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ABSTRACT

Scour can have the effect of subsidence of the piers in
bridges, which can ultimately lead to the total collapse of these
systems. Effective bridge design needs appropriate information
on the equilibrium depth of local scour. The flow field around
bridge piers is complex so that deriving a theoretical model for
predicting the exact equilibrium depth of local scour seems to be
near impossible. On the other hand, the assessment of empirical
models highly depends on local conditions, which is usually too
conservative.

In the present study, artificial neural networks are used to
estimate the equilibrium depth of the local scour around bridge
piers. Assuming such equilibrium depth is a function of five vari-
ables, and using experimental data, a neural network model is
trained to predict this equilibrium depth. Multilayer neural net-
works with backpropagation algorithm with different learning
rules are investigated and implemented. Different methods of
data normalization besides the effect of initial weightings and
overtraining phenomenon are addressed. The results show well
adoption of the neural network predictions against experimental
data in comparison with the estimation of empirical models.

1 INTRODUCTION

Every year a considerable number of bridges is destroyed
due to the scour phenomenon with their piers and abutments. For
instance, seventeen bridges were destroyed during the flash flood
in 1987 in the United States [1]. The costs of damages to the
bridges and highways of the United States caused by local floods
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during an eight year period studied in [2], were estimated around
100 million U.S. dollars per disaster. Scour is a phenomenon dur-
ing which the river bed sediments run from the upstream to the
downstream and causes damage in the marine structures foun-
dation. Shoreline protection manual spotted the word scour”
instead of the word “erosion” in 2001 to distinct these two kinds
of damages in marine structures.

The appropriate estimation of equilibrium depth of local
scour is of paramount importance in bridge construction. Un-
derestimating the scour depth can result in the destruction of the
bridges. However, an overestimated prediction can lead to extra
expenses in the construction of the bridges. It is therefore im-
perative to make a proper estimation of the equilibrium depth of
local scour in an effective design of a bridge. Several methods
have been proposed in the literature to predict the equilibrium
depth of local scour. These methods can be broadly categorized
in three classes, namely the methods associated with the empiri-
cal, theoretical, and those based on soft computing.

1.1 Empirical and theoretical prediction methods

The shear stress at the bottom of the scour hole has been
approximated in [3]. A model has been presented in [4] to assess
the flow field around the upstream of the scour hole. It has been
shown that the scour hole width is related to the flow depth as
well as the pier diameter. Making a physical model and applying
clear water scour conditions, the effects of river bed sediment
was investigated in [5].

Predictions from different empirical methods are somewhat
different when compared. On the other hand, these methods usu-
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ally result in conservative predictions [6]. Making physical mod-
els is expensive as well as time consuming. However, the valid-
ity of the results from these methods highly depends on the local
data.

The theoretical methods have stronger analytical reasoning
as compared to the empirical methods. Different parameters
which affect the scour have been investigated in [7].

1.2 Soft computing based prediction methods

Empirical and theoretical methods can provide a compre-
hensive intuition about different aspects of a phenomenon. How-
ever, the progress made in the development of the soft computing
methods led to a widespread use of these methods in most engi-
neering fields [8,9]. Artificial neural networks have been also
utilized in the field of river management [10]. The bayesian neu-
ral networks applied in [11] to assess the time-dependent scour
depth.

In this paper, a neural network model is applied to assess
the equilibrium depth of local scour. The experimental data of
bridges with circular piers are used to train the neural networks
(see ’Section 4’). These data were obtained under steady state
and clear water conditions in rivers with uniform bed sediments.

Neural networks consist of simple elements which operate
in parallel and simultaneously. These elements have been in-
spired from biologic systems and have several connections with
weights. Through a proper set of these connection weights de-
termined by the use of an appropriate learning rule such as the
well-known backpropagation, the neural network will be able to
mimic a desired function. The purpose in the training of a neural
network is usually to track output vectors (targets) against given
input vectors. This is done during certain numbers of epochs in
the training process. In each epoch the network output vector is
compared to the corresponding target vector and the error is used
to modify the connection weights [12].

The paper is organized as follows. In Section 2 the math-
ematical models of the scour are briefly introduced. Section 3
serves to spell out the architecture of the neural networks model.
The model is developed in Section 4 and the results are also
discussed at the same section. Eventually, the argument is con-
cluded in Section 5.

2 Local scour and its mathematical model

The river flow regime changes once the flow contacts the
bridge piers. This change causes local shear stresses which lead
to piers scour. In fact, a three dimensional vortex flow system
is created and causes separation of the sediment from the river
bed [13]. As shown in fig. 1, the two main reasons for such
vortex flows are the wrapping of the flow around the piers and
the separation of the flow from these piers. Horseshoe vortex
is resulted once the flow is in contact with the piers. On the
other hand, the separation of the flow from the piers lead to wake
vortex [13, 14].

FIGURE 1: river flow regime changes once the flow is in contact with
the piers, and separates from the piers as well.

The scour is divided into two classes, namely clear water
scour and live bed scour [14]. The manner in which the scour
hole extends with time, and the way in which the scour depth
relates to the flow velocity depend on the two scour classes.

The mostly referred models presented in [15—17] are used to
evaluate the prediction results obtained from the neural networks
model in this study. These models are tabulated in table 1.

TABLE 1: models for predicting the equilibrium depth of local scour.

Model name Description

dye = 1.35 D07 Y03
v\
242D (2 % ~1) (@)
dye =D f ({) [2tanh(})]
f(§)=0 <05

Laursen [15]
Hancu [16]

Breusers [17]

c

fE=2F-1 ,05<f<10

Where, D is the pier diameter, U is the average flow velocity, U,
is the critical flow velocity, Y is the flow depth, g is the accel-
eration due to gravity, and d;, is the equilibrium depth of local
scour.

3 NEURAL NETWORK ARCHITECTURE

Assuming clear water scour, steady state flow, and homo-
geneity and non-viscous effect for the bed sediments, the equilib-
rium depth of the local scour for circular bridge piers is estimated
in the present study. The equilibrium depth of the local scour is
therefore can be estimated as a function of certain variables [18],
given in eq. (1).

dse:¢(paN7UaY7gad503UC7D) (D

Where p is the fluid density, u is the fluid dynamic viscosity, and
dsq is the average diameter of the bed sediments.
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Though the effect of these variables on the equilibrium depth
of the local scour is remarkable, the geometry of the piers as well
as the flow contact angle are also parameters that affect the scour
depth [19]. In the present study, the equilibrium depth of the
local scour is considered to be a function of the variables given
in eq. (2).

dye :Q(d507D7U7YaUC> (2)

Use of the data with dimensions in the development of the
neural network model can lead to a better estimation of the scour
depth [11,20]. Therefore, in this study, data with dimensions as
those of eq. (2) are used to train the multilayer neural network
(MLP) model. The five arguments of the function Q and d,, are
used as the neural network input and output variables, respec-
tively.

4 NEURAL NETWORK DEVELOPMENT AND THE RE-

SULTS

A multilayer neural network along with the well-known
backpropagation of error with five input variables from eq. (2)
and d;, as the output were used in the development of the net-
work. In order to train and test the network, the experimental
data presented in references [3,4,6,21-23] were employed.

The equilibrium depth of the local scour is a stochastic vari-
able. Hence, the analysis of the estimation results is done in the
probability domain of the occurrence. To do this, two mathemat-
ical expectations known as the root mean square of error (RMS)
and the correlation coefficient (CC) are used. These parameters
are defined in eq. (3).

RMS = /5 (Pi*ti)z/”

i=1
. 3)
(pi—p) i~/

CC =

i

Where #; and p; are, respectively, the actual (target) and estimated
values for the equilibrium depth of the local scour.

An important factor in the performance of the neural net-
work is the proper pre-processing of the data used in the network
training. These data are often normalized in an appropriate range
such as [-1,+1]. Two different methods were used in the normal-
ization process in this study. In the first method, based on eq. (4),
the data are normalized in such a way as to have a zero mean and
standard deviation equal to unity. The second method assumes
eq. (5) in normalizing the data in the range [-1,+1].

_ P~ Pmin

, = o Lmin 4

P std(p) @)
2(p— min

py = 2P Pmin) 5)
Pmax — Pmin

Where p, and p are the matrices of the normalized and un-
normalized inputs, respectively, ppin and ppq are the vectors

containing the smallest and largest row elements of matrix p, and
std(p) is the vector containing the standard deviation of each row
of matrix p. The un-normalized data relating to the critical flow
velocity along with the normalized data from the two methods
are depicted in fig. 2.
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FIGURE 2: the un-normalized data relating to the critical flow velocity
along with the normalized data.

Two neural networks were designed and trained using each
of the two normalized data explained earlier. Comparison of the
performance results obtained by these two networks helps de-
termine the better data normalization method. fig. 3 shows the
estimation results of these two neural networks. This figure in-
dicates that the second method of data normalization as the pre-
ferred one.
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FIGURE 3: comparison of the two different data normalization meth-
ods used in this study.
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TABLE 2: choosing the combination set of initial weights and number of hidden neurons resulting in the best network performance from the cases

examined.
number of neurons 2 3 4 5 6 7 8 9 10 11 12
initial weight index number 3 23 3 17 4 11 37 31 21 32 28
RMS 0.040 | 0.043 | 0.042 | 0.030 | 0.076 | 0.063 | 0.065 | 0.253 | 0.073 | 0.135 | 0.247
CC 0.675 | 0.675 | 0.741 | 0.821 | 0.569 | 0.566 | 0.587 | 0.441 | 0.467 | 0.504 | 0.388

The network initial weights were randomly assigned, as nor-
mally done. This was done for a set of 41 different initial weight
values along with different number of neurons in the hidden layer
so as to choose the set leading to the best result. The number of
hidden neurons was changed from 2 to 12, leading to a total com-
bination of 451 cases. According to the results given in table 2,
among the cases examined, the combination set with the best re-
sults corresponds to the case with 5 hidden neurons and weight
values of no. 17.

The RMS and CC for the networks with different number
of hidden neurons are depicted in fig. 4. It can be observed that
the best network estimate corresponds to the case with 5 hidden
neurons.
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FIGURE 4: the bar chart showing the number of hidden neurons result-
ing in the best network performance from the cases examined.

Once the “best” combination set was determined with re-
spect to the number of hidden neurons, the next step was to find
the best number of epochs to train the network while at the same
time avoiding the network overtraining. To do this, different
training sessions were performed changing the epochs from 25
to 1000. It was observed that the best network estimate was ob-
tained with the case of 286 epochs.

Having obtained the best network performance among the
cases examined, the final task was to determine which learning
rule among the limited number of rules, given in table 3, was the
most proper for this problem.

The performance of the developed neural network was
shown in fig. 5 in terms of the RMS and CC for the different

TABLE 3: the learning rules used in the present study from Matlab®.
software.

Abb. | Description

OSS | one step secant BPG (backpropagation)

GDA | gradient Descent with Adaptive Ir BPG

GDX | gradient Descent with momentum and adaptive Ir BPG.
RP resilient BPG

CGF | conjugate Gradient BPG with Fletcher-Reeves updates
CGP | conjugate Gradient BPG with Polak-Ribiere updates
CGB | conjugate Gradient BPG with Powell-Beale restarts
SCG | scaled Conjugate Gradient BPG

LM levenberg-Marquardt BPG

learning rules examined. It demonstrates that the Levenberg-
Marquardt rule (LM) offers the best estimate. This rule was also
shown to have the fastest convergence rate as well.

1

Elcc
0.5 RS |
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0SS GDA GDX RP CGF CGP CGB SCG LM
Learning rules

Value

FIGURE 5: choosing the most proper learning rule from among a lim-
ited number of rules.

The results for the estimate of the equilibrium depth of the
local scour are depicted in fig. 6. In addition, the results obtained
from the empirical models introduced in table 1 are also shown
in figs. 6 to 8.

As can be observed from these figures, the neural network
model offers the best estimate for the equilibrium depth of the
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FIGURE 6: estimate for the equilibrium depth of the local scour from
the neural network model.
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FIGURE 8: estimate for the equilibrium depth of the local scour from
the Hancu model.

local scour. The performance of these models is also given in
table 4 and can be compared.

TABLE 4: comparison of the estimates for the equilibrium depth of the
local scour obtained from the different models.

Breusers | neural network
0.1188 0.0302
0.2839 0.8214

Model | Laursen | Hancu
RMS 0.0822 | 0.1006
CcC 0.4800 | 0.1756
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FIGURE 7: estimate for the equilibrium depth of the local scour from
the Laursen model.
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FIGURE 9: estimate for the equilibrium depth of the local scour from
the Breusers model.

5 CONCLUSION

An efficient bridge design requires a proper estimate for the
equilibrium depth of the local scour. Use of empirical models
for such estimations can be time consuming as well as costly.
These models often lead to an overestimate for the scour depth.
In addition, due to the inherent complexity of the scour problem,
deriving an accurate theoretical model is extremely difficult.

Artificial neural network was used to estimate the equilib-
rium depth of the local scour. Having observed that the neural
network model offers a better performance, a combination of sev-
eral different cases was also done in order to find the best number
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of hidden neurons and initial weights for the neural network for
the cases examined.

It has been shown that the neural network estimation is more
accurate in comparison with the performance results obtained
from the empirical models. The data used to train the network
were a combination of data obtained from several numbers of
bridges. Therefore it can be expected that the developed neural
network model works regardless of the local conditions governed
by the river flow regime.

The efficiency of using neural networks model comparing to
the classical methods to estimate the scour depth was illustrated
in this study. However, the performance of the neural networks-
based methods can vary depending on the choice of the network
type. Adoption of different network types may improve the re-
sults.
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