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Preface
The present Thesis is submitted in fulfillment of the requirements of the degree of

Docteur ès Sciences at the École Doctorale in Civil and Environmental Engineering

(EDCE) of the École Polytechnique Fédérale de Lausanne (EPFL). It contains the

result of outstanding scientific work carried out by the candidate Andrea Giometto.

The candidate conducted the work both at the Laboratory of Ecohydrology (ECHO)

within the School of Architecture, Civil and Environmental Engineering (ENAC), EPF

Lausanne under the supervision of Prof. Andrea Rinaldo and at the Department of

Aquatic Ecology at Eawag under the co-supervision of Prof. Florian Altermatt. The

Thesis work spans a period of slightly more than three years (October 2011 to January

2015). The Thesis is a combination of both extensive theoretical and experimental

results, and this combination results in a broad range of topics addressed, and leads

to important advancements in science. The theoretical work was supervised by Prof.

Andrea Rinaldo and the experimental work was supervised by Prof. Florian Altermatt.

The main studies, on which all results of the thesis herein are based, have been carried

out either at EPFL in Lausanne or at Eawag in Dübendorf under the joint supervision

of the thesis director and co-director.

The Thesis is organized in five independent Chapters, preceded by a general introduc-

tion. The general introduction outlines the conceptual framework that embeds the

various issues studied. The five chapters will each stand as independent peer-reviewed

publication. Results of Chapter 1 and 5 are both already published in two different

issues of the Proceedings of the National Academy of Sciences of the United States of

America. The Chapters are ordered in a sequential form, looking at different aspects of

invasion dynamics in homogeneous (Chapter 1) to heterogeneous landscapes (Chap-

ters 2 and 3), addressing population fluctuations induced by temporal environmental

stochasticity in the framework of Taylor’s law of fluctuation scaling (Chapter 4), and

investigating the source of heterogeneity (here: body size) in the search for general

properties across different levels of biological organization, commonly described by

scaling laws (Chapter 5). The Thesis ends with general conclusions and an outlook to

future related research.

The Thesis uses tools from statistical mechanics in combination with state-of-the-art

protist microcosm experiments. As such, the Thesis assesses various longstanding
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issues in ecology, getting original and relevant results that have already attracted the

interest of the field. The main topic of the Thesis is the characterization and impact of

the main sources of fluctuations on relevant ecological patterns and processes. Specif-

ically, the Thesis gives the experimental test of predictions on the spatial spread of

organisms in the so-called Fisher-Kolmogorov framework and studies the significance

of demographic and environmental stochasticity on a very timely topic in ecology,

i.e. biological invasions, possibly in heterogeneous environments, resourcewise or

as far as their support matrix is concerned. The combination of extensive theoreti-

cal models and four independent microcosm experiments result in an exceptionally

comprehensive and broad Thesis work. The Thesis reflects the candidate’s skills to

conduct experiments and link them to complex theoretical models and simulations

across a broad range of topics in ecology in the wider sense. The candidate also

exhibits highest talents in writing and formulating complex circumstances and data

in a very scholarly and educative manner. Each Chapter contains independent sets

of conclusions, putting forth perspectives and further possible developments. The

original references for the independent Chapters 1 to 5, unambiguously attributable

to a leading role of the candidate, are:

• Chapter 1: Giometto, A., Rinaldo, A., Carrara, F., and Altermatt, F. (2014). Emerg-

ing predictable features of replicated biological invasion fronts. Proceedings of

the National Academy of Sciences of the United States of America, 111:297–301.

• Chapter 2: Giometto, A., Altermatt, F., Maritan, A., Stocker, R., and Rinaldo, A.

A generalized receptor law governs phototaxis in phytoplankton. Manuscript

submitted.

• Chapter 3: Giometto, A., Altermatt, F., and Rinaldo, R. Biological invasions in

autocorrelated heterogeneous landscapes. Manuscript in preparation.

• Chapter 4: Giometto, A., Formentin, M., Rinaldo, A., Cohen, J. E., and Maritan,

A. Sample and population exponents of generalized Taylor’s law. Manuscript

submitted.

• Chapter 5: Giometto, A., Altermatt, F., Carrara, F., Maritan, A., and Rinaldo, A.

(2013). Scaling body size fluctuations. Proceedings of the National Academy of

Sciences of the United States of America, 100:4646–4650.

The candidate, with a background in statistical mechanics, expressed his talents in

bridging disciplines and integrating questions as well as tools from both physics and

biology. Such an interdisciplinary approach is rare in general, and exceptional for a

single Thesis work. The candidate has an extensive overview of the relevant ecological

literature. He managed to blend theoretical and conceptual findings with empirical
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data in a noteworthy manner, and to present the results, both in the figures as well as

in the writing, in a scholarly manner. With the submission of this Thesis, the candidate

and excellent scientist Andrea Giometto will receive the worthy academic honors.

Originality
The present Thesis fulfills the requirements regarding originality as well as relevance

required by the academic standards of EPFL and of the Doctoral School EDCE. The

wide range of questions addressed under one common framework (characterization

and impact of main sources of fluctuations on ecological patterns and processes),

the diversity and technical demands of the methods employed, and integration with

the relevant current literature result in a exemplary Thesis work that we recommend

for acceptance without any reservations and with the highest expectations for the

ensuing academic career1.

Lausanne and Dübendorf, 10 December 2014

Prof. Dr. Andrea RINALDO

Thesis Director

and

Prof. Dr. Florian ALTERMATT

Thesis Co-Director

1The research and the doctoral position of the candidate at EPFL have been founded by the Eawag
discretionary funds (October 2011 to September 2014) and by ECHO funding (October 2014 to February
2015).
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Abstract
Fluctuations are ubiquitous in nature and are relevant for nearly every ecological

process. The main sources of fluctuations in population abundances are demo-

graphic and environmental stochasticity, whose effect on local population dynamics,

metapopulations and metacommunities have attracted much interest in the ecolog-

ical literature. A third source of stochasticity is demographic heterogeneity, which

is the variability of demographic traits within a population. Despite the large body

of literature dedicated to fluctuations in ecology, their role in some relevant eco-

logical patterns and processes is still rather unexplored. For example, the effect of

demographic and environmental stochasticity on species spread is poorly understood,

mostly due to a scarcity of experimentation linking theoretical models with replicated

experiments. Additionally, environmental stochasticity can induce population fluc-

tuations and has been shown theoretically to determine the exponent of one of the

most widespread scaling laws in nature, Taylor’s law of fluctuation scaling. However,

empirical observations point towards the existence of a single universal Taylor’s law

exponent, in contrast with such model predictions. Here, experiments with protist

microcosms and methods from statistical physics are used to investigate the role of

fluctuations and heterogeneity on relevant ecological patterns and processes. The

effect of demographic and environmental stochasticity on the propagation of bio-

logical invasions is studied in microcosm experiments with Tetrahymena sp. and

Euglena gracilis and with stochastic generalizations of the Fisher-Kolmogorov equa-

tion. Demographic stochasticity is shown to induce fluctuations in the position of

the propagating front and the statistical structure of the environmental heterogene-

ity is shown to cause a slowing-down of the invasion front at large autocorrelation

lengths. The investigation of biological invasions in environments with heteroge-

neous distribution of resources is performed experimentally by manipulating light,

the energy resource for photosynthetic organisms. Such experimental setup is further

used to study phototaxis, the directed motion of phytoplankton towards or against

light sources, a process that is important for relevant ecological phenomena such as

diel vertical migration. A model for phototaxis is derived from the experiments in

the generalized Keller-Segel framework. Large deviations theory is used to derive a

generalized Taylor’s law and to elucidate the origin of a universal scaling exponent
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as due to sampling rather than to the population growth process. The framework of

finite-size scaling is used to characterize the demographic heterogeneity in a relevant

ecological trait, the body size of individuals. Intra-specific body size distributions

measured experimentally are shown to be described by a universal scaling distribution

across different taxa and over four orders of magnitude in body size. Mathematical

models of cell growth and division are shown to be compatible with the observed

universal body size distribution.

Key words: Fluctuations, Heterogeneity, Environmental Stochasticity, Demographic

Stochasticity, Biological Dispersal, Biological Invasions, Biological Fronts, Fisher-

Kolmogorov Equation, Phototaxis, Taylor’s law, Scaling, Body Size, Body Mass, Protist,

Microcosm
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Sommario
Le fluttuazioni sono onnipresenti in natura e sono rilevanti per quasi ogni proces-

so ecologico. Le principali sorgenti di fluttuazioni nell’abbondanza di popolazioni

ecologiche sono la stocasticità demografica e la stocasticità ambientale, i cui effetti

sulla dinamica di popolazione locale, sulle meta-popolazioni e sulle meta-comunità

hanno attratto molto interesse nella letteratura ecologica. Un’ulteriore sorgente di

fluttuazioni è data dalla eterogeneità demografica, che consiste nella variabilità dei

tratti demografici all’interno di una popolazione. Nonostante le fluttuazioni siano

state oggetto di un gran numero di studi nella letteratura ecologica, il loro effetto in

alcuni processi e pattern ecologici di grande rilevanza è pressoché inesplorato. Per

esempio, l’effetto della stocasticità demografica ed ambientale sulla dinamica delle

invasioni biologiche è ancora poco compreso, perlopiù a causa di una scarsità di studi

sperimentali che mettano in relazione i modelli matematici di dispersione biologica

con i risultati sperimentali. Inoltre, la stocasticità ambientale può indurre fluttuazioni

nell’abbondanza di popolazione e modelli teorici prevedono che tale stocasticità

possa determinare l’esponente di una delle leggi di scala più note in natura, la legge

di Taylor, in disaccordo con risultati empirici che suggeriscono l’esistenza di un sin-

golo esponente universale. In questa tesi si fa utilizzo di esperimenti in microcosmi

con protisti e di metodi della fisica statistica per studiare il ruolo delle fluttuazioni e

dell’eterogeneità in processi e pattern ecologici di grande rilevanza. L’effetto della sto-

casticità demografica e della stocasticità ambientale sulla propagazione di invasioni

biologiche è studiata tramite esperimenti con Tetrahymena sp. ed Euglena gracilis e

tramite generalizzazioni stocastiche della nota equazione di Fisher-Kolmogorov. Si

dimostra che la stocasticità demografica induce fluttuazioni nella posizione del fronte

e che la struttura statistica dell’eterogeneità ambientale causa un rallentamento del

fronte di propagazione all’aumentare della lunghezza di correlazione. Sperimental-

mente, lo studio delle invasioni biologiche in ambienti con distribuzione eterogenea

delle risorse si effettua tramite la manipolazione della luce, che è utilizzata come

risorsa di energia per la specie autotrofa E. gracilis. Il setup sperimentale adoperato è

utilizzato per lo studio della fototassi, il movimento di organismi in direzione della

luce o in direzione contraria, un processo importante per fenomeni ecologici rile-

vanti quali la migrazione verticale giornaliera. I risultati sperimentali sono utilizzati
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per derivare un modello matematico per la fototassi di tipo Keller-Segel. La teoria

delle grandi deviazioni è utilizzata per derivare una legge generalizzata di Taylor e

per dimostrare che l’origine di un singolo esponente di scala universale osservata

nei dati empirici può essere dovuta ad un problema di campionamento e non essere

riconducibile alle proprietà del processo di crescita. Concetti di finite-size scaling (il

comportamento di leggi di scala a taglia finita) vengono utilizzati per caratterizzare

l’eterogeneità demografica di una delle variabili ecologiche più importanti, la taglia

degli individui. Si dimostra che le distribuzioni intraspecifiche misurate sperimental-

mente in taxa differenti e in oltre quattro ordini di grandezza sono caratterizzate da

una distribuzione universale. Si dimostra che modelli di crescita e divisione cellulare

sono compatibili con la distribuzione universale osservata.

Parole chiave: Fluttuazioni, Eterogeneità, Stocasticità ambientale, Stocasticità demo-

grafica, Dispersione biologica, Invasioni biologiche, Fronti biologici, Equazione di

Fisher-Kolmogorov, Fototassi, Legge di Taylor, Leggi di scala, Taglia corporea, Massa

corporea, Protista, Microcosmo
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Introduction

Population fluctuations are amongst the most fascinating phenomena in ecology. De-

spite decades of investigation, the causes and consequences of such fluctuations con-

stitute a large portion of the 100 fundamental ecological questions recently identified

on the occasion of the 100th anniversary of the British Ecological Society (Sutherland

et al., 2013), and thus are still at the core of ecological research. Along with promoting

the study of population fluctuations, the list in Sutherland et al. (2013) underlines the

need for concepts and methods to link local ecological processes to global patterns

and dynamics, an issue that received increasing attention since the publication of the

influential McArthur Award lecture Levin (1992). The implications of fluctuations on

ecological patterns and processes and the problem of pattern and scale in ecology

(Levin, 1992) are the main focus of this thesis.

Two main sources of stochasticity have been traditionally advocated to cause fluctua-

tions in population abundances. The first is demographic stochasticity, which is due

to the random processes of birth and death of individuals. The importance of demo-

graphic stochasticity in ecological theory is easily understood as it is at the core of the

neutral theory of ecology (Hubbell, 2001) and is contemplated among the main drivers

of species diversity and composition (Vellend, 2010). Demographic stochasticity is

most relevant when the population size is small and can have deleterious effects such

as extinction or genetic drift. The dynamics of small population is relevant for several

ecological processes, such as dispersal and persistence. For example, population

abundance at the edge of a species range is low and the local extinctions caused by

demographic stochasticity contribute to the definition of the edge and may affect the

dynamics of biological invasions (Giometto et al., 2014, Hallatschek and Korolev, 2009,

Melbourne and Hastings, 2009). The study of the effect of demographic stochasticity

on ecological processes is also important in view of human-induced fragmentation,

which contributes to the creation of small and isolated populations that are more

prone to extinction (Hanski, 1999, Hanski and Ovaskainen, 2000, Holyoak et al., 2005).

The second main source of stochasticity is the environment, which can affect the vital
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rates of species and thus induce fluctuations in their population abundances. For

example, spatially correlated density-independent fluctuations induced by the climate

can cause the synchronization of two spatially separated populations, a phenomenon

known as the Moran effect (Moran, 1953). Natural heterogeneity may affect species

vital rates, for example via resource fluctuations in space and time, and ecological

processes may interact with the heterogeneous geometrical substrate in which they

take place (Bertuzzo et al., 2011). Unlike demographic stochasticity, environmental

stochasticity is relevant for all populations sizes and not only for small ones. Both

theoretical (Roy et al., 2005, Vasseur, 2007) and experimental (Fontaine and Gonzalez,

2005, García-Carreras and Reuman, 2011) studies have highlighted the relevance of

the autocorrelation structure of environmental fluctuations for ecological dynamics.

For example, Gonzalez and Holt (2002) showed that red (i.e., positively autocorrelated)

temporal temperature fluctuations allowed the persistence of sink populations in

an experimental protist microcosm, while white fluctuations did not. The study of

ecological processes in the presence of environmental stochasticity with different

levels of autocorrelation is of interest not only because environmental fluctuations

are typically positively correlated (Benincà et al., 2011), but also in view of the global

shift towards ‘bluer’ climate variables (i.e., more fluctuating) that took place in most

continents over the last century (García-Carreras and Reuman, 2011).

One source of stochasticity that received less attention in the literature is demographic

heterogeneity, that is, the variation of traits affecting fecundity and survival across

individuals (Kendall and Fox, 2003). The difference between demographic heterogene-

ity and demographic stochasticity is subtle, and is best understood observing that for

the former birth and death rates vary according to heterogeneous individual traits,

while for the latter births and deaths are random events originating from a stochastic

process with fixed demographic rates (Melbourne and Hastings, 2008). Analogous to

demographic stochasticity, demographic heterogeneity is most important for small

populations, were unbalances between births and deaths can have profound and

possibly detrimental consequences.

This thesis investigates the implications of demographic stochasticity (Chapters 1 and

3), environmental stochasticity (Chapters 3 and 4) and demographic heterogeneity

(Chapter 5) on important ecological patterns and process, mostly through a combina-

tion of laboratory experiments with protist microcosms (Holyoak and Lawler, 2005)

and theoretical models inspired by statistical physics (Solé and Bascompte, 2006)

and by the theory of stochastic processes (Bailey et al., 2000, Gardiner, 2006). Protist

microcosms have been instrumental in the development and testing of ecological

theory. In Gause (1934), a pioneering set of microcosm experiments aimed at the

understanding of competition and predation in the natural environment were pre-
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sented. Microcosms allow establishing a close connection between experiments and

simple mathematical models and thus allow testing specific predictions of ecological

models in simplified ecosystems containing solely the processes of interest. Such

features were already present in Gause (1934), where the experimental results were

related to the Lotka-Volterra equation for predation and competition. Because mi-

crocosms are devoid of the inevitable complexity of the natural environment, they

allow establishing causal relationships in idealized ecological settings that may be

impossible to investigate in the field. For example, microcosm experiments with

protists allowed establishing a cause-effect relationship between landscape connec-

tivity and biodiversity patterns (Carrara et al., 2012) by suitably manipulating the

landscape connectivity. To what extent the results of microcosm experiments can

be extrapolated to the natural environment is a debated open question (Gardner

et al., 2001, Holyoak and Lawler, 2005). Suffice here to note that protist microcosms

have already proved instrumental for testing predictions of metacommunity theory,

investigating food-web and source-sink dynamics and driving the development of

theoretical models (Holyoak and Lawler, 2005). Notably, experiments with protist

microcosms have long been at the core of the development of population dynamics

theory (Benton et al., 2007, Cadotte et al., 2005, Jessup et al., 2004, Srivastava et al.,

2004).

Concepts and methods from statistical physics have found widespread application

in ecology. Among the most successful examples are the concepts of scaling and

universality, which had a profound impact on the understanding of macroecological

patterns. Scaling laws have been observed in a wide variety of ecosystems across

several levels of organization and have found applied relevance, for example in the

estimation of extinction risk (Marquet et al., 2005). The observation of scaling laws in

many descriptors of ecosystem dynamics has led many authors to suggest that biolog-

ical systems might operate close to criticality (Hidalgo et al., 2014, Mora and Bialek,

2011). As a consequence, such systems display scale invariance, that is, they cannot

be described at a single scale (Levin, 1992), and despite their apparent unrelatedness

they might share similar quantitative features that would allow to catalogue them

within a limited set of universality classes, akin to several systems in physics and other

disciplines (Stanley et al., 2000). Theoretical frameworks borrowed from statistical

physics, such as the finite-size scaling, allow to link seemingly unrelated ecological

laws (Banavar et al., 2007, Southwood et al., 2006), deepening the understanding of

the joint occurrence of ecological patterns. The study of ecological phenomena has

contributed to the development of stochastic processes (Bailey, 1964), which now

find widespread application in ecology. Most importantly, stochastic models allow

reducing the dimensionality of the problem by accounting for processes operating

at finer scales via suitable stochastic terms (Rosindell et al., 2012). Furthermore, the
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transition from deterministic to stochastic models allows accounting for the various

sources of stochasticity described above and investigating fluctuations in the process

of interest. The work presented in this thesis combines the capabilities of protist mi-

crocosm experiments with tools from statistical physics that are now widely applied in

the science of complex systems. The combination of these two approaches is deemed

as a fruitful avenue for future research, as it allows investigating ecological processes

at the mesoscopic scale by deriving theoretical predictions based on the smallest set

of viable assumptions and validating them in microcosm experiment tailored to the

mathematical models.

The thesis is organized as follows. The first three chapters investigate the source of

variance in a fundamental ecological process: biological dispersal. The search for the

processes that affect biological dispersal and the sources of variability observed in

ecological range expansions is fundamental to the study of invasive species dynamics

(Hastings et al., 2005), shifts in species ranges due to climate or environmental change

(Parmesan et al., 1999) and, in general, the spatial distribution of species (Skellam,

1951). Dispersal is the key agent that brings favorable genotypes or highly competitive

species into new ranges much faster than any other ecological or evolutionary process

(Fisher, 1937, Hallatschek et al., 2007). Understanding the potential and realized

dispersal is thus key to ecology in general (Sutherland et al., 2013). When organisms’

spread occurs on the timescale of multiple generations, it is the byproduct of pro-

cesses that take place at finer spatial and temporal scales, that are the local movement

and reproduction of individuals (Andow et al., 1990, Hastings et al., 2005). The main

difficulty in causally understanding dispersal is thus to upscale processes that happen

at the short-term individual level to long-term and broad-scale population patterns

(Andow et al., 1990, Bascompte and Solé, 1995, Levin, 1992, Sutherland et al., 2013).

Furthermore, the large fluctuations observed in range expansions have been claimed

to reflect an intrinsic lack of predictability of the phenomenon (Melbourne and Hast-

ings, 2009). Whether the variability observed in nature or in experimental ensembles

might be accounted for by demographic or environmental stochasticity affecting basic

vital rates of the organisms involved is an open research question (Hastings et al.,

2005, Melbourne and Hastings, 2009, Sutherland et al., 2013).

Chapter 1 investigates the role of demographic stochasticity in the propagation of

invasion fronts in uniform landscapes. Replicated invasions are performed in experi-

ments with the ciliate Tetrahymena sp. in uniform linear landscapes. Density profiles

are measured during the invasion and the mean dynamics and fluctuations of the

propagating front are compared to the prediction of a generalized Fisher-Kolmogorov

equation accounting for demographic stochasticity (Dornic et al., 2005, Hallatschek

and Korolev, 2009), with the species’ traits estimated locally in independent exper-
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iments. The original contributions of this chapter are the setup and realization of

the experiments and data analysis, the experimental corroboration of the Fisher-

Kolmogorov prediction (Fisher, 1937, Kolmogorov et al., 1937) for the speed of the

invasion front and the identification of demographic stochasticity as the main driver

of fluctuations in the front position, with quantitative agreement between the exper-

iments and the generalized Fisher-Kolmogorov equation (Dornic et al., 2005, Hal-

latschek and Korolev, 2009).

Chapter 2 is dedicated to the measurement and modeling of phototaxis (Jékely et al.,

2008), the directed movement of algae towards or away from light, in an effort to

develop experimental and mathematical techniques to subsequently investigate bio-

logical invasions in heterogeneous environments. Beyond the methodological interest

of exploiting phototaxis to generate heterogeneous microcosms, the directed move-

ment of phytoplankton towards light is of relevance for important ecological processes

such as diel vertical migration and the vertical distribution of phytoplankton (Häder

and Griebenow, 1988, Jékely et al., 2008). The accumulation patterns and dynamics of

E. gracilis in the presence of external light gradients are measured in a broad range

of light intensities in replicated experiments. An advection-diffusion equation de-

scribing the measured phototactic dynamics is derived in the Keller-Segel framework

(Keller and Segel, 1970a, Tindall et al., 2008) and the phototactic response function is

shown to obey to a generalized receptor law (Lapidus and Schiller, 1976, Tindall et al.,

2008). The original contributions of this chapter are the setup and realization of the

experiments and data analysis, the identification of the phototactic response function

and the corresponding Keller-Segel model.

Chapter 3 capitalizes on the results of Chapter 2 by exploiting the process of pho-

totaxis to investigate the propagation of invasion fronts in environments with het-

erogeneous distribution of resources, obtained via the manipulation of the external

light. The Keller-Segel framework derived in Chapter 2 is coupled to a demographic

term accounting for demographic stochasticity as in Chapter 1 and the resulting

stochastic reaction-diffusion equation is used to study front propagation dynamics in

such heterogeneous environments. A replicated experiment with the alga E. gracilis

is performed to compare front propagations in landscapes with different resource

autocorrelation lengths. The original contributions of this chapter are the setup and

realization of the experiments and data analysis and the investigation of the inter-

play between demographic stochasticity and environmental heterogeneity in the

generalized Fisher-Kolmogorov framework.

In Chapter 4, population fluctuations induced by temporal environmental stochastic-

ity are studied in the context of Taylor’s law (Taylor, 1961). Taylor’s law (TL), also known
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as fluctuation scaling, states that the variance V of a non-negative random variable

scales with the mean M via a power-law, V = aM b . In the last 50 years, more than a

thousand publications have verified TL very widely in ecology (where it describes the

abundance or density of populations), physics, other natural sciences, information

technology, and finance (Eisler, 2008). Empirical estimates of the exponent b often

cluster around the value b = 2, which is equivalent to a constant coefficient of varia-

tion or to a constant signal-to-noise ratio. The surprisingly broad range of natural and

artificial systems described by TL suggests that a context-independent mechanism

may be at work. However, recent theoretical studies of population dynamics using

multiplicative models predict that environmental stochasticity can affect the scaling

exponent of Taylor’s law and possibly cause abrupt transitions between positive and

negative exponents, following smooth changes of the environmental autocorrelation

(Cohen, 2014b). In Chapter 4, a broad class of population growth models are studied

in combination with a stochastic environment with different degrees of temporal

autocorrelation. The seemingly universal emergence of the scaling law pattern in

population size fluctuations with exponent b = 2, irrespectively of the details of the

population dynamics and of the forcings that drive the system, is rationalized in the

context of the theory of large deviations (den Hollander, 2008). The original contribu-

tions of this chapter are the analytical derivation of a generalized TL for both sample

and population exponents and the analytical computation of the sample exponents

and their dependence on the total number of replicates in the sample, which high-

lights the universal character of the TL exponent b = 2 as due to sampling rather than

to the population dynamics. The data analyses on the generalized TL are also original.

Chapter 5 studies the fluctuations of one of the most relevant ecological traits, the

body size of individuals (Marquet et al., 2005, Peters, 1983). The importance of body

size in shaping ecological processes can be easily understood given the plethora of

scaling relationships where body size features as the independent variable (Brown

and West, 2000, Marquet et al., 2005). In fact, despite the incredible complexity of

living organisms (Brown and West, 2000, Labra et al., 2007) and ecosystems (Levin,

1992, Marquet et al., 2005), vital rates and ecosystem properties are often found to

be simple power functions of body size, allowing the delineation of a quantitative

framework bridging ecology, biogeography and physiology (Brown and West, 2000,

Marquet et al., 2005). To cite a few examples, metabolic rates have been found to scale

with body size with exponent 3/4 (Kleiber (1947), although the value of the exponent

is still debated), the maximum number of individuals in a given area has been shown

to scale with body size with exponent −3/4 (Damuth, 1981) and the total number of

species in a given area has been argued to scale with body size with exponent −3/4

(Marquet et al., 2005). Chapter 5 is dedicated to the characterization of the demo-

graphic heterogeneity in body size, moving from the observation that the scaling body
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size spectra typically encountered in aquatic ecosystems (Sheldon et al., 1972) require

regularities of the component parts, namely the intra-specific body size distributions.

Such intra-specific distributions are measured in laboratory experiments with protist

microcosms, and their universal properties across different taxa and over more than

four orders of magnitude in body size are discussed and interpreted in the framework

of finite-size scaling (Banavar et al., 2007, Fisher and Barber, 1972). In the investiga-

tion, a new facet of Taylor’s law is uncovered through the observation that the variance

of intra-specific body size distributions scales quadratically with their mean body

mass. The original contributions of this chapter are the setup and realization of the

experiments and data analysis, the observation of the lognormal scaling of body size

distributions and the observation that a simple model of cell growth and division

(Diekmann et al., 1983) is compatible with the observed scaling form for the body size

distributions.
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1 Invasion fronts: intrinsic fluctuations

Abstract

Biological dispersal shapes species’ distribution and affects their coexistence. The

spread of organisms governs the dynamics of invasive species, the spread of pathogens

and the shifts in species’ ranges due to climate or environmental change. Despite its

relevance for fundamental ecological processes, however, replicated experimentation

on biological dispersal is lacking and current assessments point at inherent limitations

to predictability, even in the simplest ecological settings. Here, replicated experimen-

tation on the spread of the ciliate Tetrahymena sp. in linear landscapes shows that

information on local unconstrained movement and reproduction allows to predict

reliably the existence and speed of traveling waves of invasion at the macroscopic

scale. Furthermore, a theoretical approach introducing demographic stochasticity

in the Fisher-Kolmogorov framework of reaction-diffusion processes captures the

observed fluctuations in range expansions. Therefore, predictability of the key fea-

tures of biological dispersal overcomes the inherent biological stochasticity. Such

results establish a causal link from the short-term individual level to the long-term,

broad-scale population patterns and may be generalized, possibly providing a general

predictive framework for biological invasions in natural environments.
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Chapter 1. Invasion fronts: intrinsic fluctuations

1.1 Introduction

Modeling of biological dispersal established the theoretical framework of reaction-

transport processes (Méndez et al., 2010, Murray, 2004), which now finds common

application in dispersal ecology (Andow et al., 1990, Holmes, 1993, Lubina and Levin,

1988, Méndez et al., 2011) and in several other fields (Campos et al., 2006, Fort, 2012,

Fort and Solé, 2013, Méndez et al., 2010, Murray, 2004). Reaction-transport models

are typically expressed in the form of partial differential equations that embed the

two key components of the phenomena described: the movement of particles and

their production. In ecology, the movement or transport of organisms has been most

often described via the diffusion equation (Okubo and Levin, 2002), sometimes in

the presence of advective terms (Bertuzzo et al., 2007, Lubina and Levin, 1988). The

diffusion assumption defines the set of reaction-diffusion models and, in the case of

logistic growth, reduces to the Fisher-Kolmogorov equation (Fisher, 1937, Kolmogorov

et al., 1937). The adoption of the diffusion equation to describe animal movement

embodies a number of approximations that may or may not be realistic depending

on the study problem (Méndez et al., 2010). In most cases, however, even when

organisms can make informed movement decisions at the local scale, the statistical

patterns at the macroscopic scale are consistent with the diffusive approximation

(Andow et al., 1990, Murray, 2004) and thus support the adoption of reaction-diffusion

models as a broadly applicable framework. One of the drawbacks of the diffusive

approximation that can influence the model predictions, especially for fast-growing

and slow-moving species, is that it assumes an infinite velocity of individuals (Holmes,

1993, Méndez et al., 2010), causing local perturbations to spread instantly through

the landscape. Correcting for such unrealistic behavior turns the parabolic reaction

diffusion equations into hyperbolic equations, which involve a second order time-

derivative that is absent in the former set (Méndez et al., 2010). However, because the

consequences of the infinite-velocity assumptions are often negligible (Holmes, 1993,

Méndez et al., 2010), reaction-diffusion equations are most commonly employed. The

classical prediction of reaction-diffusion models (Méndez et al., 2010, Volpert and

Petrovskii, 2009) is the propagation of an invading wavefront traveling undeformed at a

constant speed, which can be expressed in terms of the parameters characterizing the

local movement and growth. For example, in the Fisher-Kolmogorov equation (Fisher,

1937, Kolmogorov et al., 1937) the rate r of exponential increase of a population

and its diffusion coefficient D are constant and the front propagation occurs at the

asymptotic speed v = 2
p

r D. Generalizations of the Fisher-Kolmogorov equation

introduce corrections to such speed that can depend on additional species traits

(Hallatschek and Korolev, 2009, Holmes, 1993, Méndez et al., 2010) or on features of

the environmental matrix (Bertuzzo et al., 2007, Campos et al., 2006, Campos and
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Méndez, 2005).

Within the domain of ecology, reaction-diffusion models have been adopted to de-

scribe the spread of organisms in a variety of comparative studies. Relevant early

studies of ecological data include Skellam (1951), who showed that the spread of

muskrats in central Europe was consistent with the theoretical prediction that the

area covered by the population increases quadratically with time, and Lubina and

Levin (1988), which allowed relating the Fisher-Kolmogorov model to an essentially

one-dimensional spread, that of sea otters along the coast of California. These works

were instrumental in linking the model predictions concerning the spread dynamics

and species distribution patterns at the large scale to real-case scenarios of range

expansions. In such examples, the parameters that enter the reaction-diffusion model

could not be estimated independently and the authors had to rely on estimates drawn

from the onset of the spread. In few field studies (Andow et al., 1990), such parameters

could be measured independently and were used to test the model predictions. The

extensive use of these models (Elton, 1958, Grosholz, 1996, Hastings et al., 2005) and

the good fit to observational data favored their common endorsement as a paradigm

for biological dispersal. Despite the large amount of comparative studies that made

use of such models, however, the study of invasion fronts received little replicated and

controlled experimentation (Melbourne and Hastings, 2009, Volpert and Petrovskii,

2009), in particular concerning the link between the different scales involved (from

local to global, from individuals to populations, Andow et al. (1990), Levin (1992)) and

the study of variability across replicated invasions (Hastings et al., 2005, Melbourne

and Hastings, 2009). Furthermore, reaction-diffusion models have been traditionally

formulated in a deterministic framework that cannot provide information on the fluc-

tuations that are embedded in the propagation process and that originate from the

movement and reproduction of individuals. The need for stochastic generalizations

of the classical Fisher-Kolmogorov framework is accentuated by recent experimental

assessments (Melbourne and Hastings, 2009) that pointed at inherent limitations

to the predictability of the phenomenon, due to its intrinsic stochasticity. Because

single realizations of a dispersal event (as those addressed in comparative studies)

might deviate significantly from the mean of the process, replicated experimentation

is required to characterize such intrinsic fluctuations and to relate them to model

predictions.

This chapter is dedicated to the study of biological invasion fronts propagating in

uniform linear landscapes. The microcosm experiments performed are aimed at es-

tablishing the simplest ecological settings, thus avoiding the contribution of external

sources of variability to the invasion process. In real case scenarios, such superim-

posed external variability might be due to environmental stochasticity (Méndez et al.,

11



Chapter 1. Invasion fronts: intrinsic fluctuations

2011) or to the specificities of the landscape, for example the existence of physical

barriers or the landscape connectivity structure (Bertuzzo et al., 2007). The idealized

settings employed in experimental microcosms allow to establish a close link between

the experiments and the mathematical description in terms of deterministic (Méndez

et al., 2010, Murray, 2004, Volpert and Petrovskii, 2009) and stochastic (Bonachela

et al., 2012, Dornic et al., 2005, Méndez et al., 2011) reaction-diffusion equations.

Herein, the classical Fisher-Kolmogorov equation is shown to provide a satisfactory

quantitative link between the processes at the local and short-time scale and the

speed of propagating invasion fronts at the global scale. Furthermore, the fluctuations

that are intrinsic to the propagation of invasion fronts and that emerge from the two

processes underlying the spread, movement and demography, are characterized and

modeled. A generalized Fisher-Kolmogorov equation accounting for the variability

induced by demographic stochasticity gives a satisfactory quantitative prediction for

the fluctuations of the front position measured in the experiments.

This chapter is organized as follows. First, a theoretical background on the mathemat-

ical modeling of biological invasions with reaction-diffusion processes is provided.

Second, the classical Fisher-Kolmogorov prediction (Fisher, 1937, Kolmogorov et al.,

1937) on the existence and the mean speed of traveling wavefronts is substantiated

experimentally by measuring the individual components of the process at the local

and short-time scale in microcosm experiments with the ciliate Tetrahymena sp. Third,

the inclusion of demographic stochasticity in the model is shown to reproduce the

observed variability in range expansions.
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1.2 Theoretical background

1.2.1 Reaction-diffusion models

This Box contains known results on the mathematical modeling of biological

invasions and is included here to aid the comprehension of the chapter. Please

note that the results presented within this Box are not original.

Reaction-diffusion models have been shown to accurately describe the spread

of organisms in many comparative studies (Andow et al., 1990, Grosholz, 1996,

Lubina and Levin, 1988) and here experimentally confirmed. Models other than

reaction-diffusion equations, such as integro-difference equations involving dis-

persal kernels, are best suited to describe dispersal of organisms that exhibit

distinct reproductive and dispersive phases (Hastings et al., 2005, Melbourne and

Hastings, 2009). However, for many organisms, especially those with continuous,

non-overlapping generations and temporally unstructured dispersal-reproductive

dynamics, the reaction-diffusion approach is highly appropriate (Grosholz, 1996,

Lubina and Levin, 1988, Murray, 2004). Refinements of reaction-diffusion models

have also been put forward in the literature. For instance, reaction-telegraph

models were introduced to account for the finite movement speed of individuals,

resulting in a correction to the wavefront speed (Holmes, 1993), which is however

negligible for Tetrahymena sp., as it is shown in the following sections. Here, the

theoretical framework of reaction-diffusion processes is briefly reviewed and the

relationship to reaction-telegraph processes is discussed, with reference to the

experiments described above. The interested reader can refer to specialized texts

for further investigation and generalizations (Berg, 1993, Gardiner, 2006, Méndez

et al., 2010).

The Fisher-Kolmogorov equation

The diffusion equation:

∂ρ

∂t
(x, t ) = D

∂2ρ

∂x2
(x, t ) (1.1)

describes the evolution of the density of an ensemble of independent random

walkers (Gardiner, 2006). The diffusion coefficient D can be measured as the

proportionality constant that links the mean square displacement to time as
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(Gardiner, 2006):

〈x2
t 〉 = 2Dt , (1.2)

with D as in Eq. 1.1. Macroscopically, or phenomenologically, the continuity

equation in the presence of a reaction term reads:

∂ρ

∂t
=−∂J

∂x
+F (ρ). (1.3)

Assuming proportionality between the flux J and the density gradient ∂ρ/∂x via

the diffusion coefficient one finds the so-called reaction-diffusion equation (Fisher,

1937, Kolmogorov et al., 1937, Méndez et al., 2010, Murray, 2004):

∂ρ

∂t
= D

∂2ρ

∂x2
+F (ρ). (1.4)

If the reaction term F (ρ) is logistic one finds the Fisher-Kolmogorov equation:

∂ρ

∂t
= D

∂2ρ

∂x2
+ rρ

[
1− ρ

K

]
, (1.5)

where ρ is the density of organisms, D is the diffusion coefficient of the species, r

is its growth rate and K its carrying capacity. The Fisher-Kolmogorov Eq. 1.5

is probably the best known example of equation that accepts traveling wave

solutions. A traveling wave is a wave that travels without change of shape, that

is, the density profile along a line moves rigidly in time without deformation (Fig.

1E). Mathematically, this means that if u(x, t) is a traveling wave solution of a

reaction-diffusion equation, then u(x, t) is a function of x − v t , where v is the

speed of the wave, that is u(x, t ) = u(x − v t ).

Dimensional analysis of Eq. 1.5 shows that the speed is v ∝p
r D. Fisher (1937)

proved that traveling wave solutions can only exist with speed v ≥ 2
p

r D and

Kolmogorov et al. (1937) demonstrated that, with suitable and realistic initial

conditions, the verified speed of the wavefront is equal to the lower bound, that is:

v = vF K = 2
p

r D . (1.6)

For any concave F (ρ) in Eq. 1.4, that is, F (ρ) ≤ ρF ′(0), the front velocity has been

shown to be equal to vRD = 2
p

DF ′(0) (Méndez et al., 2010).
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The reaction-telegraph equation

The diffusion equation has been widely employed to describe the movement

of organisms (Murray, 2004, Okubo and Levin, 2002). It is clear, however, that

individuals do not perform exact random walks at the microscopic scale (where

‘microscopic’ here is used to refer to the typical length scale of an organism). What

is implied when adopting diffusion equations to describe movement behavior is

that there exists an appropriate mesoscopic scale in which the collective behavior

of organisms is indistinguishable from that of an ensemble of random walkers

(Andow et al., 1990). In this section the adoption of a reaction-diffusion equation

is justified and follows from the fact that the correlation time in the trajectories

performed by individuals of the species Tetrahymena sp. is much smaller than the

typical timescale of the dispersal process or, more precisely, the growth rate of the

species (see Eq. 1.14).

One can describe the movement of an individual (particle) as a sequence of jumps

of length ∆x and duration ∆t . A model for a correlated random walk was intro-

duced in Fürth (1920) and assumes that particles move along an infinite line at a

constant speed γ, with a probability µ per unit time to reverse their direction of

motion. Precisely, the probability for the particle to continue in the direction of

motion is given by 1−µ∆t and the probability to reverse its direction is µ∆t , in

such a way that the speed lim∆x,∆t→0∆x/∆t = γ is constant. With these assump-

tions (Méndez et al., 2010) one obtains the telegraph equation for the density of

particles:

1

2µ

∂2ρ

∂t 2
+ ∂ρ

∂t
= γ2

2µ

∂2ρ

∂x2
, (1.7)

which is rewritten as:

τ
∂2ρ

∂t 2
+ ∂ρ

∂t
= D

∂2ρ

∂x2
, (1.8)

where τ−1 = 2µ is the correlation time of the turning process and D = γ2/(2µ).

Note that Eq. 1.8 differs from the diffusion equation for the additional term τ
∂2ρ

∂t 2 .

Eq. 1.8 is an hyperbolic equation and therefore information cannot travel faster

than the speed of particles γ. Therefore, the telegraph equation is physically

more appropriate than the diffusion equation, as for the diffusion equation the

probability density of finding a particle in an infinitesimal interval around (x, t)

is larger than zero for all x and t > 0, that is, signals can travel at infinite speed.
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For Tetrahymena sp., the correlation time τ is very small, so it is argued that the

term τ
∂2ρ

∂t 2 is negligible compared to the other terms in the equation and thus the

system is well described by the diffusion equation. To estimate the parameters τ

and D from experimental data one can compute the value for the mean square

displacement along the line, that is:

〈x2〉 =
∫ +∞

−∞
d x x2ρ(x, t ). (1.9)

Multiplying Eq. 1.8 by x2 and integrating one has:

τ

∫ +∞

−∞
d x x2∂

2ρ

∂t 2
(x, t )+

∫ +∞

−∞
d x x2∂ρ

∂t
(x, t ) = D

∫ +∞

−∞
d x x2∂

2ρ

∂x2
(x, t ), (1.10)

which reads:

τ
d 2〈x2〉

d t 2
+ d〈x2〉

d t
= 2D, (1.11)

assuming that ρ(x, t), ∂ρ
∂t (x, t) and ∂2ρ

∂t 2 (x, t) go to zero sufficiently fast for x →
±∞. Assuming further that ρ(x,0) = δ(x) (where δ is the delta function) and

∂p/∂t (x, t )|t=0 = 0, one has 〈x2〉|t=0 = d〈x2〉/d t |t=0 = 0 and:

〈x2(t )〉 = 2Dt −2Dτ
[
1−e−t/τ] . (1.12)

One can amend the instantaneous adjustment of the flux to the density gradient

implied by Fick’s first law with the introduction of a relaxation time τ, which leads

to the reaction-telegraph equation (Holmes, 1993, Méndez et al., 2010):

τ
∂2ρ

∂t 2
+ [

1−τF ′(ρ)
] ∂ρ
∂t

= D
∂2ρ

∂x2
+F (ρ). (1.13)

Eq. 1.13 can be obtained combining the telegraph Eq. 1.8 with kinetics (Méndez

et al., 2010). Eq. 1.13 differs from the reaction-diffusion Eq. 1.4 for the addi-

tional term τ
∂2ρ

∂t 2 −τF ′(ρ)∂ρ∂t . Solutions of Eq. 1.13 converge to solutions of the

reaction-diffusion equation as τ→ 0 (Méndez et al., 2010, Zauderer, 1989). In

the experiments performed in this chapter the correlation time τ is sufficiently

small to consider the process as well described by the reaction-diffusion equation.

Quantitative support to this statement is given below. One can also show that

the introduction of reactions in the persistent random walk equation leads to the

reaction-telegraph Eq. 1.13 (Méndez et al., 2010) with τ−1 = 2µ and D = γ2/(2µ) as
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1.1. Introduction

in Eq. 1.8.

Holmes (1993) studied the propagation of traveling wavefronts in the reaction-

telegraph equation with logistic reaction F , estimating model parameters for

several case studies. The reaction-telegraph Eq. 1.13 with logistic growth was

shown (Méndez and Camacho, 1997) to accept traveling wave solutions with

speed:

vRT = 2
p

r D

1+τr
= vF K

1+τr
(1.14)

if rτ < 1, otherwise vRT = (D/τ)
1
2 . In this perspective it is claimed that, in this

specific case, the ratio between the speed of a reaction-telegraph and that of a

reaction-diffusion equation is practically one. In fact, one finds that for Tetrahy-

mena sp. rτ= (2.2±0.3) ·10−4 so that vRT /vRD > 0.999, which makes the two pro-

cesses experimentally undistinguishable. Therefore, the experiments performed

are compared to a reaction-diffusion equation in the rest of the chapter.

1.2.2 The chemical Langevin equation

This section is introduced here to justify the form of the multiplicative noise term

that is used in this chapter to model demographic stochasticity at the front of

the invasion. The stochastic dynamics of chemical reactions are described by the

so-called chemical master equation (Gardiner, 2006). Under specific conditions

that are investigated in Gillespie (2000), such chemical master equation leads to a

Langevin equation in the continuum limit. Such result is used in this chapter to

model demographic stochasticity in the continuum Fisher-Kolmogorov equation,

by interpreting the duplication of an individual cell A as the reaction A → 2A

and its death as the reaction A →;. To aid the comprehension of this chapter,

we report here the main result of Gillespie (2000), formulated in the ecological

context of species interactions. Following Gillespie (2000), consider a well-mixed

ensemble of N species Si , with i = 1, . . . , N . Such species interact through the

interactions R j , with j = 1. . . , M . Let X̄ (t) = (X1(t ), . . . , XN (t )) where Xi indicates

the number of individuals of species Si . Define a j (x̄)d t as the probability that

one R j interaction occurs in the time interval [t , t +d t ] given X̄ (t ) = x̄ and define

v j i as the change in the number of Si individuals due to the interaction R j . The
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Chapter 1. Invasion fronts: intrinsic fluctuations

Langevin equation associated to such process is given by:

d Xi

d t
(t ) =

M∑
j=1

v j i a j (X̄ (t ))+
M∑

j=1
v j i

√
a j (X̄ (t )Γ j (t ), (1.15)

for i = 1, . . . , N , with Γ j (t) δ-correlated statistically independent Gaussian white

noises. For the case of interest here (i.e. at the low densities characteristic of the

propagating front), N = 1 (one species) and M = 2, the interactions are the birth

of individuals (here, cell duplication) R1: A → 2A and the death of individuals R2:

A →;. One has v11 =+1 and v21 =−1. Therefore, the corresponding chemical

Langevin equation assuming duplication (birth) and death rates a1(x) = bx and

a2(x) = d x reads (let X̄ = Xi = x denote the abundance of cells):

d x

d t
(t ) = a1(x(t ))−a2(x(t ))+

√
a1(x)Γ1(t )−

√
a2(x)Γ2(t )

= r x(t )+σpxΓ(t ),
(1.16)

with r = b −d , σ=p
b +d and Γ(t ) a δ-correlated Gaussian white noise.
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1.3. Results

1.3 Results

The Fisher-Kolmogorov equation for the density of organisms ρ(x, t) (Fisher, 1937,

Kolmogorov et al., 1937, Méndez et al., 2010, Volpert and Petrovskii, 2009) reads:

∂ρ

∂t
= D

∂2ρ

∂x2
+ rρ

[
1− ρ

K

]
. (1.17)

The equation couples a logistic term describing the reproduction of individuals with

growth rate r (dimensions [T −1]) and carrying capacity K [L−1] and a diffusion term

accounting for local movement, epitomized by the diffusion coefficient D [L2T −1].

These species’ traits define the characteristic scales of the dispersal process. In this

framework, a population initially located at one end of a linear landscape is pre-

dicted to form a wavefront of colonization invading empty space at a constant speed

v = 2
p

r D (Fisher, 1937, Kolmogorov et al., 1937, Méndez et al., 2010, Volpert and

Petrovskii, 2009), which was measured in the front propagation experiment (Fig. 1.1D

and Methods).

Experiments were performed with the freshwater ciliate Tetrahymena sp. (Methods),

which was chosen because of its short generation time (Carrara et al., 2012) and

its history as a model system in ecology (Altermatt et al., 2014). The experimental

setup consisted of linear landscapes (Fig. 1.1), filled with a nutrient medium, kept

in constant environmental conditions and of suitable size to meet the assumptions

about the relevant dispersal timescales (Methods). Replicated dispersal events were

conducted by introducing an ensemble of individuals at one end of the landscape

and measuring density profiles throughout the system at different times, through

image analysis (Methods, Altermatt et al. (2014)). Density profiles in the six replicated

dispersal events, at successive times, are shown in Fig. 1.2 (panels A-F). Collected

data were binned in 5 cm bins, which corresponds to the typical length scale of the

dispersal process (
p

D/r ' 5 cm). Individuals of Tetrahymena sp., initially localized at

one end of the landscape, colonized the whole system in 4 d.

The front position at each time was calculated as the first occurrence, starting from

the end of the landscape, of a fixed value of the density ρ? (Fig. 1.3; ρ? = 200 cm−1). A

linear model was fitted (least-squares fit) to each replicate in the linear region (day 1

to 4) to compute the front propagation speed. Table 1.1 reports the observed velocities

in the six replicates (see Fig. 1.3). As for traveling waves predicted by the Fisher-

Kolmogorov equation, the mean front speed in the experiment is notably constant for

different choices of the reference density value (Fig. 1.3C).

The species’ traits r , K and D that enter the Fisher-Kolmogorov equation were mea-
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Figure 1.1: Schematic representation of the experiment. (A) Linear landscape. (B) Individuals
of the ciliate Tetrahymena sp. move and reproduce within the landscape. (C) Examples
of reconstructed trajectories of individuals. (D) Individuals are introduced at one end of a
linear landscape and are observed to reproduce and disperse within the landscape (not to
scale). (E) Illustrative representation of density profiles along the landscape at subsequent
times. A wavefront is argued to propagate undeformed at a constant speed v according to the
Fisher-Kolmogorov equation.
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Figure 1.2: Density profiles in the dispersal experiment and in the stochastic model. (A-
F) Density profiles of six replicated experimentally measured dispersal events, at different
times. Legends link each color to the corresponding measuring time. Black dots are the
estimates of the front position at each time point. Organisms were introduced at the origin and
subsequently colonized the whole landscape in 4 d (∼ 20 generations). (G-H) Two dispersal
events simulated according to the generalized model equation, with initial conditions as at
the second experimental time point. Data are binned in 5 cm intervals, typical length scale of
the process.
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Chapter 1. Invasion fronts: intrinsic fluctuations

sured in independent experiments (Table 1.2). In the local growth experiment, a

low-density population of Tetrahymena sp. was introduced evenly across the land-

scape and its density was measured locally at different times. Recorded density

measurements were fitted to the (deterministic) logistic growth model, which gave

the estimates for r and K (Table 1.2). In the local unimpeded movement experiment,

the mean square displacement (Methods) of individual trajectories (Berg, 1993) was

computed to estimate the diffusion coefficient D in density-independent conditions

(Table 1.2 and Methods). The diffusion coefficient was estimated by looking at individ-

uals at the front of the traveling wave, as these are the individuals responsible for the

colonization of the empty landscape. During the dispersal experiment the diffusion

coefficient of Tetrahymena sp. was also measured in the bulk of the wave, that is, where

the population was at high density. Trajectories differed qualitatively between the

bulk and the front of the wave and this reflects in a much smaller diffusion coefficient

estimate where the population is at carrying capacity. In fact, in the bulk of the wave,

the mean diffusion coefficient was Dbulk = 0.003±0.001 mm2/s, much smaller than

at the wavefront. Such density-dependent effects, however, are not assumed to be

operating at the low densities that determine the speed of the front. The growth and

movement measurements were performed in the same linear landscape settings as in

the dispersal experiment and therefore are assumed to accurately describe the dynam-

ics at the front of the traveling wave in the dispersal events. Whereas the microscopic

movement underlying the Fisher-Kolmogorov Eq. 1.17 is brownian motion (Gardiner,

2006, Méndez et al., 2010), investigation of the movement behavior of Tetrahymena

sp. shows that cells’ trajectories are consistent with a persistent random walk with

an autocorrelation time τ= 3.9±0.4 s. The macroscopic equation corresponding to

the persistent random walk is the reaction-telegraph equation (Méndez et al., 2010)

in place of the Fisher-Kolmogorov Eq. 1.17. However, as the autocorrelation time

for Tetrahymena sp. is much smaller than the growth rate r (τr ∼ 10−4), Eq. 1.17

provides an excellent approximation to the reaction-telegraph equation. Following

the principle of parsimony, the simpler Eq. 1.17 is adopted here.

The comparison of the predicted front speed v = 2
p

r D to the wavefront speed mea-

sured in the dispersal experiment, vo , yields a compelling agreement. The observed

speed in the dispersal experiment was vo = 52.0±1.8 cm/day (mean±SE), which was

compared to the predicted one v = 51.9±1.1 cm/day (mean±SE). The two velocities

are compatible within one standard error. A t-test between the replicated observed

speeds and bootstrap estimates of v = 2
p

r D (the quantity 2
p

r D was computed for all

possible combinations of the r and D values measured in the growth and movement

experiments) gives a p-value of p = 0.96 (t = 0.05, df= 9). Thus, the null hypothesis

that the mean difference is 0 is not rejected at the 5 percent level and there is no

indication that the two means are different. As the measurements of r and D were per-
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Figure 1.3: Front propagation in the dispersal experiment and in the stochastic model. (A),
Front position of the expanding population in six replicated dispersal events, colors identify
replicates as in Fig. 1.2. The dark and light grey shadings are respectively the 95% and 99%
confidence intervals computed by numerically integrating the generalized model equation,
with initial conditions as at the second experimental time point, in 1020 iterations. The black
curve is the mean front position in the stochastic integrations. (B), The increase in range
variability between replicates in the dispersal experiment (blue diamonds) is well described
by the stochastic model (red line). (C), Mean front speed for different choices of the reference
density value at which the front position was estimated, error bars are smaller than symbols.
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Chapter 1. Invasion fronts: intrinsic fluctuations

formed in independent experiments, at scales that were orders of magnitude smaller

than in the dispersal events, the agreement between the two estimates of the front

velocity is deemed remarkable.

Although the Fisher-Kolmogorov equation correctly predicts the mean speed of the

experimentally observed invading wavefront, its deterministic formulation prevents it

to reproduce the variability that is inherent to biological dispersal (Melbourne and

Hastings, 2009). In particular, it cannot reproduce the fluctuations in range expansion

between different replicates of the dispersal experiment (Fig. 1.3A). A generalization

of the Fisher-Kolmogorov equation (Bonachela et al. (2012), Dornic et al. (2005),

Hallatschek and Korolev (2009), Methods) accounting for demographic stochasticity

is able to capture the observed variability of invasion fronts:

∂ρ

∂t
= D

∂2ρ

∂x2
+ rρ

[
1− ρ

K

]
+σpρ η, (1.18)

where η= η(x, t ) is a gaussian, zero-mean white noise (i.e., the noise has correlations

〈η(x, t )η(x ′, t ′)〉 = δ(x −x ′)δ(t − t ′), where δ is the Dirac’s delta distribution) and σ> 0

is constant. The strength of demographic stochasticity is embedded in an additional

species’ trait σ [T −1/2]. The Itô’s stochastic calculus (Gardiner, 2006) is appropriate

in this case. Note, in fact, that the choice of the Stratonovich framework (Gardiner,

2006) would make no sense here, as the noise term would have a constant non-zero

mean that would allow an extinct population to possibly escape the zero-density

absorbing state. Such non-zero mean can be calculated via Novikov’s theorem for

spatially extended systems (Méndez et al., 2011, Novikov, 1965) and would be equal

to 〈σpρη〉 = σ/2 (in the Stratonovich framework, not adopted here). The square-

root multiplicative noise term in Eq. 1.18 originates from the chemical Langevin

equation (Gillespie, 2000) associated with the two microscopic reactions A → 2A

and A →; (here, A represents an individual) and is thus interpreted as describing

demographic stochasticity in the population (Bonachela et al., 2012). Eq. 1.18 needs

extra-care in simulations (Dornic et al., 2005, Moro, 2004). In particular, standard

stochastic integration schemes fail to preserve the positivity of ρ. The split-step

method developed in Dornic et al. (2005) was adopted to numerically integrate Eq.

1.18 (Methods). This method allows to perform the integration with relatively large

spatial and temporal steps maintaining numerical accuracy.

In this stochastic framework, the demographic parameters r , K and σ were estimated

from the local growth experiment with a maximum likelihood approach (Table 1.2 and

Methods), while the diffusion coefficient D was left unchanged. These local indepen-

dent estimates were then used to numerically integrate Eq. 1.18 with initial conditions

as in the dispersal experiment. The front positions measured in the experiment are
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Table 1.1: Best fit estimates (±SE) of the wavefront speed in six replicated dispersal events.

Replica Speed (cm/day)

1 54.6±1.9
2 51.7±2.8
3 48.0±1.5
4 58.0±4.0
5 53.4±1.8
6 46.3±1.0

Table 1.2: Experimentally measured species’ traits (mean±SE). Demographic traits were
estimated both in the framework of the deterministic logistic equation and in the framework
of the stochastic logistic Eq. 1.23. Demographic stochasticity strongly affects the dynamics at
low densities, thus a different value for the growth rate r is obtained in the stochastic model,
compared to the deterministic one.

Movement traits
D = 0.17±0.01 mm2 s−1

τ= 3.9±0.4 s

Demographic traits
Deterministic model Stochastic model
r = 4.9±0.5 day−1 r = 6.1±0.8 day−1

K = 901±130 cm−1 K = 903±135 cm−1

σ= 25±5 day−
1
2

in accordance with simulations (Fig. 1.3A). In particular, most experimental data are

within the 95% confidence interval for the simulated front position and the observed

range variability is well captured by the stochastic model (Fig. 1.3B). Accordingly, the

estimate for the front speed and its variability in the experiment are in good agreement

with simulations.

The experimentally measured position of the front and the speed of front propagation

were compared with the prediction of the stochastic model. The black curve in Fig.

1.3A is the mean position of the front over 1020 integrations of Eq. 1.18, with 170

iterations starting from each experimental density profile at the second measurement

time point (Fig. 1.3A and Methods). The dark and light grey shadings in Fig. 1.3A

represent respectively the 95% and 99% intervals for the front position. The increase

in width for the front position is captured by the red curve in Fig. 1.3B that represents

the 95% interval width for the front position at each time step. Simulations are

in quantitative agreement with data (Fig. 1.3B). Examples of the front position in

different simulations of the stochastic equation are shown in Fig. 1.4. The speed of
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Figure 1.4: Front position in six integrations of the stochastic model Eq. 1.18 (compare with
experimental positions in Fig. 1.3A). Each simulation was initialized from each of the measured
density profiles at the second experimental time point.

the front in the stochastic simulations was estimated by fitting the front position at 8

equally-spaced time points in the time interval [1−4] day, over 1020 integrations of Eq.

1.18. The resulting mean speed of the front was 52.1 cm/day, the standard deviation

was 4.2 cm/day. The mean speed in the dispersal experiment was 52.0 cm/day and

the measured standard deviation was 4.3 cm/day.

1.4 Methods

1.4.1 Experiments

The species used in this study is Tetrahymena sp. (Fig. 1.1B), a freshwater ciliate,

purchased at Carolina Biological Supply (Burlington, NC, USA). Individuals of Tetrahy-

mena sp. have typical linear size (equivalent diameter) of 14 µm (Giometto et al.,

2013). Freshwater bacteria of the species Serratia fonticola, Breviacillus brevis and

Bacillus subtilis were used as a food resource for ciliates, which were kept in a medium

made of sterilized spring water and protozoan pellets (Carolina Biological Supply) at a

density of 0.45 g L−1. The experimental units were kept under constant fluorescent

light for the whole duration of the study, at a constant temperature of 22 oC. Exper-

imental protocols are well established (Altermatt et al., 2014, Holyoak and Lawler,

2005) and the contribution of laboratory experiments on protists to the understanding

of population and metapopulation dynamics proved noteworthy (Holyoak and Lawler,

2005).
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Experiments were performed in linear landscapes (Fig. 1.1A) filled with a nutrient

medium and bacteria of the three species above mentioned. The linear landscapes

were 2 m long, 5 mm wide and 3 mm deep, respectively 105, 350 and 200 times the size

of Tetrahymena sp. (Giometto et al., 2013). Landscapes consisted of channels drilled

on a plexiglass sheet, a second sheet was used as lid and a gasket was introduced to

avoid water spillage (Fig. 1.1A). At one end of the landscapes, an opening was placed

for the introduction of ciliates. The plexiglass sheets were sterilized with a 70% alcohol

solution and gaskets were autoclaved at 120 oC before filling the landscape with

medium. As plexiglass is transparent, the experimental units could be placed under

the objective of a stereomicroscope, to record pictures (for counting of individuals) or

videos (to track ciliates). Individuals were observed to distribute mainly at the bottom

of the landscape, whose length was three orders of magnitude larger than its width

(w) and depth (d) and two orders of magnitude larger than the typical length scale of

the process (
p

D/r ' 5 cm).

Three independent and complementing experiments were performed, specifically:

i) A dispersal experiment was carried out to study the existence and the propaga-

tion of traveling invasion wavefronts in replicated dispersal events;

ii) A growth experiment was run to obtain estimates of the demographic species’

traits, that are r and K in the deterministic framework of Eq. 1.17 and r , K and

σ in the stochastic framework of Eq. 1.18;

iii) A local movement experiment was performed to study the local unimpeded

movement of Tetrahymena sp. over a short timescale (in a time window t ¿ r−1),

in order to estimate the diffusion coefficient D for the study species, indepen-

dently from the dispersal and growth experiments.

Dispersal experiment
Six replicated dispersal events were performed in the linear landscapes. After filling

the landscapes with medium and bacteria, a small ensemble of Tetrahymena sp. was

introduced at the origin. Subsequently, the density of Tetrahymena sp. was measured

at 1 cm intervals, five times in the first 48 h and twice in the last 48 h. The whole

experiment lasted for about 20 generations of the study species.

Local growth experiment
Five replicated growth measurements were performed in the linear landscapes, in

order to measure the demographic species’ traits, in the same environmental condi-

tions as in the dispersal experiment, but independently from it. A low density culture
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of Tetrahymena sp. was introduced in the whole landscape and its density was mea-

sured by taking pictures and counting individuals, covering a region of 7 cm along the

landscape. Density measurements were performed at several time points for each of

the five replicates, in a time window of 3 d.

Local movement experiment
Four additional, replicated dispersal events were performed, initialized in the same

way as in the dispersal experiment, in order to measure the diffusion coefficient of

Tetrahymena sp. The diffusion coefficient D is the proportionality constant that links

the mean square displacement of organisms’ trajectories to time (Berg, 1993, Méndez

et al., 2010). Macroscopically, it relates the local flux to the density of individuals. To

estimate the diffusion coefficient several videos of individuals moving at the front

of the traveling wave (at low density) were recorded, the corresponding trajectories

(Berg, 1993, Sbalzarini and Koumoutsakos, 2005) were reconstructed and their mean

square displacement 〈x2(t )〉 = 〈[x(t )−x(0)]2〉 was computed. Videos of Tetrahymena

sp. at the front of the traveling wave were recorded in four replicated dispersal events,

at various times over 4 d. The area covered in each video was of 24 mm in the direction

of the landscape and 5 mm orthogonal to it. Each video lasted for 12 min. For each

recorded video, individuals’ spatial coordinates in each frame were extracted and

the MOSAIC plugin for the software ImageJ was employed to reconstruct trajectories

(Sbalzarini and Koumoutsakos, 2005). The goodness of the tracking was checked on

several trajectories by direct comparison with the videos. Examples of reconstructed

trajectories can be seen in Fig. 1.1C.

For each video, the square displacement of each trajectory in the direction parallel to

the landscape was computed at all time points and then averaged across trajectories.

Precisely, for each trajectory i the quantity x2
i (t) = [Xi (t )−Xi (0)]2 was computed,

where Xi (t ) is the 1-dimensional coordinate of organism i at time t in the direction

parallel to the landscape and Xi (0) is its initial position. The mean square displace-

ment in a video was then computed as the mean of x2
i (t ) across all trajectories, that is,

〈x2(t )〉 = 1
N

∑
i x2

i (t ) (where N is the total number of trajectories). A typical measure-

ment of 〈x2(t )〉 is shown in Fig. 1.5. As shown in the figure, there exists an initial auto-

correlated phase. To estimate the diffusion coefficient from the mean square displace-

ment, the measured 〈x2(t )〉 were fitted to the function 〈x2(t )〉 = 2Dt −2Dτ
[
1−e−t/τ

]
with the two parameters D (diffusion coefficient) and τ (correlation time). The total

number of recorded videos was 28, that is, 7 for each replicate.
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Figure 1.5: Mean square displacement 〈x2〉 of individual trajectories versus time, for a
representative video. The red curve is the best fit of the data to the equation 〈x2(t)〉 =
2Dt −2Dτ

[
1−e−t/τ

]
. After an initial auto-correlated phase, the mean square displacement

increases linearly with time. Error bars are ±SE.

1.4.2 Stochastic model and analysis

Spatial discretization
Eq. 1.18 is interpreted as the continuum limit of a set of coupled Itô equations resulting

from a discretization of space (Dornic et al., 2005). Let ∆x be the step of spatial

discretization on a 1D lattice. The discretization reads:

dρi

d t
(t ) = D

(∆x)2

[
ρi+1(t )+ρi−1(t )−2ρi (t )

]+
+ rρi (t )

(
1− ρi (t )

K

)
+ σp

∆x

√
ρi (t )η(t )

(1.19)

where i identifies the lattice site and the term
p
∆x ensures proper normalization in

the continuum limit (Doering et al., 2005).
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Chapter 1. Invasion fronts: intrinsic fluctuations

1.4.3 The split-step integration scheme

This Box contains known results on the numerical integration of Langevin equa-

tions with multiplicative noise and is included here to aid the comprehension of

the chapter. Please note that the results presented within this Box are not original

and can be found in Dornic et al. (2005).

The integration of the stochastic Eq. 1.18 was performed with the split-step

integration scheme developed in Dornic et al. (2005) via the spatial discretization

Eq. 1.19. The split-step method consists in separating the terms in Eq. 1.19

and integrating the stochastic part by sampling the solution of the associated

Fokker-Plank equation instead of generating Gaussian random numbers, which

may not preserve the positivity of the solution. The method exploits the fact that

the conditional transition probability density function for the equation dρ/d t =
α+βρ+γpρη in the time interval [t , t +d t ] is known (Dornic et al., 2005):

P (ρ, t +∆t |ρt , t ) =λe−λ(ρt eβ∆t+ρ)
[

ρ

ρt eβ∆t

]µ/2

Iµ

(
2λ

√
ρtρeβ∆t

)
, (1.20)

where Iµ is the Bessel function of order µ, λ = 2β/
[
γ2

(
eβt −1

)]
and µ = −1+

2α/γ2. The integration is performed as follows. For each lattice site i , let α =
D/(∆x)2

[
ρi+1(t )+ρi−1(t )

]
,β= r−2D/(∆x)2 andγ=σ/

p
∆x. The stochastic value

ρ∗ is obtained by sampling the conditional transition probability density function

Eq. 1.20 and is used as the initial condition for the deterministic remaining part

of Eq. 1.19 dρi /d t(t) = −r /Kρ2
i (t), which is integrated as ρi (t +∆t) = ρ∗/(1+

ρ∗r /K∆t). Following Dornic et al. (2005), the sampling of Eq. 1.20 is performed

by Taylor expanding Iµ in Eq. 1.20 and rewriting it as:

P (ρ, t +∆t |ρt , t ) =
∞∑

n=0

(
λρt eβ∆t

)n
e−λρt eβ∆t

n!

λe−λρ (
λρ

)n+µ

Γ(n +µ+1)
(1.21)

and thus sampling ρ∗ from the mixture:

ρ∗ = Gamma
[

1+µ+Poisson
(
λρt eβ∆t

)]
/λ, (1.22)

as proposed in Dornic et al. (2005), where further details are provided. Except

for the stability requirement due to the discretized Laplacian, such split-step

method was claimed to display no limitation on ∆t for the numerical stability of

the integration scheme.
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1.4. Methods

The spatial discretization Eq. 1.19 allows to compare the noise term in Eq. 1.18 to

the local noise acting at a lattice site of size ∆x. In particular, it allows to estimate the

noise strength σ by parameter identification on the growth experiment data, where

the cell density was measured in a single site i of size l = 7 cm (a length comparable

to the step size adopted in the numerical integration, that is ∆x = 5 cm). The equation

governing the density of the single site i in the growth experiment is thus:

dρ

d t
(t ) = rρ(t )

(
1− ρ(t )

K

)
+ σp

l

√
ρ(t )η(t ), (1.23)

where the diffusion term is neglected because of the well-mixed settings and the i

subscript is dropped as there is only one site. The maximum likelihood approach

described in the following section allows to estimate r , K andσ from the experimental

growth data.

Parametric inference
One key issue in this chapter is to estimate the stochastic model parameters from

the independent experiments. To obtain estimates for the demographic parameters

r , K and σ, data from the growth experiment were fitted to Eq. 1.23. The likelihood

function for Eq. 1.23 can be written as:

L(θ) =
n∏

j=2
P

[
ρ(t j ), t j |ρ(t j−1), t j−1;θ

]
, (1.24)

where n is the total number of observation in the growth time series, θ = (r,K ,σ) is the

vector of demographic parameters and P (ρ, t |ρ0, t0;θ) is the transitional probability

density of having a density of individuals ρ at time t , given that the density at time t0

was ρ0 (for a given θ). The transitional probability density P (ρ, t |ρ0, t0;θ) satisfies the

Fokker-Planck equation associated to Eq. 1.23, that is:

∂

∂t
P (ρ, t |ρ0, t0;θ) =− ∂

∂ρ

[
rρ

(
1− ρ

K

)
P (ρ, t |ρ0, t0;θ)

]
+

+ σ2

2l

∂2

∂ρ2

[
ρP (ρ, t |ρ0, t0;θ)

]
.

(1.25)

Maximization of the likelihood is equivalent to the minimization of the negative log-

likelihood − logL(θ), which is computationally less expensive. To compute the likeli-

hood for a fixed set of parameters θ one has to solve numerically the Fokker-Planck Eq.

1.25 for all observed transitions, with the
[
t j ,ρ(t j )

]
as measured in the experiment. It

is computationally more accurate to solve Eq. 1.25 in terms of the cumulative distribu-

tion function (CDF), as its initial condition in the transition [t j−1,ρ(t j−1)] → [t j ,ρ(t j )]

can be expressed as a step function instead of a delta function, the first one being more
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Chapter 1. Invasion fronts: intrinsic fluctuations

accurate in the numerical approximation (Hurn et al., 2007). The transitional proba-

bility densities (solutions of Eq. 1.25) can then be recovered by numerical differentia-

tion. The numerical integration was performed adopting the implicit Crank-Nicolson

scheme (Hurn et al., 2007), the minimization was performed with the software Math-

works Matlab, adopting the active-set algorithm in a large domain. Different initial

conditions for the parameters led to the same estimate for the minimum, which is

thus interpreted as the global minimum of the negative log-likelihood function, that is,

the global maximum for the likelihood function. The set of demographic parameters

that maximized the likelihood function is reported in Table 1.2.

1.5 Discussion

The results of this chapter suggest that measuring and suitably interpreting local

processes allows to accurately predict the main features of biological invasions. The

deterministic Fisher-Kolmogorov equation is shown to correctly predict the mean

speed of invasion, but cannot capture the observed variability. Instead, characterizing

the inherent stochasticity of the biological processes involved allows to predict both

the mean and the intrinsic variability of range expansions, which is of interest for

practical purposes, such as the delineation of worst-case scenarios for the spread

of invasive species and the projection of confidence intervals for the position of the

front.

The use of the generalized Fisher-Kolmogorov equation proposed here has been

insofar limited to theoretical investigations ranging from non-equilibrium phase tran-

sitions in statistical physics (Dornic et al., 2005) to the propagation of invasion fronts

(Hallatschek and Korolev, 2009) and patchy distribution patterns (Bonachela et al.,

2012) in theoretical ecological studies. Here, it was shown that such equation can

be applied to experimental investigations of biological dispersal, yielding quantita-

tive predictions for the internal fluctuations of the process via a proper parametric

inference of the demographic traits.

Our phenomenological approach allows to make predictions on the spread of organ-

isms without the need to introduce all details on the movement behavior, biology or

any other information. Such details are synthesized in three parameters describing

the density-independent yet stochastic behavior of individuals riding the invasion

wave. The parsimony of the model allows generalization to organisms with different

biology (e.g., growth rates and diffusion coefficients are available for several species

in the literature, Grosholz (1996)) and supports the view that the protocol adopted

here may provide a general predictive framework for biological invasions in natural
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environments.

It is likely that the internal fluctuations investigated here are only one of many compo-

nents affecting invasion processes in natural environments. However, demographic

fluctuations have the unique feature of being proportional to the square root of the

population density, which makes them dominate over environmental fluctuations

(typically proportional to the population density, Méndez et al. (2011)) at low den-

sities and thus at the front of the invasion. Therefore, demographic stochasticity is

argued to be among the main drivers of fluctuations in the position of propagating

fronts. The interplay between demographic and environmental fluctuations and their

combined effect on the propagation of biological invasion fronts is an exciting avenue

for research, which is explored both experimentally and theoretically in Chapter 3,

were the demographic noise term introduced in the Fisher-Kolmogorov equation will

be shown to lead to a slowing-down of the front propagation when environmental

stochasticity is superimposed on the system.

In conclusion, at least in simple ecological settings, predictability remains notwith-

standing biological fluctuations. This investigation supports the use of deterministic

models to describe the mean dynamics of invasion fronts and provides an experi-

mental link between the processes at the local and short-time scale (movement and

growth) and the invasion process at the large scale, in a topic where experimentation

is the exception rather than the rule. Information on the stochasticity acting at the

mesoscopic scale allows to estimate fluctuations at the macroscopic scale via the

stochastic treatment devised. The results of this chapter might have implications for

the dynamics of phenomena other than species’ invasions, such as morphogenesis

(Murray, 2004, Turing, 1952), tumor growth (Fort and Solé, 2013, Méndez et al., 2010,

Murray, 2004) and the spreading of epidemics (Bertuzzo et al., 2010, Murray, 2004),

which have been traditionally modeled with reaction-diffusion equations and where

demographic stochasticity is expected to occur.
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2 Phototaxis in phytoplankton

Abstract

Phototaxis, the process through which motile organisms direct their swimming to-

wards or away from light, is implicated in key ecological phenomena (including algal

blooms and diel vertical migration) that shape the distribution, diversity and produc-

tivity of phytoplankton and thus energy transfer to higher trophic levels in aquatic

ecosystems. Phototaxis also finds important applications in biofuel reactors and

micro-bio-propellers and is argued to serve as a benchmark for the study of biological

invasions in heterogeneous environments owing to the ease of generating stochastic

light fields. Despite its ecological and technological relevance, an experimentally

tested, general theoretical model of phototaxis seems unavailable to date. Here, accu-

rate measurements of the behavior of the alga Euglena gracilis exposed to controlled

laboratory light fields are performed. Analysis of E. gracilis’ phototactic accumulation

dynamics over a broad range of light intensities proves that the classic Keller-Segel

mathematical framework for taxis provides an accurate description of both positive

and negative phototaxis when phototactic sensitivity is modeled by a generalized

‘receptor law’, a specific nonlinear response function to light intensity that drives algae

towards beneficial light conditions and away from harmful ones. The proposed photo-

tactic model captures the temporal dynamics of both cells’ accumulation towards light

sources and their dispersion upon light cessation. The model could thus be of use in

integrating models of vertical phytoplankton migrations in marine and freshwater

ecosystems, and in designing bioreactors and other technological applications.
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Chapter 2. Phototaxis in phytoplankton

2.1 Introduction

Microorganisms possess a variety of sensory systems to acquire information about

their environment (Hazelbauer et al., 1993), including the availability of resources,

the presence of predators, and the local light conditions (Stocker, 2012). For any

sensory system, the system’s response function determines the organism’s capability

to process the available information and turn it into a behavioral response. Such

response function is shaped by the natural environment and its fluctuations (Celani

and Vergassola, 2010, Kussell and Leibler, 2005, Laughlin, 1981) and affects the search

strategy (be it mate search, food search, etc., Mesibov et al. (1973), Shoval et al. (2010))

and the swimming behavior of microorganisms (Lazova et al., 2011). Gradient-sensing

is particularly important in marine and freshwater ecosystems, where the distribu-

tion of resources is highly heterogeneous (Azam, 1998, Levin, 1994) and the ability to

move towards resource hotspots can provide a strong selective advantage to motile

organisms over non-motile ones (Celani and Vergassola, 2010, Stocker, 2012). Spatio-

temporal patterns of light underwater contribute considerably to the heterogeneity of

the aquatic environment. Because light is a major carrier of energy and information

in the water column (Ragni and Ribera D’Alcalà, 2004), phototaxis is a widespread

example of directed gradient-driven locomotion (Bhaya, 2004, Jékely et al., 2008),

found in many species of phytoplankton and zooplankton. Phototaxis strongly affects

the ecology of aquatic ecosystems, contributing to diel vertical migration of phyto-

plankton, one of the most dramatic migratory phenomena on Earth and the largest

in terms of biomass (Hays, 2003). Diel vertical migration is crucial for the survival

and proliferation of plankton (Jékely et al., 2008, Kingston, 1999, Ringelberg and Flik,

1994), allows them to escape from predation by filter-feeding organisms and may

affect the structuring of algal blooms (Smayda, 1997). Because phytoplankton are

responsible for half of the global photosynthetic activity (Behrenfeld et al., 2006, Field

et al., 1998) and are the basis of marine and freshwater food webs (Chassot et al., 2010),

their behavior and productivity have strong implications for ocean biogeochemistry,

carbon cycling, and trophic dynamics (Boyce et al., 2010, Falkowski, 1998).

The quantitative understanding and the associated development of mathematical

models for the directed movement of microorganisms has been largely limited to

chemotaxis, while other forms of taxis have received considerably less attention de-

spite their ecological importance. For chemotaxis, quantitative experiments have

led to a comprehensive characterization of the motile response of bacteria to chemi-

cal gradients (Adler et al., 1973, Barbara and Mitchell, 2003) and this knowledge has

been distilled into detailed mathematical models (Tindall et al., 2008). Continuum

approaches such as the Keller-Segel model (Keller and Segel, 1970a, 1971), and its gen-

eralizations (Tindall et al., 2008), have been used extensively to describe the behavior
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of chemotactic bacterial populations in laboratory experiments. However, while a

limited number of models for phototaxis exist (Burkart and Häder, 1980, Torney and

Neufeld, 2008, Vincent and Hill, 1996, Williams and Bees, 2011a), an assessment of the

phototactic response function is lacking. Existing models rely on untested working

hypotheses concerning the cell response to light originating from the scarcity of ex-

perimental work linking controlled light conditions to measured organism responses.

Here, quantitative experimental observations of the phototactic response of the flag-

ellate alga Euglena gracilis to controlled light gradients are presented. E. gracilis is

a common freshwater phytoplankton species that swims via an anterior flagellum

and uses a paraflagellar body and red stigma (a red eyespot, Jékely (2009)) to respond

to light gradients. E. gracilis has been used extensively as a model organism in both

the ecological (Carrara et al., 2012, Giometto et al., 2013) and the ecophysiological

literature (Vallee and Falchuk, 1993, Wolken, 1961) and has been used as a candidate

species for technological applications such as photo-bioreactors (Ooka et al., 2014)

and micro-propellers (Itoh, 2004, Itoh and Tamura, 2008). The experimental results

are used to identify a general mathematical model for phototaxis. It is found that

a Keller-Segel type model (Keller and Segel, 1970a, 1971) accurately describes cell

accumulation patterns at all light intensities tested and that the light sensitivity of E.

gracilis is described by a generalized receptor law (Lapidus and Schiller, 1976, Tindall

et al., 2008), a non-linear function of light intensity that displays a maximum at the

light intensity at which most cells accumulate and is negative at higher intensities,

where negative phototaxis occurs.

This chapter is organized as follows. First, a theoretical background on the Keller-Segel

model for chemotaxis is provided. Second, a set of experiments aimed at measur-

ing the stationary distribution patterns in the presence of light gradients and the

temporal dynamics of accumulation and relaxation of density peaks is described.

Third, a mathematical model for phototaxis is proposed and is shown to describe the

experimental results, allowing the inference of the functional form of the phototactic

response function from the data. Fourth, experiments at the individual cell level are

described and a mathematical model for phototaxis at the individual level is proposed.

Finally, the implications for ecological processes and technological applications are

discussed.
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2.2 Theoretical background

This Box contains known results on the mathematical modeling of chemotaxis

in the Keller-Segel framework (Keller and Segel, 1970a, 1971, Tindall et al., 2008).

Please note that the results presented within this Box are not original. The model

equations presented here are used in the chapter, adapted to the case of photo-

taxis.

The Keller-Segel continuum model (Keller and Segel, 1970a,b, 1971) and its gener-

alizations (Tindall et al., 2008) have been used extensively to model the behavior

of chemotactic bacterial populations. The simplest form of the Keller-Segel model

(Tindall et al., 2008) considers a population of organisms of density ρ(x, t ) in the

presence of an attractant that influences cell motion through chemical interaction

with the organism’s receptor (Keller and Segel, 1971). Let χ be the chemotactic

coefficient that characterizes the response of the population to different concen-

trations of the attractant. To start with, χ is assumed to be independent of c (Rosen,

1976). In one dimension, the flux of ρ(x, t ) reads:

J (x, t ) =−D
∂ρ

∂x
(x, t )+χ∂c

∂x
(x, t )ρ(x, t ), (2.1)

where D is the diffusion coefficient typical of the study species. The equation

governing the dynamics of the density of organisms ρ(x, t ), neglecting the repro-

duction of organisms, reads:

∂ρ

∂t
(x, t ) =−∂J

∂x
(x, t ) = ∂

∂x

[
D
∂ρ

∂x
(x, t )−χ∂c

∂x
(x, t )ρ(x, t )

]
. (2.2)

The quantity χ∂c/∂x is known in the literature as the ‘chemotactic drift velocity’.

If the attractant diffuses in the medium with diffusion coefficient Dc and is con-

sumed by the organisms with rate g (ρ,c), the equation for c(x, t ) reads:

∂c

∂t
(x, t ) = Dc

∂2c

∂x2
(x, t )− g

[
ρ(x, t ),c(x, t )

]
. (2.3)

The coupled Eqs. 2.2 and 2.3 constitute the canonical Keller-Segel model (Tindall

et al., 2008). Such model can be readily generalized to account for the reproduc-

tion of organisms, for example by adding a logistic growth term rρ
(
1−ρ/K

)
on the

right hand side of Eq. 2.2. One important generalization of Eq. 2.2 is the introduc-

tion of a non-constant chemotactic coefficient χ(c) dependent on the attractant’s
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concentration. In such generalization, the flux J is equal to J =−D ∂ρ
∂x +χ(c) ∂c

∂xρ,

and thus Eq. 2.2 is modified in:

∂ρ

∂t
(x, t ) =−∂J

∂x
(x, t ) = ∂

∂x

[
D
∂ρ

∂x
(x, t )−χ(c)

∂c

∂x
(x, t )ρ(x, t )

]
. (2.4)

The generalization to a non-constant chemotactic coefficient χ(c) allows to ac-

count for possible saturating effect at high concentrations of the attractant or, in

general, to provide better fits to experimental data. Several forms for the chemo-

tactic coefficientχ have been proposed in the literature and are reviewed in Tindall

et al. (2008) (Appendix A). Typical functional forms for χ(c) are χ(c) =χ constant

(Rosen, 1976), χ(c) =χ/c (Keller and Segel, 1970b), χ(c) =χ/(K + c)2 (Lapidus and

Schiller, 1976).

2.3 Results

Two sets of experiments were performed, one at the population scale and one at

the individual cell level, to track the response of E. gracilis to imposed light condi-

tions. Experiments were conducted in linear channels (5 mm wide × 3 mm high ×
2 m long) filled with cells (2100± 200 cells mL−1) suspended in nutrient medium

(Methods). Light conditions were controlled by Light-Emitting Diodes (LED) illumi-

nating the channels from below and operated via Arduino Uno boards (Methods). In

the population-scale experiments, cell distributions were measured in response to

localized light sources of different intensity and wavelength λ in the blue (λ = 469

nm) and red (λ= 627 nm) regions of the visible spectrum. The light intensity profile

I (x) = I0 i (x) (i (0) = 1, units are retained in I0) in the linear channels (Methods) was

measured and LEDs were programmed to produce the following peak intensities

within the channel, at x = 0 cm (above the LED): I0 = 0.8, 2.3, 5.2, 7.8, 10.4, 20.8, 31.3

W m−2 for λ= 469 nm and I0 = 2.6, 4.7, 10.9, 16.7 W m−2 for λ= 627 nm. The light

profile i (x) was determined by the experimental setting geometry and was invariant

for all values of I0.

Stationary E. gracilis accumulation patterns in blue light are shown in Fig. 2.1A-G.

Fig. 2.1 shows that by increasing the peak light intensity I0 from I0 = 0.8 W m−2

to I0 = 5.2 W m−2, cell density peaks increase in magnitude (shown are the density

profiles normalized by the value at the boundary) and are aligned with the position

of the light source (x = 0 cm). Then, for larger values of I0, cell density peaks are

approximately constant in magnitude, but shift to the left and right of the source.
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Figure 2.1: Accumulation patterns of E. gracilis in blue and red light of different intensities.
Shown are normalized stationary cell density profiles ρ̄(x) around a light source located at
x = 0 cm for various peak intensities I0 in the blue (A-G; λ= 469 nm) and red (H-I; λ= 627 nm)
regions of the visible spectrum. The colored curves in panels A-G are the experimental cell
density distributions (five replicates for each value of I0) and the dashed black lines denote
the mean. The grayscale plots below the panels A-G show the imposed blue light intensity
profiles, where the gray level scales linearly (upper panels) or logarithmically (lower panels)
with the intensity I ; white corresponds to I = 31 W m−2 and black to I = 0.001 W m−2. Positive
phototaxis towards blue light is observed up to I ' Im = 5.5 W m−2. Negative phototaxis (the
directed movement towards regions with lower values of I) is observed for blue light intensity
higher than Im . No phototactic behavior is discernible with red light (H-I) (three replicates for
each value of I0).
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The largest value of blue light intensity for which positive phototaxis (the directed

movement towards regions with larger values of I) was observed was I ' Im = 5.5 W

m−2 (Fig. 2.1A-G; λ= 496 nm). In contrast, light intensities higher than Im elicited

consistent negative phototaxis, indicating a biphasic response to light (Fig. 2.1G). Such

biphasic responses are common in phototaxis, because they allow cells to increase

their photosynthetic activity by migrating towards light while preventing damage to

the photosynthetic apparatus and cell pigments at excessive light intensities (Häder

and Lebert, 1998, Lebert et al., 1999). The experiments showed clearly no response to

red light (Fig. 2.1H-I), in line with the reported weak absorption of E. gracilis’ eyespot

at these wavelengths (Strother and Wolken, 1960). Red light experiments thus serve

as a control that allows to exclude that the observed cell accumulations towards blue

light were due to factors other than phototaxis.

The formation of cell density peaks was measured in time (Fig. 2.2A-C), starting from

a homogeneous suspension of cells (Fig. 2.2A), in the presence of a light source of

peak intensity I0 = 5.2 W m−2 at x = 0 cm. Then, the relaxation of the stationary

density peaks after the removal of light was measured (Fig. 2.2D-F). This allowed

to measure robustly the cell diffusion coefficient, D, by fitting the decay rate of the

spectral log-amplitudes log |ρ̂(k, t )| to the square of the wave number, resulting in the

estimate D = 0.13±0.04 mm2 s−1 (the standard error represents the variability across

the first three Discrete Fourier Transform modes).

The experimental results allowed to derive a model of phototaxis in E. gracilis. A

Keller-Segel framework was adopted and consists of an advection-diffusion equation

for the cell density ρ(x, t ) (Tindall et al., 2008) (neglecting cell division owing to to the

relatively short duration of the experiments):

∂ρ

∂t
(x, t ) = ∂

∂x

[
D
∂ρ

∂x
(x, t )− dφ

d x
[I (x)]ρ(x, t )

]
, (2.5)

where D is the diffusion coefficient of the cells due to the random component of their

motility and vP = dφ/d x is the drift velocity or ‘phototactic velocity’ of the population

in the direction of the light gradient. The phototactic velocity was written as the

derivative of a phototactic potential, φ, which is solely a function of the light intensity

I (x). Such reformulation of the Keller-Segel model allows to express the stationary

density distribution as a function of I (x). In fact, the steady state accumulation of

cells that satisfies Eq. 2.5, computed over the spatial extent of the imaging windows

(−L ≤ x ≤ L; L = 6.25 cm), is:

ρ̄(x) = ρ(x)

ρ(−L)
= exp

[
φ[I (x)]

D

]
, (2.6)
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Figure 2.2: Temporal dynamics of accumulation around a light source at x = 0 cm (A-C)
and relaxation of cell density peaks upon removal of light (D-H). (A-F) Experimental cell
density profiles at different times. The shaded gray area is delimited by the maximum and
minimum cell densities of three replicate experiments and the black line denotes the mean.
The red dashed line shows the theoretical prediction from the phototaxis model, Eq. 2.5,
using the experimentally determined φ(I ) and I (x) (Fig. 2.3A-B) and D (Table 2.2) determined
experimentally from the relaxation of density peaks (D-H). Density profiles are renormalized
to display the same mean abundance. The grayscale plots below panels A-C show the light
intensity profile imposed during the accumulation; the gray level scales linearly (upper panels)
or logarithmically (lower panels) with the intensity I , with white corresponding to I = 5.2
W m−2 and black to I = 0.001 W m−2. The temporal decay of Fourier modes (G) during the
relaxation of density peaks (D-F) is exponential (log |ρ̂(k, t )/ρ̂(k, t )| = −Dk2t , data in black and
linear fit in red) and the decay rate is a quadratic function of the wave number k (H, data in
black and parabolic fit in red), proving the diffusive behavior in the absence of light gradients.
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where ρ̄(x) is a normalized cell density appropriate for comparison with experimental

observations. Note that, in general, the exponent should be φ[I (x)]−φ[I (−L)], but

because φ is defined only up to an additive constant φ[I (−L)] was set to 0. Thus, φ is

set to zero for I = 0. Experimental cell density profiles, ρ̄(x) = ρ(x)/ρ(−L) in Fig. 2.1,

are normalized by their value at the edge of the imaging window, ρ(−L), to account

for small variations (< 15%) in the total number of cells across replicates.

The stationary cell density distributions under blue light (Fig. 2.1A-G) together with

the measured light intensity profiles (Fig. 2.3A) were used to derive the phototactic

potential φ(I ) from the data. First, the ability of the Keller-Segel model (Eq. 2.5)

to capture the observed phototactic responses in different light regimes was tested.

Fig. 2.3B (inset) shows that the mean cell density profiles ρ̄(x) collapse on the same

curve when plotted together as a function of the light intensity (via Eq. 2.6), thus

supporting the applicability of Eq. 2.5 and the computation of φ via Eq. 2.6, i.e.,

φ(I ) = D log ρ̄[x(I )]. Second, the functional form of the phototactic potential φ(I ) was

determined. To investigate the functional form of the phototactic potential, a set of

models that have been used to describe sensing in chemotaxis (Tindall et al., 2008)

was combined with a set of monotonically decreasing functions aimed at reproducing

the photophobic behavior at high light intensity. The resulting functional forms were

compared via the Akaike Information Criterion (AIC) to compare their performance in

predicting the data. The first set of models, which consists of monotonically increasing

functions of light intensity, is:

· φ1(I ) = aI

· φ2(I ) = a I
1+bI

· φ3(I ) = a log(1+bI )

These models have been used extensively to describe chemotactic responses (for

comparison with the theoretical background provided in this chapter and with Tindall

et al. (2008), such models should be compared with the quantity
∫
χ(c)∂c/∂xd x). The

second set of models consists of monotonically decreasing functions of I :

· φA(I ) =− log(1+ cI )

· φB (I ) =−c
p

I

· φC (I ) =−cI
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Figure 2.3: Computation of the phototactic potential φ(I ). (A) Light intensity profiles, for dif-
ferent peak intensities, I0. (B) Phototactic potential φ(I ) computed from Eq. 2.6 via inversion
of the light intensity profile I (x) (panel A). The solid black line is the mean value of φ(I ) over
the stationary density profiles for the various I0, while the blue and gray regions represent
the 68% and 95% confidence intervals, respectively. The dashed red line is the best fit of the
phototactic potential predicted by the modified receptor law, Eq. 2.7. Inset: the phototactic
potential calculated from each of the stationary density profiles (color-coded by light intensity
regime, see panel A and Fig. 2.1A-G) at different I0 collapse on the same curve (displayed on
the y-axis is the quantity φ(I ) = D log〈ρ̄(I )〉, where the mean is over the five replicates with
same I0), proving the applicability of the Eq. 2.5. Axes labels and ticks are as in the enclosing
figure. (C-D) Mean cell density profiles measured at steady state (solid lines) and predicted
from Eq. 2.6 (dashed lines), color-coded according to the light intensity regime (see panel A
and Fig. 2.1A-G).
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The functional forms in the second set were chosen to allow limI→∞φ=−∞ (some of

the combinations do not satisfy this limiting behavior, resulting in poor fits). In fact,

experimental observations show that ρ̄(x) = 0 if the light intensity in x is too high. In

such situation, φ(x) = D log ρ̄(x) =−∞. Models from the first set were combined with

models from the second set both in a multiplicative (e.g., φ1A =φ1 · (1+φA) = aI [1−
log(1+cI )]) and additive (e.g.,φ1A =φ1+φA = aI−log(1+cI )) fashion. All models were

fitted to the data and the corresponding AIC values were computed; they are reported

in Table 2.1. The best model according to the AIC is φ2C = aI (1−cI )/(1+bI ); all other

models have a ∆AIC value (compared to the best model) larger than 7 and are thus

unlikely (Burnham and Anderson, 2002). The AIC is unable to distinguish between

the additive and multiplicative form of the model combination φ2 and φC , because

the ∆AIC difference between the additive combination φ2C = aI /(1+bI )−cI and the

multiplicative one φ2C = aI (1− cI )/(1+bI ) is only ∆AIC=−0.0005. The combination

yielding the smallest AIC value, the multiplicative one, was thus assumed as the best

model.

By using the AIC to formally quantify the relative performance of models in reproduc-

ing the experimental patterns discounting the number of parameters, the proposed

generalization of the receptor law modified to account for the photophobic behavior

shown at high light intensities reads:

φ(I ) = aI
Ic − I

Ir + I
, (2.7)

where a = (1.4±0.04) ·10−8 m4 W−1 s−1, Ir = 1.7±0.1 W m−2 and Ic = 28.0±0.3 W m−2

(standard errors are calculated via nonlinear least-squares fitting). The phototactic

potential displays a maximum (φ= 1.8 mm2/s) at Im = 5.5 W m−2 (the light intensity

value that separates the positive and negative phototaxis regimes) (Fig. 2.3B) and is

equal to zero at Ic = 28.0 W m−2. Eq. 2.7 yields the best model for phototaxis in E.

gracilis in reproducing the measured stationary cell density profiles (Fig. 2.3C-D).

Table 2.1: AIC values for the best fit of all model combinations, both multiplicative, e.g,
φ1A =φ1(1+φA), and additive, e.g., φ1A =φ1 +φA .

Multiplicative Additive
φA φB φC φA φB φC

φ1 58 53 76 137 -34 137
φ2 -172 -174 -181 -162 -167 -181
φ3 -163 -164 -123 44 -166 -141
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The proposed phototaxis model, though derived from stationary distributions, is

shown to correctly capture also the temporal dynamics of phototaxis (Fig. 2.2). The

formation of density peaks in the presence of light and their subsequent dissipation

following light removal are reproduced well by the model (red dashed lines in Fig.

2.2A-F; note that Eq. 2.5 reduces to the diffusion equation in the absence of light

stimuli). Small deviations from the model prediction during cell accumulation (Fig.

2.2A-C) are observed. They are possibly due to the repeated transfers of the channel

from the illumination setup to the stereomicroscope for algal density measurements.

To characterize the swimming behavior at the single-cell level, trajectories of individ-

ual E. gracilis cells (Fig. 2.4) were recorded, both in a uniform light field and within a

light gradient. 330 trajectories of cells were recorded through dark field microscopy,

placing the recording window at the center of the microscope stage to minimize light

gradients and thus bias in the direction of motion. The recorded trajectories were

analyzed by computing the mean square displacement, mean square velocity, velocity

autocorrelation and velocity distribution along the direction of the channel (Fig. 2.4).

The x-coordinates of the recorded trajectories (i.e., the coordinate of each individual

in the direction of the linear landscape, which was also the direction of the light gradi-

ent under the non-uniform light conditions) were analyzed. The statistics (Fig. 2.4) of

cells’ motion in uniform light are in good agreement with the Ornstein-Uhlenbeck

(OU) process (Gardiner, 2006, Méndez et al., 2014):ẋ = v

v̇ =−γv +ση(t )
(2.8)

where x is the (one-dimensional) position of the cell, v is its instantaneous velocity and

η(t) is a Gaussian white noise. Specifically, the mean square displacement 〈∆x2(t)〉,
mean square velocity 〈v2(t)〉 and velocity autocorrelation 〈v(t)v(0)〉 were fitted to

their analytical expressions (Méndez et al., 2014):

〈∆x2(t )〉OU = σ2

γ2

[
t − 2

γ

(
1−e−γt )+ 1

2γ

(
1−e−2γt )]+ v2

0

γ2

(
1−e−γt )2

, (2.9)

〈v2(t )〉OU = v2
0e−2γt + σ2

2γ

[
1−e−2γt ] , (2.10)

〈v(t )v(0)〉OU = v2
0e−γt . (2.11)
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The quantity γ−1 measures the typical timescale of the velocity autocorrelation, while

σ describes the degree of stochasticity of the motion. The fit was performed simul-

taneously for the three curves (red lines in Fig. 2.4), that is, the best fit parameters

for γ and σ were those that minimized the chi-square χ2 = 1/2
[∑T

t=1(〈∆x2(t)〉data −
〈∆x2(t)〉OU )2/σ2

〈∆x2(t )〉 +
∑T

t=1(〈v2(t)〉data − 〈v2(t)〉OU )2/σ2
〈v2(t )〉 +

∑T
t=1(〈v(t)v(0)〉data −

〈v(t )v(0)〉OU )2/σ2
〈v(t )v(0)〉

]
, where σ2 indicates the standard error (SE) of the mean in

the data. The parameters’ errors are given by the square root of the diagonal elements

of the Hessian matrix, which is evaluated at the minimum. This fitting procedure

provided the estimates γ= 0.077±0.014 s−1 andσ= 0.032±0.004 mm/s3/2 (mean±SE).

The cyan lines in Fig. 2.4 were obtained by fitting the velocity autocorrelation to its

analytical expression Eq. 2.11 and subsequently fitting σ separately to the mean

square displacement via Eq. 2.9 and to the mean square velocity via Eq. 2.10. This

fitting procedure provided the estimates γ= 0.054±0.014 s−1 and σ= 0.025±0.003

mm/s3/2 (mean±SE). The diffusive behavior observed at the population level finds

additional confirmation at the individual level (at times t > γ−1 = τ, Fig. 2.4C), with

quantitative agreement between the diffusion coefficients at the two scales (for the

trajectories data, D =σ2/(2γ2) = 0.09±0.04 mm2 s−1, were the mean values of γ and

σ obtained with the two fitting procedures were used). The mean (instantaneous)

swimming speed of E. gracilis cells was v̄ = 0.10±0.05 mm s−1, mean±SE.

130 trajectories of individual organisms were recorded in the presence of an imposed

light gradient (Fig. 2.5), obtained by placing a LED with peak light intensity I0 = 5.2

W m−2 at the right border of the imaging window. No net displacement towards the

light source (Fig. 2.5B) was found. The mean (instantaneous) swimming speed of E.

gracilis cells was the same in the presence (v̄ = 0.10±0.04 mm s−1, mean±SE) and

in the absence of light gradients. The mean phototactic velocity v̄P = 〈dφ/d x〉 in the

imaging window (the mean is computed over space) (Eq. 2) is v̄P = 0.007 mm s−1;

therefore, the directionality of swimming v̄P /v̄ = 0.07 is very small.

Single-cell statistics allowed to derive a microscopic model of phototaxis, applicable to

the motility behavior of individual E. gracilis cells. Despite the difficulty of discerning

phototaxis at the single-cell level, the good agreement of trajectory statistics with

the Ornstein-Uhlenbeck model in the absence of light gradients and the observation

of accumulation dynamics around light sources at the population level suggest the

following Langevin model for the phototaxis of individual cells,ẋ = v

v̇ =−γv +ση(t )+γdφ[I (x)]
d x

(2.12)

where x is the (one-dimensional) position of the cell, v is its instantaneous velocity,
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Figure 2.4: Single E. gracilis swimming trajectories in uniform light and fit to the OU process.
The recorded swimming trajectories of algae (A) along the direction of the linear landscape
resemble the OU process (B) both qualitatively (A,B) and quantitatively (C-F). (C-F) Statistics
of the measured trajectories (black dots, mean±SE) and fit to the OU process (red and cyan
lines). The simultaneous fit (red lines) of the mean square displacement (C), mean square
velocity (D) and velocity autocorrelation (E) shows that the OU process represents a good
description of the movement behavior of individual algae. The cyan lines were obtained by
fitting the parameter γ in the velocity autocorrelation data (E) and subsequently fitting σ in
the mean square displacement (C) and mean squared velocity (D) data separately. (F) The
simultaneous fit also provides a very good prediction for the stationary velocity distribution.
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η(t ) is a Gaussian white noise, and φ[I (x)] is the phototactic potential. In the presence

of a light gradient, the term γdφ[I (x)]/d x in Eq. 2.12 drives the accumulation of indi-

viduals around the light source in the long term. This single-cell model is consistent

with the Keller-Segel model at the population scale (Eq. 2.5) and reduces to the OU

model in the absence of external gradients.

To interpret the failure to detect a bias towards the light source, 1000 integrations of

Eq. 2.12 were performed, with initial positions drawn uniformly at random in the

range [−10.5 mm,−1 mm] (i.e., the region measured in the experiment) and with

initial velocities drawn according to the stationary velocity distribution of the OU

process. Fig. 2.5B (inset) shows a plot of the computed mean displacement 〈∆x(t)〉
and standard deviation in the simulations. Fig. 2.5B elucidates why no discernible net

displacement towards the light source is appreciable in the data, that is, the random

motion of E. gracilis dominates over the drift towards the source at these spatial and

temporal scales. Accordingly, phototactic accumulation of density peaks takes place

in a timeframe much larger than the typical persistence time τ= 1/γ= 15 s. Therefore,

the model Eq. 2.12 provides interpretation for the impossibility to observe a net bias

towards the source in the experimental trajectories.

Table 2.2: Parameters describing the phototactic response and movement dynamics of E.
gracilis (mean±SE). The parameters a, Ir and Ic define the phototactic potential φ. The
diffusion coefficient D was estimated via the relaxation of density peaks (Fig. 2.2D-H). τ is
the typical autocorrelation time of swimming trajectories and was measured by fitting an
exponential decay to the velocity autocorrelation of the experimental trajectories measured
in uniform light. The mean instantaneous cell swimming velocity v̄ was measured in the
recorded trajectories and was the same in uniform and non-uniform light.

Phototactic response
a (1.4±0.04) ·10−8 m4 W−1 s−1

Ir 1.7±0.1 W m−2

Ic 28.0±0.3 W m−2

Movement dynamics
D 0.13±0.04 mm2 s−1

τ 15±3 s
v̄ 0.10±0.05 mm s−1
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Figure 2.5: E. gracilis trajectories in a light gradient. (A) The statistics of the trajectories are
consistent with a persistent random walk. (B) Mean displacement (±SE): at these spatial and
temporal scales there is no discernible net displacement towards the light source (∆x > 0). The
inset in panel (B) shows the mean displacement and standard deviation of 1000 trajectories,
which were simulated according to Eq. 2.12. The random component of the motion is much
stronger than the force term in Eq. 2.12 and thus hides the mean net displacement of the
individuals towards the light.
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2.4 Methods

2.4.1 Algal culture

The species used in the experiments, E. gracilis, was purchased from Carolina Biologi-

cal Supply (Burlington, North Carolina, USA) and maintained in a nutrient medium

(Altermatt et al., 2014) composed of sterilized spring water and Protozoan Pellets

(Carolina Biological Supply) at a density of 0.45 g L−1, filtered through a 2 µm filter.

Algal cultures were initialized 2 weeks before the start of the experiment and kept at a

constant temperature of 22 ◦C under constant LED light at λ= 469 nm. E. gracilis indi-

viduals have a typical linear size of 14 µm (Giometto et al., 2013) and the duplication

time is approximately 20 h (Carrara et al., 2012); thus, reproduction can be neglected

in the experiments.

2.4.2 Density estimates and video recording

Density estimates were obtained by placing the linear landscape under the objective of

a stereomicroscope, taking pictures and counting individuals through image analysis

(Altermatt et al., 2014). Density profiles were measured at the centre of the linear

landscape across one entire period of the light intensity profile. Stationary density

profiles were measured after 210 min from the introduction of cells in the landscape.

Border effects were neglected here because the measurements were performed at the

centre of the landscape, which had a total length (2 m) that was much larger than the

length of one period (12.5 cm). To reconstruct the trajectories, videos were recorded

with a stereomicroscope and particle tracking was performed automatically with the

MOSAIC (Sbalzarini and Koumoutsakos, 2005) plugin for ImageJ under homogeneous

light conditions (Altermatt et al., 2014) and manually with the MTrackJ plugin for

ImageJ in the presence of a light gradient (automatic tracking was not possible in the

light gradient setup because of the low quality of pictures, due to the use of only one

LED light for the microscopy).

2.4.3 Linear landscapes

The linear landscapes used in the experiments were channels drilled on a plexiglass

sheet and were 2 m long, 5 mm wide and 3 mm deep (Giometto et al., 2014). A second

plexiglass sheet was used as a cover, and a gasket prevented water spillage. Before the

introduction of the algal culture in the linear landscapes, the plexiglass sheets were

sterilized with a 70% (vol/vol) ethanol solution, and the gaskets were autoclaved.
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2.4.4 Light sources and light intensity profile

A linear array of LEDs was developed to control the light intensity profile along the

linear landscapes. RGB (Red Green Blue) LED strips were controlled via Arduino Uno

boards. The LED strips consisted of individually addressable LEDs separated by a

distance of 3.12 cm. The light intensity for the B (Blue) and R (Red) color channels

(wavelength of 463− 475 nm and 619− 635 nm respectively) could be controlled.

The total radiant flux emitted by LEDs at the different intensities and wavelengths

employed was measured with a calibrated photodiode. The relative light intensity

profiles, with the LEDs set at the different intensities employed, was measured by

placing a white paper sheet in the linear channels and measuring the irradiance

on the sheet with a digital camera operated in grayscale at fixed aperture, exposure

and distance from the LED. This relative measure of light intensity was converted to

absolute values via the total radiant flux measured. In the experiments, periodic light

intensity profiles were established with one LED switched on every 12.5 cm.

2.4.5 Numerical integration

To compute the time evolution of algal accumulation according to the Keller-Segel

model (Fig. 2.2) Eq. 2.5 was integrated numerically with the method of lines (Schiesser,

1991) in the domain x ∈ [−6.25,6.25] cm, whose total length of 12.5 cm corresponds to

one period of the periodic light intensity profile established in the experiments. The

initial condition was uniform and equal to the mean cell density. Reflecting boundary

conditions were set at the border of the domain. Eq. 2.12 was integrated numerically

with the Euler-Maruyama method of order 1/2 to compute the model predicted mean

displacement and standard deviation for the experimental settings (inset in Fig. 2.5B).

The light intensity profile used in the numerical integrations of Eqs. 1, 2.12 was the

best fit of the Eq. I (x) = c0/(x2 + c2
1)2, which approximates very well the measured

profile.

2.4.6 The expansion of the Fokker-Planck equation

The expansion of the Fokker-Planck equation for the Langevin Eq. 2.12 in γ−1 is

acceptable because the typical persistence time τ= γ−1 = 15 s of the trajectories is

much smaller than the typical timescale for the macroscopic dynamics. An intuitive

derivation of the expansion can be obtained by neglecting the inertial term v̇ in Eq.

2.12 (a technique known as adiabatic elimination of fast variables, Gardiner (2006)),

which results in the Langevin Eq. ẋ = σ
γη(t)+ dφ

d x [I (x)]. The corresponding Fokker-

Planck equation describing the time evolution of the probability density function
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ρ(x, t) is then ∂ρ
∂t (x, t) = σ2

2γ2
∂2ρ

∂x2 (x, t)− ∂
∂x

[
dφ
d x [I (x)]ρ(x, t )

]
, which is equivalent to Eq.

2.5 for D =σ2/(2γ2).

2.5 Discussion

To compare the experimental setup employed with the natural environment, the

ASTM G-173 reference terrestrial solar spectral irradiance (ASTM International, 2008)

was integrated in a wavelength window of 10 nm centered at λ= 469 nm (10 nm is

the typical width of emission for the LEDs, Methods) and was found to give a typical

irradiance of approximately 13 W m−2 at sea level. Wavelengths in the blue region

of the visible spectrum are among the most transmitted in natural aquatic habitats

(Jeffrey, 1984, Ragni and Ribera D’Alcalà, 2004) and penetrate the farthest in the water

column, whereas red light is the most attenuated. Thus, the experimental values of

light intensities and the wavelengths adopted here are typical of natural conditions

and suggests that the experimental and theoretical results might have implications

for the behavior of phytoplankton in natural environments.

The response of cells to light of different intensities, here expressed in terms of the

phototactic potential φ(I ), was inferred from observed stationary cell density profiles.

However, the model was shown to capture also the temporal dynamics of cell accu-

mulation around a light source and the diffusive relaxation following light removal.

This is suggested to be an important result in view of studying the effect of stochas-

tic light fields in the laboratory on the migration of cells (Chapter 3). In particular,

the experimental approach to phototaxis adopted here provides a template for the

study of ecological processes in shifting and fluctuating resource availability. The

convenient use of programmable LEDs allows one to create microbial microcosms in

which light conditions can be accurately controlled to generate a boundless variety of

spatiotemporal patterns of environmental stochasticity, affecting both the growth and

the movement behavior of cells. Hence, the study system developed here is suggested

to be a promising candidate for quantitative microcosm experiments on biological

invasions along ecological corridors, range expansions and source-sink dynamics

under environmental noise (Bertuzzo et al., 2007, Gonzalez and Holt, 2002, Méndez

et al., 2011, Rodriguez-Iturbe et al., 2009).

Two main phenomenological approaches have been adopted in the literature to model

phototaxis of motile algae (Vincent and Hill, 1996, Williams and Bees, 2011a,b), both

acknowledging the lack of experimental verification. The first is a photokinetic ap-

proach (Burkart and Häder, 1980, Vincent and Hill, 1996, Williams and Bees, 2011a),

where the average swimming velocity of cells is assumed to be a function of the light
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intensity I . Vincent and Hill (1996) assumed that the average cell velocity in a vertical

light gradient is given by vP (I ) = vT (I ), where v is the average cell swimming speed

and T (I ) is a suitable taxis response function (see Fig. 2.1 in Vincent and Hill (1996)).

Analogously, Williams and Bees (2011a) proposed a photokinetic model where the

average cell velocity is a linear function of I , i.e., vP (I ) = v/Ic · (I − Ic ), equal to v in

the dark and equal to zero at Ic . Such model assumptions were taken as working

hypotheses due to the lack of direct or indirect empirical validation (Vincent and Hill,

1996, Williams and Bees, 2011a). The need for experimental characterization of the

phototactic response to move beyond the linear assumption was clearly stated therein

(Williams and Bees, 2011a). Such models described phototaxis in relatively shallow

settings (a few centimeters) where light came uniformly from above and heterogene-

ity in the light availability would be solely induced by cell shading. In Vincent and

Hill (1996), Williams and Bees (2011a), light was assumed to control the magnitude

and the sign of the cell swimming velocity, while the directional bias in the vertical

direction is provided by gyrotaxis and gravitaxis. Thus, cells were assumed to exhibit

no net average displacement in the absence of gravity. Burkart and Häder (1980)

performed a light-trap experiment with the alga Phormidium uncinatum and used

experimental observations to derive an advection model with average cell velocity

vP [I (x)] = α log[βI (x)] (for I ≥ β−1 and with α> 0), neglecting cells diffusion. Such

model cannot reproduce the negative phototaxis behavior observed in E. gracilis, be-

cause vP is assumed to be a monotonically increasing function of I . Thus, cells would

accumulate at the highest available light intensity value, contrary to the experimental

results (Fig. 2.3D).

The second modeling approach consists of assuming an advection flow proportional

to the light intensity gradient, vP [d I /d x] =χd I (x)/d x (χ> 0), such as in Torney and

Neufeld (2008), where cell aggregation in turbulent flows was investigated theoretically.

The proportionality of the advection flow to d I /d x ensures the existence of a net flow

towards regions of higher light intensity. However, because vP is not a function

also of the light intensity I , possible saturating effects or photophobic behavior at

high light intensities are neglected. The response function chosen in Torney and

Neufeld (2008) corresponds to the choice φ(I ) = φ1(I ) = aI , which gives a bad fit

for the data shown in Fig. 2.3B, even if only the data points up to Im = 5.5 W/m2

(maximum of the experimental φ(I )) are used. Specifically, if the data for φ (Fig. 2.3B)

are truncated at Im = 5.5 W/m2 the functional form φ2 performs best compared to

φ1 and φ3 (∆AIC= 145 and 26, respectively). Other mechanistic approaches have

been explored to model phototaxis in combination with gyrotaxis. For example,

Williams and Bees (2011a) considered other two models: one where cells exhibited a

centre-of-mass offset dependent on light intensity; and another in which a reactive

phototactic torque was introduced. However, because several additional processes are
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included, comparison of such models with data on photo-bioconvection patterns are

difficult and mostly qualitative. Williams and Bees (2011b) provided the first replicated

experimental investigation of photo-bioconvection patterns. They found qualitative

agreement between the experimental data and the model predictions (Williams and

Bees, 2011a) for the dominant initial wavelength of bioconvective patterns obtained

via linear stability analysis (Williams and Bees, 2011b). Limitations to the quantitative

comparison of the models and the experiments are discussed therein (Williams and

Bees, 2011b).

In the experiments, light came from below and cells were observed to distribute

mostly at the top of the channels. Therefore, shading was neglected (unlike in Vincent

and Hill (1996), Williams and Bees (2011a)) and light gradients are present by design

owing to the experimental setup. The assumption that the phototactic velocity vP is a

function of the light intensity I (and not of I and d I /d x) such as in Burkart and Häder

(1980), Vincent and Hill (1996), Williams and Bees (2011a) is unfeasible here, because

it would induce a net phototactic movement in uniform light settings, without the

existence of a preferential direction in the horizontal plane. The fact that the advec-

tion velocity is a function of both I and d I /d x is a common feature of Keller-Segel

models, compare e.g. Eq. 1 in Tindall et al. (2008) and Eq. 2.2 here, and ensures that

no net movement is induced in homogeneous distributions of the stimulus (be it a

chemical for chemotaxis or light for phototaxis). The framework presented here differs

from previous attempts to model phototaxis for the fact that the phototactic veloc-

ity here is a function of both the light intensity I and its spatial gradient d I /d x, i.e.,

vP = dφ/d x = dφ/d I ·d I /d x (φ is a function of I ). A model capable of describing both

the positive and negative phototaxis regimes (a feature present in Vincent and Hill

(1996), Williams and Bees (2011a) without direct experimental validation, and absent

in Burkart and Häder (1980), Torney and Neufeld (2008)) is deemed desirable because

negative phototaxis has important ecological consequences as it allows cells to avoid

harmful radiation. Moreover, negative phototaxis contributes to determine the ver-

tical positioning of sensible organisms in the water column (Häder and Griebenow,

1988), is a widespread behavior in phytoplankton (Jékely, 2009), and its exploitation

was suggested as an efficient technique to enhance harvesting in photobioreactors

(http://www.google.com/patents/US20100237009) and to control microorganisms

for the transport of colloidal cargo (Itoh, 2004).

Compared to previous research efforts, the present investigation allowed a quantitative

experimental determination of the phototactic response function (embedded in the

potential φ and, by derivation, in the advection velocity vP ) directly from cell density

patterns in a broad range of light intensities, thus allowing the characterization of both

negative and positive phototaxis regimes within a unified mathematical framework.
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The simple experimental settings devised allowed a direct quantitative comparison

of the model with the experiments and invites further experimental investigation in

more complex scenarios.

All things considered, it is suggested that the literature lacked an experimentally tested

mathematical framework comprising a measure of the phototactic response func-

tion of individual organisms and their associated population behavior. This work

is thus suggested to provide the blueprint for the characterization of the collective

response of phytoplankton to light availability and its migration strategies in aquatic

ecosystems. The identification of the light intensity window where positive and nega-

tive phototaxis occurs pinpoints the regions of the water column where phototactic

effects affect the vertical distribution of phytoplankton. Currently, models of phyto-

plankton growth in contrasting gradients of light and nutrients aimed at reproducing

the vertical distribution of phytoplankton either ignore phototaxis (Greenwood and

Craig, 2014) or rely on untested assumptions for the phototactic advection velocity

vP = dφ[I (x)]/d x (Klausmeier and Litchman, 2001, Mellard et al., 2011). The identifi-

cation of the functional form for φ(I ) provided here can be used directly to integrate

realistic predictions for the phytoplankton vertical distribution, which is known to

be relevant for global biogeochemical cycles, ecosystem functioning and the diver-

sity and coexistence of plankton species (Lampert et al., 2003, Steele and Yentsch,

1960). In fact, the inter-specific variability of the optimal light intensity (defined by

dφ(I )/d I = 0) and nutrient requirements have been argued (Yoshiyama et al., 2009)

to translate into a sectoring of the water column into separate niches, allowing the

coexistence of competitive species.

Other direct applications of the mathematical framework outlined above can be

envisioned. For example, phototaxis of swimming algae, sometimes in combination

with other directional behaviors such as gravitaxis (the directed swimming in response

to gravity) and gyrotaxis (gravitaxis in the presence of ambient velocity gradients), is

speculated to have noteworthy implications for the design of algal photobioreactors.

The phototaxis model proposed here (Eq. 2.5) may be used directly to refine existing

models for photo-gyrotactic (Williams and Bees, 2011a) and photo-gyro-gravitactic

(Williams and Bees, 2011b) bioconvection, which currently rely on educated guesses

for the phototactic advection term, and may be applied to identify optimal designs

for cell accumulation far from the reactor surface to avoid biofouling and to achieve

enhanced harvesting, a strategy that has been investigated empirically (Ooka et al.,

2014). The fact that the phototactic potential φ is much steeper for light intensities

above Im = 5.5 W/m2 than below such value, and hence the phototactic velocity is

larger for I > Im , suggests that the exploitation of negative phototaxis might be a more

effective strategy than the use of positive phototaxis to achieve optimal harvesting.
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Algae are also increasingly employed in micro-bio-machine research, for example

as micro-propellers for the transport of colloidal cargo (Itoh, 2004, Itoh and Tamura,

2008), where light is often used as the external driver of the motion. Although this

research is yet to translate into practice, it represents an exciting avenue to harness

microbial motility for controlled microscale applications, and phototaxis represents

one of the most controllable processes because of the ease of accurately imposing

and rapidly modulating external light gradients. The algorithms that are currently

employed to control such micro-bio-machines are mostly empirical, and the model

Eq. 2.5 may indeed serve to render machine control more robust and accurate. While

much attention is currently dedicated to understanding the swimming behavior in

these artificial environments (Garcia et al., 2013), the characterization of collective

phototactic dynamics provided here might be exploited to optimize existing techno-

logical applications or design new ones.
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3 Invasion fronts: environmental
heterogeneity

Abstract

Biological invasions typically spread in heterogeneous and fluctuating environments.

However, most of the current knowledge on biological invasions is based on theoreti-

cal models and a handful of experiments that assumed a homogeneous environment

and thus neglect the heterogeneity that is ubiquitous in nature. Recently, theoretical

models have shown that spatially and temporally uncorrelated environmental fluctu-

ations can cause a slowing-down in the propagation of invasion fronts, but the role of

autocorrelation in the landscape spatial heterogeneity has not been investigated. Here,

a generalization of the Fisher-Kolmogorov model including demographic stochasticity

and biased movement of populations towards favorable regions is proposed and the

front propagation dynamics is studied in landscapes with different autocorrelation

lengths of the resource distribution. The speed of the invasion spread is shown to

be a monotonically decreasing function of the resource autocorrelation length and

demographic stochasticity is found to play a key role in such slowing-down effect.

The prediction that biological invasions spread slower in landscapes with large au-

tocorrelation length is verified and confirmed in a microcosm experiment with the

alga Euglena gracilis. Such results may have implications for the control of invasive

species in the natural environment.
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3.1 Introduction

Environmental fluctuations and heterogeneity are ubiquitous in nature and are

thought to affect nearly all aspects of ecology, ranging from species coexistence to pop-

ulation synchrony, driving range shifts and potentially causing abrupt biotic change.

Local population dynamics in fluctuating and heterogeneous environments have

been studied extensively in recent years (Chesson and Huntly, 1997, Duncan et al.,

2013, Gonzalez and Holt, 2002), mainly with respect to population synchrony (Benton

et al., 2001, Fox et al., 2011, Post and Forchhammer, 2002, Vasseur and Fox, 2009).

However, the implications on spatial dynamics (Duncan et al., 2013, Gonzalez and

Holt, 2002) and especially on front propagation (Méndez et al., 2011) received little

experimental attention. Accordingly, most experimental investigations were dedi-

cated to the study of temporal fluctuations, whereas spatial heterogeneity received

surprisingly little attention (Melbourne et al., 2007). Both theoretical (Roy et al., 2005,

Vasseur, 2007) and experimental (Fontaine and Gonzalez, 2005, García-Carreras and

Reuman, 2011, Gonzalez and Holt, 2002) studies have highlighted the relevance of

the autocorrelation structure of environmental fluctuations for ecological dynamics.

For example, Fontaine and Gonzalez (2005) showed that positively autocorrelated

(i.e. red) temporal prey fluctuations induced synchrony in the predator population

dynamics in a microcosm composed of the alga Chlorella vulgaris and the rotifer

Brachionus calyciflorus, whereas uncorrelated fluctuations did not.

Despite the fact that most natural environments are inevitably heterogeneous, much

of the current understanding of species spread is based on theoretical models (Hast-

ings et al., 2005, Melbourne et al., 2007) and only on a handful of experiments (Giometto

et al., 2014, Melbourne and Hastings, 2009) that investigated spread in uniform en-

vironments. Melbourne et al. (2007) stated the need for experiments and theory

addressing spread and invasions in more complex, heterogeneous environments.

From the theoretical viewpoint, integrating environmental heterogeneity in models

of spread is a challenging task and a modeling framework that allows drawing gen-

eral conclusions is lacking to date (Hastings et al., 2005). In the search for such a

framework, the study of biological invasions in heterogeneous and fluctuating en-

vironments has been addressed in the context of the Fisher-Kolmogorov equation

(Kinezaki et al., 2003, Méndez et al., 2003, 2011, Nelson, 1999, Nelson and Schnerb,

1998), by embedding various sources of environmental stochasticity in the original

deterministic equation (Fisher, 1937, Kolmogorov et al., 1937). However, most of

these studies modeled spatially heterogeneity and fluctuations through noise terms

that were uncorrelated in space (Nelson, 1999, 2012, Nelson and Schnerb, 1998), pe-

riodic in space (Kinezaki et al., 2003, Shigesada et al., 1986) or characterized by a

gaussian spatial correlation function with a fixed correlation length (Méndez et al.,
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2011). Therefore, whereas the importance of the autocorrelation structure of temporal

environmental fluctuations for local ecological processes is now widely recognized

(Fontaine and Gonzalez, 2005, García-Carreras and Reuman, 2011, Gonzalez and Holt,

2002, Vasseur, 2007), the effect of the autocorrelation structure of environmental fluc-

tuations on biological spread rates is rather unexplored. A limited number of empirical

works (Bailey et al., 2000, Bergelson et al., 1994, Hastings et al., 2005, Williamson and

Harrison, 2002) measured spread rates in heterogeneous and diverse habitats and

compared the realized spread distances in patchily distributes sites (Bailey et al., 2000,

Bergelson et al., 1994). However, microcosm experiments testing specific predictions

of Fisher-Kolmogorov models with embedded environmental stochasticity are lacking

to date (Méndez et al., 2011).

Motivated by the above considerations, this chapter studies biological invasions in

the presence of spatial heterogeneous resource distributions. This, for example, could

reflect the spatial composition and quality of soil or topographically determined

habitat elements such as exposure or elevation. Here, focus is placed on the effect

of the spatial autocorrelation structure of the resource distribution on the propaga-

tion of biological invasion fronts. Giometto et al. (2014) (Chapter 1) showed that,

even in uniform landscapes, demographic stochasticity introduces noise terms in

the reaction-diffusion equation describing the propagation of invasion fronts, lead-

ing to a quantifiable variability of the process across replicated invasions (Fig. 1.3).

Therefore, both environmental and demographic stochasticity are thought to affect

biological invasions and the interplay between these two sources of stochasticity will

be investigated here.

This chapter is organized as follows. First, the experimental setup is discussed. Sec-

ond, a mathematical model that embeds the processes of positive phototaxis and

demographic stochasticity is introduced and its predictions are used to formulate the

experimental hypothesis. Third, the experimental hypothesis is tested in a microcosm

experiment with the species Euglena gracilis.

3.2 Experimental setup

The setup developed in Chapters 1 and 2 allows to study experimentally biological

invasions in continuous one-dimensional landscapes. The use of the photosynthetic

organism E. gracilis allows to impose environmental heterogeneity along the land-

scapes by controlling the light intensity profile via a linear array of Light Emitting

Diodes (LEDs). Such light intensity was shown in Chapter 2 to affect the movement

behavior of E. gracilis, introducing a bias on motility towards light in the positive pho-
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Figure 3.1: Replicated growth curves of E. gracilis in the presence of blue light (blue curves)
and in the dark (black curves). Replicated populations starting at identical initial conditions
are shown to grow in the presence of light, but not in the dark.

totaxis regime and causing the accumulation of algae in the presence of light. Growth

curves of E. gracilis were measured in the presence of light by placing a cell culture

flask with 10 mL of E. gracilis on top of two LEDs operated at a total flux of 1 mW each.

Growth curves in the absence of light were measured in the same conditions, but

covering the LEDs with black tape. Fig. 3.1 shows that E. gracilis grows in the presence

of light, but not in the dark. Therefore, light in our experimental setup affected both

the growth and the movement behavior of E. gracilis.

The experimental setup allowed to impose the desired distribution of resources (i.e.,

light) along the linear landscapes via the control of linear arrays of LEDs. Thus,

resources in the experimental landscapes were centered at regularly spaced lattice

sites (the fixed distance between two successive LEDs was ∆L = 3.12 cm) and different

resource distributions could be cast in place by switching on or off each LED in the

linear array. For a fixed sequence of switched-on LEDs, the light intensity profile was

given by the superposition of the spatial light intensity profile of each switched-on

LED in the sequence. Light intensity profiles with the desired autocorrelation length

were designed by imposing the probability λ of LED i + 1 in the LED array to be

switched-on if LED i was switched-off, i.e., P[LED(i +1) =ON | LED(i ) =OFF] = λ.

Such Markov Chain was imposed to be symmetric such that P[LED(i + 1) =OFF |
LED(i ) =ON] = λ. Small and large values of λ generate resource distributions with

long and small autocorrelation lengths (approximately equal to ∆L/λ), respectively.

Because landscapes were of finite total length in both the experiment and in the

simulations, the above procedure can generate by chance resource profiles with

autocorrelation different from the desired one and with a mean frequency of switched-

on LEDs different from 1/2. Therefore, in both the experiment and the simulations, the

set of resource profiles obtained with the Markov Chain procedure was restricted to

those with a mean frequency of switched-on LEDs equal to 1/2 and in a narrow window
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of autocorrelation length around the desired one. The LED sequences employed in

the experiment are shown in Fig. 3.3. The choice of the large autocorrelation length in

the experiment was limited by the total finite length of the experimental setup and

was chosen to be less than 1/10 of the total setup length.

3.3 Results

A mathematical model was developed to assess the contribution of demographic

stochasticity and of the directed movement of organisms to the front propagation in

heterogeneous environments. The model was then used to identify the experimental

hypothesis. The proposed mathematical model is a combination of Eqs. 1.18 and 2.5,

that is, it is a generalization of the Fisher-Kolmogorov model that accounts for the

directed movement towards the resource (Eq. 2.5) and for demographic stochasticity

(Eq. 1.18). The model reads:

∂ρ

∂t
= ∂

∂x

[
D
∂ρ

∂x
− dφ

d x
(I )ρ

]
+ r (I )ρ

[
1− ρ

K

]
+σpρ η, (3.1)

where ρ is the density of organisms, D is the diffusion coefficient of the cells due

to their active movement (D for E. gracilis was measured in Chapter 2), φ is the

phototactic potential as in Eq. 2.7, r is the species growth rate, K is the carrying

capacity, η= η(x, t) is a gaussian, zero-mean white noise (i.e., the noise has correla-

tions 〈η(x, t )η(x ′, t ′)〉 = δ(x −x ′)δ(t − t ′), where δ is the Dirac’s delta distribution) and

σ> 0 is constant. The landscape heterogeneity is embedded in the resource profile

I (x). The Itô’s stochastic calculus (Gardiner, 2006) was adopted, as appropriate for

the demographic noise term (see Chapter 1). The growth rate r is assumed to be a

function of the light intensity, as suggested by the experimental growth curves (Fig.

3.1). The assumption made here is that r follows Monod kinetics (the assumption is

customary for phytoplankton, Diehl (2002)), i.e., r (I ) = rmaxI /(I +K I ), where rmax is

the maximum growth rate and K I is the half-saturation constant. Eq. 3.1 was used

to simulate biological invasions in linear landscapes with resource distributions I (x)

exhibiting various autocorrelation lengths. The profiles I (x) employed in the sim-

ulations were chosen to reproduce closely the experimental light intensity profiles,

although landscapes were much longer in the simulations than in the experiments;

details are provided in the Methods. 100 landscapes for each resource autocorrelation

length were generated and front propagations according to Eq. 3.1 were simulated

on such landscapes, with parameters suitable to describe E. gracilis (Methods). The

position of the front was measured in the simulations by fixing a threshold value of the

density ρ̄ and recording the furthest point from the origin were the cell density was

higher than such value. The mean propagation speed for each value of the resource
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Figure 3.2: Mean front position (A), mean propagation speed (B) and standard deviation (C,
std) of the front position in landscapes with different autocorrelation length, according to
Eq. 3.1. Points and curves are color coded from blue (weak autocorrelation) to red (strong
autocorrelation). The mean front positions and standard deviations were calculated across 150
integrations of Eq. 3.1 for each value of resource autocorrelation length, with initial condition
localized at the origin. The front propagation speed was computed via least-squares linear
fits of the mean front position versus time. The standard deviation drops to zero when the
landscape is fully colonized.
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autocorrelation length was computed by fitting a straight line (least-squares fit) in the

asymptotic propagation regime. The mean front position and the mean propagation

speed, which is found to be a decreasing function of the resource autocorrelation

length, are shown in Fig. 3.2A-B. Therefore, large resource autocorrelation lengths

cause a slowing-down of the propagating front with respect to small autocorrelation

lengths. This model prediction was tested in the microcosm experiment with E. gra-

cilis discussed in the following section. Increasing the autocorrelation length, two

landscapes with identical autocorrelation appear increasingly dissimilar (see, e.g.,

Fig. 3.3). Such increasing dissimilarity translates into an enhanced variability of the

front position for larger values of the autocorrelation length. Specifically, plotting the

standard deviation of the front position in 150 integrations of Eq. 3.1 shows that such

standard deviation increases with the resource autocorrelation length (Fig. 3.2C).

In the experiment, two treatments were performed to study the effect of autocorrela-

tion of the resource distribution on the propagation of biological invasion fronts. In

the first treatment, LED sequences (Fig. 3.3, in blue) were set to reproduce resource

distributions with small autocorrelation length (' 4 cm, Methods). In the second treat-

ment, LED sequences (Fig. 3.3, in red) were set to reproduce resource distributions

with long autocorrelation length (' 12 cm, Methods). The total number of switched-

on LEDs was the same in both treatments. Within each treatment, different sequences

of switched-on LEDs were chosen for each experimental replicate. Five replicates

with small autocorrelation length and six replicates with large autocorrelation length

were run. The LED sequences and the corresponding light intensity profiles along the

linear landscapes are shown in Fig. 3.3. In all the figures, the color blue is used for

environments with small autocorrelation length and red is used for those with large

autocorrelation length. Linear landscapes identical to those employed in Chapter

1 and 2 (i.e., channels drilled in plexiglass and filled with a nutrient medium) were

posed on top of the LED arrays. At the start of the experiment, an ensemble of E.

gracilis was introduced at one end of the landscape and cell density profiles were then

measured at various times by recording images with a stereomicroscope and counting

cells via image analysis (Altermatt et al., 2014). The position of the propagating front

at each measurement time was estimated by fixing a threshold value of cell density

ρ̄ and recording the furthest point from the origin where the cell density was higher

than such threshold value. The front position in each replicate at each measurement

time, for a fixed value of the threshold, is shown in Fig. 3.4. Visual inspection of Fig.

3.4 suggests that strongly autocorrelated resource distributions (i.e., those with large

autocorrelation length) cause a slowing-down of the propagating front compared to

weakly autocorrelated ones. A mixed-effect model (Crawley, 2007) supports this state-

ment for almost any choice of the threshold value used to trigger the front position

in the experiment (Figs. 3.7, 3.8). The test statistics are reported in Table 3.1 for the
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Figure 3.3: LED sequences (upper panels) and corresponding light intensity profiles (lower
panels) used in the experiment. The blue color indicates environments with small autocorre-
lation length and the red color indicates environments with large autocorrelation length.
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Figure 3.4: Front propagation in the experiment. Fronts propagating in environments with
large resource autocorrelation length are colored in red, those propagating in environments
with small resource correlation length are colored in blue. (A) Front position in all experimental
replicates at different times. (B) Mean (±SE) position of the front across replicates with
identical autocorrelation. In some replicates, the front reached the end of the landscape at
day 4. Thus, the front propagation analysis was performed only with the data up to day 3 to
avoid spurious effects due to the finite size of the system. The density threshold value used to
trigger the front position was ρ̄ = 60 cm−1.
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density threshold value ρ̄ = 60 cm−1 and in Table 3.3 for all values of ρ̄ considered.

The autocorrelation treatment was the single fixed effect and time/replicate was the

random effect. The treatment with small autocorrelation length had 5 replicates, the

treatment with large autocorrelation length had 6 replicates.

Table 3.1: Mixed-effect test statistics, with the autocorrelation treatment as single fixed effect
and time/replicate as random effect. The treatment with small autocorrelation length had 5
replicates, the treatment with large autocorrelation length had 6 replicates. The front position
was measured at the density threshold value ρ̄ = 60 cm−1.

Value Std. Error df t-value p-value
Intercept 45.98 3.27 44 14.04 p < 10−4

Treatment −11.61 4.43 9 −2.62 0.0279

3.3.1 Total number of cells in the experiment

The experimental data suggest that the resource autocorrelation structure also affects

the total number of individuals throughout the invasion. Although the mean number

of individuals is the same in landscapes with large and small resource autocorrelation

length (the mean is performed across all landscapes with identical autocorrelation),

the variance in the total number of individuals across replicates with identical autocor-

relation is much larger in autocorrelated landscapes, asymptotically in time (Fig. 3.5).

In other words, replicated landscapes with identical resource autocorrelation length

are much more alike with respect to the total number of individuals in the case of

small rather than large resource autocorrelation lengths. The Bartlett test performed

by grouping the total number of cells in two sets corresponding to the two treatments,

separately for each measurement time, shows that the variances of the two sets were

different from day 5 onwards (Fig. 3.5; the test statistics are reported in Table 3.2), that

is, after the landscapes were fully colonized.

3.4 Methods

3.4.1 Model

The model Eq. 3.1 was integrated with parameters D = 0.08 cm2 min−1, rmax = 0.005

min−1, K I = 1 W m−2, K = 300 cm−1 andσ= 0.4 min−1/2. The light intensity profiles in

the simulations were generated with the desired autocorrelation length as described in

the text. The linear landscapes used in the simulations were 18 m long to avoid border
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Figure 3.5: Total number of cells during the experimental invasions. Replicates with large
resource autocorrelation length are colored in red, those with small resource autocorrelation
length are colored in blue. The upper panel shows the total number of cells in each replicate,
the lower panel shows the mean (±SD) total number of cells across replicates belonging to the
same treatment. Visual inspection suggests that the variance in the total number of replicates
is asymptotically (in time) larger in environments with large autocorrelation length than in
those with small autocorrelation length. Accordingly, the Bartlett test rejects the equality of
variances in the two treatments for the last four time points.
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Table 3.2: Bartlett test statistics. The hypothesis of equal variances in the total number of cells
between the two treatments (small and large autocorrelation lengths) is rejected from day 5
onwards.

Time (d) χ2(df= 1) p-value
0 0.026 0.872

0.3 3.044 0.081
0.9 3.578 0.059
1.3 3.447 0.063
2.0 0.106 0.745
3.0 2.279 0.131
4.0 1.499 0.221
5.0 3.950 0.047
6.0 7.639 0.006
7.0 4.438 0.035
8.0 4.104 0.043

effects, to allow a clear identification of the propagating invasion front and to allow the

investigation of propagating fronts in environments with very large autocorrelation

length, which could not be investigated experimentally because of the finite size of

the experimental setup. The light intensity profile generated by a single LED (centered

in x = 0) was assumed equal to the best fit of Eq. I (x) = c0/(c2
1 +x2)2 to the measured

light intensity profile (Chapter 2).

Integration of Eq. 3.1 requires a fine spatial discretization to resolve the light intensity

gradients. The spatial step was chosen equal to ∆x = 0.6 cm, while the temporal step

was chosen equal to∆t = 0.5 min−1. The spatial discretization of Eq. 3.1 reads (Dornic

et al., 2005):

dρi

d t
(t ) = D

(∆x)2

[
ρi+1(t )+ρi−1(t )−2ρi (t )

]− 1

2∆x

[
gi+1ρi+1(t )− gi−1ρi−1(t )

]
+ riρi (t )

(
1− ρi (t )

K

)
+ σp

∆x

√
ρi (t )η(t ),

(3.2)

where i identifies the lattice site, g = dφ
d x [I (x)] and the term

p
∆x ensures proper nor-

malization in the continuum limit (Doering et al., 2005). For the numerical integration,

Eq. 3.2 was divided by K and the equation for ρ/K was solved. The split-step method

proposed in Dornic et al. (2005) (see also Chapter 1) was modified to solve Eq. 3.2. Eq.

3.2 contains an advection term that might cause an artificial loss of mass if the step

sizes are too coarse. Such issue does not occur with the step sizes ∆x and ∆t chosen
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here. Various alternatives to the spatial discretization Eq. 3.2 were investigated, in-

cluding higher-order discretizations of the spatial derivatives and upwind/downwind

schemes for the advection term. Their performances were compared by imposing

r = 0 and small σ and inspecting the conservation of mass in a spatial window of

length L = 12 cm with a light intensity profile corresponding to that generated by one

LED located at the center of the spatial window. The discretization in Eq. 3.2 proved

to be the most effective in conserving the total mass (
∑

i ρi ) in the system and is there-

fore employed here. The CFL condition for the diffusion equation 2D∆t/∆x2 < 1 is

satisfied and ∆t/∆x < 1. Note, however, that except for the stability requirement due

to the discretized Laplacian, the split-step method described in Dornic et al. (2005)

was claimed to display no limitation on ∆t .

3.4.2 Experiment

The experiment was performed with the alga E. gracilis, purchased from Carolina

Biological Supply (Burlington, North Carolina, USA). A culture of E. gracilis was ini-

tialized in a 500 mL Schott flask in a nutrient medium (Altermatt et al., 2014) two

weeks prior to the start of the experiment and was kept at a temperature of 22 ◦C

under constant blue light provided by the LEDs. The experiment was performed in

linear landscapes identical to those used in Giometto et al. (2014) and were 1.9 m long.

Linear arrays of LEDs identical to those used in Chapter 2 were used to generate the

light intensity profiles along the landscapes. Switched-on LEDs were set to produce

a peak light intensity of 5.2 W m−2 within the channel above the LEDs, so that only

positive phototaxis occurred (see Chapter 2). The experimental replicates were kept

in a climatized room at 22 ◦C for the whole duration of the experiment.

Five replicated landscapes with identical small autocorrelation length (∼ 4 cm) but dif-

ferent switched-on LED sequences were generated as described in the Results section

via the Markov Chain procedure with λ= 0.75. Analogously, six replicated landscapes

with identical large autocorrelation length (∼ 12 cm) but different switched-on LED

sequences were generated via the Markov Chain procedure with λ= 0.25. All 11 land-

scapes had the same total number of switched-on LEDs and are shown in Fig. 3.3. The

stated values of autocorrelation length are based on the first-order autocorrelation

of the Markov Chain that generated the landscape (see the Results section). The first

three LEDs in every landscape were switched-on to allow the local establishment of

the inoculated E. gracilis population. Thus, the landscapes generated via the Markov

Chain procedure described in the text started at the fourth LED. For the landscapes

with large autocorrelation length, three landscapes were chosen so that the fourth

LED was switched on and the other four were chosen so that the fourth LED was
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Chapter 3. Invasion fronts: environmental heterogeneity

switched off. In other words, the realized Markov Chain started from its stationary

distribution.

In some replicates the propagating front reached the end of the landscape at day 4.

Thus, the front propagation analysis was performed only with the data up to day 3 to

avoid spurious effects due to the finite size of the system. The first time point was also

excluded from the analysis because it was measured immediately after the inoculation

of E. gracilis in the landscape and thus is identical for all replicates.

3.5 Discussion

This chapter studied the propagation of biological invasion fronts in landscapes

with different heterogeneous distributions of resources. Focus was placed on the

effect of the resource autocorrelation structure on the mean speed of the invasion.

Both the model Eq. 3.1 and the experiment showed that the speed of biological

invasions is a decreasing function of the resource autocorrelation length. Additionally,

the experiments showed that the variance in the total number of cells when the

landscape was fully colonized was much larger in the treatment with long resource

autocorrelation length. Further theoretical investigation is required to understand the

cause of such difference between the two treatments concerning fluctuations in the

total number of individuals. Relating the low and high total number of individuals

observed in some autocorrelated landscapes to specific features of the environment

might translate into recommendations to minimize the impact of threatening invasive

species in the field.

Numerical investigation of Eq. 3.1 allows to discern the effect of each process in-

cluded in the equation on the slowing-down of the propagating front. In particular,

simulating Eq. 3.1 with φ= 0 allows to isolate the net contribution of the biased move-

ment towards favorable patches to the slowing down of the front. Fig. 3.6 shows that

such biased movement contributes to the slowing down of the front, that is, the front

propagates faster without such directed movement. This effect can be understood by

considering an autocorrelated environment where a long stretch of favorable patches

(light) is followed by a long stretch of unfavorable ones (dark). In such a situation,

taxis acts as a spring at the border between the favorable and unfavorable regions,

keeping the population in the former one. Different choices of the functional form

of r (I ) (for example r linear in I ) were investigated and do not change the picture

significantly. Simulating Eq. 3.1 with very small σ allows to isolate the net contribu-

tion of demographic stochasticity. Integrating Eq. 3.1 with σ = 0.001 min−1 shows

that almost no slowing-down of the front (in strongly autocorrelated environments
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compared to weakly autocorrelated ones) is observed for small values of demographic

stochasticity (Fig. 3.6). No slowing-down would be observed in the complete absence

of demographic stochasticity (i.e., withσ= 0)1. Therefore, the local extinctions caused

by demographic stochasticity in unfavorable regions of the landscape are crucial to

produce the slowing-down of the front that was observed in the experiment. Con-

versely, larger values of σ cause a more pronounced slowing-down of the invasion

front in strongly autocorrelated environments compared to weakly autocorrelated

ones (Fig. 3.6). Integration of Eq. 3.1 showed that the variability of the front position

is larger for larger values of the resource autocorrelation length (Fig. 3.2). Differently

from the intrinsic variability in the front position studied in Chapter 1, however, the

variability observed here is due to the fact that two landscapes with identical resource

autocorrelation length appear increasingly dissimilar for increasing values of the auto-

correlation length. Therefore, such variability does not concern replicated invasions

in a single heterogeneous landscape, but rather invasions in landscapes with different

distribution of resources but identical autocorrelation length.

Among the few existing empirical studies of biological spread in heterogeneous en-

vironments (Hastings et al., 2005), two are worth mentioning for being conceptually

related to our investigation, although not directly linked to the Fisher-Kolmogorov

model or to its generalizations. The finding that larger autocorrelation lengths reduce

the spread rate of invading species is compatible with the results of Bergelson et al.

(1994). Bergelson et al. (1994) performed a field experiment with the invading weed

Senecio vulgaris and found that the average spatial distance between two generations

along linear transects increased when favorable patches were uniformly distributed

in space (in the language of this chapter, the transect had small autocorrelation

length), compared to transects with clumped patches (i.e., with large autocorrela-

tion length). Bailey et al. (2000) performed spread experiment with the fungal plant

pathogen Rhizoctonia solani. Bailey et al. (2000) provides a complementing view to

the present investigation, by investigating the effect of the inter-distance between fa-

vorable patches on the spread, identifying the existence of a percolation threshold at a

critical level of inter-patches distance. In the framework addressed here, the analogue

of such percolation threshold corresponds to a typical autocorrelation length much

larger than the typical distance traveled by the front in one generation. As opposed

to Bailey et al. (2000), this work provides a general theoretical framework to interpret

the dynamical processes acting behind the realized invasions and to link the species’

traits to the front propagation (Giometto et al., 2014). The theoretical investigation

of Eq. 3.1 allowed isolating the net effect of each process embedded therein and

1Here, it was chosen to show the mean propagating speed for σ= 0.001 min−1 (as opposed to σ= 0
min−1) in order to compare speeds calculated with the same integration scheme, which cannot be
adopted to integrate the deterministic equation with σ= 0 min−1.
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notably the key contribution of demographic stochasticity to the slowing-down of

the propagating front. There are considerable differences in the experimental setup

and the study system between this investigation and Bailey et al. (2000), Bergelson

et al. (1994). Most importantly, biased active movement towards favorable patches

was present in the experiment performed here and is embedded in Eq. 3.1, while

passive dispersal occurred in Bergelson et al. (1994). Both Bergelson et al. (1994) and

Bailey et al. (2000) differ from this study for the fact that the landscape and the distri-

bution of resources here are continuous, while Bergelson et al. (1994) and Bailey et al.

(2000) only considered discrete spatial distributions of favorable patches. Although a

discrete distribution of favorable patches might be a good approximation in certain

environments, a continuous distribution is deemed more likely to occur in nature.

Because of the widespread application of the Fisher-Kolmogorov framework in the

ecological literature (Elton, 1958, Grosholz, 1996, Lubina and Levin, 1988, Skellam,

1951), the generalization proposed and experimentally tested here is regarded as a

significant step towards a more comprehensive understanding of species spread in

heterogeneous environments.

The results derived in this chapter might have implications for the natural environ-

ment. The typical autocorrelation length of the resource distribution should be rela-

tively easily inferred from environmental data (Turner, 2005) and thus appears as a

concise indicator for the propagation success of the study species. Human impact on

ecosystems might be seen, in the framework developed here, as affecting the typical

autocorrelation length of favorable patches. Habitat fragmentation causes a reduction

in the total habitat area, but is also argued to decrease the autocorrelation length of

the landscape through the introduction of qualitatively different patches in the natural

environment (Hanski, 1999, Holyoak et al., 2005). Such reduced autocorrelation length

might translate into a landscape more prone to biological invasions.
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3.6 Appendix

Eq. 3.1 was integrated imposing φ= 0 to investigate the contribution of phototaxis to

the slowing-down of the front. Fig. 3.6 shows that the front propagation was larger

in the absence of phototaxis (green squares), indicating that the directed movement

of organisms towards favorable regions of the landscape contributes to the slowing-

down of the front. Additionally, the mean speed of front propagation is shown to be a

decreasing function of σ (Fig. 3.6).
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Figure 3.6: Mean front propagation speed in landscapes with different resource autocorrela-
tion length. The mean front speeds are calculated integrating Eq. 3.1 with different parameters
for different colors and symbols. Each data point reports the mean front speed computed
across 125 replicates with identical autocorrelation. Black dots report the mean front speed
computed with parameters as in Fig. 3.2 (σ= 0.4 min−1). Green squares report the mean front
speed computed without phototaxis (i.e., imposing φ= 0). Blue diamonds report the mean
front speed computed with a large value of σ (i.e., σ = 0.7 min−1). Red triangles report the
mean front speed computed with a very small value of σ (i.e., σ = 0.001 min−1). The front
propagation speed was computed via least-squares linear fits of the mean front position versus
time. Fronts propagate faster in the absence than in the presence of phototaxis, that is, the
directed movement of organisms towards favorable regions of the landscape contributes to
the slowing-down of the front. Large values of σ cause increased slowing-down of the front.
Conversely, small values of σ cause a reduced slowing-down of the front.

Figs. 3.7 and 3.8 show the front position in the experiment, computed with different

density thresholds used to identify the front position. The p-value displayed refers to

the hypothesis tested with the mixed-effect model (Results) that the autocorrelation

treatment has an effect on the front propagation. The only threshold density value

for which the null hypothesis is not rejected is the lowest value 30 cells cm−1. Such

threshold value, however, is most likely too low and introduces much noise in the

estimation of the front position. As can be seen in the plot of the front position in

75



Chapter 3. Invasion fronts: environmental heterogeneity

individual replicates, at such threshold value one replicate is observed to advance 90

cm from day 1 to day 1.5 and subsequently pull back 50 cm from day 1.5 to day 2. For

all the other density threshold values, the effect of the autocorrelation treatment on

the front propagation is significant.

Table 3.3: Mixed-effect test statistics for all density threshold used to trigger the front position,
with the autocorrelation treatment as single fixed effect and time/replicate as random effect.
The treatment with small autocorrelation length had 5 replicates, the treatment with large
autocorrelation length had 6 replicates.

Threshold ρ̄ Value Std. Error df t-value p-value
30 cm−1 Intercept 61.77 4.33 44 14.27 p < 10−4

Treatment −3.38 5.86 9 −0.58 p = 0.5781
45 cm−1 Intercept 57.15 3.65 44 15.65 p < 10−4

Treatment −11.31 4.94 9 −2.29 p = 0.0480
60 cm−1 Intercept 45.98 3.27 44 14.04 p < 10−4

Treatment −11.61 4.43 9 −2.62 p = 0.0279
75 cm−1 Intercept 45.27 2.88 44 15.70 p < 10−4

Treatment −9.65 3.90 9 −2.47 p = 0.0355
90 cm−1 Intercept 36.65 2.84 44 12.91 p < 10−4

Treatment −9.04 3.85 9 −2.35 p = 0.0433
105 cm−1 Intercept 35.91 3.04 44 11.83 p < 10−4

Treatment −10.79 4.11 9 −2.62 p = 0.0276
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3.6. Appendix
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Figure 3.7: Front propagation in the experiment. Different rows refer to different values of the
density threshold used to trigger the front position. Fronts propagating in environments with
large resource autocorrelation length are colored in red, those propagating in environments
with small resource correlation length are colored in blue. The left panels show the position
of the front in all replicates, while the right panels show the mean (±SE) position of the front
across replicates with identical autocorrelation. The p-value refers to the hypothesis that the
autocorrelation treatment has a significant effect on the front propagation.
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Figure 3.8: Front propagation in the experiment. Different rows refer to different values of the
density threshold used to trigger the front position. Fronts propagating in environments with
large resource autocorrelation length are colored in red, those propagating in environments
with small resource correlation length are colored in blue. The left panels show the position
of the front in all replicates, while the right panels show the mean (±SE) position of the front
across replicates with identical autocorrelation. The p-value refers to the hypothesis that the
autocorrelation treatment has a significant effect on the front propagation.
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4 Taylor’s law of fluctuation scaling

Abstract

Taylor’s law (TL) states that the variance V of a non-negative random variable is a

power function of its mean M , i.e. V = aM b . The ubiquitous empirical verification of

TL in ecology, physics and other natural sciences, typically displaying exponents b ' 2,

suggests a context-independent mechanism. However, theoretical studies of popula-

tion dynamics predict a broad range of values of b. Here, this apparent contradiction

is rationalized by using large deviations theory to derive a generalized TL in terms of a

population exponent b j k for the scaling of the k-th vs the j -th cumulant (conventional

TL is recovered for b = b12) in a broad class of population growth models. The sample

exponents b j k are found to depend predictably on the number of observed samples.

For finite numbers of observations one observes sample exponents b j k ' k/ j (thus

b ' 2) asymptotically in time and independently of population exponents. Empirical

analyses on two datasets support the theoretical results. In the broad settings investi-

gated here, the sample TL exponent appears to be governed by sampling limitations

rather than being determined by the underlying population growth process.
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Chapter 4. Taylor’s law of fluctuation scaling

4.1 Introduction

Taylor’s law (TL) (Taylor, 1961), also known as fluctuation scaling in physics, is one of

the most verified patterns in both the biological and physical sciences (Eisler, 2008).

TL states that the variance of a non-negative random variable V = Var[X ], is approxi-

mately related to its mean M = E[X ] by a power law, that is, Var[X ] = aE[X ]b , with a > 0

and b ∈R. In biological context, TL was confirmed in bacterial populations (Ramsayer

et al., 2012), forests (Cohen et al., 2013), gene distribution in human chromosomes

(Fronczak and Fronczak, 2010) and other examples. In Chapter 5, Taylor’s law will be

shown to arise in intraspecific cell size distributions (Giometto et al., 2013). In the

physics literature, this scaling pattern was found in cosmic radiation fluxes (Uttley

and McHardy, 2001), heavy ion collisions (Botet et al., 2001), river flow (Dahlstedt

and Jensen, 2005), traffic of Internet routers (Eisler and Kertész, 2005), traded value of

stocks (Eisler and Kertész, 2006) and several other scenarios (Eisler, 2008). In ecology,

the random variable of interest is generally the size or density N of a censused popula-

tion and TL can arise in time (i.e., the statistics of N are computed over time) or in

space (i.e., the statistics are computed over space).

The widespread verification of TL has led many authors to suggest the existence of

a universal mechanism for its emergence, although there is currently no consensus

on what such mechanism would be. Various approaches have been employed in the

attempt of identifying such mechanism, ranging from the study of probability distribu-

tions compatible with the law (Jørgensen, 1987, Kendal and Jørgensen, 2011, Tweedie,

1946) to phenomenological and mechanistic models (Hanski, 1982, Kalyuzhny et al.,

2014, Keeling, 2000, Kilpatrick and Ives, 2003). Although most empirical studies on spa-

tial TL report an observed sample exponent b in the range 1–2 (Anderson et al., 1982,

Taylor, 1961), mostly around b ' 2 (Anderson et al., 1982) (see also Fig. 4.10(g) in Taylor

and Woiwod (1982)), population growth models (Cohen, 2013, 2014a,b, Cohen et al.,

2013, Jiang et al., 2014) can generate TL with any real value of the exponent. Moreover,

theoretical investigations of multiplicative growth models in correlated Markovian

environments (Cohen, 2014a,b) have shown that the exponent b can undergo abrupt

transitions following smooth changes in the environmental autocorrelation.

Here, a distinction is made between values of b derived from empirical fitting (sample

exponents) and values obtained via theoretical models that pertain to the probability

distribution of the random variable N (population exponents). It is shown that in a

broad class of multiplicative growth models, the sample and population exponents

coincide only if the number of observed samples or replicates is greater than an expo-

nential function of the duration of observation. Among the relevant consequences,

the sample TL exponent is demonstrated to settle on b ' 2 for almost any Markovian
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4.2. Results

environment observed for a duration that is larger than a logarithmic function of

the number of replicates. Accordingly, abrupt transitions in the sample TL expo-

nent can only be observed within relatively short time windows when the number of

observations is limited.

This chapter is organized as follows. First, the multiplicative growth model is de-

scribed in its simplest formulation and the result on the scaling of the sample and

population exponents is derived. Second, the generalized Taylor’s law for the scaling

of any pair of moments is derived. Third, generalizations of the growth model are

discussed and the same results are proved in such settings. Fourth, the prediction

of the generalized Taylor’s law for the sample exponents is tested on two datasets.

The Appendix provides additional details on the multiplicative growth model and the

derivation of the generalized Taylor’s law in other growth models.

4.2 Results

This investigation starts from the multiplicative growth model in a Markovian environ-

ment introduced in Cohen (2014a,b), which includes as a special case (in the absence

of autocorrelation) the Lewontin-Cohen model (Cohen et al., 2013, Lewontin and

Cohen, 1969). Let N (t ) be the density of a population at time t and assume that the

initial density is N0 > 0. N (t ) is assumed to undergo a multiplicative growth process

such that:

N (t ) = N0

t∏
n=1

An . (4.1)

The values of the multiplicative growth factors Ai are determined via a finite-state

homogeneous Markov chain with state space χ = {r, s} (the state space is labeled

χ = {1 ↔ r,2 ↔ s} and, without loss of generality, assume r > s and N0 = 1) and

transition matrix Π, with Π(i , j ) > 0 for all i , j ∈ χ. In this notation, Π(i , j ) is the

one-step probability to go from state i to state j , i.e., Π(i , j ) = Prob(An+1 = j |An = i ).

For the sake of clarity this initial investigation is restricted to symmetric transition

matrices, with Π(i , j ) = λ for i 6= j , but all results hold with minor changes also for

non-symmetric matrices and in the case of a more general state space, as discussed in

the subsequent paragraphs. The stationary distribution π of the chain is unique and

in the symmetric case satisfies π(i ) = 1/2, i ∈χ, for all λ ∈ (0,1). It is assumed that the

chain starts at equilibrium.

Under the broad assumptions just stated, for any choice of Π and χ, the sample mean

and variance in a finite set of R independent realizations of the process (in an ecologi-
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Chapter 4. Taylor’s law of fluctuation scaling

cal example, e.g., R sufficiently separated regions in space) obey TL asymptotically

with exponent b ' 2, even when the population moments of the distribution of N (t )

satisfy TL with exponent b 6= 2. To distinguish between the two exponents, the expo-

nent of TL calculated with the sample mean and variance will be referred to as the

sample exponent and the exponent calculated via the population mean and variance

will be referred to as the population exponent. Correspondingly, a distinction is placed

between the sample and the population TL.

The empirical mean Lt (z) :χ→ [0,1] is defined as:

Lt (z) = 1

t

t∑
n=1

δAn ,z , (4.2)

where δ is the Kronecker’s delta. The random measure Lt (r ) gives the fraction of times

that r appears in a realization of the Markov chain up to time t . Lt satisfies a Large

Deviation Principle (LDP) (den Hollander, 2008) with rate function:

IΠ(x) = sup
u>0

[
x log

(
u1

(Πu)1

)
+ (1−x) log

(
u2

(Πu)2

)]
(4.3)

where x (x ∈ [0,1]) is the proportion of r in a realization of the Markov chain up to

time t (correspondingly, the proportion of s is 1−x) and u is a strictly positive vector

in R2 (i.e., u1,u2 > 0). Stating that Lt satisfies a LDP means that limt→∞ 1
t logP(Lt (r ) ∈

[x, x +d x]) = −IΠ(x). The rate function IΠ(x) is convex (d 2IΠ/d x2 > 0), attains its

minimum at xmin = 1/2 with IΠ(xmin) = 0 and is symmetric around xmin (Lemma IV.10

of den Hollander (2008), Theorems 3.1.2, 3.1.6 of Dembo and Zeitouni (2009), Section

4.3 of Touchette (2009)). The subscript Π is used to indicate that the rate function

depends on the transition matrix. Additionally, Eq. 4.3 depends on u1 and u2 only

through u ≡ u2/u1; thus, by standard one-variable calculus, a long but explicit form of

IΠ(x) can be computed:

IΠ(x) =(x −1)log

[
1−λ

(
2(λ−1)x

λ+
√
λ2 +8λ(x −1)x −4(x −1)x −2λx

+1

)]
−

−x log

1−
λ

(
λ+

√
λ2 +8λ(x −1)x −4(x −1)x −2x

)
2(λ−1)x

 .

(4.4)

The rate function does not depend on the values of the multiplicative factors r and s.

As in Cohen (2014a), the ratio between t−1 logVar[N (t )] and t−1 logE[N (t )] is consid-

ered, but here the LDP, adopting Varadhan’s lemma (Theorem III.13, den Hollander

(2008)), is exploited to perform such computation. First, since Π is positive and r 6= s,
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4.2. Results

it holds true that:

lim
t→∞ t−1 logVar[N (t )] = lim

t→∞ t−1 logE[N (t )2], (4.5)

see the Appendix in Cohen (2014a) for a proof. Then, for the population moments of

the population density N (t ), applying Varadhan’s lemma:

lim
t→∞ t−1 logE[N (t )k ] = sup

x∈[0,1]
[kG(x)− IΠ(x)] , (4.6)

where G(x) = x logr + (1−x) log s. The population TL exponent b (which depends on

λ) can thus be computed as:

b(λ) = supx∈[0,1] [2G(x)− IΠ(x)]

supx∈[0,1] [G(x)− IΠ(x)]
. (4.7)

For certain values of r and s, b(λ) can show a discontinuity at a critical value of the

transition probability λ (black line in Fig. 4.1A, see also Fig. 4.8). The existence of

such discontinuity was discovered and discussed in Cohen (2014b). An analysis of

the critical transition probability is also available in the Appendix. A generalized TL

can be derived by adapting Eq. 4.6 to compute the scaling exponent for any pair of

population moments as:

b j k (λ) = limt→∞ t−1 logE[N (t )k ]

limt→∞ t−1 logE[N (t ) j ]
= supx∈[0,1] [kG(x)− IΠ(x)]

supx∈[0,1]

[
jG(x)− IΠ(x)

] . (4.8)

Discontinuities can also arise for these population exponents (Fig. 4.1). In the follow-

ing, b refers to the conventional TL population exponent (bR for the conventional TL

sample exponent), while the generalized TL exponents are indicated with b j k (the

distinction between sample and population exponents will be clear from the context).

Eqs. 4.7, 4.8 hold true when one considers an infinite number of realizations of

the multiplicative process, which ensures visiting the whole region x ∈ [0,1]. Here,

the sample exponent bR that is based on the sample mean and variance calculated

over a finite set of R realizations of the multiplicative process is estimated. First, a

heuristic derivation of the sample exponent is presented. A more rigorous calculation

of bR is given in the subsequent paragraph. Let x+ be the value in [0,1] such that the

probability of a larger frequency x of r in R runs of the Markov chain up to time t is

1/R (Redner, 1990):

P [Lt (r ) ∈ (x+,1]] = 1

R
. (4.9)
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Chapter 4. Taylor’s law of fluctuation scaling

With this definition, x+ can be interpreted (Redner, 1990) as the typical maximum

frequency of r in R realizations of the chain. Analogously, let x− be the value such

that smaller values of the frequency of r are observed with probability 1/R, namely

P [Lt (r ) ∈ [0, x−)] = 1/R. For large t , one can adopt Varadhan’s lemma (or Laplace’s

method of integration) to obtain, as a function of t , the approximate number of

replicas R needed to explore rare events (i.e., to compute P [Lt (r ) ∈ (x+,1]] = R−1).

Approximately:

R ' exp[t IΠ(x±)] . (4.10)

Inversion of this formula (by taking the logarithm on both sides and expanding IΠ in

Taylor series around x = xmin) gives x± ' 1
2 ±

√
1−λ
2λ

logR
t . Consequently, the sample TL

exponent in an ensemble of R realizations of the process can be approximated as:

bR (λ, t ) ' supx∈[x−,x+] [2G(x)− IΠ(x)]

supx∈[x−,x+] [G(x)− IΠ(x)]
, (4.11)

where the dependence on t is through x+ and x−. The zero of the rate function, xmin =
1/2, corresponds to the most probable value of the product in Eq. 4.1. Because x± '
1
2 ±

√
1−λ
2λ

logR
t , for fixed R the suprema in Eq. 4.11 are computed over an increasingly

narrower set around xmin (with IΠ(xmin) = 0) as t increases. Fig. 4.2 exemplifies such

computation. Thus, for any finite number of realizations R, the sample exponent will

approximate limt→∞ bR (λ, t) ' 2 after a time t∗ that increases only logarithmically

with R (Eq. 4.10 and Fig. 4.3), for any choice of λ, r and s. For example, with λ= 0.5,

when t = 100, in order to access to the extreme event x+ = 0.9 (and x− = 0.1) one

needs about R ' 1016 replicates of the process. Analogous considerations hold for the

asymptotic sample exponent describing the scaling of the sample moments E[N (t )k ]

with E[N (t ) j ], which can be approximated as:

b j k (λ, t ) ' supx∈[x−,x+] [kG(x)− IΠ(x)]

supx∈[x−,x+]

[
jG(x)− IΠ(x)

] , (4.12)

which is the analogue of Eq. 4.11 for any pair of sample moments. Fig. 4.1 illustrates

typical behaviors of sample and population exponents as a function of the transition

probability λ for the 2-state multiplicative model with symmetric transition matrix.

The black and red lines portray respectively the predicted asymptotic population and

sample exponent (Eqs. 4.7 and 4.11), computed for different values of χ= {r, s} in the

two panels. Dots and squares illustrate the sample exponents bR and b23 calculated via

simulations in the regimes t ¿ logR and t À logR, respectively. Simulations results

in the two regimes (dots and squares) and theoretical predictions (solid and dashed

lines) show excellent agreement.
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Figure 4.1: TL exponent bR = b12 and generalized exponent b23 for different values of the
transition probability λ. The sample exponents (dots and squares) computed in simulations
of a 2-state multiplicative process with symmetric transition matrix in the two regimes 1 ¿
t ¿ logR (black filled dots, R = 106 up to time t = 10) and t À logR (red open squares, R = 104

up to time t = 400) are in good agreement with predictions for the asymptotic population
(black solid line, Eq. 4.7) and sample (red dashed line, bR = b12 = 2 and b23 = 3/2) exponents.
In the simulations, the sample exponent bR = b12 was computed by least-squares fitting of
logVar[N (t )] as a function of logE[N (t )] for the last 6 (black dots) and 200 (red squares) time
steps. The sample exponent b23 was computed by least-squares fitting of logE[N (t)3] as a
function of logE[N (t)2] in the same fashion. In panel (A), which reproduces Cohen (2014b),
and (C) χ= {r, s} = {2,1/4} (the population exponents b = b12 and b23 display discontinuities);
in panel (B) and (D) χ= {r, s} = {4,1/2} (in such a case, the population exponents b12 and b23

display no discontinuities).
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Figure 4.2: Plot of IΠ(x) (black curve), G(x) (dotted blue line) and 2G(x) (dashed red line).
Marked in gray are the regions [x−, x+] at times t = 10, 100 and 1000 (from light to dark gray)
for fixed R = 100. These gray regions are the intervals over which the supremum in Eq. 4.11 is
computed. In this example, r = 2, s = 1/4, λ= 0.55. The quantities x+ and x− are computed by
solving numerically Eq. 4.10.

The above calculations identify the logarithmic dependence of x+ on the number of

realizations R , but rely on a number of approximations: the definition of x+ (which, in

a given realization, is a random variable), the computation of Laplace integrals (Eq.

4.9) and the expansion of the rate function around xmin (Eq. 4.10). Such calculations

can be made more rigorous if one considers the independent identically distributed

random variables X i (t) = Li
t (r ), that is, X i (t) is the frequency of occurrence of the

first state up to time t in the i -th realization of the Markov chain (i = 1, . . . ,R). Let

x+ = max{X 1(t ), . . . , X R (t )}; it holds true that:

1

t
logP(X 1(t ) > x) ≤ 1

t
logP(x+ > x) ≤ 1

t
log(R)+ 1

t
logP(X 1(t ) > x). (4.13)

For fixed R (or, more generally, logR = o(t )) and x > 1/2, taking the limit (limt→∞) in

Eq. 4.13 and knowing that Lt (r ) satisfies a LDP, one has:

lim
t→∞

1

t
logP(x+ > x) = sup

y∈(x,1]
−IΠ(y) =−IΠ(x). (4.14)

Because 0 < IΠ(x) ≤∞, Eq. 4.14 implies that limt→∞P(x+ > x) = 0 for any x > 1/2. An

analogous calculation for x− = min{X 1(t ), . . . , X R (t )} shows that limt→∞P(x− < x) = 0

for any x < 1/2. In this context, one can approximate the sample exponent at time t
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with an analogue of Eq. 4.11:

bR (λ, t ) ' supx∈[x−,x+] [2G(x)− IΠ(x)]

supx∈[x−,x+] [G(x)− IΠ(x)]
. (4.15)

In the narrow interval [x−, x+] centered around xmin, IΠ(x) ' 0 and as a consequence

bR (λ, t ) ' 2 (Fig. 4.2). More precisely, |bR (λ, t )−2| goes to 0 in probability as t tends

to infinity. In fact, for every ε> 0:

P (|bR (λ, t )−2| > ε) ≤P
(

x+ > 1

2
+η(ε)

)
+P

(
x− < 1

2
−η(ε)

)
, (4.16)

where η(ε) is a function that goes to zero for ε→ 0. Because of Eqs. 4.13 and 4.14, it

follows that:

lim
t→∞P (|bR (t )−2| > ε) = 0. (4.17)

Analogous considerations hold for the generalized TL describing the scaling of any

pair of moments.

Eqs. 4.11 and 4.12 give the estimated sample exponent of TL asymptotically, ignoring

the constant term in the scaling of the variance V versus the mean M as logV =
b log M + log a. For small t , log a can be of the same order of magnitude of logV .

Fig. 4.3 shows the crossover of the sample exponent (for fixed R, λ, r and s) from

the population exponent b = b(λ) as in Eq. 4.7 (observed when t ¿ logR) to b ' 2

(when t À logR), where the sample exponent is calculated as the slope of the curve

logE[N (t )2] versus logE[N (t )] at time t (thus not neglecting the constant term log a).

The sample moments are computed as:

t−1 logE[N (t )k ] ' sup
x∈[x−,x+]

[kG(x)− IΠ(x)] (4.18)

(cf. Eq. 4.6) in panel A and as the sample moments in simulations in panel B.

Some generalizations of the stochastic multiplicative process considered above are

now investigated. The sample exponent in a finite set of R independent realizations of

the process is b ' 2 also for non-symmetric transition matrices Π. In the asymmetric

case, the transition matrix is:

Π=
(

1−λ λ

µ 1−µ

)
, (4.19)

with 0 < λ,µ < 1. The rate function IΠ(x) is convex, attains its minimum at xmin =
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Figure 4.3: Time evolution of the sample TL exponent bR . The sample exponent (computed
as the slope of the curve logE[N (t)2] versus logE[N (t)]) crosses over from the approximate
population exponent (Eq. 4.7, dashed upper horizontal line) at small times to b ' 2 (dotted
lower horizontal line) at larger times. The number of replicates R = 10n increases exponentially
from 102 (blue dashed lines) to 106 (red solid lines), while the crossover time increases approx-
imately linearly. Here, χ= {r, s} = {2,1/4} and the transition probability in the symmetric Π is
λ= 0.55. Panel (A) shows the theoretical prediction via Eq. 4.18. Panel (B) shows simulations
results and the curves are averaged over 108/R simulations (apart for the blue curve, which
was averaged over 105 simulations). Mismatches between panel (A) and (B) are due to the
necessity to have t and R not too large to keep simulations feasible, while Eqs. 4.6, 4.7 and
4.11 hold true asymptotically in t .
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π(1) =µ/(λ+µ), where π= (π(1),π(2) =λ/(λ+µ)) is the invariant measure for Π and

IΠ(xmin) = 0. Only the value of the rate function at xmin and not the value of xmin is

relevant for the argument made here. Due to asymmetries of IΠ, ‘left’ (i.e., x < x−) rare

events could be easier to see than ‘right’ (i.e, x > x+) rare events or vice versa. In all

cases, an exponentially large in t number of replicates is needed to sample the tails

with the correct weights. In this context, Eqs. 4.7, 4.8 and Eqs. 4.11, 4.12, 4.23 are still

valid and give, respectively, the asymptotic population and sample exponents.

The previous considerations can also be extended to multiplicative processes N (t ) in

more general Markovian environments with w states and state space χ= {r1, . . . ,rw },

where all ri are strictly positive and at least two ri are different. The state space is

labeled χ= {1 ↔ r1, . . . , w ↔ rw }. Let the transition matrix Π be two-fold irreducible

(i.e., Π irreducible and Π Π> irreducible, where Π> is the transpose of Π). The rate

function in Eq. 4.3 reads (Theorem IV.7 and Section IV.3 of den Hollander (2008), or

Theorem 3.1.6 of Dembo and Zeitouni (2009)):

IΠ(µ) = sup
u>0

[ w∑
v=1

µv log
uv

(Πu)v

]
, (4.20)

where u is a strictly positive vector in Rw . Here,
∑w

v=1µv = 1, and µv represents the

proportion of v after t steps (for large t ). The rate function is convex and IΠ(µmin) = 0,

with µmin the most probable state for large t (Theorems 3.1.2, 3.1.6 of Dembo and

Zeitouni (2009), Section 4.3 of Touchette (2009)). Eq. 4.7, with x in the standard

w −1 simplex in Rw and G(x) =∑w
i=1 xi logri , gives the population scaling exponent

of E[N (t)2] with E[N (t)]. The two-fold irreducibility of Π plus the condition that

ri 6= r j for some i 6= j is the sharpest sufficient assumption that is presently known

(Cohen, 2014a) to guarantee that the limiting growth rate of the second moment

equals the limiting growth rate of the variance; thus, Eq. 4.7, with x in the standard

w −1 simplex in Rw and G(x) =∑w
i=1 xi logri , gives the population scaling exponent

of Var[N (t )] with E[N (t )]. Analogously, Eq. 4.8, with x in the standard w −1 simplex

in Rw and G(x) = ∑w
i=1 xi logri , gives the population scaling exponent of E[N (t)k ]

with E[N (t) j ]. As far as the scaling of moments is of interest, the ergodicity (i.e.,

irreducibility and aperiodicity) ofΠ (as opposed to the two-fold irreducibility) and G(x)

not identically equal to zero (which happens only if ri = 1 ∀i ) are sufficient to compute

the scaling exponents via Eqs. 4.7, 4.8, modified as stated above. This is true because

the ergodicity of Π ensures that the empirical measure Lt satisfies a LDP (Theorems

3.1.2 and 3.1.6 of Dembo and Zeitouni (2009)). Therefore, one can apply Varadhan’s

lemma (Theorem III.13, den Hollander (2008)) to compute the limiting growth rate

of the moments of N (t) via Eq. 4.6, with x in the standard w −1 simplex in Rw and

G(x) =∑w
i=1 xi logri . The computation of the sample exponents bR and b j k is similar
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to that in the 2-state case and the sample exponents approximate bR = 2 and b j k = k/ j

asymptotically in time; the proof is as follows. Consider the independent identically

distributed random variables Y i (t) = |Li
t −µmin|, where Li

t = (Li
t (r1), . . . ,Li

t (rw )) and

the superscript i indicates the i -th independent realization of the chain (i = 1, . . . ,R).

Let y+ = max{Y 1(t ), . . . ,Y R (t )}; for every ε> 0:

P(y+ > ε) ≤ R P(Y 1(t ) > ε). (4.21)

For fixed R and ε, taking the limit (limt→∞) in Eq. 4.21 and knowing that L1
t satisfies a

LDP (in particular, limt→∞P(Y 1(t ) > ε) = 0), one has:

lim
t→∞P(y+ > ε) = 0. (4.22)

In this context, one can approximate the sample exponent with:

bR (λ, t ) '
sup|µ−µmin|<y+

[
2G(µ)− IΠ(µ)

]
sup|µ−µmin|<y+

[
G(µ)− IΠ(µ)

] . (4.23)

In the narrow region |µ−µmin| < y+ centered around µmin, IΠ(µ) ' 0 and as a conse-

quence bR (λ, t ) ' 2. More precisely, |bR (λ, t )−2| goes to 0 in probability as t tends to

infinity. In fact, for every δ> 0:

P (|bR (λ, t )−2| > δ) ≤P(
y+ > η(δ)

)
, (4.24)

where η(δ) is a function that goes to zero for δ→ 0. Because of Eq. 4.22, it follows that:

lim
t→∞P (|bR (t )−2| > δ) = 0. (4.25)

Analogous considerations hold for the generalized TL describing the scaling of any

pair of moments. A standard saddle-point calculation suggests that the limiting

growth rate of the variance is equal to the limiting growth rate of the second moment

also for ergodic transition matrices, apart from peculiar cases (see Cohen (2014a) for

a discussion of a counterexample). The same argument suggests that the limiting

growth rate of the k-th cumulant equals that of the k-th moment (t−1 logE[N (t )k ]) for

large t . The suggested equivalence between the scaling exponents of cumulants and

moments for ergodic Π would allow extending the result on the sample TL (bR = 2)

and generalized TL (b j k = k/ j ) to the scaling of cumulants in m-step Markov chains,

whose transition matrix is ergodic but not two-fold irreducible. However, pathological

counterexamples may exist.

90



4.2. Results

In ecological contexts, the number of realizations R that determine the possible

convergence of sample and population TL exponents could refer, for instance, to

independent patches experiencing different realizations of the same climate (Cohen,

2014b). In an established ecosystem, species have been present for several generations,

and one might assume that the system is in the asymptotic regime t À logR. Within

this perspective, the prediction that for large t sample exponents satisfy the relation

b j k = k/ j (including the conventional TL) was tested on two datasets.

A first example is drawn from a long-term census of six plots within the Black Rock

Forest (BRF) (Cohen et al., 2013). It was shown that the Lewontin-Cohen (LC) model

(a particular case of the multiplicative model studied here) describes the population

dynamics of trees in the BRF (Cohen et al., 2013) . The interpretation of the six plots

as distinct and independent replicates of the LC model is supported by statistical

analysis (Cohen et al., 2013) and allowed relating the model predictions to the spatial

TL. Here, the same dataset was used to show that the generalized TL holds with

sample exponent b j k = k/ j . The moment ratios 〈[N (t )/N0]k〉 were computed, where

the symbol 〈·〉 identifies the sample mean across the six plots of BRF and N0 is the

number of trees at the start of the census in 1931. Following Cohen et al. (2013), it

was tested whether the moments of the spatial density ratio N (t )/N0 in the five most

recent censuses satisfied TL and the generalized TL with b j k = k/ j . Table 4.1 reports

the slopes of the least-squares linear regressions of 〈[N (t )/N0]k〉 versus 〈[N (t )/N0] j 〉,
which are all compatible with the model prediction b j k = k/ j . The BRF dataset thus

provides an empirical example where the multiplicative model satisfactorily describes

the underlying dynamics and the generalized TL holds asymptotically as the model

predicts.

Table 4.1: Sample exponents for the generalized TL in the Black Rock Forest dataset, data from
Cohen et al. (2013).

(j,k) k/ j b j k±SE R2

1,2 2 2.14±0.12 0.991
1,3 3 3.33±0.32 0.973
1,4 4 4.54±0.58 0.954
2,4 2 2.15±0.16 0.984
2,3 1.5 1.57±0.07 0.995
3,4 1.333 1.37±0.04 0.997

1,1/2 0.5 0.48±0.02 0.997
1,1/4 0.25 0.23±0.01 0.993
1,2/3 0.667 0.65±0.01 0.999
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Chapter 4. Taylor’s law of fluctuation scaling

A second example uses the data in Den Boer (1977), where abundances of carabid

beetles were measured in various sites across The Netherlands within a 200-km2 area

for 8 consecutive years. The dataset was shown to support the conventional spatial

TL (Hanski, 1982). The sample moments of carabid beetles abundance, 〈N k (t )〉, were

computed across similar sites (either woodland or heath), for each species separately

and year t . In the intra-specific analysis (Fig. 4.4), linear regressions of log〈N k (t)〉
vs log〈N j (t )〉 for t = 1, . . . ,Y (Y is the total number of years) gave the estimate of the

sample exponent b j k for each species. Frequency histograms of empirical exponents

b j k are shown in Fig. 4.5. A one-sample t-test does not reject the null hypothesis that

the sample mean of b j k does not differ significantly from the theoretically predicted

mean k/ j (see Fig. 4.5). In the inter-specific analysis (Fig. 4.6), the least-squares

slope b j k (for j = 1) of log〈N k〉 versus log〈N〉 across all species at a given year and site

type was computed (Tables 4.2, 4.3). The empirical exponents b j k for all years are

compatible with the asymptotic model prediction b j k = k/ j , as are the mean (across

years and site type) exponents b j k (Table 4.4).

Table 4.2: Sample exponents for the inter-specific generalized TL on carabid beetles abun-
dances in woodland sites, data from Den Boer (1977). The column k/ j gives the asymptotic
model prediction for the exponent b j k . The estimates b j k (mean±SE) are the least-squares
slopes of log〈N k〉 vs log〈N〉. R2 is the squared correlation coefficient. Nonlinearity was
checked with least-squares quadratic regression on log-log coordinates. The coefficient of the
second power term did not differ significantly from 0 in any of the regressions; hence, the null
hypothesis of linearity was not rejected.

1961 1962 1963
j ,k k/ j b j k±SE R2 b j k±SE R2 b j k±SE R2

1,2 2 2.03±0.09 0.988 2.07±0.04 0.995 2.00±0.07 0.988
1,3 3 3.04±0.18 0.976 3.13±0.09 0.991 3.00±0.15 0.977
1,4 4 4.03±0.28 0.968 4.20±0.14 0.988 4.01±0.23 0.971
No. points 9 13 11

1964 1965 1966
j ,k k/ j b j k±SE R2 b j k±SE R2 b j k±SE R2

1,2 2 1.96±0.09 0.977 2.01±0.07 0.989 1.97±0.06 0.995
1,3 3 2.94±0.20 0.957 3.00±0.16 0.976 2.90±0.12 0.989
1,4 4 3.92±0.29 0.947 4.00±0.24 0.967 3.83±0.18 0.985
No. points 12 11 9
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Figure 4.4: Generalized TL for intra-specific patterns of carabid beetles abundance. (A) Double
logarithmic plot of 〈N k〉 vs 〈N〉 for different species (identified by different colors and symbols),
for consecutive years (each symbol refers to a single year t ). For visual clarity, only 5 species
are shown. Dashed black lines of slopes b1k = k (asymptotic model prediction) are shown.
Vertical offsets are introduced to aid comparison of slopes. (B-C) box and whisker plots for
the empirical distribution of intra-specific generalized TL exponents b1k , showing the median
(white horizontal line) and the 25% and 75% quantiles.
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Figure 4.5: Frequency histogram for the exponent b j k in the intra-specific generalized TL
〈N k〉 = a〈N j 〉b j k , computed for each species (carabid beetles, Den Boer (1977)) across similar
sites (woodland or heath). The dashed black line shows the value of the exponent b j k = k/ j as
the asymptotic model predicted. The binning of data points is determined by using Scott’s rule
(Scott, 1979). Shown in each panel are the number of observations n of b j k , the test statistic
for the t-test of the null hypothesis that the sample mean of the values of b j k did not differ
significantly from the theoretically predicted mean k/ j and the corresponding p-value.

Table 4.3: Sample exponents for the inter-specific generalized TL on carabid beetles abun-
dances in heath sites, data from Den Boer (1977). The Table is organized as Table 4.2.

1963 1964
j ,k k/ j b j k±SE R2 b j k±SE R2

1,2 2 1.99±0.05 0.993 2.02±0.04 0.995
1,3 3 2.98±0.09 0.987 3.03±0.08 0.990
1,4 4 3.83±0.18 0.985 3.96±0.14 0.983
No. points 16 16

1965 1966
j ,k k/ j b j k±SE R2 b j k±SE R2

1,2 2 1.98±0.08 0.982 2.02±0.06 0.986
1,3 3 2.97±0.17 0.965 3.05±0.13 0.974
1,4 4 4.04±0.12 0.987 3.98±0.26 0.956
No. points 13 17
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Figure 4.6: Generalized TL for inter-specific patterns of abundance of carabid beetles. (A)
Double logarithmic plot of 〈N k〉 vs 〈N〉 for all species, years and site type. Each data point
refers to a single species in one year and site type. The color and symbol code identifies data
relative to the same year: 1961 (black open circles), 1962 (purple filled circles), 1963 (blue open
squares), 1964 (green filled squares), 1965 (orange filled diamonds), 1966 (red open diamonds).
Dashed black lines of slope b1k = k (asymptotic model prediction) are plotted next to the
corresponding data series. Vertical offsets are introduced to aid comparison of slopes. (B-C)
Examples of inter-specific moments scaling (each data point refers to a single species) for a
single year and site type (B, woodland 1964 - C, heath 1964) used for the statistical analysis
(Tables 4.2, 4.3, 4.4). The red lines are the least-squares regressions of log〈N k〉 vs log〈N〉 across
species.
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Table 4.4: Statistics of estimated sample exponents in the inter-specific generalized TL on
carabid beetles abundances. The column k/ j gives the asymptotic model prediction for the
exponent b j k . The point estimate is computed as the average b j k across years and site type,
not by pooling all the data from different years and site types to calculate means and variances.
The confidence intervals are obtained via bootstrapping with 106 bootstrap samples from the
set of b j k .

j ,k k/ j b j k point estimate 2.5% percentile 97.5% percentile
1,2 2 2.005 1.984 2.025
1,3 3 3.005 2.961 3.042
1,4 4 3.994 3.936 4.057
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4.3 Discussion

The multiplicative growth model is one of numerous demographic models that predict

TL. The exponent b = 2 for the scaling of the variance versus the mean is typical of

deterministic dynamics. For example, an exponential model of clonal growth (Cohen,

2013), where clones grow exponentially with different growth rates (variability enters

here only through the different growth rates and initial densities), and the above

symmetric model for λ= 0 or λ= 1 both predict TL with exponent b = 2. Although

found in deterministic models, the exponent b = 2 is also observed in stochastic

models such as the continuous-time birth-death process and the Galton-Watson

branching process (Cohen, 2014a). Such models yield population exponents b = 2

and b = 1 respectively for asymptotically growing and decaying populations (Cohen,

2014a).

The theoretical investigation of multiplicative population processes showed that

the generalized TL sample exponents b j k satisfy b j k ' k/ j asymptotically for large

t for a broad ensemble of transition matrices Π and sets of positive multiplicative

factors. Additionally, the large-deviation approach and the small-sample argument

adopted here suggest that the entropic term in Eq. 4.11 dominates over the other

terms that contain the specifications of the demographic process. Thus, the result

might be more general than the class of multiplicative population growth models. It

is shown in the Appendix that b j k = k/ j holds also for the population exponents of

other population growth processes, such as the birth-death process in the case of

expanding populations. The empirical confirmation and the novel finding that other

demographic models predict the generalized TL with b j k = k/ j (Appendix) indicate

that these predictions are probably insensitive to the details of the dynamics, just as

the original TL is quite robust (Fronczak and Fronczak, 2010, Kendal and Jørgensen,

2011, Xiao et al., 2014).

In conclusion, a general mechanism that yields TL with the widely observed sample

exponent b ' 2 was uncovered. For a broad range of parameters within the class of

multiplicative models, and other demographic processes, the generalized TL describes

the scaling of moments and cumulants with the sample exponent b j k asymptotically

equal to k/ j . This phenomenon may be attributable to the finite size of both ecosys-

tems and sampling efforts. TL may not reflect (or depend on) the underlying popu-

lation dynamics. The theoretical prediction is supported by two empirical examples

and invites further testing. Notably, this study suggests that limited sampling efforts

might hinder the observation of abrupt transitions in population exponents that were

recently discovered for theoretical multiplicative growth processes. Because fluctu-

ations in population abundances strongly affect ecological dynamics, particularly

97



Chapter 4. Taylor’s law of fluctuation scaling

extinction risk, comparable real-world abrupt transitions could harm fish populations,

forests, and public health, and could alter agricultural pest dynamics. This study

shows that limited sampling hinders the detection and anticipation of such abrupt

transitions. The calculation of the minimum number of samples required to reveal

such transitions provided here may help to identify early-warning signals of abrupt

biotic change following smooth changes in the environment.
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4.4 Appendix

4.4.1 Analysis of the discontinuity in b as a function of r and s

A discontinuity in the population TL exponent b (Fig. 1, Eq. 4.7) is present when

the limiting growth rate of the mean abundance is zero, i.e., limt→∞ 1
t logE[N (t )] = 0.

Consider Fig. 4.2 and fix r and s with r 6= s. The value of λ shapes the form of IΠ(x)

(black curve in Fig. 4.2); in particular, the second derivative can be easily calculated

from Eq. 4.4 and shown to increase for larger λ. A discontinuity may eventually appear

for the value λ=λc such that the curve IΠ(x) and the line G(x) (blue line in Fig. 4.2)

are tangent. In other words, limt→∞ t−1 logE[N (t)] = supx∈[0,1][G(x)− IΠ(x)] = 0 for

λ=λc such that:

log
1

2

[
(1−λc )(r + s)+

√
4(2λc −1)r s + (λc −1)2(r + s)2

]
= 0, (4.26)

with constraints r, s > 0 and 0 < λc < 1. λc exists only for certain values of r and s,

thus a discontinuity in the population TL exponent b is not always possible. Solving

Eq. 4.26 with respect to λc gives λc = 1−r−s+r s
−r−s+2r s ; thus, for any given s, λc = 0 for r = 1

and λc = 1 for r = 1/s. For fixed s 6= 1 one has dλc /dr > 0 (except for r = s where

dλc /dr |r=s = 0); thus, λc exists for 0 < r ≤ 1/s and r ≥ 1 if s > 1 and for 1 ≤ r ≤ 1/s if

s < 1 (see Fig. 4.7). Fig. 4.8 schematically illustrates the behavior of b(λ) for different

pairs {r, s} of multiplicative factors. Discontinuities analogous to that of b(λ) appear

for certain values of r , s and λ in the population exponents b j k (Eq. 4.8), when

limt→∞ t−1 logE[N (t ) j ] = supx∈[0,1][ jG(x)− IΠ(x)] = 0.

4.4.2 Compatibility of Eq. 4.7 here and Eq. 8 in Cohen (2014a)

It is shown here that Eq. 4.7 coincides with Eq. 8 in Cohen (2014a), under the assump-

tion (stronger than in Cohen (2014a)) that the transition matrix Π is positive and r 6= s.

The rate function Eq. 4.3 can be written as (Section 4.3 of Touchette (2009) or Theorem

3.1.7 of Dembo and Zeitouni (2009)) IΠ(x) = supq

{
qx − logζ(Πq )

}
, where Πq is the

matrix with elementsΠq (i , j ) =Π(i , j )exp(qδ j ,1), and ζ(·) indicates the spectral radius

(i.e., the Perron-Frobenius eigenvalue). ζ(Πq ) is unique and analytic in q ; thus, ξ(q) ≡
logζ(Πq ) is differentiable and the rate function can be expressed as IΠ(x) = q(x)x −
ξ(q(x)), where q(x) is the unique solution of ξ′(q) = x. Eq. 4.6 for the kth moment

of N (t ) then reads limt→∞ 1
t logE[N (t )k ] = supx∈[0,1]

[
kG(x)−q(x)x +ξ(q(x))

]
. The ar-

gument of the supremum is maximum at x∗ such that k log(r /s)−q(x∗) = 0, that is,

x∗ = ξ′ (k log(r /s)
)
. Thus, evaluating the supremum one has limt→∞ 1

t logE[N (t)k ] =
k log s+ξ(k log(r /s)) = log

[
skζ

(
Πk log(r /s)

)]= logζ(Π diag(r, s)k ), which coincides with
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Figure 4.7: The critical transition probability λc as a function of r (with s fixed). Below the
black horizontal line at λc = 0 and above the black horizontal line at λc = 1, λc does not exist.
The red (solid for 0 ≤λc ≤ 1 and dashed otherwise) and blue (dash-dotted for 0 ≤λc ≤ 1 and
dotted otherwise) lines λc = 1−r−s+r s

−r−s+2r s were calculated by solving Eq. 4.26 with respect to λc

with, respectively, s = 2 and s = 1/4. For any given s, λc = 0 for r = 1 and λc = 1 for r = 1/s.

Eqs. 13, 14 of Cohen (2014a) (Eqs. 13, 14 in Cohen (2014a) are expressed in terms of

the column-stochastic matrix Π> that corresponds to the row-stochastic matrix Π;

because ζ(diag(r, s)k Π>) = ζ(Π diag(r, s)k ), the equations coincide).

4.4.3 Comparison with other demographic models

It is shown here that b j k = k/ j holds for the population exponents of the birth-death

process in the case of expanding populations. The moments of the birth-death pro-

cess with constant birth rate λ and constant death rate µ can be computed via the

associated moment generating function M , which is equal to (Bailey, 1964):

M(θ, t ) =
(
µv(θ, t )−1

λv(θ, t )−1

)N0

, (4.27)

where v(θ, t ) =
(
eθ−1

)
e(λ−µ)t

λeθ−µ and N0 is the initial population size. The k-th moment of

population size can be computed as 〈N k〉 = ∂k M(θ,t )
∂θk |θ=0. Here, N0 = 1 is assumed (but

the result holds for any N0) and an expanding population, i.e., λ−µ > 0. Because

v(0, t ) = 0, ∂v
∂θ (θ, t ) = (λ−µ)e(λ−µ)t eh

(−ehλ+µ)2 ∝ e(λ−µ)t and ∂k v
∂θk (θ, t ) ∝ e(λ−µ)t , the lead-

ing term in the partial derivatives of M(θ, t ) with respect to θ, evaluated in θ = 0, can
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Figure 4.8: Existence of a critical transition probabilityλc . Smaller panels show the population
exponent b(λ) (Eq. 4.7) for various choices of the multiplicative factors in different regions of
the plane (r, s) (larger panel). Only in the interior of the gray region of the plane (r, s), λc exists.
The solid black line represents the curve r s = 1.
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be written as:

∂k M

∂θk
(θ, t )

∣∣∣∣
θ=0

= (−1)k+1(λ−µ)λk−1

(
∂v
∂θ

)k

(−1+λv)k+1

∣∣∣∣
θ=0

+o

[(
∂v

∂θ

)k ∣∣∣∣
θ=0

]
= (λ−µ)1−kλk−1ek(λ−µ)t +o

[
ek(λ−µ)t

]
,

(4.28)

where the little-o notation indicates that the remaining terms are negligible in the

limit t →∞. Derivation of the equation for ∂k M
∂θk (θ, t ) (first line of Eq. 4.28) shows that

the leading term in ∂k+1M
∂θk+1 (θ, t)

∣∣∣∣
θ=0

is equal to (λ−µ)kλk e(k+1)(λ−µ)t +o
[
e(k+1)(λ−µ)t

]
,

which coincides with replacing k by k +1 in Eq. 4.28. Eq. 4.28 can be obtained by

considering that, because ∂k v
∂θk ∝ e(λ−µ)t and v(0, t ) = 0, the leading term in ∂M

∂θ (θ, t ) =
(λ−µ) ∂v/∂θ

(−1+λv)2 evaluated at θ = 0 is the second term in the quotient rule ( f /g )′ =
( f ′g − f g ′)/g 2, that is, the term that raises the exponent of ∂v

∂θ by one unit. For subse-

quent derivatives, the quotient rule is applied to the leading term. All other terms in
∂k M
∂θk (θ, t )

∣∣
θ=0 contain products of partial derivatives, i.e.,

∏k
j=1(∂

j v
∂θ j )q j , with

∑k
j=1 q j < k

(with q j ∈N) and are thus negligible in the limit t →∞. From Eq. 4.28 it follows that

limt→∞ 1
t log〈N k〉 = k(λ−µ); thus, the generalized TL holds with b j k = k/ j .

The asymptotic behavior of exponents, i.e., limt→∞ 1
t log〈N k〉 = k(λ−µ), can also be

computed via the continuous approximation of the birth-death process. Although

such calculations do not provide further understanding of the birth-death process, the

fact that the continuous approximation of the birth-death process coincides with that

of the Galton-Watson branching process (Feller, 1957, Harris, 1963, Rubin et al., 2014)

suggests an even broader validity for the generalized TL result b j k = k/ j . The detailed

calculation of exponents in the continuous approximation of the birth-death process

and the Galton-Watson branching process is provided in the following section.

Moments of population density in the continuous approximation of the birth-death
process and the Galton-Watson branching process
The forward Kolmogorov equation for the continuous approximation of the birth-

death process reads (Feller, 1957, Harris, 1963, Rubin et al., 2014):

∂p(x, t )

∂t
=−α∂[xp(x, t )]

∂x
+ β

2

∂2[xp(x, t )]

∂x2
, (4.29)

where p(x, t ) is the probability density function for the population density x at time t

(here, x ∈R is the population density and should not be confused with the frequency

of multiplicative factors used in the rest of the chapter). Eq. 4.29 is the continuous

approximation of a birth-death process with birth rate λ and death rate µ such that

α=λ−µ and β=λ+µ. Eq. 4.29 also arises as the continuous approximation of the
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Galton-Watson branching process for large populations (Feller, 1957, Harris, 1963,

Rubin et al., 2014). The solution of Eq. 4.29 with initial condition x(0) = x0 is known

(Bailey, 1964) and is equal to:

p(x, t ) = 2α

β(eαt −1)

(
x0eαt

x

) 1
2

exp

[−2α(x0eαt +x)

β(eαt −1)

]
I1

[
4α(x0xeαt )

1
2

β(eαt −1)

]
, (4.30)

where I1 is the modified Bessel function of the first kind. Differentiation with respect

to γ of the identity
∫ ∞

0 d xI1(x)e−γx2 = e1/(4γ) −1 gives the following equation:

C
∫ ∞

0
d xxk x− 1

2 I1(x
1
2 A)eB x = 2C A−(2k+1)

(
− d

dγ

)k ∣∣∣∣
γ=− B

A2

(
e

1
4γ −1

)
, (4.31)

which allows calculating the moments of Eq. 4.30 with A = 4α(x0eαt )
1
2

β(eαt−1) , B = 2α
β(eαt−1) and

C = 2α(x0eαt )
1
2

β(eαt−1) exp
[
− 2αx0eαt

β(eαt−1)

]
. For an expanding population, α> 0; thus asymptoti-

cally for large t :

A ∝ e−αt
2 ,

B ∝ e−αt ,

C ∝ e−αt
2 .

(4.32)

Therefore, γ=− B
A2 tends to a constant and one has:

〈xk〉∝C A−2k+1 ∝ (
eαt )k

, (4.33)

which implies that, asymptotically, the generalized TL holds with exponent b j k = k/ j .
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5 Scaling body size fluctuations

Abstract

The size of an organism matters for its metabolic, growth, mortality and other vital

rates. Scale-free community size spectra (i.e., size distributions regardless of species)

are routinely observed in natural ecosystems and are the product of intra- and inter-

species regulation of the relative abundance of organisms of different sizes. Intra- and

inter-species distributions of body sizes are thus major determinants of ecosystems’

structure and function. Here, it is shown experimentally that single-species mass

distributions of unicellular eukaryotes covering different phyla exhibit both charac-

teristic sizes and universal features over more than four orders of magnitude in mass.

Remarkably, it is found that the mean size of a species is sufficient to fully characterize

its size distribution and that the latter has a universal form across all species. An

analytical physiological model accounts for the observed universality, which can be

synthesized in a log-normal form for the intra-species size distributions. The char-

acterization of scaling intra-specific body size distributions sets constraints for the

interaction of ecological and physiological processes that give rise to scale-invariant

community size spectra.
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5.1 Introduction

Why should a continuous, gap-free spectrum of organismic sizes emerge from the

ecological and evolutionary processes that shape ecosystems? The origins and the

implications of the absence of preferential body sizes, which is routinely observed

across a variety of ecosystems regardless of broad differences in climatic and envi-

ronmental conditions (Cavender-Bares et al., 2001, Cohen et al., 2003, Huete-Ortega

et al., 2012, Sheldon et al., 1972), have been attracting much interest from field and

theoretical ecologists (Bascompte and Solé, 1995, Brown et al., 2004, Brown and West,

2000, Chisholm, 1992, Levin, 1992, Marquet et al., 2005, Solé et al., 1999). Scale in-

variance, epitomized by power-law probability distributions (Bak, 1997, Bak et al.,

1987, Camacho and Solé, 2001, Mandelbrot, 1973, Marquet, 2000, Marquet et al., 2005,

Rodriguez-Iturbe and Rinaldo, 1997, Solé et al., 1999), requires regularities of the com-

ponent parts (the species’ size distributions) making up the whole (the community

size spectra, i.e., the probability distributions of size regardless of species). In partic-

ular, a necessary condition for scaling community size spectra is the lack of peaks

that pinpoint frequent occurrences and therefore excess abundance (and vice-versa)

within any given range of sizes. Such features are particularly interesting if robust to

environmental fluctuations as their dynamic origin could lie in the self-organization

of complex adaptive systems (Bak et al., 1987, Levin, 1992, Solé et al., 1999).

Body size distributions in natural ecosystems are strongly related to the life history

of the organisms and to the dynamics of their living communities (Marquet, 2000);

thereby, they modulate the structure and function of the ecosystem at any scale.

Size spectra, which display the relative abundance of organisms of different sizes

within or across species, convey a synoptic, possibly taxon-independent image of

ecological communities (Cohen et al., 2003, Holling, 1992, Sheldon et al., 1972, White

et al., 2007). As such, they have long been attracting much interest in ecology as

they hold important predictive power, e.g., fish stock projections from planktonic

size spectra (Sheldon et al., 1972). Because examples and counterexamples of scaling

spectra abound (Cavender-Bares et al., 2001, Chisholm, 1992, Holling, 1992, Lampert

and Tlusty, 2013, Rinaldo et al., 2002, Rodriguez and Mullin, 1986, Sheldon et al.,

1972), it is an unsettled issue whether scaling size spectra represent some central

tendency of statistically stationary states of natural ecosystems. For instance, the

operational computation of mean phytoplankton size was shown to typically depend

on the sample size (Chisholm, 1992) and scaling relationships were documented for

interspecific plant biomass (Niklas and Enquist, 2001, Simini et al., 2010, White et al.,

2007), whereas some terrestrial ecosystems exhibit ubiquitous gaps in size and uneven

relative abundances of organisms (Cohen et al., 2003, Holling, 1992).
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Single species inhabiting communities, however, do exhibit species-specific mean

and variance of their sizes, as even common sense suggests. There naturally exists,

therefore, the mean size of a particular species, as usually implied by most biological

scaling laws (Brown and West, 2000) where one typical mass subsumes a whole distri-

bution of sizes. One wonders, therefore, how evolutionary and ecological processes

interact to modulate species’ abundances, the range of sizes proper to each functional

group and number of species existing within a given niche or range of sizes to concoct

regular, taxon-independent continuous size spectra. Moreover, one expects that the

existence of a range of possible sizes for a species (and how such range varies for

different mean sizes) has to be taken into account when addressing scaling laws in

biology, e.g., allometric ones (Brown and West, 2000, Cohen et al., 2012, Damuth, 1981,

May, 1988).

This chapter is organized as follows. First, the experiment where species size distribu-

tions were measured in standardized environmental conditions is described and a

finite-size scaling framework is proposed to prove the universality of body size dis-

tributions. Second, body size distributions are measured in different environmental

conditions or in the presence of other species. Such distributions are shown to adhere

to the same finite-size scaling framework. Third, a mathematical model of cell growth

and division is shown to produce body size distribution with the functional form

found in the data.

5.2 Results

Here, the intra-species size distributions of 13 species of protists were measured in

isolation or in competition, covering a relatively broad set of field conditions (see

Methods). Examples of such distributions as functions of the linear size in standard

environmental conditions are shown in Fig. 5.1. The corresponding transformed

distributions as functions of volume span over four orders of magnitude and are

shown in Fig. 5.2A. Let pk (m) denote the measured size spectrum of the kth species:

pk (m) measures the relative proportion of individuals of a given species k with mass

belonging to (m,m +dm), assuming a continuous distribution of sizes. Herein, it was

tested whether pk (m) exhibits a finite-size scaling form (Banavar et al., 2007, 1999a,b,

Fisher and Barber, 1972, Rinaldo et al., 2002) obtained by the product of two terms, an

algebraic power of size multiplied by a suitable scaling function F , i.e.,

pk (m) = 1

m∆
F

(
m

〈m〉φk

)
, (5.1)
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where 〈m〉k is the mean mass of the kth species and F (x), critically, is the same scaling

function for all species (see Methods for dimensional analysis and for normalization

conditions that F must satisfy). Eq. 5.1 implies that the only species-dependence

of the size distribution occurs through the average mass 〈m〉k of species k. Note

that the two exponents in Eq. 5.1, ∆ and φ, are not independent. This follows from

imposing
∫
R dm mpk (m) ∝ 〈m〉k (where R is the suitable range of sizes), in fact∫

R dm m pk (m) = ∫
R dm m 1

m∆ F

(
m

〈m〉φk

)
∝ 〈m〉(2−∆)φ

k is proportional to 〈m〉k only if

the two exponents satisfy (2−∆)φ= 1 (see Methods for details concerning constraints

on the exponents). To verify the hypothesis, m∆pk (m) is plotted versus m/〈m〉φk for all

13 protist species (Fig. 5.2B) and ∆ and φ are varied until a satisfactory data collapse

(Barenblatt, 1983) is observed. The best collapse is found for ∆= 1.0 (and therefore

φ = 1.0, see Fig. 5.2B). A quantitative method (Bhattacharjee and Seno, 2001) to

produce the best collapse yields ∆= 1.01±0.05 (see inset in Fig. 5.2B).

A relevant consequence of Eq. 5.1, where ∆=φ= 1, is that the j -th moment 〈m j 〉k =∫ ∞
0 m j pk (m)dm is proportional to (〈m〉k ) j (where j = 1,2,3, . . . ). In particular, the

variance of the species’ sizes does increase with the mean size. The proportionality

of successive moments ratios to 〈m〉k provides a test which further corroborates the

validity of Eq. 5.1 (see Fig. 5.2C). Thus, it is found that a single parameter, the average

mass of a species, is sufficient to fully characterize its size distribution. This is far from

trivial because, in general, a probability distribution is determined by all its moments

(Van Kampen, 2007).

Environmental factors are capable of affecting the size distribution of any given

species (Bradshaw, 1965, Forster and Hirst, 2012). To test the effects of environmental

conditions on Eq. 5.1, it is questioned whether the measured size distributions might

still be described by the universal functional form:

p(m) = 1

m
F

(
m

〈m〉
)

, (5.2)

where 〈m〉 is the mean mass, determined either i) by the species or ii) by phenotypic

plasticity due to environmental factors. To that end, a set of manipulated field con-

ditions were investigated. Specifically, some of the above protist species were grown

at different temperatures, or in pairwise competition with each other, over more

than 15 generations to achieve relevant ecological timescales. Although obviously

far from exhausting field-like scenarios, a sizeable plasticity was observed (see Fig.

5.3A). Crucially, once rescaled by the actual mean body size of the sample, whether

constrained by temperature or by competition, all distributions collapse again and the

scaling exponent estimate proves unaffected (∆= 1.01±0.10, see inset in Fig. 5.3B).
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Figure 5.1: Size distributions of 13 protist species as functions of the equivalent diameter
(i.e., the diameter a cell would have if it was spherical). The pictures show, from left to right,
individuals of the species Euglena gracilis, Colpidium sp. and Paramecium bursaria (scale
bar 100 µm). The legend links each color to the corresponding species (abbreviations as in
Methods. Protist pictures by Regula Illi and Florian Altermatt).
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Therefore, environmental factors are capable of affecting the size distribution of any

given species, although they do not alter its scaling nature as both the exponents and

the scaling function F are unchanged.

The observed regularities are compelling given the profound diversity of the species

(belonging to the phyla/divisions of Ciliophora, Euglenozoa, Chlorophyta and Crypto-

phyta) considered in this study (Adl et al., 2012). Besides, protists and unicellular algae

are of key ecological significance. In fact, they are the basic food source of almost all

aquatic foodwebs, and unicellular algae are responsible for almost 50% of the world-

wide biomass production (Field et al., 1998). Additionally, the observed universality of

eukaryotes intra-species size distributions holds in a range of more than four orders

of magnitude in mass. This suggests the existence of a simple underlying mechanism

responsible for the empirical patterns observed.

One possible explanation for the reported universality may lie in the physiological

processes that determine the size of unicellular species, namely cellular growth and

cell division. Here, it is found that a simple mathematical model of these processes

(Diekmann et al., 1983, Rading et al., 2011, Tyson and Diekmann, 1986) can justify the

scaling form of unicellular eukaryotes’ size distributions without the need to specify

further biological details. Let N (m, t ) be the number of organisms of mass m at time

t : a cell’s mass grows exponentially in time with rate µ (i.e., ṁ = µm) and cell division

occurs in time at a rate b(m). Therefore, the fission rate depends on the mass of the cell

(a mechanism known as sloppy size control, Tyson and Diekmann (1986)) and b(m)d t

is the probability that a cell of mass m divides in a time d t . A maximum possible size

M for a cell is introduced, i.e. N (m, t ) = 0 ∀m > M , which requires (Diekmann et al.,

1983):∫ M

0
dm b(m) =∞. (5.3)

Considering the balance of growth and division in an infinitesimal time interval d t

and in the size interval [m1,m2], expanding at first order in d t , one has:∫ m2

m1

dm
(∂N

∂t
(m, t )+ ∂[µmN (m, t )]

∂m
+

+b(m)N (m, t )−4b(2m)N (2m, t )
)
= 0.

(5.4)

The equation governing the balance of growth and cell division is then:

∂N

∂t
(m, t )+ ∂[µmN (m, t )]

∂m
+b(m)N (m, t )−4b(2m)N (2m, t ) = 0. (5.5)
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Figure 5.2: Evidence for a universal single-species size distribution. (A) Volume probability
distributions of 13 protist species, spanning four orders of magnitude in mass. (B) Data
collapse of m∆p(m) versus m/〈m〉φ: the best collapse is observed for ∆=φ= 1.0. Inset: the
minimum of the functional E (∆) provides the best estimate for the exponent and the associated
error (Bhattacharjee and Seno, 2001). (C) The proportionality of successive moments of m to
〈m〉 is an independent verification of the hypothesis in Eq. 5.1. (D) The fit of a gaussian scaling
function F as function of logm/〈m〉 (dashed blue line) contrasting the ensemble average size
distribution (red line), the orange region is the 99.7% confidence interval around the average.
The scaling function yields a log-normal form for pk (m).
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Figure 5.3: The universal form of the single-species size distribution is robust to biotic and
abiotic forcings. (A) Volume probability distributions of three protist species in various envi-
ronmental conditions and competition scenarios, different colors identify different species
(abbreviations as in Methods). (B) The best data collapse of m∆p(m) versus m/〈m〉φ is ob-
served for ∆=φ= 1.0. Inset: the minimum of the functional E(∆) provides the best estimate
for the exponent and the associated error (Bhattacharjee and Seno, 2001).
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It is assumed that at stationarity N (m, t ) =λ(m)ekt , where λ(m) is proportional to the

stationary cell size distribution. Introducing N (m, t) = λ(m)ekt in Eq. 5.5 one finds

for λ(m):

µ
d [mλ(m)]

dm
=− [k +b(m)]λ(m)+4b(2m)λ(2m). (5.6)

One then has, integrating Eq. 5.6 in [0, M ]:

k
∫ M

0
dm λ(m)+µ

∫ M

0
dm

d [mλ(m)]

dm
=

∫ M

0
dm b(m)λ(m). (5.7)

Eq. 5.7 imposes
∫ M

0 dm b(m)λ(m) <∞ and therefore (see Eq. 5.3) one has limm↑M λ(m) =
0, which implies

∫ M
0 dm d [mλ(m)]

dm = 0 and as a result:

k =
∫ M

0 dm b(m)λ(m)∫ M
0 dm λ(m)

. (5.8)

The scale invariance of λ(m) can be deduced directly from Eq. 5.6 as follows. λ

depends on m and M , i.e., λ=λ(m, M). It is assumed that the total mass present at

t = 0 is equal to 1 (Eq. 5.6 is linear in λ and therefore if λ is a solution, so is Cλ with

C an arbitrary constant). As M is the only scale in the problem, it is assumed that

b(m, M) = b̂
( m

M

)
and Eq. 5.6 is rewritten with x = m/M as:

µ
d [xλ(M x, M)]

d x
=−[

k + b̂(x)
]
λ(M x, M)+4b̂(2x)λ(2M x, M), (5.9)

where x ∈ [0,1]. Therefore one has the solution λ(M x, M) = λ̂(x)/M , i.e., λ(m, M) =
1

M λ̂
( m

M

)
which satisfies:

µ
d

[
xλ̂(x)

]
d x

=−[
k + b̂(x)

]
λ̂(x)+4b̂(2x)λ̂(2x) (5.10)

in x ∈ [0,1], with
∫ 1

0 d x λ̂(x) = 1 and λ̂(x) = 0 ∀x > 1. In particular, the size distribution

p(m) can be written as:

p(m) = 1

m

m

M
λ̂

( m

M

)
= 1

m
G

( m

M

)
. (5.11)

Computing the average mass 〈m〉 one finds that it is proportional to M :

〈m〉 =
∫ M

0
dm m p(m) = M

∫ 1

0
d y G(y) = cM , (5.12)
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so that the stationary size distribution is of the form:

p(m) = 1

m
F

(
m

〈m〉
)

, (5.13)

which is precisely the scaling ansatz proposed and observed in the data. The solution

to Eq. 5.10 can be written as λ(x) =λn(x) with 2−n ≤ x ≤ 2−n+1 for n = 1,2, . . . and:

λn(x) = e
−

∫ x

2−n
d y h(y)

[
Cn + 4

µ

∫ 2x

2−n+1
d y

b̂(y)

y
λn−1(y)

]
, (5.14)

where λ0(y) = 1, x ∈ [
2−n ,2−n+1

]
, h(y) = [

k + b̂(y)+µ]
/y and C0 depends on the nor-

malization condition, i.e.,
∫ 1

0 d y λ̂(y) = 1. The Cns (n ≥ 1) are determined recursively

imposing the continuity λ̂n
(
2−n+1

)= λ̂n−1
(
2−n+1

)
for n ≥ 2. For instance, if n = 2:

λ̂1(x) =C0e
−

∫ x

1/2
d y h(y)

⇒ λ̂1

(
1

2

)
=C0 (5.15)

(note that λ̂1(1) = 0 due to the singularity in Eq. 5.3),

λ̂2(x) = e
−

∫ x

1/4
d y h(y)

[
C1+

+ 4

µ
C0

∫ 2x

1/2
d y

b̂(y)

y
e
−

∫ y

1/2
d z h(z)

] (5.16)

and λ̂2(1/2) = λ̂1(1/2) = C0 allows to compute C1/C0. Iterating, one can compute

Cn/C0 ∀n ≥ 1.

5.3 Methods

5.3.1 Protist cultures

Replicated single-species cultures of 13 different protists and unicellular algae (in this

chapter all called ‘protists’) were initialized with three species of freshwater bacteria

(Serratia fonticola, Breviacillus brevis and Bacillus subtilis) as a food resource in a

climatized room at 20 ◦ C under constant fluorescent light three weeks before the

measurements. Previous studies (Altermatt et al., 2011, 2014, Carrara et al., 2012)

support that the composition and size spectra of these communities are rather stable
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over this time period, thus cultures were assumed to be at their carrying capacity

while the measurements were performed. Single-species cultures were grown in 500

mL Schott flasks containing a nutrient medium made of sterilized local spring water

and Protozoan Pellets (Carolina Biological Supply, Burlington, NC, USA) in a den-

sity of 0.45 g L−1. Here, these are referred to as ‘standard conditions’. The 13 protist

species were Bodo saltans (BOD), Chilomonas sp. (CHI), Chlamydomonas sp. (CHA),

Chlorogonium euchlorum (CHO), Colpidium sp. (COL), Cryptomonas curvata (CRY),

Cyclidium glaucoma (CYC), Dexiostoma campylum (DEX), Euglena gracilis (EUG), Eu-

glena mutabilis (EUM), Euplotes aediculatus (EUP), Paramecium bursaria (PBU) and

Tetrahymena sp. (TET). CHI and TET were purchased at Carolina Biological Supply,

BOD, CYC, CHO, CRY, EUM and DEX were supplied by SAMS Research Services Ltd.

(Oban, Scotland, UK), whereas all other species were isolated from a natural pond and

used in previous studies (Altermatt et al., 2014). All species are heterotrophs and feed

on bacteria, whereas CHA, CHO, EUG, EUM, EUP and PBU can also photosynthesize.

The rotifer Cephalodella sp., also isolated from a natural pond (Altermatt et al., 2014),

was employed both in competition (Fig. 5.3) and in isolation (Fig. 5.4).

Besides the single species cultures grown in standard conditions as described in the

previous paragraph (which are referred to in Fig. 5.3 as CHI_1, EUG_1 and EUP_1),

CHI, EUG and EUP were also grown at additional temperatures and nutrients condi-

tions, or in competition with each other. In the latter case, the two competing species

were always well separated in their size spectrum, so that their two distributions did

not overlap. The following conditions were studied with at least three replicates each:

i) single species at 15 ◦C (EUG_2, EUP_2);

ii) single species at 25 ◦C (CHI_2, EUG_3, EUP_3);

iii) competition at 20 ◦C, with two species competing for resources, initialized at half

of their carrying capacity in 10 mL-well plates (Chilomonas sp. with Dexiostoma

campylum - CHI_3, Chilomonas sp. with Colpidium sp. - CHI_4, Euglena gracilis with

the rotifer Cephalodella sp. - EUG_5);

iv) Euglena gracilis at a low protist medium concentration (0.045 g L−1, i.e., one tenth

of the ‘standard conditions’ concentration - EUG_4).

5.3.2 Size distributions

Size distribution measurements were performed with a Cell Counter and Analyzer Sys-

tem (CASY) model TTC, Roche Applied Science. Size measurements were performed

by suspending a sample taken from a protist culture in a buffer solution (CASYton)

which is developed specifically to aspirate cells trough a precision hole in the instru-

ment at constant speed. To perform size measurements, capillaries with diameters

115



Chapter 5. Scaling body size fluctuations

60, 150 µm and 200 µm were employed depending on the size of the protists under

investigation. Smaller capillaries resolve better size distributions at low scale (5−20

µm), but can be blocked if larger particles pass through (it is therefore necessary to

use larger capillaries to measure larger species). As a general rule, for each species

the smallest capillary that enabled to unequivocally separate the protist peak from

the debris in the instrument output was used. The size spectra of a sample of living

cells is returned by the instrument as function of the equivalent diameter l of each

cell, assuming cells to be spherical. From the definition of size distribution, p(l )dl is

the fraction of individuals with equivalent diameter in (l , l +dl ) and p(m)dm is the

fraction of individuals with mass in (m,m +dm). p(m) can then be calculated via the

variable transformation p(l )dl = p(m)dm (m = π/6 d 3). Constant density equal to

the density of water is assumed (Chisholm, 1992, Fenchel, 1974) and therefore volume

and mass are used without distinction. It is also assumed that size distributions do not

depend on time, i.e., the cultures are in a steady state characterized by size distribu-

tions of constant shape. A peak at small sizes exists due to debris in the culture. Peaks

at larger sizes are due to protists. To deconvolve the two peaks, the debris peak is

fitted with an exponential decay (in a region adjacent to the peak, where data lie on a

straight line in a log-linear plot) and the resulting curve is subtracted from the overall

spectrum. On the right hand side of the protist peak the data were truncated when the

measured frequency of a size channel was below 20 occurrences, to separate it from

the noise. Noise was uniformly distributed on all size channels with frequencies of

approximately 10−20 counts per channel, as demonstrated by measuring pure buffer

solution only. For each species, several measurements of different cultures (grown

in the same conditions) were collected and summed to get an ensemble average

representative of the species.

5.3.3 Finite-size scaling distributions

For a general account of finite-size scaling (Fisher and Barber, 1972) in ecology see

(Banavar et al., 1999a). General properties of finite-size scaling distributions (as in Eq.

5.1) are detailed in Banavar et al. (2007). A brief account of the derivation of the most

relevant results, adapted to the case at hand, is given here. This section is dedicated to

the study of the normalization conditions for size distributions of the form:

pk (m) = 1

m∆
F

(
m

〈m〉φk

)
, (5.17)
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where φ> 0 and, for dimensional reasons:

F

(
m

〈m〉φk

)
= 1

m1−∆
0

F̂

(
1

m1−φ
0

m

〈mk〉φ
)

, (5.18)

where m0 is the minimum mass of an organism or a cutoff in the system. From

this point onwards all masses are measured in units of m0, so F and F̂ coincide

and 〈m〉k
m0

→ 〈m〉k is arbitrarily large. In order for the distribution in Eq. 5.17 to be

normalized (i.e.,
∫

dm pk (m) = 1) one needs to make the following assumptions: i)

F (x) approaches a constant when x ¿ 1, ii) F (x) goes to zero sufficiently fast when

x À 1. With these conditions one has:

1 =
∫ ∞

1
dm pk (m) =

∫ ∞

1
dm

1

m∆
F

(
m

〈m〉φk

)
= 〈m〉φ(1−∆)

k

∫ ∞

〈m〉−φk

d x
1

x∆
F (x) =

= 〈m〉(1−∆)φ
k

[∫ 1

〈m〉−φk

d x x−∆+
∫ ∞

1
d x x−∆F (x)

]
= a +b〈m〉(1−∆)φ

k ,

(5.19)

where a and b are constants. Now, save corrections to the scaling (i.e., from Eq. 5.19:

pk (m) = m−∆F

(
m

〈m〉φk

)(
a +b〈m〉(1−∆)φ

k

)−1 = m−∆
[

1
a F

(
m

〈m〉φk

)
− b

a2 〈m〉(1−∆)φ
k F

(
m

〈m〉φk

)
+ ...

]
,

which adds an additional term to Eq. 5.17), everything is consistent if a = 1, (1−∆)φ< 0

and ∆> 1 (φ> 0) or if ∆= 1, in which case one has:

1 =
∫ ∞

1
dm pk (m) =

∫ ∞

1
dm

1

m
F

(
m

〈m〉φk

)
=

∫ ∞

〈m〉−φk

d x
1

x
F (x) (5.20)

and two possibilities arise: i)
∫ ∞

0 d x F (x)
x = 1, with F (x) → 0 sufficiently fast for x → 0

(which is consistent with the data), ii) F (x) ∼x∼0 (− ln x)−α, so that
∫ ∞
〈m〉k

d x 1
x F (x) ∼

(ln〈m〉k )max(0,1−α) and, if α> 1 one is back to case i), while if α< 1 one has logarithmic

corrections to the scaling. In fact, if α< 1, one finds pk (m) = 1
m (ln〈m〉k )1−αF

(
m

〈m〉φk

)
.

A test for the validity of a scaling size distribution of the form pk (m) = 1
m F

(
m

〈m〉k

)
is

the proportionality of successive moments ratios 〈m j 〉k /〈m j−1〉k ( j > 1) to the first

moment 〈m〉k . In fact, if pk (m) = 1
m F

(
m

〈m〉k

)
, one has:

〈m j 〉k

〈m j−1〉k
=

∫
dm m j 1

m
F

(
m

〈m〉k

)
∫

dm m j−1 1

m
F

(
m

〈m〉k

) =
〈m〉 j

k

∫
d x x j 1

x
F (x)

〈m〉 j−1
k

∫
d x x j−1 1

x
F (x)

∝〈m〉k , (5.21)
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where x = m
〈m〉k

and j > 1. Fig. 5.2C shows successive moments ratios calculated from

the data (cultures in standard conditions) and linear regressions on these data. The

slopes of the linear regressions are compatible with the value of 1 (linear regressions

on log-transformed data). Coefficient of determination R2 values for the regressions

are: R2
〈m2〉/〈m〉 = 0.999, R2

〈m3〉/〈m2〉 = 0.996, R2
〈m4〉/〈m3〉 = 0.988. The same holds for the

body size distributions of CHI, EUG and EUP in different environmental conditions.

In this case, the slopes of the linear regressions are compatible with the value of 1

(linear regressions on log-transformed data). Coefficient of determination R2 values

for the regressions are: R2
〈m2〉/〈m〉 = 0.998, R2

〈m3〉/〈m2〉 = 0.987, R2
〈m4〉/〈m3〉 = 0.962.

A fitting procedure suggests the viability of an analytical log-normal form for the

universal size distribution, i.e.:

p(m) = 1

m
p

2πσ2
e
−

(
ln m

〈m〉 −µ
)2

2σ2 , (5.22)

where σ2 and µ are constants, 〈m〉 depends on the species and ln is the natural loga-

rithm, i.e., the logarithm to the base e. In order for the distribution Eq. 5.22 to have

the scaling form p(m) = 1/mF (m/〈m〉) one has to impose that 〈m〉 = ∫ ∞
0 dm mp(m),

which implies µ=−σ2/2, i.e., µ and σ are not independent. Thus, the following ana-

lytical form for the universal size distribution, which depends on only one parameter,

σ2, is proposed:

p(m) = 1

m
p

2πσ2
e
−

(
ln m

〈m〉 + σ2

2

)2

2σ2 . (5.23)

The scaling function F (x) is therefore of the form:

F (x) = 1p
2πσ2

e
−

(
ln x + σ2

2

)2

2σ2 , (5.24)

as suggested by the fact that a parabola fits well the log-transformed data mp(m)

versus m/〈m〉 (least-squares fit on log-transformed data). In order to have a good

estimate of the mean of F , the fit to Eq. 5.24 was performed in the common support of

at least half of the protist species, with only one parameter σ2. The best estimate for

the parameter is σ2 = 0.222±0.003 and the coefficient of determination is R2 = 0.92.

The fit of the scaling function is shown in Fig. 5.2D superimposed to the ensemble

average of the experimental size distributions, showing a remarkable overlap.
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The postulated universal scaling form for p(m) may arise from general dynamical

considerations (Banavar et al., 2007, Clauset and Erwin, 2008, Lande, 1976). Consider

ecosystem dynamics over ecological timescales. Ecological processes governing the

abundances and niche occupancy of species are expected to change their characteris-

tic size. One would expect, however, that offsprings would have a mass proportional

to the mass of the parent organism (Clauset and Erwin, 2008). Thus, fluctuations

in size within same species ought to be measured in the order of percent variations

and the natural variable is x = log(m/m̄) (Clauset and Erwin, 2008, Lande, 1976), m̄

being the characteristic mass of the reference species k, e.g., proportional to the mean

m̄ = α〈m〉 (Banavar et al., 2007, Rinaldo et al., 2002). In this framework, the results

of ecological processes can be represented by a random walk in the variable x, as a

fixed percent increase (decrease) of the mass corresponds to a shift to the right (left)

of the variable x by a constant amount. In the simplest model, the results of ecological

processes could be represented by an Ornstein-Uhlenbeck process (Uhlenbeck and

Ornstein, 1930, Van Kampen, 2007). This process is a modification of a Wiener pro-

cess, where the walk tends to move towards a central location, which, in the context

of phenotypic evolution (Lande, 1976), has been identified as the optimum in the

adaptive zone for the phenotype. A phenotypic character like body size, therefore, is

expected to be distributed around a fitness optimum in this framework. The physical

analogy of this process is a noisy relaxation process, e.g., a spring fluctuating around

its rest length in the presence of disturbances. The fraction of organisms q(x, t ) with a

(log-)body mass x at time t is governed by the dynamical equation:

∂q(x, t )

∂t
= D

∂2q(x, t )

∂x2
+ ∂

[
kxq(x, t )

]
∂x

, (5.25)

where k is a constant, k > 0. The stationary solution is obtained by setting the rate of

change of q(x, t ) to zero and is known to be gaussian (Uhlenbeck and Ornstein, 1930,

Van Kampen, 2007):

q(x) =
√

k

πD
e
−kx2

2D (5.26)

One obtains then, for the mass distribution p(m):

p(m) = q(x)
d x

dm
= 1

m

√
k

2πD
e
− k

2D

(
ln

m

〈m〉 − lnα

)2

, (5.27)

i.e., a log-normal distribution of mass. Imposing Eq. 5.27 to have mean 〈m〉 one finds
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α= exp[−D/(2k)] and the distribution of size is therefore:

p(m) = q(x)
d x

dm
= 1

m

√
k

2πD
e
− k

2D

(
ln

m

〈m〉 +
D

2k

)2

, (5.28)

i.e., a log-normal distribution of mass with mean 〈m〉, as in Eq. 5.23. Therefore the

scaling function F in Fig. 5.2 is F (x) =
√

k
2πD exp

[
− k

2D

(
ln x + D

2k

)2
]

.

One might wonder whether the size distribution obtained in Eq. 5.28 is in agreement

with the model of cellular growth and division investigated above. The cellular growth

and division model, as treated in the previous section, assumes the existence of a

maximum mass M and allows to study the scaling properties of the stationary size

distribution. It is possible, however, to relax this hypothesis allowing the cells to

assume all masses in the range [0,∞] and obtain an implicit relation for the stationary

size distribution p(m) (Rading et al., 2011), which allows to compute the asymptotic

behavior of the distribution for large mass, i.e., m →∞. In the notation of the previous

section the size distribution, for large m, satisfies the relation:

p(m) → 1

m
exp

(
−

∫ m/〈m〉

α
d y

k +d(y)

µy

)
, (5.29)

which behaves as a log-normal if one assumes a division rate d(y) increasing logarith-

mically with size, i.e., d(y) ∝ ln y .

5.3.4 Data collapses

Data collapse is a tool widely used in statistical physics to establish scaling laws and

extract information on their exponents (Barenblatt, 1983). Traditionally, the procedure

to produce a data collapse is to rely on the direct visualization of it and eyeballing

the exponent which gives the best collapse. A less subjective method was proposed

(Bhattacharjee and Seno, 2001), which introduces a measure (error functional E , insets

of Figs. 5.2, 5.3) to quantify the goodness of a collapse. Let ∆ be the exponent that

is tuned to find the best collapse: E(∆) is the cumulative area enclosed between all

pairs of curves that one tries to collapse, within their common support, for the value

∆ of the exponent. The value ∆∗ of the exponent which minimizes E(∆) is taken as

the best estimate for the exponent, i.e., the smaller the area, the best the collapse.

Errors are associated to the determination of ∆∗ and are obtained from the width of

the minimum. Further details can be found in Bhattacharjee and Seno (2001).

120



5.3. Methods

5.3.5 Community size spectra

In this section it is shown how a power law community size spectrum arises as a sum

of single species size distributions of finite-size scaling form (Rinaldo et al., 2002).

Assume that the size distribution of species k is of the form:

pk (m) = 1

m
F

(
m

〈m〉k

)
. (5.30)

Let Nk be the stationary abundance of species k in an ecosystem (i.e., Nk = Nk (t →∞))

and S is the total number of species. The community size spectrum is defined as:

f (m) =
S∑

k=1
Nk pk (m)/

S∑
k=1

Nk . (5.31)

It is assumed, supported by a number of observations (Damuth, 1981), that the popu-

lation abundance of the kth species scales as:

Nk ∝〈m〉αk , (5.32)

where α < 0 implies that the total number of organisms decreases with increasing

typical size. From Eq. 5.30 and Eq. 5.32 one has that:

f (m) ∝
S∑

k=1
Nk pk (m) ∝

S∑
k=1

〈m〉αk m−1F

(
m

〈m〉k

)
. (5.33)

Let g (m̄) be the fraction of species of typical size m̄. The above equation can be

rewritten, treating 〈m〉k as a continuous variable for easiness of computation, as:

f (m) ∝ 1

m

∫
dm̄g (m̄)m̄αF

(m

m̄

)
∝

∫
d xg (xm)xαmαF

(
1

x

)
. (5.34)

Theoretical predictions from a scaling macroecological framework (Banavar et al.,

2007, Rinaldo et al., 2002) and data (Fenchel, 1993, Marquet et al., 2005, May, 1988)

suggest a pure power-law behavior for g (m̄):

g (m̄) ∝ 1

m̄β
, (5.35)

which, because of normalization, is assumed to hold between an upper and lower

cutoff. One then has for the size spectrum f (m):

f (m) ∝ mα−β
∫

d x xα−βF

(
1

x

)
∝ mα−β, (5.36)

121



Chapter 5. Scaling body size fluctuations

which has the form of a power law. In the case of a limited range of sizes one might

argue that the number of species S within the range of sizes investigated could be

assumed as constant to first order. This, of course, is the particular case for which

β= 0.

Overall, it is clear that to obtain a scaling community size spectrum (Eq. 5.31), a

necessary condition is an adaptive fine tuning of the specific abundances. This is

epitomized by the relation Eq. 5.32, which in turn implies thinning relations that are

recurrent in the literature of macroecological empirical laws (Banavar et al., 2007,

Southwood et al., 2006).

5.4 Discussion

The detailed identification of the scaling function F in Eq. 5.2 is interesting but

inessential for the tenet of this investigation as the collapse of the distributions suffices

in documenting the universality sought after. However, a log-normal functional

form for p(m) proves admissible and rooted in a theoretical framework for the time-

evolution of the distribution of body sizes in ecological timescales (see inset in Fig.

5.2D). In this context, the size distribution of organisms of a given species is the

stationary distribution of an Ornstein-Uhlenbeck process (Uhlenbeck and Ornstein,

1930) in the variable x = log(m/〈m〉) (Clauset and Erwin, 2008, Lande, 1976). A log-

normal form for p(m) can also be recovered as a particular case of the physiological

model cited above, so the two models are not mutually exclusive (Methods). Recently,

models of cell growth and division with different assumptions on the timings of cell

duplication have also been shown to predict the log-normality of cell distributions

in bacteria (Amir, 2014) and the scaling behavior of other relevant properties of cell

division such as the initial size at division and doubling times (Kennard et al., 2014)

have been substantiated experimentally. These works give further support to the claim

that the physiological processes of growth and reproduction are responsible for the

observed scaling behavior of body size distributions.

A yet unproven but reasonable ansatz would posit that this behavior might apply

to multicellular or arbitrarily complex organisms as well, resulting in even broader

validity. An indication supporting this statement is the experimental size distribution

of a multicellular organism that was measured with the same methods in the same

laboratory conditions. In fact, it was found that the size distribution of a multicel-

lular species (Cephalodella sp.) showed a very good collapse with the protist size

distributions once rescaled according to Eq. 5.2, see Fig.5.4.

The observation of more than 20 orders of magnitude in organismic sizes in natural
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Figure 5.4: Collapse of rescaled size distributions as in Fig. 5.2B, with superimposed the size
distribution of the multicellular organism Cephalodella sp. (black dashed line), whose size
distribution collapses well with those of unicellular protists. Colors as in Fig. 5.2A.

ecosystems (Kleiber, 1947, Sheldon et al., 1972) leads to the conclusion that there has

been little long-term impediment to the development, on evolutionary timescales, of

any particular size. On ecological timescales, however, a characteristic size emerges

as a fundamental property of a species, determined by biological constraints and by

biotic and abiotic interactions. Such characteristic size, in turn, modulates the entire

size distribution of the species.

The results reported here decouple the effects of biotic and abiotic interactions, which

regulate abundances and can affect a species’ mean size, from the individuals’ physi-

ology, which shapes intra-species size distributions. The replicated, controlled experi-

ments performed here corroborate and extend comparative field findings of marine

microbial size spectra to broader size and taxonomic diversity (Rinaldo et al., 2002).

It is speculated here that such behavior may extend over broader domains. Then,

theoretical linkages of diverse empirical macroecological relationships, traditionally

treated as independent (Banavar et al., 2007, Southwood et al., 2006), would be sub-

stantiated. In fact, because single-species size distributions would be characterized

by specific mean values and variances, a precise requirement would be cast on the

number of species existing at stationarity within a niche of size and on the related

abundances, in order to produce community size spectra that lack characteristic
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scales. Ecological interactions among species would consequently adapt to produce

thinning laws, i.e., to control the relative abundance of species given their character-

istic sizes (Damuth, 1981, May, 1988). The fact that these thinning laws have been

shown to be robust to perturbations further emphasizes their universal character

(Marquet et al., 1990).

Finally, a distribution of the form in Eq. 5.2 implies that the variance of the species’

sizes increases quadratically with the mean size. As the characteristic mass of a species

is frequently adopted as the independent variable in allometric scaling laws (Banavar

et al., 2002, 2010, 1999b, Brown et al., 2004, Brown and West, 2000, Cohen et al., 2012,

Damuth, 1981, Fenchel, 1993, Kleiber, 1947, May, 1988, McMahon and Bonner, 1983,

West et al., 1997), its increasing variance must impact the scaling of the dependent one,

such as metabolic rates in Kleiber’s law. This investigation might thus pose the basis

for a re-examination of allometric relations, by considering appropriate fluctuations

in both the dependent (Dodds et al., 2001, Labra et al., 2007) (metabolic rate) and the

independent (mass) variables.
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Fluctuations are ubiquitous in nature and any investigation of their role in ecological

patterns and processes is by necessity limited in its scope. This thesis focuses on the

characterization and impact of the main sources of fluctuations on relevant ecological

patterns and processes. The main conclusions are summarized here and perspectives

for future research are outlined.

The role of demographic and environmental stochasticity on biological invasions was

studied in Chapters 1, 2 and 3, through laboratory experiments with Tetrahymena sp.

and E. gracilis and theoretically in the framework of stochastic partial differential equa-

tions. The study of front propagation in uniform environments (Chapter 1) allowed

establishing experimentally a quantitative link between the processes acting at the

local scale, movement and growth, and the colonization dynamics at the larger scale.

Demographic stochasticity acting the front of the invasion wave, where population

densities are low, was argued to induce the observed fluctuations of the front across

replicated invasions in a uniform landscape. Accordingly, the variability in the front

position measured experimentally was quantitatively comparable with the prediction

of the Fisher-Kolmogorov equation modified to include demographic stochasticity,

whose strength was estimated locally via the measured growth curves.

In Chapter 2, the phototactic movement of E. gracilis was characterized experimentally

and a Keller-Segel framework was derived and shown to reproduce both the stationary

accumulation patterns in the presence of light gradients and the temporal dynamics of

accumulation and relaxation following the removal of light. The phototactic response

of E. gracilis was shown to be described by a generalized receptor law that accounts

for both positive and negative phototaxis. Whereas other forms of taxis received

much attention in the literature (Tindall et al., 2008), Chapter 2 appears as the first

quantitative investigation and modeling of the phototactic response function capable

of reconciling both positive and negative phototaxis within the same mathematical

framework.

The generalized Keller-Segel model derived in Chapter 2 and the stochastic Fisher-
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Kolmogorov equation investigated in Chapter 1 were combined in Chapter 3 to study

the propagation of invasion fronts in linear landscapes endowed with heterogeneous

distributions of resources. The joint effect of demographic stochasticity and environ-

mental heterogeneity was investigated numerically across different autocorrelation

lengths of the resource distribution. Demographic stochasticity was shown to be

critical in slowing-down the propagating front for increasing resource autocorrelation

length. The directed movement of individuals towards favorable regions of the land-

scape was shown to contribute to such slowing-down. Experiments with E. gracilis in

landscapes with manipulated light intensity profiles confirmed the prediction that

larger resource autocorrelation lengths induce a slowing-down of the propagating

front. The results of Chapter 3 thus suggest that the local extinctions caused by demo-

graphic stochasticity at the front of the invasion and the heterogeneity of the resource

distribution, characterized in terms of its autocorrelation length, critically affect the

propagation of biological invasions.

Chapters 1 and 3 extend the current understanding of biological invasions by recog-

nizing and investigating experimentally the role of fluctuations on the dynamics of

propagating fronts, a subject that suffers an acknowledged lack of experimentation.

Demographic stochasticity is found to induce fluctuations of the front position across

replicated invasions in uniform landscapes (Chapter 1). The role of the temporal auto-

correlation of environmental fluctuations in shaping ecological dynamics is widely

recognized in the literature. This study provides evidence for the role of the spatial

autocorrelation of environmental heterogeneity on spatial ecological processes such

as biological dispersal.

In Chapter 4, population fluctuations induced by temporal environmental stochas-

ticity were studied in the framework of Taylor’s law of fluctuation scaling. Results

from large deviations theory were used to show that, for any ecosystem of finite size,

the spatial sample variance of population abundance scales with the mean sample

abundance with the exponent b = 2 irrespectively of the details of the population

growth model. The temporal autocorrelation of environmental stochasticity only

affects the scaling exponent of Taylor’s law expressed in terms of the population cu-

mulants. Understanding whether widely reported macroecological patterns such

as the species-area relationship are statistical artifacts rather than the outcome of

ecological processes was listed as one of the 100 fundamental ecological questions

cited in the introduction to this thesis. The results outlined in Chapter 5 suggest

that the widespread observation of the TL scaling exponent b = 2 may be a sampling

artifact rather than an emergent property of ecosystems.

Finally, Chapter 5 investigated the heterogeneity of body sizes in the search for univer-
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sal properties across levels of biological organization. Laboratory experiments with

protists suggest that intra-specific body size distributions may be controlled by funda-

mental physiological processes, causing such distributions to be identical across very

different species covering over four orders of magnitude in body mass and belonging

to four different taxa. The observation that the variance of intra-specific body size

distributions scales with the mean body size highlights another occurrence of Taylor’s

law. Because body size is one of the most relevant ecological traits, the characteriza-

tion of intra-specific body size distributions provided here may have implications for

the several scaling relationships where body size appears as the independent variable.

In particular, our study invites further investigation of the joint scaling of body size

and metabolic rates accounting for the scaling fluctuations of both the dependent

and the independent variables.

Further developments will deal with theoretical and experimental studies of geomet-

rical heterogeneities affecting the environmental matrix, like for example studies of

biological invasions in network substrates. Theoretical predictions for the speed of

fronts propagating in dendritic networks are available and will be tested experimen-

tally. Furthermore, the experimental system employed in Chapters 2 and 3 could

be readily used to impose temporal fluctuations of the environment during the in-

vasion process, possibly autocorrelated both in time and space. A comprehensive

understanding of the effect of heterogeneities and fluctuations on biological invasions

will have important practical implications, because they influence predictions on

the speed of spread of invasive species or disease propagules, especially along den-

dritic habitats such as rivers, waterways or mountain-ridges. The results derived in

Chapter 4 may be investigated in protist microcosms, for example generating Marko-

vian environments with different first-order temporal autocorrelations by controlling

the temperature experienced by the microcosms. The emergence of the Taylor’s law

exponent b = 2 as a sampling artifact depending on the number of replicates could

therefore be explored experimentally. Finally, the characterization of body size fluctu-

ations (Chapter 5) will be complemented with the study of metabolic rate fluctuations

by measuring the joint distribution of body size and metabolic rates. The implications

of scaling metabolic rate and body size fluctuations on linked macroecological laws

will then be explored within the framework of finite-size scaling.
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