
A Geometric View on Constrained M -Estimators

Yen-Huan Li YEN-HUAN.LI@EPFL.CH
Ya-Ping Hsieh YA-PING.HSIEH@EPFL.CH
Volkan Cevher VOLKAN.CEVHER@EPFL.CH
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Abstract

We study the estimation error of constrained M -
estimators from a geometric perspective. We
present a novel general geometric framework for
analyzing constrained M -estimators, and show
how this geometric framework leads to explicit
upper bounds on the expected estimation error
determined by the (squared) Gaussian complex-
ity of the constraint set. We study the cases where
the true parameter is on the boundary of the con-
straint set (matched constraint), and where the
true parameter is strictly in the constraint set
(mismatched constraint). For both cases, we de-
rive novel universal bounds for regression in a
generalized linear model with the canonical link
function.

1. Introduction and Problem Formulation
We consider constrained M -estimators of the form

θ̂ ∈ arg min
θ∈Rp

{fn(θ) : θ ∈ G} , (1)

where fn is some continuously differentiable convex func-
tion, and G ⊆ Rp is a compact convex set given by

G := {θ ∈ Rp : g(θ) ≤ c} (2)

with some continuous convex function g and some constant
c > 0. For example, if we choose

fn(θ) :=
1

2n

n∑
i=1

(yi − 〈ai, θ〉)2 , (3)

g(θ) := ‖θ‖1 ,

for some given y1, . . . , yn ∈ R and a1, . . . , an ∈ Rp, the
estimator θ̂ corresponds to the famous Lasso proposed in
(Tibshirani, 1996). We may also consider each θ ∈ Rp as
the vectorization of a corresponding matrix Θ ∈ Rd×d with

d2 = p. If we choose

fn(Θ) :=
1

2n

n∑
i=1

(
y1 − Tr

(
ATi Θ

))2
,

g(Θ) := ‖Θ‖∗ ,

for some given y1, . . . , yn ∈ R and A1, . . . , An ∈ Rd×d,
where ‖·‖∗ denotes the nuclear norm, the estimator θ̂ corre-
sponds to the estimator proposed in (Davenport et al., 2014;
Flammia et al., 2012; Gunasekar et al., 2014) for noisy ma-
trix completion and compressive quantum tomography. In
general, fn can be the normalized negative log-likelihood
function, or any properly defined function; g is usually de-
signed to match the a priori information on the structure of
the true parameter θ\ (Bach, 2013; Chandrasekaran et al.,
2012; El Halabi & Cevher, 2015).

For convenience, we define ιg : Rp → R ∪ {+∞} as the
indicator function of the set

{
θ : g(θ) ≤ g(θ\)

}
; that is

ιg(θ) :=

{
0 , g(θ) ≤ c
+∞ , otherwise .

Then θ̂ has an equivalent definition:

θ̂ ∈ arg min
θ∈Rp

{fn(θ) + ιg(θ)} ;

that is, θ̂ can be viewed as a regularized M -estimator with
the regularization function ιg . Note that ιg is by definition
a proper closed convex function. If we choose c = g(θ\) in
(2), then

∂ιg(θ
\) = cone

(
∂g(θ\)

)
. (4)

In general ∂ιg(θ\) is always a closed convex cone.

In this paper, we study the estimation error of such con-
strained M -estimators from a geometric perspective, under
the high-dimensional setting where n < p.

2. Related Works and Our Contribution
The estimation error of constrained estimators had been
studied in various ways (Chatterjee, 2014; Oymak et al.,
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2013a;b; Plan & Vershynin, 2013; Plan et al., 2014; Ver-
shynin, 2014). The work (Chatterjee, 2014) studies the
constrained least squares estimator for estimating the mean
of a Gaussian process under constraint, and provides a
concentration inequality for the estimation error. In (Oy-
mak et al., 2013a;b), the authors derived very sharp error
bounds for the estimation error for regression in the Gaus-
sian linear model. However, the approaches in (Chatterjee,
2014; Oymak et al., 2013a;b) are not obviously extendable
to non-linear statistical models, e.g., the logistic regression
model. The constrained M -estimator for sparse logistic re-
gression was analyzed in (Plan & Vershynin, 2013), but the
estimator is not the popular maximum-likelihood estima-
tor and requires knowledge of the sparsity level of the true
parameter. The analysis in (Vershynin, 2014) is minimax
in essence, and hence the error bound can be very loose
for most of the cases; moreover, the framework is only for
the Gaussian linear model, as it is based on ideas similar
to Dvoretzky’s theorem. In (Plan et al., 2014), the authors
proposed a universal estimator for possibly non-linear sta-
tistical models, and derived a universal error bound for the
proposed estimator. However, the analysis in (Plan et al.,
2014) is specific to the proposed estimator. In general,
even the error performance of the very common maximum-
likelihood approach is unclear, to the best of our knowl-
edge.

We summarize our contributions as follows.

• We propose a general geometric framework for ana-
lyzing an arbitrarily given constrainedM -estimator in
Section 3.

• Based on the geometric framework, we derive univer-
sal error bounds for constrained maximum-likelihood
estimators in generalized linear models in Section 4
and Section 5.

• We identify an interesting coincidence between our
result and the result in (Plan et al., 2014) in Sec-
tion 5 and Section 6.3, though the estimator consid-
ered in (Plan et al., 2014) is very different from the
maximum-likelihood estimator in general.

By the theory of Lagrange duality, there exists some ρn >
0 such that the constrained estimator given in (1) is equiva-
lent to the regularized estimator

θ̂regularized ∈ arg min
θ∈Rp

{fn(θ) + ρng(θ)} ,

which is also closely related to basis pursuit-like estima-
tors in (Chandrasekaran et al., 2012). We show in Section
6 that our derived error bounds are actually compatible to
those derived in (Bickel et al., 2009; Bühlmann & van de
Geer, 2011; Chandrasekaran et al., 2012; Negahban et al.,

2012; Honorio & Jaakkola, 2014; Kakade et al., 2010) for
regularized and basis pursuit-like estimators in Section 6.

3. A Geometric Framework
3.1. Basic Idea

To illustrate the basic idea of the geometric framework, let
us start with a simple setting, where fn is strongly convex
with parameter µ > 0. Note that then θ̂ is uniquely defined.

By the optimality condition of θ̂, we have

0 ∈ ∇fn(θ̂) + ∂ιg(θ̂).

By the strong convexity of fn, we have〈
∇fn(θ̂)−∇fn(θ\), θ̂ − θ\

〉
≥ µ

∥∥∥θ̂ − θ\∥∥∥2
2
. (5)

By the convexity of ιg , we have〈
ẑ − z\, θ̂ − θ\

〉
≥ 0, (6)

for any ẑ ∈ ∂ιg(θ̂), and any z\ ∈ ∂ιg(θ\). Summing up (5)
and (6), we obtain〈
∇fn(θ̂) + ẑ −∇fn(θ\)− z\, θ̂ − θ\

〉
≥ µ

∥∥∥θ̂ − θ\∥∥∥2
2
,

for any ẑ ∈ ∂ιg(θ̂), and any z\ ∈ ∂ιg(θ
\). By the opti-

mality condition, there exists some ẑ ∈ ∂ιg(θ̂) such that
∇fn(θ̂) + ẑ = 0, and hence we have〈

−∇fn(θ\)− z\, θ̂ − θ\
〉
≥ µ

∥∥∥θ̂ − θ\∥∥∥2
2
,

for any z\ ∈ ∂ιg(θ
\). Since ∂ιg(θ\) is always a closed

convex cone, we may choose z\ = 0 and obtain〈
−∇fn(θ\), θ̂ − θ\

〉
≥ µ

∥∥∥θ̂ − θ\∥∥∥2
2
. (7)

Applying the Cauchy-Schwarz inequality to the left-hand
side, we obtain∥∥∇fn(θ\)

∥∥
2

∥∥∥θ̂ − θ\∥∥∥
2
≥ µ

∥∥∥θ̂ − θ\∥∥∥2
2
,

or ∥∥∥θ̂ − θ\∥∥∥
2
≤ 1

µ

∥∥∇fn(θ\)
∥∥
2
. (8)

Taking expectations on both sides, we immediately obtain
the following estimation error bound:

E
∥∥∥θ̂ − θ\∥∥∥

2
≤ 1

µ
E
∥∥∇fn(θ\)

∥∥
2
. (9)

The gradient at the true parameter ∇fn(θ\) usually con-
centrates around 0 with high probability.

The simple error bound (9) is not desirable for two reasons:
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1. In the high-dimensional setting where n < p, usually
we do not have strong convexity of fn.

2. The simple error bound does not depend on the choice
of g.

We address the first issue in Section 3.2, and the second
issue in Section 3.3.

3.2. Restricted Strong Convexity

Note that in order to facilitate the arguments in the previous
sub-section, we only require (5) to hold for θ̂ and θ\, instead
of any two vectors in Rp. Therefore, we only need fn to
satisfy some restricted notion of strong convexity.

Definition 3.1 (Feasible Set and Feasible Cone). The fea-
sible set of g at θ\, denoted by Fg(θ\), is given by

Fg(θ\) := G − θ\.

The feasible cone of g at θ\, denoted by Fg(θ\), is defined
as the conic hull of Fg(θ\).

By the definition of θ̂, the estimation error must satisfy θ̂−
θ\ ∈ Fg(θ\).

Definition 3.2 (Restricted Strong Convexity). The function
fn satisfies the restricted strong convexity (RSC) condition
with parameter µ > 0 if〈

∇fn(θ\ + e)−∇fn(θ\), e
〉
≥ µ ‖e‖22 , (10)

for any e ∈ Fg(θ\).

If fn is twice continuously differentiable, we have another
characterization.

Proposition 3.1. The function fn satisfies the RSC condi-
tion with parameter µ > 0 if〈

e,∇2fn(θ\ + λe)e
〉
≥ µ ‖e‖22 ,

for all λ ∈ [0, 1] and all e ∈ Fg(θ\).

Proof. We have〈
∇fn(θ\ + e)−∇fn(θ\), e

〉
=

∫ 1

0

〈
e,∇2fn(θ\ + λe)e

〉
dλ.

The right-hand side is always larger than µ ‖e‖22 by as-
sumption.

The uniqueness of θ̂ and the derivation of the error bound
in Section 3.1 are still valid even when n < p, as long as
fn satisfies the RSC condition with some parameter µ > 0.

3.3. Refined Error Bound

We address the dependence of the estimation error on the
choice of g, and derive a refined error bound in this sub-
section.

We note that〈
−∇fn(θ\), θ̂ − θ\

〉
=
∥∥∥Π

θ̂−θ\
(
−∇fn(θ\)

)∥∥∥
2

∥∥∥θ̂ − θ\∥∥∥
2
,

where Π
θ̂−θ\

(·) denotes the projection onto the conic hull

of
{
θ̂ − θ\

}
(which is a half-line). This implies, by (7),∥∥∥Π
θ̂−θ\

(
−∇fn(θ\)

)∥∥∥
2
≥ µ

∥∥∥θ̂ − θ\∥∥∥
2
.

The left-hand side, however, is not tractable due to its de-
pendence on θ̂, so we use a looser bound:

sup
e∈Fg(θ\)

{∥∥Πe

(
−∇fn(θ\)

)∥∥
2

}
≥ µ

∥∥∥θ̂ − θ\∥∥∥
2
,

where Πe(·) denotes the projection onto the conic hull
of {e}. The left-hand side is simply the projection of
−∇fn(θ\) onto the feasible cone Fg(θ\). Taking expec-
tations on both sides, we obtain the following lemma.
Lemma 3.2. Assume that fn satisfies the RSC condition
with parameter µ > 0. Then θ̂ is uniquely defined, and
satisfies

E
∥∥∥θ̂ − θ\∥∥∥

2
≤ 1

µ
E
∥∥∥ΠFg(θ\)

(−∇fn(θ\))
∥∥∥
2
.

Since −∇fn(θ\) is a descent direction of fn, if its direc-
tion is coherent with the feasible cone Fg(θ\), we may find
some point θ̂′ far away from θ\ in the feasible set Fg(θ\)
such that fn(θ̂′) is much smaller than fn(θ\), and hence
the estimation error can be large. This provides an intuitive
interpretation of the lemma.

Since projection onto a closed convex set is a non-
expansive mapping, we have∥∥∥ΠFg(θ\)

(−∇fn(θ\))
∥∥∥
2
≤
∥∥∇fn(θ\)

∥∥
2
,

so the error bound is always no larger than the one in Sec-
tion 3.1.

Lemma 3.2 is the theoretical foundation of the rest of this
paper. We shall show, based on Lemma 3.2, that the
error bound is closely related to the Gaussian squared-
complexity of the feasible cone in the next section.

4. Estimation Error Bound in Terms of the
Gaussian Squared Complexity

When applying Lemma 3.2 to constrained maximum-
likelihood (ML) estimators in a generalized linear model
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(GLM) with the canonical link function, we obtain a uni-
versal error bound in terms of the Gaussian squared com-
plexity, valid for all such GLMs. Examples of a GLM with
the canonical link function include Gaussian linear regres-
sion, logistic regression, and Poisson regression.

Let θ\ ∈ Rp be the parameter to be estimated, or the un-
known vector of regression coefficients. In a GLM with
the canonical link function, the negative log-likelihood of a
sample y, given θ\, is of the form (up to scaling and shifting
by some constants)

`(y; θ\) = y
〈
ai, θ

\
〉
− b(

〈
ai, θ

\
〉
),

where a1, . . . , an ∈ Rp are given, and we assume that b
is some given concave function. Let y1, . . . , yn ∈ Rp be
the samples. The constrained ML estimator is given by (1)
with

fn(θ) :=
1

n

n∑
i=1

`(yi, θ), (11)

and g being some continuous convex function. For simplic-
ity, we consider the case where c = g(θ\) in this section;
we address the case where c > g(θ\), i.e., where we only
have a upper bound on the value of g(θ\), in Section 5.

The following theorem is by a direct application of Lemma
3.2.

Theorem 4.1. Consider the constrained M -estimator de-
fined by (1) with c = g(θ̂). Assume that fn satisfies the
RSC condition with parameter µ > 0, and

sup
θ∈Fg(θ\)

∥∥∥∥ A√
n
θ

∥∥∥∥
2

≤
√
L ‖θ‖2 , (12)

for some L > 0, where the i-th row of A ∈ Rn×p is given
by ai. Then

E
∥∥∥θ̂ − θ\∥∥∥

2
≤

√
LΩ

(
AFg(θ\)

)
µ
√
n

,

where

Ω
(
AFg(θ\)

)
:= E sup

v∈(AFg(θ\))∩Sn−1

{〈ε, v〉}

with ε := (y1 − E y1, . . . , yn − E yn).

If ε is a sequence of independent identically distributed
(i.i.d.) Rademacher random variables, the quantity
Ω
(
AFg(θ\)

)
is the Rademacher complexity for the func-

tion class

F :=
{
〈e, ·〉 : e ∈ AFg(θ\) ∩ Sn−1

}
,

given A; if ε is a sequence of i.i.d. standard Gaussian ran-
dom variables, the quantity Ω

(
AFg(θ\)

)
corresponds to

the Gaussian complexity of F givenA (Bartlett & Mendel-
son, 2002).

However, two issues appear:

1. The entries in ε are in general independent but
not necessarily identically distributed, so the quan-
tity Ω

(
AFg(θ\)

)
is not obviously related to the

Rademacher and Gaussian complexities.

2. There do not exist known results for the value
of Ω

(
AFg(θ\)

)
for commonly used regularization

functions, such as the `1-norm and the nuclear norm
discussed in Section 1.

The following corollary provides a simple error bound in
terms of the well-studied Gaussian squared-complexity of
the feasible cone Fg(θ\).

Definition 4.1 (Gaussian Squared-Complexity (Chan-
drasekaran & Jordan, 2013)). The Gaussian squared-
complexity of a set C ⊆ Rp is given by

ωt(C) := E sup
v∈C∩tSp−1

{
〈h, v〉2

}
,

for any t ≥ 0, where the entries of h ∈ Rp are i.i.d. stan-
dard Gaussian random variables.

Corollary 4.2. Under the same assumptions as in Theorem
4.1, we have

E
∥∥∥θ̂ − θ\∥∥∥

2
≤ C1/2

max

(
L

µ

)√√√√2π ω1

(
Fg(θ\)

)
n

,

where Cmax := maxi
{
E y2i

}
.

The feasible cone Fg(θ\) coincides with the tangent cone
of g at θ\ defined in (Chandrasekaran et al., 2012). There-
fore, to evaluate the estimation error bound, we only need
to evaluate the Gaussian squared-complextiy of the corre-
sponding tangent cone. We note that there are already many
results for a variety of commonly used regularization func-
tions (Cai & Xu, 2013; Foygel & Mackey, 2014; Chan-
drasekaran et al., 2012; Plan & Vershynin, 2013; Rao et al.,
2012; Vershynin, 2014)1.

1In some of the cited works, the authors focus on the Gaussian
width, denoted by `t (cf. Definition 5.1), instead of the conic
Gaussian squared complexity of the feasible cone. We note that
the cited works always upper-bounded the conic Gaussian width
by

`t(Fg(θ\)) ≤
√
ωt(Fg(θ\)),

based on Jensen’s inequality. Therefore, we can find upper bounds
on the Gaussian squared complexities in the cited works.
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5. Effect of a Mismatched Constraint
We call the constraint set G mismatched if c > g(θ\) in (2).
The case where c = g(θ\) has been discussed in Section 4.
If c < g(θ\), the estimation error is always lower bounded
by the distance between θ\ and G, a constant; therefore, the
estimation error will not converge to zero with increasing
number of samples n. In this section, we discuss the effect
of a mismatched constraint for ML regression in a GLM
with the canonical link function.

The notion of RSC in Definition 3.2 is no longer useful
when the constraint set is mismatched. Take ML regression
in the Gaussian linear model for example, for which the
corresponding fn is given by (3). LetA ∈ Rn×p be defined
as in Theorem 4.1. By direct calculations, we get

∇fn(θ) = − 1

n
AT (y −Ax).

To have the RSC condition hold true, we need〈
∇fn(θ\ + e)−∇fn(θ\), e

〉
=

1

n
‖Ae‖22 ≥ µ ‖e‖

2
2 ,

for some µ > 0 and all e ∈ Fg(θ\). Since when the con-
straint is mismatched, Fg(θ\) can be the whole space Rp,
the RSC condition holds if and only if A is a non-singular
matrix. This cannot be true in the high-dimensional setting,
where n < p.

Our Approach: Let t > 0 and denote by B the unit `2-ball
in Rp. We partition the feasible set Fg(θ\) as

Fg(θ\) = tB ∪ (Fg(θ\) \ tB).

When t is large enough, the conic hull of (Fg(θ\) \ tB)
will not be the whole space Rp, so we may have restricted
strong convexity on (Fg(θ\) \ tB) when n < p. If the error
vector θ̂ − θ\ lies in (Fg(θ\) \ tB), we can obtain an error
bound, say, t̃, as in Section 4; otherwise, if the error vector
lies in Bt, a naı̈ve error bound is the radius of the ball t.
Finally, we can bound the estimation error above by the
maximum of t̃ and t. Note that t̃ is implicitly dependent on
t.

The arguments in the previous paragraph can be made pre-
cise as in Lemma 5.1, which is an analogue of Lemma 3.2
in the mismatched case.

Lemma 5.1. Suppose that for some t > 0, we have〈
∇fn(θ\ + e)−∇fn(θ\), e

〉
≥ µ ‖e‖22 , (13)

for some µ > 0 and all e ∈ Fg(θ\) \ tB. Then

E
∥∥∥θ̂ − θ\∥∥∥

2
≤ t+ E

∥∥∥ΠFg(θ\)\tB
(
−∇fn(θ\)

)∥∥∥
2
.

Similarly, we can prove an analogue of Corollary 4.2 for
ML regression in a GLM with the canonical link function.

Corollary 5.2. Consider the constrained M -estimator de-
fined by (1) with c > g(θ\). LetA be defined as in Theorem
4.1 and let t > 0. Suppose that (13) holds true with some
µ > 0, and A satisfies

sup
e∈Fg(θ\)\tB

∥∥∥∥ A√
n
e

∥∥∥∥
2

≤
√
L ‖e‖2 , (14)

with some L > 0. Then we have

E
∥∥∥θ̂ − θ\∥∥∥

2
≤ t+

C
1/2
max

t

(
L

µ

)√
2π ωt (Fg(θ\))

n
,

where Cmax is defined as in Corollary 4.2.

Due to space limit, we put the proofs of Lemma 5.1 and
Corollary 5.2 in the supplementary material. Conceptu-
ally the proofs are similar to the proofs of Lemma 3.2 and
Corollary 4.2, respectively.

We compare Corollary 5.2 with the result in (Plan et al.,
2014). Ignoring the constants, our result is of the form

E
∥∥∥θ̂ − θ\∥∥∥

2
≤ t+ C

√
ωt(Fg(θ\))
t
√
n

,

for some constant C > 0 and all t such that (13) and
(14) hold. In (Plan et al., 2014), a universal estimator for
a very general statistical model is proposed, where only
yi ∼ P〈ai,θ\〉 is assumed. The error guarantee in (Plan
et al., 2014) is of the form

E
∥∥∥ ˜̂
θ − γθ\

∥∥∥
2
≤ t+ C̃

`t(Fg(θ\))
t
√
n

,

for some other constant C̃ > 0, some scaling parameter γ

and all t > 0, where ˜̂
θ := ΠFg(θ\)

(
AT y

)
, and `t(Fg(θ\))

is the Gaussian width of Fg(θ\). We note that the scaling
parameter γ is unknown as it is dependent on the true pa-

rameter θ\; therefore, the estimator ˜̂
θ can only recover θ\

up to a scale ambiguity.
Definition 5.1 (Gaussian width (Chandrasekaran et al.,
2012; Mendelson et al., 2007; Tropp, 2014)). Let C ⊆ Rp.
The Gaussian width of C is given by

`t(C) := E sup
v∈C∩tSp−1

{〈h, v〉} .

By Jensen’s inequality, we have `t(Fg(θ\)) ≤√
ωt(Fg(θ\)) (Chandrasekaran & Jordan, 2013), and

hence the result in (Plan et al., 2014) implies

E
∥∥∥ ˜̂
θ − γθ\

∥∥∥
2
≤ t+ C̃

√
ωt(Fg(θ\))
t
√
n

.

The only major difference in the two error bounds is that
our result is not for all t > 0. We will discuss the similarity
of our result and the result in (Plan et al., 2014) further in
the next section.
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6. Applications and Discussions
Once the conditions (10), (12), (13), and (14) are verified,
our results Theorem 4.1, Corollary 4.2, and Corollary 5.2
immediately follow. We show how we can verify the con-
ditions for two classes of applications, and compare our
results with existing ones. Finally, we discuss the relation
between our result and the result in (Plan et al., 2014) in a
more precise way.

The discussions in this section rely on the following theo-
rem (Mendelson et al., 2007).

Theorem 6.1 ((Mendelson et al., 2007)). Let T ⊆ Rp
be star-shaped. Let A ∈ Rn×p, n < p, whose rows are
i.i.d. isotropic subgaussian random vectors with subgaus-
sian norm α ≥ 1, and let ε ∈ (0, 1). Then there exist
constants c and c such that for all x ∈ T satisfying

‖x‖2 ≥ γ
∗
n

( ε

cα2
, T
)

:= inf

{
t > 0 : t ≥ cα2`t(T )

ε
√
n

}
,

(15)
we have

(1− ε) ‖x‖22 ≤
‖Ax‖22
n

≤ (1 + ε) ‖x‖22

with probability at least 1− exp
(
−cε2n/α4

)
.

Recall that `t(·) is the Gaussian width defined in Definition
5.1. Examples of an isotropic subgaussian random vector
include a vector of i.i.d. standard Gaussian random vari-
ables, and a vector of i.i.d. Rademacher random variables
(Vershynin, 2012).

6.1. Gaussian Linear Regression with Arbitrary
Constraint Function

Let θ\ ∈ Rp be the unknown vector of regression coeffi-
cients, and let a1, . . . , an ∈ Rp. We are interested in esti-
mating θ\ given a1, . . . , an and

yi =
〈
ai, θ

\
〉

+ wi, i = 1, . . . , n,

where w1, . . . , wn are i.i.d. standard Gaussian random
variables.

We consider constrained least squares (LS) estimators of
the form (1) with fn given by (3), and g can be any con-
tinuous convex function. For simplicity, we consider the
matched constraint case, where c = g(θ\) in (1).

Suppose a1, . . . , an are i.i.d. isotropic subgaussian random
vectors of subgaussian norm α. Set T = Fg(θ\) in Theo-
rem 6.1. Since then `t(Fg(θ\)) = t`1(Fg(θ\)), the condi-
tion (15) is equivalent to requiring

√
n ≥ cα2`1(Fg(θ\))

ε
.

Once this inequality is satisfied, we can set µ = 1 − ε
and L = 1 + ε and the conditions (10) and (12) hold
with probability at least 1 − exp

(
−cε2n/α4

)
. We note

that Ω(AFg(θ\)) = `1(AFg(θ\)) in Theorem 4.1. Further-
more, by Jensen’s inequality and Lemma B.2,

`1(AFg(θ\)) ≤
√
ω1(AFg(θ\)) ≤

√
Lω1(Fg(θ\)).

In conclusion, we obtain the following corollary of Theo-
rem 4.1.

Corollary 6.2. Consider the Gaussian linear regression
model and the corresponding constrained LS estimator de-
scribed in this sub-section. Then there exist constants c and
c̄ such that, if

√
n ≥ cα2`1(Fg(θ\))

ε
, (16)

we have

E
∥∥∥θ̂ − θ\∥∥∥

2
≤
(

1 + ε

1− ε

)√
ω1(Fg(θ\))

n
,

with probability at least 1− exp
(
−cε2n/α4

)
.

This corollary coincides with the results in (Chan-
drasekaran et al., 2012; Oymak et al., 2013a;b) up to some
constant scaling, though the problem formulations and the
estimators considered are not exactly the same. We note
that though our framework is more general, the results in
(Oymak et al., 2013a;b) are sharper in terms of the con-
stants, by exploiting the specific structure of the linear re-
gression model and the loss function fn given by (3).

6.2. ML Regression in a GLM with `1-Norm
Constraint

In this sub-section, we consider a GLM with the canonical
link function as described in Section 4. Let fn be defined
as in (11) and assume that fn is twice continuously differ-
entiable. Then it is known that

∇2fn(θ) =
1

n
ATD(θ)A,

where A is defined as in Theorem 4.1, and D(θ) is a di-
agonal matrix, whose (i, i)-th entry is a continuous func-
tion of the inner product 〈ai, θ〉. We focus on the case
where the constraint set is given by the `1-norm, i.e., G :=
{θ ∈ Rp : ‖θ‖1 ≤ c}. We set c =

∥∥θ\∥∥
1

for simplicity in
(1).

Suppose that the entries ofA are i.i.d. Rademacher random
variables. Then for any θ ∈ G,

|〈ai, θ〉| ≤ ‖ai‖∞ ‖θ‖1 = c,
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and hence the diagonal entries of D(θ) are bounded below
by a constant ν > 0. Similarly, Cmax := maxi

{
E y2i

}
is

also a constant independent of n.

Following the arguments in the previous sub-section and
Proposition 3.1, if we choose n such that (16) is satisfied,
we may choose L = 1 + ε and µ = ν(1 − ε), and the
conditions (10) and (12) hold with probability at least 1 −
exp

(
−cε2n/α4

)
. Then we have the following result by

Corollary 4.2.

Corollary 6.3. Consider the Gaussian linear regression
model and the corresponding `1-constrained ML estima-
tor described in this sub-section. There exist constants c
and c̄ such that, if (16) is satisfied, we have

E
∥∥∥θ̂ − θ\∥∥∥

2
≤ C1/2

max

(
1 + ε

1− ε

)√√√√2π ω1

(
Fg(θ\)

)
ν2n

,

(17)
with probability at least 1− exp

(
−cε2n/α4

)
.

An upper bound of ω1(Fg(θ\)) when g is the `1-norm can
be found in (Chandrasekaran et al., 2012), which says

ω1(Fg(θ\)) ≤ 2s log
(p
s

)
+

5

4
s,

where s denotes the number of non-zero entries in θ\. Ig-
noring the constants, our bound is essentially

E
∥∥∥θ̂ − θ\∥∥∥

2
≤ C

√
s log p

n
,

for some C > 0. This is consistent with the results in
(Bickel et al., 2009; Negahban et al., 2010). Though the es-
timator considered in (Bickel et al., 2009; Negahban et al.,
2010) is the `1-regularized ML estimator, by Lagrange
duality there always exists some regularization coefficient
such that the regularized estimator satisfies the error bound
(17).

6.3. Further Discussions on the Mismatched Case

Consider the setting in Section 6.2 again, and recall the
comparison with (Plan et al., 2014) in the end of Section
5. Let us start by defining the global Gaussian squared
complexity:

ω(Fg(θ\)) := E sup
v∈Fg(θ\)

{
〈h, x〉2

}
,

where h ∈ Rp is a vector of i.i.d. standard Gaussian ran-
dom variables. By definition, ω(Fg(θ\)) ≥ ωt(Fg(θ\)) for
any t > 0, and hence we obtain a looser upper bound for
the estimator in (Plan et al., 2014):

E
∥∥∥ ˜̂
θ − γθ\

∥∥∥ ≤ t+ C̃

√
ω(Fg(θ\))
t
√
n

,

for all t > 0. Note that ω(Fg(θ\)) is a constant and does
not change with n. Optimizing over all possible values of
t, we have

E
∥∥∥ ˜̂
θ − γθ\

∥∥∥
2

= O(n−1/4).

By Theorem 6.1 and replacing ωt(Fg(θ\)) by the upper
bound ω(Fg(θ\)), our result is essentially

E
∥∥∥θ̂ − θ\∥∥∥

2
≤ t+ C

√
ω(Fg(θ\))
t
√
n

,

for all t ≥ r∗n(ε/cα2,Fg(θ\)). Since Fg(θ\) ⊆ 2G by
definition, Lemma 3.4 in (Mendelson et al., 2007) says that

r∗n

( ε

cα2
,Fg(θ\)

)
≤ r∗n

( ε

cα2
, 2G

)
= O(n−1/2);

hence t = O(n−1/4) is allowed and we obtain the same
error decaying rate:

E
∥∥∥θ̂ − θ\∥∥∥

2
= O(n−1/4).

It has been shown that for regression in the Gaussian lin-
ear model with an `1-norm constraint, the decaying rate
O(n−1/4) is optimal in the minimax sense (Raskutti et al.,
2011). See also discussions in Section 4 of (Plan et al.,
2014).

A. Proof of Theorem 4.1
The aim in this proof is to estimate the `2-norm of
ΠFg(θ\)

(
−∇fn(θ\)

)
.

We start with an equivalent definition:

ΠFg(θ\)

(
−∇fn(θ\)

)
= sup
v∈Fg(θ\)∩Sp−1

{〈
−∇fn(θ\), v

〉}
,

where Sp−1 denotes the unit sphere in Rp. It is well known
that in a GLM with the canonical link function, we have

∇fn(θ\) = − 1

n
AT (y − E y) = − 1

n
AT ε,

where y := (y1, . . . , yn). Then, by some direct calcula-
tions, ∥∥∥ΠFg(θ\)

(
−∇fn(θ\)

)∥∥∥
2

= sup
v∈Fg(θ\)∩Sp−1

{〈
AT

n
ε, v

〉}
=

1√
n

sup
v∈Fg(θ\)∩Sp−1

{〈
ε,

A√
n
v

〉}
=

1√
n

sup
ṽ∈

(
A√
n
Fg(θ\)

)
∩
(

A√
n
Sp−1

) {〈ε, ṽ〉} .
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Since Fg(θ\) is a cone, A√
n
Fg(θ\) = AFg(θ\). By as-

sumption (12), A√
n

(Fg(θ\) ∩ Sp−1) ⊂
√
L(Fg(θ\) ∩ Bn),

where Bn denotes the unit ball in Rn. Hence,∥∥∥ΠFg(θ\)

(
−∇fn(θ\)

)∥∥∥
2
≤
√
L

n
sup

ṽ∈AFg(θ\)∩Bn

{〈ε, ṽ〉} .

As the function 〈ε, ·〉 is linear, whose extreme value must
occur on the boundary of the constraint set AFg(θ\) ∩ Bn,
we have∥∥∥ΠFg(θ\)

(
−∇fn(θ\)

)∥∥∥
2
≤
√
L

n
sup

ṽ∈AFg(θ\)∩Sn−1

{〈ε, ṽ〉} .

The theorem follows by taking expectations on both sides.

B. Proof of Corollary 4.2
Our proof relies on the symmetrization trick. Instead of
using the well-known symmetrization with a Rademacher
process (see, e.g., (Koltchinskii, 2011)), we would like to
do symmetrization with a Gaussian process. In this way, we
are able to express the error bound in terms of the Gaussian
squared-complexity.
Theorem B.1 (Gaussian Symmetrization (Pollard, 1989)).
Let y1, . . . , yn be independent random variables, and let
F be a class of measurable functions. Then

E sup
f∈F


∣∣∣∣∣
n∑
i=1

(f(yi)− E f(yi))

∣∣∣∣∣
2


≤ 2π E sup
f∈F


∣∣∣∣∣
n∑
i=1

hif(yi)

∣∣∣∣∣
2
 ,

where h1, . . . , hn are i.i.d. standard Gaussian random
variables.
Remark. In (Pollard, 1989), the symmetrization inequal-
ity is only proved for the case when y1, . . . , yn are i.i.d.
random variables. Though in Theorem 4.1 the random
variables y1, . . . , yn may not be identically distributed, the
same arguments in Section 4 of (Pollard, 1989) still apply.

By Jensen’s inequality, we have

Ω
(
AFg(θ\)

)
≤
√
E sup
v∈(AFg(θ\))∩Sn−1

{
〈ε, v〉2

}
.

Applying Theorem B.1, we obtain

Ω
(
AFg(θ\)

)
≤
√
E sup
v∈(AFg(θ\))∩Sn−1

{
〈h · y, v〉2

}
,

where h · y := (h1y1, . . . , hnyn). Note that h · y is a
vector of independent symmetric Gaussian random vari-
ables, whose covariance matrix Σ ∈ Rn×n is given by

Σi,j = δi,jE y2i , where δ denotes the Kronecker delta.
Therefore, the distribution of h · y is the same as the Gaus-
sian vector Σ1/2h, where h := (h1, . . . , hn), and

Ω
(
AFg(θ\)

)
≤
√

E sup
v∈(AFg(θ\))∩Sn−1

{〈
Σ1/2h, v

〉2}
=

√
E sup
v∈(AFg(θ\))∩Sn−1

{〈
h,Σ1/2v

〉2}
≤ C1/2

max ω1

(
AFg(θ\)

)
,

where Cmax := maxi
{
E y2i

}
.

The remaining work is to bound ω1

(
AFg(θ\)

)
from above

by Lω1

(
Fg(θ\)

)
.

Lemma B.2. Under the assumption (12), we have
ωt(AFg(θ\)) ≤ Lωt(Fg(θ\)) for all t > 0.

Proof. Define

Ã :=

[
A

0(p−n)×p

]
∈ Rp×p,

where 0(p−n)×p is the all-zero matrix in R(p−n)×p. Obvi-
ously, ω(AFg(θ\)) = ω(ÃFg(θ\)).

By definition, the Gaussian squared-complexity is rotation
invariant, i.e., ωt(RFg(θ\)) = ωt(Fg(θ\)) for any unitary
matrix R. Let M̃ = USV ′ be the singular value decompo-
sition of M̃ , where U and V are unitary matrices and S is
a diagonal matrix. We have

ωt(ÃFg(θ\)) = ωt(SV
′Fg(θ\))

≤ Lωt(V ′Fg(θ\))

= Lωt(Fg(θ\)),

where the equalities are because of the rotation invariance
of the Gaussian squared-complexity, and the inequality is
because S ≤

√
LI , by the assumption (12). This proves

the lemma.

The corollary follows by applying Lemma B.2.

C. Proof of Lemma 5.1
If e ∈ Fg(θ\)\ tB, following the proof of Theorem 4.1, we
obtain

‖e‖2 ≤
1

µ

∥∥∥ΠFg(θ\)\tB
(
−∇fn(θ\)

)∥∥∥
2
,
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where Fg(θ\) \ tB denotes the conic hull of Fg(θ\) \ tB.
If e ∈ tB, we have the naı̈ve bound: ‖e‖2 ≤ t. Therefore,

‖e‖2 ≤ max

{
t,

1

µ

∥∥∥ΠFg(θ\)\tB
(
−∇fn(θ\)

)∥∥∥
2

}
≤ t+

1

µ

∥∥∥ΠFg(θ\)\tB
(
−∇fn(θ\)

)∥∥∥
2
.

The lemma follows by taking expectations on both sides.

D. Proof of Corollary 5.2
If e ∈ Fg(θ\) \ tB, following the proof of Corollary 4.2,
we obtain

E
∥∥∥θ̂ − θ\∥∥∥

2
≤ t+ C1/2

max

√√√√2πLω1

(
Fg(θ\) \ tB

)
µ2n

.

The corollary follows because by the definition of Gaussian
squared complexity,

ω1

(
Fg(θ\) \ tB

)
=
ωt
(
Fg(θ\)

)
t2

.
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