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Figure S1. (a) Optical image of a Si wafer coated with a thin Au layer functionalized with
perfluoro-decanethiol SAM. Dark square areas are hydrophilic SiO2 receptor sites. Marker
structures [inset of (a)] consisting of 50 µm-wide Au lines were patterned at the center of
each site. (b) Optical image of a 10× 10 mm2 transparent die laser-cut from a 250 µm-thick
PEN foil. The laser was also used to engrave marker structures—a reference circle in the
center, a smaller circle offset to the side, and caret-like marks—on each foil die [inset of
(b)]. The complementary design of the marker structures on receptor sites and transparent
foil dies allows accurate simultaneous retrieval of both translational and rotational dynamics
during capillary self-alignment (see Figure SF 3 for details).
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Figure S2. Experimental platform for synchronous high-resolution recording of the trajec-
tories of self-aligning foil dies. The positioning base stage with external vacuum tweezers
was used to pick up, pre-position and release the foil dies. The high-speed camera mounted
on top of the microscope stage recorded in real-time the entire self-alignment process.
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Figure S3. Retrieval of instantaneous pose (shifts x(t) and y(t), twist θ(t)) of a die relative to
the receptor site by post-processing of recorded videoframes. Raw images (a), thresholded
images (b) and images with detected circles (c) shown for the first (left column) and the
last (right column) of the videoframes recorded in a single experiment. Bounding circles
correspond to the limit of the field of view of the microscope lens.
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Decomposibility of the capillary potential field

The exact decomposition (within experimental accuracy) of the self-alignment trajectories

under biaxial shift into individually-excited uniaxial shift trajectories in absence of initial

twist offset leads to infer a structure underlying the capillary potential field U(x, y)|θ0=0—

whose shape was earlier computed.1 Specifically, for in-plane translational offsets 0 ≤ x0, y0 �

L, U(x0, y0)|θ0=0 = U(x0, 0)|θ0=0 + U(0, y0)|θ0=0 is expected to hold.

The capillary potential field can be simulated in the quasi-static (i.e. thermodynamic)

environment provided by Surface Evolver. According to the above decomposition, the

potential energy for a horizontal displacement Udiag(
√

2x0) of the top die measured along the

direction of a main diagonal of the matching receptor site should coincide with the sum of the

potential energy associated with its projected displacements x0 along the coordinate axes—

i.e., for x0 = y0, U(x0, y0) = U(x0, 0) + U(0, x0) = 2 ·Uaxis(x0) = Udiag(
√

2x0). Results from

SE simulations, shown in figure S4, reasonably support this prediction. The relative error

in the decomposition remains small (< 5%) across the entire range of uniaxial (projected)

shift x0 simulated, i.e. up to 10% of the sidelength L. The slight energetic divergence is

attributed to the slight local difference in the curvature of the liquid meniscus in the case of

diagonal versus axial displacements.

Additionally, in the full elastic regime2 (i.e. for displacements smaller than the gap)

the capillary potential field for uniaxial displacement can be described by the harmonic

form Uaxis(x0) = 1
2
kx20, with k = 2γ L

h
the elastic spring constant associated to axial lateral

deformations of amplitudes x0 < h. For the case of a meniscus bounded by a square die and

matching receptor site, as in our case, symmetry dictates the identity of axial spring constants

kx = ky = k. Let’s consider a two-dimensional polar coordinate system [r φ] centered on

the receptor site, wherein an arbitrary biaxial (radial) shift (r0, φ0) can be described by its

axial projections x0 = r0 · cos(φ0) and y0 = r0 · sin(φ0), respectively. Then, according to the

above potential energy decomposition:
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U(r0) = U(x0, y0)

=
1

2
kx[r0 cos(φ0)]

2 +
1

2
ky[r0 sin(φ0)]

2

=
1

2
kr20

(1)

i.e. the potential energy should only depend on the norm of radial (biaxial) shift r0 from

the equilibrium position. As a consequence, displacements of the top die along circular arcs

at constant distance r0 around the center of the receptor site (as sketched e.g. in Fig. 4b of

the main text) should be isoenergetic. Figure S5 shows that SE simulations fairly support

this prediction, as well. For r0 = 50 µm, the deviation of the relative potential energy from

the expected constant value is small (< 2%) for all values of angular displacement φ, and

reaches the maximum in corrispondence of the main diagonal direction (i.e. for φ0 = 45◦),

supposedly for marginal differences in the shape of the meniscus. Moreover, the energetic

deviation is expected to decrease for smaller values of r0.

Corollaries of the decomposibility of the capillary potential field in absence of twist offset:

1. The axial restoring capillary forces are mutually independent.

Indeed: Fx = −∂U(x,y)
∂x

= −∂Uaxis(x)
∂x

= Fx(x), and similarly for Fy.

See section 3.2 of the main text for additional observations on the axial forces.

2. The shift modes of the liquid bridge can be represented by mutually independent springs.

In fact, the off-diagonal components of the Hessian of the capillary potential field (i.e.

Uxy and Uyx) are null:

kx = Uxx = −∂Fx(x)
∂x

= −∂2U(x,y)
∂x2

= kx(x), while Uxy = ∂2U(x,y)
∂x∂y

= 0—similarly for ky.

The mechanics of the axial springs k∗ is described elsewhere.2

From this, a lumped description of biaxial restoring capillary forces can be envisioned.
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Figure S4. Decomposition of the capillary potential field U(x, y) = U(x, 0) + U(0, y) in
absence of twist offset. Potential energy for diagonal displacements Udiag(

√
2x0) = U(x0, x0)

compared with that of the sum of the axial projections, i.e. 2 ·U(x0, 0). Relative error on
energy difference (see inset) computed as |Udiag(

√
2x0)− 2U(x0, 0)|/[Udiag(

√
2x0)− U(0, 0)].
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Figure S5. Decomposition of the capillary potential field U(x, y) = U(x) + U(y) in absence
of twist offset. Case of full elastic regime,2 for which circular trajectories corresponding to
relative displacements at constant distance r0 (= 50 µm in this example) from the equilibrium
position are expected to be isoenergetic. Relative error on the energy difference computed
as |U(r0, φ0)− U(r0, 0)|/[U(r0, 0)− U(0, 0)].
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The twist DOF
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Figure S6. The twist DOF. (a) Modal trajectories of twist dynamics for several values of
initial offset (x0 = y0 = 0, θ0 > 0). (b) Corresponding die angular velocities ω along self-
alignment trajectories. The values of the angular velocities for differing θ0 tend to attain a
similar maximal value. (c) Values of angular acceleration ω̇ numerically estimated from (b)
through linear fit.
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Figure S7. Rotational self-alignment dynamics for a foil die with maximal misorientation
and null biaxial offset (x0 = y0 = 0, θ0 = 45◦). The absence of initial capillary torque
(predicted by SE simulations, see Fig. 5c in the text) causes the foil die to remain in the
metastable state until the rotational symmetry is broken by vibrational noise.
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Synchronisation and mode coupling
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Figure S8. Alignment of times of first zero crossing in the experimental dynamics of simul-
taneously excited uniaxial shift and twist modes.
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Non-dimensional map of self-alignment dynamics
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Figure S9. Map of non-dimensional damping time τd as function of normalized mass m̃
and normalized viscosity α (see text for definitions). The straight line corresponding to
τd = 1 separates the domains of overdamped and underdamped harmonic oscillations of
the component. The domain above α = 1 is the domain of strict validity of the analytical
model.3 (Adapted from Fig. 8.8 of4 with permission from Springer Science and Business
Media).
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