is the regularization parameter; the additional energy-based
penalty, i.e. the Frobenius norm ‖.‖F on the latent factors, has been
motivated for stability reasons and empirically observed to improve
the performance. Furthermore, the following relation holds between
the nuclear norm ‖.‖∗ of the matrix (defined as the sum of the abso-
lute singular values) and the energy of the latent factors:

‖M‖∗ = inf
W ,H:W H=M

1

2

`
‖W ‖2F + ‖H‖2F

´
, (8)

as long as η (column dimension of W ) ≥ rank(M) [23]. Hence,
the following theorem is a consequence:

Theorem 1. The non-convex symmetric NMF objective in (7) for
any η ≥ rank(M) can be relaxed to obtain the following convex
optimization problem:

minimize
W H≥0

KL (ME‖W H) + KL
`
ME‖(W H)T´+ λ‖W H‖∗. (9)

The Theorem can be proved similar to [21]. The convex char-
acterization guarantees that the global solution can be obtained in
polynomial time. The non-negativity of the individual factors can be
relaxed as the reconstruction is important to estimate the unknown
distances for the microphone array calibration problem.

To achieve the minimization stated in (9), we adopt the frame-
work of non-negative matrix completion (NMC) via alternating di-
rection method of multipliers (ADMM) developed in [21]. Hence,
the divergence and non-negativity constraint are decoupled from the
nuclear norm penalty as

minimize
M≥0

KL (ME‖M) + λ‖Z‖∗ : M ≥ 0,M = Z,M = ZT. (10)

The rest operates on the augmented Lagrangian to optimize over M
and Z alternately. To account for the symmetric constraint, follow-
ing the scheme elaborated in [21], a transformation through A+AT

2
(element-wise averaging a matrix and its transpose) must be applied
prior to updating the matrices M and Z at each iteration. This pro-
cedure is referred to as NMC-ADMM during the experimental eval-
uation presented in Section 4.

3.3. EDM Projection and Coordinate Estimation

In Sections 3.1 and 3.2, the symmetric characteristic of the
EDMs are included in the optimization procedure. Hence, the al-
gorithms are obtained to reconstruct a low-rank symmetric matrix
with components best matching the observed distances. However,
the recovered matrix does not necessarily correspond to a Euclidean
distance matrix. To meet the full set of EDM properties, we propose
to project the reconstructed matrix to the cone of Euclidean distance
matrices, EDMN . To this end, we apply a two-step projection:

P : RN×N 7−→ SNh 7−→ EDMN

to decrease the distance between the estimated matrix and the EDM
cone. The SNh designates the space of symmetric, positive hollow
matrices. The projection onto SNh is achieved by setting the diagonal
values to zero followed by averaging the symmetric elements. The
symmetric NMF and NMC algorithms yields a matrix very close to
symmetry, however the projection into SNh guarantees this property.
The ultimate projection to EDMN ensures that the matrix satisfies
the following properties [25]

M̂ ∈ EDMN ⇐⇒

8>>><>>>:
−zT M̂z ≥ 0

1T z = 0

(∀‖z‖ = 1)

M̂ ∈ SNh

(11)

To achieve that, we search in the EDM cone using the following cost
function

H(X) =
‚‚‚1NΛT + Λ1N

T − 2XXT − M̂
‚‚‚2

F
, (12)

where Λ = (X ◦X)1κ and ◦ denotes the Hadamard product; 1
stands for all ones vector. The minimum of H(X) with respect to
xi can be computed by equating the partial derivation of Eq. (12)
to zero to obtain the new estimate of the coordinates X̂ . The stop-
ping criterion is satisfied when the new estimate differs from the old
one by less than a threshold or the maximum number of iterations is
reached.

4. EXPERIMENTAL ANALYSIS

4.1. Evaluation for Different Noise and Missing Ratios

The scenario consists ofN = 20 microphones distributed at ran-
dom locations within a cubic enclosure of unit dimensions. Different
levels of random missing ratios equal to 18%, 25%, 38% and 48%
are used at 5 different SNR levels including 5, 10, 15, 20, 30 dB. The
value of SNR quantifies the level of noise on the known distances; if
the noisy observed distance matrix is D + N where D = [dij ] and
N = [nij ] consists of the noise on individual distance measures;
SNR is computed as 20 log ‖D‖F

‖N‖F
.

It may be noted that the calibration algorithm extracts a possibly
rotated or reflected coordinates of the microphones. Thus, we find
the best match between the estimated geometry and the ground truth
using the optimization procedure developed in [26] prior to quanti-
fying the localization error.

The evaluation results in terms of microphone localization
and distance estimation errors are illustrated in Fig. 1. We have
compared our proposed methods, NMF-MUL (6) and NMC-
ADMM (10) with three state-of-the-art techniques namely MDS-
MAP, s-stress [10] and the NMF-based matrix completion algorithm
(NMFC) proposed in [24]. Each number is obtained by averaging
the results for 50 realizations at 100 distinct configurations. The
error bars are smaller than the markers thus all the comparisons
are significant. The authors of NMFC [24] recommend to use a
higher rank for the latent factors W and H and it has been shown
empirically to yield better results. Hence, following their insights
and their implementation code, we set η = 8 to run NMFC and
we observe that this rank overestimation improves the accuracy of
their algorithm. For the proposed NMF-MUL and NMC-ADMM,
however, the best result is obtained by setting η = 5 (the rank of
M ).

As the results demonstrate, the convex approach after applying
the symmetric constraint and EDM projection, yields the best results
and it is also more stable in very noisy condition. Furthermore,
we can observe that as the number of missing distances increases,
the difference between performance of NMF-MUL (6) and NMC-
ADMM (10) gets larger indicating the requirement of more ob-
served distances for matrix reconstruction in the NMF framework.
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Fig. 1: Performance of the proposed NMF-MUL (6) and the convex NMC-ADMM (10) are compared with NMFC [24], MDS-MAP and S-stress [10]
techniques in terms of the average error on microphone localization as well as pairwise distances estimation.

The average time required for NMC-ADMM is 5 times less than
NMF-MUL. Hence, the convex approach speeds up the process
while achieving higher accuracy. On a modern desktop computer, it
takes less than 10 ms to run the NMC-ADMM algorithm.

To evaluate the denoising obtained through low-rank recon-
struction, we run the calibration experiments at SNR = 10 dB
when all the pairwise distances are known. The localization error
using NMF-MUL, NMFC, MDS, S-stress and NMC-ADMM are
13.13, 20.30, 25.06, 21.67, 15.06 cm respectively. We can see that
NMF is able to denoise the distance matrix as the localization accu-
racy is 11.93 and 8.54 cm smaller than MDS and s-stress methods
that directly use the observed noisy squared distances. In fact, the
computed SNR after NMF reconstruction is 16.06 dB, thus NMF
yields more than 6 dB denoising on the observed distances.

4.2. Importance of Incorporating EDM Properties

We quantify the gain explicitly obtained after constraining the
optimization to yield a symmetric approximation, (5) and (9), as
well as EDM projection (12). Fig. 2 illustrates the contribution of
each additional structure to reduce the error of estimating the mi-
crophone positions. The trend in similar for both NMF-MUL and
NMC-ADMM. We can see that the benefit of incorporating the
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Fig. 2: Contribution of incorporating the symmetric and full EDM prop-
erties (excluding symmetric) in localization performance with respect to the
standard NMF [20].

EDM properties is more illustrated when the ratio of missing dis-
tances is relatively small. Furthermore, the symmetric version of
NMF achieves a huge gain with respect to the standard NMF and it
is noticeable compared to the EDM projection.

In addition to the EDM properties, we observed that the spar-
sity constraint on the coefficient matrix is quite useful [19]; in fact,
sparse NMF performs 11% better than NMF without sparsity at low-
SNR regimes and highly incomplete distance matrix. The hyper-
parameters for the sparse NMF [19] ( NMF regularized with l1 norm
of H - defined as the sum of the absolute values of its components)
are set to α[19]

X = 0.1 and α[19]
sX = 1.001.

4.3. Importance of the Number of Microphones

In this final experiment, we study the effect of the number of
connected nodes for microphone array calibration. Different net-
works of size N = {10, 20, 30, 40, 50, 100} are considered while
the missing ratios are equal and the observed distances have 20 dB
accuracy. The summary of localization error is listed in Table 1. We
can see that as the number of microphones increases the calibration
performance improves substantially.

Table 1: Localization error (cm) for different number of microphones and
missing ratios at SNR=20 dB.

%Missing Number of microphones
10 20 30 40 50 100

18% 11.64 6.52 4.94 4.01 3.62 2.59

25% 15.56 7.78 5.46 4.58 3.94 2.72

38% 20.05 11.11 7.25 5.68 4.80 3.19

48% 23.32 15.36 9.78 7.25 5.99 3.81

5. CONCLUSIONS
We studied the application of non-negative matrix factorization

for calibration of ad hoc microphone arrays using a small subset of
pairwise distances. We have shown that NMF enables estimation
of the unknown distances exploiting the low-rank property of the
squared distance matrix. The multiplicative update rules for factor-
ization of symmetric matrices were derived. Furthermore, the con-
vex relaxation of the reconstruction objective was elaborated and
effective optimization was achieved via ADMM. The experiments
demonstrated that the convex approach yields the best localization
results. In addition, the symmetric constraint and EDM projection
improved the calibration accuracy significantly. This study motivates
derivation of the ADMM procedure to meet all the EDM properties.
It further encourages us to revisit the formulation of NMF for other
problems which admit convex objectives.
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