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Abstract

We study the estimation error of constrained M -estimators, and derive
explicit upper bounds on the expected estimation error determined by the
Gaussian width of the constraint set. Both of the cases where the true
parameter is on the boundary of the constraint set (matched constraint),
and where the true parameter is strictly in the constraint set (mismatched
constraint) are considered. For both cases, we derive novel universal esti-
mation error bounds for regression in a generalized linear model with the
canonical link function. Our error bound for the mismatched constraint
case is minimax optimal in terms of its dependence on the sample size,
for Gaussian linear regression by the Lasso.

1 Introduction

Consider a general statistical estimation problem. Let (y1, . . . , yn) be a sample
following a probability distribution Pθ\ in a given class P := {Pθ : θ ∈ Rp}. We
are interested in estimating the parameter θ\, given (y1, . . . , yn) and P, under
the high-dimensional setting where n < p.

If θ\ is known to satisfy g(θ\) ≤ c for some continuous convex function g and
positive constant c, we can consider a constrained M -estimator of the form

θ̂ ∈ arg min
θ
{fn(θ) : θ ∈ G} , G := {θ ∈ Rp : g(θ) ≤ c} . (1)

We assume that fn is a continuously differentiable convex function, and the
constraint set G is non-empty. For example, the Lasso [32] corresponds to

fn(θ) :=
1

2n

n∑
i=1

(yi − 〈ai, θ〉)2
, G := {‖θ‖1 ≤ c} , (2)

for some a1, . . . , an ∈ Rp and positive constant c . A matrix Θ ∈ Rd×d can be
vectorized as a corresponding vector θ ∈ Rp, d2 = p. In the low-rank matrix
recovery problem [7, 13], a popular estimator corresponds to

fn(Θ) :=
1

2n

n∑
i=1

(
yi − Tr

(
ATi Θ

))2
, G := {‖Θ‖∗ ≤ c} , (3)
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for some A1, . . . , An ∈ Rd×d and positive constant c, where ‖·‖∗ denotes the
nuclear norm. In general, fn can be the normalized negative log-likelihood
function, or any properly defined function, and g depends on the a priori infor-
mation on the structure of the parameter θ\ [1, 8, 9].

One can also consider a penalized M -estimator, given by

θ̂penalized ∈ arg min
θ∈Rp

{fn(θ) + ρng(θ)} , (4)

for some positive constant ρn. The penalized M -estimator can be computed
by fast proximal methods, provided that the proximal mapping of g is easy to
compute [3, 22]. This condition, however, is not always satisfied. For example, if
g is the nuclear norm, computing the corresponding proximal mapping requires
a full singular value decomposition (SVD) in the first few iterations, and hence
is not scalable with the parameter dimension. In contrast, if we consider a
constrained M -estimator and compute it by the Frank-Wolfe algorithm, each
iteration of the algorithm requires a linear minimization oracle (LMO), which
can be approximated efficiently by Lanczos’ algorithm [15]. The paper [39] also
shows that when g is a structured sparsity regularizer, the LMO can be much
easier to compute than the proximal mapping.

If we consider a constrained M -estimator, setting the value of the constant
c in (1) becomes a practical issue. For the case c < g(θ\), the estimation error
is obviously bounded below by the distance between θ\ and the constraint set
G, and hence estimation consistency is impossible. Ideally we would like to
set c = g(θ\), while in practice g(θ\) is seldom known. The last case is when
we have some estimate on g(θ\), and choose c such that c > g(θ\). Some
natural questions arise: Is estimation consistency possible? How fast will the
estimation error decay with the sample size n? Does setting c > g(θ\) result
in larger estimation error than setting c = g(θ\)? We review related works in
Section 2, which shows that answers existed only for specific cases even when
c = g(θ\).

In this paper, we provide a unified analysis for constrained M -estimators.
Specifically,

• We propose an elementary framework for analyzing any M -estimator ap-
plied to any statistical model in Section 3.

• We obtain universal error bounds in terms of the Gaussian width, valid for
all canonical GLMs. We consider the matched constraint case (c = g(θ\))
in Section 4, and the mismatched constraint case (c > g(θ\)) in Section 5.

• To illustrate the universal error bounds, we specialize the universal error
bound to Gaussian linear regression with arbitrary convex constraint, and
regression in canonical GLMs with the `1-constraint in Section 6, and
obtain explicit results.

• Our error bound for the Lasso applied to the Gaussian linear model is
optimal in the minimax sense (cf. Section 7).
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Existing results for penalized M -estimators [2, 4, 5, 14, 16, 21, 35], which
are for deterministic ρn’s, cannot directly recover our results, and vice versa.
Indeed, by Lagrange duality, there exists some ρn > 0 such that the constrained
M -estimator in (1) is equivalent to the penalized M -estimator in (4). This cor-
respondence, however, holds only for given realization of the sample (y1, . . . , yn),
and hence ρn is a random variable depending on the sample. Conversely, for
any penalized M -estimator θ̂penalized for some ρn > 0, there exists a constant

c = g(θ̂penalized) such that the corresponding constrained M -estimator (4) is

equivalent to θ̂penalized. Note that c = g(θ̂penalized) is again a random vari-
able and dependent on the sample. We are not aware of any existing work on
characterizing the correspondence between the two formulations.

2 Related Works

In [23, 24], the authors derived sharp estimation error bounds for regression in
the linear model by constrained least squares (LS) estimators. The analysis in
[38] provides a minimax estimation error bound for the same setting . There
are some related works on learning a function in a function class [17, 18]. When
the function class is linearly parametrized by vectors in Rp, and the function
corresponding to θ\ is in the function class, the L2-estimation error in the func-
tion class may be translated into the `2-estimation error with respect to θ\. A
common limitation of [17, 18, 24, 23, 38] is that the results are not extendable
to general non-linear statistical models.

Another research direction considers constrained estimation in possibly non-
linear statistical models [25, 26, 27]. A constrained M -estimator for logistic
regression was proposed and analyzed in [25]. In [27], the authors proposed and
analyzed a universal projection-based estimator for regression in generalized
linear models (GLMs). In [26], the authors analyzed the performance of the
constrained LS estimator in GLMs. A common limitation of [25, 26, 27] is that
the results are valid only for the specific proposed estimators, and they do not
even apply to the constrained maximum-likelihood (ML) estimator, which is
the most popular approach in practice. Moreover, the proposed estimators in
[25, 26, 27] can only recover the true parameter up to a scale ambiguity.

We say that the constraint is matched if θ\ lies on the boundary of G in
(1) (or c = g(θ\)), and mismatched if θ\ lies strictly in G (or c < g(θ\)). The
analyses in [23, 24] require the constraint to be matched, while in practice the
exact value of g(θ\) is seldom known. The constraint in [17] is always matched
due to the special structure of quantum density operators. The error bounds in
[25, 38] can be overly pessimistic, because they hold for all θ\ ∈ G. The results
in [18, 26, 27] do not require a matched constraint and depend on θ\; our result
is of this kind. Recall that, however, [18] is limited to specific statistical models,
and [26, 27] are limited to specific M -estimators.
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3 A Geometric Framework

3.1 Basic Idea

To illustrate the basic idea of our framework, let us start with a simple setting,
where fn is strongly convex with parameter µ > 0, i.e.,

〈∇fn(y)−∇fn(x), y − x〉 ≥ µ ‖y − x‖22 ,

for any x, y ∈ dom f . Note that then θ̂ is uniquely defined.
Define ιg : Rp → R∪{+∞} as the indicator function of the constraint set G;

that is, ιG(θ) = 0 if θ ∈ G, and ιG(θ) = +∞ otherwise. By the strong convexity
of fn, we have 〈

∇fn(θ̂)−∇fn(θ\), θ̂ − θ\
〉
≥ µ

∥∥∥θ̂ − θ\∥∥∥2

2
. (5)

By the convexity of ιg, or the monotonicity of the subdifferential mapping, we
have 〈

ẑ − z\, θ̂ − θ\
〉
≥ 0, (6)

for any ẑ ∈ ∂ιg(θ̂), and any z\ ∈ ∂ιg(θ\). Summing up (5) and (6), we obtain〈
∇fn(θ̂) + ẑ −∇fn(θ\)− z\, θ̂ − θ\

〉
≥ µ

∥∥∥θ̂ − θ\∥∥∥2

2
,

for any ẑ ∈ ∂ιg(θ̂). By the optimality condition of θ̂, there exists some ẑ ∈ ∂ιG(θ̂)
such that

0 = ∇fn(θ̂) + ẑ, (7)

and hence we have 〈
−∇fn(θ\)− z\, θ̂ − θ\

〉
≥ µ

∥∥∥θ̂ − θ\∥∥∥2

2
,

for any z\ ∈ ∂ιg(θ\). Since ∂ιg(θ
\) is always a closed convex cone, we can choose

z\ = 0 and obtain 〈
−∇fn(θ\), θ̂ − θ\

〉
≥ µ

∥∥∥θ̂ − θ\∥∥∥2

2
. (8)

Applying the Cauchy-Schwarz inequality to the left-hand side, we obtain∥∥∇fn(θ\)
∥∥

2

∥∥∥θ̂ − θ\∥∥∥
2
≥ µ

∥∥∥θ̂ − θ\∥∥∥2

2
,

or ∥∥∥θ̂ − θ\∥∥∥
2
≤ 1

µ

∥∥∇fn(θ\)
∥∥

2
. (9)

Taking expectations on both sides, we immediately obtain the following estima-
tion error bound:

E
∥∥∥θ̂ − θ\∥∥∥

2
≤ 1

µ
E
∥∥∇fn(θ\)

∥∥
2
. (10)
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The gradient at the true parameter, ∇fn(θ\), usually concentrates around 0
with high probability.

The simple error bound (10) is not desirable for two reasons:

1. In the high-dimensional setting where n < p, fn cannot be strongly convex
even for the basic LS estimator.

2. It does not depend on the choice of g.

We address the first issue in Section 3.2, and the second issue in Section 3.3.

3.2 Restricted Strong Convexity

Note that in order to facilitate the arguments in the previous sub-section, we
only require (5) to hold for θ̂ and θ\, instead of any two vectors in Rp. Therefore,
we only need fn to satisfy some restricted notion of strong convexity. Similar
(but not exactly the same) ideas had appeared in [8, 21], and can be traced
back to [4, 34].

Definition 3.1 (Feasible Set and Feasible Cone). The feasible set of g at θ\,
denoted by Fg(θ\), is given by

Fg(θ\) := G − θ\ =
{
θ − θ\ : θ ∈ G

}
.

The feasible cone of g at θ\, denoted by Fg(θ\), is defined as the conic hull of
Fg(θ\).

By the definition of θ̂, the estimation error must satisfy θ̂ − θ\ ∈ Fg(θ\).

Definition 3.2 (Restricted Strong Convexity). The function fn satisfies the
restricted strong convexity (RSC) condition with parameter µ > 0 if〈

∇fn(θ\ + e)−∇fn(θ\), e
〉
≥ µ ‖e‖22 , (11)

for any e ∈ Fg(θ\).

If fn is twice continuously differentiable, we have a sufficient condition.

Proposition 3.1. The function fn satisfies the RSC condition with parameter
µ > 0 if 〈

e,∇2fn(θ\ + λe)e
〉
≥ µ ‖e‖22 ,

for all λ ∈ [0, 1] and all e ∈ Fg(θ\).

The uniqueness of θ̂ and the derivation of the error bound in Section 3.1 are
still valid even when n < p, as long as fn satisfies the RSC condition with some
parameter µ > 0.
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3.3 Refined Error Bound

We address the dependence of the estimation error on the choice of g, and derive
a refined error bound in this sub-section.

We note that〈
−∇fn(θ\), θ̂ − θ\

〉
=
∥∥∥Π

θ̂−θ\
(
−∇fn(θ\)

)∥∥∥
2

∥∥∥θ̂ − θ\∥∥∥
2
,

where Π
θ̂−θ\

(·) denotes the projection onto the conic hull of
{
θ̂ − θ\

}
(which is

a half-line or {0}). This implies, by (8),∥∥∥Π
θ̂−θ\

(
−∇fn(θ\)

)∥∥∥
2
≥ µ

∥∥∥θ̂ − θ\∥∥∥
2
.

The left-hand side, however, is not tractable due to its dependence on θ̂. As
θ̂ − θ\ ∈ Fg(θ\) by definition, we consider a looser bound:∥∥∥ΠFg(θ\)

(−∇fn(θ\))
∥∥∥

2
≥ µ

∥∥∥θ̂ − θ\∥∥∥
2
, (12)

where ΠFg(θ\)
(·) denotes projection onto the feasible cone Fg(θ\).

Taking expectations on both sides, we obtain the following lemma.

Lemma 3.2. Assume that fn satisfies the RSC condition with parameter µ > 0.
Then θ̂ is uniquely defined, and satisfies

E
∥∥∥θ̂ − θ\∥∥∥

2
≤ 1

µ
E
∥∥∥ΠFg(θ\)

(−∇fn(θ\))
∥∥∥

2
.

Since −∇fn(θ\) is a descent direction of fn, if its direction is coherent with

the feasible cone Fg(θ\), we may find some point θ̂′ far away from θ\ in the

feasible set Fg(θ\) such that fn(θ̂′) is much smaller than fn(θ\), and hence the
estimation error can be large. This provides an intuitive interpretation of the
lemma.

Since projection onto a closed convex set is a non-expansive mapping, we
have ∥∥∥ΠFg(θ\)

(−∇fn(θ\))
∥∥∥

2
≤
∥∥∇fn(θ\)

∥∥
2
,

so the error bound is always no larger than the one in Section 3.1.
Lemma 3.2 is the theoretical foundation of the rest of this paper.

4 Estimation Error Bound in Terms of the Gaus-
sian Width

We apply Lemma 3.2 to constrained ML estimators in a GLM with the canon-
ical link function. Examples of a canonical GLM include the Gaussian linear,
logistic, gamma, and Poisson regression models.
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Let θ\ ∈ Rp be the parameter to be estimated, or the unknown vector of
regression coefficients. In a canonical GLM, the negative log-likelihood of a
sample y, given θ\, is of the form (up to scaling and shifting by some constants)

L(y; θ\) = y
〈
ai, θ

\
〉
− b(

〈
ai, θ

\
〉
),

where a1, . . . , an ∈ Rp are given, and we assume that b is some given concave
function. Let (y1, . . . , yn) ∈ Rn be the sample. The constrained ML estimator
is given by (1) with

fn(θ) :=
1

n

n∑
i=1

L(yi, θ), (13)

and g being some continuous convex function. For simplicity, we consider the
case where c = g(θ\) in this section; we address the case where c > g(θ\) in
Section 5.

We specialize Lemma 3.2 to the canonical GLM and obtain the following
theorem.

Definition 4.1 (Gaussian width [8, 19, 33]). Let C ⊆ Rp. The Gaussian width
of C is given by

ωt(C) := E sup
v∈C∩tSp−1

{〈h, v〉} ,

where h := (h1, . . . , hp) is a vector of i.i.d. standard Gaussian random variables,
and Sp−1 denotes the unit `2-sphere in Rp.
Theorem 4.1. Consider the canonical GLM and the corresponding ML esti-
mator described above for c = g(θ\). Assume that the entries of a1, . . . , an are
either all i.i.d. standard Gaussian or all i.i.d. Rademacher random variables
(random variables taking values in {+1,−1} with equal probability), and fn sat-
isfies the RSC condition for µ > 0 with probability at least 1/2. Then

E
∥∥∥θ̂ − θ\∥∥∥

2
≤ 2
√

2π σmax
ω1(Fg(θ\))

µ
√
n

,

where σmax := maxi
√

var yi.

Remark. Note that the expectation is with respect to A and ε, conditioned on
the event that the RSC condition holds.

The feasible cone Fg(θ\) coincides with the tangent cone of g at θ\ defined
in [8]. Therefore, to evaluate the estimation error bound, we only need to eval-
uate the Gaussian width of the corresponding tangent cone. We note that there
are already many results for a variety of commonly used regularization func-
tions, such as the `1-norm, nuclear norm, total variation semi-norm, and general
atomic norms [6, 8, 11, 25, 30, 38]. Therefore, for most of the applications, we
only need to plug in an existing bound on the Gaussian width.

Finally, we would like to emphasize that the Gaussian width in Theorem
4.1 comes from bounding the random process induced by the random gradient
∇fn(θ\) (cf. the proof of Theorem 4.1), instead of being a consequence of
applying Gordon’s Lemma. That is, our result is essentially different from those
in [8, 23, 24].
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5 Effect of a Mismatched Constraint

In this section, we discuss the effect of a mismatched constraint for ML regression
in a canonical GLM. Recall that the constraint set G is called mismatched if
c > g(θ\) in (1).

The notion of the RSC in Definition 3.2 is no longer meaningful when the
constraint set is mismatched. Take ML regression in the Gaussian linear model
for example, for which the corresponding fn is given in (2). Let A ∈ Rn×p be
defined as in Theorem 4.1. The RSC condition requires〈

∇fn(θ\ + e)−∇fn(θ\), e
〉

=
1

n
‖Ae‖22 ≥ µ ‖e‖

2
2 ,

for some µ > 0 and all e ∈ Fg(θ\), where we say e ∈ Fg(θ\) instead of e ∈ Fg(θ\)
because A is a linear operator. Since when the constraint is mismatched, Fg(θ\)
is the whole space Rp, the RSC condition requires A to be a non-singular matrix.
This cannot be true in the high-dimensional setting, where A ∈ Rn×p and n < p.

Our Approach: Let t > 0 and denote by B the unit `2-ball in Rp. We
partition the feasible set Fg(θ\) as

Fg(θ\) = (Fg(θ\) ∩ tB) ∪ (Fg(θ\) \ tB).

When t is large enough, the conic hull of (Fg(θ\) \ tB) will not be the whole
space Rp, so it is possible to have restricted strong convexity on (Fg(θ\) \ tB)

when n < p. If the error vector θ̂ − θ\ lies in (Fg(θ\) \ tB), we can obtain an
error bound, say, t̃, as in Section 4; otherwise, if the error vector lies in Bt, a
näıve error bound is the radius of the ball, i.e., t. Finally, we can bound the
estimation error from above by the maximum of t̃ and t. Note that t̃ is implicitly
dependent on t.

The arguments in the previous paragraph can be made precise as in Lemma
5.1, which is an analogue of Lemma 3.2 in the mismatched case. Lemma 5.1
holds for arbitrary constrained M -estimators of the form (1) and statistical
models.

Lemma 5.1. Suppose that for some t > 0, we have〈
∇fn(θ\ + e)−∇fn(θ\), e

〉
≥ µ ‖e‖22 , (14)

for some µ > 0 and all e ∈ Fg(θ\) \ tB. Then

E
∥∥∥θ̂ − θ\∥∥∥

2
≤ t+ E

∥∥∥ΠFg(θ\)\tB
(
−∇fn(θ\)

)∥∥∥
2
.

We can also prove an analogue of Theorem 4.1 for constrained ML regression
in a canonical GLM.

Corollary 5.2. Consider the canonical GLM and the corresponding ML esti-
mator described in Section 4, for c > g(θ\). Let A be defined as in Theorem 4.1
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and let t > 0. Suppose that (14) holds true with for some µ > 0 with probability
at least 1/2. Then we have

E
∥∥∥θ̂ − θ\∥∥∥

2
≤ t+ 2

√
2π σmax

ω1(Fg(θ\) \ tB)

µ
√
n

,

where σmax is defined as in Theorem 4.1.

The proofs of Lemma 5.1 and Corollary 5.2 are similar to the proofs of
Lemma 3.2 and Theorem 4.1, respectively.

6 Applications

Once the conditions (11) and (14) are verified, our results Theorem 4.1 and
Corollary 5.2 immediately follow. We explicitly verify the conditions for two
applications and obtain the corresponding estimation error bounds.

The first application is regression by the constrained LS estimator in a Gaus-
sian linear model. Let θ\ ∈ Rp and a1, . . . , an be vectors in Rp. The sample is
given by

yi = 〈ai, θ\〉+ σwi, i = 1, . . . , n,

for some σ > 0, where w1, . . . , wn are i.i.d. standard Gaussian random variables.
We consider the constrained LS estimator, for which fn is given by (2), and
G := {θ : g(θ) ≤ c} for some c ≥ g(θ\), where g can be any convex continuous
function.

Corollary 6.1. Consider the Gaussian linear model and the constrained LS
estimator described above. Assume that the entries of a1, . . . , an are either all
i.i.d. standard Gaussian or all i.i.d. Rademacher random variables. Let ε ∈
(0, 1). For any t ≥ 0, there exist positive constants c1 and c2 such that if

√
n ≥ c1α

2ω1(Fg(θ\) \ tB)

ε
, (15)

then we have

E
∥∥∥θ̂ − θ\∥∥∥

2
≤ t+ 2

√
2πσ

ω1(Fg(θ\) \ tB)

(1− ε)
√
n

, (16)

with probability at least 1− exp(−c2ε2n) > 1/2 when n is large enough.

Remark. When the constraint is matched, we can simply set t = 0. Recall that
t cannot be zero for the mismatched constraint case when n < p (cf. Section 5).
This remark also applies to Corollary 6.2 below.

Remark. For the mismatched constraint case, Corollary (6.1) is minimax op-
timal for the Lasso in the Gaussian linear model. We address this in Section
7.
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Corollary 6.1 is consistent with [24]. The result in [24] is sharper, while
Corollary 6.1 is more general as it also covers the mismatched constraint case.

The second application is `1-constrained ML regression in a canonical GLM.

Corollary 6.2. Consider the canonical GLM and the constrained ML estimator
described in Section 4, for g(θ) := ‖θ‖1 and c ≥

∥∥θ\∥∥. Assume that fn in
(13) is twice continuously differentiable, and the entries of a1, . . . , an are i.i.d.
Rademacher random variables. Let ε ∈ (0, 1). For any t ≥ 0, there exist positive
constants c1, and c2 such that if (15) is satisfied, then we have

E
∥∥∥θ̂ − θ\∥∥∥

2
≤ t+ 2

√
2π σmax

ω1(Fg(θ\) \ tB)

(1− ε)
√
n

, (17)

with probability at least 1 − exp(c2ε
2n) > 1/2 when n is large enough, where

σmax := maxi
√

var yi is bounded above by a constant independent of n.

To the best of our knowledge, there are not existing results for `1-constrained
ML regression in GLMs. Here we compare Corollary 6.2 with [20], which pro-
vides an error bound for `1-penalized ML estimators in GLMs . Recall that,
however, the correspondence between the constrained and penalized estimators
is currently unclear. When the constraint is matched and θ\ is s-sparse, Corol-
lary 6.2 states that when n = Ω(s log(p/s)),

E
∥∥∥θ̂ − θ\∥∥∥

2
= O

(√
s

n
log
(p
s

))
by Proposition 3.10 in [8], which essentially coincides with Corollary 5 in [20]1.
We note that [20] only provides an error bound for the `1-penalization case.

7 Sharpness of Our Error Bound

It has been shown that in a Gaussian linear model with G being an `1-ball, any
estimator θ̂arbitrary must satisfy, with probability larger than 1/2,

max
θ\∈G

∥∥∥θ̂arbitrary − θ\
∥∥∥

2
= Ω(n−1/4),

under some technical conditions [31]. Now we show our error bound for the
Lasso in Corollary 6.1 actually achieves the error decaying rate O(n−1/4) in the
mismatched constraint case, and hence cannot be essentially improved.

By the definition of the Gaussian width, we have, for any t > 0,

ω1

(
Fg(θ\) \ tB

)
=
ωt

(
Fg(θ\) \ tB

)
t

=
ωt
(
Fg(θ\)

)
t

,

1We cite [20] instead of the published version [21], because the estimation error bound only
appears in [20].
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and hence the estimation error bound in Corollary 16 can be written as

E
∥∥∥θ̂ − θ\∥∥∥

2
≤ t+

C

t

ωt(Fg(θ\))√
n

, (18)

for some C > 0, when n is large enough such that (15) is satisfied.
Define the global Gaussian width:

ω(Fg(θ\)) := E sup
v∈Fg(θ\)

{〈h, x〉} ,

where h ∈ Rp is a vector of i.i.d. standard Gaussian random variables. By defi-
nition, ωt(Fg(θ\)) is bounded above by ω(Fg(θ\)), independent of n. Replacing
ωt(Fg(θ\)) by ω(Fg(θ\)) in (18), we have a looser error upper bound:

E
∥∥∥θ̂ − θ\∥∥∥

2
≤ t+

C

t

ω(Fg(θ\))√
n

,

Minimizing this bound over all t > 0, we obtain the O(n−1/4) error decaying
rate. Similar discussion can be found in [27].

8 Discussion

Note that by the elementary argument in Section 3, we arrive at an estimation
error bound (12) that holds surely. It is possible to derive a concentration-type
error guarantee based on this sure error bound, which we are working on.

Our framework is not restricted to constraint sets of the form (1); it applies to
any non-empty closed convex set G, as we only require ιG(·) to be proper closed
convex in the proof. This observation is crucial to applying our framework to
analyze constrained estimators for quantum tomography [10, 12] and photon-
limited imaging systems [29], which we are studying.

In this paper, we consider a random matrix A, and discuss the expected esti-
mation error with respect to both A and the sample (y1, . . . , yn). The extension
to the the case where A is deterministic is technically non-trivial, and we have
not obtained a satisfactory result. We address this in the remark following the
proof of Theorem 4.1 in the appendix.
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A Proof of Proposition 3.1

We have 〈
∇fn(θ\ + e)−∇fn(θ\), e

〉
=

∫ 1

0

〈
e,∇2fn(θ\ + λe)e

〉
dλ.

The right-hand side is always larger than µ ‖e‖22 by assumption.

B Proof of Theorem 4.1

The main goal of the proof is to evaluate E
∥∥∥ΠFg(θ\)

(
−∇fn(θ\)

)∥∥∥
2
. Here the

expectation is with respect to both A and the sample (yi)i=1,...,n.
We start with an equivalent formulation:

E
∥∥∥ΠFg(θ\)

(
−∇fn(θ\)

)∥∥∥
2

= E sup
v∈Fg(θ\)∩Sp−1

{〈
−∇fn(θ\), v

〉}
, (19)

where Sp−1 denotes the unit `2-sphere in Rp. It is well known that in a canonical
GLM, we have

∇fn(θ\) = − 1

n
AT ε, (20)

where ε := (yi − E yi)i=1,...,n, and hence

E
∥∥∥ΠFg(θ\)

(
−∇fn(θ\)

)∥∥∥
2

=
1

n
E sup
v∈Fg(θ\)∩Sp−1

{〈
AT ε, v

〉}
.

To proceed, we need the following symmetrization inequality. The sym-
metrization inequality is different from the well-known symmetrization inequal-
ity by a Rademacher process, so we show it here for completeness.

Lemma B.1 ([36]). Let ξ1, . . . , ξn be independent real-valued random variables,
and let F be a class of real functions. We have

E sup
f∈F

{
n∑
i=1

[f(ξi)− E f(ξi)]

}
≤
√

2π E sup
f∈F

{
n∑
i=1

hif(ξi)

}
,

where h1, . . . , hn are i.i.d. standard Gaussian random variables.

Remark. In [36], the lemma is stated for the case when ξ1, . . . , ξn are i.i.d. The
case when ξ1, . . . , ξn are not necessarily identical can be proved in a similar way,
as noted in [28].

By Lemma B.1, we have

E sup
v∈Fg(θ\)∩Sp−1

{〈
AT ε, v

〉}
= E sup

v∈Fg(θ\)∩Sp−1

{〈ε,Av〉}

≤
√

2π E sup
v∈Fg(θ\)∩Sp−1

{〈h · ε,Av〉} ,
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where h · ε := (hiεi)i=1,...,n, and h1, . . . , hn are i.i.d. standard Gaussian random
variables. Note that h · ε is a random Gaussian vector with zero mean and
covariance matrix Σ ∈ Rn×n which is dependent on A in general; moreover,
since the entries in ε are independent, Σ is a diagonal matrix with diagonal

entries given by Σi,i := var yi. Define h̃ := (h̃i)i=1,...,n, where h̃i := Σ
−1/2
i,i hiεi.

Then h̃ is a vector of i.i.d. standard Gaussian random variables; furthermore,
it is still a vector of i.i.d. standard Gaussian random variables condition on A,
and hence it is statistically independent of A.

Since h · ε and
√

Σh̃ have the same probability distribution, we can write

E sup
v∈Fg(θ\)∩Sp−1

{〈h · ε,Av〉} = E sup
v∈Fg(θ\)∩Sp−1

{〈√
Σh̃, Av

〉}
.

Let T := Fg(θ\) ∩ Sp−1. Condition on any given A (and hence Σ), we consider
two mean-zero Gaussian processes {Xt}t∈T and {Yt}t∈T defined as

Xt :=
〈√

Σh̃, At
〉
, Yt := σmax

〈
h̃, At

〉
,

where σmax := maxi Σi,i = maxi
√

var εi. We have, for any t1, t2 ∈ T ,

E |Xt1 −Xt2 |
2

= ‖ΣA(t1 − t2)‖22 ≤ σ
2
max ‖A(t1 − t2)‖22 = E |Yt1 − Yt2 |

2
.

By Slepian’s lemma, this implies

E sup
t∈T

Xt ≤ E sup
t∈T

Yt.

Since the inequality holds given any realization of A, we have

E sup
v∈Fg(θ\)∩Sp−1

{〈
AT ε, v

〉}
≤
√

2π σmax E sup
v∈Fg(θ\)∩Sp−1

{〈
h̃, Av

〉}
=
√

2π σmax E sup
v∈Fg(θ\)∩Sp−1

{〈
AT h̃, v

〉}
.

It remains to prove

E sup
v∈Fg(θ\)∩Sp−1

{〈
AT h̃, v

〉}
≤
√
nω1(Fg(θ\)) :=

√
nE sup

v∈Fg(θ\)∩Sp−1

{〈
h̃, v
〉}

.

(21)
We consider two cases:

Case 1: If A has i.i.d. standard Gaussian entries, then condition on h̃, AT h̃ is

a vector of mean-zero Gaussian random variables with covariance matrix
∥∥∥h̃∥∥∥

2
I,

and hence has the same probablity distribution as
∥∥∥h̃∥∥∥ h̄, where h̄ is a vector of

13



i.i.d. standard Gaussian random variables independent of h̃. Therefore,

E sup
v∈Fg(θ\)∩Sp−1

{〈
AT h̃, v

〉}
= E sup

v∈Fg(θ\)∩Sp−1

{〈∥∥∥h̃∥∥∥ h̄, v〉}
=
(
Eh̃
∥∥∥h̃∥∥∥

2

)
Eh̄ sup

v∈Fg(θ\)∩Sp−1

{〈
h̄, v
〉}

≤
√
nω1(Fg(θ\)).

Case 2: If A has i.i.d. Rademacher entries, then condition on A, AT h̃ is a
vector of mean-zero Gaussian random variables with covariance matrix nI, and
hence has the same probability distribution as

√
nh̄, where h̄ is a vector of i.i.d.

standard Gaussian random variables. Therefore,

E sup
v∈Fg(θ\)∩Sp−1

{〈
AT h̃, v

〉}
= E sup

v∈Fg(θ\)∩Sp−1

{〈√
nh̄, v

〉}
=
√
nω1(Fg(θ\)).

In summary, we obtain

E
∥∥∥ΠFg(θ\)

(−∇fn(θ\))
∥∥∥

2
≤
√

2π σmax
ω1(Fg(θ\))√

n
,

if the entries of A are i.i.d. standard Gaussian or Rademacher random variables,
for a canonical GLM, where the expectation is with respect to both A and the
sample (yi)i=1,...,n.

Let E denote that event that the RSC condition holds. Then we have

E
∥∥∥ΠFg(θ\)

(−∇fn(θ\))
∥∥∥

2
=P(E)EA,(yi)|E

∥∥∥ΠFg(θ\)
(−∇fn(θ\))

∥∥∥
2

+ P(EC)EA,(yi)|EC
∥∥∥ΠFg(θ\)

(−∇fn(θ\))
∥∥∥

2
,

and hence

EA,(yi)|E
∥∥∥ΠFg(θ\)

(−∇fn(θ\))
∥∥∥

2
≤

E
∥∥∥ΠFg(θ\)

(−∇fn(θ\))
∥∥∥

2

P(E)

≤ 2E
∥∥∥ΠFg(θ\)

(−∇fn(θ\))
∥∥∥

2
,

where we applied the assumption that P(E) ≥ 1/2. By Lemma 3.2, this implies

EA,ε|E
∥∥∥θ̂ − θ\∥∥∥

2
≤ 1

µ
EA,(yi)|E

∥∥∥ΠFg(θ\)
(−∇fn(θ\))

∥∥∥
2

≤ 2
√

2π σmax
ω1(Fg(θ\))

µ
√
n

.

This completes the proof.
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Remark. If we want to adapt this proof to the deterministic A case, a technical
issue arises when bounding the right-hand side of (21). As the random process{
X̃v :=

〈
h̃, v
〉}

v∈V
, where V := Fg(θ\)∩Sp−1, is a mean-zero Gaussian process,

a standard approach is to bound supv∈V X̃v by Slepian’s lemma. Note that, for
any v1, v2 ∈ V,

E
∣∣∣X̃v1 − X̃v2

∣∣∣2 = ‖A(v1 − v2)‖22 ,

and hence an upper-bound on E
∣∣∣X̃v1 − X̃v2

∣∣∣2 would depend on the largest

eigenvalue of A. The largest eigenvalue of A, however, cannot be bounded above
by a constant independent of n under the high-dimensional setting. Although
we can weaken the requirement on A to a restricted smoothness condition as

‖Av‖2 ≤
√

1 + ε ‖v‖2 , for all v ∈ Fg(θ\) ∩ Sp−1,

which, by Theorem E.1, holds with high probability. This condition does not
imply

‖A(v1 − v2)‖22 ≤ C ‖v1 − v2‖22 ,

for some dimension-independent constant C > 0, for all v1, v2 ∈ V.

C Proof of Lemma 5.1

Let e := θ̂−θ\. If e ∈ Fg(θ\)\ tB, following the proof of Theorem 4.1, we obtain

‖e‖2 ≤
1

µ

∥∥∥ΠFg(θ\)\tB
(
−∇fn(θ\)

)∥∥∥
2
,

where Fg(θ\) \ tB denotes the conic hull of Fg(θ\) \ tB. If e ∈ tB, we have the
näıve bound: ‖e‖2 ≤ t. Therefore,

‖e‖2 ≤ max

{
t,

1

µ

∥∥∥ΠFg(θ\)\tB
(
−∇fn(θ\)

)∥∥∥
2

}
≤ t+

1

µ

∥∥∥ΠFg(θ\)\tB
(
−∇fn(θ\)

)∥∥∥
2
.

The lemma follows by taking expectations on both sides.

D Proof of Corollary 5.2

Let e := θ̂ − θ\. If e ∈ Fg(θ\) \ tB, following the proof of Theorem 4.1, we can
obtain

E ‖e‖2 ≤ 2
√

2π σmax
ω1(Fg(θ\) \ tB)

µ
√
n

;
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otherwise, we can bound the expected estimation error from above by t. There-
fore,

E ‖e‖2 ≤ max

{
t, 2
√

2π σmax
ω1(Fg(θ\) \ tB)

µ
√
n

}

≤ t+ 2
√

2π σmax
ω1(Fg(θ\) \ tB)

µ
√
n

.

E Proof of Corollary 6.1 and Corollary 6.2

The proofs in this section rely on the following theorem [19].

Theorem E.1 ([19]). Let T ⊆ Rp be star-shaped. Let A ∈ Rn×p, n < p,
whose rows are i.i.d. isotropic subgaussian random vectors with subgaussian
norm α ≥ 1, and let ε ∈ (0, 1). Then there exist constants c1 and c2 such that
for all x ∈ T satisfying

‖x‖2 ≥ γ
∗
n

(
ε

c1α2
, T
)

:= inf

{
t > 0 : t ≥ c1α

2ωt(T )

ε
√
n

}
, (22)

we have

(1− ε) ‖x‖22 ≤
‖Ax‖22
n

≤ (1 + ε) ‖x‖22

with probability at least 1− exp
(
−c2ε2n/α4

)
.

We note that the sub-Gaussian norm of a vector of i.i.d. standard Gaussian
entries or i.i.d. Rademacher entries is bounded above by a constant [37].

E.1 Proof of Corollary 6.1

We prove by Corollary 5.2.
Let A be defined as in Theorem 4.1. We verify the condition (14) by Theorem

E.1. Since ωt(Fg(θ\) \ tB) = tω1(Fg(θ\) \ tB), the condition (22) is equivalent
to requiring

√
n ≥ c1α

2ω1(Fg(θ\) \ tB)

ε
.

Once this inequality is satisfied, we can set µ = 1−ε, and the condition (14) hold
with probability at least 1 − exp

(
−c2ε2n/α4

)
. Note that σmax =

√
Ew2

i = σ.
This completes the proof.

E.2 Proof of Corollary 6.2

We prove the corollary by Corollary 5.2.
It is known that

∇2fn(θ) =
1

n
ATD(θ)A
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for the ML estimator in a canonical GLM, where A is defined as in Theorem 4.1,
and D(θ) is a diagonal matrix; furthermore, there exists a continuous strictly
positive function φ such that the (i, i)-th entry of D(θ) is given by φ(〈ai, θ〉).
Since the entries of A are i.i.d. Rademacher random variables, for any θ ∈ G,

|〈ai, θ〉| ≤ ‖ai‖∞ ‖θ‖1 ≤ c.

By the extreme value theorem, the diagonal entries of D(θ) are bounded below
by a constant ν > 0 for all θ ∈ G, which is independent of n. Similarly, σmax is
bounded above by a constant independent of n.

The rest of the proof is similar to the last paragraph in the previous sub-
section. By Theorem E.1, if we choose n such that

√
n ≥ cα2ω1(Fg(θ\) \ tB)

ε
,

then the condition (14) holds with probability at least 1−exp
(
−c2ε2n/α4

)
with

µ = ν(1− ε).

References

[1] F. Bach, “Learning with submodular functions: A convex optimization perspec-
tive,” Found. Trends Mach. Learn., vol. 6, no. 2–3, pp. 145–373, 2013.

[2] A. Banerjee, S. Chen, F. Fazayeli, and V. Sivakumar, “Estimation with norm
regularization,” 2015, arXiv:1505.02294v1 [stat.ML].

[3] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for
linear inverse problems,” SIAM J. Imaging Sci., vol. 2, no. 1, pp. 183–202, 2009.

[4] P. Bickel, Y. Ritov, and A. B. Tsybakov, “Simultaneous analysis of Lasso and
Dantzig selector,” Ann. Stat., vol. 37, no. 4, pp. 1705–1732, 2009.
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