
On Deductive Program Repair in Leon

Etienne Kneuss, Manos Koukoutos, and Viktor Kuncak

EPFL

Abstract. We present an approach to program repair and its applica-
tion to programs with recursive functions over unbounded data types.
Our approach formulates program repair in the framework of deductive
synthesis that uses existing program structure as a hint to guide synthe-
sis. We introduce a new specification construct for symbolic tests. We
rely on such user-specified tests as well as automatically generated ones
to localize the fault and speed up synthesis. Our implementation is able
to eliminate errors within seconds from a variety of functional programs,
including symbolic computation code and implementations of functional
data structures. The resulting programs are formally verified by the Leon
system.

1 Introduction

This paper explores the problem of automatically repairing programs written as
a set of mutually recursive functions in a purely functional subset of Scala. We
consider a function to be subject to repair if it does not satisfy its specification,
expressed in form of pre- and postcondition. The task of repair consists of auto-
matically generating an alternative implementation that meets the specification.
The repair problem has been studied in the past for reactive and pushdown
systems [7–9,17,18,24]. We view repair as generalizing, for example, the choose
construct of complete functional synthesis [13], sketching [19, 20], and program
templates [21], because the exact location and nature of expressions to be syn-
thesized is left to the algorithm. Repair is thus related to localization of error
causes [10, 12, 25]. To speed up our repair approach, we do use course-grained
error localization based on derived test inputs. However, a more precise nature
of the fault is in fact the outcome of our tool, because the repair identifies a
particular change that makes the program correct. Using tests alone as a cri-
terion for correctness is appealing for performance reasons [6, 15, 16], as is the
use of bounded checks within some scope [5, 20], but this can lead to erroneous
repairs. We therefore leverage prior work [11] on verifying and synthesizing re-
cursive functional programs with unbounded data-types (trees, lists, integers) to
provide strong correctness guarantees, while at the same time optimizing our
technique to use automatically derived tests. By phrasing the problem of repair
as one of synthesis and introducing tailored deduction rules that use the orig-
inal implementation as guide, we allow the repair-oriented synthesis procedure
to automatically find correct fixes, in the worst case resorting to re-synthesizing
the desired function from scratch.

2 Etienne Kneuss, Manos Koukoutos, and Viktor Kuncak

To make the repair approach practical, we found it beneficial to extend the
power and generality of the synthesis engine itself, as well as to introduce explicit
support for symbolic tests in the specification language and the repair algorithm.
Contributions. The overall contribution of this paper is a new repair algorithm
and its implementation inside a deductive synthesis framework for recursive func-
tional programs. The specific new techniques we contribute are the following.

– Exploration of similar expressions. We present an algorithm for ex-
pression repair based on a grammar for generating expressions similar to
a given expression (according to an error model we propose). We use such
grammars within our new generic symbolic term exploration routine, which
leverages test inputs as well as an SMT solver, and efficiently explores the
space of expressions that contain recursive calls whose evaluation depends
on the expression being synthesized.

– Fault localization. To narrow down repair to a program fragment, we
localize the error by doing dynamic analysis using test inputs generated
automatically from specifications. We combine two automatic sources of in-
puts, enumeration techniques and SMT-based techniques. We collect traces
leading to erroneous executions and compute common prefixes of branching
decisions. We show that this localization is in practice sufficiently precise to
repair sizeable functions efficiently.

– Symbolic examples. We propose an intuitive way of specifying possibly
symbolic input-output examples using pattern matching of Scala. This al-
lows the user to partially specify a function without necessarily having to
provide full inputs and outputs. Additionally, it enables the developer to
easily describe properties of generic (polymorphic) functions. We present an
algorithm for deriving new examples from existing ones, which improves the
usefulness of example sets for fault localization and repair.

– Integration into a deductive synthesis and verification framework.
Our repair system is part of a deductive verification system, which means
that it can automatically produce new inputs from specification, prove cor-
rectness of code for all inputs ranging over an unbounded domain, and syn-
thesize program fragments using deductive synthesis rules that include com-
mon recursion schemas.

The source code of our tool and additional details about our experimental eval-
uation are available from http://lara.epfl.ch/w/leon-repair .

Example. Consider the following functionality inspired by a part of a compiler.
We wish to transform (desugar) an abstract syntax-tree of a typed expression
language into a simpler untyped language, simplifying some of the constructs
and changing the representation of some of the types, while preserving the se-
mantics of the transformed expression. In Figure 1, the original syntax trees are
represented by the class Expr and its subclasses, whereas the resulting untyped
language trees are given by SExpr. A syntax tree of Expr either evaluates to an
integer, to a boolean, or to no value if it is not well typed. We capture this
by defining a type-checking function typeOf, along with two separate semantic

http://lara.epfl.ch/w/leon-repair

On Deductive Program Repair in Leon 3

abstract class Expr
case class Plus(lhs: Expr, rhs: Expr)
extends Expr

... // 9 more subclasses

abstract class SExpr
case class SPlus(lhs: SExpr,
rhs: SExpr) extends SExpr

... // 5 more subclasses

abstract class Type
case object IntType extends Type
case object BoolType extends Type

def typeOf(e: Expr): Option[Type] =
...

def semI(t: Expr): Int = {
require(typeOf(t)==Some(IntType))
...
}
def semB(t : Expr) : Boolean = {
require(typeOf(t)==Some(BoolType))
...
}
def simSem(e : SExpr) : Int = ...

def desugar(e: Expr) : SExpr = {
e match {
case Plus (lhs, rhs) ⇒
SPlus(desugar(lhs), desugar(rhs))

case Minus(lhs, rhs) ⇒
SPlus(desugar(lhs), Neg(desugar(rhs)))

case And(lhs, rhs) ⇒
SIte(desugar(lhs), desugar(rhs), SLiteral(0))

case Or(lhs, rhs) ⇒
SIte(desugar(lhs), SLiteral(1), desugar(rhs))

case Not(e) ⇒
SIte(desugar(e), SLiteral(0), SLiteral(1))

case Ite(cond, thn, els) ⇒
SIte(desugar(cond), desugar(els), desugar(thn))

case IntLiteral(v) ⇒
SLiteral(v)

case BoolLiteral(b) ⇒
SLiteral(if (b) 1 else 0)}

...
} ensuring { res ⇒ typeOf(e) match {
case Some(IntType) ⇒
simSem(res) == semI(e)

case Some(BoolType) ⇒
simSem(res) == if (semB(e)) 1 else 0

case None() ⇒ true }
}

Fig. 1. The syntax tree translation in function desugar has a strong ensuring clause,
requiring semantic equivalence of transformed and the original tree, as defined by
several recursive evaluation functions. desugar contains an error. Our system finds it,
repairs the function, and proves the resulting program correct.

functions, semI and semB. SExpr, on the other hand, always evaluates to an inte-
ger, as defined by the simSem function. For brevity, most subclass definitions are
omitted.

The desugar function translates a syntax tree of Expr into one of SExpr. We
expect the function to ensure that the transformation preserves the semantics
of the tree: originally integer-valued trees evaluate to the same value, boolean-
valued trees now evaluate to 0 and 1, representing false and true, respectively,
and mistyped trees are left unconstrained. This is expressed in the postcondition
of desugar.

The implementation in Figure 1 contains a bug: the thn and els branches of
the Ite case have been accidentally switched. Using tests automatically generated
using generic enumeration of small values, as well as from a verification attempt
of desugar, our tool is able to find a course-grained location of the bug, as the
body of the relevant case of the match statement. During repair, one of the
rules performs a semantic exploration of expressions similar to the invalid one.
It discovers that using the expression SIte(desugar(cond), desugar(thn), desugar(els))

4 Etienne Kneuss, Manos Koukoutos, and Viktor Kuncak

instead of the invalid one makes the discovered tests pass. The system can then
formally verify that the repaired program meets the specification for all inputs. If
we try to introduce similar bugs in the correct desugar function, or to replace the
entire body of a case with a dummy value, the system successfully recovers the
intended case of the transformation. In some cases our system can repair multiple
simultaneous errors; the mechanism behind that is explained in Section 2.2. Note
that the developer communicates with our system only by writing code and
specifications, both of which are functions in an existing functional programming
language. This illustrates the potential of repair as a scalable and developer-
friendly deployment of synthesis in software development.

2 Deductive Guided Repair

We next describe our deductive repair framework. The framework currently
works under several assumptions, which we consider reasonable given the state
of the art in repair of infinite-state programs. We consider the specifications of
functions as correct; the code is assumed wrong if it cannot be proven correct
with respect to this specification for all of the infinitely many inputs. If the
specification includes input-output tests, it follows that the repaired function
must have the same behavior on these tests. We do not guarantee that the out-
put of the function is the same as the original one on tests not covered by the
specification, though the repair algorithm tends to preserve some of the existing
behaviors due to the local nature of repair. It is the responsibility of the devel-
oper to sufficiently specify the function being repaired. Although under-specified
benchmarks may produce unexpected expressions as repair solutions, we found
that even partial specifications often yield the desired repairs. A particularly ef-
fective specification style in our experience is to give a partial specification that
depends on all components of the structure (for example, describes property of
the set of stored elements), and then additionally provide a finite number of
symbolic input-output tests. We assume that only one function of the program
is invalid; the implementation of all other functions is considered valid as far
the repair of interest is concerned. Finally, we assume that all functions of the
program, even the invalid one, terminate.
Stages of the Repair Algorithm. The function being repaired passes through
the following stages, which we describe in the rest of the paper:

– Test generation and verification. We combine enumeration- and SMT-
based techniques to either verify the validity of the function, or, if it is not
valid, discover counterexamples (examples of misbehaviors).

– Fault localization. Our localization algorithm then selects the smallest
expression executed in all failing tests, modulo recursion.

– Synthesis of similar expressions. This erroneous expression is replaced
by a “program hole”. The now-incomplete function is sent to synthesis, with
the previous expression used as a synthesis hint. (Neither the notion of holes
nor the notion of synthesis hints has been introduced in prior work on de-
ductive synthesis [11].)

On Deductive Program Repair in Leon 5

– Verification of the solution. If a solution is found which is not correct
by construction, the system attempts to prove its validity. Our results in
Section 5, Figure 4 indicate in which cases the synthesized function passed
the verification.

Repair Framework. Our starting point is the deductive synthesis framework
first introduced in [11]. We show how this framework can be applied to program
repair by introducing dedicated rules as well as special predicates. We reuse the
notation for synthesis tasks Jā 〈Π � φ〉 x̄K: ā denotes the set of input variables,
x̄ denotes the set of output variables, φ is the synthesis predicate, and Π is the
path condition to the synthesis problem. The framework relies on deduction rules
that take such input synthesis problem and either (1) solve it immediately by
returning the tuple 〈P | T 〉 where P corresponds to the precondition under which
the term T is a solution, or (2) decompose it into sub-problems, and define a
way to compute the overall solution from sub-solutions.

We illustrate these rules as well as their notation with a rule for splitting a
problem containing a top-level or:

Jā 〈Π � φ1〉 x̄K ` 〈P1 | T1〉 Jā 〈Π � φ2〉 x̄K ` 〈P2 | T2〉
Jā 〈Π � φ1 ∨ φ2〉 x̄K ` 〈P1 ∨ P2 | if(P1) {T1} else {T2}〉

This rule should be interpreted as follows: from an input synthesis problem
Jā 〈Π � φ1 ∨ φ2〉 x̄K, the rule decomposes it in two subproblems: Jā 〈Π � φ1〉 x̄K
and Jā 〈Π � φ2〉 x̄K. Given corresponding solutions 〈P1 | T1〉 and 〈P2 | T2〉, the
rule solves the input problem with 〈P1 ∨ P2 | if(P1) {T1} else {T2}〉.
Witness Predicate Mechanism. We define special predicate functions respon-
sible for carrying information across decompositions. These special functions are
logically equivalent to true and are never evaluated. The information they carry
is in the arguments with which they are called. While they play no logical role
in the path-condition formula itself, this information is used by several rules.

These new predicates integrate nicely with existing decomposition rules of
the deductive framework: substitutions and transformations that previously oc-
curred within rules will also apply to this additional information as well. We
define two important witness predicates:
Reusing the Original Implementation. One of the most important wit-
ness predicate for the purpose of repair is the guiding predicate which carries
the original (incorrect) implementation. We refer to this guiding predicate as
�[expr], where expr represents the original expression. This predicates allows us
to introduce repair-dedicated rules that perform crucial tasks: focus, guided de-
compositions, as well as symbolically exploring similar terms. These deduction
rules are covered in detail in Sections 2.1, 2.2 and 3.

2.1 Fault Localization

An important contribution of our system is the ability to focus the repair prob-
lem to a small sub-part of the function’s body that is solely responsible for its

6 Etienne Kneuss, Manos Koukoutos, and Viktor Kuncak

erroneous behavior. The underlying hypothesis is that most of the original im-
plementation is correct, meaning this technique not only allows us to reuse as
much of the original implementation as possible, but also minimizes the size of
the expression to repair, and thus to synthesize. Focusing also has the profitable
side-effect of making repair more predictable, even in the presence of weak spec-
ifications: by reusing most of the code, the repaired implementation will produce
results similar to the original in most executions.

We rely on the list of examples that fail the function specification to lead us
to the source of the problem: if all failing examples only use one branch of some
branching expression in the program, then we assume that the error is contained
in that branch. We define F as the set of all inputs of failing tests collected
previously. Section 4 presents in more detail techniques we use to derive such
inputs. We describe the focusing rules in our framework as follows.

If-Focus. Given the input problem Jā 〈�[if(c) {t} else {e}] � φ〉 x̄K we first check
if there is an alternative condition expression such that all failing tests succeed:

If-Focus-Condition:
∃C.∀ī ∈ F . φ[x̄ 7→ if(C(ā)) {t} else {e}, ā 7→ ī]

Jā 〈�[c] � φ[x̄ 7→ if(x′) {t} else {e}]〉 x′K ` 〈P | T 〉
Jā 〈�[if(c) {t} else {e}] � φ〉 x̄K ` 〈P | if(T) {t} else {e}〉

Instead of solving this higher-order hypothesis, we execute the function and non-
deterministically consider both branches of the if (and do so within recursive
invocations as well). If a valid execution exists for each failing test, the formula
is considered satisfiable enabling us to focus on the condition. Otherwise, we
check whether c evaluates to either true or false for all failing inputs, allowing us
to focus on the corresponding branch:

If-Focus-Then:
Jā 〈�[t] ∧ c� φ〉 x̄K ` 〈P | T 〉 ∀ī ∈ F .c[ā 7→ ī]

Jā 〈�[if(c) {t} else {e}] � φ〉 x̄K ` 〈P | if(c) {T} else {e}〉

If-Focus-Else:
Jā 〈�[e] ∧ ¬c� φ〉 x̄K ` 〈P | T 〉 ∀ī ∈ F .¬c[ā 7→ ī]

Jā 〈�[if(c) {t} else {e}] � φ〉 x̄K ` 〈P | if(c) {t} else {T}〉

Match-Focus. A similar approach is used for match expressions, ubiquitous in
this language: if all failing tests lead to one particular branch of the match, we
focus on this particular case.

2.2 Guided Decompositions

In case focusing rules fail to identify a single branch of an if- or match-expression
as responsible, we might still benefit from reusing most of the expression. In the
case of if, reuse is limited to the if-condition, but for a match-expression, this
may extend to multiple valid cases. To this end, we introduce rules analogous to

On Deductive Program Repair in Leon 7

focus, that do decompositions based on the guide. In the interest of space, we
only provide the split rule for if expressions:

If-Split:
Jā 〈�[t] ∧ c� φ〉 x̄K ` 〈P1 | T1〉 Jā 〈�[e] ∧ ¬c� φ〉 x̄K ` 〈P2 | T2〉

Jā 〈�[if(c) {t} else {e}] � φ〉 x̄K ` 〈c ∧ P1 ∨ ¬c ∧ P2 | if(c) {T1} else {T2}〉

In the presence of more than two branches, one of the branches might be
valid (there need to be only two invalid branches for focusing to fail). For this
reason, we introduce a simple rule that immediately solves the problem if the
guiding expression satisfies the specification.

Guided-Verify:
Π |= φ[x̄ 7→ term]

Jā 〈�[term] ∧Π � φ〉 x̄K ` 〈true | term〉

2.3 Generating Recursive Calls

Our purely functional language often requires us to synthesize recursive imple-
mentations. Consequently, the synthesizer must be able to generate calls to the
function currently getting synthesized. However, we must take special care to
avoid introducing calls resulting in a non-terminating implementation. (Such an
erroneous implementation would be conceived as valid if it trivially satisfies the
specification due to inductive hypothesis over a non-well-founded relation.) Our
technique consists of recording the arguments at the entry point of the function,
keeping track of these arguments through the decompositions, and inferring when
terminating calls may be introduced.

We illustrate this mechanism by considering the desugar function shown in
Figure 1. We start by injecting the entry call information as

Je 〈⇓[desugar(e)] ∧ ...� φ〉 xK

This synthesis problem will then be decomposed by the various deduction rules
available in the framework. An interesting case to consider is a decomposition
by pattern-matching on e which specializes the problem to known variants of
Expr. The specialized problem for the Plus variant will look as follows:

Je1 , e2 〈⇓[desugar(Plus(e1, e2))] ∧ ...� φ〉 xK

The witness here syntactically informs us that the entry point corresponds to
desugar(Plus(e1, e2)) in this decomposition branch. As a result, desugar(e1) and
desugar(e2) are likely to terminate and are considered as candidate expressions
when symbolically exploring terms, as explained in Section 3.

This relatively simple technique allows us to introduce recursive calls while
filtering trivially non-terminating calls. In the case where it still introduces infi-
nite recursion, we can discard the solution using a more expensive termination
checker, though we found that this is seldom needed in practice.

8 Etienne Kneuss, Manos Koukoutos, and Viktor Kuncak

2.4 Synthesis within Repair

The repair-specific rules described earlier aim at solving repair problems accord-
ing to the error model. Thanks to integration into the Leon synthesis framework,
general synthesis rules also apply, which enables the repair of more intricate er-
rors. This achieves an appealing combination between fast repairs for predictable
errors and expressive, albeit slower, repairs for more complicated errors.

3 Counterexample-Guided Similar-Term Exploration

After following the overall structure of the original problem, it is often the case
that the remaining erroneous branches can be fixed by applying small changes
to their implementations. For instance, an expression calling a function might
be wrong only in one of its arguments or have two of its arguments swapped.
We exploit this assumption by considering different variations to the original
expression, corresponding to our error model. To do this efficiently, we modify
the CEGIS rule of the original deductive synthesis framework, which is a rule
that efficiently handles the leaf cases of synthesis by searching a parametric
representation of possible solutions.

We use the notation G(expr) to denote all the generalisations of expr and
define it in the form of a grammar as

G(expr) ::= Gswap(expr) | Garg(expr) | G∗2(expr)

with the following forms of generalizations.
Swapping arguments. We consider here all the variants of swapping two argu-
ments that are compatible type-wise. For instance, for an operation with three
operands of the same type:

Gswap(op(a,b,c)) ::= op(b,a,c) | op(a,c,b) | op(c,b,a)

Generalizing one argument. This variation corresponds to making a mistake
in only one argument of the operation we generalize:

Garg(op(a,b,c)) ::= op(G(a),b,c) | op(a,G(b),c) | op(a,b,G(c))

Bounded arbitrary expression. We consider a grammar of interesting ex-
pressions of the given type and of limited depth. This grammar considers all
operations in scope as well as all input variables. It also considers safe recur-
sive calls discovered in Section 2.3. Finally, it includes the guiding expression
as a terminal, which corresponds to possibly wrapping the source expression in
an operation. Assuming a predicate ⇓ [listSum(Cons(h,t))] and a mod function
defined, an integer operation could be generalized as:

G∗2(op(a,b,c)) ::= GInt2 | GInt1 | GInt0

GInt2 ::= GInt1 +GInt1

| GInt1 −GInt1

| mod(GInt1, GInt1)
| listSum(t)

GInt1 ::= GInt0 +GInt0

| GInt0 −GInt0

| mod(GInt0, GInt0)
| listSum(t)

GInt0 ::= 0 | 1 | h | op(a,b,c)

On Deductive Program Repair in Leon 9

During synthesis, we instantiate this grammar on the guiding expression, and
explore the symbolic space of all alternative expressions it represents. We rely on
a CEGIS-loop bootstrapped with our test inputs to find candidate expressions.
This can be represented by the following rule:

CEGIS-Gen:
∃T ∈ L(G(term)) ∀ā.Π =⇒ φ[x̄ 7→ T]

Jā 〈�[term] ∧Π � φ〉 x̄K ` 〈true | T〉

Precise handling of recursive calls in CEGIS. When considering recursive
calls among possible expressions within CEGIS, the interpretation of such calls
needs to refer back to this same expression. Our previous approach [11] would
treat recursive invocations of the function under synthesis as satisfying only the
postcondition, leading to spurious counter-examples. We now first construct a
parametrized program explicitly representing the search space: given a grammar
G at a certain unfolding level, we construct a function cTree(ā, B) in which we
describe non-terminals as values with each production guarded by a distinct
entry of the B array, as in the following repair a case of the size function.

def cTree[T](h: T, t: List[T],
B: Array[Boolean]) = {

val c1 = if (B(0)) 0
else if (B(1)) 1
else if (B(2)) size(t, B)
else

val c2 = if (B(3)) 0
else if (B(4)) 1
else if (B(5)) size(t, B)
else

val c3 = if (B(6)) c1 + c2
else if (B(7)) c1 − c2
else

c3 }

def size[T](l: List[T],
B: Array[Boolean]): Int = {

l match {
case Cons(h, t) ⇒ cTree(h, t, B)
case Nil() ⇒ 0
}
}

def nonEmpty(l: List[T],
B: Array[Boolean]) = {

size(l, B) > 0
}

In this new program, the function under repair is defined using the partial solu-
tion corresponding to the current deduction tree, in which we call cTree at the
point of the CEGIS invocation. Other unsolved branches of the deduction tree
become synthesis holes. We augment transitive callers with this additional B

argument, passing it accordingly. This ensures that a specific valuation of B cor-
responds exactly to a program where the point of CEGIS invocation is replaced
by the corresponding expression. We rely on tests collected in Section 4 to test
individual valuations of B, removing failing expression from the search space. Fi-
nally, we perform CEGIS using symbolic term exploration with the SMT solver
to find candidate expressions.

4 Generating and Using Tests for Repair

Tests play an essential role in our framework, allowing us to gather information
about the valid and invalid parts of the function. In this section we elaborate

10 Etienne Kneuss, Manos Koukoutos, and Viktor Kuncak

on how we select, generate, and filter examples of inputs and possibly outputs.
Several components of our system then make use of these examples. We dis-
tinguish two kinds of tests: input tests and input-output tests. Namely, input
tests provide valid inputs for the function according to its precondition, while
input-output tests also specify the exact output corresponding to each input.
Extraction and Generation of Tests. Our system relies on three main sources
for tests that are used to make the repair process more efficient.

1) User-provided symbolic input-output tests. It is often interesting for the
user to specify how a function behaves by listing a few examples providing inputs
and corresponding outputs. However, having to provide full inputs and outputs
can be tedious and impractical. To make specifying families of tests convenient,
we define a passes construct to express input-output examples, relying on pat-
tern matching in our language to symbolically describe sets of inputs and their
corresponding outputs. This gives us an expressive way of specifying classes of
input-output examples. Not only may the pattern match more than one input,
but the corresponding outputs are given by an expression which may depend
on the pattern’s variables. Wildcard patterns are particularly useful when the
function does not depend on all aspects of its inputs. For instance, a function
computing the size of a generic list does not inspect the values of individual list
elements. Similarly, the sum of a list of integers could be specified concisely for
all lists of sizes up to 2. Both examples are illustrated by Figure 2.

def size[T](list: List[T]): Int = {
list match {
case Nil() ⇒ 0
case Cons(h, t) ⇒ 1 + size(t)
}
} ensuring { res ⇒
(res ≥ 0) &&
(list, res) passes {
case Cons(, Cons(, Nil())) ⇒ 2
case Cons(, Nil()) ⇒ 1
case Nil() ⇒ 0 } }

def sum(list: List[Int]): Int = {
list match {
case Nil() ⇒ 0
case Cons(h, t) ⇒ h + sum(t)
}
} ensuring { res ⇒
(list, res) passes {
case Cons(a, Cons(b, Nil())) ⇒ a + b
case Cons(a, Nil()) ⇒ a
case Nil() ⇒ 0 } }

Fig. 2. Partial specifications using the passes construct, allowing to match more than
one inputs and providing the expected output as an expression.

Having partially symbolic input-output examples strikes a good balance between
literal examples and full-functional specifications. From the symbolic tests, we
generate concrete input-output examples by instantiating each pattern several
times using enumeration techniques, and executing the output expression to
yield an output value. For instance, from

case Cons(a, Cons(b, Nil())) ⇒ a + b

we will generate the following tests

for (a← enum(Int), b← enum(Int))) yield:

Cons(JaK, Cons(JbK, Nil)) ; Ja+ bK

On Deductive Program Repair in Leon 11

We generate up to 5 distinct tests per pattern, when possible. Note that this
consists of our only source of input-output tests: since they come from the spec-
ification, the function must return these exact outputs on the given inputs.

2) Generated Input Tests. We rely on the same enumeration technique to
generate inputs satisfying the precondition of the function. Using a generate and
test approach, we gather up to 400 valid input tests in the first 1000 enumerated.

3) Solver-generated Tests. Lastly, we rely on an SMT-based solver provided
in [23] to generate counter-examples. Given that the function is invalid and that
it terminates, the solver (which is complete for counter-examples) is guaranteed
to eventually provide us with at least one failing test.
Classifying and Minimizing Traces. We partition the set of collected tests
into passing and failing sets. A test is considered as failing if it violates a pre-
condition, a postcondition, or emits one of various other kinds of runtime errors
when the function to repair is executed on it. In the presence of recursive func-
tions, a given test may fail within one of its recursive invocations. It is interesting
in such scenarios to consider the arguments of this specific sub-invocation: they
are typically smaller than the original and are better representatives of the fail-
ure. To clarify this, consider the following example (referring to the program in
Figure 1):

def desugar(e : Expr) : SimExpr = e match { ...
case And(lhs, rhs) ⇒ // correct
SIte(desugar(lhs), desugar(rhs), SLiteral(0))

case Ite(cond, thn, els) ⇒ // correct
SIte(desugar(cond), desugar(thn), desugar(els))

case BooleanLiteral(b) ⇒ // buggy
if (b) SLiteral(0) else SLiteral(1)

}

And(true, true)

true 0 1

Ite(true, 0, 1)

Fig. 3. Code and invocation graph for desugar. Solid borderlines stand for passing tests,
and dashed ones for failing. Type constructors for literals have been omitted from the
graph.

Assume the tests collected are And(BooleanLiteral(true), BooleanLiteral(true)),
Ite(BooleanLiteral(true), IntLiteral(0), IntLiteral(1)) and BooleanLiteral(true). When ex-
ecuted with these tests, the function produces the graph of eval invocations shown
aside. A trivial classification tactic would label all three tests as faulty, even
though it is obvious that all errors can be explained by the bug in BooleanLiteral,
due to the dependencies between tests. More generally, a failing test should also
be blamed for the failure of all other tests that invoke it transitively. Our frame-
work deploys this smarter classification. Thus, in our example, it would only
label BooleanLiteral(true) as a failing example, which would lead to correct local-
ization of the problem on the faulty branch. Note that this process will discover
new failing tests not present in the original test set, if they occur as recursive
sub-invocations.

Our experience with incorporating tests into the Leon system indicate that
they are proving time and again to be extremely important for the tool’s effi-

12 Etienne Kneuss, Manos Koukoutos, and Viktor Kuncak

ciency, even though our system is in its spirit based on verification as opposed
to testing alone. In addition to allowing us to detect errors sooner and filter out
wrong synthesis candidates, tests also allow us to quickly find the approximate
error location.

5 Evaluation

We evaluate our implementation on a set of benchmarks in which we manu-
ally injected errors (Figure 4). The programs mainly focus on data structure
implementations and syntax tree operations. Each benchmark is comprised of
algebraic data-type definitions and recursive functions that manipulate them,
specified using strong yet still partial preconditions and postconditions. We man-
ually introduced errors of different types in each copy of the benchmarks. We ran
our tool unassisted until completion to obtain a repair, providing it only with the
name of the file and the name of the function to repair (typically the choice of the
function could also have been localized automatically by running the verification
on the entire file). The experiments were run on an Intel(R) Core(TM) i7-2600K
CPU @ 3.40GHz with 2Gb or RAM. While the deductive reasoning supports
parallelism in principle, our implementation is currently single-threaded.

For each benchmark of Figure 4 we provide: (1) the name of the bench-
mark and the broken operation; (2) a short classification of the kind of error
introduced. The error kinds include: a small variation of the original program, a
completely faulty match-case, a missing match-case, a missing necessary if-split,
a missing function call, and finally, two separate variations in the same function.
We describe the relevant sizes (counted in abstract syntax tree nodes) of: (3)
the overall benchmark, (4) the erroneous function, (5) the localized error, and
(6) the repaired expression. The full size of the program is relevant because our
repair algorithm may introduce calls to any function defined in the benchmark,
and also because the verification of a function depends on other functions in
the file (recall Figure 1). We also include the time, in seconds, our tool took to:
(7) collect and classify tests and (8) repair the broken expression. Finally, we
report (9) if the system could formally (and automatically) prove the validity of
the repaired implementation. Our examples are challenging to verify, let alone
repair. Many rely on unfolding procedure of [22, 23] to handle contracts that
contain other auxiliary recursive functions. The fast exponentiation algorithm
of Numerical.power relies on non-linear reasoning of the Z3 SMT solver [3].

An immediate observation is that fault localization is often able to focus the
repair to a small subset of the body. Combined with the symbolic term explo-
ration, this translates to a fast repair if the error fell within the error model.
Among the hardest benchmarks are the ones labeled as having “2 variations”.
For example, Compiler.desugar5 is similar to one in Figure 1 but contains two
errors. In those cases, localization returns the entire match as the invalid expres-
sion. Our guided repair uses the existing match as the guide and successfully
resynthesizes code that repairs both erroneous branches. Another challenging

On Deductive Program Repair in Leon 13

Operation Error Size Time (sec) Proof
Prg Fun Err Fix Test Repair Success

Compiler.desugar1 full case 1335 81 3 5 1.2 2.2 3

Compiler.desugar2 full case 1330 79 2 8 1.0 10.2 3

Compiler.desugar3 variation 1324 83 7 7 0.9 1.6 3

Compiler.desugar4 variation 1324 83 7 7 1.4 1.7 3

Compiler.desugar5 2 variations 1458 83 83 83 1.4 14.0 3

Compiler.simplify1 variation 1458 30 4 4 0.8 1.7 3

Compiler.simplify2 variation 1464 30 2 2 0.8 1.7 3

Heap.merge1 if cond 1084 36 3 3 1.9 3.0 3

Heap.merge2 variation 1084 36 1 1 1.1 1.4 3

Heap.merge3 if cond 1084 36 3 3 1.9 3.1 3

Heap.merge4 variation 1084 36 6 6 1.2 2.4 3

Heap.merge5 if cond 1086 38 5 7 1.2 3.0 3

Heap.merge6 2 variations 1084 36 36 36 1.5 12.7
Heap.insert variation 1086 8 8 6 5.2 1.4 3

Heap.makeNode variation 1086 16 7 5 2.2 1.3 3

List.pad variation 1157 34 8 6 1.0 1.4 3

List.++ variation 1153 9 3 5 2.5 1.1 3

List.:+ full case 1161 11 1 3 1.8 1.2 3

List.replace full case 1172 14 3 13 1.8 11.2 3

List.count variation 1185 16 3 5 0.9 1.5 3

List.find1 variation 1175 21 2 4 3.0 3.8
List.find2 variation 1177 23 4 6 3.0 3.7
List.find3 if cond 1178 24 18 17 4.8 5.9
List.size variation 1157 10 4 4 1.7 1.2 3

List.sum variation 1175 10 4 4 1.3 1.2 3

List.delete missing call 1162 16 1 3 1.5 1.1 3

List.drop 2 variations 1166 21 21 27 1.5 16.6 3

PropLogic.nnf1 missing call 915 51 1 3 0.7 1.3 3

PropLogic.nnf2 missing case 911 47 1 13 0.9 3.4 3

PropLogic.nnf3 variation 916 51 2 4 0.9 1.2 3

PropLogic.nnf4 variation 920 52 5 5 0.8 1.3 3

PropLogic.nnf5 full case 916 48 1 5 0.9 1.7 3

Numerical.power variation 133 23 5 7 0.3 1.2 3

Numerical.moddiv variation 186 30 3 3 0.3 1.1 3

MergeSort.split full case 221 28 3 7 2.0 3.3 3

MergeSort.merge1 variation 951 32 5 5 1.7 1.3 3

MergeSort.merge2 variation 951 32 3 3 1.8 1.9 3

MergeSort.merge3 variation 949 30 3 5 1.5 1.5 3

MergeSort.merge4 2 variations 951 32 32 32 1.8 21.1

Fig. 4. Automatically repaired functions using our system. We provide for each op-
eration: a small description of the kind of error introduced, the overall program
size, the size of the invalid function, the size of the erroneous expression we locate
and the size of the repaired version. We then provide the times our tool took to:
gather and classify tests, and repair the erroneous expression. Finally, we mention
if the resulting expression verifies. The source of all benchmarks can be found on
http://lara.epfl.ch/w/leon-repair.

http://lara.epfl.ch/w/leon-repair

14 Etienne Kneuss, Manos Koukoutos, and Viktor Kuncak

example is Heap.merge3, for which the more elaborate If-Focus-Condition rule of
Section 2.1 kicks in to resynthesize the condition of the if expression.

We checked manually that all repairs were valid. A failing proof thus does not
indicate a wrong repair, but rather that our system was not able to automatically
derive a proof of its correctness, often due to insufficient inductive invariants.
We identify three scenarios under which repair itself may not succeed: if the
assumptions mentioned in Section 2 are violated, when the necessary repair is
either too big or outside of the scope of general synthesis, or if test collection
does not yield sufficiently many interesting failing tests to locate the error.

Given the latencies reported and the minimal amount of information needed
for the tool to run, we can envision a viable usage of these techniques directly
within a software development environment.

6 Further Related Work

Much of the prior work focused on imperative programming, without native
support for algebraic data types, making it typically infeasible to even automat-
ically verify data structure properties of the kind that our benchmarks contain.
Syntax-guided synthesis format [1, 2] does not support algebraic data types, or
specific notion of repair (it could be used to specify some of the sub-problems
that our system generates, such those of Section 3).

GenProg [6] and SemFix [15] accept as input a C program along with user-
provided sets of passing and failing test cases, but no formal specification. Our
technique for fault localization is not applicable to a sequential program with
side-effects, and these tools employ statistical fault localization techniques, based
on program executions. GenProg applies no code synthesis, but tries to repair the
program by iteratively deleting, swapping, or duplicating program statements,
according to a genetic algorithm. SemFix, on the other hand, uses synthesis, but
does not take into account the faulty expression while synthesizing.

AutoFix-E/E2 [16] operates on Eiffel programs equipped with formal con-
tracts. Formal contracts are used to automatically generate a set of passing and
failing test cases, but not to verify candidate solutions. AutoFix-E uses an elabo-
rate mechanism for fault localization, which combines syntactic, control flow and
statistical dynamic analysis. It follows a synthesis approach with repair schemas,
which reuse the faulty statement (e.g. as a branch of a conditional). Samanta
et al. [18] propose abstracting a C program with a boolean constraint, repairing
this constraint so that all assertions in the program are satisfied by repeatedly
applying to it update schemas according to a cost model, then concretize the
boolean constraint back to a repaired C program. Their approach needs devel-
oper intervention to define the cost model for each program, as well as at the
concretization step. Logozzo et al. [14] present a repair suggestion framework
based on static analysis provided by the CodeContracts static checker [4]. The
tool’s suggestions include domain-specific repairs of errors caught by common
static analyses (e.g. for object initialization, arithmetic overflows etc.), as well
as inferred necessary method preconditions. The properties checked are typically

On Deductive Program Repair in Leon 15

simpler than those in our case. In [5], Gopinath et al. repair data structure op-
erations by picking an input which exposes a suspicious statement, then using a
SAT-solver to discover a corresponding concrete output that satisfies the speci-
fication. This concrete output is then abstracted to various possible expressions
to yield candidate repairs, which are filtered with bounded verification.

Repair has also been studied in the context of reactive and pushdown sys-
tems with otherwise finite control [7–9, 17, 18, 24]. In [24], the authors generate
repairs that preserve explicitly subsets of traces of the original program, in a
way strengthening the specification automatically. We deal with the case of func-
tions from inputs to outputs equipped with contracts. In case of a weak contract
we provide only heuristic guarantees that the existing behaviors are preserved,
though it would be interesting to explore in the future the ability to provide
finer-grained semantic guarantees on repairs.

7 Conclusions

We have presented an approach to program repair of mutually recursive func-
tional programs, building on top of a deductive synthesis framework. The starting
point gives it the ability to verify functions, find counterexamples, and synthe-
size small fragments of code. When doing repair, it has proven fruitful to first
localize the error and then perform synthesis on a small fragment. Tests proved
very useful in performing such localization, as well as for generally speeding up
synthesis and repair. In addition to deriving tests by enumeration and verifica-
tion, we have introduced a specification construct that uses pattern matching to
describe symbolic tests, from which we efficiently derive concrete tests without
invoking full-fledged verification. In case of tests for recursive functions, we per-
form dependency analysis and introduce new ones to better localize the cause
of the error. While localization of errors within conditional control flow can be
done by analyzing test runs, the challenge remains to localize change inside large
expressions with nested function calls. We have introduced the notion of guided
synthesis that uses the previous version of the code as a guide when searching
for a small change to an existing large expression. The use of a guide is very
flexible, and also allows us to repair multiple errors in some cases.

Our experiments with benchmarks of thousands of syntax tree nodes in size,
including tree transformations and data structure operations confirm that repair
is more tractable than synthesis for functional programs. The existing (incorrect)
expression provides a hint on useful code fragments from which to build a correct
solution. Compared to unguided synthesis, the common case of repair remains
more predictable and scalable. At the same time, the developer need not learn
a notation for specifying holes or templates. We thus believe that repair is a
practical way to deploy synthesis in software development.

References

1. R. Alur, R. Bodik, E. Dallal, D. Fisman, P. Garg, G. Juniwal, H. Kress-Gazit,
P. Madhusudan, M. M. K. Martin, M. Raghothaman, S. Saha, S. A. Seshia,

16 Etienne Kneuss, Manos Koukoutos, and Viktor Kuncak

R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa. Syntax-guided synthesis.
To Appear in Marktoberdrof NATO proceedings, 2014. http://sygus.seas.
upenn.edu/files/sygus_extended.pdf, retrieved 2015-02-06.

2. R. Alur, R. Bod́ık, G. Juniwal, M. M. K. Martin, M. Raghothaman, S. A. Seshia,
R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa. Syntax-guided synthesis. In
FMCAD, pages 1–17. IEEE, 2013.

3. L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, pages
337–340, 2008.

4. M. Fähndrich and F. Logozzo. Static contract checking with abstract interpreta-
tion. In Formal Verification of Object-Oriented Software, pages 10–30. Springer,
2011.

5. D. Gopinath, M. Z. Malik, and S. Khurshid. Specification-based program repair
using SAT. In P. A. Abdulla and K. R. M. Leino, editors, TACAS, volume 6605
of LNCS, pages 173–188. Springer, 2011.

6. C. L. Goues, T. Nguyen, S. Forrest, and W. Weimer. Genprog: A generic method
for automatic software repair. TSE, 38(1):54–72, 2012.

7. A. Griesmayer, R. Bloem, and B. Cook. Repair of boolean programs with an
application to C. In T. Ball and R. B. Jones, editors, CAV, volume 4144 of LNCS,
pages 358–371. Springer, 2006.

8. B. Jobstmann, A. Griesmayer, and R. Bloem. Program repair as a game. In
K. Etessami and S. K. Rajamani, editors, CAV, volume 3576 of LNCS, pages 226–
238. Springer, 2005.

9. B. Jobstmann, S. Staber, A. Griesmayer, and R. Bloem. Finding and fixing faults.
JCSS, 78(2):441–460, 2012.

10. M. Jose and R. Majumdar. Cause clue clauses: error localization using maximum
satisfiability. In M. W. Hall and D. A. Padua, editors, PLDI, pages 437–446. ACM,
2011.

11. E. Kneuss, I. Kuraj, V. Kuncak, and P. Suter. Synthesis modulo recursive func-
tions. In A. L. Hosking, P. T. Eugster, and C. V. Lopes, editors, OOPSLA, pages
407–426. ACM, 2013.

12. R. Könighofer and R. Bloem. Automated error localization and correction for
imperative programs. In P. Bjesse and A. Slobodová, editors, FMCAD, pages
91–100. FMCAD Inc., 2011.

13. V. Kuncak, M. Mayer, R. Piskac, and P. Suter. Functional synthesis for linear
arithmetic and sets. STTT, 15(5-6):455–474, 2013.

14. F. Logozzo and T. Ball. Modular and verified automatic program repair. In G. T.
Leavens and M. B. Dwyer, editors, OOPSLA, pages 133–146. ACM, 2012.

15. H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra. Semfix: program
repair via semantic analysis. In D. Notkin, B. H. C. Cheng, and K. Pohl, editors,
ICSE, pages 772–781. IEEE / ACM, 2013.

16. Y. Pei, Y. Wei, C. A. Furia, M. Nordio, and B. Meyer. Code-based automated
program fixing. ArXiv e-prints, 2011. arXiv:1102.1059.

17. R. Samanta, J. V. Deshmukh, and E. A. Emerson. Automatic generation of local
repairs for boolean programs. In A. Cimatti and R. B. Jones, editors, FMCAD,
pages 1–10. IEEE, 2008.

18. R. Samanta, O. Olivo, and E. A. Emerson. Cost-aware automatic program repair.
In M. Müller-Olm and H. Seidl, editors, SAS, volume 8723 of LNCS, pages 268–284.
Springer, 2014.

19. A. Solar-Lezama. Program sketching. STTT, 15(5-6):475–495, 2013.
20. A. Solar-Lezama, L. Tancau, R. Bod́ık, S. A. Seshia, and V. A. Saraswat. Combi-

natorial sketching for finite programs. In ASPLOS, pages 404–415, 2006.

http://sygus.seas.upenn.edu/files/sygus_extended.pdf
http://sygus.seas.upenn.edu/files/sygus_extended.pdf

On Deductive Program Repair in Leon 17

21. S. Srivastava, S. Gulwani, and J. S. Foster. Template-based program verification
and program synthesis. STTT, 15(5-6):497–518, 2013.

22. P. Suter. Programming with Specifications. PhD thesis, EPFL, December 2012.
23. P. Suter, A. S. Köksal, and V. Kuncak. Satisfiability modulo recursive programs.

In SAS, pages 298–315, 2011.
24. C. von Essen and B. Jobstmann. Program repair without regret. In CAV, pages

896–911, 2013.
25. A. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing input.

TSE, 28(2):183–200, 2002.

	On Deductive Program Repair in Leon

