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Thesis abstract 

Many micropollutants present in municipal wastewater, such as pharmaceuticals and pesticides, are 

poorly removed in conventional wastewater treatment plants (WWTPs), and may generate adverse 

effects on aquatic life and contaminate drinking water resources. To reduce the release of these 

substances into the environment, advanced treatments are necessary. The objective of this thesis was 

to study and develop various options to improve micropollutant removal from municipal wastewaters, 

with a special focus on biological oxidation. A special emphasis was devoted to the development of a 

process affordable for small WWTPs that requires low chemical inputs, maintenance and energy, and 

ease of operation. Various technologies were investigated, from conventional biological treatments to 

advanced physico-chemical and biological processes such as ozonation, activated carbon adsorption, 

enzymatic bio-oxidation with laccase and biodegradation with white-rot fungi.  

The potential of two physico-chemical treatments, (i) oxidation by ozone and (ii) powdered activated 

carbon (PAC) adsorption followed by either ultrafiltration or sand filtration (SF), was assessed in a 

study made in collaboration with several other institutions with two large-scale pilot systems operated 

in parallel over more than one year at the municipal WWTP of Lausanne. The micropollutants studied 

were removed on average over 80% compared to raw wastewater, with an average ozone dose of 5.7 

mg O3 l
-1

 or a PAC dose between 10 and 20 mg l
-1

. Both advanced treatments led to a clear reduction 

in toxicity of the effluents. Implementation of ozonation and PAC-SF in municipal WWTPs appears 

to be feasible in terms of operation and costs. However, due to their relative technical complexity and 

possibly too high relative costs for smaller installations, these two processes may not be suitable for 

small WWTPs with non-permanent staff. 

The role of nitrification on micropollutant removal in WWTPs was investigated with two identical 

aerobic granular sludge sequential batch reactors (AGS-SBRs), operated with or without nitrification 

(inhibition of the ammonia monooxygenase (AMO)). Out of the 36 micropollutants studied, five were 

significantly better removed in the reactor with nitrification, probably due to co-oxidation catalysed 

by AMOs. However, for the removal of all the other pollutants, ammonia-oxidizing bacteria did not 

play a significant role. The higher removal efficiencies of many pollutants observed in nitrifying 

WWTPs, highlighted during the pilot study performed at Lausanne WWTP, are therefore probably 

related to the presence of a more diversified aerobic heterotrophic microbial community, which is 

favoured in the conditions required for the growth of nitrifying bacteria. 

The potential of laccase, an oxidative enzyme produced by many white-rot fungi and bacteria, was 

assessed for the removal of a wide range of micropollutants. Out of the 39 substances tested, nine 

could be oxidized by laccase alone, and three others were degraded in the case of addition of a 

mediator, a compound acting as an electron shuttle between the pollutant and the enzyme. Despite the 

limited range of potentially degraded pollutants, mainly phenols and anilines, laccase (with or without 

mediators) is able to oxidize several substances of concern (high toxicity or poor removal in 

WWTPs), such as natural and synthetic estrogens, diclofenac (DFC), mefenamic acid (MFA), 

triclosan (TCN), bisphenol A (BPA), isoproturon (IPN) and sulfamethoxazole (SMX). 

The influence of pH, temperature, laccase concentration and reaction time on the oxidation kinetics of 

DFC, MFA, TCN and BPA was investigated. All four factors have a significant effect on the 

micropollutant oxidation with the greatest influence shown by pH. Results for single compounds were 

different from those obtained for mixtures of micropollutants. Optimal conditions for micropollutant 

oxidation are compound-dependent, ranging between pH 4.5 to 6.5 and between 25°C to more than 

40°C. A laccase concentration of 730 U l
-1

 allowed obtaining high removal rates (> 90%) of the four 
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compounds in a short time (40 min to 5 h), showing the potential of laccases to remove, in acidified 

wastewater, several persistent or toxic compounds. 

The influence of pH, mediator, enzyme and pollutant concentrations on SMX and IPN oxidation 

kinetics with laccase-mediator systems (LMS) was investigated with three mediators: 2,2'-azino-bis(3-

ethylbenzthiazoline-6-sulphonic acid) (ABTS), syringaldehyde (SA) and acetosyringone (AS). Both 

pollutants were completely transformed within a few hours in the presence of laccase and ABTS, as 

well as, for SMX, in the presence of AS or SA. The three mediators were consumed during the 

reactions (no catalytic cycles observed). Faster oxidation kinetics were observed at lower pH values, 

but also higher mediator/pollutant ratios were required. Transformation product mixtures were always 

less toxic to algae than untreated pollutants. Based on these findings, LMS appears to be a promising 

option to treat concentrated and potentially toxic industrial effluents, but does not seem adapted for 

the treatment of low micropollutant concentrations in municipal wastewaters. 

To select a laccase-producing organism that could be used in an advanced biological treatment, four 

strains of the bacterial genus Streptomyces and the white-rot fungus Trametes versicolor were studied. 

Due to its higher laccase production, its laccase activity on a wider pH range and at lower 

temperatures, higher laccase stability and better efficiency for micropollutant oxidation, the fungus T. 

versicolor appeared to be the better candidate to be inoculated in a biological post-treatment. 

Finally, a laboratory-scale sequential batch fungal filter (SBFF), composed of woodchips as substrate 

and support for the mycelium, was designed and tested in continuous operation with two white-rot 

fungi, Trametes versicolor and Pleurotus ostreatus. The SBFFs with P. ostreatus could be operated 

during several months (up to 140 d) with unsterile wastewaters, without addition of any external 

substrate, acidification or re-inoculation. A wide range of micropollutants was removed well by a 

combination of fungal and microbial degradation and adsorption. The SBFFs were able to compete 

with ozonation and PAC adsorption regarding the average removal efficiency (up to 82%) of 27 

micropollutants in municipal wastewaters. However, the relatively long hydraulic retention times 

required (24 to > 48 h, versus < 40 min for PAC or ozone) and the relatively short life-span of the 

fungus resulted in relatively high energy consumption (> 0.4 kWh m
-3

) and high woodchips 

requirement (> 1 g l
-1

). Therefore, despite good efficiency to treat micropollutants, simple technical 

equipment, ease of operation, only woodchips and electricity as sole inputs, and low maintenance, 

future research has to focus on the optimization of the fungal filters in order to implement them in 

WWTPs. 

This thesis opened new perspectives regarding biological treatment of micropollutants in wastewater, 

highlighting also the challenges of applying fungal and oxidative enzyme treatments in WWTPs.  

 

 

 

 

 

 

Keywords: micropollutants, pharmaceuticals, pesticides, wastewater, ozonation, activated carbon, 

adsorption, oxidation, biodegradation, laccase, white-rot fungi, fungal treatment, WWTP.   



  

v 

 

Résumé de la thèse 

De nombreux micropolluants présents dans les eaux usées municipales, tels que médicaments et 

pesticides, ne sont que partiellement éliminés dans les stations d’épuration (STEP), et peuvent 

engendrer des effets néfastes sur la faune aquatique et contaminer les ressources en eau potable. Pour 

réduire leurs apports dans l’environnement, des traitements avancés sont nécessaires. L’objectif de 

cette thèse était d’étudier et de développer différentes options pour améliorer l’élimination des 

micropolluants dans les eaux usées municipales, notamment par oxydation biologique. Une attention 

particulière a été consacrée au développement d’un procédé abordable pour les petites STEP, qui ne 

demande que peu d’apports en produits chimiques, de maintenance et d’énergie, et facile 

d’exploitation. Différentes technologies ont été étudiées, des traitements biologiques conventionnels 

aux procédés physico-chimiques ou biologiques avancés tels que l’ozonation, l’adsorption sur 

charbon actif, la bio-oxydation enzymatique par des laccases et la biodégradation par des 

champignons lignivores. 

Le potentiel de deux traitements physico-chimiques, (i) l’oxydation par l’ozone et (ii) l’adsorption sur 

charbon actif en poudre (CAP) suivi soit d’ultrafiltration ou de filtration sur sable (FS), a été évalué 

dans une étude menée en collaboration avec plusieurs autres institutions avec deux installations 

pilotes à échelle industrielle exploitées en parallèle durant plus d’une année à la STEP de Lausanne. 

Les micropolluants étudiés ont été abattus en moyenne à plus de 80% par rapport aux eaux usées 

brutes,  avec une dose moyenne de 5.7 mg O3 l
-1

 ou de 10 à 20 mg l
-1

 de CAP. Ces deux procédés ont 

permis une réduction significative de la toxicité des effluents. L’implémentation de l’ozonation et du 

CAP-FS dans les STEP municipales apparait être réalisable en termes d’exploitation et de coûts. 

Cependant, à cause de leur complexité technique et de leurs possibles coûts relativement élevés pour 

de petites installations, ces deux procédés pourraient ne pas être adaptés pour de petites STEP sans 

personnel permanent. 

Le rôle de la nitrification dans l’élimination des micropolluants dans les STEP a été étudié avec deux 

réacteurs séquentiels discontinus à boues granulaires aérobiques (AGS-SBR), exploités avec ou sans 

nitrification (inhibition de l’ammonia monooxygenase (AMO)). Parmi les 36 micropolluants analysés, 

cinq ont été significativement mieux éliminés dans le réacteur avec nitrification, probablement par co-

oxydation par l’AMO. Cependant, pour l’élimination des autres polluants, les bactéries nitrifiantes 

n’ont pas joué un rôle significatif. Le meilleur abattement de nombreux micropolluants observé dans 

les STEP avec nitrification, mis en évidence durant les essais pilotes à la STEP de Lausanne, est donc 

probablement lié à la présence d’une communauté plus diversifiée d’hétérotrophes aérobiques, 

favorisée par les conditions nécessaires pour la croissance de bactéries nitrifiantes.  

Le potentiel des laccases, enzymes oxydatives produites par de nombreux champignons lignivores et 

bactéries, a été évalué pour l’élimination d’une large gamme de micropolluants. Parmi les 39 

substances testées, neuf ont pu être oxydées par la laccase seule, et trois autres ont été dégradées en 

cas d’addition d’un médiateur, un composé agissant comme intermédiaire dans le transfert des 

électrons entre le polluant et l’enzyme. Malgré la gamme restreinte de polluants potentiellement 

dégradés, principalement des phénols et des anilines, la laccase (avec ou sans médiateur)  est capable 

d’oxyder plusieurs substances préoccupantes (haute toxicité ou faible élimination dans les STEP), 

telles que les œstrogènes naturelles et synthétiques, le diclofénac (DFC), l’acide méfénamique (MFA), 

le triclosan (TCN), le bisphénol A (BPA), l’isoproturon (IPN) et le sulfamethoxazole (SMX). 

L’influence du pH, de la température, de la concentration de laccase et du temps de réaction sur les 

cinétiques d’oxydation du DFC, MFA, TCN et BPA a été étudiée. Ces quatre facteurs ont un effet 

significatif sur l’oxydation des micropollutants, le plus marqué étant pour le pH. Les résultats pour les 



  

vi 

 

composés seuls étaient différents de ceux obtenus avec des mélanges de polluants. Les conditions 

optimales pour l’oxydation des micropolluants dépendent des polluants, se situant à un pH de 4.5 à 

6.5 et une température de 25°C à plus de 40°C. Une concentration de laccase de 730 U l
-1

 a permis 

d’atteindre des taux d’élimination élevés (> 90%) des quatre composés dans un temps restreint (40 

min à 5 h), montrant le potentiel des laccases pour l’élimination, dans des eaux usées acidifiées, de 

plusieurs composés toxiques ou persistants. 

L’influence du pH et des concentrations de médiateurs, d’enzyme et de polluants sur les cinétiques 

d’oxydation du SMX et de l’IPN avec des systèmes laccase-médiateur (SLM) a été étudiée avec trois 

médiateurs : le 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), le syringaldehyde 

(SA) et l’acetosyringone (AS). Les deux polluants ont été complètement transformés en quelques 

heures en présence de laccase et d’ABTS, ainsi que, pour le SMX, en présence de SA et d’AS. Les 

trois médiateurs ont été consommés durant les réactions (pas de cycles catalytiques observés). Des 

cinétiques d’oxydation plus rapides ont été observées à des pH plus acides, mais des ratios 

médiateur/polluant plus élevés étaient également nécessaires. Les mélanges de produits de 

transformation étaient toujours moins toxiques pour les algues que les polluants non traités. Basé sur 

ces résultats, le SLM semble être une option prometteuse pour traiter des effluents industriels 

concentrés et potentiellement toxiques, mais ne semble pas être adapté pour le traitement de faibles 

concentrations de micropolluants dans des eaux usées municipales. 

Afin de sélectionner un organisme produisant de la laccase qui pourrait être utilisé dans un traitement 

biologique avancé, quatre souches du genre bactérien Streptomyces et le champignon lignivore 

Trametes versicolor ont été étudiés. De part sa plus grande production de laccase, l’activité de sa 

laccase sur une gamme de pH plus large et à plus basses températures, une laccase plus stable et une 

meilleure efficacité pour l’oxydation des micropolluants, le champignon T. versicolor est apparu 

comme étant le meilleur candidat pour être inoculé dans un post-traitement biologique. 

Finalement, un filtre fongique séquentiel discontinu (FFSD), composé de copeaux de bois servant de 

substrat et de support pour le mycélium,  a été conçu et testé à échelle de laboratoire avec deux 

champignons lignivores, Trametes versicolor et Pleurotus ostreatus. Le FFSD avec P. ostreatus a pu 

être exploité en continu durant plusieurs mois (jusqu’à 140 j) avec des eaux usées non-stériles, sans 

addition d’aucun substrat externe, d’acidification ou de réinoculation. Une large gamme de 

micropollutants a pu être bien éliminée par une combinaison de dégradations fongiques et 

microbiennes et d’adsorption. Les FFSD étaient en mesure de rivaliser avec l’ozonation ou 

l’adsorption sur CAP concernant l’élimination moyenne (jusqu’à 82%) de 27 micropolluants dans des 

eaux usées municipales. Cependant, les relativement long temps de séjour hydraulique nécessaires (de 

24 à > 48 h, comparé à < 40 min pour l’ozone ou le CAP) et la relative courte durée de vie du 

champignon ont engendré une consommation d’énergie relativement élevée (> 0.4 kWh m
-3

) et des 

besoins en copeaux de bois importants (> 1 g l
-1

). Par conséquent, malgré sa bonne efficacité pour le 

traitement des micropolluants, des équipements techniques simples, la simplicité d’exploitation, peu 

de maintenance et seulement des copeaux de bois et de l’électricité comme consommable, le filtre 

fongique doit encore être significativement optimisé afin de pouvoir être implémenté dans les STEP. 

Cette thèse a ouvert de nouvelles perspectives concernant le traitement biologique des micropolluants 

dans les eaux usées, soulignant également les défis liés à l’application de traitements fongiques ou 

enzymatiques dans les STEP.   

 

Mots-clés : micropolluants, médicaments, pesticides, eaux usées, ozonation, charbon actif, adsorption, 

oxydation, biodégradation, laccase, champignons lignivores, traitement fongique, STEP.  
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Chapter 1    Introduction 

The increasing worldwide consumption of chemical products has led to increasing chemical pollution 

of surface and groundwaters, with still largely unknown effects on human health and aquatic life. 

Contamination of natural water by thousands of chemical compounds despite, for most of them, very 

low concentrations (pg - µg l
-1

), raises considerable ecological issues and is a major public concern 

almost all around the world (Schwarzenbach et al., 2006). Once in the environment, these compounds 

are referred to as “trace contaminants” or “micropollutants”. Micropollutants are usually defined as 

“chemical compounds present at low concentrations (e.g., nano- to micrograms per litre) in the 

environment, and which, despite their low concentrations, can generate adverse effects for living 

organisms” (Chèvre and Erkman, 2011). This includes several hydrophobic pollutants such as heavy 

metals, dioxins, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), flame 

retardants, etc., but also more polar (hydrophilic) compounds designed to be biologically active such 

as pesticides and pharmaceuticals. Many of these micropollutants, such as detergents, 

pharmaceuticals, biocides or personal care products, are mainly rejected into municipal sewer systems 

and, because of only partial removal in conventional wastewater treatment plants (WWTPs) 

(Verlicchi et al., 2012), reach the aquatic ecosystems. WWTP effluents are thus considered as the 

main vector of these compounds into the environment (Kasprzyk-Hordern et al., 2009).  

1.1 Impact of micropollutants 

1.1.1 Toxicity to aquatic life 

If the global issue of persistent, bioaccumulative and toxic (PBT) compounds is already partially 

handled through international legislations (Stockholm Convention POP, Rotterdam Convention PIC, 

European regulation REACH, etc.), impacts on wildlife related to less persistent but continuously 

emitted substances, such as pharmaceuticals, personal care products, biocides and endocrine 

disrupters were recently reported worldwide. For instance, feminization of fish and mussels, as well as 

intersex and reproductive disruption in fish, were observed in several rivers downstream of WWTP 

outfalls, probably related to the release of estrogenic endocrine disrupters, such as the active 

ingredient of the contraceptive pill (ethinylestradiol), natural estrogens, nonylphenol or bisphenol A 

(Alan et al., 2008; Gagné et al., 2011b; Jobling et al., 1998; Jobling et al., 2006; Tetreault et al., 2012; 

Tetreault et al., 2011; Tyler and Jobling, 2008; Vethaak et al., 2005). Several other adverse effects 

were observed downstream of WWTP outfalls, especially in the case of low dilution of effluents, such 

as neuroendrocinal alterations and oxidative stress in freshwater mussels (Gagné et al., 2011a; Gillis 

et al., 2014), histopathological effects in fish (Galus et al., 2013; Tetreault et al., 2012), alteration of 

macroinvertebrate communities and gammarid health (fecundity, sex ratio, stress) (Englert et al., 

2013; Peschke et al., 2014), or reduction in leaf litter breakdown by gammarid crustaceans, which 

may impact the whole aquatic food web downstream of WWTPs (Bundschuh et al., 2011b). 
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Although it is very difficult to link these effects with specific micropollutants, there is evidence that 

these impacts were mainly due to micropollutant toxicity and not due to other macropollutants 

(organic matter, nutrients, etc.) found in treated wastewaters. Indeed, it was reported that some of 

these adverse effects were clearly reduced after degradation of most micropollutants by ozonation 

(which did not affect the concentration of macropollutants) (Bundschuh et al., 2011b; Bundschuh and 

Schulz, 2011). Moreover, several studies showed that micropollutants can have toxic effects already 

at the concentrations found in WWTP effluents (see below).  

For instance, the fish population of a small lake was strongly affected (male feminization, decrease in 

the reproductive success) and collapsed after exposure to the synthetic estrogen ethinylestradiol at 5-6 

ng l
-1

 (Kidd et al., 2007). Ethinylestradiol was reported to decrease egg fertilization and to change the 

sex ratio in fish even at 0.3 ng l
-1

 (Parrott and Blunt, 2005).  

The anti-inflammatory drug diclofenac, the antiepileptic carbamazepine and the beta-blocker 

metoprolol were reported to generate cytological alterations in fish liver, kidney and/or gills already at 

0.5-1 µg l
-1

, concentration found in municipal WWTP effluents (Hoeger et al., 2005; Triebskorn et al., 

2004; Triebskorn et al., 2007). Diclofenac is indeed known for its potential toxicity to wildlife and 

was associated to the collapse of the vulture population in Pakistan, caused to renal failures linked to 

the consumption of diclofenac-treated livestock (Oaks et al., 2004). The antiepileptic carbamazepine 

may also possibly alter freshwater community structure and ecosystem dynamics at a concentration of 

0.2-2 µg  l
-1

 (Jarvis et al., 2014).  

Several antibiotics (e.g., azithromycin, clarithromycin, erythromycin and ciprofloxacin), in addition to 

potentially favouring the development of antibiotic resistant pathogens (if present at concentrations 

above the minimum selective concentration (MSC)) (Sandegren, 2014), were also reported to 

significantly inhibit algae and cyanobacteria growth at low concentrations (1-5 µg l
-1

), close to the 

concentrations found in WWTP effluents (Ebert et al., 2011; González-Pleiter et al., 2013; Harada et 

al., 2008; Isidori et al., 2005). 

The biocide triclosan affects river biofilms and algae community structure at concentrations 

potentially lower than 0.5 µg l
-1 

(Franz et al., 2008; Ricart et al., 2010). The biocide irgarol was also 

reported to significantly affect algae at concentrations as low as 8-25 ng l
-1

 (Nyström et al., 2002). 

Most of these impacts are chronic sub-lethal effects that are difficult to extrapolate to real impacts on 

aquatic ecosystem functions. Nevertheless, this demonstrates that constant exposure to very low levels 

of micropollutants found in municipal WWTP effluents is not harmless, especially in the case of low 

dilution of effluents. Therefore, release of micropollutants should be avoided to protect sensitive 

aquatic ecosystems. 

1.1.2 Drinking water contamination 

Contamination of surface waters by micropollutants released from municipal WWTPs raised the 

question of drinking water contamination, as surface waters are one of the main sources of drinking 

water all around the world. Several micropollutants of wastewater origin, such as pharmaceuticals, 

biocides, personal care products, plastic additives or sweeteners have been detected, usually at low 
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concentrations (<1 – 100 ng l
-1

), in finished drinking waters in many countries (Benner et al., 2013). 

In order to estimate the potential human health risks, the lifelong human exposure to these 

micropollutants via drinking water was assessed in a few studies (Houtman et al., 2014; Sanderson, 

2011; Webb et al., 2003). The dose of micropollutants ingested during a whole life (70 years) by 

drinking 2 l of water per day varies between < 5 µg up to 4 mg, corresponding, for most of the 58 

pharmaceuticals studied, to less than 10% of one defined daily dose (DDD), the dose a patient is 

administered on one day. The exposure to pharmaceuticals via drinking water is thus considered to be 

very low in comparison with therapeutic doses or other exposure routes. Due to the very low 

concentrations of micropollutants in drinking waters, all the studies concluded that appreciable 

adverse impacts on human health are unlikely at current levels of exposure, even if the potential effect 

of low level chronic exposure to chemical mixtures is still mainly unknown. Concerns over drinking 

water contaminated by micropollutants of municipal wastewater origin should therefore not divert 

water suppliers and regulators from real water quality issues regarding human health: contamination 

by pathogens, toxic disinfection by-products, algal toxins or high concentrations of regulated 

industrial/agricultural pollutants (Richardson, 2003; Sanderson, 2011). Nevertheless, even if no 

human health impacts are expected, drinking water resources are valuable and have to be protected 

and preserved to provide water of high quality in the future. Moreover, a trend to a decrease in public 

acceptance of the presence of micropollutants in drinking waters appeared, linked to increased 

awareness of these issues. Public awareness of the contamination of drinking water is likely to be a 

stronger driver for political actions than potential adverse effects for aquatic organisms, even though 

the latter are more consequential (Eggen et al., 2014). 

1.2 Strategies to reduce the release of micropollutant in surface waters 

In order to protect aquatic ecosystems and to preserve drinking water resources, reduction of the 

inputs of micropollutants in surface waters is necessary. For micropollutants of mainly urban origins, 

such as pharmaceuticals, personal care products, household products and biocides, several levels of 

action are proposed: (i) prevention and source control, (ii) source separation and decentralized 

treatments, or (iii) centralized end-of-pipe treatments (Eggen et al., 2014; Larsen et al., 2004). 

1.2.1 Prevention and source control 

Source control aims to avoid the use and the dispersion of chemicals of concerns. This includes (i) 

regulations, at national or international levels, to ban or restrict the use of harmful compounds; (ii) 

collaboration with industries to develop chemicals harmless for the environment (biodegradable, not 

toxic, etc.) (“green chemistry”) or technologies requiring less chemicals (e.g., washing machines 

requiring few detergents, thermal or mechanical weeders); (iii) substitution of harmful chemicals by 

more environmentally friendly existing substances; and (iv) users awareness and promotion of best 

management practices (via information campaigns or incentive taxes) to change consumer behaviours, 

such as proper disposal, moderate use, optimal usage, choice of chemicals with lower environmental 

impacts, etc. 

Obviously, source control should be the first strategy to apply to limit the dispersion of critical 

substances. However, success can only be expected in the long-term, due to the time required to adopt 
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new regulations, to develop cleaner products or to change consumer habits. Moreover, compound-

specific regulations, even coupled to changes in consumer behaviours, are unlikely to be sufficient to 

reduce the loading of hundreds of micropollutants that come from various usages and applications. In 

addition, restriction of pharmaceutical consumption for environmental reasons seems difficult to 

justify. For this class of compounds, substitution of critical drugs with others with the same 

therapeutic properties but more biodegradable and moderate usage are probably more realistic. In any 

case, source control must be complemented with other measures (Eggen et al., 2014).  

1.2.2 Source separation and decentralized treatments 

This strategy consists to apply target treatment of the most polluted and concentrated wastewaters, 

such as hospital effluents, patient urine, industrial effluents, etc., before their dilution with high 

volumes of less polluted wastewaters. These point-source measures allow treating much smaller 

volumes and with better efficiency than in diluted wastewater. Decentralized treatments are thus 

interesting options in the case of high participation of these punctual sources to the global load of 

pollutants. 

Urine, which represents less than 1% of the wastewater volume (Larsen et al., 2004), contains around 

50% of the non-metabolized pharmaceuticals excreted after human consumption (Lienert et al., 2007). 

Source separation and specific treatment of urine were thus proposed (Larsen et al., 2004). However, 

although this could reduce half of the load of pharmaceutical in wastewater and allow recovering 

valuable nutrients, complementary treatments will be necessary to treat the part not contained in urine, 

and urine collection will require a major change of the sanitation system, which might be feasible only 

in the long-term. 

Decentralized treatment of hospital effluents was also suggested to avoid the spread of specific 

ecotoxic pharmaceuticals, pathogens and multiantibiotic resistant bacteria (Lienert et al., 2011). 

However, the contribution of hospital effluents to the total load of pharmaceuticals at WWTPs is 

usually less than 10-15% (Langford and Thomas, 2009; Ort et al., 2010). This is not surprising as 

pharmaceuticals are widely used throughout the population. Even if some drugs are only administered 

in hospitals, they are mainly excreted at home in case of ambulatory care. Treatment of hospital 

effluents would thus not be sufficient to reduce the load of pharmaceuticals released in the 

environment. 

Therefore, for micropollutants of mainly households or diffuse origins, such as pharmaceuticals, 

personal care products, biocides, detergents, etc., centralized treatments, in combination with source 

control, appear to be the best solution. 

1.2.3 Centralized end-of-pipe treatments 

As in most developed countries, municipal wastewater is collected and routed via the sewer networks 

towards centralized WWTPs, the easiest and most efficient strategy is to upgrade WWTPs with 

advanced technologies able to treat micropollutants (see below). This strategy was adopted in March 

2014 by the Swiss government, which decided to implement, over the next 20 years, technical 

measures for micropollutant reduction in (i) large WWTPs (> 80,000 population equivalent (PE)) for 
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which larger load reductions can be achieved, (ii) all WWTPs > 8000 PE that are characterized by low 

dilution (< 10 times by dry weather) in the receiving waters (ecotoxicity reduction), and (iii) WWTPs 

> 24,000 PE discharging into sensitive waters or important water reservoirs (drinking resources 

protection). The goal of these measures is to reduce by 80% on average (based on indicator 

substances) the load of micropollutants present in raw wastewater before its discharge in the 

environment (Eggen et al., 2014). 

To be relevant for micropollutant removal in municipal WWTPs, advanced technologies have to meet 

several criteria (Abegglen and Siegrist, 2012): 

- Efficiency on a wide range of micropollutants, covering most of the substances concerned 

- Absence of formation of undesirable or toxic by-products and wastes 

- Feasible in WWTPs without strong modification of existing installations 

- The local staff should be able to operate it with minimal training and it should not impact the 

efficiency of the WWTP 

- The costs and the energy consumption of the advanced treatment should be reasonable and 

proportional to the benefits of the treatment.  

The efficiency of centralized solutions depends also on the efficiency of the wastewater collection 

systems. Indeed, a significant load of micropollutant can potentially reach the environment via sewer 

leakages or combined sewer overflows (CSOs). In combined sewer systems, stormwater runoff is 

collected in the same pipe as domestic wastewater. During rain events, once the maximal capacity of 

the WWTP is reached, the additional flow is frequently directly diverted, via CSOs and without 

treatment, into surface waters. The quantity of non-treated municipal wastewater (excluding 

stormwater) that reaches the environment depends on the sewer network configuration and the 

climate, but ranges usually around 2-4% of the total wastewater collected (in dry weather equivalent). 

Thus, for some micropollutants well removed in WWTPs, CSOs may appear as the main source into 

the environment (Buerge et al., 2006; Weyrauch et al., 2010). Urban stormwater contains also 

significant concentrations of micropollutants, such as heavy metals, PAHs or pesticides (Gasperi et 

al., 2014). Therefore, optimization of the sewer network and the stormwater collection and treatment 

has also to be considered to reduce the release of micropollutants. 

1.2.4 Advanced physico-chemical treatments 

To face the water-quality problem caused by wastewater micropollutants, efficient but cost effective 

centralized treatment technologies have to be developed. Mature solutions already exist and are ready 

to be used in WWTPs, such as ozonation (oxidation of the pollutant with ozone) or adsorption onto 

activated carbon. Other advanced physico-chemical technologies, such as filtration on tight 

membranes (reverse osmosis and nanofiltration) or advanced oxidation processes (AOPs) showed 

good potential for micropollutant removal, but are still at the research level or are too expensive for 

implementation in municipal WWTPs. These technologies are presented in Chapter 2. 
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1.2.4.1 Limitations of advanced physico-chemical treatments for small WWTPs 

Advanced physico-chemical treatments, despite their efficiency, are often considered to be relatively 

expensive, especially for small installations, and require technical skills for their operation (Eggen et 

al., 2014). These technologies are thus not well adapted for small WWTPs without permanent staff. 

Moreover, they consume significant energy (increasing up to 30% the energy consumption in 

WWTPs) (Eggen et al., 2014) and potentially non renewable resources (e.g., coal for activated carbon 

production), which goes against efforts made for the reduction of climate change. 

Alarming concentrations of micropollutants are usually found in small watercourses receiving large 

amounts of WWTP effluents (low dilution). In the canton of Vaud (Switzerland), 47 WWTPs present 

a dilution factor smaller than 10 during dry weather. Among them, 30 have less than 2000 PE 

(Jaquerod et al., 2010). Even if these small WWTPs are not important in terms of load of 

micropollutants, they can impact the quality of many small streams. Therefore, in order to avoid 

negative impacts in the receiving waters, research has to be invested in the development of a treatment 

affordable for small WWTPs, with low equipment needs, maintenance, skills, and energy 

requirements. 

1.2.5 Advanced biological oxidation processes 

Some bacteria and fungi have developed powerful oxidative enzymes such as oxygenases, laccases 

and peroxidases that have broad substrate spectra and are usually involved in the degradation of 

complex and highly resistant natural molecules such as lignin and lignin-derived aromatic compounds 

(Baldrian, 2006; Conesa et al., 2002; Dwivedi et al., 2011). Many studies showed that these enzymes 

are also able to oxidize several micropollutants recalcitrant to bacterial degradation, including 

pharmaceuticals and biocides (Rodarte-Morales et al., 2011; Yang et al., 2013b). Therefore, oxidative 

enzymes could possibly be employed in wastewater as unspecific oxidation catalysts able to transform 

many different organic micropollutants, converting them to less toxic compounds or more prone to 

further biodegradation. Oxidative enzymes have, however, lower redox potentials (between 0.2 and 

1.4 V, see below) than chemical oxidants like hydroxyl radicals (E
0
 = 2.33 V) or ozone (E

0
 = 2.07 V) 

(Gogate and Pandit, 2004). Therefore, slower oxidation rates and a narrower substrate range can be 

expected with oxidative enzymes. 

As for most chemical oxidants, oxidative enzymes do not mineralize the substrate, but create radicals 

which can break down to smaller transformation products or couple with other molecules through 

non-enzymatic processes (oxidative coupling reactions) to form higher molecular weight compounds 

(Auriol et al., 2008; Garcia et al., 2011; Huang and Weber, 2005). In most cases, the transformation 

products were reported to be less toxic or more biodegradable than the parent compounds, showing 

the potential of biological oxidative treatment to improve wastewater quality (Auriol et al., 2008; 

Cabana et al., 2007a; Gaitan et al., 2011; Kim and Nicell, 2006a; Kim and Nicell, 2006c; Lloret et al., 

2013; Murugesan et al., 2010; Palvannan et al., 2014; Saito et al., 2004; Suda et al., 2012; Tsutsumi et 

al., 2001). 

The development of advanced biological oxidation processes (with oxidative enzymes), potentially 

less demanding in energy and resources than physico-chemical treatments, but requiring probably 
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longer reaction times and thus more space, may thus possibly be an option for the treatment of 

micropollutants in small WWTPs, where size is not a limiting factor. 

1.2.5.1 Type of oxidative enzymes 

Several oxidative enzymes from bacteria, plant and fungi have been described and could be 

potentially used to remove pollutants from the environment. The main families are oxygenases, 

peroxidases and polyphenol oxidases (Burton, 2003; Duran and Esposito, 2000; Torres et al., 2003). 

The characteristics of these enzymes are presented below. 

1.2.5.1.1 Oxygenases 

Oxygenases can be divided into monooxygenases and dioxygenases. Monooxygenases use molecular 

oxygen to insert one oxygen atom into a substrate while the second oxygen is reduced by the cofactor 

NAD(P)H (nicotinamide adenine dinucleotide (phosphate)) to water. Dioxygenases catalyze the regio-

selective insertion of two oxygen atoms from molecular oxygen into a substrate in the presence or not 

of cofactors (Burton, 2003; Li et al., 2002). Oxygenases include a large number of different enzymes 

families, which are able to oxidize a broad spectrum of aromatic compounds. Examples of 

monooxygenase are the well-known cytochrome P450 superfamily which is involved in many 

reactions, like bioconversion of xenobiotics, metabolism, biosynthesis of biological compounds, etc. 

(Bernhardt, 2006); ammonia and methane monooxygenases that were used to degrade several 

micropollutants (chlorinated solvents, biocides, plastic additives, pharmaceuticals) by cometabolism 

(Erwin et al., 2005; McFarland et al., 1992; Roh et al., 2009; Tran et al., 2009; Yi and Harper, 2007); 

or toluene monooxygenases that can hydroxylate a broad variety of aromatic compounds (Gullotto et 

al., 2008; Li et al., 2002). Examples of dioxygenases are catechol dioxygenases which catalyze the 

oxidative cleavage of the aromatic ring of hydroxylated aromatic compounds (Guzik et al., 2011); 

toluene and naphthalene dioxygenases that have broad substrate spectrum transforming more than 70 

compounds in cometabolic activities (http://eawag-bbd.ethz.ch/index.html, last accessed 15.10.2014) ; 

or many other aromatic hydrocarbon dioxygenases, like biphenyl, benzoate, or phthalate 

dioxygenases families that can oxidize many aromatic hydrocarbons (Gibson and Parales, 2000). 

These enzymes are mainly intracellular (Arras et al., 1998) and require usually other cellular 

components as cofactors (e.g., NAD(P)H), which can only be efficiently regenerated inside cells or in 

the presence of intact cellular membranes (Torres et al., 2003). The use of pure oxygenase enzymes is 

thus not interesting and only processes using whole living microorganism cells can be applied for 

large scale applications (Gullotto et al., 2008). 

1.2.5.1.2 Peroxidases 

Peroxidases are oxidoreductases (hemoproteins) produced by many organisms like mammals, plants, 

fungi and bacteria. Theses enzymes utilize hydrogen peroxide (H2O2) to catalyze the oxidation of 

various organic and inorganic compounds (Conesa et al., 2002). Hydrogen peroxide first oxidizes 

(activates) the enzyme, which in turn oxidizes the substrate (AH2) into radicals (AH·) (Karam and 

Nicell, 1997). The reaction involves a two-electron transfer reaction to reduce H2O2 to two molecules 

of water (Battistuzzi et al., 2010; Conesa et al., 2002; Veitch, 2004). 

http://eawag-bbd.ethz.ch/index.html
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Peroxidases are readily inactivated by excess of H2O2, which is a serious constraint for the industrial 

or environmental application (Baciocchi et al., 2002). A strict regulation of the H2O2 concentration is 

necessary, with a “feed on demand” system or by in situ generation (Conesa et al., 2002). For the 

latter, several fungal or bacterial enzymes like aryl alcohols oxidases, glyoxal oxidases, galactose 

oxidases or glucose oxidases can generate H2O2 by reducing oxygen and oxidizing different substrates 

(Sinsabaugh, 2010). H2O2 can thus be produced in situ, for instance by addition of glucose and 

glucose oxidase (Inoue et al., 2010). Inactivation of peroxidases can be also due to destruction of the 

heme prophyrin ring by the oxidant (suicide inhibition) (Burton, 2003). 

A potential strong limitation for the application of peroxidases in wastewater is the fast consumption 

of H2O2 by the wastewater matrix (reaction with the organic matter) (Ksibi, 2006), which may 

strongly decrease the enzymatic activity or require the addition of high concentrations of H2O2.  

Four main types of extracellular peroxidases have been widely studied so far: horseradish peroxidase, 

lignin peroxidase, manganese peroxidase and versatile peroxidase. 

Horseradish peroxidase (HRP), found in the root of the horseradish plant (Veitch, 2004), can catalyze 

the oxidation of a wide range of toxic aromatic compounds like phenols, biphenols, anilines, 

benzidines and related heteroaromatic compounds (Karam and Nicell, 1997). The reaction products 

can be polymerized through a non-enzymatic process that leads to the formation of water-insoluble 

precipitates (Karam and Nicell, 1997). HRP is suitable for wastewater treatment because it retains its 

activity over a broad pH and temperature range (Karam and Nicell, 1997). HRP has many 

physiological roles including lignification, cross-linking of cell wall polymers, resistance to infection 

and metabolism (Veitch, 2004). 

Lignin peroxidase (LiP) is part of the extracellular enzymes system of wood-degrading fungi and is 

involved in lignin degradation (Karam and Nicell, 1997). LiP was shown to oxidize a broad range of 

polycyclic aromatic and phenolic compounds. LiP is the only known extracellular peroxidases capable 

of oxidizing non-phenolic aromatic substrates with high redox potential (1.45 to 1.49 V (Burton, 

2003)) (Oyadomari et al., 2003). The presence of a mediator like veratryl alcohol (a secondary fungal 

metabolite) can increase the oxidation of organic substrates that are recalcitrant towards the oxidation 

by LiP alone. The mediator is oxidized by LiP to a radical cation which in turn can react with the 

aromatic rings of recalcitrant compounds.  

Manganese peroxidase (MnP) is another enzyme involved in lignin degradation by ligninolytic 

(wood-degrading and soil litter-decomposing) fungi. MnP has more specific substrates and 

preferentially oxidizes manganese(II) ions (Mn
2+

), always present in wood and soils, into highly 

reactive Mn
3+

, which is stabilized by fungal chelators such as oxalic acid. Chelated Mn
3+

 in turn acts 

as low-molecular weight, diffusible redox mediator that can oxidize phenolic compounds and 

transform them into instable free radicals that tend to degrade spontaneously (Hofrichter, 2002). MnP 

can catalyse the oxidation of several phenolic and amino-aromatic compounds, as well as a few 

nonphenolic aromatic substances with low redox potential (Hofrichter, 2002). However, the enzyme 

requirement for high concentrations of manganese ions, hydrogen peroxide and chelators makes its 

feasibility for wastewater treatment application doubtful (Karam and Nicell, 1997).  
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Versatile peroxidase (VP), also isolated from several white-rot fungi and involved in lignin 

degradation, is a structural and functional hybrid of LiP and MnP, showing both Mn
2+

-dependant and 

Mn
2+

-independent activities. VP is able to oxidize both LiP and MnP substrates. Moreover, it can 

directly oxidizes hydroquinones, substituted phenols and even some high redox-potential dyes that are 

not efficiently oxidized by LiP or MnP in the absence of veratryl alcohol or Mn
2+

 respectively 

(Martínez, 2002). 

1.2.5.1.3 Polyphenol oxidases 

Polyphenol oxidases belong to another family of oxidoreductases that can catalyze the oxidation of 

phenolic compounds in the presence of molecular oxygen without the need of cofactors (Karam and 

Nicell, 1997). They are divided into two subclasses: laccases and tyrosinases. 

Laccases 

Laccases (EC 1.10.3.2) are multicopper enzymes that catalyze the oxidation of various aromatic 

compounds, particularly those with electron-donating groups such as phenols (-OH) and anilines (-

NH2), with the concomitant reduction of oxygen to water (Gianfreda et al., 1999). Laccases usually 

contain four copper ions distributed in three active sites, which are involved in the electron transfer 

from the substrate (T1 active site) toward oxygen (T2/T3 active sites) (Baldrian, 2006). Laccase 

withdraws one electron from the substrate (RH) and converts it into a free radical (R·), which can 

break down to a smaller molecule or be polymerized. After receiving four electrons, the enzyme 

transfers them to molecular oxygen to form water (Eq. 1.1) (Dwivedi et al., 2011): 

4RH + O2 → 4R· + 2H2O  (1.1) 

Laccase has a low substrate specificity and can oxidize a wide range of compounds, with a preference 

for first ortho, then para and at the end meta substituted phenols (Baldrian, 2006). 

Laccase enzymes are widespread among (wood-rotting) fungi, bacteria and plants, and have various 

biological functions (Claus, 2004; Dwivedi et al., 2011):  

1. Degradation of polymers: laccase is involved in the degradation of complex natural polymers 

such as lignin or humic acids to gain carbon and other nutrients. The reactive radicals 

generated by the enzymatic oxidation lead to the cleavage of covalent bonds and to the release 

of monomers. 

2. Cross-linking of monomers: radicals generated by the enzymatic oxidation of phenolic 

compounds and anilines can react with each other to form dimers, oligomers or polymers 

covalently coupled by C-C, C-O or C-N bonds. This process is involved in lignin 

polymerization and humic substance formation (Gianfreda et al., 1999), or polymerization of 

melanin and spore coat resistance (Strong and Claus, 2011), and can be use in soils to bound 

xenobiotics to the organic humic matrix and thus detoxify contaminated soils. 

3. Ring cleavage of aromatic compounds: laccase can catalyze the ring cleavage of some 

aromatic compounds, which is useful for the degradation of aromatic xenobiotics. 
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The relatively low redox potential of laccase (E
0
 of 0.45 to 0.8 V) compared to those of peroxidases 

(> 1 V) allows only the direct degradation of compounds with a low-redox potential (Baldrian, 2006). 

The substrate range of laccase can be, however, widened to non-phenolic compounds or pollutants 

with higher redox potentials by the addition of mediators (Husain and Husain, 2008). Mediators are 

low molecular weight compounds (such as ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic 

acid)), syringaldazine or hydroxybenzotriazole (HBT)) that are easily oxidized by laccase, producing 

free reactive radicals that can oxidize in turn more complex substrates (Torres et al., 2003). In this 

laccase-mediator process, binding between the enzyme and the substrate is not necessary enabling 

therefore the oxidation of more recalcitrant substrates. If synthetic mediators such as ABTS or HBT 

are very efficient, natural compounds like phenolic molecules generated during fungal degradation of 

complex substrates like lignin may also act as natural mediators. Thus addition of mediator might not 

be required if the culture broth contains some lignocellulosic substrates (Majeau et al., 2010). 

The structural properties of fungal laccases have been well described with median values of acidic 

isoelectric point around 3.9, a molecular weight around 66 kDa and, for laccase activity, a temperature 

optimum around 55°C (range from 50°C to 70°C) and pH optima usually in the acidic pH range, 

between 3 and 7 depending on the substrate and the source of enzymes (Baldrian, 2006; Dwivedi et 

al., 2011; Majeau et al., 2010). The enzymatic activity at higher pH is decreased by the binding of a 

hydroxide anion on the active copper centre of laccase that interrupts the internal electron transfer 

(Baldrian, 2006). Laccases are considered as relatively stable enzymes, with half-lives of several days 

in treated municipal wastewater at 20°C (Majeau et al., 2010; Zimmermann et al., 2011b). 

Various reagents can inhibit laccases, such as small anions as halides, azide, cyanide and hydroxide, 

which can bind to the active copper and interrupt the electron transfer. Other inhibitors like divalent 

metal ions, fatty acids, EDTA, cationic quaternary ammonium detergents, glutathione, thiourea, 

humic acid, etc. have also been reported (Baldrian, 2006; Dwivedi et al., 2011). 

Tyrosinases 

Tyrosinases are copper-containing enzymes that are ubiquitously distributed in nature. The best 

documented function of this enzyme is the formation of melanin pigments, which protect the cell 

against UV radiation and oxidants, and bind toxic heavy metals (Claus and Decker, 2006). Tyrosinase 

catalyzes two different reactions using molecular oxygen: (1) the hydroxylation of monophenols to 

form o-diphenol and (2) the oxidation of o-diphenols to o-quinones by dehydrogenation (Claus and 

Decker, 2006). The reactive quinones undergo then a non-enzymatic polymerization to form soluble 

oligomers and colored compounds like melanin (Karam and Nicell, 1997). These transformation 

products are less toxic than the parent phenols (Torres et al., 2003). Thus tyrosinase can be used in 

environmental technology for the detoxification of phenol-containing wastewater or contaminated 

soils (Claus and Decker, 2006). The redox potential E
0
 of tyrosinase is estimated to be at 0.26 V, 

much lower than the one reported for laccase (Baldrian, 2006). This enzyme seems therefore to be 

less interesting for industrial applications. 

Laccases have the advantage compared to other oxidative enzymes to be readily available 

(extracellular enzymes produced by many fungi and bacteria). They are highly stable compared to 
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fungal peroxidases, have a broad substrate range and do not require cofactors such as hydrogen 

peroxide (but mediators can increase their efficiency) (Burton, 2003). Thus, despite slightly lower 

redox potential than peroxidases, laccases are interesting catalysts for many industrial and 

environmental applications, including wastewater treatment (Dwivedi et al., 2011). 

1.2.5.2 Pure enzymes versus whole living microorganisms 

The most important issue precluding the practical use of pure oxidative enzymes for wastewater 

treatment is the high cost of enzyme production, as large quantities of enzyme would be required 

(Majeau et al., 2010). Solutions to reduce these costs are for instance the production of these enzymes 

with cheap substrates like agricultural or forestry wastes, and the immobilization of the enzymes in 

order to reuse them several times (Majeau et al., 2010). Another potentially more interesting option 

would be to use the whole organisms producing these enzymes for the treatment of wastewater. 

Indeed, combined effects of the actions of laccases, peroxidases and other extracellular or intracellular 

enzymes produced by these organisms could be advantageous in terms of broader substrate range and 

further mineralization of toxic compounds (Majeau et al., 2010). Several organisms producing 

oxidative enzymes could be used for this purpose, mainly fungi and bacteria. 

Fungal laccases and peroxidases are widely distributed in ascomycetes, deuteromycetes and 

basidiomycetes, especially in wood degrading fungi such as many members of the white-rot fungi 

genus Trametes (particularly Trametes versicolor) (Baldrian, 2006). These basidiomycetes produce 

constitutively small amounts of extracellular laccase that can be augmented by an inducer such as 

aromatic or phenolic compounds related to lignin (Majeau et al., 2010). Laccases are also reported in 

saprophytic ascomycetes of composts (e.g., Aspergillus) and in soil hyphomycete (Baldrian, 2006; 

Dwivedi et al., 2011). The main role of fungal oxidative enzymes (laccase and peroxidase) is to 

depolymerize the complex cell-wall constituents of wood such as lignin in order to gain carbon and 

nutrients. This degradation process involves also other enzymes, such as glucose oxidase and glyoxal 

oxidase for H2O2 production and cellobiose-quinone oxidoreductase for quinone reduction (Dwivedi 

et al., 2011). Due to the properties of their substrate, ligninolytic enzymes are almost exclusively 

extracellular, but intracellular laccases have also been observed in several fungi (Baldrian, 2006). The 

white-rot fungus Trametes versicolor was reported to be one of the most promising fungi for the 

degradation of persistent compounds (Marco-Urrea et al., 2009). 

Laccase and peroxidase activities have also been identified in many soil bacteria, particularly in 

Streptomyces sp., Bacillus sp. and Pseudommonas sp., but also in several other bacteria. Many forms 

of bacterial laccases have been described with intracellular, periplasmic, on spore coats or 

extracellular enzymes (Sharma et al., 2007). Bacterial laccases have usually low level of expression, 

more restricted substrate range (Majeau et al., 2010) and lower redox potential than fungal laccases 

(Bugg et al., 2011; Dwivedi et al., 2011). However, novel bacterial laccases have been reported to 

successfully oxidize a wide range of substrates. In contrast to fungal laccases, some bacterial laccases 

can be highly active and much more stable at high temperature, at high pH as well as at high 

concentration of chloride (Bugg et al., 2011; Dwivedi et al., 2011; Reiss et al., 2011; Sharma et al., 

2007).  
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The possibility to use laccase producing organisms, such as white-rot fungi or Streptomyces bacteria, 

for municipal wastewater treatment, faces, however, many challenges due to treatment conditions that 

are far from ideal for these organisms (dead wood, soil), such as competition with native 

microorganisms, predation, or long-term survival in stressful conditions (Libra et al., 2003). 

1.3 Objectives and structure of the thesis 

The global objective of this thesis was to study and develop various options to improve 

micropollutant removal from municipal wastewaters, with a special focus on oxidative 

biotransformation. The main idea was to improve biodegradation of recalcitrant micropollutants after 

the final WWTP stage using microorganisms that produce oxidative enzymes. The goal was to 

develop a treatment process that requires low energy, low or no chemical inputs, low maintenance and 

ease of operation, in order to provide an environmentally friendly solution affordable for small 

WWTPs to improve the quality of natural waters. 

To reach this goal, many open questions had to be investigated: 

1. What is the fate of various classes of micropollutants in conventional WWTPs, what are their 

removal efficiencies and which classes of pollutants are of most concern? 

2. What is the efficiency of existing but still rarely applied advanced treatments such as 

ozonation and activated carbon adsorption? Can they be implemented in municipal WWTPs 

and what are their limitations? 

3. Are oxidative enzymes such as ammonia monooxygenases and laccases able to transform 

target micropollutants usually not easily biodegradable? If yes, in which conditions? 

4. Are bacteria or fungi able to produce a sufficient quantity of these enzymes to transform 

target micropollutants? Can we grow and maintain these microorganisms in systems treating 

municipal wastewater? 

5. Is it possible to maintain and promote these organisms for long-term operations in real 

wastewater in a post-treatment system? What are the optimal conditions? Is this microbial 

system still efficient to treat micropollutants? 

6. Is this process relevant for small municipal WWTPs? What are the main limitations and in 

which conditions could it work? 

 

The investigations of all these questions are described in the following eight chapters of this thesis. 

In Chapter 2, a literature review evaluating the fate of more than 160 micropollutants of various 

classes (surfactants, pharmaceuticals, personal care products, pesticides, household products, heavy 

metals, etc.) in conventional WWTPs is described in order to better understand the removal 

mechanisms, the possibilities to improve them and the classes of pollutants of most concern. 

In Chapter 3, the efficiency for micropollutant and toxicity removal and the technical feasibility in 

WWTPs of two advanced treatments, ozonation and adsorption onto powdered activated carbon, were 

assessed, based on the results of a pilot-scale study performed during more than one year at the 

WWTP of Lausanne, Switzerland, in collaboration with several other institutions. 
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In Chapter 4, the role of nitrification and ammonia monooxygenase oxidation in micropollutant 

removal in WWTPs was studied with a laboratory-scale aerobic granular sludge sequencing batch 

reactor.  

In Chapter 5, the range of pollutants oxidized by laccase and laccase-mediator systems was assessed, 

and the influence of the treatment conditions on the removal of these micropollutants by laccase 

(Chapter 6) and laccase-mediator systems (Chapter 7) was determined. 

In Chapter 8, several laccase-producing microorganisms, including Streptomyces bacteria and the 

white-rot fungus Trametes versicolor, were tested for their ability to produce laccase in wastewater. 

The activity and the efficiency of their respective laccases were assessed in various conditions to 

determine which, of bacteria or fungi, have the highest potential for wastewater treatment 

applications. 

Finally, in Chapter 9, a sequencing batch fungal filter was designed and tested in continuous 

operation with two white-rot fungi, Trametes versicolor and Pleurotus ostreatus, to determine long-

term removal efficiencies of a wide range of micropollutants in synthetic and real wastewater. 

The last chapter, Chapter 10 with General conclusions and perspectives, summarises the main 

conclusions and discussions drawn from all the work presented. 

Each chapter is structured as a scientific publication, with its own materials and methods section and 

its own supporting information section. However, all the references are combined and presented at the 

end of the document. The final appendixes contain mainly protocols used during this thesis. 
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Chapter 2    Fate of micropollutants in municipal 

wastewater treatment plants 

This chapter is a literature review. An adapted version was submitted for publication in WIREs 

Water, with the name “Fate of micropollutants in municipal wastewater treatment plants”, by Jonas 

Margot, Luca Rossi, D. Andrew Barry and Christof Holliger. 

2.1 Introduction 

A wide range of chemicals used daily in homes, workplaces or in the urban environment ends up in 

sewers. This is obviously the case for “down the drain” products, such as detergents and their 

additives, or personal care products, but also for pharmaceuticals and their metabolites that are 

excreted in urine and faeces, and several household chemicals such as food or plastic additives, or 

flame retardants contained in textiles. Municipal wastewaters are also contaminated by non-domestic 

pollutants such as heavy metals, pesticides or hydrocarbons, leached during rain runoff from roads, 

buildings, and urban parks and gardens. The fate of these pollutants during wastewater treatment 

depends mainly on their physico-chemical characteristics (hydrophobicity, biodegradability, 

volatility) and the type of treatment. In order to reduce the release of micropollutants into the aquatic 

environment, understanding what happens for different classes of micropollutants in conventional 

wastewater treatment plants (WWTPs) is necessary. This chapter aims to explain the main removal 

mechanisms in conventional treatment systems and the fate of certain classes of micropollutants 

during treatment. Finally, processes to improve micropollutant removal, by optimizing biological 

treatments or with advanced physico-chemical treatments, are discussed.   

2.2 Removal mechanisms in conventional WWTPs 

Every day in Switzerland, each inhabitant produces on average (including infiltration/runoffwater 

inflow inputs) around 300 to 350 litres of wastewater that need to be treated (DGE, 2013; VSA-

FES/ORED, 2006). This last century, different treatment technologies were developed as a function of 

the observed environmental issues related to wastewater contamination (Table 2.1).  
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Table 2.1 Chronology of environmental impacts generated by the pollution emitted from municipal wastewater in 

industrialized countries, and examples of technical measures taken in Switzerland. Adapted from Weissbrodt (2012). 

Detection 

period 
Phenomenon  Undesired pollutants Technical measure 

Application 

year 

1920 
Mud accumulation in 

rivers 

Total suspended solids 

(TSS) 
Mechanical treatment 1920 

1950 Rivers anoxia 
Organic matter as biological 

oxygen demand (BOD) 

Biological carbon 

removal 
1950 

1965 Eutrophication of lakes Total phosphorus 
Chemical 

dephosphatation 
1965 

1975 Fish toxicity Ammonium Biological nitrification 1975 

1980 Pollutants in agriculture Heavy metals 
Interdiction of sewage 

sludge farming 
2000 

1990 
Eutrophication of the 

North Sea 
Nitrates 

Biological 

denitrification 
1995 

1900-

2010 

Waterborne diseases, 

antibiotic resistances 
Pathogens, resistant bacteria Disinfection 

(1970)-

foreseen 

2025? 

2000 
Aquatic toxicity and 

hormonal disturbances  
Micropollutants 

Advanced treatments 

(oxidation, adsorption) 

Foreseen 

2016 

2010 
Accumulation in 

biological systems 
Nanoparticles Membrane filtration 

Foreseen 

2025? 

  

Currently, the classical configuration for domestic wastewater treatment (Fig. 2.1) is composed of (i) 

pre-treatments to remove coarse wastes (bar screen), sand (decantation channel) as well as fat and 

grease (tank where skimmers collect the floating fat), (ii) primary treatment composed of a primary 

clarifier (or sedimentation tank) to remove most of the suspended solids by sedimentation (primary 

sludge), (iii) secondary treatment designed to remove the dissolved or residual solid easily 

biodegradable contaminants by biodegradation, and (iv) tertiary treatments to remove nutrients such 

as ammonium (by biological nitrification), nitrate (by biological denitrification) and phosphate 

(mostly by chemical precipitation), or in some cases to eliminate residual suspended solids (by sand 

filtration) or pathogens (by disinfection). 

 

Fig. 2.1 Scheme of a conventional WWTP with activated sludge for the removal of biodegradable organic matter, 

nitrification, denitrification and chemical phosphorus removal (precipitation with FeCl3). 

Biological treatments consist of managing indigenous water-borne microorganisms to promote fast 

degradation of organic matter, either in suspend-growth systems (e.g., activated sludge), or in fixed-

film systems (e.g., trickling filters or biofilters). Both systems are generally aerated, in order to 
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increase the degradation rates of the dissolved organic matter. The excess microbial biomass produced 

(secondary sludge) is then separated from the water by a secondary clarifier and all the sludge 

produced are (eventually) stabilized (anaerobic digestion), de-watered (by filter presses or 

centrifugation), and then either reused as a fertilizer (landfarming), disposed in landfills or 

incinerated. Conventional WWTPs are thus designed to remove the solid wastes, suspended solids, 

easily biodegradable dissolved organic matter and nutrients (phosphorus and nitrogen) from 

wastewater. Despite the fact that they were not designed to treat other kind of pollutants, many 

micropollutants are affected by the physical, chemical and biological processes occurring during 

conventional wastewater treatment.  

The main mechanisms for micropollutant removal in conventional wastewater treatment are (Fig. 

2.2): (i) sorption onto particulate matter, (ii) biological transformation, (iii) volatilization and (iv) 

abiotic degradation. Sorption and volatilization consist of a transfer of the micropollutant from one 

compartment (water) to another (solid or gas) whereas degradation leads to the transformation of the 

micropollutant. Complete mineralization produces water, CO2 and minerals. 

 

Fig. 2.2 Main removal mechanisms of micropollutants in conventional WWTPs (example of the polycyclic musk 

galaxolide). This compound is mainly eliminated by sorption on particulate matter and removed with the excess sludge. 

Biological degradation and volatilization processes may play also a role (10-15%) in the elimination of this compound (see 

Table 2.2). 

2.2.1 Sorption 

Sorption onto sludge or particulate matter can be an important removal mechanism for hydrophobic or 

positively charged micropollutants, especially if they are poorly biodegradable. Adsorption onto 

biological sludge can be differentiated into two main processes (Joss et al., 2006a): 

- Hydrophobic interactions between pollutants and suspended solids or sludge components, 

such as extracellular polymeric substances (EPS) or the lipophilic cell membrane of 

microorganisms.  
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- Electrostatic interactions between positively charged groups of the pollutant and the mainly 

negatively charged surfaces of microorganisms or effluent organic matter (EfOM). 

Other phenomena such as active/passive cells uptake (absorption by microorganisms), cationic 

exchanges, cationic bridges, surface complexation and hydrogen bridges may also play an important 

role in sorption mechanisms (Pomiès et al., 2013). Adsorption is therefore a complex process 

dependent on the physico-chemical properties of the pollutant (charge, hydrophobicity) and the 

properties of the sludge (surface charge, specific surface area, EPS content, oxidation degree of the 

organic matter, mineral content). Different adsorption capacities are thus observed among different 

sludge (primary or secondary, flocs or biofilms) (Barret et al., 2010a; Mailler et al., 2013). 

Electrostatic interactions are influenced by the pH of the wastewater as slight variation in the pH can 

lead to either protonation (positively charged or neutral) or deprotonation (neutral or negatively 

charged) of compounds containing functional moieties with a pKa around 6-9. 

Micropollutants not only sorb to particulate matter, but also onto colloidal particles (1 nm to 1 µm), 

which are considered as part of the “dissolved” phase (Pomiès et al., 2013). Sorption onto dissolved or 

colloidal matter (DCM) increases the solubility of hydrophobic substances, such as persistent organic 

pollutants (POPs), polycyclic aromatic hydrocarbons (PAHs) or heavy metals (Barret et al., 2010a; 

Barret et al., 2010b; Katsoyiannis and Samara, 2007). This means that the presence of DCM or 

dissolved organic carbon (DOC) in wastewater can significantly affect the partitioning of these 

pollutants between the “dissolved” and the “particulate” phases, limiting their removal by adsorption 

onto the sludge and therefore facilitating their discharge into the environment together with the treated 

effluent. A diagram of the adsorption process in wastewater is presented in Fig. 2.3. 

 

Fig. 2.3 Micropollutant adsorption onto sludge and onto dissolved and colloidal matter. 

Sorption is usually a reversible process composed of two reactions which occur simultaneously: 

adsorption and desorption. Sorption equilibrium is reached when the rate of both reactions is equal 

(Joss et al., 2006a). The sorption kinetics of various pollutants onto secondary sludge, including 

hydrophobic PAHs and hydrophilic substances such as polar pharmaceuticals and pesticides, are 

reported to be fast, with sorption equilibrium reached in less than 0.5 to 2 h (Barret et al., 2010b; 

Ternes et al., 2004; Wick et al., 2011). The sorption equilibrium on colloids is reached even faster (< 
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5 min) (Maskaoui et al., 2007). Due to longer hydraulic retention time (HRT) in biological treatments, 

equilibrium can be assumed for solid-liquid partitioning in WWTPs. 

Sorption equilibrium onto sludge can be described by empirical sorption isotherms, such as the 

Langmuir model, the Freundlich model or the linear model. At low pollutant concentrations (e.g., < 

1µg l
-1

) relatively to the amount of sludge (> 100 mg l
-1

), the linear model is often considered 

(saturation of the sludge neglected). This model is, however, not appropriated in all cases, especially 

for higher pollutant concentrations. In this case, the Freundlich model was shown to be more accurate, 

as it considers saturation of the adsorption sites (Wick et al., 2011). In the linear model, under 

equilibrium conditions, the concentration sorbed onto the suspended solid (SS) (Cs in [µg kg
-1

 SS]) is 

assumed to be proportional to the concentration in solution (Cw in [µg l
-1

]) (Pomiès et al., 2013): 

WS CKC d  (2.1) 

where Kd is the sorption (or distribution) coefficient (in [l kg
-1

 SS]), which has to be determined 

experimentally for each specific sludge. 

The total micropollutant concentration CT (in [µg l
-1

]) is defined by: 

SSCCC SWT    (2.2) 

where SS is the suspended solids concentration (dry weight) (in [kg SS l
-1

]). At equilibrium, the 

fraction of pollutant removed by sorbtion, γs [-], is thus defined by: 

SSK

SSK

C

SSC

d

d

1T

S
S

   (2.3) 

The fraction of pollutant removed by sorption (if not degraded or stripped) is therefore mainly 

dependent on (i) the sorption coefficient Kd of the pollutant on the specific sludge, which depends on 

the pollutant and sludge characteristics and the colloids/DOC content of the water, and (ii) the 

suspended solids concentration SS. The main factors influencing micropollutant adsorption onto 

sludge are synthesised in Fig. 2.4. 
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Fig. 2.4 Main factors influencing pollutant adsorption onto particles or sewage sludge 

For WWTPs, the specific sludge production SP, which is the excess sludge withdrawn in primary 

and/or secondary treatment per litre of wastewater treated [kg SS l
-1

], can be used in Eq. 2.3 instead of 

SS to estimate the removal by sorption on the excess sludge (Joss et al., 2006a). The specific sludge 

production SP in the secondary treatment depends on the influent composition (TSS content and the 

growth substrate concentration (BOD)), the sludge age, the temperature, and the amount of coagulant 

added for phosphorus removal. SP can be estimated by empirical formula, such as the one proposed 

by ATV-DVWK (2000). Typically, values between 100 and 400 mg SS l
-1

 can be expected for 

municipal wastewater (Joss et al., 2005). For a SP around 200-300 mg SS l
-1

 (average value in canton 

of Vaud (DGE, 2013)), micropollutant removal with excess sludge can be estimated with Eq. 2.3, 

according to their sludge affinity Kd: 

- Kd < 400 [l kg
-1

 SS]: negligible removal by sorption (< 10%) (e.g., polar pharmaceuticals such 

as diclofenac, metoprolol, carbamazepine, sotalol) (Hörsing et al., 2011; Joss et al., 2006a).  

- 400 < Kd < 4000 [l kg
-1

 SS]: low to moderate removal (10-50%) (e.g., heavy metals such as 

Ni, or pharmaceuticals such as azithromycin, oxazepam) (Hörsing et al., 2011; Joss et al., 

2006a; Katsoyiannis and Samara, 2007). 

- 4000 < Kd < 40,000 [l kg
-1

 SS]: moderate to high removal (50-90%) (e.g., heavy metals such 

as Fe, Pb, fragrances AHTN and HHCB, or pharmaceuticals such as ciprofloxacin, 

norfloxacin, fluoxetine) (Hörsing et al., 2011; Joss et al., 2006a; Katsoyiannis and Samara, 

2007). 

- Kd > 40,000 [l kg
-1

 SS]: more than 90% removal by adsorption can be expected (e.g., 

persistent organic pollutants such as heptachlor, hexachlorobenzene or several PCB 

congeners) (Katsoyiannis and Samara, 2005; Katsoyiannis and Samara, 2007). 

For non-charged pollutants (in the pH range 6-8 found in wastewater), Kd, and therefore the removal 

by sorption, can be reasonably estimated by the octanol-water partition coefficient KOW of the 

substance (indicator of hydrophobicity). Nonionic compounds are predicted to be not significantly 
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removed (< 10%) by sorption for log KOW values < 3.5, partially removed (10-95%) for  log KOW of 

3.5-6, and almost completely removed (> 90%) for log KOW > 6 (Wick et al., 2011). Positively 

charged substances tend to have stronger affinity for the sludge than expected based on their log KOW, 

due to the electrostatic attraction with the mainly negatively charged surface of the sludge. And 

negatively charged substances tend to have, at the opposite, weaker affinity with the sludge due to 

charge repulsion (Wick et al., 2011). 

A fraction of pollutants chemically bound in the sludge is possibly not in equilibrium with the liquid 

concentration. Indeed, a fraction of the pollutants can be strongly sequestered in the solid (irreversible 

sorption) and thus the part of pollutant removed with the solids can be higher than what expected 

based on the sorption coefficient Kd (Plósz et al., 2012). On the other hand, polar micropollutants 

(especially pharmaceuticals) trapped in faeces particles can be release in the water phase during  

biodegradation of these particles, leading to an increase of the soluble concentration during the 

treatment (Göbel et al., 2007). 

Coagulants and flocculants are often added during primary or secondary treatments to precipitate 

phosphate or to improve sedimentation of fine particles by charge neutralization of particles and 

colloids. Coagulation/flocculation have very low impact (< 15%) on the removal of polar 

micropollutants such as many pharmaceuticals, as these compounds are mostly in the soluble fraction 

(Luo et al., 2014; Ternes et al., 2002). Addition of coagulant can however improve the removal (up to 

> 90%) of more hydrophobic (and potentially sorbed) substances (such as musk fragrance, heavy 

metals) during the primary decantation, due to a better removal of particulate (and possibly colloidal) 

matter (El Samrani et al., 2008; Fu and Wang, 2011; Luo et al., 2014). It is expected that this 

enhanced removal in the primary treatment would also happen to a large extent in the secondary 

treatment (due to the high removal of particulate matter) without any coagulant addition (Joss et al., 

2006a).  

Adsorption is a transfer of pollutant from the liquid to the solid phase. Therefore, the fate of sorbed 

pollutants will depend on the fate of the solids. In Switzerland, since 2006, all the sludge produced in 

WWTPs is incinerated (ORRChim, 2005), leading to a high degree of mineralization of organic 

pollutants and sequestration of heavy metals in ash (stored in controlled landfills). In many countries, 

sludge is, after stabilization, used in agriculture as fertilizer. This option reuses the valuable nutrients 

(phosphorus, nitrogen) contained in the sludge but carries the risk of releasing contaminants in soil, 

food, or in the aquatic environment if pollutants are not degraded or immobilized in the soil 

compartment (Passuello et al., 2010; Wilson et al., 1996).  

2.2.2 Biological transformation 

For many hydrophilic organic micropollutants, biological transformation is the main removal 

mechanism during wastewater treatment. Micropollutant concentrations in wastewater are usually too 

low (ng l
-1

 to µg l
-1

) to support the growth of microorganisms or to induce the corresponding enzymes 

and/or cofactors for their biodegradation (probably no acclimatization / adaptation occurs at these 

concentrations). Therefore, biological transformation of micropollutants generally requires the 

presence of other growth substrates (carbon and energy sources) (Tran et al., 2013b). 
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Biotransformation of trace contaminants can be separated in two main processes: (i) metabolic 

reactions on mixed substrate or (ii) co-metabolic reactions (Fig. 2.5). 

 

Fig. 2.5 Micropollutant biotransformation by (A) metabolic (e.g., ibuprofen) or (B) co-metabolic processes (e.g., 

sulfamethoxazole). 

During metabolic reactions on mixed substrates, microorganisms use organic micropollutants as a 

growth substrate, together with other organic compounds. These substrates are used as energy 

(catabolism) and/or carbon source (anabolism) for their cell development (maintenance, growth and 

reproduction). Catabolic reactions lead to transformation of the pollutant to smaller molecules, 

ultimately until their complete bio-mineralization, i.e., their conversion to water, carbon dioxide and 

other minerals (Benner et al., 2013). Many bacterial strains able to utilize and mineralize specific 

pollutants as the sole energy source have been isolated, meaning that metabolic pathways exist for 

these substances. The degradation of these pollutants at very low concentrations requires the presence 

of other substrates that, together, will sustain the growth of cells. High concentrations of easily 

biodegradable substrates in wastewater can, however, repress the expression of these specific 

catabolic pathways. This preferential substrate selection may thus reduce micropollutant degradation 

until all the readily degradable substrates are consumed (Benner et al., 2013).  

During co-metabolic reactions, micropollutants are not used as a growth substrate but are biologically 

transformed, by side reactions catalysed by unspecific enzymes (such as mono- or di-oxygenases, N-

acetyltransferases, hydrolases) or cofactors produced during the microbial conversion of the growth 

substrate. Co-metabolism can thus be defined as “the transformation of a non-growth substrate in the 

obligate presence of a growth substrate or another transformable compound” (Fischer and Majewsky, 
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2014). Co-metabolism often leads to the formation of transformation products (TPs) (and not to 

mineralization), but these TPs may possibly be used as growth substrates for other microorganisms 

(Benner et al., 2013; Tran et al., 2013b). Although co-metabolic transformations require the presence 

of a growth substrate, if present at high concentrations the substrate can reduce the transformation of 

some micropollutants by competitive inhibition, i.e., competition between the growth and the co-

metabolic substrate (the pollutant) to the nonspecific enzyme active site (Plósz et al., 2012; Plósz et 

al., 2010). 

Clear separation between metabolism and co-metabolism is hardly feasible in complex systems such 

as activated sludge as both reactions probably occur simultaneously due to the diversity of 

microorganisms present (Fischer and Majewsky, 2014). Biodegradation and biotransformation are 

thus considered as a whole and usually quantified by the biological removal of the parent molecule 

(primary biodegradation). 

Micropollutant removal in wastewater by biodegradation in batch conditions can usually be modelled 

by pseudo first order kinetics, meaning that the concentration decreases exponentially over the time 

(Joss et al., 2006b):  

W
T CSSk
td

dC
bio

 (2.4) 

Where CT is the total micropollutant concentration [µg l
-1

], Cw the micropollutant concentration in 

solution [µg l
-1

], SS the suspended solids concentration (dry weight) [g l
-1

], t the reaction time [d] and 

kbio the reaction rate constant [l g
-1

 SS d
-1

] (including both metabolic and co-metabolic reactions). 

The transformation rate is directly proportional to the amount of microorganisms present (i.e. 

indirectly the sludge concentration SS) and to the soluble pollutant concentration (Cw). As the sludge 

concentration can be assumed to be constant for short-term batch experiments (pseudo first order 

kinetic) (Joss et al., 2006b), the residual pollutant concentration Ct after a defined reaction time t can 

be estimated by Eq. 2.5, with C0 the initial pollutant concentration. The fraction of pollutant removed 

by biodegradation γbio [-], assuming no sorption or volatilization, can be estimated by Eq. 2.6. 

)(exp0 tSSkCC biot  (2.5) 

)(exp11
0

tSSk
C

C
bio

t
bio

 (2.6) 

The reaction rate constant kbio is influenced by the sludge type and has to be determined 

experimentally for each specific biological treatment. The following sludge characteristics are thought 

to influence kbio (Joss et al., 2006a; Joss et al., 2006b): 

- Microbial diversity and composition of the sludge. Longer sludge retention times (SRTs), i.e., 

longer mean residence times of the microorganisms in the system, are correlated with better 

removal of many micropollutants. Longer SRTs are associated with increasing microbial 
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diversity, including slow-growing organisms (such as autotrophic nitrifying bacteria), leading 

to more diverse enzymatic activity and metabolic pathways for the degradation of complex 

molecules. The lower food-to-microorganism ratios obtained at longer SRTs (due to usually 

higher sludge concentrations) lead to oligotrophic conditions (shortage of biodegradable 

compounds) and therefore may induce microorganisms to metabolise also poorly degradable 

micropollutants (Maeng et al., 2013).  

- Fraction of active biomass within the sludge, which depends mainly on the sludge age. For 

instance, we can expect 50% of active heterotrophic biomass in sludge of 10 d but only 20% 

in sludge of 80 d (80% of inert matter). 

- Floc size of the sludge, due to diffusive mass transfer limitation in big flocs for rapidly 

degrading compounds. 

kbio can also be influenced by temperature (higher degradation rate at 20°C compared to 10°C), pH 

(influences enzymatic activity and cell uptake, with usually higher uptake of the neutral (non-charged) 

species), redox conditions (usually higher under aerobic conditions), and the availability of a co-

substrate (Cirja et al., 2008; Joss et al., 2006a). 

kbio is an global empirical parameter which does not allow to differentiate the biodegradation 

mechanisms (metabolism or co-metabolism) and which is very dependent on the sludge 

characteristics.  But due to its simple determination, it can be use to estimate the biological removal of 

a pollutant in specific secondary treatments. For example, for a typical nutrient-eliminating plant with 

a sludge age of 10-15 d, SS of 3.5 g l
-1

, an HRT of 12 h and a sludge recycle ratio of 2, Joss et al. 

(2006b) divided the micropollutants according to their degradability: 

- kbio < 0.1 [l g
-1

 SS d
-1

]: no substantial removal by biodegradation (< 20%) (e.g., the 

pharmaceuticals diclofenac or carbamazepine, or the fragrances AHTN and HHCB) (Joss et 

al., 2006a). 

- 0.1 < kbio < 10 [l g
-1

 SS d
-1

]: partial removal (20-90%) (e.g., the pharmaceuticals bezafibrate, 

gemfibrozil, 17α-ethinyl estradiol) (Joss et al., 2006a). 

- kbio > 10 [l g
-1

 SS d
-1

]: more than 90% removal by bio-transformation (e.g., the 

pharmaceuticals paracetamol and ibuprofen) (Joss et al., 2006a). 

Bio-transformation of micropollutants in WWTPs will thus depend on the sludge concentration (SS), 

their biodegradability (kbio) in this sludge, and the hydraulic retention time within the reactor (which 

depends on the reactor configuration, the flow and the sludge recycled ratio). 

Bioavailability of the pollutant is a prerequisite for bio-transformation. The soluble fraction is 

considered as being available but the bioavailability of the sorbed fraction is assumed to be much 

lower (Pomiès et al., 2013). As the sorbed fraction is in equilibrium with the dissolved one, desorption 

(which is relatively fast) will occur during the degradation of the soluble fraction. Thus, part of the 

sorbed fraction can also be degraded (if not sequestered in the sludge).  



 CHAPTER 2 

25 

 

A synthesis of the main factors affecting biodegradation/transformation of micropollutants in WWTPs 

(activated sludge treatment type) is presented in Fig. 2.6. 

 

Fig. 2.6 Main factors influencing micropollutant biodegradation in WWTPs (activated sludge system). 

2.2.3 Volatilization 

Volatilization of micropollutants can occur during wastewater treatment, occurring as surface 

volatilization but more significantly by stripping during aeration. The transfer of the pollutant from 

water to air depends essentially on the volatility of the compound (Henry’s law constant) and the 

operation conditions of the process (aeration, agitation, temperature and atmospheric pressure) 

(Pomiès et al., 2013).  

The air-water partition coefficient KAW of a substance [-], a dimensionless version of the Henry’s law 

coefficient KH [l Pa mol
-1

], is defined by: 
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Where Cg is the pollutant concentration in air [µg lair
-1

], Cw the soluble pollutant concentration [µg 

lwater
-1

], M the molar weight of the substance [µg mol
-1

], pp the partial pressure of the pollutant in the 

gas phase [Pa], R the universal gas constant: 8.314 ×10
3
 [l Pa mol

-1
 K

-1
], and T the temperature [K]. 

The fraction γstripped of a compound stripped from the water during aeration, assuming no degradation 

or sorption and equilibrium between the gas concentration in the rising bubbles and the dissolved 

concentration, can be evaluated by Eq. 2.8 (Joss et al., 2006a): 

)exp(1 airAWstripped qK  (2.8) 
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where qair [m
3
air m

-3
wastewater] is the air required for the aeration per m

3
 of wastewater treated. qair varies 

from 5 to 15 [m
3

air m
-3

wastewater] in conventional activated sludge, up to 25 [m
3

air m
-3

wastewater]  for 

membrane bioreactors (Joss et al., 2006a). 

Stripping of micropollutants during aeration in activated sludge systems (max around 15 m
3

air m
-3 

wastewater), assuming no sorption or biodegradation, can be thus estimated based on the KAW or KH of the 

substances (at 20°C): 

- KAW < 3·10
-3

 [-] (KH < 8 [m
3
 Pa mol

-1
]): negligible stripping (< 5%), as observed for 

hydrophilic substances such as pharmaceuticals (KAW < 10
-5

) (Hörsing et al., 2011). 

- 3·10
-3

 < KAW < 5·10
-2

 [-] (8 < KH < 120 [m
3
 Pa mol

-1
]): low to moderate stripping (5-50%), as 

predicted for pollutants such as methyl TERT-butyl ether (MTBE) (KAW of 0.02) (Fischer et 

al., 2004), several aromatic hydrocarbons (Altschuh et al., 1999), volatile polyfluorinated 

compounds (PFCs) (Lei et al., 2004) or musk fragrances AHTN and HHCB (KAW 5·10
-3

 to 

1.5·10
-2

 [-])(Artola-Garicano et al., 2003; Upadhyay et al., 2011; Weinberg et al., 2011).  

- KAW > 5·10
-2

 [-] (KH > 120 [m
3
 Pa mol

-1
]): stripping higher than 50% can be expected, 

especially for hydrophobic volatile organic compounds (VOCs) such as benzene, toluene, 

ethylbenzene and xylene (BTEX) (KAW around 0.2 [-]) (Sieg et al., 2009) or some chlorinated 

solvents (KAW up to 1.1 [-])  (Chen et al., 2012). 

Stripping should not be considered as an option for water treatment if the gas flow is not treated 

afterwards, otherwise the WWTP could cause atmospheric pollution. 

2.2.4 Abiotic degradation 

Organic micropollutants can potentially be degraded during wastewater treatment by abiotic reactions, 

such as photolysis, hydrolysis or reaction with other chemicals.  

Direct photolysis occurs when a photon is absorbed by a compound, leading to bond cleavage to form 

a new compound. Pollutants can be also degraded by indirect photolysis, due to the production, during 

sun irradiation of dissolved organic matter, NO2
-
/NO3

-
 or HCO3

-
/CO3

2-
, of transient excited species 

(reactive oxygen, radicals) which can react with the pollutants (Wang and Lin, 2014). In conventional 

treatments, photolysis by natural sunlight is very restricted due to the low surface-to-volume ratio 

available for sunlight irradiation (only the surface of the clarifiers or the biological tanks, in case of 

open tanks) and the high turbidity of the wastewater, which strongly limits the penetration of light into 

the water. Phototransformation is thus not expected to be a significant degradation mechanism in 

conventional systems. Photolysis can play a significant role in wastewater treatment with open water 

lagoons for compounds having aromatic rings, heteroatoms, and other functional chromophore groups 

that can either absorb solar radiation or react with photogenerated transient species (Verlicchi and 

Zambello, 2014). 

Hydrolysis is the result of the cleavage of chemical bonds by substitution of an atom or group of 

atoms in an organic compound by a water molecule (or hydroxide ion) (Schwarzenbach et al., 2003). 

Hydrolysis can be a significant degradation pathway in aquatic environments for some organic 
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compounds, especially esters and amides, such as several sulfonamide, tetracycline, macrolide and β-

lactam antibiotics (Ying et al., 2013). But not all micropollutants can be hydrolyzed. Rates of 

hydrolysis in water are strongly dependent on the pH and the temperature (Mabey and Mill, 1978). 

Rates usually increase rapidly with the temperature, and hydrolysis at high pH (base-catalyzed) is 

often faster than acid-catalyzed or neutral hydrolysis for many compounds (Mitchell et al., 2014). 

Hydrolysis half-lives (t1/2) of micropollutants at neutral pH and 25°C vary from few seconds (e.g., 

tert-butyl chloride) to thousands of years (e.g., trichloromethane) (Schwarzenbach et al., 2003). 

Pollutants with very fast hydrolysis rates are expected to be completely transformed in sewers before 

reaching the WWTP. On the other hand, compounds with t1/2 > 7 days will not be significantly 

hydrolyzed (< 10%) during wastewater treatment (HRT < 24h). In domestic wastewater (pH 6.5-8 and 

10-25°C), hydrolysis rates are relatively slow for most micropollutants (t1/2 > 7 d) compared to 

biodegradation or sorption (Schwarzenbach et al., 2003). Thus, except for a few compounds such as 

some β-lactam, macrolide and tetracycline antibiotics (t1/2 2-5 d) (Ying et al., 2013), hydrolysis can be 

considered as a negligible removal mechanism in WWTPs. 

Other chemical transformation may also happen during wastewater treatment, such as abiotic nitration 

where aniline or phenolic compounds react with nitric oxide (NO) or nitrite (NO2
-
) (formed during the 

nitrification/denitrification process) to produce nitrophenols or unstable diazonium cations (Jewell et 

al., 2014; Nödler et al., 2012). This reaction is however not expected to be a major removal 

mechanism. 

2.3 Fate of selected classes of micropollutants in conventional WWTPs 

Micropollutants found in municipal wastewater are mainly (but not exclusively) surfactants, 

pharmaceuticals, personal care products, household chemicals, biocides and pesticides, heavy metals, 

polycyclic aromatic hydrocarbons, as well as other persistent organic pollutants.  The fate of these 

compounds during conventional wastewater treatments (equivalent to activated sludge with partial 

nitrification), their average removal efficiency and their average concentrations in influent and 

effluent are discussed in this chapter and synthesized in Table 2.2 (p. 38). Average values come, if 

available, from national studies on many WWTPs in Europe or North America. Different removal 

efficiencies or concentrations may be, however, observed in specific WWTPs due to different 

operation conditions or sources of pollutants. Table 2.2 summarises also other key information on the 

different classes of micropollutants in order to estimate their risk for the environment. For each 

substance, chronic Environmental Quality Standards for inland water (EQSs) are presented, if 

available. EQSs are limits of concentrations in surface water, validated by national and international 

experts, below which no adverse effect of the substance on sensitive aquatic organisms is expected. 

As EQSs are not yet proposed for all the compounds studied, Predicted No-Effect Concentrations 

(PNEC) were also determined. PNECs have the same meaning as EQSs, except that they were not 

validated by experts and thus have a lower reliability. PNECs were calculated automatically based on 

a wide range of ecotoxicity studies using AiiDA (http://aiida.tools4env.com), one of the largest 

ecotoxicity databases available. Finally, with this information we made a rough prioritization of the 

compounds based on their persistence in WWTPs, their potential toxicity to aquatic organisms in the 
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case of low effluent dilution, and their load released into the environment (Table 2.2). The different 

classes of pollutants are described below. 

2.3.1 Surfactants 

Surfactants are widely used, mostly in household applications for detergents and cleaners but also for 

industrial and institutional cleaning, personal care, textiles, paint additives, lacquers and plastics 

(Berna et al., 2007). Surfactants are classified into four main classes: anionic (61% of the 

consumption in Western Europe in 2005, including 24% soaps), non-ionic (30%), cationic (7%) and 

amphoteric (2%) (Berna et al., 2007).  According to Berna et al. (2007), the most consumed 

surfactants in 2005 were soaps (23.5%), linear alkylbenzene sulfonates (LAS, 16.6%), alcohol 

ethoxylates (AE, 17.9%) and alcohol ether sulfates (AES, 13.5%). The remaining surfactants used 

were mostly secondary alkane sulfonates (SAS, 2.2%), alcohol sulfates (AS, 2%), alkyl phenol 

ethoxylate (APEO, 1%), cationic (6.8%) and amphoteric (2.5%) surfactants. Once used, most of these 

chemicals are directly discharged into sewers (“down the drain” pathway). Therefore, due to their 

high consumption (> 7.5 g d
-1

 capita
-1

), concentrations of surfactants in raw wastewater are relatively 

high (> 40 mg l
-1

) (Matthijs et al., 1999), which may represent 20-30% of the dissolved organic 

carbon (DOC) of the wastewater (assumption of 100 mg DOC l
-1

). Fortunately, most household 

surfactants are easily biodegradable and well removed (> 95%) in WWTPs. Due to their low volatility 

(high surface-active properties and polarity), they are mainly removed is by biodegradation or 

adsorption (Knepper and Berna, 2003). The fate of these surfactants in municipal WWTPs is 

presented below and synthesized in Table 2.2. 

2.3.1.1 Soaps 

The most consumed anionic surfactants, soaps, are salts of fatty acid with various number of carbon 

atoms (C10-C22), made with different source of fats or oil (e.g., tallow, coconut oil, palm oil, laurel oil, 

olive oil). Soaps are usually made of a mixture of lauric, myristic, palmitic, stearic, oleic, linoleic, or 

linolenic acids, with sodium or potassium counterions (Cantarero et al., 2010). Due to their wide 

consumption, they can be found in municipal wastewater at relatively high concentrations, in average 

around 28 mg l
-1

 (González Casado et al., 1998; Matthijs et al., 1999). Soaps and their fatty acids are 

readily biodegradable and almost completely mineralized in both aerobic and anaerobic conditions, 

and, therefore, highly removed (> 99%) in WWTPs (Berna et al., 2007; Scott and Jones, 2000). Due 

to their high influent concentrations, WWTP effluent soap concentrations are usually in the range 100 

– 200 µg l
-1

 (Matthijs et al., 1999), which is higher than their reported PNEC (22-44 µg l
-1

, Table 2.2). 

Thus, despite their degradability, the constant release (pseudo-persistence) of such compounds means 

that effects on sensitive aquatic organisms in the proximity of the discharge point cannot be excluded 

in the case of low effluent dilution. 

Although biodegradation is reported to be the main removal pathway, soaps made of sodium or 

potassium salts are likely to precipitate in wastewater containing calcium and magnesium ions, due to 

the formation of relatively insoluble calcium and magnesium fatty acid salts (González Casado et al., 

1998). Precipitated soap is not anymore available for biodegradation and therefore can be found at 

relatively high concentrations in the sewage sludge (sum of the fatty acid salts on average around 10 g 
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kg
-1

 dry matter (dm)) (Cantarero et al., 2010). Assuming a sludge production of around 200 g SS m
-3 

wastewater and a wastewater soap concentration of 10 mg l
-1

, this means about 20% of soap removed with 

the excess sludge. 

2.3.1.2 Linear alkylbenzene sulfonate (LAS) and secondary alkane sulfonate (SAS) 

LAS are the most widely consumed synthetic anionic surfactant. They replaced the anionic branched 

alkylbenzene sulfonates (ABSs) which had poor biodegradability and were the cause of strong foam 

formation in treated waters and rivers (Knepper and Berna, 2003). LAS are complex mixtures of 

homologues with different alkyl chain lengths (C10 to C14) that give them different chemical and 

physical properties. Their concentrations in municipal wastewater have been reported to range from 3 

to 21 mg l
-1

, with an average around 5 mg l
-1

 (Mungray and Kumar, 2009). LAS are easily 

biotransformed under aerobic conditions (but not under strict anaerobic conditions) in shorter-chain 

homologues. The oxidation of the alkyl chain generates sulfophenyl carboxylates (SPCs), 

intermediates much less toxic and without interfacial activity (Oya and Hisano, 2009), which can be 

then completely mineralized to CO2 and H2O (Hampel and Blasco, 2002; Mungray and Kumar, 2009). 

LAS removal in WWTPs (activated sludge, trickling filters) are reported to range between 95 to 

99.9%, with 20 to 40% of the influent concentration retained in the sludge (average around 5-10 g kg
-1

 

dm) (Feijtel et al., 1996; Mungray and Kumar, 2009; Schowanek et al., 2007). Indeed, a significant 

fraction of LAS (> 20%) is reported to be either associated with suspended solids (SS), or, as for 

soaps, in a precipitated form of insoluble Mg/Ca-salts (Mungray and Kumar, 2009).  Despite their 

good removal, LAS concentrations in WWTP effluents were reported to be in the range of 10 to 400 

µg l
-1

, with an average around 50 µg l
-1

 (Feijtel et al., 1996; Mungray and Kumar, 2009). Although the 

degradation intermediates SPC are easily degradable, they were also found at high concentrations 

(median at 57 µg l
-1

) in European WWTP effluents (Reemtsma et al., 2006).  

The toxicity of LAS for aquatic organisms depends on the number of carbon in the alkyl chain, C12-14 

LAS being more toxic than C10-11 (Hampel and Blasco, 2002). A PNEC of 21-27 µg l
-1

 was proposed 

(Mungray and Kumar, 2008) (Table 2.2), which is in the range of concentrations found in WWTP 

effluents. Thus, in the case of low effluent dilution in the receiving water, LAS may generate risk for 

the sensitive aquatic organisms, especially in the case of only anaerobic treatment of the wastewater. 

But LAS will undergo further (fast) degradation in natural waters (half-lives of few hours to few days 

(Perales et al., 1999; Takada et al., 1994)), limiting their potential impact only in the proximity of the 

WWTP outfall (Scott and Jones, 2000). 

Secondary alkane sulfonates (SAS) are other sulfonated anionic surfactants, consumed in lower 

quantities than LAS. Their average concentrations in municipal WWTPs were reported to be around 

840 µg l
-1

 in influents and around 3 µg l
-1

 in effluents (which is lower than the PNEC, Table 2.2), with 

more than 99% removal. 84% of the removal was attributed to biodegradation and 16% was exported 

in the sludge (around 500 mg kg
-1

 dm) (Field et al., 1995). 

2.3.1.3 Alcohol ethoxylate (AE) 

AE are the most consumed non-ionic surfactants and are widely present in household detergents. 

Commercial AE are composed of a mixture of several homologues with alkyl chain length from 12 to 
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18 carbons and various degree of ethoxylation (from 0 to 18) (Belanger et al., 2006). Their total 

concentrations in municipal wastewater (in the USA) range from 0.6 to 3.7 mg l
-1

, with an average 

around 2.5 mg l
-1

 (McAvoy et al., 1998; McAvoy et al., 2006). AE are easily biodegradable, under 

both aerobic and anaerobic conditions (Berna et al., 2007; Federle and Itrich, 2006). The half-lives of 

the parent compounds are reported to be very short (a few minutes) in activated sludge, AE being first 

degraded to polar metabolites such as polyethylene glycols (PEGs), which are then further 

mineralized (complete biodegradation) (Battersby et al., 2001; Federle and Itrich, 2006). Therefore, 

AE are usually well removed (> 99%) in activated sludge treatments (McAvoy et al., 1998; McAvoy 

et al., 2006). Although a fraction of AE, specially the one with long alkyl chains which is more 

hydrophobic, can sorb to the suspended matter (van Compernolle et al., 2006), their concentrations in 

European sewage sludge are relatively low (average at 190 mg kg
-1

 dm for digested sludge and at 

1160 mg kg
-1

 dm for undigested sludge) (Matthijs et al., 2004), suggesting that the main removal 

pathway (90 – 99%) is biodegradation. The average reported AE concentration in WWTP effluents in 

Europe and North America is around 3.5–6.8 µg l
-1

 (Belanger et al., 2006), much higher 

concentrations (100 – 500 µg l
-1

) being measured in the effluents of trickling filters (McAvoy et al., 

1998). Aquatic toxicity of AE depends mainly on their alkyl chain length (the longer, the more toxic) 

and their degree of ethoxylation (the more, the less toxic), with a PNEC value varying from 1.6 µg l
-1

 

to 2.9 mg l
-1

 (Belanger et al., 2006) (Table 2.2). The global risk for aquatic organisms of the mixture 

of AE in undiluted effluents is considered to be low, except after fixed biofilm processes (such as 

trickling filters), but this risk disappears after 2-4 times effluent dilution (Belanger et al., 2006) and is 

spatially limited as AE are rapidly degraded in the receiving waters (Larson and Games, 1981).  

2.3.1.4 Alkyl ethoxy sulfate (AES) and alkyl sulfate (AS) 

Alkyl ethoxy sulfates (or alcohol ether sulfates, AES), and alkyl sulfates (or alcohol sulfates, AS) are, 

together, the second most consumed synthetic anionic surfactants after LAS (Berna et al., 2007). They 

are composed of a mixture of homologues with diverse alkyl chain lengths (C12-18 for AS and C12-16 

with 3 or 4 ethylene oxide units for AES) (Fernández-Ramos et al., 2013). Their average 

concentrations in Dutch municipal wastewater were at 3.2 mg l
-1

 for AES and 0.6 mg l
-1

 for AS 

(Matthijs et al., 1999). Due to the good (complete) biodegradability of both AES and AS under 

aerobic and anaerobic conditions (Scott and Jones, 2000), these two surfactants are almost completely 

(> 99%) removed in WWTPs. Their average effluent concentrations in Dutch WWTPs were at 6.5 µg 

l
-1

 for AES and 5.7 µg l
-1

 for AS (Matthijs et al., 1999), but higher concentrations (30-60 µg l
-1

 AES) 

were reported at the outlet of trickling filters (McAvoy et al., 1998). These concentrations should 

however not have harmful effect on aquatic organisms, as they are lower than their respective PNECs 

(Table 2.2) (van de Plassche et al., 1999). The total concentrations of AES and AS in sewage sludge 

are reported between 50 to 100 mg kg
-1

 dm (Bruno et al., 2002), suggesting that most of these 

surfactants are degraded (> 97%) and only very little adsorbed. 

2.3.1.5 Alkylphenol ethoxylate (APE) 

APEs are non-ionic surfactants that have been widely used in domestic detergents and in industrial 

production (pulp and paper, textile), as well as in paints, pesticides, emulsifiers, wetting and 

dispersing agents (Bergé et al., 2012).  
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Two types of APEs are commonly used: nonylphenol ethoxylates (NPE, representing 80% of the 

APEs) and octylphenol ethoxylates (OPE, 20% of the APEs). NPEs and OPEs are mixtures of 

homologues with chain lengths varying from 5 to 40 ethoxylate units, depending on the targeted 

application (Bergé et al., 2012). Due to the environmental and health concerns of NPEs and their 

transformation product nonylphenol (NP), use of NPEs and NPs was restricted (but not ceased) in 

Europe since 2003, by fixing a maximum concentration of 0.1 % (w/w) of NPEs in products used for 

industrial and house cleaning, textile processing or biocides (EC, 2003). Despite a clear decrease in 

the load released into the environment, NPEs are still found in municipal wastewater throughout 

Europe (Bergé et al., 2012). One of the main sources of NPEs in wastewater might come from 

washing processes of textiles and leathers in households. Indeed, the European textile market is 

dominated by imports from countries where EU restriction are not applicable and thus high 

concentrations of NPEs coming from the manufacturing process are still found in new home textiles, 

towels and clothes (average 230 mg kg
-1

). This source could contribute to more than 60% of the load 

that arrives in municipal wastewater (Månsson et al., 2008). Average concentrations of the sum of 

APE in raw municipal wastewater were found at 680 µg l
-1

 for NP0-16E and at 6.4 µg l
-1

 for OP0-5E 

(Loyo-Rosales et al., 2007). 

APEs are subject to rapid primary biodegradation under aerobic conditions. A shortening of the 

ethoxylate chain is first observed, leading to APEs with 1 to 4 ethoxylate units (AP1-4E). Complete de-

ethoxylation leading to the formation of alkylphenols (APs) such as nonylphenol (NP) or octylphenol 

(OP) might then happen, especially under anaerobic conditions. The main APE degradation 

intermediates reported were (i) alkylphenols (NP and OP), (ii) short-chain alkylphenol ethoxylates (1-

4 ethoxylate units), and (iii) different carboxylate derivatives including alkylphenoxyethoxy 

carboxylates (APECs) and carboxylated alkylphenoxyethoxy carboxylates (CAPECs) (Petrovic and 

Barceló, 2010). These intermediates can be then further degraded under aerobic conditions, while 

under anaerobic conditions, AP are reported to be the ultimate degradation products (Ying, 2006). 

APE metabolites are usually more persistent than the parent compound. Moreover, AP and the short-

chain AP1-2E exhibit much higher estrogenic activity and toxicity than the parent compounds, leading 

to the classification of NP and OP as priority hazardous substance in Europe (Bergé et al., 2012; Ying 

et al., 2002).  

Although average NP0-16E removal in activated sludge is reported to be high (80-99%) (Loyo-Rosales 

et al., 2007; Ying et al., 2002), the overall removal including the transformation products NPEC is 

much lower (60-80%), with on average 40 to 60% of all nonylphenolic compounds degraded and 20% 

being removed with the excess sludge (Loyo-Rosales et al., 2007). OPE, which are found in much 

lower (around 30 times) concentrations in raw wastewater, are less removed than NPE in WWTPs 

(removal of OP0-5E: 72-82%), probably due to their lower affinity for solids (Loyo-Rosales et al., 

2007). The average APE concentrations in American sewage sludge was determined at 534 mg kg
-1

 

dm for NP, 62 mg kg
-1

 dm for NP1E, 60 mg kg
-1

 dm for NP2E and < 1.1 µg kg
-1

 dm for OP 

(Venkatesan and Halden, 2013). The higher NP sludge concentration could be caused by degradation 

of NPE to NP during anaerobic digestion (Bergé et al., 2012).  
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All APEs and their transformation products APs and APECs are biodegradable, but due to their 

formation during the treatment, these intermediates may not have time to be fully degraded and thus 

can be found in the effluent. Their median concentrations in WWTPs effluent in developed countries 

were at 1.28 µg l
-1

 for NP and 4.5 µg l
-1

 for NP1E, with concentrations slightly higher for NPEC 

(Bergé et al., 2012). Both short-chain NPE and NPEC can be further degraded in the river to form the 

toxic NP, less easily degradable. Thus, NP concentration in the receiving water may spatially 

increase, and despite the dilution of the effluent, largely exceed the Swiss Environmental quality 

standard (EQS) for surface water (13 ng l
-1

) (Table 2.2) (Petrie et al., 2013). 

2.3.1.6 Cationic and amphoteric surfactants 

Quaternary ammonium compounds (QACs) are a wide group of cationic surfactants used for instance 

in detergents, disinfectants, fabric softeners, or hair conditioners (Kreuzinger et al., 2007). The main 

QACs are alkyldimethylbenzyl (BACs), dialkyldimethyl (DDAC) and alkyltrimethyl (ATAC) 

ammonium chlorides, with varying alkyl chain lengths (Boethling, 1984; Clara et al., 2012). The 

average concentration of QACs in Austrian municipal wastewater were reported at 106 µg l
-1

 for the 

sum of BAC-C12-18, 91 µg l
-1

 for DDAC-C10-18 and 21 µg l
-1

 for ATAC-C12-16 (Clara et al., 2012). 

Hospital and laundry wastewater are specially an important source of QACs in municipal wastewater 

(Kreuzinger et al., 2007). Due to their positive charge, QACs have a strong affinity for the sewage 

sludge or suspended solids (predominantly negatively charged). Elimination of QACs by sorption in 

the excess sludge can thus be important and is reported to increase with the alkyl chain length. QACs 

are moreover aerobically biodegradable (but poorly anaerobically) (Ying, 2006). Thus, QACs 

removals higher than 95% are usually observed in WWTPs (Boethling, 1984; Clara et al., 2012; 

Kreuzinger et al., 2007). For DDAC, the main pathway is by the elimination (60-90%) with the excess 

sludge, but for BAC and ATAC, 80 to 99% are reported to be biodegraded (Clara et al., 2012). Their 

average Austrian WWTP effluent concentrations were around 0.5 µg l
-1

 for BAC-C12-18, 1.2 µg l
-1

 for 

DDAC-C10-18 and 0.24 µg l
-1

 for ATAC-C12-16 (Clara et al., 2012; Kreuzinger et al., 2007). QACs were 

found in the range of 20-100 mg kg
-1

 dm in sewage sludge (Martínez-Carballo et al., 2007). Despite 

their lower effluent concentrations compared to other surfactants, QACs are of concern due to their 

higher toxicity. For instance, ditallow dimethyl ammonium chloride (DTDMAC), a widely used 

ingredient in fabric softeners, was voluntarily phased out by industry due to its toxicity to aquatic 

organisms and its low biodegradability (Clarke and Smith, 2011). PNECs for BACs, ATACs and 

DDACs are between 100 and 1000 ng l
-1 

(Table 2.2), thus toxic effect on sensitive aquatic species 

cannot be excluded in the case of low dilution of the effluents. New generations of QACs, with faster 

biodegradation kinetics, have thus been developed to lower the environmental exposure levels: the 

esterquats. Esterquats are QACs with two weak ester linkages that improve their biodegradability. 

They are thus more environmentally friendly and replace slowly the older QACs (Mishra and Tyagi, 

2007). 

Amphoteric surfactants, with their properties to be either cationic, neutral or anionic depending on the 

pH, are dermatologically mild surfactants and thus mainly used in cosmetics and hand dishwashing 

liquids, but also for wool care detergents. The main amphoteric surfactants are the alkyl and 

alkylamido betaines and the alkyl imidazoline derivatives. They are reported to be readily mineralized 

under aerobic and, apart alkyl betaines, also under anaerobic conditions. They are thus expected to be 
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well removed (> 80%) in WWTPs. They have the same range of (low to moderate) toxicity than 

anionic surfactant (Garcia et al., 2008). 

2.3.1.7 Other relevant surfactants 

2,4,7,9-tetramethyl-5-decyne-4,7-diol (TMDD) is a non-ionic surfactant not used in households but 

used as defoamer or wetting agent in many industrial processes, such as, among others, the 

formulation of printing ink. Recycled toilet papers contain significant concentrations of TMDD. 

TMDD is thus introduced to domestic wastewater through toilet paper, paper tissues and paper towels 

(Guedez and Püttmann, 2013). TMDD average concentrations in German raw municipal wastewater 

were reported in the range of 0.5 to 1.9 µg l
-1

, but, due to its low biodegradability, high solubility and 

low tendency to sorb onto sludge, it was only partially removed during the treatment (33-68%). 

TMDD concentrations were reported to be in the range 0.3-0.95 µg l
-1

 in domestic WWTP effluents 

and up to 20-140 µg l
-1

 in printing ink and paper-recycling factory effluents, indicating that WWTPs 

were a dominating source of TMDD in the aquatic environment (Guedez and Püttmann, 2011; Guedez 

and Püttmann, 2013). High TMDD concentrations were found for instance in Germany in the rivers 

Rhine (200-1000 ng l
-1

) or Rhur (up to 16 µg l
-1

) (Guedez et al., 2010; Guedez and Püttmann, 2013), 

occasionally exceeding its PNEC (10 µg l
-1

, Table 2.2)  

2.3.2 Pharmaceuticals 

Municipal WWTPs are reported to be the main source of pharmaceuticals into surface waters 

(Kasprzyk-Hordern et al., 2008), although local releases from pharmaceutical industries or veterinary 

drugs residues coming from farming area can also contribute significantly (but to lesser extent) to the 

load of certain pharmaceuticals, especially antibiotics, anti-parasitic drugs, anti-fungal and hormones 

(Iglesias et al., 2014). About 3000 pharmaceutical compounds are commercially available in Europe 

(Ternes and Joss, 2006). In Western Europe, over 300 mg of active ingredients are, on average, 

consumed every day per inhabitant, of which 99% of the mass is dominated by around 60 compounds 

(Besse et al., 2008; Ortiz de García et al., 2013). Once ingested, these pharmaceuticals find their way 

into urine and faeces, partially as the original molecule (the part not metabolized in the body) and 

partially as metabolites, which are mainly hydroxylated, hydrolysed or conjugated forms of the parent 

compound (Ikehata et al., 2006). The estimated total load of pharmaceuticals (parent compounds) into 

sewers is around 70 mg d
-1

 capita
-1

, which corresponds to about 200-250 µg l
-1

 (Oosterhuis et al., 

2013; Ortiz de García et al., 2013). Depending on the quantity of drugs consumed and their excretion 

rates (0 to 100%), concentrations of individual pharmaceuticals in raw wastewater can vary from less 

than 1 ng l
-1

 to over 100 µg l
-1

. The most abundant pharmaceuticals in wastewater (found at 0.1 to 

more than10 µg l
-1

) are, not surprisingly, those that are most consumed. This includes analgesic and 

anti-inflammatory drugs (such as paracetamol, ibuprofen, tramadol, (acetyl)salicylic acid, naproxen, 

codeine, diclofenac, mefenamic acid) with average concentrations between 1-100 µg l
-1

, antibiotics 

(such as ciprofloxacin, clarithromycin, erythromycin, ofloxacin, azithromycin, sulfamethoxazole, 

trimethoprim, with 0.5-5 µg l
-1

), iodinated contrast media (for X-ray radiography, such as iohexol, 

iomeprol, iopamidol, iopromide, with 2-20 µg l
-1

), antidiabetics (such as metformin with 60-100 µg l
-

1
), antihypertensives / diuretic (such as irbesartan, eprosartan, losartan, valsartan, hydrochlorothiazide, 

furosemide, with 1-5 µg l
-1

), beta-blockers (for heart problems, such as atenolol, metoprolol, sotalol, 
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with 0.5-1.5 µg l
-1

), lipid regulators (anti-cholesterol, such as bezafibrate, gemfibrozil, simvastatin, 

with 0.5-1 µg l
-1

), psychiatric drugs (such as carbamazepine, gabapentin, levetiracetam, with 0.5-4 µg 

l
-1

), and antihistamines (e.g., gastric anti-acid, such as cimetidine, ranitidine, with 2-4 µg l
-1

) (Margot 

et al., 2013b; Verlicchi et al., 2012). Pharmaceuticals used for less common diseases (e.g., anti-

cancer) or consumed at lower doses (e.g., contraceptive pills) are usually detected at lower 

concentrations (< 1-100 ng l
-1

). 

The fate of pharmaceuticals in WWTPs is very dependent on their characteristics, such as their 

sorption affinity and their biodegradability. The removal rates and mechanisms of the most abundant 

pharmaceuticals usually reported in the effluents are presented in Table 2.2 (48 active ingredients 

representing around 70% of the mass of drugs consumed (Besse et al., 2008)). Removal efficiencies 

from 0 to 100% can be observed, depending on the compound. Pharmaceuticals have low volatility 

(KAW < 10
-5

) (Hörsing et al., 2011) and thus are not expected to be stripped during the WWTP 

treatment. Very hydrophobic pharmaceuticals such as the anti-cancer drug  tamoxifen (log KOW = 6.3) 

enter WWTPs associated to the particulate phase and are mainly removed with the removal of 

suspended solids (Tauxe-Wuersch et al., 2006). Removal by sorption can be significant (10-80%) for 

a few other hydrophobic drugs such as mefenamic acid (log KOW = 5.1), gemfibrozil (log KOW = 4.8) 

or fenofibrate (log KOW = 5.2), or for positively charged pharmaceuticals such as several quinolone 

and macrolide antibiotics (ofloxacin, norfloxacin, ciprofloxacin, azithromycin, clarithromycin), and 

few other drugs such as tetracycline, fluoxetine, simvastatin, atorvastatin, or diazepam (Jelic et al., 

2011; Lara-Martín et al., 2014; Lubliner et al., 2010; Yan et al., 2014). Most other pharmaceuticals 

have high solubility, low hydrophobicity and often negative charge at neutral pH (acidic compounds), 

which means low sorption affinity on biological sludge (negatively charged). They are thus mostly 

found in the “dissolved” phase and their removal by sorption is often negligible (< 5%) (Verlicchi et 

al., 2012). Their removal in the primary treatment is usually very poor. Biodegradation or 

biotransformation is therefore the main removal mechanism for most pharmaceuticals. 

Pharmaceuticals can potentially be used directly by microorganisms as carbon or energy sources and 

therefore be partially mineralized, or be transformed co-metabolically to different metabolites. It was 

reported that most of these intermediate metabolites were then further degraded, leading in many case 

to complete mineralization (Quintana et al., 2005). Stable metabolites are, however, also formed 

during the biological treatment and release into the environment together with WWTPs effluents 

(NEPTUNE, 2010). 

Biotransformation processes are strongly dependent on the properties of the compound 

(biodegradability). A few pharmaceuticals (e.g., some analgesic/anti-inflammatory drugs and natural 

hormones) are well removed during the biological treatment, but most are only partially or not 

removed at all (Table 2.2). The majority of the drugs studied are on average removed less than 50%. 

Removal efficiencies are not related to the therapeutic classes, but are linked to drug chemical 

structure (persistency increases with the complexity of the molecule, presence of halogen, nitro and 

azo groups, etc.) (Verlicchi et al., 2012).  

Highly variable removal efficiencies are observed among different WWTPs for the same compound. 

This is attributed to different operation conditions such as biomass concentration (varying usually 
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from 2 to 5 g TSS l
-1

, and thus changing the food-to-microorganism ratio), SRT (from 2 to 20 d), HRT 

(from 2 to 24 h), pH (from 6 to 8), temperature (from 10 to 25°C), configuration and type of WWTP 

(Verlicchi et al., 2012). Removal rates presented in Table 2.2 are averages of several studies. 

Different removal efficiencies can be however observed in individual plants due to different operation 

conditions. 

Many authors have reported that better degradation of several drugs (such as hormones, ibuprofen, 

ketoprofen, naproxen, bezafibrate, gemfibrozil, atenolol and some antibiotics) occurs in WWTPs with 

higher SRT (> 10 d compared to 2 d) (Verlicchi et al., 2012). This was, as already discussed, possibly 

due to the enrichment, at higher SRT, of certain microbial communities able to break down 

pharmaceuticals. WWTPs incorporating nitrification, with thus longer SRTs, also showed better 

removal efficiencies for these compounds (cf. Chapter 3). 

The influence of HRT on the removal of pharmaceuticals was reported for compounds with low 

sludge affinity (low Kd) and medium to good biodegradability (half-lives in the range of the HRT). 

For these substances, higher removal efficiencies were observed at higher HRT. Substances that are 

highly biodegradable (half-lives much shorter than the HRT, and thus always removed) or hardly 

degradable (half-lives much longer than HRT), as well as compounds mainly removed by sorption, 

are unlikely to be influenced by HRT (Verlicchi et al., 2012). 

Temperature stimulates microbial activity and thus higher removal efficiencies of biodegradable 

pharmaceuticals are usually observed in summer compared to winter. The pH of the wastewater can 

also impact the removal (by sorption and by biodegradation, due to the expected higher cell uptake of 

uncharged species) of some ionisable substances if the change in pH can affect their charges (switch 

to another form: cationic, neutral, anionic, or zwitterionic), which concerns mostly substances with a 

pKa value close to the pH of the wastewater (such as quinolone antibiotics) (Verlicchi et al., 2012). 

The configuration and the type of biological treatments can also affect the removal of 

pharmaceuticals. Membrane bioreactors (MBRs) were often reported to have slightly better removal 

efficiencies than conventional activated sludge reactors (CAS), probably due to the longer SRT 

usually used in MBRs. Indeed, similar efficiencies were reported for CAS and MBR working at the 

same SRT (Clara et al., 2005a). Trickling filters, conversely, were reported, in some but not all 

studies, to be less efficient than CAS for pharmaceutical removal (Kasprzyk-Hordern et al., 2009), 

probably because of the much lower HRT in trickling filters (3-20 min) (Séguret et al., 2000).  Similar 

micropollutant removal efficiencies were, however, reported between CAS and biofilters, despite 

lower HRT in the latter (Mailler et al., 2013). It is difficult to conclude which configuration is the best 

as the same removal efficiencies can be reached in all cases. The presence of a diverse microbial 

community in the system, with sufficient biomass (low food-to-microorganism ratio) and long enough 

HRT seem to be the key parameters affecting pharmaceutical removal, more than the treatment 

configuration. Anoxic zones (e.g., for denitrification) do not seem to affect the removal of 

micropollutants significantly as most pharmaceuticals are reported to be better removed (or at least as 

well removed as) under oxic conditions (Falås et al., 2013). 
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Low apparent removal of certain compounds may be due to the reformation of these substances 

during the treatment, by the biological cleavage of the conjugated molecules. Indeed, many human 

drugs metabolites are the hydroxylated (-OH), amine (-NH2), carboxylated (-COOH) or conjugated 

(with glucoronic or sulphuric acids) forms of the parent molecules. Deconjugation of the metabolite 

during the treatment can thus reform the parent drugs. This is for instance reported for N
4
-acetyl 

sulfamethoxazole, reconverted to the antibiotic sulfamethoxazole (Göbel et al., 2007),  oxazepam-

glucoronide to the anxiolytic oxazepam (Bijlsma et al., 2012), as well as for several other 

pharmaceutical metabolites (ibuprofen, diclofenac, carbamazepine or oestrogens) (Verlicchi et al., 

2012). Some pollutants can also be converted to other pollutants. For instance, the biological 

oxidation of the hormone estradiol leads to the formation of the hormone estrone (Shi et al., 2013). 

Low apparent removal of the dissolved fraction can also be due to the release in the dissolved phase 

during the treatment of pharmaceuticals trapped into faeces particles. This is mostly suspected for 

drugs mainly excreted with bile and faeces, such as macrolide and fluoroquinone antibiotics 

(erythromycin, azithromycin, ciprofloxacin, norfloxacin) (Göbel et al., 2007; Verlicchi et al., 2012). 

The average concentrations of some of the most abundant pharmaceuticals measured in WWTP 

effluents (average concentrations between 100 ng l
-1

 to a few µg l
-1

) in various countries are presented 

in Table 2.2. Pharmaceuticals found at concentrations higher than 1 µg l
-1

 (on average) are the anti-

diabetic metformin, the anti-hypertensives valsartan and irbersartan, the anticonvulsant gabapentin, 

the diuretic hydrochlorothiazide and the contrast media iomeprol, iopamidol, and iopromide. Most of 

the other pharmaceuticals are found, on average, at lower concentrations (< 1µg l
-1

). Concentrations 

can, however, vary strongly depending on the country (consumption habits) and the type of treatment. 

Some compounds well removed during the treatment are still present at relatively high concentrations 

in the effluent due to their high presence in the influent (e.g., for ibuprofen). 

The risk for aquatic organisms generated by this mixture of pharmaceuticals at low concentrations 

discharged permanently in WWTP effluents is difficult to assess, as the safety thresholds for many 

substances are not really known and the cocktail effect is difficult to evaluate. By comparison with 

PNEC values and the environmental quality standards (EQS) for surface waters proposed for some 

pharmaceuticals in Switzerland (Table 2.2), a significant risk for the sensitive aquatic organisms in 

the case of low dilution of the effluent (< 2-10 times) may be induced by several antibiotics 

(azithromycin, ciprofloxacin, clarithromycin, erythromycin, sulfamethoxazole), anti-inflammatory 

drugs (ibuprofen and especially diclofenac), carbamazepine and propranolol.  

The dominant pharmaceuticals found in sewage sludge are usually the one with strong sorption 

affinity and high concentrations in wastewater. A wide survey, monitoring the concentration of 72 

pharmaceuticals in sewage sludge of 94 WWTPs in the USA, showed that antibiotics were the drugs 

found at higher concentrations (0.8-6.8 mg kg
-1

dm), with, in order of decreasing concentration, 

ciprofloxacin, ofloxacin, 4-epitetracycline, tetracycline, minocycline, doxycycline and azithromycin 

(McClellan and Halden, 2010). Other pharmaceuticals are usually found in sludge at concentrations 

between < 1 to 200 µg kg
-1

 dm (Gardner et al., 2013; Guerra et al., 2014; Jelic et al., 2011; McClellan 

and Halden, 2010). In the case of soil amendment with sewage sludge, some drugs, especially 
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antibiotics (azithromycin, ciprofloxacin, norfloxacin, ofloxacin, tetracycline) may persist several years 

in the soil due to their low degradation kinetics (half-lives from 500 to 2300 d) (Walters et al., 2010). 

Human pharmaceutical metabolites, which are mainly hydroxylated, hydrolyzed or conjugated forms 

of the parent compounds, are frequently found in raw wastewater in the same range  of concentrations 

as the active pharmaceuticals (from < 10 ng l
-1

 up to 3-4 µg l
-1

). Human drug metabolites are usually 

more polar and hydrophilic than the parent compounds due to their transformation in the liver or 

kidney in order to be readily excreted in the urine or bile (Ikehata et al., 2006). They are thus not 

expected to be significantly removed by sorption. Some of these metabolites are well degraded during 

the biological treatment (e.g., > 90% for N-acetyl sulfamethoxazole), but many others are not. Human 

drug metabolites can thus be an issue in WWTPs effluents (concentrations up to 1-4 µg l
-1

) 

(Evgenidou et al., 2015; Gracia-Lor et al., 2014; Margot et al., 2013b). Several human pharmaceutical 

metabolites have (negligible or) lower pharmacological activities than the parent compounds. Their 

risk for aquatic organisms is therefore considered to be lower.  Others, like norfluoxetine, fenofibric 

acid or salicylic acid, which are metabolites of, respectively, fluoxetine, fenofibrate and aspirin, have 

similar or even higher activities and thus could be of environmental concern (Besse et al., 2008). 

Natural and synthetic hormones are found in domestic wastewater due to their excretion in urine and 

faeces. The most studied hormones are estrogens (mostly female hormones) such as estrone (E1), 

17β-estradiol (E2), and estriol (E3), and the synthetic 17α-ethinylestradiol (EE2) (active substance in 

contraceptive pills). These estrogens are found on average at relatively low concentrations in raw 

wastewater (around 80, 20, 300 and 1-15 ng l
-1

 for E1, E2, E3 and EE2, respectively, 10-20% 

associated to particles). Natural estrogens are well removed in WWTPs, usually over 80%, mostly by 

biodegradation but also partially (10-40%) by sorption onto secondary sludge (2-30 µg kg
-1

 dm), 

resulting in low concentrations in effluents (1-35 ng l
-1

). EE2 is usually not so well removed (on 

average at 50-60%) and is found on average at 0.5 to 3 ng l
-1

 in effluents (Gabet-Giraud et al., 2010; 

Gardner et al., 2013; Lubliner et al., 2010). Despite these very low concentrations, estrogens may still 

impact aquatic organisms (e.g., fish and mussel feminization or vitellogenin production in males) 

(Kidd et al., 2007; Tyler and Jobling, 2008) as they are still at levels more than 10 times above their 

respective EQS for surface waters (Table 2.2). Several other natural hormones are present in 

municipal wastewaters, such as testosterone (3 µg l
-1

), androsterone (1.5 µg l
-1

) or progesterone (280 

ng l
-1

). Typical removals in excess of 97% in WWTPs have been reported and thus their 

concentrations in effluents are below 15 ng l
-1

 (Lubliner et al., 2010), which is much lower than their 

PNEC values (Table 2.2). 

Illicit drugs such as amphetamine, cocaine and its main metabolite benzoylecgonine, MDMA 

(ecstasy) or THC-COOH (cannabis metabolite) are present on average in the range 100-2000 ng l
-1

 in 

raw wastewater, with the highest values usually observed in large cities and during weekends. These 

illicit compounds are on average well removed in conventional WWTPs (from 79% for cocaine to > 

98% for amphetamine and THC-COOH, probably by biodegradation/transformation), except for 

MDMA (0-26%). Concentrations of illicit drugs in the effluents are thus relatively low (on average 

between < 2 ng l
-1

 up to 100 ng l
-1

, Table 2.2) (Been et al., 2014; Bijlsma et al., 2012; Kasprzyk-

Hordern et al., 2009). 



 

38 

 

Table 2.2 Fate of 168 micropollutants (main surfactants, most abundant pharmaceuticals (effluent concentration usually > 100 ng l-1), several personal care products and household 

chemicals, main pesticides/biocides used in urban environment, heavy metals, and other pollutants) in conventional WWTPs. 

 

Substance Family

Typical 

WWTP 

removal
a

Ref.
Typical WWTP effluent 

concentration
c

Ref. EQS
d Ref. PNEC

e
AF

f
CAS

g

[%] B S V [ng/l] [ng/l] [ng/l] L T P

Surfactants

Soap Anionic surfactant 99 [1,2] 80 20 0 150,000 [3] - 22,000 / 44,000 10 / 10
57-10-3 (palmitic acid) /

143-07-7 (lauric acid)
X X

Linear alkylbenzene sulfonate (LAS) " 97 [4-6] 70 30 0 50,000 [4,5] - 21,000 (C10-13) 10 68411-30-3 X X

Secondary alkane sulfonate (SAS) " 99 [7] 84 16 0 3,000 [7] - 7,200 (C14-17) 50 97489-15-1 X

Alkyl ethoxy sulfate (AES) " 99 [2,3] 97 3 0 6,500 [3] - 18,000 10 68081-91-4 X

Alkyl sulfate (AS) " 99 [2,3] 97 3 0 5,700 [3] - 84,000 50 68955-20-4 X

Alcohol ethoxylate (AE) Non-ionic surfactant 99 [8,9] 91 9 0 5,000 [10] -
1,560 (C12-18) / 

71,100 (C9-11)
50 / 10

68213-23-0 /

68439-46-3
X X

Nonylphenol ethoxylates (NPEs) " 90 [11,12] 80 20 0 6,000 [13] 13 (NP) CH
500 (NPEs) /

30 (NP)
10 / 10

26027-38-3 /

25154-52-3
X X

Octylphenol ethoxylates (OPEs) " 80 [11] 90 10 0 1,000 [11] 100 (OP) EU
21,000 (OPEs) / 

0.21 (OP)
10 / 10

9036-19-5 /

140-66-9
X X

2,4,7,9-tetramethyl-5-decyne-4,7-diol (TMDD) " 50 [16] 95 5 0 600 [16] - 10,000 100 126-86-3

Alkyldimethylbenzyl ammonium chlorides (BACs) Cationic surfactant 95 [14,15] 90 10 0 500 [14,15] - 120 (C12-14) 10 85409-22-9 X

Alkyltrimethyl ammonium chlorides (ATAC) " 95 [14,15] 90 10 0 240 [14,15] 136 (C16-18) 50 68002-61-9 X

Dialkyldimethyl ammonium chlorides (DDAC) " 95 [14,15] 25 75 0 1,200 [14,15] 910 (C16-18) 10 92129-33-4 X X

Pharmaceuticals

Removal usually >70%

Caffeine Stimulant 95 [19,24] 100 0 0 820 / 191 / 184 [19/21/23] - 500 10 58-08-2 X

Ibuprofen Anti-inflammatory 80 [17, 24, 25] 97 3 0 394 / 460 / 81 / 330 / 120 [18/20/21/22/23] 300 CH 1 10 15687-27-1 X

Paracetamol Analgesic 100 [19,24,25] 100 0 0 < 8 / 79 / 178 [19/20/23] - 500 10 103-90-2

Salicylic acid Analgesic 99 [24,25] 100 0 0 78 [24,25] - 3,200 10 69-72-7

Simvastatin Anti-cholesterol 77 [19] 70 30 0 98 / < 41 [19/20] - 62,500 100 79902-63-9

Removal usually between 30-70%

Atenolol Beta blocker 41 [17,19,25] 98 2 0 843 / 940 [18/20] 150,000 CH 6,400,000 50 29122-68-7 X

Azithromycin Antibiotic 39 [17,19,25] 80 20 0 220 / 408 [17/23] 90 CH - 83905-01-5 X X

Bezafibrate Anti-cholesterol 41 [17,19] 95 5 0 320 / 25 [17/21] 460 CH (0.03) 1,000 41859-67-0 X X

Ciprofloxacin Antibiotic 69 [17,19,25] 20 80 0 170 / 67 / 96 / 179 [17/20/21/23] 89 CH 1.2 10 86393-32-0 X

Clarithromycin Antibiotic 33 [17,19,25] 70 30 0 276 / 130 [18/23] 60 CH 20 100 81103-11-9 X X

Diltiazem Anti-hypertensive 67 [25] 100 0.3 0 85 / 155 [20/23] - (1,640) 5,000 42399-41-7

Eprosartan Anti-hypertensive 37 [19] 100 0 0 880 / 227 [19/21] - - 133040-01-4 ? X

Erythromycin Antibiotic 45 [24,25] 98 2.3 0 42 / 830 / 213 [18/22/23] 40 CH 200 10 114-07-8 X X

Furosemide Diuretic 51 [25] 0 280 [20] - (0.6) 1,000 54-31-9 ?

Gemfibrozil Anti-cholesterol 39 [17,19,25] 87 13 0 180 / 420 / 138 / 1,433 [17/20/21/23] - 312,500 10 25812-30-0 X

Iohexol Contrast medium 31 [19] 99 1 0 15,191 [19] 32,000,000 100 66108-95-0 X X

Iomeprol Contrast medium 34 [17,19] 99 1 0 10,534 / 376 [19/21] - - 78649-41-9 X ? X

Iopromide Contrast medium 41 [17,19] 99 1 0 2,460 / 2,700 [17/21] - - 73334-07-3 X ? X

Ketoprofen Anti-inflammatory 40 [17,19,25] 100 0 0 190 / 86 [17/21] - - 22071-15-4 ? X

Lisinopril Anti-hypertensive 50 [27] 0 180 [20] - - 76547-98-3 ?

Losartan Anti-hypertensive (50) [19,25,27,28] 0 510 [19] - 2,860,000 50 114798-26-4

Mefenamic acid Anti-inflammatory 42 [17,19,25] 80 20 0 870 [18] 4,000 CH (790) 5,000 61-68-7 X

Metformin Anti-diabetic 57 [17] 100 0 0 10,347 / 27,800 [18/23] 1,000,000 CH 2,200,000 50 657-24-9 X

Metronidazole Antibiotic 45 [19,25] 100 0 0 680 [17] - 250,000 50 443-48-1 X

Naproxen Anti-inflammatory 40 [17,19] 100 0 0 462 / 27 / 193 [18/21/23] 1,700 CH 320 100 22204-53-1 X X

Removal 

mechanisms
b

Priori-

tization
h
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Table 2.2 (Continuation) 

 

Substance Family

Typical 

WWTP 

removal
a

Ref.
Typical WWTP effluent 

concentration
c

Ref. EQS
d Ref. PNEC

e
AF

f
CAS

g

[%] B S V [ng/l] [ng/l] [ng/l] L T P

Pharmaceuticals (continuation)

Removal usually between 30-70%

Norfloxacin Antibiotic 69 [17,19,25] 20 80 0 70 / 39 [17/23] - 160 10 70458-96-7

Ofloxacin Antibiotic 58 [17,19,25] 20 80 0 70 / 160 / 10 / 251 [17/20/22/23] - 2,100 10 82419-36-1

Pravastatin Anti-cholesterol 37 [17] 100 0 0 420 [17] - - 81093-37-0 ? X

Ranitidine Aastric antacid 52 [25] 100 0 0 120 / 7 / 842 [20/21/23] - (0.25) 1,000 66357-35-5 X

Sulfamethoxazole Antibiotic 44 [17,19,25] 100 0 0 238 / 330 / 280 / 1,190 [18/20/21/23] 600 CH 13 50 723-46-6 X X

Tramadol Analgesic 33 [24] 100 0 0 256 [21] - - 36282-47-0 ? X

Trimethoprim Antibiotic 35 [17,19,25] 87 13 0 150 / 170 / 229 / 482 [17/20/21/23] 60,000 CH 100,000 10 738-70-5 X

Valsartan Anti-hypertensive (50) [19,25,27,28] 0 2'100 / 1'600 [19/20] 560,000 CH - 137862-53-4 X

Venlafaxine Anti-depressant 40 [19] 100 0 0 150 / 119 [19/21] - (5.7) 5,000 93413-69-5 ? X

Removal usually <30%

Carbamazepine Anticonvulsant 16 [17,19,25] 0 100 0 482 / 140 / 832 / 731 [18/20/21/23] 500 CH 89 10 298-46-4 X X

Clindamycin Antibiotic 10 [17,19,25] 0 115 / 50 / 70 [19/20/21] - (0.22) 10,000 18323-44-9 ? X

Diatrizoic acid Contrast medium 29 [17,19] 99 1 0 598 / 619 [18/21] - - 117-96-4 ? X

Diclofenac Anti-inflammatory 20 [17,19,25] 80 20 0 647 / 260 [18/22] 50 CH 500 10 15307-86-5 X X

Fluconazole Antifungal 15 [19] 100 0 0 110 / 108 [19/21] - (6) 5,000 86386-73-4 ? X

Gabapentin Anticonvulsant 15 [17,19] 0 1,910 [17] - (10,000) 10,000 60142-95-2 X X

Hydrochlorothiazide Diuretic 30 [25,28] 0 100 0 1,100 [20] - (3) 10,000 58-93-5 X ? X

Iopamidol Contrast medium 28 [17,19] 99 1 0 1,610 / 144 [17/21] - - 60166-93-0 X ? X

Irbersartan Anti-hypertensive 10 [27,28] 0 100 0 1,700 / 480 [19/21] 704,000 CH - 138402-11-6 X X

Metoprolol Beta blocker 25 [17,19,25] 100 0 0 240 / 410 [17/20] 64,000 CH 146,000 50 51384-51-1 X

Oxazepam Anxiolytic 13 [19,28] 0 100 0 350 / 162 [19/21] - 100,000,000 100 604-75-1 X

Primidone Anticonvulsant 16 [19,28] 0 200 [17] - 15,000,000 100 125-33-7 X

Propranolol Beta blocker 28 [17,19,25] 50 50 0 120 / 33 / 140 [17/20/22] 160 CH 100 10 525-66-6 X X

Sotalol Beta blocker 22 [17,19,25] 85 15 0 435 [18] - - 3930-20-9 ? X

Hormones

Estrone (E1) Natural hormone 76 [23] 87 13 0 15 / 12 / 217 [18/22/23] 3.6 CH 3.6 10 53-16-7 X

17β-estradiol (E2) Natural hormone 90 [19,23] 89 11 0 3 / 1.3 / 4 [18/22/23] 0.4 CH 0.042 10 50-28-2 X

Estriol (E3) Natural hormone 99 [23] 89 11 0 1 [23] - 67 100 50-27-1

17α-ethinyl estradiol (EE2) Contraceptive 60 [19,26] 83 17 0 2 / 0.5 / 2 [18/22/23] 0.037 CH 0.004 10 57-63-6 X

Androsterone Natural hormone 99.9 [23] 100 0.3 0 0.1 [23] - - 53-41-8

Progesterone Natural hormone 97 [23] 52 48 0 8 [23] - 1,000 100 57-83-0

Testosterone Natural hormone 99 [23] 99 1 0 12 [23] - 200 50 58-22-0

Illicit drugs

Amphetamine Nervous system stimulant 98 [30,31] 100 0 0 2 [30,31] - (4,901) 1,000 60-13-9

Cocaine Nervous system stimulant 79 [30,31] 100 0 0 30 [30,31] - - 50-36-2 ?

Ectasy (MDMA) Psychedelic drug 15 [30,31] 0 100 [30,31] - - 64057-70-1 ? X

THC-COOH (cannabis metabolite) Psychoactive drug 98 [30,31] 100 0 0 13 [30,31] - - 64280-14-4 ?

Personal care products

Galaxolide (HHCB) Fragrances 85 [32,33] 10 76 14 850 [32,34,36] - 6,800 10 1222-05-5

Tonalide (AHTN) " 85 [32,33] 10 76 14 250 [32,34,36] - 3,920 50 21145-77-7

Iso E Super (OTNE) " 65 [34,35] 50 40 10 1,400 [32,34,36] - 560 50
54464-57-2 

(EC: 915-730-3)
X X

Musk ketone " 46 [34,35] 0 100 17 [32,34,36] - (0.33) 10,000 81-14-1 ?

Musk xylene " 54 [34,35] 0 100 17 [32,34,36] (1.0) 10,000 81-15-2 ?

Removal 

mechanisms
b

Priori-

tization
h
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Table 2.2 (Continuation) 

 

Substance Family

Typical 

WWTP 

removal
a

Ref.
Typical WWTP effluent 

concentration
c

Ref. EQS
d Ref. PNEC

e
AF

f
CAS

g

[%] B S V [ng/l] [ng/l] [ng/l] L T P

Personal care products (continuation)

Methyl-paraben Preservatives 95 [37] 95 5 0 19 [37] - 4,000 50 99-76-3

Ethyl-paraben " 95 [37] 95 5 0 2.5 [37] - 21,000 100 120-47-8

Triclocarban Biocides 90 [26,38] 10 90 0 70 [21,22,38] - 1.1 50 101-20-2 X

Triclosan " 90 [26,38] 35 65 0 200 [21,22,38] 20 CH 1.5 10 3380-34-5 X

Chloroxylenol " 95 [31] 300 [31] - (26) 5,000 88-04-0 X

N,N-diethyl-m-toluamide (DEET) " 62 [17] 100 0 0 700 [17,21] 41,000 CH (800) 5,000 134-62-3

4-methylbenydlidene camphor (4-MBC) UV filters 72 [33,39] 70 30 0 800 [33,39] - - 38102-62-4 ?

Benzophenone-3 (BP-3) " 90 [33,39] 95 5 0 270 [33,39] - 1,600 50 131-57-7

Ethylhexyl methoxycinnamate (EHMC or OMC) " 98 [33,39] 90 10 0 36 [33,39] - (27) 1,000 5466-77-3 ?

Octocrylene (OC) " 96 [33,39] 50 50 0 52 [33,39] - 1,000,000 100 6197-30-4

Octyl-tirazone (OT or ethylhexyl triazone) " 96 [33] 5 95 0 < 34 [33] - 800,000 100 88122-99-0

Household chemicals

Acesulfame Sweeteners 5 [40,41] 0 0.1 0 30,000 [40,41] - 2,000,000 50 55589-62-3 X X

Saccharin " 99 [40,41] 100 0 0 500 [40,41] - 9,983,000 50 81-07-2

Sucralose " 5 [40,41] 0 0.1 0 10,000 [40,41] - - 56038-13-2 X ? X

Cyclamate " 95 [40,41] 100 0 0 500 [40,41] - (1.0) 10,000 139-05-9 ?

Di-(2-ethylhexyl) phthalate (DEHP) Plastic additives 94 [42] 60 40 0 2,400 [42] 1,300 EU 10 10 117-81-7 X X

Dimethyl phthalate (DMP) " 62 [42] 95 5 0 340 [42] 800,000 UK 960,000 10 131-11-3

Diethyl phthalate (DEP) " 92 [42] 99 1 0 800 [42] 200,000 UK 102,000 10 84-66-2

Di-n-butyl phthalate (DnBP) " 69 [42] 88 12 0 570 [42] 8,000 UK 340 10 84-74-2 X

Butyl benzyl phthalate (BBP) " 86 [42] 96 4 0 180 [42] 20,000 UK 1,810 10 85-68-7

Bisphenol A (BPA) " 80 [19,26] 95 5 0 200 [18,22] 1,500 CH 175 10 80-05-7 X

Benzotriazole Corrosion inhibitors 26 [17,19] 100 0 0 6,600 [21] 30,000 CH 40,000 10 95-14-7 X X

Methylbenzotriazole " 30 [19] 100 0 0 2,900 [21] 75,000 CH 40,000 10 64665-57-2 X X

Benzothiazole " 80 [19,43] 100 0 0 300 [43] 238,000 CH 30,000 50 95-16-9

Benzothiazole-2-sulfonic acid (BTSA) " 15 [43] 100 0 0 1,600 [43] - - 941-57-1 X ? X

2-hydroxybenzothiazole (OHBT) " 60 [43] 99 1 0 100 [43] - - 934-34-9

2-methylthiobenzothiazole (MTBT) " 0 [43] 99 1 0 100 [43] - - 615-22-5 X

Ethylenediaminetetraacetatic acid (EDTA) Chelating agents 5 [14,43-46] 0 0 0 90,000 [14,43-46] 2,200,000 CH 39,000 10 60-00-4 X X X

Nitrilotriacetatic acid (NTA) " 95 [14,43-46] 100 0 0 10,000 [14,43-46] 190,000 CH 156,000 10 139-13-9 X

Decabromodiphenyl ether (BDE-209) Brominated flame retardants 90 [49] 0 100 0 2 [48] - 40 50 1163-19-5

2,2',4,4'-Tetrabromodiphenyl ether (BDE-47) " 91 [26] 0 100 0 0.7 / 8 [22/47] 0.5 EU 500 10 5436-43-1 X

Pentabromodiphenyl ethers (BDE-99) " 93 [26] 0 100 0 0.6 / 9 [22/47] 0.5 EU (10,000) 10,000 32534-81-9 X

Tetrabromobisphenol A (TBBA) " 90 [50] 20 80 0 2 [50] - 1,700 10 79-94-7

Tris(2-chloro,1-methylethyl) phosphate (TCPP) Phosphorus flame retardants 1 [51] 0 100 0 1,500 [21,51] - 120,000 50 13674-84-5 X X

Tris(2-chloroethyl) phosphate (TCEP) " 1 [51] 0 100 0 350 [21,51] - 1,440,000 50 115-96-8 X

Tris(1,3-dichloro-2-propyl) phosphate (TDCP) " 1 [51] 0 100 0 150 [21,51] - 10,000 50 13674-87-8 X

Tri-iso-butyl phosphate (TiBP) " 86 [51] 99 1 0 160 [21,51] - 341,000 100 126-71-6

Tris(butoxyethyl)-phosphate (TBEP) " 88 [51] 98 2 0 440 [21,51] - 76,000 100 78-51-3

Tri-n-butyl phosphate (TnBP) " 60 [51] 99 1 0 300 [21,51] 50,000 UK 37,000 10 126-73-8

Triphenyl phosphate (TPP) " 65 [51] 85 15 0 50 [21,51] - 140 10 115-86-6

Short chain chlorinated paraffins (SCCPs, C10-13) Flame retardants 99 [52] 20 80 0 60 [52] - 500 10 85535-84-8

Perfluorooctanoic acid (PFOA) Perfluorinated compounds 1 [53] 0 100 0 13 [21,53] - 650 10 335-67-1 X

Perfluorooctane sulfonic acid (PFOS) " 1 [53] 0 100 0 12 [21,53] 0.65 EU 10 10 1763-23-1 X X

Removal 

mechanisms
b

Priori-

tization
h
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Table 2.2 (Continuation) 

 

Substance Family

Typical 

WWTP 

removal
a

Ref.
Typical WWTP effluent 

concentration
c

Ref. EQS
d Ref. PNEC

e
AF

f
CAS

g

[%] B S V [ng/l] [ng/l] [ng/l] L T P

Pesticides

Atrazine Herbicide 23 [19,29] 95 5 0 10 [19,21] 600 EU 0.011 10 1912-24-9 X X

(Aminomethyl)phosphonic acid (AMPA) Degradation product 0 [26] 0 4,000 [22,26] 1,500,000 CH 11,000 100 1066-51-9 X X

Carbendazim Fungicide 30 [17,19,29] 95 5 0 100 [17,19,29] 340 CH 0.114 10 10605-21-7 X X

Diazinon Insecticide 40 [17,29] 94 6 0 40 [17,21,29] 15 CH 0.005 10 333-41-5 X X

Diuron Herbicide, algicide 33 [17,19,29] 90 10 0 70 [17,19,21,29] 20 CH 0.026 10 330-54-1 X X

Glyphosate Herbicide 30 [26] 0 850 [22,26] 108,000 CH 200 10 1071-83-6 X X

Irgarol 1051 Algicide 48 [17,19,29] 0 7 [17,19,29] 2.3 CH 0.0045 10 28159-98-0 X X

Isoproturon Herbicide, algicide 42 [17,19,29] 80 20 0 25 [17,19,21,29] 320 CH 174 10 34123-59-6 X

(4-chloro-2-methylphenoxy)acetic acid (2,4-MCPA) Herbicide 28 [17] 0 300 [17,21] 1,340 CH 1,400 10 94-74-6 X

Mecoprop Herbicide 25 [17,19,29] 80 20 0 500 [17,19,21,29] 3,600 CH 514,700 10 93-65-2 X

Terbuthylazine Herbicide 24 [29] 70 30 0 50 [21,29] 220 CH 60 10 5915-41-3 X

Terbutryn Herbicide, algicide 60 [19,29] 80 20 0 20 [19,29] 60 CH 200 10 886-50-0

Persistent organic pollutants (POPs)

∑209 PCBs Dielectric and coolant fluids 75 [54,55] 0 100 0 20 [47,56] - 1 10 11097-69-1 X

Aldrin Insecticide 86 [55] 0 100 0 1 [55] 36 10 309-00-2

Dieldrin Insecticide 77 [55] 0 100 0 8.9 [55] 1 10 60-57-1 X

Endrin Insecticide 81 [55] 0 100 0 2.8 [55] 3.4 10 72-20-8

Dichlorodiphenyltrichloroethane (DDT) Insecticide 83 [55] 0 100 0 1 [55] 25 EU 1 10 50-29-3

Endosulfan Insecticide 84 [55] 0 100 0 2.7 [55] 5 EU 1 10 115-29-7 X

Heptachlor Insecticide 91 [55] 0 100 0 6.4 [55] 0.0002 EU 46 10 76-44-8 X

Hexachlorobenzene Fungicide 90 [55] 0 100 0 1.7 [55] 10 EU 4 10 118-74-1

Hexachlorocyclohexanes (HCHs) Insecticide 79 [55] 0 100 0 6.2 [55] 20 EU 60 10 58-89-9

Pentachloronitrobenzene (PCNB) Fungicide 75 [55] 0 100 0 14 [55] - 1,300 10 82-68-8

Polycyclic aromatic hydrocarbons (PAHs)

Acenaphthene 85 [57] 4 95 1 23 [47,57] - 1,000 10 83-32-9

Anthracene 90 [57] 1 98 1 2 [22,57] 100 EU 200 10 120-12-7

Fluoranthene 80 [57] 1 99 0 10 [22,47,57] 6.3 EU 60 10 206-44-0 X

Fluorene 90 [57] 10 90 0 13 [47,57] - 1,000 10 86-73-7

Naphthalene 60 [57] 10 80 10 49 [57] 2,000 EU 37,000 10 91-20-3

Phenanthrene 80 [57] 5 95 0 12 [57] - 0.02 10 85-01-8 X

Pyrene 70 [57] 1 99 0 15 [47,57] - 120 10 129-00-0

Benzo[b]fluoranthene 80 [57] 0 100 0 3 [22,57] (54) 10,000 205-99-2

Benzo[k]fluoranthene 90 [57] 0 100 0 2 [22,57] (0.2) 5,000 207-08-9

Benzo[a]pyrene 70 [57] 0 100 0 1.1 [22,57] 0.17 EU 2 10 50-32-8 X

Indeno[1,2,3-cd]pyrene 80 [26,57] 0 100 0 1.4 [22,57] - 193-39-5 X

Benzo[ghi]perylene 80 [26,57] 0 100 0 1.1 [22,57] (0.01) 10,000 191-24-2 X

Volatile organic compounds (VOCs)

Ethylbenzene 98 [57] 35 5 60 63 [57] - 20,000 50 100-41-4

Styrene 96 [57] 35 5 60 100 [57] - 6,300 10 100-42-5

Toluene 75 [57] 35 5 60 750 [57] 50,000 UK 100,000 10 108-88-3

m-Xylene + p-Xylene 97 [57] 35 5 60 5 [57] - 26,000 50 108-38-3

o-Xylene 70 [57] 35 5 60 170 [57] - 26,000 50 95-47-6

1,2,4-Trimethylbenzene 82 [57] 35 5 60 340 [57] - 23,560 100 95-63-6

∑=2 EU

∑=10 EU

∑=30 EU
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References: [1](Berna et al., 2007), [2](Scott and Jones, 2000), [3](Matthijs et al., 1999), [4](Feijtel et al., 1996), [5](Mungray and Kumar, 2009), [6](Schowanek et al., 2007), [7](Field et al., 1995), [8](McAvoy et al., 1998), [9](McAvoy et al., 

2006), [10](Belanger et al., 2006), [11](Loyo-Rosales et al., 2007), [12](Ying et al., 2002), [13](Bergé et al., 2012), [14](Clara et al., 2012), [15](Kreuzinger et al., 2007), [16](Guedez and Püttmann, 2011), [17](DGE, 2013), [18](Kase et al., 2011), 

[19](Margot et al., 2013b), [20](Kostich et al., 2014), [21](Loos et al., 2013), [22](Gardner et al., 2012), [23](Lubliner et al., 2010), [24](Oulton et al., 2010), [25](Verlicchi et al., 2012), [26](Gardner et al., 2013), [27](Huerta-Fontela et al., 2010), 
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Substance Family

Typical 

WWTP 

removal
a

Ref.
Typical WWTP effluent 

concentration
c

Ref. EQS
d Ref. PNEC

e
AF

f
CAS

g

[%] B S V [ng/l] [ng/l] [ng/l] L T P

Heavy metals Total / dissolved Total / dissolved

Aluminium (Al) 93 / 44 [26] 0 100 0 68,000 / 20,000 [22] - 400 10 7429-90-5 X

Cadmium (Cd) 85 / 89 [26] 0 100 0 50 / 24 [22] < 80-250
i EU 13 10 7440-43-9 X

Chromium (Cr) 73 / - [58] 0 100 0 700 / 600 [22] 3400 UK 2,400 10 7440-47-3

Copper (Cu) 86 / 63 [26] 0 100 0 8,300 / 5,600 [22]  1,000-28,000
i UK 50 10 7440-50-8 X X

Iron (Fe) 78 / 61 [26] 0 100 0 170,000 / 59,000 [22] 1,000,000 UK 56,000 10 7439-89-6 X

Lead (Pb) 89 / 57 [26] 0 100 0 800 / 400 [22] 1,200 EU 21 10 7439-92-1 X

Mercury (Hg) 79 / 32 [26] 0 94 6 16 / 11 [22] 50 EU 25 10 7439-97-6 X

Nickel (Ni) 31 / 6 [26] 0 100 0 4,900 / 4,300 [22] 4,000 EU 110 10 7440-02-0 X X X

Zinc (Zn) 75 / 16 [26] 0 100 0 30,900 / 24,000 [22]  8,000-125,000
i UK 8.5 10 7440-66-6 X X X

Removal 

mechanisms
b

Priori-

tization
h

e
 Predicted No-Effect Concentration (PNEC): concentration below which exposure to a substance is not expected to cause adverse effects. Automatically calculated by the ecotoxicity database AiiDA (http://aiida.tools4env.com) based on the most sensitive species (values not 

validated by external experts). In bracket: PNEC for which an AF ≥ 1000 is used (less reliable). (-): no value proposed

a
 Average removal in conventional WWTPs (mainly activated sludge) observed, if available, in national studies on a wide range of WWTPs in Europe or in the USA. In bracket: very variable values reported (median)

b
 Main removal mechanisms in WWTPs. B: biodegradation, S: sorption, V: volatilization. Scale: White: less then 10%, Light grey: 10-40%, Dark grey: 40-70%, Black: >70% of the total removal (100%) (values are estimation of the removal percentage attributed to each mechanism) 

([/]: no data). The fraction removed by sorption was estimated based on the concentration of the pollutant in sewage sludge, assuming an average sludge production of 240 mg/l. References for pharmaceutical and personal care products in sludge: [23,25,26,59,61-63]; for 

pesticides in sludge: [23,60]; for PAHs and heavy metals: [23]. For others compounds, see [64]

c
 Average effluent concentrations observed, if available, in national studies on a wide range of WWTPs in Europe or in the USA. Ref. [17-19]: 10-28 WWTPs in Switzerland, Ref. [20]: 50 WWTPs in the USA, Ref. [21]: 90 WWTPs in Europe, Ref. [22]: 162 WWTPs in UK,  Ref. 

[23]: 5 WWTPs in the USA. In bold: effluent concentrations higher than their respective EQS or PNEC (risk for sensitive aquatic organsisms in case of low dilution of the effluent)
d
 Chronic environmental quality standards (EQS) for inland surface waters (annual average value). Proposition for Switzerland (CH), United Kingdom (UK) and Europe (EU). For metals: standards for the dissolved or bioavailable concentrations. Reference: CH: 

http://www.oekotoxzentrum.ch/expertenservice/qualitaetskriterien/vorschlaege/index_EN (last accessed June 2014), UK: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/298245/geho0810bsxl-e-e.pdf (last accessed June 2014), EU: Directives 

2013/39/EU and 2008/105/EC. (-): no value proposed

f 
Assessment or security factor (AF), used to calculate the PNEC (PNEC=[Concentration affecting the most sensitive species] / AF), which depends on the number and the quality of the available ecotoxicity tests. For AF ≥ 1000, only acute ecotoxicity data are available, and 

thus the PNEC is less reliable

g
 Chemical Abstracts Service number (CAS) of the substance for which the PNEC was determined in AiiDA (http://aiida.tools4env.com)

h
 Prioritization of the micropollutants based on their load (L) (for substances with effluent concentration > 1000 ng/l), their toxicity (T) (for substances with effluent concentration > PNEC) and their persistance (P) in WWTPs (for substances removed less than 50% in 

conventional treatments)

i
 Hardness related values
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2.3.3 Personal care products 

Personal care products (PCPs) include ingredients found in shampoos, washing lotions, skin care 

products, dental care products, sunscreen agents, cosmetics, perfumes, hair styling products, etc. The 

most studied PCPs are fragrances (such as polycyclic and nitro musks), UV filters, 

antimicrobial/disinfectants, preservatives and insect repellents. Due to their wide consumption and 

their type of usage (often skin application), they enter municipal wastewater mainly via wash-off 

during showering or bathing (Ternes and Joss, 2006). The fate of these PCPs is described below. 

2.3.3.1 Fragrances 

Fragrances such as synthetic musks are widely used in cosmetics, perfumes, body lotions, shampoos, 

detergents and fabric softeners. The main synthetic musks detected in the environment are the 

polycyclic musks galaxolide (HHCB) and tonalide (AHTN), produced in high quantities (300-1400 

tons/y in Europe in 2002); the nitro musks ketone and xylene, though their use has been significantly 

reduced during the past decades due to their potential toxic health effects; and the bicyclic 

hydrocarbon fragrance compound OTNE (Kubwabo et al., 2012; Kupper et al., 2006). Musks are 

relatively lipophilic as they are made to sorb on surface (skin, fabric, etc). Due to their uses, they 

usually arrive in wastewater through wash-off during laundry or shower. Concentrations of musks in 

raw wastewaters are usually around 1-13 µg l
-1

 for HHCB (average of 1.6 mg d
-1

 capita
-1

), 0.2-1.8 µg  

l
-1

 for AHTN (average of 0.36 mg d
-1

 capita
-1

), 2.5-13 µg l
-1

 for OTNE (average of 3.4 mg d
-1

 capita
-1

), 

and around 5-60 ng l
-1

 for musks ketone and xylene (Bester et al., 2008; Clara et al., 2011; Clara et al., 

2005b; Fatta-Kassinos et al., 2010; Kupper et al., 2006). Due to their hydrophobicity (log KOW > 5.7) 

and their relatively high sludge distribution coefficient (Kd = 5000 – 20,000 l kg
-1

SS), polycyclic 

musks are usually well removed in WWTPs, from 70 to 99%, mainly by sorption (Clara et al., 2011; 

Horii et al., 2007; Kupper et al., 2006). A significant portion (up to 50-70%) is removed during the 

primary treatment, together with suspended solids, and the remaining with the secondary sludge 

(Kupper et al., 2006). Polycyclic musks are also possibly slightly biodegraded during the secondary 

treatment (5-10%), or during the sludge treatment (up to 50%), but are not considered to be easily 

biodegradable (Clara et al., 2011; Kupper et al., 2006). Due to their relative volatility (KAW around 

5·10
-3

 to 1.5·10
-2

 [-]), a fraction of AHTN and HHCB (up to 14%) volatilizes from the aeration basins, 

leading to the presence of relatively high concentrations of musks in the indoor (up to 300 and 3 µg  

m
-3

 air for HHCB and AHTN respectively) and outdoor atmosphere of WWTPs. WWTPs can 

therefore be regarded as significant sources of these compound to the atmosphere (Upadhyay et al., 

2011; Weinberg et al., 2011). Removal of nitro musks and the fragrance OTNE in WWTPs is reported 

to be slightly lower than for polycyclic musks (around 50% for musks xylene and ketone, and between 

50% to 80% for OTNE) (Bester et al., 2008; Yang and Metcalfe, 2006), probably, for nitro musks, due 

to their lower hydrophobicity and volatility (Upadhyay et al., 2011). Concentrations of fragrances in 

WWTP effluents are usually reported in the range 300-1400 ng l
-1

 for HHCB, 50-500 ng l
-1

 for AHTN, 

800-1800 ng l
-1

 for OTNE, and 0.5-35 ng l
-1

 for nitro musks (Bester et al., 2008; Clara et al., 2011; 

Fatta-Kassinos et al., 2010). Risks for sensitive aquatic organisms cannot be excluded for OTNE in the 

case of low dilution of the effluent as its concentration is higher than its PNEC (560 ng l
-1

, Table 2.2).  

Due to their lipophilicity, polycyclic musks can then bioconcentrate in fish. The average 
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concentrations found in fish filets in the United States were 1100 ng g
-1

 tissue for HHCB and 110 ng  

g
-1

 for AHTN (Ramirez et al., 2009). 

Sewage sludge contains relatively high concentrations of synthetic musks and fragrances, especially 

for HHCB (3-20 mg kg
-1

 dm), AHTN (0.4-3 mg kg
-1

 dm) and OTNE (2.9-4.5 mg kg
-1

 dm) (and around 

40-80 µg kg
-1

 dm for nitro musks) (Bester et al., 2008; Clara et al., 2011; Kupper et al., 2006). In the 

case of soil amendment, these compounds are, however, reported not to persist in soils (removal in a 

few weeks) (Yang and Metcalfe, 2006). 

Many PCPs and other products (e.g., air fresheners) that contain fragrances contain also fragrance 

dispersants such as dimethyl phthalate (DMP) and diethyl phthalate (DEP) (Bergé et al., 2013). The 

concentration and the fate of phthalates in wastewater are discussed in the sub-chapter 2.3.4.2. 

2.3.3.2 Preservatives, antimicrobials and insect repellents 

Parabens are widely employed as antimicrobial preservatives in PCPs such as body lotions, shampoos, 

tooth pastes, deodorants, etc. The most commonly used parabens include methyl- (MeP), ethyl- (EtP), 

propyl- (PrP), butyl- (BuP) and benzyl-parabens (BzP). Due to their light estrogenic effect and their 

ubiquitous presence in human tissues, they are possibly substances of concern for human health 

(Kirchhof and de Gannes, 2013). Median concentrations of parabens in raw municipal wastewater in 

Spain were at 2500 ng l
-1

 for MeP, 1400 ng l
-1

 for PrP, 760 ng l
-1

 for EtP and 200 ng l
-1

 for BuP. BzP 

was found at very low concentrations (< 2 ng l
-1

) (González-Mariño et al., 2011). Parabens are well (> 

95%) removed in WWTPs. A small fraction may be removed during the primary treatment by sorption 

to particles (Sun et al., 2014), but the main removal mechanism reported (> 95%) is biodegradation. 

Parabens are indeed readily biodegradable (González-Mariño et al., 2011). Parabens were found in 

sewage sludge, but at relatively low concentrations (74 µg kg
-1

 dm for MeP, 3.4 µg kg
-1

 dm for PrP 

and less than 1 µg kg
-1

 dm for the others) (Liao et al., 2013). Concentrations of parabens in WWTP 

effluents are usually lower than 100 ng l
-1

 (much more below their PNEC, Table 2.2), with median 

concentrations in Spain at 19 ng l
-1

 for MeP and 2.5 ng l
-1

 for EtP, the only two parabens detected in 

the effluents (González-Mariño et al., 2011). 

Antimicrobial agents are widely used in PCPs, mainly in soaps (liquids and bars), toothpastes, 

deodorants and shave gels. Triclocarban and especially triclosan are among the most common 

antimicrobials used. Their concentrations in raw wastewater are relatively high, on average between 1 

and 10 µg l
-1

 for triclosan and slightly lower for triclocarban (0.1 to 6 µg l
-1

) (Gardner et al., 2013; 

Guerra et al., 2014; Lozano et al., 2013). Due to their hydrophobicity (log KOW around 4.9), 70 to 80% 

of their influent concentration is associated to particles. A significant fraction (up to 60-80%) of 

triclosan and triclocarban is thus removed during the primary treatment, together with suspended 

solids. The residual fraction is further removed in the biological treatment, either by sorption to the 

secondary sludge or by biodegradation (around 10 to 35% of the total removal) (Lozano et al., 2013). 

The overall removal in WWTPs is usually over 80%, and often over 95% (Gardner et al., 2013). 

Average concentrations in WWTP effluents (mostly on the dissolved fraction) in Europe, Australia 

and the USA are reported to be around 100-250 ng l
-1

 for triclosan and 10-120 ng l
-1

 for triclocarban 

(Gardner et al., 2012; Loos et al., 2013; Lozano et al., 2013; Ying and Kookana, 2007). Triclosan 

concentrations in the receiving water may thus exceed the proposed Swiss EQS of 20 ng l
-1

, and both 
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compounds are expected to exceed their PNEC (1-2 ng l
-1

, Table 2.2) in the case of low dilution of the 

effluents (Ecotox Center, 2014).  

Despite a fraction biodegraded, most of these antimicrobial agents accumulate in the sewage sludge. 

The median concentrations found in sludge coming from 94 US WWTPs were 36 mg kg
-1

 dm and 12.6 

mg kg
-1

 dm for triclocarban and triclosan, respectively (McClellan and Halden, 2010). Triclosan was 

found on average around 5 mg kg
-1

 dm in sludge from Australia and United Kingdom (Gardner et al., 

2013; Ying and Kookana, 2007). When the sludge is used as fertilizer, triclocarban is reported to 

persist for long time in soil (no apparent degradation in three years), while triclosan can be slowly 

degraded (half-live of 190 d) (Walters et al., 2010). 

Chloroxylenol is another antibacterial agent found at high concentrations in raw wastewater (10-30 µg 

l
-1

). Despite good removal (> 95%) in WWTPs, its concentration in effluents was reported to be 

around 300 ng l
-1

 (Kasprzyk-Hordern et al., 2009). 

N,N-diethyl-m-toluamide (DEET) is the active ingredient of most commercial insect repellents. 

Showering and bathing after application and laundering of clothes are considered to be a major source 

of DEET in wastewater. Concentrations in raw wastewater are in the range 0.1 to 10 µg l
-1

, with the 

highest values observed usually in summer (Aronson et al., 2012). Removal efficiency of DEET in 

WWTPs is highly variable, ranging from 10 to 99% depending on the plant or season. Due to its low 

sorption affinity (Kd = 30-100 l kg
-1 

SS) and low volatility (KAW = 8·10
-7

) (Aronson et al., 2012; 

Stevens-Garmon et al., 2011), the main removal mechanism is expected to be biodegradation (DEET 

is moderately biodegradable). Higher removal rates were observed in plants with longer SRTs, 

probably due to higher microbial diversity, but the reasons for these high removal efficiency variations 

are not well understood (Aronson et al., 2012). Average concentrations of DEET in WWTP effluents 

are between 100 to 900 ng l
-1

 in Europe (Aronson et al., 2012; DGE, 2013; Loos et al., 2013), which is 

far below the proposed EQS value for Switzerland (41 µg l
-1

). 

2.3.3.3 UV filters 

Organic ultraviolet (UV) filters are widely used in sunscreen agents and cosmetics to protect against 

sunburn or as a preservative to prevent UV degradation of other cosmetics ingredients. They mainly 

enter aquatic environments either directly during recreational activity (bathing in lakes and rivers) or 

indirectly through municipal wastewater (wash-off from the skin during showering). Many (about 30) 

different UV filters are frequently used. Some of the most common are benzophenone-1, -3 (also 

called oxybenzone) and -4 (BP-1, BP-3, BP-4), 4-methylbenydlidene camphor (4-MBC), ethylhexyl 

methoxy cinnamate (EHMC, also called octyl-methoxycinnamate (OMC)), octocrylene (OC), octyl-

triazone (OT) and butyl methoxydibenzoylmethane (BMDM) (Balmer et al., 2005; Kupper et al., 

2006; Tsui et al., 2014). Concentrations of UV filters in Swiss raw wastewater vary seasonally, from < 

100 ng l
-1

 up to 20 µg l
-1

, with usually higher concentrations after sunny summer days (1-10 µg l
-1

 for 

4-MBC, BP-3, EHMC, OT and OC)  (Balmer et al., 2005; Kupper et al., 2006). Average 

concentrations (summer and winter) measured in some Chinese raw wastewaters were, for instance, at 

250 ng l
-1

 for BMDM, 438 ng l
-1

 for EHMC, 284 ng l
-1

 for BP-3 and 643 ng l
-1

 for BP-4 (Tsui et al., 

2014).  
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Most UV filters (e.g., BP-3, EHMC, OC, OT) are usually over 90% removed in conventional WWTPs, 

although 4-MBC has lower average removal rates (around 70%) (Balmer et al., 2005; Kupper et al., 

2006). Some UV filters (such as OC or OT) are lipophilic as they are often used as additives in 

cosmetics (usually composed of lipids or oils). They tend then to sorb onto particles and are usually 

partially (50-90%) removed during primary treatments. UV filters are thus found in stabilized sewage 

sludge at relatively high concentrations, around 0.6-6 mg kg
-1

 dm for 4-MBC, EHMC, OC and OT 

(Kupper et al., 2006). This is however not the case for benzophenones (BP-1, 3, 4) which are less 

hydrophobic (Tsui et al., 2014). Due to their biodegradability, most UV filters are further removed by 

degradation during the secondary treatment (Kupper et al., 2006). Concentrations in WWTPs effluents 

are thus reduced and usually in the range 10 ng l
-1

 to 1 µg l
-1

 (Balmer et al., 2005), which is lower than 

their respective PNECs (Table 2.2). Due to their lipophilicity, UV filters can bioconcentrate in aquatic 

organisms. 4-MBC and BP-3 were for instance found in fish in Swiss lakes at concentrations around 

100 ng g
-1

 lipid (Balmer et al., 2005). 

2.3.4 Household and industrial chemicals 

Many other chemicals are used daily in homes or workplaces (sweeteners, anticorrosives or chelating 

agents) or are present in household equipment (plasticizers, flame retardants, perfluorinated 

compounds). They often find their way into sewers. 

2.3.4.1 Food and beverage additives 

Artificial sweeteners such as acesulfame, aspartame, cyclamate, neotame, neohesperidine 

dihydrochalcone (NHDC), saccharin and sucralose, are widely used (increasing over time) in food, 

beverages and toothpaste, where they act as sugar substitutes. Artificial sweeteners are designed not to 

be metabolized in the human body (their goal is to provide a negligible energy source). Thus, except 

for aspartame, neotame and NHDC, which are mostly excreted in metabolite forms, 90 to 100% of all 

other sweeteners consumed are then released in urine and faeces. The estimated total load of 

sweeteners in sewers is around 10 to 60 mg d
-1

 capita
-1 

(Lange et al., 2012), which is in the same range 

as the total load of pharmaceuticals. Concentrations of acesulfame, cyclamate, saccharin and sucralose 

in raw municipal wastewaters are relatively high, varying usually between 1 to 200 µg l
-1

, with 

average concentrations around 20-30 µg l
-1

 (Kokotou and Thomaidis, 2013; Lange et al., 2012). 

Cyclamate and saccharin are easily biodegradable and are removed from 90 to more than 99% in 

WWTPs, resulting in effluent concentrations typically below 1 µg l
-1

. Acesulfame and sucralose are, 

on the contrary, very persistent, and due to their high hydrophilicity (log KOW around -1), not 

significantly removed by sorption to the sludge (< 0.1%, with sludge concentration around 50 to 150 

µg kg
-1

 dm) (Ordoñez et al., 2013). These two sweeteners are thus not significantly removed during 

treatment, and their concentrations in effluents are therefore relatively high (10-50 µg l
-1

 for 

acesulfame and 0.4 to 20 µg l
-1

 for sucralose) (Kokotou and Thomaidis, 2013; Lange et al., 2012). 

Sucralose and especially acesulfame are detected in surface, ground and drinking waters in relatively 

high concentrations (up to a few µg l
-1

). Their concentrations in some drinking waters are among the 

highest concentrations of anthropogenic trace pollutants found, but are, however, around 1000 times 

lower than their organoleptic (sweetness) threshold values (Lange et al., 2012). Sweeteners are not 

expected to be toxic to aquatic organisms at these concentrations (Sang et al., 2014). 
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2.3.4.2 Plasticizers and plastic additives 

Plasticizers are added in plastics to improve their flexibility. Phthalates (phthalic acid esters) are 

common plasticizers, although phthalates are also used as fragrance dispersants in cosmetics, or as 

additive in epoxy resins, food packaging, building materials, etc. Phthalates are pollutants of concern 

due to their disruption of endocrine activity and their association with many human health problems 

(alteration of reproduction, development and neurodevelopment) (Huang et al., 2012). The most 

studied phthalates are di-(2-ethylhexyl) phthalate (DEHP) (widely used as PVC plasticizer, for 

instance in PVC shower curtains), dimethyl phthalate (DMP) and diethyl phthalate (DEP) (used as 

fragrance dispersants), and di-n-butyl phthalate (DnBP) and butyl benzyl phthalate (BBP) (used as an 

additive in many products). Due to their widespread use, median concentrations of phthalate in raw 

municipal wastewater are around 40 µg l
-1

 for DEHP, 10 µg l
-1

 for DEP and 1-2 µg l
-1

 for DMP, DnBP 

and BBP. Phthalates are partially to well removed (60 to 95%) in WWTPs (Table 2.2). For the 

hydrophobic DEHP (log KOW  = 7.5), sorption on particles and sludge is considered to be the main 

removal mechanism (> 40% removal). For more hydrophilic DEP and DMP (log KOW  < 2.5), 

biodegradation seems to play an important role (less than 3% removed by sorption). For BBP and 

DnBP (log KOW = 4.7-4.8), both sorption (5-10%) and biodegradation can participate to the observed 

removal. Median concentrations in WWTP effluents were reported to be around 2.4 µg l
-1

 for DEHP 

and between 200 to 800 ng l
-1

 for DMP, DEP, DnBP and BBP. In the case of low dilution of the 

effluent, DEHP may exceed the European EQS of 1.3 µg l
-1

 in inland waters (EC, 2013) and DnBP 

may exceed its PNEC (Table 2.2). DEHP accumulates in sewage sludge, with a median concentration 

around 60 mg kg
-1

 dm. The other phthalates are also detected in sludge but at much lower median 

concentrations (0.2 to 0.5 mg kg
-1

 dm) (Bergé et al., 2013).  

Bisphenol A (BPA) is produced in large quantities. It is mainly (about 95%) used in the production of 

synthetic polymers such as polycarbonates (transparent hard plastic) and epoxy resins. These polymers 

are widely used in households, for instance for inner water-pipe coating, food containers, bottles, inner 

coatings for tins (canned food) and beverage cans, toys, etc. BPA is also used as a stabilizer in PVC 

(e.g., in shower curtains) and as a colour developer in thermal papers (e.g., shop receipts, faxes) 

(Michałowicz, 2014). Recycling of thermal paper was reported to contaminate recycled papers with 

BPA. Up to 46 µg g
-1

 (average 19 µg g
-1

) of BPA was found in recycled toilet paper (Liao and 

Kannan, 2011), which may contribute significantly to the load of BPA in wastewater. BPA was found 

on average at 0.8-1 µg l
-1

 in raw wastewater in the United Kingdom (UK) and in Switzerland (Gardner 

et al., 2013; Margot et al., 2013b). BPA is moderately to easily biodegradable with removals of over 

80% observed in WWTPs, especially in those that have a nitrification step (Gardner et al., 2013; 

Margot et al., 2013b). BPA has a moderate sorption capacity (Kd 300-500 l kg
-1

) (Banihashemi and 

Droste, 2014), suggesting that the removal is mostly by biodegradation (Zhao et al., 2008). 

Concentrations in sewage sludge are indeed relatively low (around 70 µg kg
-1

 dm) (Gardner et al., 

2013). BPA concentrations in WWTPs effluents were reported on average at around 100-300 ng l
-1

 

(Gardner et al., 2012; Kase et al., 2011). BPA is an endocrine disrupter and can affect fish (impact on 

gonad morphology) at very low concentrations (1 µg l
-1

) (de Kermoysan et al., 2013), with a PNEC of 

175 ng l
-1

 (Table 2.2). A risk for aquatic organisms can thus not be excluded in the case of low effluent 

dilution. 
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2.3.4.3 Anticorrosives 

Benzotriazoles are high-production-volume polar chemicals mostly used as corrosion inhibitors in de-

icing fluids for aircrafts, automotive antifreeze formulation, brake fluids, industrial cooling systems, 

but also in households for silver protection and as a polishing agent in dishwashing detergent. The 

main benzotriazoles reported are benzotriazole (BTr) itself, and 4- and 5- methylbenzotriazoles 

(MBTr). Due to their wide usage in dishwashing products (on average 12.5 mg per tablet), it was 

estimated that around 3 mg d
-1

 capita
-1

 of benzotriazoles are released in the sewers (Vetter and Lorenz, 

2013). Concentrations of benzotriazoles in raw wastewater are thus relatively high, on average around 

10 µg l
-1

 (usually between 5-15 µg l
-1

) for BTr and around 5 µg l
-1

 for MBTr. Removal of 

benzotriazoles in WWTPs is usually low, on average between 20 and 30% (DGE, 2013; Margot et al., 

2013b; Reemtsma et al., 2006; Weiss and Reemtsma, 2005). They are not considered to be rapidly 

biodegraded and due to their low hydrophobicity (log KOW < 2), they are not significantly removed by 

sorption (Kd < 200 l kg
-1

, 15-30 µg kg
-1

 dm) (Stasinakis et al., 2013). Concentrations of benzotriazoles 

in WWTP effluents are therefore relatively high, and were found on average in 90 European WWTPs 

at 6.6 µg l
-1 

for BTr and 2.9 µg l
-1

 for MBTr (Loos et al., 2013). These levels are, however, lower than 

the proposed Swiss EQS for surface waters (30 and 75 µg l
-1

 for BTr and MBTr, respectively) (Ecotox 

Center, 2014). 

Benzothiazoles are also high-production-volume chemicals with various applications, the main one 

being vulcanization accelerators in rubber, but they are used also as corrosion inhibitors in antifreeze 

and cooling liquids, in wood preservation or in industrial processes. The main benzothiazoles reported 

in municipal wastewater, coming from urban runoff (tire abrasion on roads) and unknown sources in 

households, were benzothiazole-2-sulfonic acid (BTSA), benzothiazole (BT), 2-hydroxybenzothiazole 

(OHBT) and 2-methylthiobenzothiazole (MTBT). Their individual concentrations in raw wastewater 

and in WWTP effluents are in the range of 0.2-2 µg l
-1

, which are much lower than the proposed Swiss 

EQS value for surface waters (238 µg l
-1

) (Ecotox Center, 2014). Removal efficiencies reported for 

benzothiazoles in WWTPs are very variable, from 0 to 80%, mostly due to 

biotransformation/degradation. Very low adsorption on sludge are indeed reported for these polar 

pollutants (Kd  = 3-200 l kg
-1

, 20-60 µg kg
-1

 dm) (Asimakopoulos et al., 2013; Kloepfer et al., 2005; 

Reemtsma et al., 2006; Stasinakis et al., 2013). 

2.3.4.4 Synthetic chelating agents 

Ethylenediamine tetraacetatic acid (EDTA) and nitrilotriacetatic acid (NTA) are synthetic chelating 

agents designed to “sequester” metal ions such as Fe
3+

, Ca
2+

 or Mg
2+

. EDTA and NTA are widely used 

in laundry and household detergents as builders to reduce water hardness (Ca
2+

, Mg
2+

), or as stabilizers 

in personal care products and detergents. Both compounds are very hydrophilic and with a low 

volatility (log KOW around -3.8 and KAW  < 5 × 10
-9

)
1
. EDTA and NTA were found at very high 

concentrations in raw municipal wastewater, with average concentrations between 70 and 950 µg l
-1

 

(Alder et al., 1990; Clara et al., 2012; Gardner et al., 2013). NTA is biodegradable with good removal 

efficiencies (90 to 97%) reported for WWTPs. EDTA is, on the contrary, not biodegradable, and less 

than 10% removal is usually reported. Concentrations of chelating agents in WWTP effluents are on 

                                                      
1
 Source: SRC PhysProp Database: http://esc.syrres.com/fatepointer/search.asp, last accessed 17.03.2014 

http://esc.syrres.com/fatepointer/search.asp
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average around 3-50 µg l
-1

 for NTA and around 50-130 µg l
-1

 for EDTA (Alder et al., 1990; Clara et 

al., 2012; Kari and Giger, 1996; Knepper, 2003; Reemtsma et al., 2006). EDTA has therefore one of 

the highest (together with some surfactants) average concentrations reported for synthetic chemicals in 

municipal WWTP effluents. EDTA and NTA were measured in surface waters at concentration up to 

19 µg l
-1

 and around 1 µg l
-1

, respectively. Median EDTA concentrations of 3.7 µg l
-1

 and 0.9 µg l
-1

 

were reported in some European surface waters and in Lake Geneva, respectively (CIPEL, 2005; 

Knepper, 2003; Reemtsma et al., 2006).  These concentrations are however lower than the proposed 

Swiss EQS for surface waters (2200 µg l
-1

 for EDTA and 190 µg l
-1

 for NTA) (Ecotox Center, 2014). 

EDTA concentrations in effluents surpass the relevant PNEC (39 µg l
-1

, Table 2.2) and thus potential 

impacts of this compound cannot be neglected. 

Phosphonates, other chelating agents widely used in laundry detergents but still few studied, were also 

measured on average at high (individual) concentrations (50-150 µg l
-1

) in raw municipal wastewater. 

Phosphonates were usually not detected in WWTPs effluents (< 15-29 µg l
-1

), with a removal 

efficiency over 80%, mostly by sorption on activated sludge (Nowack, 1998). 

2.3.4.5 Flame retardants 

Flame retardants are chemicals incorporated in various household equipments, such as building 

materials (e.g., insulation), electrical/electronic devices, upholstered furniture (e.g., sofas), textiles, 

plastics or polyurethane foams, to inhibit fires. The main families of organic flame retardants are based 

on brominated, organophosphorus and chlorinated paraffin compounds (van der Veen and de Boer, 

2012). Flame retardants can reach the sewers during cleaning of textiles or household surfaces (flame 

retardants can accumulate in dust). 

Brominated flame retardants have been used for several decades but, due to their environmental 

persistence, bioaccumulative potential and toxicity, some congeners of polybrominated biphenyls 

(PBBs) (hexa-BB) and polybrominated diphenyl ethers (PBDEs) (tetra-, penta-, hexa- and hepta-

BDEs) were classified in 2009 as persistent organic pollutants (POPs) in the Stockholm Convention 

(van der Veen and de Boer, 2012). Their use is now restricted in many countries (including 

Switzerland), but due to their presence in high quantities in existing furniture and electric devices, they 

are expected to continue to contaminate the environment for many years.  

PBDEs are a family of 209 congeners with a structure similar to the toxic polychlorobiphenyls 

(PCBs). The main congeners in commercial mixtures were tetra BDE-47, penta BDE-99 and -100, 

hepta BDE-153 and -175/183, octa BDE-197, nona BDE-207 and deca BDE-209 (La Guardia et al., 

2006). Therefore these congeners, and especially BDE-47,-99, -100, -153 and -209, are the most 

frequently detected in wastewater (North, 2004). Median concentrations of BDE-47 and -99 in raw 

wastewater were around 10 ng l
-1

 in the UK (16 WWTPs) (Gardner et al., 2013) and between 10-140 

ng l
-1

 in Norway (3 WWTPs), where BDE-209 was also found on average at 40-110 ng l
-1

 (Nyholm et 

al., 2013). PBDEs are usually well removed (median removal around 90%) in conventional WWTPs, 

mostly during secondary treatments (Gardner et al., 2013). As they are poorly biodegradable and 

relatively hydrophobic (log KOW 4-10), the main removal mechanism is sorption onto sludge. Due to 

its high hydrophobicity (log KOW around 9), the large congener BDE-209 has a very strong sludge 

affinity. BDE-209 was reported to be the dominant PBDE in sewage sludge, with average 
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concentrations of 300-500 µg kg
-1

 dm in Switzerland and Spain (33 WWTPs) and 5300 µg kg
-1

 dm in 

the US (94 WWTPs). BDE-47 and -99 were the second most abundant PBDEs in sludge, with average 

concentration between 800-1000 µg kg
-1

 dm in the US and around 10-50 µg kg
-1

 dm in UK, Spain and 

Switzerland (Gardner et al., 2013; Gorga et al., 2013; Kupper et al., 2008; Venkatesan and Halden, 

2014). In the case of sludge application on land, PBDEs will persist in soils for years (< 1% 

attenuation in 3 y) (Venkatesan and Halden, 2014). Concentrations of PBDEs in WWTP effluents are 

dominated by congeners BDE-47 and -99, found at a median concentrations around 9 ng l
-1

 in the US 

(52 WWTPs) and 0.7 ng l
-1

 in the UK (162 WWTPs) (Gardner et al., 2012; Hope et al., 2012). Despite 

these very low concentrations (sum of PBDEs usually lower than 30 ng l
-1

) (North, 2004), PBDEs may 

bioaccumulate in aquatic organisms at levels much higher (e.g., average 30 to 200 µg kg
-1

 wet weight 

in fish from the St. Lawrence River) (Houde et al., 2014) than the European EQS for biota (8.5 ng kg
-1

 

wet weight) (EC, 2013). 

Other brominated flame retardants (BFRs) such as tetrabromobisphenol A (TBBA) and 

hexabromocyclododecanes (HBCDs) are still widely used. TBBA was found on average at around 20 

ng l
-1

 in wastewater and is reported to be well removed (> 90%) in WWTPs, probably by a 

combination of sorption and biotransformation, leading to effluent concentrations < 2 ng l
-1

 (Potvin et 

al., 2012). TBBA and HBCDs were found on average around 20-100 µg kg
-1

 dm in Spanish and Swiss 

sewage sludge (Gorga et al., 2013; Kupper et al., 2008). Many new BFRs are now also emerging due 

to the ban of several PBDE congeners (Covaci et al., 2011). Concentrations and fate of these new 

BFRs in WWTPs are still little studied, but it seems that concentrations of most of them are still below 

10 ng l
-1

 in raw wastewater (Nyholm et al., 2013). 

Organophosphorus flame retardants (OFRs) are, after BFRs, the second most consumed organic 

flame retardants
2
. They were proposed as an alternative to BFRs, and their consumption is expected to 

increase. They are also commonly used as plasticizers, lubricants, hydraulic fluids, floor polish or 

concrete additives (0.002% w/w as antifoam) (Andresen et al., 2004; Holmgren, 2013). The most 

frequently detected organophosphorus flame retardants and plasticizers are the non-chlorinated 

trimethyl phosphate (TMP), tri-n-butyl phosphate (TnBP), tri-iso-butyl phosphate (TiBP), 

tris(butoxyethyl)-phosphate (TBEP), triphenyl phosphate (TPP), and 2-ethylhexyl diphenyl phosphate 

(EHDPP), and the chlorinated tris(1,3-dichloro-2-propyl) phosphate (TDCP), tris(2-chloro,1-

methylethyl) phosphate (TCPP), and tris(2-chloroethyl) phosphate (TCEP). All these compounds were 

present in raw municipal wastewater at average concentrations from 100 ng l
-1

 up to 19 µg l
-1

, which is 

much higher than reported for brominated flame retardants. The highest average concentrations were 

observed for TnBP and TiBP (1-19 µg l
-1

), plasticizers used also as antifoam in concrete from where 

they may leach in the sewers (Holmgren, 2013); TBEP (4-13 µg l
-1

), a plasticizer and floor polish; and 

TCPP (1-4 µg l
-1

), a flame retardant mostly used in polyurethane foam and building insulation 

(Marklund et al., 2005; Meyer and Bester, 2004). The chlorinated OFRs TCPP, TCEP and TDCP are 

not significantly (< 5 %) removed in WWTPs. TiBP and TBEP were usually well removed (> 80%), 

probably by a combination of sorption onto secondary sludge and biotransformation, whereas TnBP 

and TPP had removal efficiencies between 50 and 75% (Meyer and Bester, 2004). Much lower 

                                                      
2
 Data for 2011 (last accessed 19.03.2014): 

 http://www.flameretardants-online.com/web/en/106/7ae3d32234954e28e661e506e284da7f.htm 

http://www.flameretardants-online.com/web/en/106/7ae3d32234954e28e661e506e284da7f.htm
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removal efficiencies for these last four compounds were, however, observed in other studies 

(Marklund et al., 2005; Rodil et al., 2012). Concentrations of OFRs in WWTP effluents are thus still 

relatively high, with average values observed between 50 ng l
-1

 for TPP, up to 0.5-10 µg l
-1

 for TCPP 

and TBEP (Table 2.2) (Loos et al., 2013; Marklund et al., 2005; Meyer and Bester, 2004). ORFs were 

among the most relevant substances detected in the effluents of 90 European WWTPs (Loos et al., 

2013). OFRs were also found in sewage sludge at average concentrations between 40 µg kg
-1

 dm for 

TCEP, up to 1400 µg kg
-1

 dm for EHDPP (Marklund et al., 2005). It is not expected that the levels of 

OFRs found in effluents generate impacts on aquatic organisms as they are much lower than their 

PNECs (Table 2.2). But several OFRs (TCEP, TCPP, TDCP and TBEP) are carcinogens or possible 

carcinogens, and some are neurotoxic and/or can accumulate in liver and kidneys (van der Veen and 

de Boer, 2012). It is therefore not desirable to release them into the environment. 

Chlorinated paraffins (CPs) are the third most consumed family of organic flame retardants
2
. CPs are 

also used as plasticizers or as additives in paints or sealants. Short chain CPs (SCCPs, C10-13) have 

received growing global attention in recent years for their long-range transport, persistence in the 

environment, bioaccumulation and potential toxicity to aquatic organisms. Their presence in raw 

municipal wastewater is little studied but average concentrations (sum of C10 to C13 chain lengths) 

around 6 µg l
-1

 were reported in Beijing, China, 97% of them being associated with suspended 

particles (around 200 ng l
-1

 in the dissolved phase). SCCPs seem to be well removed (total removal > 

99%) in WWTPs, 70-80% by sorption and elimination with the sludge and 20-30% probably by 

biotransformation/degradation. The dissolved concentration was also removed at around 80% during 

the treatment. Final effluent concentrations of SCCPs (sum of C10 to C13) were around 60 ng l
-1

, 60% 

in the dissolved phase (Zeng et al., 2013), which is lower the PNEC (500 ng l
-1

, Table 2.2). In Europe, 

lower CPs concentrations were found in raw wastewater, on average (15 WWTPs) 140 ng l
-1

 for the 

sum of C10-13, 841 ng l
-1

  for C14-16 and 650 ng l
-1

 for C17-28, almost completely associated with 

suspended solids. CPs were not detected in the effluent (Coelhan, 2010). 

2.3.4.6 Perfluorinated compounds 

Perfluorinated compounds (PFCs) are a large family of synthetic chemicals used in many types of 

household products that utilise their properties of creating water-repellent, grease-repellent and dirt-

repellent surfaces. They are for instance used in non-stick cookware (polytetrafluoroethylene (PTFE) 

known as Teflon
®
), water-proofing sprays, Gore-Tex® clothing, stain- or water-resistant textiles 

(clothes, carpets, tablecloths, upholstered furniture, etc), some cosmetics (nail polish, eye make-up), 

floor polish and waxes, window cleaners, degreasers, or paper packages for oily foodstuffs (pizza and 

pop-corn boxes) (KemI, 2006). PFCs are a complex group of organic compounds characterised by a 

carbon chain in which all hydrogen atoms have been replaced by fluorine atoms. This characteristic 

makes PFCs very persistent in the environment and non-degradable. PFCs can be classified into three 

families: perfluoroalkyl sulphonates (PFAS), perfluorocarboxylic acids (PFCA) and fluorotelomers. 

The PFAS perfluorooctane sulfonic acid (PFOS) was classified as a persistent organic pollutant in the 

Stockholm convention and as a priority hazardous substance in the EU due to its very high persistence 

in the environment, its bioaccumulation potential and its toxicity. Its use is now restricted in many 

countries and its production has decreased drastically in recent years. The PFCA perfluorooctanoic 

acid (PFOA) has also recently received more attention due to its toxic and eco-toxic properties and its 
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high persistence (Post et al., 2012). PFOA and PFOS are among the most abundant PFCs observed in 

raw municipal wastewaters, with average concentrations around 5-50 ng   l
-1

. The sum of the 

concentrations of the most common PFCs is usually reported in the range 30-150 ng l
-1

. PFCs are 

usually not significantly removed (< 5%) in WWTPs (despite variable removal efficiencies). 

Concentrations in WWTP effluents are thus relatively similar those in the influents (Ahrens et al., 

2009; Arvaniti et al., 2012; Bossi et al., 2008; Guo et al., 2010). Median PFOA and PFOS 

concentrations in effluents from 90 European WWTPs were for instance at 12-13 ng l
-1

, and slightly 

lower for other PFCs (Loos et al., 2013). Despite these very low effluent concentrations, PFOS is still 

present at a level 20 times higher than its European EQS for surface waters (0.65 ng l
-1

) (EC, 2013) 

and may persist for a very long time in the environment. PFCs are found at low concentrations in 

sewage sludge (total 10 to 50 µg kg
-1

 dm) (Arvaniti et al., 2012; Guo et al., 2010). 

2.3.4.7 Others synthetic chemicals 

Several other families of synthetic chemicals are found in municipal wastewater, but they are still few 

studied and probably less specific to domestic wastewater, as their main sources in the environment 

are expected to come from industries, contaminated sites or diffuses sources (traffic, atmospheric 

depositions, etc). We can however mention methyl-tert-butyl ether (MTBE), a gasoline additive 

known to contaminate groundwater, found at 100-400 ng l
-1

 in raw domestic wastewater and not well 

removed (30-35%, possibly by volatilization) in WWTPs (Achten et al., 2002); or naphthalene 

sulfonates, a family of industrial dispersants, found on average in raw municipal wastewaters at 200-

1100 ng l
-1

, with good WWTP removal efficiencies (> 90%) for the mono-sulfonates (NSAs, < 100 ng 

l
-1

 in effluents), but low removal (0-35%) for the di-sulfonates (NDSAs, 200-400 ng l
-1

 in effluents) 

(Reemtsma et al., 2006; Weiss and Reemtsma, 2008). 

2.3.5 Biocides, pesticides and persistent organic pollutants (POPs) 

Biocides and pesticides are designed to destroy or control the growth of targeted organisms, such as 

plants (herbicides), algae (algaecides), insects (insecticides) or fungi (fungicides). More than 500 

biocide- and pesticide-active ingredients are approved for use in Europe
3
. 95% of the total use of 

biocide in Switzerland is however dominated by only 30 active compounds (Bürgi et al., 2009), and 

over 60% of the total European pesticide (fungicide, herbicide and insecticide) consumption (by 

weight) by only 20 active substances (Eurostat, 2007). The term pesticide is commonly used for 

chemicals applied to protect plants (mainly for agricultural use), whereas the term biocide is usually 

applied for all other purposes (mainly urban use). Biocides are for instance applied in bituminous roof 

sealing membranes to avoid root penetration, in external facade paintings to avoid algae and moss 

development, in grass or plant-management (golf, parks, cemeteries), or weed control (roadways, 

railroads). During rain events, biocides and pesticides can leach from buildings, parks and gardens, 

and are partly drained to the combined sewer network (Burkhardt et al., 2012; Coutu et al., 2012a). 

Pesticides in surface waters were often considered to be of agricultural origin, but new studies showed 

that urban contributions to the river pesticide loads can be in the same range as from the agriculture in 

                                                      
3
 Pesticides (active substances) approved in Europe (last accessed 14.03.2014):  

http://ec.europa.eu/sanco_pesticides/public/?event=activesubstance.selection 

Biocides (active substances) approved in Europe (last accessed 14.03.2014): 

http://ec.europa.eu/environment/chemicals/biocides/active-substances/approved-substances_en.htm 

http://ec.europa.eu/sanco_pesticides/public/?event=activesubstance.selection
http://ec.europa.eu/environment/chemicals/biocides/active-substances/approved-substances_en.htm
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mixed land use watersheds (urban and agricultural use such as the Swiss Plateau) (Wittmer et al., 

2011).  

Concentrations of pesticides/biocides in municipal wastewater are highly variable as their inputs are 

influenced by rain events (higher load during rain) and the season (application periods). Constant 

inputs of several compounds are also observed during dry weather, suggesting household uses 

(Wittmer et al., 2011). Apart from concentration peaks reaching several µg l
-1

 during special events 

(e.g., disposal activities), average pesticide/biocide concentrations in raw wastewater are usually lower 

than 1 µg l
-1

, and for most compounds lower than 100 ng l
-1

 (Campo et al., 2013; Köck-Schulmeyer et 

al., 2013; Singer et al., 2010). Removal of pesticides/biocides in WWTPs is highly variable, but on 

average poor efficiencies (< 50%) are reported (Campo et al., 2013; Köck-Schulmeyer et al., 2013). 

Table 2.2 presents the average removal efficiencies of some frequently detected pesticides/biocides in 

municipal wastewaters (compounds mainly used for material protection, parks and gardens, but also in 

agriculture). The fate of these compounds during the treatment is not clear, some being possibly 

partially degraded and some partially sorbed to the sludge. Due to their low to moderate 

hydrophobicity (log KOW from -3.2 to 3.6) (Wittmer et al., 2011), they are on average found at low 

concentrations in the sludge (< 1 to 44 µg kg
-1

 dm) (Campo et al., 2013). Removal by sorption is 

therefore expected to be lower than 15%. Their concentrations in WWTP effluents are relatively 

similar to those in influents, ranging on average for most compounds between 5 and 300 ng l
-1

 (Table 

2.2). A few exceptions were observed for glyphosate, a widely used herbicide (active substance of the 

Roundup
®
), its degradation product AMPA, and the herbicide mecoprop (average concentrations often 

observed above 500 ng l
-1

). Despite their low concentrations, some pesticides such as diazinon, diuron 

and irgarol are still at concentrations higher than their proposed EQS values for surface waters in 

Switzerland (Table 2.2), leading to potential risks for sensitive aquatic organisms in the case of low 

dilution of the effluents. 

In mixed land use watersheds, contribution of WWTP effluents to the total load of pesticides in 

surface water can be significant, varying from 8-30% for terbuthylazine, isoproturon and atrazine 

(mainly used in agriculture), up to 40-70% for mecoprop, diazinon, diuron, carbendazim and terbutryn 

(mainly used in urban environment) (Gerecke et al., 2002; Wittmer et al., 2011). 

Several pesticides from the “old” generation (more hydrophobic, with log KOW from 3.6 to 6.2) were 

classified as persistent organic pollutants (POPs) in the Stockholm convention due to their persistence 

in the environment, their accumulation in living organisms and their toxicity to human and wildlife. 

This includes aldrin, chlordane, chlordecone, dieldrin, endrin, heptachlor, hexachlorobenzene (HCB), 

alpha and beta hexachlorocyclohexane (HCH), lindane, mirex, pentachlorobenzene, endosulfan, 

toxaphene, and dichlorodiphenyltrichloroethane (DDT)
4
. The use of these pesticides is now banned or 

strongly limited in many countries since the convention entered into force on May 2004. 

Concentrations of these pesticides in raw municipal wastewater in 2001-2003 in Greece were on 

average between 10 to 50 ng l
-1

, mostly (50-80%) associated with particles (Katsoyiannis and Samara, 

2005). All these compounds were well removed (50 to 80%) with the suspended solids during the 

                                                      
4
 Listing of POPs in the Stockholm convention (last accessed 14.03.2014): 

http://chm.pops.int/TheConvention/ThePOPs/ListingofPOPs/tabid/2509/Default.aspx 

http://chm.pops.int/TheConvention/ThePOPs/ListingofPOPs/tabid/2509/Default.aspx
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primary treatment and further removed (probably by sorption) during the biological step. The overall 

removal varied from 75 to 91%, resulting in concentrations between 1 and 14 ng l
-1

 in the effluent 

(Katsoyiannis and Samara, 2004), which is lower than the European EQS for inland waters for these 

substances (5-25 ng l
-1

), except for the sum of aldrin, dieldrin and endrin, which is close to their EQS, 

and for heptachlor which exceeds more than 50,000 times its EQS (0.0002 ng l
-1

) (EC, 2013). 

Concentrations of these persistent pesticides in sludge were found at 5 to 40 µg kg
-1

 dm (Katsoyiannis 

and Samara, 2005). 

Other non-pesticide POPs, such as the toxic polychlorinated biphenyls (PCBs), used over many years 

as heat exchange fluids in electric transformers or as additives in paint and oil, are still found in 

municipal wastewaters despite their ban in many countries since 1970-1990 (Balasubramani et al., 

2014). A total of 209 PCB congeners exist, where 1 to 10 chlorine atoms are attached in different 

configurations to the two benzene rings. Concentrations of PCBs in raw municipal wastewaters are 

reported in the low ng l
-1

 range, with the sum of the 209 congeners estimated on average around 50 to 

100 ng l
-1

 (Balasubramani et al., 2014; Blanchard et al., 2004). An average removal of 75% of the sum 

of PCBs in conventional WWTPs was typically reported (Blanchard et al., 2004; Katsoyiannis and 

Samara, 2004). Due to their hydrophobicity and low biodegradability, PCBs are mostly removed by 

sorption, at similar level during primary and secondary treatments. They tend then to accumulate in 

the sludge where they are found (sum of PCBs) on average around 500 µg kg
-1

 dm (Blanchard et al., 

2004; Katsoyiannis and Samara, 2004). PCBs in WWTP effluents are usually found at concentrations 

lower than 1 ng l
-1

 for individual congeners, with the sum of the 209 congeners at around 20 ng l
-1

, 

which is higher than their PNEC (1 ng l
-1

, Table 2.2) (Balasubramani et al., 2014; Hope et al., 2012). 

PCBs released in surface waters can accumulate in fish, rendering them unfit for human consumption 

(Bodin et al., 2014). Sources of PCBs to the aquatic environment are however diverse and the highest 

inputs are often coming from contaminated sites, stormwaters and combined sewer overflows (CSOs) 

(due to atmospheric deposition) (Rossi et al., 2004). Inputs from WWTP effluents are usually low but 

may contaminate sediments in the vicinity of the plant (Poté et al., 2008). WWTP outfalls were for 

instance contributing to 5% of the total load of PCBs to the Hudson River estuary (New York), 

whereas 41% were coming from the Hudson River (contaminated by former industrial activities) and 

30% from stormwater and CSOs (Rodenburg et al., 2011). 

2.3.6 Heavy metals 

Heavy metals are elements that are not biodegradable, tend to accumulate in living organisms and are 

known to be toxic if present in excessive levels. Some of these elements, such as zinc or copper, are 

essential for life in trace concentrations but accumulation in the organism can lead to serious diseases 

(Fu and Wang, 2011). The term “heavy metal” refers generally to (post-)transition metals with a 

density greater than 5 kg l
-1

 (Fu and Wang, 2011), but some other metals or metalloids are also 

sometime included in this category, such as aluminium or arsenic. Toxic heavy metals of particular 

concern in wastewater include zinc (Zn), copper (Cu), nickel (Ni), mercury (Hg), cadmium (Cd), lead 

(Pb) and chromium (Cr) (Fu and Wang, 2011).  
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Historically, heavy metals in wastewater have been strongly associated with industrial emissions. In 

recent years, probably due to more stringent regulations and displacement of industrial activities out of 

cities, industries are no longer considered to be the main source of heavy metals in municipal 

wastewater (Ziolko et al., 2011). Household sewage is reported to be an important source of heavy 

metals such as Cu (corrosion of pipes and taps, food), Zn (leaching from galvanized material, food) 

and Hg (amalgam), and contribute also to the load of Pb (leaching from old lead plumbing), Cr and Ni 

(stainless steel products) or Cd (artist paint pigments). Stormwater runoff can also be a significant 

source of heavy metals, especially from building materials, such as Zn (from galvanized metal) or Cu 

(roofs, catenaries of trains/trolleybuses), but also from traffic (Zn from tires, Cu and Pb from brake 

linings or asphalt) or agricultural runoff (Cu used as a fungicide). Business and industry sewage can 

contribute significantly to the total load of heavy metals. For instance, dentists can be a source of Hg; 

car washes a source of Cu, Zn, Pb, Cr or Cd; and art school a source of Cd (paint pigments in colours 

yellow-red) (Chèvre et al., 2011; Sörme and Lagerkvist, 2002). 

Concentrations of heavy metals in municipal wastewater are highly variable as metals come from very 

diverse sources. In raw wastewater, metal concentrations are in the range of µg l
-1

 to mg l
-1

, except for 

Cd and Hg (ng l
-1

 to µg l
-1

), with abundances usually observed as follows (median total/dissolved 

concentrations in µg l
-1

 in 16 WWTPs in the UK) (Gardner et al., 2013; Rule et al., 2006): Al (1470 / 

40) > Fe (1097 / 215) > Zn (160 / 37) > Cu (65 / 17) > Cr (12 / -) = Pb (12 / 2) = Ni (11 / 6.3) > Cd 

(0.45 / 0.1) > Hg (0.053 / 0.014). High concentrations of Al and Fe may be due to addition of these 

chemicals as coagulant to treat water or as constituents of several natural clay minerals. Heavy metals 

are mostly associated with suspended solids (> 75% of the total concentration), except for Ni (> 50% 

in the dissolved phase). Therefore, removal of heavy metals in WWTPs is strongly associated with the 

removal of suspended solids (TSS), as illustrated in Fig. 2.7. As presented in Table 2.2, high metal 

removal efficiency (> 75%) can be achieved in most WWTPs due to important removal of TSS (> 

90%, around 10 mg l
-1

 in effluent), except for Ni, with median removal around 30%. Poor nickel 

removal (or even enrichment in the process) may also be caused, to some extent, by impurities (about 

40 ppm of Ni, Cu and Cr) in the chemicals (e.g., iron chloride) added during the treatment for 

phosphate removal (Buzier et al., 2006). Despite good elimination of metals associated with particles, 

conventional treatments have, however, little effect (usually less than 60%) on the dissolved 

concentration. Thus, in WWTP effluents, most of the metals (except for Al and Fe) are found 

predominantly (50-90%) in the dissolved phase. Concentrations in effluents are usually in the low µg  

l
-1

 range, Zn being the most abundant toxic heavy metal, followed by Cu and Ni (Table 2.2). In some 

effluents, these concentrations can slightly exceed the proposed environmental quality standards 

(EQS) for surface waters, especially for Zn, Cu and Ni (Table 2.2), leading to a risk for aquatic 

organisms in the case of low dilution in the receiving waters. High sediment contaminations with 

heavy metals in the proximity of WWTP outfalls in lakes were reported, representing a significant 

source of toxicity for benthic organisms (Poté et al., 2008). 
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Fig. 2.7 Removal of heavy metals (total concentration) as a function of the removal of suspended solids in (A) primary 

treatments and (B) secondary treatments. Results of an extensive study made on 16 WWTPs in the UK during 2010/2011. 

Data adapted from Gardner et al. (2013). 

The “dissolved” fraction of heavy metals is composed of “free” ions but also of metals bound to 

dissolved organic or inorganic ligands or to colloids (Buzier et al., 2006; Worms et al., 2010). Due to 

the relatively high concentrations of dissolved organic matter (DOC) in wastewater, and thus its large 

complexation capacity, free metal ions are expected to be rare and dissolved metals are more likely to 

occur as organometallic complexes (Ziolko et al., 2011). Partition of metals between particles and the 

dissolved phases is thus influenced by the presence of DOC: complexation of metals by dissolved 

ligands can lower their affinity for particle surfaces and increase their solubility, leading to a decrease 

of the coefficient of partition Kd and therefore their removal with the sludge (Katsoyiannis and 

Samara, 2007). Synthetic chelating agents such as EDTA or NTA, present in significant 

concentrations in WWTP effluents (30-500 µg l
-1

) (Gardner et al., 2012), may also increase the 

solubility of metals, possibly remobilizing the fraction sorbed onto the sludge, and thus increasing 

their rejection into the environment (Alder et al., 1990).  

As metals are not biodegradable, removal of dissolved heavy metals in secondary treatments depends 

on their affinity for the settleable organic matter, such as bacterial cell walls and extracellular 

polymers, or on the active cellular uptake by microorganisms (Ziolko et al., 2011). Copper has, for 

instance, a strong affinity for organic matter, leading to a significant removal of its dissolved 

concentration in the biological treatment, which is not the case for dissolved zinc (Gardner et al., 

2013).  

Volatilization during the biological treatment is not expected to be a significant removal mechanism 

for most metals (Ziolko et al., 2011). For mercury, which is a volatile metal (KAW around 0.3 [-] for 

elemental Hg), volatilization is reported to be only a minor (but not negligible) component of the total 

flux (2-10%), due to its high sorption affinity for the sludge (Gbondo-Tugbawa et al., 2010; Yoshida 

et al., 2013). 

Most of the metals entering WWTPs will end up in the excess sludge. Concentrations in primary and 

secondary sludge are more or less similar (Gianico et al., 2013), despite slightly higher metal loads are 

removed with primary sludge (Yoshida et al., 2013). Zinc is reported to be the predominant toxic 

heavy metal in fresh sludge (median concentration around 400 mg kg
-1

 dm), followed by Cu (160 mg 

kg
-1

 dm), Pb, Ni and Cr (20-40 mg kg
-1

 dm), and finally Cd and Hg (0.6 mg kg
-1

 dm) (Gardner et al., 
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2013; Gianico et al., 2013). Concentrations in digested sludge are reported to be higher due to weight 

loss of fresh sludge during anaerobic digestion (degradation of organic matter) (Karvelas et al., 2003). 

In the case of sludge incineration with flue gas treatment, heavy metals will finally end in the ash (less 

than 0.5% in the flue gas) (Yoshida et al., 2013) and then in control landfills. In the case of 

agricultural soil amendment, heavy metals will mostly accumulate in the soil, slowly mobilized by 

rainfalls to surface or ground waters (Kwon et al., 2014).  

2.3.7 Polycyclic aromatic hydrocarbons (PAHs) 

Polycyclic aromatic hydrocarbons are a family of over one hundred organic compounds comprised of 

two or more fused benzene rings without any heteroatoms. They come primarily from incomplete 

combustion or pyrolysis of organic material such as oil, petroleum, coal and wood, both from natural 

and anthropogenic sources, the latter being the most dominant (Rubio-Clemente et al., 2014). Most 

PAHs do not have commercial uses, apart for naphthalene used in products such as lubricants, 

bathroom products, deodorant discs, wood preservatives, fungicides, or concrete plasticizers (Fatone et 

al., 2011). They are usually released into the atmosphere via gaseous emissions and are then subject to 

wet and dry deposition. They are widely spread throughout the environment, causing water, soil, and 

air pollution. Some of them are highly carcinogenic, mutagenic and teratogenic, and relatively 

persistent. Eight PAHs have been identified as priority pollutants in water in Europe (EC, 2013). Due 

to their hydrophobicity, low water solubility, and variable volatility (which decreases with the number 

of condensed benzene rings), they have tendency to bind to particles and accumulate in organisms. 

PAHs are not specific domestic wastewater pollutants but, due to their wide presence in urban 

environment, are especially adsorbed onto particles on roads. They can thus reach municipal sewers 

during rain events (urban runoff). PAHs concentrations in raw wastewater are however relatively low, 

with median concentrations in UK and Italian wastewater around 20 ng l
-1

 for heavy PAHs such as 

benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(g,h,i)perylene and 

indeno(1,2,3.cd)pyrene, and slightly higher for lighter PAHs such as anthracene (50 ng l
-1

), 

fluoranthene (110 ng l
-1

) and naphthalene (1100 ng l
-1

) (Fatone et al., 2011; Gardner et al., 2013). The 

sum of the concentrations of the 16 PAHs (recommended by the US-EPA) in Italian wastewater was 

between 0.2 and 1.5 µg l
-1

 (Fatone et al., 2011).  

PAHs are typically associated with particle matter present in the raw wastewater, with, for most of 

them (with log KOW of 4.5 to 7), less than 20% in the dissolved phase. Only naphthalene, and to a 

smaller extent acenaphthene and fluorene are found in higher percentage in the dissolved phase (25-

100%), due to their lower hydrophobicity (log KOW  < 4.2) (Fatone et al., 2011).  

PAH removal during the primary treatment is thus significant (30-60%) and associated with the 

removal of suspended solids (Fatone et al., 2011). In the biological treatment, the remaining PAHs are 

mainly removed by adsorption onto the sludge due to their strong affinity for activated sludge 

particles. Biodegradation and volatilization seem not to be important removal mechanisms (< 2%), 

except for naphthalene which is expected to be partially removed by stripping during the aeration (up 

to 5-20%) due to its relative volatility (KAW of 2·10
-2

 [-] compared to < 2·10
-3

 [-] for heavier PAHs) 

(Fatone et al., 2011; Liu et al., 2011a; Manoli and Samara, 2008; Sander, 1999). Overall PAH removal 

in different WWTPs is highly variable, but the median removal varies between 60% to more than 
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90%, depending on the compound (Table 2.2). High molecular weight PAHs, which are also the most 

toxic, are usually over 80% removed (Fatone et al., 2011; Gardner et al., 2013). The sum of the 16 US-

EPA PAHs is reported to be reduced over 70% in most WWTPs (Fatone et al., 2011; Liu et al., 

2011a).  

Effluent concentrations of UK and Italian WWTPs were around 1-3 ng l
-1

 for heavy PAHs 

(benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(g,h,i)perylene and 

indeno(1,2,3.cd)pyrene) and anthracene, and between 10 to 50 ng l
-1

 for lighter compounds 

(naphthalene, acenaphthene, fluorene, phenanthrene, fluoranthene, pyrene). The sum of the 16 PAHs 

concentrations is reported to be lower than 200 ng l
-1

 (Fatone et al., 2011; Gardner et al., 2012). In the 

final effluent, PAHs are mostly (> 50%) found in the dissolved phase (Fatone et al., 2011). 

Despite their very low concentrations in the effluents, many PAHs are still above their European  EQS 

(annual average) for surface waters, which range from 0.17 ng l
-1

 for benzo(a)pyrene to 6.3 ng l
-1

 for 

fluoranthene (Table 2.2) (EC, 2013). Thus, PAHs may pose a risk to the environment in the case of 

low dilution (< 10 times) of the effluent. Sediment contaminations with PAHs in the proximity of 

WWTP outfalls in lakes were also reported (Poté et al., 2008). 

As adsorption is the main removal mechanisms, PAHs tends to accumulate in the sludge. 

Concentrations of individual PAHs in fresh sludge are found in the range 0.1 to 0.5 mg kg
-1

 dm 

(median UK concentration) (Gardner et al., 2013), with the sum of the 16 PAHs around 1.2-1.8 mg  

kg
-1

 dm (Fatone et al., 2011). Stabilization of the sludge by anaerobic digestion and composting was 

reported to be ineffective to reduce the PAHs sludge concentrations (Villar et al., 2006). Application 

of sludge as fertilizer at doses > 150 Mg ha
-1

 can lead to accumulation of PAHs in soil, due to the low 

degradation rate of PAHs in soil (50% removal in 4 years) (Oleszczuk, 2006). PAHs are degraded 

during incineration of the sludge and they are found only in very low concentrations (sum 16 PAHs < 

0.2 mg kg
-1

 dm) in ashes. However, light PAHs can be formed during the incomplete combustion of 

the sludge, leading to significant emission of PAHs in the flue gas (0.02-50% of the mass of PAHs 

contained in the sludge), despite the presence of air control devices (flue gas treatment) (Park et al., 

2009). 

2.3.8 Volatile organic compounds (VOCs) 

Volatile organic compounds have a high vapour pressure at ambient temperature, resulting to a low 

boiling point (usually between less than 50°C to 250°C at 1 atm). They are extensively used in fuels, 

paints, aerosols, cosmetics, solvents, disinfectants and pesticides, and are often present in significant 

concentrations in municipal wastewater. Aromatic VOCs, such as benzene, toluene, ethylbenzene, 

xylene and styrene (BTEXS group), are especially of concern due to their toxicity. In a survey made in 

Italy (Fatone et al., 2011), toluene was the most abundant aromatic VOC in raw municipal wastewater, 

with 3 to 5 µg l
-1

. Xylene, styrene and ethylbenzene were found at slightly lower concentrations (100-

300 ng l
-1

) and benzene usually below 60 ng l
-1

. Other aromatic VOCs were present in raw wastewater, 

such as 4-chlorotoluene, a drain pipe solvent (up to 300 ng l
-1

), or 1,2,4-trimethylbenzene and 1,4-

dichlorobenzene (up to 1000 ng l
-1

). These aromatic VOCs were mainly present in the dissolved 

fraction due to their low affinity for suspended solids. The removal of these aromatic VOCs was high 
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(usually over 70%) during conventional treatment, with around 50% of the removal observed during 

pre-treatments and primary sedimentation, and 50% during the biological treatment. Only toluene was 

still found in significant concentrations (0.5 – 2.7 µg l
-1

) in the effluent. O-xylene was the most 

persistent aromatic VOC (0-70% removal) due to its lower volatility (Fatone et al., 2011). 

Volatilization (surface volatilization in primary treatment and stripping during aeration) is likely to be 

the major removal mechanism for aromatic VOCs (Byrns, 2001), but biodegradation can also play an 

important role (Mozo et al., 2012; Yang et al., 2014). Volatilization is influence by the wastewater 

temperature and is reported to be higher in summer (Oskouie et al., 2008). Chlorinated VOCs were 

also found in municipal WWTP effluents at concentrations in the ng l
-1

 - µg l
-1

 range: chloroform and 

dichloroacetonitrile (200-800 ng l
-1

), bromodichloromethane, dibromochloromethane, 

dichloromethane (DCM), trichloromethane (TCM), tetrachloroethylene (PCE) and trichloroethylene 

(TCE) (20-350 ng l
-1

)  (Antoniou et al., 2006; Martin Ruel et al., 2011). Chlorinated VOCs (except 

chloroform, PCE and TCE which are very volatile) are reported to be less volatile than aromatic VOCs 

and thus less removed from the water phase during the treatment (Yang et al., 2014). Since the off-gas 

is usually not treated in municipal WWTPs, transfer of VOCs to the atmosphere can contribute to air 

pollution around WWTPs (Yang et al., 2014). The concentrations found in the effluent are not 

expected to cause aquatic toxicity (values for DCM, TCM, PCE, TCE and benzene lower than the 

European EQS of 2.5 to 20 µg l
-1

) (EC, 2013). 

2.3.9 Synthesis 

The average removal efficiencies in conventional WWTPs and the average effluent concentrations of 

168 micropollutants presented in this chapter are synthesised in Table 2.2 and in Fig. 2.8. The sum of 

the concentrations of these 168 micropollutants in the effluents is on average around 0.75 mg l
-1

, with 

0.46 mg l
-1

 only for organic pollutants. Half of the load of organic pollutants is dominated by 

surfactants, one third by a few household chemicals (2 sweeteners, 2 corrosion inhibitors and 2 

chelating agents), and 13% by pharmaceuticals. The highest effluent concentrations (> 10 µg l
-1

) were 

observed for several heavy metals (Al, Fe, Zn), surfactants (soap, LAS), some household chemicals 

(chelating agents EDTA and NTA, sweeteners acesulfame and sucralose), and some pharmaceuticals 

(iomeprol, iohexol, metformin).  

Hydrophobic pollutants (heavy metals, PAHs, POPs, several household chemicals like brominated 

flame retardants, several personal care products), and easily biodegradable pollutants (surfactants, 

plastic additives, hormones, several PCPs, some pharmaceuticals and household chemicals) are in 

general largely removed (> 70%) during treatment. Their effluent concentrations can, however, still be 

higher than their respective EQS or PNEC values for surface waters. Despite their possible 

degradation in the environment, risks for sensitive aquatic organisms cannot be excluded in the 

vicinity of WWTP outfalls due to the constant input of these chemicals (pseudo-persistence). 

More hydrophilic (polar) and hardly biodegradable pollutants, e.g., most pharmaceuticals and 

pesticides/biocides as well as several household chemicals (sweeteners, EDTA, corrosion inhibitors, 

some phosphorus flame retardants and PFCs), are only poorly removed (< 50%) during treatment. 

These compounds thus present a greater risk of contamination of receiving waters and persistence 

within them. 
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Fig. 2.8 Synthesis of average WWTP removal efficiencies and effluent concentrations of (A) 48 pharmaceuticals (Swiss 

data), 16 personal care products (5 fragrances, 2 preservatives, 3 antimicrobial agents, 1 insect repellent, 5 UV filters), 

7 hormones and 4 illicit drugs; and (B) 12 pesticides/biocides, 9 heavy metals, 10 persistent organic pollutants (POPs, 

mainly hydrophobic pesticides and PCBs), 12 polycyclic aromatic hydrocarbons (PAHs), 6 volatile aromatic organic 

compounds (VOCs), 32 household chemicals (4 sweeteners, 6 plastic additives, 6 corrosion inhibitors, 2 chelating 

agents, 12 flame retardants and 2 perfluorinated compounds) and 12 surfactants. Average values from European and 

American WWTPs, with primary and secondary treatments (equivalent to activated sludge with partial nitrification). Sources 

of the data are given in Table 2.2. 

The impact of these micropollutants on aquatic organisms in receiving waters is difficult to evaluate 

due to the diversity of pollutant and modes of action (mixture effect). The risk of a specific compound 

(without considering the mixture effect) depends on (i) its aquatic toxicity, usually assessed by quality 

criteria such as the PNECs or EQSs, and (ii) its concentration in the surface water, which depends on 

the effluent concentration, the dilution factor and the stability (persistence) of the compound in the 

environment.  

Concentrations of several micropollutants (55 out of 168) in WWTP effluents are higher than their 

respective proposed EQS or PNEC for surface waters (Table 2.2). This is for instance the case for 

most surfactants (8), several pharmaceuticals (13) and hormones (3), some PCPs (4), PBDEs (2), 

PFOS, EDTA, plastic additives (3), some pesticides/biocides (6), POPs (4), several heavy metals (5) 

and PAHs (5). Individual risks can thus not be excluded for these compounds in the case of low 

dilution of the effluents in the receiving waters. 

In streams, dilution factors are estimated from the ratio of the flow rate of the receiving water to that 

of the effluent, and can vary from less than 2 (meaning that more than 50% of the total flow in the 

stream comes from the effluent) to more than 10
6
. The annual median dilution factor is usually 

between 10 to 100 in Europe (except northern countries where it is over 500), but it can vary by more 

than two orders of magnitude in the same area depending on the situation of the WWTP or the season 

(Keller et al., 2013). Higher surface water concentrations are expected in area with high population 

density and/or low river flows. For WWTPs discharging their effluent into lakes or the sea, a gradient 

of concentration is expected, with high concentrations close to the outfall, and then decreasing with 

distance until a residual concentration corresponding to the total dilution of the effluent in the whole 

water volume (Bonvin et al., 2013b).  
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The stability of micropollutants in the environment is expected to be higher for substances poorly 

removed in WWTPs, as removal mechanisms in the natural environment (biodegradation and trapping 

in sediment) are relatively similar to those (at different scales and different rates) in conventional 

WWTPs (expect for photolysis, which is higher in natural waters). A compound poorly removed in 

WWTPs is to be considered more problematic than the same effluent concentrations of a compound 

degraded extensively in the plant (from a much higher influent concentration) (Reemtsma et al., 2006). 

Persistence in WWTPs is therefore also a key factor to determine the risk of micropollutants. 

Prioritization of micropollutants released from WWTPs should therefore be assessed based on their 

load in the receiving media (contamination of drinking resources), their potential ecotoxicological 

impacts (ratio concentration/PNEC) and their persistence in the environment. Based on these three 

parameters, a basic prioritization is proposed in Table 2.2. All classes of micropollutants studied 

(except VOCs) present an issue regarding their load, their ecotoxicological impacts or their potential 

persistency in the environment. 

2.4 Enhanced treatment of micropollutants in WWTPs 

Two main options exist to enhance the removal of micropollutants from wastewater: (i) improvement 

and optimization of the existing technologies and (ii) addition of complementary advanced treatments. 

2.4.1 Optimization of conventional treatments 

As described in chapter 2.3, several micropollutants are at best only partially removed in conventional 

WWTPs. The presence of pollutants in WWTP effluents can be due to high persistence of the 

molecule (hydrophilic and not biodegradable compounds), but also to too short contact times (HRTs) 

with microorganisms to lead to complete biodegradation, not enough diverse bacterial communities to 

metabolise/cometabolise the substance, or poor separation of suspended solids (sorbed fraction). 

Optimization of conventional treatments to achieve good removal of total suspended solids (TSS), 

biochemical oxygen demand (BOD), chemical oxygen demand (COD), dissolved and total organic 

carbon (DOC, TOC) and ammonium (NH4
+
) may thus improve the removal of less persistent 

micropollutants that are poorly removed due to the reasons mentioned above. 

2.4.1.1 Improvement of hydrophobic pollutant removal 

Removal of several micropollutants such as heavy metals, PAHs, PCBs, hydrophobic pesticides, flame 

retardants (PBDEs), phthalates (DEHP), UV filters, triclosan, or polycyclic musks, is strongly linked 

to the removal of suspended solids. Therefore, achieving low concentrations of TSS in the effluent, for 

instance by sand filtration or advanced decantation, will significantly reduce concentrations of 

micropollutants associated with solids. The removal of the dissolved fraction is challenging but, as a 

large fraction of dissolved metals and hydrophobic pollutants is associated with dissolved organic 

matter, it is expected that improving the removal of DOC (and thus the complexation capacity of the 

water phase), for instance with an effective biological treatment, will also improve the removal of 

dissolved hydrophobic pollutants (by decreasing their solubility) (Katsoyiannis and Samara, 2007; 

Ziolko et al., 2011). It was found, for instance, that effluent concentrations of PAHs and PBDEs were 



 CHAPTER 2 

62 

 

correlated with effluent DOC concentrations, suggesting that these substances might be associated 

with DOC rather than with suspended solids (Gardner et al., 2012). 

2.4.1.2 Improvement of biodegradable pollutant removal 

Removal efficiencies of (moderately) biodegradable micropollutants are reported to vary from one 

WWTP to another. This suggests that their removal may be improved. Indeed, correlations between 

the removal of BOD, COD and ammonia, and the removal of several pollutants were reported. Higher 

BOD degradation was linked to better removal of the relatively easily-biodegradable compounds 

ibuprofen, estrogens (E2), salicylic acid and triclosan (Fig. 2.9 A). Good removal of ammonium 

(complete nitrification) was linked to better removal of bisphenol A and estrogens (E1) (Fig. 2.9 B), 

but also of many other compounds (e.g., atenolol, bezafibrate, norfloxacin, ofloxacin, metronidazole, 

methylbenzotriazole, simvastatin, gemfibrozil, naproxen, ketoprofen, mefenamic acid, or iomeprol) 

(Gardner et al., 2013; Margot et al., 2013b). Most of these compounds were removed < 40% in 

WWTPs without nitrification and > 70-80% in WWTPs with complete nitrification (cf. Chapter 3). It 

is not clear (suggestion proposed in Chapter 4) if these better removal efficiencies observed in plants 

with nitrification are due to longer HRT (more time for biodegradation), longer SRT (more microbial 

diversity in the sludge, including slow growing organisms), cometabolism by the enzyme ammonia 

monooxygenase (responsible for the nitrification), or the combination of the three. Each of these 

factors can improve the removal efficiencies of several (moderately biodegradable) micropollutants in 

conventional treatments. Thus, WWTPs that can achieve high removal of TSS, BOD, DOC and 

ammonium will certainly perform better in removing several (adsorbable or moderately 

biodegradable) micropollutants. 

 

Fig. 2.9 Removal of (A) triclosan (TCN), ibuprofen (IBP), salicylic acid (SLCYA) and 17β-estradiol (E2) as a function 

of BOD removal in conventional WWTPs, and removal of (B) bisphenol A (BPA) and estrone (E1) as a function of 

ammonium removal in secondary biological treatments. Results of an extensive study made on 16 WWTPs in UK during 

one year in 2010/2011. Data adapted from Gardner et al. (2013). 

2.4.2 Advanced treatments 

Significant removal improvement of hardly biodegradable and hydrophilic (low sorption affinity) 

micropollutants such as pharmaceuticals, pesticides, phosphorus flame retardants, sweeteners or 

corrosion inhibitors, seems not to be feasible by optimization of existing conventional treatments. It 

appears that, for the removal of these substances, complementary treatments, called advanced 

treatments, are necessary. Up to now, mainly physico-chemical advanced processes are available, 
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removing pollutants from water either physically by adsorption or tight membranes filtration, or 

chemically (mainly by oxidation). Currently, two main technologies with a potential for large-scale 

application in terms of efficiency, cost and energy requirements have been identified: (i) oxidation of 

micropollutants with ozone and (ii) adsorption onto activated carbon (Abegglen and Siegrist, 2012).  

2.4.2.1 Ozonation 

Ozone (O3) is a powerful and selective oxidant that attacks mainly electron-rich moieties of organic 

compounds such as phenols, amines or alkenes, or inorganic ions such as Fe
2+

, Mn
2+

, HS
-
, NO2

-
 or Br

-
. 

Ozone is unstable in wastewater and decomposes rapidly (half life of a few minutes) due to its reaction 

with effluent organic matter (EfOM), leading to the formation of very reactive hydroxyl (OH) radicals. 

OH radicals are powerful and unspecific oxidants able to degrade almost any kind of organic 

compound. This indirect oxidation by OH radicals increases the global efficiency of ozonation, 

making this technology applicable to the removal of a wide range of micropollutants from WWTP 

effluents, with doses from 3 to 8 mg O3 l
-1

 (Buffle et al., 2006; Hollender et al., 2009). Some pollutants 

with low ozone and OH radical reactivity are, however, not significantly removed at these doses 

(Table 2.3). 

Table 2.3 Second-order rate constants with ozone and OH radical at pH 7 for several micropollutants (Huber et al., 

2003; Real et al., 2009; Rosal et al., 2010; Zimmermann et al., 2011a). Estimation of their removal by ozonation, calculated 

for an example of a reactor with a dose of 4.9 mg O3 l
-1, a Rct of 10-7 [-] (typical value) and an ozone exposure of 1.52 [mg 

min l-1] (or 1.9 mM s). fO3 and fOH [-] are the fractions removed due to the reaction with ozone and OH radical respectively. 

Substance  kO3  kOH  Removal  fO3  fHO  

  [M
-1

 s
-1

]  [M
-1

 s
-1

]  [%]  [%]  [%]  

Carbamazepine 3 x 10
5 
 8.8 x 10

9 
 100% 100% 0% 

Diclofenac 6.8 x 10
5 
 7.5 x 10

9 
 100% 100% 0% 

Naproxen 2 x 10
5 
 9.6 x 10

9 
 100% 100% 0% 

Paracetamol 4.1 x 10
6 
 2.2 x 10

9 
 100% 100% 0% 

Sulfamethoxazole 5.5 x 10
5 
 5.5 x 10

9 
 100% 100% 0% 

Trimethoprim 2.7 x 10
5 
 6.9 x 10

9 
 100% 100% 0% 

Metoprolol 2000 7.3 x 10
9 
 99% 73% 27% 

Atenolol 1700 8 x 10
9 
 99% 68% 32% 

Bezafibrate 590 7.4 x 10
9 
 92% 44% 56% 

Benzotriazole 230 7.9 x 10
9 
 86% 23% 77% 

5-Methyl-benzotriazole 400 5 x 10
9 
 82% 44% 56% 

Ketoprofen 0.4 8.4 x 10
9 
 80% 0% 100% 

Ibuprofen 9.6 7.4 x 10
9 
 76% 1% 99% 

Primidone 1 6.7 x 10
9 
 72% 0% 100% 

Fenofibric acid 3.43 6.55 x 10
9 
 71% 1% 99% 

Metronidazole 350 1.98 x 10
9 
 65% 64% 36% 

Diuron 16.5 4.6 x 10
9 
 60% 3% 97% 

Iopromide 0.8 3.3 x 10
9 
 47% 0% 100% 

Atrazine 6 2.8 x 10
9 
 42% 2% 98% 

Diatrizoate 0.05 5.4 x 10
8
 10% 0% 100% 
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The removal R [-] of a pollutant by ozonation depends on its reactivity with ozone and the hydroxyl 

radical, and the ozone exposure. The ozone exposure depends mainly on the ozone dose, the exposure 

time and the wastewater composition (its oxidative demand). Indeed, EfOM and nitrite react rapidly 

with ozone, reducing the quantity of ozone available for micropollutant oxidation. In a plug flow 

reactor with a known HRT [s], R can be calculated by Eq. 2.9, knowing the second order rates 

constants kO3 and kOH [M
-1

 s
-1

] of the pollutant, with ozone and the hydroxyl radical, respectively 

(Zimmermann et al., 2011a). kO3 and kOH are determined in pure water and can often be found in 

literature. 

)d]O[)((exp1
0

33 tkRkR
HRT

OHctO
 (2.9) 

with 

t

t
R

HRT

HRT

ct

d]O[

d]OH[

0
3

0  [-],  

the ratio of OH radical and ozone exposures, assumed constant for a specific wastewater. Rct and the 

ozone exposure t
HRT

d]O[
0

3
 have to be determined experimentally (batch test or measured) in the 

water to be treated, as they are strongly influenced by the matrix composition. The main factors 

influencing micropollutant oxidation by ozone in wastewater are presented in Fig. 2.10. 

 

Fig. 2.10 Main factors influencing micropollutant oxidation by ozone in wastewater. 

The fractions of the compound removed by direct reaction with ozone or by reaction with OH radical, 

fO3 and fOH [-], respectively, can be calculated with Eqs. 2.10 (Huber, 2004): 

OH3O

OH

OH3O

3O
3O and,

kRk
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f

kRk

k
f

ct

ct
OH

ct

 (2.10) 

Second-order rate constants with ozone and OH radicals are presented in Table 2.3 for several 

micropollutants. An example of their calculated removal in a specific reactor is also shown. Reactive 

substances such as carbamazepine, diclofenac or sulfamethoxazole should be in theory completely 

Oxidation
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removed due to direct reaction with ozone, whereas compounds not very reactive with ozone, such as 

ibuprofen, ketoprofen or iopromide, are predicted to be mostly removed by reaction with the OH 

radical.  

Oxidation of organic pollutants could lead to their complete mineralization into CO2, H2O and other 

minerals but, with ozone doses typically used for wastewater treatment (3-8 mg O3 l
-1

), only partial 

pollutant oxidation occurs, producing many (mostly unknown) oxidation by-products. Some of these 

by-products are undesirable due to their toxicity (and carcinogenicity), such as nitrosamine N-

nitrosodimethylamine (NDMA), formaldehyde or bromate (Hollender et al., 2009; Wert et al., 2007). 

Higher aquatic toxicity of ozonated wastewaters compared to non-ozonated effluents was reported in 

several studies, this toxicity decreasing in the case of filtration of the ozonated water on sand filters 

(degradation of the reactive and biodegradable by-products) (Petala et al., 2006; Petala et al., 2008; 

Stalter et al., 2010a; Stalter et al., 2010b). A final filtration step is thus recommended after ozonation. 

With proper design, ozonation decreases the toxicity of WWTP effluents, making this technology 

suitable for municipal wastewater application (cf. Chapter 3). 

2.4.2.2 Activated carbon adsorption 

Activated carbon is a charcoal produced by pyrolysis of organic materials (wood, coal, etc.) which is 

then activated chemically or thermally to develop its porosity (removal of the tar from the pores). Due 

to its very high specific surface area (500-1500 m
2
/g), this material has a very strong sorption affinity 

and can therefore remove a wide range of water pollutants by adsorption. Activated carbon can be 

applied either in a granular form (GAC) in a compact filter, or added as a powder (PAC) to the water 

and then removed by either filtration or flocculation/decantation. Spent PAC or GAC are then 

incinerated (or regenerated for GAC) to destroy the adsorbed pollutants.  A PAC dose between 10 to 

20 mg l
-1

 proved to be sufficient to remove over 80% a wide range of micropollutants, although a few 

compounds with low PAC affinity (very hydrophilic and/or negatively charged) are not well removed 

at these doses (Boehler et al., 2012). Due to the physical removal (and not transformation) of many 

micropollutants, a clear decrease in aquatic toxicity of the effluents was observed after PAC treatment 

(cf. Chapter 3).  

Removal of a pollutant by sorption onto PAC depends mainly on its affinity (hydrophobicity, charge) 

for the activated carbon, its concentration in the dissolved phase and the PAC concentration. As for 

sorption onto sludge, adsorption onto PAC is considered as a reversible process that reaches 

equilibrium. For many pollutants, equilibrium is almost (80-95%) reached in 1-2 days, meaning that 

the PAC retention time in the system should be as least as long to optimize the use of the PAC. 

Adsorption equilibrium follows in many case a Freundlich isotherm (Eq. 2.11) where the pollutant 

concentration sorbed onto PAC, Cs [µg g
-1

 PAC], depends on the dissolved concentration Cw [µg l
-1

] at 

equilibrium and the Freundlich coefficients Kf [µg
1-n

 l
n
 g

-1
] and n [-] (NEPTUNE, 2010).  

n

wfS CKC  (2.11) 

Kf and n have to be determined experimentally for each pollutant, for the specific PAC tested and in 

the wastewater that have to be treated. Indeed, the wastewater composition has a strong influence on 

the adsorption capacity, as the EfOM can compete with micropollutants for the adsoption sites, or can 
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block the pore accessibility. The main factors affecting micropollutant adsorption onto PAC in 

wastewater are presented in Fig. 2.11. 

 

Fig. 2.11 Main factors influencing micropollutant adsorption on powdered activated carbon. 

Knowing Kf and n, the PAC dose [PAC] (in [g l
-1

]) needed to reach a target removal efficiency R [-] of 

a specific compound by sorption (assuming equilibrium) can be determined with Eq. 2.12, with C0 [µg 

l
-1

] the initial dissolved pollutant concentration. 

n

f CRK

CR

))1((
[PAC]

0

0
 (2.12) 

Table 2.4 Freundlich sorption isotherms for six pharmaceuticals calculated from measurements (batch experiments) 

with biologically treated wastewater (DOC of 11 mg l-1, pH 6.8) for the PAC “Norit SAE Super” (NEPTUNE, 2010). 

Estimation of the PAC dose needed to remove 80% of each substance, assuming an initial concentration of 1 µg l-1 and 

equilibrium conditions. 

Substance Kf n 

PAC dose for 

80% removal 

  [µg
1-n

 l
n
 g

-1
] [-] [mg l

-1
] 

Clarithromycin 160 0.22 7.1 

Sulfamethoxazole 40 0.21 28.0 

Benzotriazole 450 0.39 3.3 

Primidone 76 0.4 20.0 

Carbamazepine 380 0.34 3.6 

Oxazepam 280 0.36 5.1 
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An example of Freundlich coefficients and PAC doses needed to remove 80% of a few 

micropollutants in a biologically treated wastewater is presented in Table 2.4. For this particular water 

and with initial pollutant concentrations at 1 µg l
-1

, a PAC dose below 30 mg l
-1

 should, in theory, 

assure > 80% removal of these 6 compounds. The PAC dose necessary is, however, strongly influence 

by the DOC content of the wastewater, which enters in competition with the pollutants for the sorption 

sites, and, according to the isotherm, strongly dependent on the initial micropollutant concentration 

(higher doses needed for higher concentrations). 

2.4.2.3 Others technologies 

Other technologies have proven to be also efficient in micropollutant removal, but they are not yet 

adapted for municipal WWTPs, either due to high costs or to efficiencies limited to only some classes 

of compounds.  

Filtration on tight membranes (reverse osmosis and nanofiltration) is one of the most efficient 

technologies, allowing removals above 95% of almost all organic and inorganic pollutants (Martin 

Ruel et al., 2011; Urtiaga et al., 2013). This technology has, however, a high cost (high energy 

consumption) and produces a large amount of concentrate (15-25% of the flow with high 

micropollutant concentrations) that need to be treated separately. 

Advanced oxidation processes (AOPs) are technologies able to remove a wide range of organic 

micropollutants by oxidation with the very reactive and unspecific OH radical. The principle of AOPs 

is to produce OH radicals using usually hydrogen peroxide (H2O2) combined with other oxidants such 

as ozone (O3), ultraviolet light (UV) or ferrous iron (Fenton). OH radicals react very rapidly with 

micropollutants, but also with EfOM, limiting the treatment performance. Despite the good efficiency 

of AOPs to oxidise micropollutants, their performance in wastewater is quite similar to that of 

ozonation alone (without H2O2 addition). Indeed, in wastewater, ozone reacts with the EfOM, 

generating a high proportion of OH radicals. Ozonation of treated wastewater behaves thus like an 

AOP, without the cost of adding H2O2. AOPs are therefore not an improvement in treating wastewater 

compared to ozonation alone (Lee and von Gunten, 2010). 

Other oxidation processes, for instance by ferrate, chlorine, chlorine dioxide or photolysis have also 

been shown to oxidise several micropollutants. These technologies act either on a narrower range of 

micropollutants than ozone or activated carbon, or are still only at the research level (Kim et al., 2009; 

Lee and von Gunten, 2010).  
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2.5 Conclusions 

The fate of micropollutants in conventional WWTPs depends on their physico-chemical 

characteristics, in particular their hydrophobicity and sludge sorption affinity, their biodegradability, 

and their volatility. 

Relatively hydrophobic pollutants such as heavy metals, PAHs, POPs, several household chemicals 

like brominated flame retardants and several personal care products, are usually well removed (> 

70%), mostly by sorption onto sewage sludge. Easily biodegradable pollutants such as surfactants, 

plastic additives, hormones, several PCPs, some pharmaceuticals and household chemicals, are also 

well removed during the treatment by biodegradation/transformation. Some VOCs seem to be 

significantly removed from the water by volatilization. Despite good removal of these substances, 

effluent concentrations of some of them (surfactant, heavy metals) can still be relatively high due to 

their high concentrations in raw wastewater. Good removal efficiencies do, however, not mean that the 

effluent concentrations will not potentially affect aquatic life, as some of these compounds are toxic at 

very low concentrations (hormones, POPs, PAHs).  

More hydrophilic and poorly-to-moderately biodegradable pollutants are not well removed during 

conventional treatments. The removal efficiency of some compounds can be improved with modern 

biological treatments, which are able to achieve high removal of BOD and ammonium (nitrification). 

Many of these polar and hardly biodegradable substances, e.g., most pharmaceuticals, pesticides, and 

several household chemicals (corrosion inhibitors, sweeteners, EDTA, phosphorus flame retardants, 

PFCs), are, however, not significantly removed even in modern biological treatments. To decrease 

their discharge into surface waters, advanced treatments such as ozonation and adsorption onto 

activated carbon are necessary.  

Nevertheless this does not solve all the problems as some substances will still be not well eliminated 

by these advanced treatments and others may still be at concentrations above their no-effect toxicity 

threshold, despite good removal (> 80%) in the WWTP. Particular attention will also be needed for 

new products. Moreover, estimation of the potential effect of substances usually focused on individual 

substances, without considering the synergetic or antagonist effects of the cocktail of micropollutants 

present in wastewater. Closer collaboration between disciplines like WWTP engineering, 

ecotoxicology, chemistry, and biology is therefore needed to limit the discharge of micropollutants 

and to indentify problematic substances. 
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2.6 Table of abbreviations 

4-MBC 4-methylbenydlidene camphor EQS Environmental quality standard 

AE Alcohol ethoxylates EtP Ethyl-paraben 

AES Alcohol ether sulfates GAC Granular activated carbon 

AHTN 7-Acetyl-1,1,3,4,4,6-hexamethyltetralin 

(tonalide) 

HHCB Hexahydrohexamethyl 

cyclopentabenzopyran (galaxolide) 

AMPA Aminomethylphosphonic acid HRT Hydraulic retention time 

AOP Advanced oxidation process LAS Linear alkylbenzene sulfonates 

APEO Alkyl phenol ethoxylate MBTr 4- and 5- methylbenzotriazoles 

AS Alcohol sulfates MDMA 3,4-methylenedioxy-N-

methylamphetamine 

BBP Butyl benzyl phthalate MeP Methyl-paraben 

BDE Brominated diphenyl ether MTBT 2-methylthiobenzothiazole 

BFR Brominated flame retardant NDMA N-nitrosodimethylamine 

BMDM Butyl methoxydibenzoylmethane NHDC Neohesperidine dihydrochalcone 

BOD Biochemical oxygen demand NTA Nitrilotriacetatic acid 

BP-1, -3, -4 Benzophenone-1, -3, -4 OC Octocrylene 

BPA Bisphenol A OFR Organophosphorus flame retardant 

BT Benzothiazole OHBT 2-hydroxybenzothiazole 

BTEXS Benzene, toluene, ethylbenzene, xylene 

and styrene 

OMC Octyl-methoxycinnamate 

BTr Benzotriazole OT Octyl-triazone 

BTSA Benzothiazole-2-sulfonic acid OTNE 1-(1,2,3,4,5,6,7,8 Octahydro-2,3,8,8-

tetramethyl-2-naphthalenyl)ethanone 

BuP Butyl-paraben PAC Powdered activated carbon 

BzP Benzyl-paraben PAH Polycyclic aromatic hydrocarbon 

COD Chemical oxygen demand PBB Polybrominated biphenyl 

CP Chlorinated paraffin PBDE Polybrominated diphenyl ether 

CSO Combined sewer overflow PCB Polychlorobiphenyl 

DCM Dissolved or colloidal matter PCP Personal care product 

DDT Dichlorodiphenyltrichloroethane PFAS Perfluoroalkyl sulphonate 

DEET N,N-diethyl-m-toluamide PFC Perfluorinated compound 

DEHP Di-(2-ethylhexyl) phthalate PFCA Perfluorocarboxylic acid 

DEP Diethyl phthalate PFOA Perfluorooctanoic acid 

DMP Dimethyl phthalate PFOS Perfluorooctane sulfonic acid 

DnBP Di-n-butyl phthalate PNEC Predicted no-effect concentration 

DOC Dissolved organic carbon POP Persistent organic pollutant 

E1 Estrone PrP Propyl-paraben 

E2 17β-estradiol PTFE Polytetrafluoroethylene 

E3 Estriol PVC Polyvinyl chloride 

EDTA Ethylenediaminetetraacetatic acid SAS Secondary alkane sulfonates 

EE2 17α-ethinylestradiol SCCP Sort chain chlorinated paraffin 

EfOM Effluent organic matter SP Sludge production 

EHDPP 2-ethylhexyl diphenyl phosphate SRT Sludge retention time 

EHMC Ethylhexyl methoxy cinnamate TBBA Tetrabromobisphenol A 

EPA Environmental protection agency TBEP Tris(butoxyethyl)-phosphate 

EPS Extracellular polymeric substance TCEP Tris(2-chloroethyl) phosphate 
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TCPP Tris(2-chloro,1-methylethyl) phosphate TP Transformation product 

TDCP Tris(1,3-dichloro-2-propyl) phosphate TSS Total suspended solids 

THC Tetrahydrocannabinol UK United Kingdom 

TiBP Tri-iso-butyl phosphate US United States 

TMP Trimethyl phosphate UV Ultraviolet 

TnBP Tri-n-butyl phosphate VOC Volatile organic compound 

TOC Total organic carbon WWTP Wastewater treatment plant 
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Chapter 3    Advanced treatment of micropollutants in 

municipal wastewater: Ozone or powdered activated 

carbon?  

This study was coordinated by the City of Lausanne and the experimental part was performed in 

collaboration with several other institutions. This thesis contributed mainly to the analysis, 

interpretation, and synthesis of all the results gathered during this study.  

An adapted version of this chapter was published in Science of the Total Environment (2013) 461–

462: 480-498, with the name “Treatment of micropollutants in municipal wastewater: Ozone or 

powdered activated carbon?”, by Jonas Margot, Cornelia Kienle, Anoys Magnet, Mirco Weil, Luca 

Rossi, Luiz Felippe de Alencastro, Christian Abegglen, Denis Thonney, Nathalie Chèvre, Michael 

Schärer and D. Andrew Barry. 

Results of this study were also published in French in a technical report (Margot et al., 2011) and in 

an engineering journal (Margot and Magnet, 2011). 

3.1 Introduction 

About 3000 pharmaceutical compounds and more than 300 pesticides and biocides are commercially 

available in Switzerland (OPBio, 2005; OPPh, 2010; Swissmedic, 2012). They can enter urban sewer 

systems via human excretion in urine and faeces, by improper disposal, or through leaching of 

pesticides and biocides from urban areas during rain events. As described in Chapter 2, many of these 

hydrophilic organic compounds are poorly removed in conventional wastewater treatment plants 

(WWTPs), and are thus characterized by a relatively constant input at low concentrations (ng l
-1

 to µg 

l
-1

) into the aquatic environment. As most of these substances are designed to be biologically active, 

they can affect sensitive aquatic organisms even at very low concentrations (cf. Chapter 1). 

Furthermore, as lakes and rivers are used in many places for drinking water supply, pharmaceuticals 

and pesticides can therefore be found in tap water at very low concentrations, even after drinking 

water treatment (Huerta-Fontela et al., 2011; Mompelat et al., 2009; Stackelberg et al., 2007). 

Therefore, the release of these compounds into the environment should be avoided. 

Effluents of WWTPs are the main source of pharmaceuticals in the aquatic environment (Bartelt-Hunt 

et al., 2009; da Silva et al., 2011). Since it is unrealistic to limit the consumption of pharmaceuticals, 

additional steps during wastewater treatment are one of the best options to reduce the release of these 

compounds into surface waters. Currently, as presented in Chapter 2, two main technologies with a 

potential for large-scale application in terms of efficiency, costs and energy requirements have been 

identified (Abegglen and Siegrist, 2012; Joss et al., 2008): oxidation of micropollutants with ozone or 

adsorption onto activated carbon. 
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Through the strong oxidative properties of ozone and of the hydroxyl radicals produced spontaneously 

in its decomposition, ozonation was found to degrade efficiently most micropollutants present in 

treated wastewater with a dose of 3-8 mg O3 l
-1

 (Hollender et al., 2009; Lee et al., 2012; Nakada et al., 

2007; Reungoat et al., 2012; Reungoat et al., 2010; Rosal et al., 2010). A potential disadvantage of this 

process is the formation of unknown reactive by-products due to partial oxidation of the compounds 

and reaction with matrix components (von Gunten, 2003a). For example, undesirable toxic oxidation 

by-products such as nitrosamines N-Nitrosodimethylamine (NDMA), bromate or formaldehyde can be 

formed (Hollender et al., 2009; Richardson, 2003; Wert et al., 2007), potentially increasing the toxicity 

compared to non-ozonated wastewater (Petala et al., 2006; Petala et al., 2008; Stalter et al., 2010a; 

Stalter et al., 2010b). These oxidation products are usually more easily biodegradable and can be 

partially removed during biological post-filtration (Hollender et al., 2009; Richardson et al., 1999; 

Stalter et al., 2010a; Stalter et al., 2010b). 

Activated carbon allows removal of a broad spectrum of micropollutants via adsorption to its high 

specific surface area and is thus widely used in drinking water treatment (Snyder et al., 2007; 

Westerhoff et al., 2005). As organic matter present in wastewater effluent can compete for adsorption 

sites, larger amounts of activated carbon are required. The efficiency of granular activated carbon 

(GAC) filtration to remove micropollutants has been studied in some WWTPs, showing a mitigated 

efficiency depending on the compound and the frequency of GAC regeneration/replacement (Grover 

et al., 2011; Nguyen et al., 2012; Reungoat et al., 2012; Reungoat et al., 2010; Snyder et al., 2007). 

Powdered activated carbon (PAC) adsorption, with a dosage of 10-20 mg l
-1

, has been proposed as a 

more efficient alternative compared to GAC treatment (Boehler et al., 2012; Metzger et al., 2005; 

Nowotny et al., 2007; Serrano et al., 2011). However, to date, very few large scale studies evaluating 

the efficiency of micropollutants removal via PAC treatment in municipal wastewater have been 

reported. 

In order to find a feasible and efficient solution for the removal of pharmaceuticals and pesticides in 

wastewater, a global pilot study was conducted at the municipal WWTP of Lausanne, Switzerland. 

The goals were to evaluate and compare the efficiency of ozonation and PAC adsorption (i) to remove 

a broad range of micropollutants in WWTP effluents, and (ii) to reduce ecological impacts of the 

effluent. Finally, we aimed to determine the feasibility of these advanced treatments at the WWTP 

scale in terms of operation, energy consumption and costs. 

3.2 Materials and methods 

3.2.1.1 Lausanne wastewater treatment plant 

The municipal WWTP of Lausanne, Switzerland, is the largest in the Lake Geneva watershed and 

treats on average 95,000 m
3
 d

-1
 of wastewater representing a population equivalent (PE) of 220,000 

individuals. The sewer system is only partially separated, collecting a significant amount of urban 

runoff during rain events. The watershed includes a major hospital and several clinics, which are a 

potential source of specific pharmaceuticals. The wastewater treatment consists of pre-treatments (grit 

removal and screening at 1 cm), primary clarifiers, biological activated sludge treatment (AS, sludge 

age of 2 d) without nitrification, or, for 5% of the flow, a moving bed bioreactor (MBBR) with partial 
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to complete nitrification (< 1 mg N-NH4 l
-1

). In both treatments, phosphorus is removed by 

precipitation with iron chloride. Treated wastewater (WWTP effluent) is then discharged in Lake 

Geneva, which is the main drinking water reservoir for more than 600,000 inhabitants (www.cipel.org, 

last accessed 7 May 2013). 

Table 3.1 Characteristics of the effluent of the biological treatments (feed water for the advanced treatments). Average 

and standard deviation of 33 24-h composite samples taken after the biological treatment with low to complete nitrification 

depending on the campaigns. 

Conventional parameters     

Total suspended solids (TSS) [mg l
-1

] 14.8 (± 5.3) 

Dissolved organic carbon (DOC) [mg l
-1

] 7.3 (± 1.9) 

Chemical oxygen demand (COD) [mg l
-1

] 24.4 (± 12) 

Biochemical oxygen demand (BOD5) [mg l
-1

] 11.2 (± 10.2) 

N-NH4 [mg l
-1

] 7.7 (± 7.7) 

N-NO3 [mg l
-1

] 9.9 (± 5.6) 

N-NO2 [mg l
-1

] 0.4 (± 0.3) 

Ptotal [mg l
-1

] 0.7 (± 0.6) 

Psoluble [mg l
-1

] 0.09 (± 0.08) 

pH [-] 7.2 (± 0.4) 

Temperature [°C] 17.1 (± 3.5) 

Conductivity [µS cm
-1

] 914 (± 96) 

 

3.2.1.1.1 Ozonation pilot plant 

The pilot plant for ozonation was designed to treat a maximum flow rate of 100 l s
-1

 (13,000 PE) and 

consisted of a plug flow reactor (volume of 129 m
3
) separated into four chambers (nine compartments) 

in series (Fig. 3.1 A) to assure optimal hydraulic conditions and a minimal reaction time of 20 min. 

Characteristics of the feed water (effluent of the conventional WWTP) are presented in Table 3.1. 

Ozone-containing gas (2-14% w/w) was continuously produced by an ozone generator (Effizon SMO 

600 from ITT Wedeco, Wallisellen, Switzerland) fed with pure oxygen. 60% of the gas was injected 

counter currently into the 1
st
 or 2

nd
 chamber depending on the water flow rate and 40% in the 3

rd
 

chamber. The reaction time in the reactor ranged between 20 and 60 min. The ozone dosage was 

automatically adjusted to the water quality (oxidative demand) by varying the gas flow to maintain a 

constant residual concentration of dissolved ozone (around 0.1 mg O3 l
-1

), measured with an online 

sensor (AMI codes II, from Swan, Hinwill, Switzerland), and confirmed with a second probe 

(AquaTector from Mesin, Winterthur, Switzerland) at the outlet of the 3
rd

 chamber. Corresponding 

initial ozone doses varied between 2 and 13 mg O3 l
-1

, with on average 5.7 mg O3 l
-1

. Ozone 

concentrations in the feed and off gas were continuously measured with BMT 964 probes (Berlin, 

Germany). The transfer efficiency of ozone into the dissolved phase was between 70 to over 90% 

depending on the gas flow. In this paper, the ozone dose refers to the amount of gaseous ozone 

injected and not to the ozone dissolved into the water. The remaining gaseous ozone was catalytically 

converted to oxygen before its release into the atmosphere. The effluent of the ozone reactor was then 

filtered through a rapid sand filter (flux of 8 m h
-1

, characteristics described in the next section) with 

biological activity to remove reactive oxidation products. 

http://www.cipel.org/
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Fig. 3.1 (A) Ozonation installation (B) Powdered activated carbon (PAC) installation with ultrafiltration separation. 

3.2.1.1.2 Powdered activated carbon treatment pilot plant 

The pilot plant for PAC treatment was designed to treat WWTP effluent, in parallel to the ozonation, 

at a maximum flow of 10-15 l s
-1

 (ca. 1700 PE). Based on bench-scale batch adsorption tests on five 

different PACs (Omlin and Chesaux, 2010), two PACs were selected for the pilot study to assess if the 

treatment efficiency was influenced by the type of PAC: Norit SAE SUPER
TM

 (Norit Activated 

Carbon, The Netherlands), with grain size d50 of 15 µm, specific surface area of 1150 m
2
 g

-1
, pH of 

point of zero charge pHPZC > 7.3, and ash content of 12%; and SORBOPOR
TM

 MV-125 (Enviro Link 

SA, Switzerland) with grain size d80 < 45 µm, specific surface area of 1100 m
2
 g

-1
, pHPZC of 9-11, and 

ash content < 6%. Norit SAE SUPER and SORBOPOR MV-125 were used during the first and the 

second half of the study respectively with ultrafiltration separation. The installation was composed of 

a well-mixed contact reactor of 30 m
3
 where PAC slurry (3-5 g l

-1
) was added continuously in 

proportion to the wastewater flow to reach a final dosage of 10 to 20 mg PAC l
-1

. A coagulant (FeCl3 

at 4-15 mg l
-1

) was added to improve the subsequent separation of the PAC. Treated water was then 

filtrated in low transmembrane-pressure (0.1-0.3 bar) cross-flow hollow fibres ultrafiltration (UF) 

A

B
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membranes (Norit AirLift
TM

, in PVDF, molecular weight cut-off of 100-300 kDa, total filtration 

surface of 660 m
2
) to remove the PAC (Fig. 3.1 B). The tangential filtration process allowed 

increasing the concentration (up to 1-2 g PAC l
-1

) and the residence time of the PAC in the system. 

Every four hours, the system was partially drained (volume removed proportional to the PAC dose) to 

maintain a constant PAC concentration in the reactor and to remove excess old PAC, which was then 

incinerated with the sewage sludge from the conventional treatment. The hydraulic residence time in 

the contact reactor varied between 40 and 170 min, depending on the flow rate. The corresponding 

solid (PAC) residence time was between 2 and 17 d in order to reach adsorption equilibrium. UF 

membranes were backwashed every 10 min for 10 s, and chemical cleaning with citric acid and 

sodium hypochlorite was performed every month to avoid fast clogging of the membranes. The PAC 

separation was also studied over a 5-month period with a pilot sand filter (SF) without concentration 

and recirculation of the PAC (with the PAC SORBOPOR MV-125). The filter, also used after 

ozonation, consisted of 1.2 m of expanded shale (grain size 1.6-2.4 mm), and 60 cm of quartz sand 

(grain size 0.7-1.2 mm), with a filtration flux of 8-16 m h
-1

 and one backwash per day. Supplementary 

information concerning the operation of the ozonation and PAC-UF pilot plants can be found in 

Margot et al. (2011). 

3.2.1.2 Sampling campaigns 

The pilot systems were operated continuously for more than one year. To monitor long term efficiency 

and to optimize the treatments, 25 sampling campaigns of one day (2-3 per month) and four seasonal 

campaigns of one week were performed between June 2009 and October 2010. During the campaigns, 

24-h to 72-h composite samples (taken time proportional every 15 min) were collected with 

refrigerated automatic samplers (ISCO 6712 FR, Teledyne, USA, and WS 316, Watersam, Germany) 

at 5 locations: 1. Influent of the WWTP after grit removal and screening (Influent), 2. Effluent of the 

biological activated sludge treatment (only the first seasonal campaign) or effluent of the biological 

MBBR with nitrification (BIO), 3. Effluent of the ozone reactor (OZ), 4. Effluent of the sand filter 

following the ozonation (SF), and 5. Effluent of the PAC with ultrafiltration (PAC-UF) or with sand 

filter (PAC-SF) treatment (the last seven one-day campaigns). Composite samples were stored at 4°C 

and transferred in less than 12 h (or 24 h for the bioassays) to the laboratories performing analyses. 

3.2.1.3 Chemicals and reagents 

High purity micropollutants, deuterated standards and reagents used for micropollutant analysis have 

been listed previously (Morasch et al., 2010). 

3.2.1.4 Analyses of micropollutants 

Upon arrival in the laboratory, samples were immediately acidified to pH 2.5 with 5 N HCl and 

filtered at 0.7 µm through glass fibre filters (type GF/F, Whatman). Analysis of 58 hydrophilic 

micropollutants (36 pharmaceuticals, 13 biocides and pesticides, 2 corrosion inhibitors and 7 

endocrine compounds, Table S 3.1, Supporting information (SI)), identified in Switzerland as priority 

micropollutants (Morasch et al., 2010; Perazzolo et al., 2010), were conducted on the filtrate by solid 

phase extraction (SPE) followed by ultra-performance liquid chromatography coupled to tandem 

quadrupole mass spectrometer (UPLC-MS/MS). The analytical method, described in Morasch et al. 
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(2010), was developed and validated for wastewater matrix. Briefly, the target compounds were 

extracted less than 1 h after acidification by an automated solid phase extraction (SPE) system (GX-

274 ASPEC, Gilson, USA) on hand-assembled two-layered cartridges (Oasis HLB and mixture of 

Strata X-CW, Strata X-AW and Isolute ENV+ phases). The eluent was then analysed by ultra-

performance liquid chromatography (UPLC) (Acquity UPLC system, with HSS T3 or BEH C18 

column depending on the compounds, from Waters, USA) coupled to a tandem quadrupole mass 

spectrometer (MS/MS) (Acquity TQ Detector, Waters). To account for losses during SPE and the 

matrix effect, samples were spiked with deuterated surrogates, as described by Morasch et al. (2010). 

UPLC-MS/MS conditions, extraction efficiency of the associated deuterated standards and 

repeatability of the method are detailed by Morasch et al. (2010). Uncertainties of the micropollutant 

analyses, including recovery and repeatability uncertainties, were compound- and concentration-

dependent with a decreased reproducibility close to the limit of detection (LOD). For the large 

majority of the compounds, the relative standard deviation was < 30% (Bonvin et al., 2011). 

Compounds detected with this method are presented in Table 3.3 (analytical method A) with their 

respective LODs. 

Chemical properties of these 58 micropollutants are reported in Table S 3.1, SI. Hydrophobicity was 

expressed by the log Dow at pH 7, a corrected form of the octanol-water partition coefficient (log Kow) 

determined for non-ionic substances, to account for the molecule dissociation or protonation at pH 7 

(de Ridder et al., 2010). The log Dow values were calculated from the corresponding pKa values 

following Schwarzenbach et al. (2003). For neutral molecules, log Dow = log Kow, for ionic 

compounds, log Dow < log Kow. 

During two seasonal campaigns, a broader range of 120 micropollutants, including human 

pharmaceutical metabolites, were analysed on filtered 7-d composite samples (glass fibre filter 

APFD09050, Millipore) following Hollender et al. (2009) and Kern et al. (2009). The method consists 

of SPE, with the same cartridges as for method A, followed by LC-MS/MS with an XBridge C-18 

column (Waters) and Linear Trap Quadrupole orbitrap mass spectrometer with electrospray ionization 

(Thermo Fisher Scientific Corporation, USA). Compounds detected with this method are presented in 

Table 3.3 (analytical method B) with their respective LODs. 

Analyses of the endocrine disrupting compounds 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) 

(analytical method C in Table 3.3) were done on filtered 7-d composite samples during two seasonal 

campaigns by solid phase extraction (LiChrolut® EN-RP18 cartridge, Merck, Germany) followed by 

LC-MS/MS detection (API 4000 LC-MS/MS, Applied Biosystems, USA). The method used is 

described in Table S 3.2 and Table S 3.3, SI. 

In the case when the effluent concentration was below the LOD of the compound, the removal rate 

was calculated as a minimum value using the LOD as effluent concentration. These minimum removal 

rates were not integrated into the global removal average unless they were above 80%, in order not to 

bias the results. 
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3.2.1.5 Bioassays 

In this pilot study, a broad range of bioassays was performed, showing that most acute toxicity 

bioassays were not sensitive enough to detect the effects of low micropollutant concentrations in 

wastewater. An overview on these bioassays can be found in Kienle et al. (2011). Two kinds of assays 

were therefore selected based on their sensitivity: i) bioassays on enriched samples and ii) chronic 

toxicity tests in the whole effluent. These two approaches can be seen as complementary for 

evaluating the effects of the effluents: the first mentioned assays are very sensitive and focus on the 

effects produced by specific pollutants, while the second assays evaluate the long-term toxicity of the 

effluent, including the effect of very polar compounds not well extracted during the enrichment 

process, such as ozonation by-products (Stalter et al., 2011). For the first approach, two bioassays 

were performed on enriched samples: the Yeast Estrogen Screen (YES) to evaluate the estrogenicity 

(Routledge and Sumpter, 1996) and the Combined Algae Assay to evaluate the global toxicity and the 

presence of photosynthesis inhibitors (Escher et al., 2008b). For the second approach, a fish early life 

stage test (FELST, (OECD, 1992b)) with rainbow trout was performed by exposing the fish for 67 d to 

the effluent from the different treatments under flow-through conditions. 

3.2.1.5.1 Sample enrichment (YES and combined algae assay) 

The sample enrichment was done by solid phase extraction (SPE), which allows for increased 

pollutant concentrations in the extracts and thereby enables a better detection in the bioassays. It also 

limits the impact of the matrix components and metals, which are partially separated during the 

extraction (Macova et al., 2010). 7-d composite samples were enriched using SPE as described in 

Escher et al. (2008b) and as presented in Table S 3.2, SI. Briefly, 200 ml (influent samples) or 500 ml 

(all others) were enriched 200 and 500 times respectively using LiChrolut® EN-RP18 cartridges 

(Merck, Germany), and then stored in 1 ml of a solvent mixture (~50% ethanol, ~50% acetone and 

methanol) at -20°C until analysis. 

3.2.1.5.2 Yeast Estrogen Screen (YES) 

The yeast estrogen screen with the recombinant yeast Saccharomyces cerevisiae was performed 

according to Routledge and Sumpter (1996) in 96-well microtitre plates using yeast cells provided by 

J. Sumpter (Brunel University, Uxbridge, UK). In brief, yeast cells were cultured in minimal medium 

on an orbital shaker at 30°C for 24 h before the onset of the test. At the beginning of the test, 1:2 

dilution series of the reference substance, the enriched wastewater samples and the solvent control 

were pipetted onto the plates. The solvent was evaporated completely on a sterile bench. In the 

meantime the cell density of the yeast cells was determined, and an assay medium prepared (seeded 

with 4 × 10
7
 yeast cells). Subsequently, the yeast-cell suspension was pipetted on the test plate (200 

µl/well). The plate was incubated at 30°C. After 72 h, cell density (OD620 nm) and colour change (OD540 

nm) were measured using a plate reader (Synergy 4, Biotek, Winooski, USA). The estrogenic activity in 

the wastewater samples was assessed relative to a reference substance (17β-estradiol, a potent 

estrogen) and expressed as 17β-estradiol equivalent concentrations (EEQ). Both, the reference 

substance and the wastewater samples, were tested in triplicates in a 1:2 dilution series. The highest 

tested concentration of 17β-estradiol was 1.25 × 10
-9

 M (340 ng l
-1

, in ethanol) and the maximum 

enrichment factors of the wastewater samples were 5 for the WWTP influent and 50 for all additional 

treatment steps. Ethanol served as solvent control (50 µl/well, 8 wells/plate).  
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3.2.1.5.3 Combined Algae Assay 

The combined algae assay on the green algae Pseudokirchneriella subcapitata was conducted as 

described by Escher et al. (2008a). The herbicide diuron served as the reference substance and ethanol 

as the solvent control (50 µl/well, 8 wells/plate). Both, the reference substance and the wastewater 

samples, were tested in triplicates in a 1:2 dilution series, with the highest concentration of diuron 

being 3 × 10
-7

 M (69.9 µg l
-1

, in ethanol) and maximum enrichment factors of the wastewater samples 

of 20 (WWTP influent) and 83.3 (all additional treatment steps). After a complete ablation of the 

solvent, the samples were re-suspended in 100-µl algae medium. Finally, 100 µl of algae suspension 

with an OD685 of 0.1 were added to each well. Photosynthesis inhibition was measured by means of 

effective quantum yield after 2 h of exposure using a Maxi-Imaging PAM (pulse amplitude 

modulation, IPAM) device (Walz, Effeltrich, Germany) as described by Schreiber et al. (2007). Algae 

growth was measured by means of absorbance at 685 nm in a microtitre plate photometer (Synergy 4, 

Biotek, Winooski, USA) at the test start and end (after 24 h of exposure) as well as on two occasions 

in between. The toxicity of the wastewater samples was expressed as diuron-equivalent concentrations 

(DEQs) for the endpoint “inhibition of Photosystem II” and toxic equivalent concentrations (TEQs, 

virtual baseline toxicant) for growth inhibition (Escher et al., 2008a). 

Comparison of the measured photosynthesis inhibition with the concentration of photosynthesis 

inhibitors was based on the concept of concentration addition for substances with similar mode of 

action according to Chèvre et al. (2006). The concentrations of the four most abundant photosynthesis 

inhibitors included in the analytical list, the herbicides atrazine, diuron and isoproturon, and the 

algicide terbutryn were converted to diuron-equivalents based on their relative potency (HC50-EC50: 

hazardous concentration affecting 50% of the species with 50% effect, (Chèvre et al., 2006)) and then 

summed up. One µg l
-1

 of  atrazine, diuron, isoproturon and terbutryn corresponds to 0.084, 1, 0.559 

and 0.881 µg l
-1

 DEQs respectively. 

3.2.1.5.4 Fish early life stage test with rainbow trout (Oncorhynchus mykiss) 

This test was performed according to OECD guideline 210 (OECD, 1992b). Details of the 

methodology are described by Stalter et al. (2010b). In brief, freshly fertilized eggs (< 1 h, 40 eggs per 

replicate) of rainbow trout (Oncorhynchus mykiss) were exposed to the test waters in 8-l stainless steel 

vessels in a flow-through system. Reconstituted water (OECD guideline 203, (OECD, 1992a)) served 

as the control medium. At the start of the test, 70 eggs/replicate were randomly distributed to the test 

vessels and gradually reduced to 40 eggs the next day. The fish embryos were exposed at 10 ± 2°C and 

in darkness. Flow of test media into each test vessel was adjusted to 11 ml min
-1

, corresponding to two 

test vessel volume exchanges per day. For the post hatch period the temperature was raised to 12 ± 

2°C and a 12/12 h photoperiod was set. Flow-through rates in the test vessels 
 
were adjusted weekly 

depending on the fish developmental stage to reach 44 ml min
-1

 seven days before the test end, 

achieving a eight-fold medium exchange in the test vessels per day (OECD, 1992b). From the 

beginning of swim-up onwards, the fish were fed four times per day (trout starter, 4% body weight per 

day). In total, four controls and three replicate treatments for each wastewater were assessed. During 

the test period several endpoints were determined daily, namely: hatching, mortality, swim up, 

malformations and abnormal behaviour. After the end of the test fish were humanely killed with an 

overdose of MS222 (tricaine methanesulfonate, Sigma–Aldrich, St. Louis, USA). Afterwards, 
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individual fish were blotted dry and fresh weight and length were measured. Plasma vitellogenin 

concentration was determined in whole body homogenates of 20 fish per control and wastewater as 

described by Holbech et al. (2006) using a vitellogenin ELISA test kit for rainbow trout (Biosense, 

Bergen, Norway) in a 1:20 dilution. 

The significance of the difference in the response between the treatments was assessed with the 

Tukey’s test for single-step multiple comparison. Significant differences are reported for p values < 

0.05. All calculations were performed using R (R Foundation for Statistical Computing, Vienna, 

Austria). 

3.2.1.6 Laboratory-scale batch adsorption experiment 

The influence of wastewater dissolved organic carbon (DOC) concentration on micropollutant removal 

efficiency with PAC was assessed in laboratory-scale batch adsorption experiments. Adsorption tests 

were conducted in triplicates on 24-h composite wastewater samples collected at the Lausanne WWTP 

after either simple coagulation-precipitation treatment (DOC of 17 mg l
-1

), activated sludge treatment 

without nitrification (DOC of 11 mg l
-1

), or moving-bed bioreactor treatment with full nitrification 

(three composite samples with DOC of 5, 7 and 8 mg l
-1

). PAC (10 mg of SORBOPOR
TM

 MV-125, 

Enviro Link SA, Switzerland) was added to one litre of the different types of wastewater and agitated 

at 140 rpm during 24 h in the dark at 20°C. Analyses of initial and final sample concentrations, after 

filtration at 0.45 µm, of carbamazepine, diclofenac, benzotriazole, mecoprop and iopamidol were done 

by SPE followed by UPLC-MS/MS as described above. DOC was analysed by catalytic combustion 

oxidation method (Shimadzu TNM1 device). 

3.2.1.7 Other analyses 

Standard wastewater quality parameters (TSS, DOC, COD, BOD5, NH4, NO3, NO2, Ptotal, and Psoluble) 

were regularly analysed on 24 h-composite samples by standard methods recommended in Switzerland 

(DFI, 1983). Temperature, pH and conductivity were continuously analysed on-line with E+H 

measurement systems (Endress+Hauser, Switzerland). Indicator bacteria (Escherichia coli, intestinal 

enterococci and total viable bacteria) and coliphages (F-specific (RNA) and somatic phages) were 

analysed by standard plate count methods. Bromide and bromate were analysed by High Performance 

Ion Chromatography (HPIC) with a post column-reaction, with UV-detection for bromate and 

suppressed conductivity detection for bromide. 

3.3 Results and discussion 

3.3.1 Micropollutant concentrations in WWTP influent and effluent 

3.3.1.1 Raw wastewater 

Most of the micropollutants analysed were detected in the raw wastewater, with 70 compounds 

quantified in at least one sample (Table 3.3). The highest average concentrations of pharmaceuticals 

were observed for the analgesics paracetamol (51 µg l
-1

) and ibuprofen (4.1 µg l
-1

), the iodinated 

contrast media family (3.3 to 21 µg l
-1

), the antidiabetic metformin (> 10 µg l
-1

) and the 

antihypertensive irbesartan (4.7 µg l
-1

). High concentrations (> 5 µg l
-1

) were also detected in raw 
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wastewater for food components (aspartame and caffeine), corrosion inhibitors (benzotriazole and 

methylbenzotriazole) and an industrial additive (benzothiazole). On average, 25 compounds reached 

an influent concentration > 1 µg l
-1

. A similar range of concentrations was observed in other Swiss 

municipal wastewater (Hollender et al., 2009), with the exception of the contrast media. In the present 

study, these showed higher concentrations probably due to the presence of many hospitals and clinics 

in the watershed. 

 

Fig. 3.2 Concentration of selected pesticides in raw wastewater as a function of wastewater dilution by runoff water. 

Correlations with the dilution factor (wet weather flow/dry weather flow): Isoproturon (r = 0.875, p < 0.001), carbendazim (r 

= 0.712, p < 0.01), terbutryn (r = 0.612, p < 0.05). 

High variations of the influent daily average concentration of the same compound were observed 

between the different campaigns. A factor > 4 in the 10-90 percentile range of the concentrations was 

observed for half of the compounds due, inter alia, to variations of the consumption of these 

compounds (Coutu et al., 2013). These variations highlight the importance of long term sampling 

campaigns, lasting at least one year, to cover the different consumption habits of the respective 

substances. During rain events, no noticeable different variations of the influent concentration could be 

detected compared to the background variability despite dilution by runoff water. Only the pesticides 

isoproturon, carbendazim and terbutryn showed a significant concentration increase during wet 

weather (p-value < 0.05 for the correlation with the dilution factor, Fig. 3.2), presumably due to the 

leaching of facades and runoff of pesticides used in gardens in the urban area (Burkhardt et al., 2007; 

Coutu et al., 2012b). 

3.3.1.2 Biological treatment 

As presented in Fig. 3.3 A and Table 3.3, most of the micropollutants were not well removed in the 

conventional biological wastewater treatment. Average removals of less than 50 % were found for 50 

(i.e., 71 %) of the 70 compounds detected, with 16 having an average concentration in the effluent 

above 1 µg l
-1

, and 52 a concentration above 100 ng l
-1

. Only the analgesic paracetamol was 

completely eliminated in all the campaigns. The most persistent micropollutants (less than 10% 

removal on average) were the pharmaceuticals carbamazepine, clindamycin, diclofenac, gabapentin 

and metoprolol, the pesticides carbendazim and diuron, and most of the pharmaceutical metabolites. 

All these compounds have been reported as persistent in many studies (Kupper et al., 2006; Oulton et 

al., 2010; Singer et al., 2010; Verlicchi et al., 2012). Some compounds such as the antibiotic 

clindamycin, the beta blocker metoprolol and most of the pharmaceutical metabolites were found at 

higher concentrations (in the dissolved phase) in the effluent of the biological treatment than in the 
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influent. Similar observations in other studies were attributed to (i) release during the treatment of 

compounds trapped in faeces particles (Göbel et al., 2007), (ii) biological cleavage in the treatment of 

pharmaceutical conjugates (human metabolites) producing again the parent compound (Onesios et al., 

2009), (iii) formation of bacterial metabolites during the biological treatment or (iv) analytical 

uncertainties. 

 
Fig. 3.3 Removal efficiency of 40 to 43 micropollutants during (A) the conventional biological wastewater treatment with 

either activated sludge without nitrification or moving bed bioreactor with partial to complete nitrification (average removal 

of 35%), (B) the ozonation (ozone dose between 2.3 to 9.1 mg O3 l
-1, median 5.9 mg O3 l

-1 or 0.83 g O3 g
-1 DOC, average 

removal of 71%) and (C) the PAC-UF treatment (PAC dose between 10 to 20 mg PAC l-1, median 12 mg l-1, average removal 

of 73%). Results of (n) analyses (24 h to 72 h composite samples) conducted between June 2009 and October 2010. 

Representation of the median removal, the quartiles 25-75 %, the minimum and maximum values and the outliers. 

Large variations of the removal rate in the biological treatment were observed among the different 

campaigns (Fig. 3.3 A). For 24 of the 42 regularly studied micropollutants, these removal efficiency 

variations could be explained in part by the different levels of nitrification reached in the biological 

treatment. Indeed, significant positive correlations were observed between the removal of those 

compounds and the degree of nitrification of ammonium (Table 3.2), with especially strong 

correlations (r > 0.8) for 11 substances and medium correlations (0.6 < r < 0.8) for 7 others. The 

influence of the ammonium removal on the abatement of 20 pollutants (with r > 0.5) is presented in 

Fig. 3.5. Less than 30% removal in a non-nitrifying sludge compared with more than 60% elimination 
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in a treatment with complete nitrification was observed for instance for atenolol, bezafibrate, bisphenol 

A, gemfibrozil, methylbenzotriazole or metronidazole. Similar observations were reported for some of 

these substances by Clara et al. (2005a). The higher micropollutant removal observed at high 

nitrification levels is presumably due to (i) the longer hydraulic residence time in the reactor (Fig. 3.4), 

leading to a longer time available for biodegradation processes, as well as to (ii) the presence of a 

more diverse microbial population with different metabolisms and a higher activity of nitrifying 

bacteria. These bacteria have the ability to degrade many micropollutants, probably by cometabolic 

oxidation by the ammonium monooxygenase enzyme (Fernandez-Fontaina et al., 2012). But, even for 

the most efficient biological treatment with complete nitrification (< 1 mg N-NH4 l
-1

), less than 50% 

removal was observed for 21 out of 43 compounds, with an average removal of only 50%. Among 

them, 18 compounds were not significantly influenced by the nitrifying efficiency of the biological 

treatment, including the very common pollutants carbamazepine, diclofenac, gabapentin, 

sulfamethoxazole, benzotriazole and mecoprop (Table 3.2). These results confirm the need for 

advanced treatments. 

Table 3.2 Correlation coefficients between the removal of 42 micropollutants and the level of nitrification (% of 

ammonium removal) in the biological treatment. Pearson correlation on 19 to 36 analyses. Correlations were considered 

significant for p values < 0.05. 

 

 

Fig. 3.4 Ammonium removal in the moving bed 

bioreactor as a function of the hydraulic retention time 

(HRT) in the reactor. Daily averages of 22 campaigns. 

Although a significant correlation is observed, nitrification 

depends on the presence of nitrifying microorganisms, 

which depends also on the conditions (HRT, aeration) a few 

days before the measurement campaigns (time for 

development). 

 

Substance Substance

Bisphenol A 0.97
***

Irgarol 0.48
*

Norfloxacin 0.95
***

Clarithromycin 0.43
**

Atenolol 0.93
***

Terbutryn 0.36
*

Ofloxacin 0.90
***

Paracetamol 0.29
ns

Bezafibrate 0.88
***

Isoproturon 0.27
ns

Methylbenzotriazole 0.87
***

Benzotriazole 0.26
ns

Metronidazole 0.87
***

Carbendazim 0.24
ns

Trimethoprim 0.86
***

Estrone 0.20
ns

Simvastatin 0.86
***

Propiconazol 0.20
ns

Gemfibrozil 0.83
***

Mecoprop 0.19
ns

Ketoprofen 0.83
***

Iopamidol 0.16
ns

Ibuprofen 0.76
***

Diclofenac 0.14
ns

Iohexol 0.75
***

Carbamazepine 0.12
ns

Mefenamic acid 0.71
***

Ciprofloxacin 0.12
ns

Naproxen 0.69
***

Gabapentin 0.05
ns

Azithromycin 0.67
**

Clindamycin 0.00
ns

Sotalol 0.66
***

Sulfamethoxazole -0.08
ns

Iomeprol 0.65
***

Diatrizoic + iothalamic acid -0.13
ns

Propranolol 0.57
*

Metoprolol -0.22
ns

Primidone 0.53
***

Atrazine -0.41
*

Iopromide 0.50
*

Diuron -0.42
ns

ns: no significant, * p < 0.05, ** p < 0.01, *** p < 0.001
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Fig. 3.5 Removal of 20 micropollutants in the biological treatment as a function of the level of nitrification 

(ammonium removal). Results of 19 to 36 campaigns on 24 to 72-h composite samples at the entrance of the WWTP and at 

the outlet of the biological treatment. Diverse levels of nitrification were obtained by varying the hydraulic residence time 

and/or the aeration either in an activated sludge tank with a sludge age of 2 d (0 to 26% of nitrification, 9 to 21 mg N-NH4 l
-1 

in the effluent) or in a moving bed bioreactor (57 to 99% of nitrification, 0.1 to 10 mg N-NH4 l
-1 in the effluent).  
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Table 3.3 Concentrations of 70 micropollutants in raw wastewater and after biological treatment (WWTP effluent), and removal rate obtained with the conventional (with low to 

complete nitrification) or the advanced treatments (in reference to the concentration in the effluent of the biological treatment) (ozone doses between 2.3 and 9 mg l-1 (median 5.9 mg l-1) and 

PAC doses between 10 and 20 mg l-1 (median 12 mg l-1)). Average with standard deviation of n analyses (24-h composite samples) conducted between June 2009 and October 2010. Compounds 

with analytical method A were regularly analysed, while compounds with analytical methods B and C correspond to one or two analyses of a 7-d composite sample taken for a larger screening 

campaign (with partial nitrification, 6 mg O3 l
-1, or 12 mg PAC l-1). Comparison with removal rates obtained in other studies in similar conditions is presented for the two advanced treatments 

(Abegglen and Siegrist, 2012; Bundschuh et al., 2011a; Hollender et al., 2009; Huber et al., 2005; Huerta-Fontela et al., 2011; Ormad et al., 2008; Reungoat et al., 2012; Reungoat et al., 2010; Rosal et al., 2010; Senta et al., 2011; Sudhakaran et al., 

2012; Ternes et al., 2003; Wert et al., 2009; Yang et al., 2011; Zwickenpflug et al., 2010). 

 

Compound Compound class
LOD 

(ng l
-1

)

Analytical 

method

Number of 

analysis (n)

Influent 

concentration (ng l
-1

)
(n)

Effluent 

concentration (ng l
-1

)
(n)

WWTP 

removal (%)
(n)

Ozone 

removal (%)
(n)

PAC-UF 

removal (%)

Pharmaceuticals

Atenolol Beta blocker 1.2 A 37 1274 (±436) 37 682 (±267) 37 42 (±27) 28 85 (±14)
a

21 88 (±9)
e

Azithromycin Antibiotic 75.6 A 19 2272 (±1472) 19 935 (±333) 19 44 (±26) 12 74 (±10)
d

8 76 (±8)
c

Bezafibrate Lipid regulator 1.5 A 37 953 (±262) 37 595 (±314) 37 38 (±26) 27 81 (±8)
a

21 79 (±12)
e

Carbamazepine Anticonvulsant 0.1 A 37 482 (±586) 37 461 (±292) 37 7.6 (±18) 28 97 (±4)
a

21 90 (±9)
e

Ciprofloxacin Antibiotic 36.5 A 19 2291 (±600) 19 779 (±372) 19 63 (±18) 12 53 (±29)
b8

8 63 (±32)
f

Clarithromycin Antibiotic 0.4 A 37 709 (±418) 37 440 (±302) 37 37 (±26) 28 93 (±4)
a

21 92 (±5)
e

Clindamycin Antibiotic 0.2 A 19 65 (±33) 19 115 (±69) 19 0 (±0) 12 99 (±1)
a

8 82 (±13)
c

Diatrizoic and iothalamic acid Iodinated contrast medium 32.8 A 17 597 (±628) 19 370 (±366) 17 28 (±25) 12 16 (±16)
b2

8 15 (±13)
e

Diclofenac Analgesic / Anti-inflammatory 1.2 A 37 1197 (±497) 37 1187 (±389) 37 9 (±14) 28 94 (±3)
a

21 69 (±19)
e

Eprosartan Antihypertensive 20 B 2 1055 (±488) 1 880 1 37 1 98
c

1 65
c

Fluconazole Antifungal 20 B 2 120 (±14) 1 110 1 15 1 27
d

1 > 64
c

Gabapentin Anticonvulsant 1.8 A 37 3867 (±1339) 37 3692 (±1456) 37 9.2 (±12) 28 38 (±16)
b5

21 11.8 (±11)
f

Gemfibrozil Lipid regulator 2.9 A 19 411 (±128) 19 265 (±159) 19 36 (±32) 12 94 (±5)
b11

8 76 (±16)
d

Ibuprofen Analgesic / Anti-inflammatory 13.4 A 19 4101 (±2465) 19 952 (±759) 19 57 (±46) 11 63 (±12)
b11

6 83 (±7)
e

Iohexol Iodinated contrast medium 2177.3 A 35 21275 (±6975) 34 15191 (±7294) 32 31 (±27) 26 38 (±16)
a

19 57 (±25)
e

Iomeprol Iodinated contrast medium 306.9 A 35 14467 (±9657) 35 10534 (±6338) 35 25 (±24) 28 43 (±12)
b2

20 54 (±21)
c

Iopamidol Iodinated contrast medium 145.4 A 30 3360 (±2574) 30 2535 (±1587) 30 21 (±20) 24 42 (±13)
a

16 49 (±21)
e

Iopromide Iodinated contrast medium 2044.6 A 22 6408 (±2663) 23 4141 (±2086) 21 29 (±27) 15 34 (±19)
a

11 47 (±30)
c

Irbesartan Antihypertensive 20 B 2 4700 (±4808) 1 1700 1 79 1 51
b7

1 98
c

Ketoprofen Analgesic / Anti-inflammatory 6.0 A 19 1119 (±1328) 19 669 (±757) 19 32 (±21) 12 63 (±16)
a

8 81 (±9)
c

Levetiracetam Anticonvulsant 10 B 2 2100 (±566) 1 330 1 87 1 18
a

1 > 97
c

Losartan Antihypertensive 20 B 2 2405 (±2256) 1 510 1 87 1 > 96
b7

1 80
c

Mefenamic acid Analgesic / Anti-inflammatory 2.6 A 19 946 (±455) 19 581 (±299) 19 33 (±29) 12 98 (±2)
a

8 93 (±2)
e

Metformin Antidiabetic < 1000 B 2 > 10000 1 > 4000 1  - 0  - 1 > 55
c

Metoprolol Beta blocker 4.4 A 19 561 (±299) 19 653 (±400) 19 4.6 (±13) 12 88 (±8)
a

8 95 (±4)
f

Metronidazole Antibiotic 21.0 A 19 1168 (±866) 19 567 (±497) 19 45 (±34) 12 64 (±12)
b6

5 79 (±17)
c

Morphine Analgesic / Anti-inflammatory 20 B 1 270 1 190 1 30 1 > 90
c

1 > 90
c

Naproxen Analgesic / Anti-inflammatory 9.4 A 37 697 (±249) 37 380 (±110) 37 41 (±23) 28 90 (±8)
a

21 81 (±12)
e

Norfloxacin Antibiotic 1.9 A 19 334 (±167) 19 59 (±35) 19 76 (±19) 12 75 (±29)
b9

8 82 (±21)
c

Ofloxacin Antibiotic 0.4 A 19 234 (±60) 19 84 (±36) 19 61 (±17) 12 85 (±20)
c

8 83 (±24)
c

Oxazepam Anxiolytic 20 B 2 305 (±134) 1 350 1 13 1 9
d

1 69
c

Paracetamol Analgesic / Anti-inflammatory 7.9 A 18 51438 (±31884) 18 < 7.9 19 100 (±0) 1 > 85
b11

0  -

Primidone Anticonvulsant 0.7 A 37 114 (±39) 37 97 (±21) 37 16 (±15) 28 57 (±11)
a

21 51 (±19)
f

Propranolol Beta blocker 0.3 A 19 127 (±37) 19 114 (±17) 19 13 (±17) 12 99 (±1)
a

8 99 (±1)
c

Ritonavir Antiretroviral 20 B 2 110 (±14) 1 90 1 25 1 > 78
c

1 > 56
c
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Table 3.3 (Continuation)  

 

Compound Compound class
LOD 

(ng l
-1

)

Analytical 

method

Number of 

analysis (n)

Influent 

concentration (ng l
-1

)
(n)

Effluent 

concentration (ng l
-1

)
(n)

WWTP 

removal (%)
(n)

Ozone 

removal (%)
(n)

PAC-UF 

removal (%)

Pharmaceuticals

Simvastatin Lipid regulator 29.7 A 14 736 (±503) 14 98 (±96) 14 77 (±23) 8 > 70
c

4 > 65
c

Sotalol Beta blocker 0.5 A 37 337 (±175) 37 247 (±63) 37 23 (±20) 28 99 (±1)
a

21 81 (±15)
c

Sulfamethoxazole Antibiotic 0.2 A 37 340 (±261) 37 171 (±127) 37 38 (±30) 25 93 (±7)
a

20 64 (±25)
e

Trimethoprim Antibiotic 0.2 A 37 235 (±52) 37 158 (±73) 37 35 (±23) 28 99 (±2)
a

21 94 (±4)
f

Valsartan Antihypertensive 5 B 2 2250 (±354) 1 2100 1 16 1 61
b7

1 65
c

Venlafaxine Antidepressant 10 B 2 235 (±21) 1 150 1 40 1 75
d

1 46
d

Pharmaceutical metabolites

10,11-dihydro-10,11-dihydroxy carbamazepine Drug metabolite 10 B 2 975 (±106) 1 1000 1 0 1 47
b10

1 52
c

Atenolol acid Drug metabolite 10 B 2 1550 (±212) 1 1700 1 0 1 72
d

1 > 99
c

Fenofibric acid Drug metabolite 20 B 2 390 (±57) 1 490 1 0 1 57
b1

1 78
c

Formyl-4-aminoantipyrine Drug metabolite 10 B 2 445 (±92) 1 700 1 0 1 > 99
b6

1 59
c

N,N-didesvenlafaxine Drug metabolite 10 B 1 250 1 330 1 0 1 > 97
c

1 61
c

N-acetyl sulfamethoxazole Drug metabolite 20 B 2 570 (±156) 1 50 1 93 1 50
b2

1 > 20
c

N-acetyl-4-aminoantipyrine Drug metabolite 20 B 2 920 (±28) 1 1200 1 0 1 > 98
b6

1 34
c

Valsartan acid Drug metabolite 10 B 2 125 (±21) 1 150 1 0 1 39
c

1 43
c

Endocrine disrupting compounds

17α-Ethinylestradiol Hormonal contraceptive 1.9 C 2 5.3 (±4.3) 1 < 1.9 1 > 18 0  - 1  -

17β-Estradiol Hormone 0.5 C 2 14 (±1) 1 1.3 1 91 1 > 61
b2

1 > 61
c

Bisphenol A Plastic component 48.9 A 18 834 (±460) 18 338 (±311) 18 50 (±36) 3 > 95
b4

3 > 83
c

Estriol Hormone 97.5 A 12 306 (±140) 12 < 97.5 11 > 75 (±12) 0  - 0  -

Estrone Hormone 15.6 A 12 134 (±87) 12 71 (±83) 12 58 (±31) 3 > 90
b2

3 > 92
c

Biocides - pesticides

Atrazine Herbicide 0.2 A 37 21 (±16) 37 14 (±8) 37 20 (±24) 28 34 (±13)
a

21 74 (±17)
c

Carbendazim Fungicide 16.1 A 19 106 (±92) 19 132 (±79) 19 1.5 (±3.5) 12 79 (±17)
c

5 > 93
e

Diuron Herbicide 13.7 A 9 69 (±49) 9 70 (±41) 9 10 (±16) 7 73 (±16)
a

3 > 82
f

Irgarol Algicide 1.0 A 19 16 (±14) 19 7.5 (±6.2) 19 34 (±29) 10 32 (±21)
d

5 0 to > 60
c

Isoproturon Herbicide 16.9 A 16 62 (±67) 16 39 (±32) 16 27 (±22) 3 68 (±26)
b3

2 75 (±12)
e

Mecoprop Herbicide 9.6 A 37 386 (±408) 37 245 (±239) 37 29 (±25) 28 60 (±22)
a

21 48 (±27)
e

Propiconazole Fungicide 6.9 A 19 59 (±28) 19 40 (±17) 19 28 (±16) 12 32 (±14)
c

7 66 (±15)
c

Terbutryn Algicide 0.1 A 37 38 (±21) 37 19 (±16) 37 49 (±25) 28 85 (±10)
a

20 80 (±13)
c

Other common chemicals

Aspartame Sweetener < 100 B 2 > 10000 1 > 4000 1  - 0  - 1  -

Benzothiazole Industrial additive 400 B 2 6500 (±566) 1 1400 1 80 1 7
d

1 > 71
c

Benzotriazole Corrosion inhibitor 4.1 A 37 9224 (±3112) 37 6948 (±1846) 37 24 (±22) 28 64 (±14)
a

21 90 (±7)
e

Caffeine Food component < 50 B 2 > 10000 1 820 1 > 92 1 > 92
b11

1 65
f

Galaxolidone Fragrance (HHCB) metabolite 40 B 2 335 (±177) 1 220 1 52 1 0
d

1 77
c

Methylbenzotriazole Corrosion inhibitor 48.5 A 19 5720 (±2810) 19 4201 (±2488) 19 29 (±24) 12 80 (±15)
a

8 96 (±2)
e

N,N-diethyl-3-methylbenzamide (DEET) Insect repellent < 50 B 2 805 (±445) 1 290 1 74 1 48
b8

1 66
f

Oxybenzone UV filter 20 B 2 425 (±290) 1 60 1 90 1 > 67
a

1 50
c

a
 Similar removal (<10% difference) obtained with about 0.6 g O3 g

-1
DOC by Hollender et al. (2009). 

b
 Similar range of removal obtained in other studies (

1
Ternes et al. 2003, 

2
Huber et al. 2005, 

3
Ormad et al. 2008, 

4
Wert et al. 2009, 

5
Reungoat et al. 2010, 

6
Rosal et al. 2010, 

7
Huerta-

Fontela et al. 2011, 
8
Yang et al. 2011, 

9
Senta et al. 2011, 

10
Bundschuh et al. 2011, 

11
Sudhakaran et al. 2012). 

c
 Not reported in other studies. 

d
 Contradictory to other studies (>10% lower removal) (Hollender et al. 2009, Reungoat et al. 2010 and 2012). 

e
 Similar removal (<10% difference) 

obtained with 10 to 20 mg PAC l
-1

 by Zwickenpflug et al. 2010 (in Abegglen et al. 2012). 
f
 Similar range of removal obtained with granular activated carbon (GAC) filters (Reungoat et al. 2010 and 2012, Yang et al. 2011)
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3.3.2 Removal of micropollutants with advanced treatments 

Both advanced treatments were able to reduce the micropollutant concentrations in the effluent 

significantly (Fig. 3.3 B and C, Table 3.3). The number of micropollutants with an average 

concentration above 1 µg l
-1

 in the effluent of the advanced treatments was reduced from 16 in the 

biologically treated wastewater to nine after ozonation and to seven after PAC-UF. Substances with 

concentrations > 1 µg l
-1

 after both treatments were the contrast media iohexol, iomeprol, iopamidol 

and iopromide, the pharmaceuticals gabapentin and metformin and the sweetener aspartame, and after 

ozonation additionally the chemicals benzotriazole and benzothiazole. The number of micropollutants 

with an average concentration above 100 ng l
-1

 was reduced from 52 (out of 70) in the biologically 

treated wastewater to 30 after both advanced treatments.  

3.3.2.1 Ozonation  

The removal percentages during the ozonation of the 40 micropollutants routinely analysed are 

presented in Table 3.3 (method A) and Fig. 3.3 B. 

Substances with high ozone reactivity 

Twelve substances were eliminated to over 90% even with the lowest ozone dose (2.3 mg O3 l
-1

, eq. 

0.3 g O3 g
-1

 DOC), including 4 antibiotics (trimethoprim, clindamycin, sulfamethoxazole and 

clarithromycin), 2 beta-blockers (sotalol and propranolol), 2 anti-inflammatory drugs (mefenamic acid 

and diclofenac), carbamazepine, gemfibrozil, estrone and bisphenol A. All these compounds contain 

electron-rich moieties such as phenols, anilines, olefins or amines (except gemfibrozil with a benzene 

derivate), which are known to have high ozone reactivity (second-order rate constant kO3 > 10
4
 M

-1
 s

-1
) 

(Lee and von Gunten, 2012). The removal of substances with lower reactivity was more dependent on 

the operational conditions, such as the ozone dose (from 2.3 to 9.1 mg O3 l
-1

) and the wastewater 

quality (presence of ozone and hydroxyl radical scavengers or competitors, pH, etc.), leading to higher 

variations in the transformation rate between the different sampling campaigns. 

The macrolide azithromycin showed lower removals (average of 74%) than expected based on its 

reported high ozone reactivity (kO3 6 × 10
6
 M

-1
 s

-1
) (Lee and von Gunten, 2012). One potential 

explanation is the possible sorption (up to 15% in WWTP effluent) of this substance to colloid 

particles (1 nm to 1 µm, considered as being part of the aqueous phase) (Maskaoui et al., 2007; Worms 

et al., 2010), which could protect it against ozone attack (Zimmermann et al., 2011a). Potential short-

circuiting of a small water fraction through the reactor, which could reduce the exposure to ozone, 

may also explain the incomplete removal of very reactive substances such as azithromycin, diclofenac 

or carbamazepine. 

Substances with low ozone but high OH radical reactivity 

Ibuprofen, ketoprofen, metronidazole, primidone, mecoprop and benzotriazole, which have low 

reactivity with ozone (kO3 < 350 M
-1

 s
-1

 (Beltrán et al., 1994; Real et al., 2009; Rosal et al., 2010; 

Zimmermann et al., 2011a)) showed moderate average removals (around 60%), mainly due to reaction 

with the strong and unselective oxidant OH hydroxyl radical originating from reaction of ozone with 
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the organic wastewater matrix (Huber et al., 2003; Rosal et al., 2010). As the OH radical formation in 

wastewater is mainly due to the reaction of ozone with specific moieties of the effluent organic matter 

(EfOM), variation in the composition of EfOM, for instance by addition of coagulant, can lead to 

different amounts of OH radical formed per unit of ozone (Gonzales et al., 2012; Wert et al., 2011). 

Moreover, OH radical exposure varies with the concentration of HO
·
 scavengers (such as carbonate) 

and pH (Buffle et al., 2006). Reactions of micropollutants with OH radicals are thus more affected by 

the quality of the wastewater than direct ozone oxidation (Wert et al., 2011), which could explain the 

high removal variation observed for compounds with low ozone reactivity. 

Substances with low ozone and low OH radical reactivity 

Under the applied ozone doses (average 5.7 mg O3 l
-1

 or 0.8 g O3 g
-1

 DOC), only low removals 

(average of 34 to 43%) of the iodinated contrast media iohexol, iopromide, iomeprol, and iopamidol 

were obtained, with particularly low elimination (16%) of diatrizoic and iothalamic acids. Diatrizoate, 

the anionic form of diatrizoic acid, is one of the most ozone-resistant pharmaceuticals, having, as other 

contrast media, very low ozone reactivity, but also a low OH radical reactivity (Huber et al., 2005; 

Real et al., 2009). Low removals of atrazine (34%), gabapentin (38%), irgarol (32%) and 

propiconazole (32%) were also observed. Atrazine is reported to have low reactivity with ozone and 

OH radicals (Acero et al., 2000). Poor oxidation of gabapentin was also obtained in other studies 

(Reungoat et al., 2010). Low removals of the pesticides irgarol and propiconazole during ozonation 

were also observed by Bundschuh et al. (2011a), but for irgarol, higher removals were reported by 

Hollender et al. (2009). Irgarol is expected to have low ozone reactivity due to its triazine ring, which 

is very resistant to oxidation (Chen et al., 2008). The very low concentration of this substance in 

WWTP effluent (2 to 17 ng l
-1

), close to the limit of quantification, leads however to high analytical 

uncertainties and could be the cause of the divergences observed. Resistance to ozonation is 

particularly of concern for the contrast media and gabapentin due to their high concentrations in 

wastewater (above 1 µg l
-1

) and their persistence even for efficient biological treatment. 

Removal efficiency with higher ozone doses 

A higher ozone dose, 17.6 mg O3 l
-1

, equivalent to 2.6 g O3 g
-1

 DOC, was tested during one campaign 

(data not illustrated). At this dosage, much better removal of the recalcitrant micropollutants was 

found, with 88% gabapentin elimination, 66% atrazine, and 84, 82 and 81%, respectively, of 

iopamidol, iohexol and iomeprol. Higher doses lead however to higher costs and a higher risk of 

forming bromate, a toxic by-product (see below “Formation of toxic oxidation by-products“), and 

therefore were not further tested. 
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Removal of other micropollutants and human drugs metabolites measured in a screening campaign 

Table 3.3 presents also the removal of 23 other micropollutants (analytical method B), which were 

analysed only once on a 7-d composite sample (with 6 mg O3 l
-1

). Half of them were removed at a rate 

of over 70%. One can notice however the lower efficiency (< 51% removal) of ozone for the 

antihypertensive irbesartan, the anticonvulsant levetiracetam, the anxiolytic oxazepam and the insect 

repellent DEET. These substances contain amide functions that exhibit low reactivity with ozone (Lee 

and von Gunten, 2012). The human pharmaceutical metabolites, which are mainly hydroxylated, 

hydrolysed or conjugated forms of the parent compound (Ikehata et al., 2006), were mostly not as well 

removed as the parent compound. This is especially the case for the 10,11-dihydro-10,11-dihydroxy 

carbamazepine and N-acetyl sulfamethoxazole, with an elimination of only 50% compared to > 90% 

for carbamazepine and sulfamethoxazole. The lower ozone reactivity of the metabolites can be 

explained by the protective effect of the hydroxyl or acetyl group on the reactive moiety, which 

changes the electron density and thus slows down the reaction (Huber et al., 2005). 

Influence of the pH on the oxidation process 

Reactivity of a substrate with ozone is strongly influenced (up to 4 orders of magnitude) by the 

protonation of the reactive amine or phenol (Lee and von Gunten, 2012). Dissociated moieties have a 

higher electron density and thus are more reactive towards ozone (Lee and von Gunten, 2012). Due to 

their two pKa values close to the pH of wastewater (Table S 3.1, SI), the reactivity of fluoroquinolone 

antibiotics is particularly susceptible to pH variations. The variations of pH measured in the 

wastewater, from 6.3 to 8, can thus increase the reactivity of ciprofloxacin, norfloxacin and ofloxacin 

by 1 or 2 orders of magnitude (Dodd et al., 2006), explaining partially the high variation in the 

removal rates of these compounds during the different campaigns. This assumption is supported by the 

significant positive correlations observed between the pH and the removal rate of these three 

compounds (Fig. 3.6).  

 

Fig. 3.6 Removal of fluoroquinolone antibiotics by ozonation (in the pilot plant) as a function of the feed water pH. (A) 

Ciprofloxacin. (B) Norfloxacin. (C) Ofloxacin. Ozone doses varied between 3 and 7 mg O3 l
-1 to maintain the same residual 

dissolved ozone concentration in the third chamber of the reactor. As the pH influences the ozone decomposition, higher 

ozone doses were usually required at higher pH to maintain a similar residual ozone concentration. These potentially higher 

ozone exposures at higher pH may thus also partially explain the correlation observed. However, no clear link between the 

ozone dose and the removal of these three compounds was evident, suggesting that the pH was the most influential factor. 

Correlations of the removal rate with the pH: ciprofloxacin (r = 0.76 p = 0.004), norfloxacin (r = 0.73, p = 0.007), ofloxacin 

(r = 0.74, p = 0.006). 
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Relation between ozone dose and micropollutant removal efficiency 

Effluent organic matter containing electron-rich organic moieties and nitrite react rapidly with ozone, 

contributing to the ozone demand with 0.2-0.6 mg O3 mg
-1

 C and 3.4 mg O3 mg
-1

 N-NO2 respectively 

(Wert et al., 2011; Wert et al., 2009). Thus, in order to have enough residual ozone for the oxidation of 

micropollutants and to assure a sufficient and relatively constant ozone exposure, the ozone dosage 

was regulated to maintain a constant ozone residual concentration near the end of the reactor. During 

the campaigns, the dosage varied from 2.3 to 9.1 mg O3 l
-1

 depending mainly on the DOC (0.38 g O3  

g
-1 

C) and NO2 (3.4 g O3 g
-1 

N) concentrations (Fig. 3.7), but also due to the residence time of the 

water in the reactor and the choice of the chamber in which ozone was injected. No clear relation 

between ozone dose (in mg O3 l
-1

) and micropollutant transformation rate was evident. However, when 

the ozone dose was normalized by the concentration of scavenger equivalent, a weighted sum of DOC 

and NO2 concentrations (3.4 [N-NO2] + 0.38 [DOC]), higher doses (in g O3 g
-1

 scavenger equivalent) 

tended to lead to higher removal rates for most micropollutants (Fig. 3.8). An average ozone dose of 

5.7 mg O3 l
-1

, corresponding to 1.6 g O3 g
-1

 scavenger equivalent or around 0.85 g O3 g
-1

 DOC in the 

case of 0.3 mg N-NO2 l
-1

 (or 0.61 g O3 g
-1

 DOC in absence of NO2), was sufficient (minimum dose) to 

achieve an average reduction of 80% of the 65 studied micropollutants in the WWTP (compared with 

raw wastewater). 

 

Fig. 3.7 Daily average ozone dosage in the reactor as a function of daily average concentrations of (A) dissolved 

organic carbon (DOC), (B) nitrite, and (C) scavenger equivalent, calculated by the optimal (maximizing R2) weighted 

sum of DOC and NO2 concentrations (in mg l-1): 0.38 DOC + 3.4 N-NO2. The ozone dose was regulated to maintain the same 

residual dissolved ozone concentration (~0.1 mg l-1) in the third chamber of the reactor and thus varied depending on the 

oxidative demand of the water, mainly due to DOC and nitrite concentration. 
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Fig. 3.8 Influence of the daily average ozone dose on the removal of 15 micropollutants by ozonation. Results of 20 

campaigns conducted on the effluent of a moving bed bioreactor with partial nitrification. The ozone dose is normalized by 

the scavenger equivalent concentration, calculated by the weighted sum of DOC and NO2 concentrations (in mg l-1): 0.38 

DOC + 3.4 N-NO2. 
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Effect of the sand filter on micropollutant removal 

The sand filter following the ozonation had only a limited effect on micropollutant removal, with a 

slight improvement in the average removal of 36 compounds from 73.2% for ozone alone to 75.8% for 

ozone combined with the sand filter. Higher removals (> 10%) were observed mainly for compounds 

that were well eliminated in an efficient biological treatment, such as ibuprofen, metronidazole and 

ciprofloxacin, and for two pesticides carbendazim and propiconazole, possibly due to sorption on the 

biofilm (Fig. 3.9). 

 

Fig. 3.9 Comparison of the removal of 36 micropollutants with ozone alone or with ozone followed by a sand filter 

(SF). Black line: similar removal by ozone alone or by ozone + SF. Dashed line: 10% difference between the removal by 

ozone alone or by ozone + SF. Average of 8 sampling campaigns (24 to 72-h composite samples). Average removal of the 36 

compounds was 73.2% for ozone and 75.8% for ozone + SF. 

Formation of toxic oxidation by-products 

Formation of toxic oxidation by-products can occur during ozonation of wastewater, such as 

carcinogenic bromate, nitrosamines or formaldehyde (Wert et al., 2007; Zimmermann et al., 2011a). 

High concentrations of bromide (350 µg l
-1

) measured in a 7-d composite sample in the wastewater 

suggested that excessive bromate formation could occur during ozonation (von Gunten, 2003b). The 

concentration of bromate was below the detection limit (1 µg l
-1

) in the effluents of the biological 

treatment and PAC-UF. After ozonation (6 mg O3 l
-1

, equal to 0.8 g O3 g
-1

 DOC) and sand filtration, 

the bromate concentration increased to 3.7 and 5.1 µg l
-1

 respectively. These concentrations remained 

however below the Swiss drinking water standard of 10 µg l
-1

 (OSEC, 1995) and far below the 

proposed ecotoxicologically relevant concentration of 3 mg l
-1

 (Hutchinson et al., 1997). The 

formation of bromate was dependent on the ozone dose applied, exceeding the drinking water standard 

for an ozone dose above 1.8 mg O3 mg
-1

 scavenger equivalent (7 mg O3 l
-1

, with 70 µg l
-1

 bromide), as 

shown in a laboratory scale experiment (Fig. 3.10). Unlike nitrosamines that can be partially removed 

in a sand filter (Hollender et al., 2009), the bromate concentration was not reduced during the sand 
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filtration, and therefore a high ozone dose should be avoided to ensure low bromate concentrations in 

the effluent. 

 

Fig. 3.10 Influence of the ozone dose on bromate formation. The ozone dose is normalized by the scavenger equivalent 

concentration, calculated by the weighted sum of DOC and NO2 concentrations (in mg l-1): 0.38 DOC + 3.4 N-NO2. 

Laboratory-scale oxidation experiments were conducted on 24-h composite wastewater samples collected at the Lausanne 

WWTP after biological treatment with full nitrification (5 mg DOC l-1, 0.6 mg N-NO2 l-1). Different amounts of a stock 

solution of dissolved ozone (in water) were added to the samples to reach the desired ozone concentration (from 0 to 9.6 mg 

O3 l
-1). At low doses (< 1.2 g O3 g

-1 scavenger equivalent), only negligible oxidation of bromide to bromate occurred due to 

fast ozone consumption by nitrite and reactive DOC. Above 1.2 g O3 g
-1 scavenger equivalent, a linear relation between the 

ozone dose and bromate formation was observed. At 1.8 g O3 g
-1 scavenger equivalent (7 mg O3 l

-1, or 1.4 g O3 g
-1 DOC), the 

Swiss drinking water standard for bromate (10 µg l-1) was exceeded. 

3.3.2.2 Powdered activated carbon treatment 

The removal percentage during the PAC-UF treatment of the 40 micropollutants routinely analysed is 

presented in Table 3.3 (method A) and Fig. 3.3 C. High variations in the removal rate, especially for 

compounds with lower PAC affinity, were observed among the different campaigns. Indeed, to 

optimize the treatment the PAC dose was increased from 10 to 20 mg l
-1

 during the study. Moreover, 

the DOC concentration in the feed water was not constant, leading to variable competition for the 

adsorption sites between EfOM and micropollutants. As the type of PAC (Norit SAE SUPER and 

SORBOPOR MV-125) did not significantly influence the removal rate compared to other variables, 

results are presented for both PAC types together. 

Substances with high PAC affinity  

Seven substances were removed at a rate of more than 90% in almost all the campaigns, including the 

beta-blockers propranolol and metoprolol, as well as methylbenzotriazole, trimethoprim, mefenamic 

acid, estrone and carbendazim. In 50% of the campaigns, over 90% of the following compounds were 

removed as well: clarithromycin, carbamazepine, benzotriazole, ofloxacin, norfloxacin and atenolol. 

These 13 micropollutants have a very good affinity for PAC, with high elimination rates even with 10 

mg PAC l
-1

. Apart from the hydrophobic mefenamic acid, all those compounds were either positively 

charged (five substances) or neutral (seven substances) at the pH of the wastewater, covering a broad 

range of hydrophobicity (log Dow from -1.3 to 3.7).  
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Substances with medium PAC affinity 

A second group of 15 substances (from metronidazole to azithromycin on Fig. 3.3 C) had, on average, 

between 70 and 90% removal, including six neutral and six negatively charged compounds. The 

medium PAC affinity for diclofenac and gemfibrozil was reported elsewhere (Snyder et al., 2007; 

Westerhoff et al., 2005), but better removal of ibuprofen was observed in our case, either due to 

different PAC characteristics or to biodegradation phenomena in the reactor. 

Substances with variable or low PAC affinity 

The 12 remaining substances (from sulfamethoxazole to diatrizoic acid on Fig. 3.3 C), composed of 

neutral or negatively charged compounds (including all the hydrophilic contrast media), showed poor 

or very variable affinity for PAC with an average removal between 11 and 66%. The high removal 

variation observed for sulfamethoxazole, ciprofloxacin, mecoprop, primidone and the contrast media 

were partly due to the different PAC doses applied, with increasing removal when the dose increased 

from 10 to 20 mg l
-1

. High variations (< 20% to > 60% removal) occurred also within the same PAC 

dose (mainly at 10 mg l
-1

), which could not be explained by the different parameters monitored (water 

quality and operational parameters such as residence time, PAC concentration, PAC type, etc.). These 

high variations may be due to different EfOM content and composition, as discussed below.  

The anionic contrast media diatrizoic and iothalamic acids and the anticonvulsant gabapentin showed 

less than 20% removal by PAC-UF. The low PAC affinity of these hydrophilic (log Dow of -1.2 to -

0.4) and charged substances were reported by Reungoat et al. (2010) and Boehler et al. (2012). Low 

adsorption of gabapentin could be caused by the absence of an aromatic ring (de Ridder et al., 2010). 

The variable elimination of irgarol (0% to > 60%), despite its hydrophobicity (log Dow of 4), is 

probably due to its very low concentration in the feed water, leading to high uncertainties in estimates 

of the removal rate.  

Removal efficiency with higher PAC dose 

A higher PAC dose of 60 mg l
-1

 was tested during one campaign, leading to more than 90% removal 

of substances with a low PAC affinity (e.g., sulfamethoxazole, mecoprop, primidone and the contrast 

media iohexol, iomeprol and iopromide). Even this high dose was unable to remove gabapentin 

satisfactorily (56% removal, data not illustrated). Higher doses of PAC lead however to higher costs 

and larger amounts of sludge produced. 

Removal of other micropollutants and human drug metabolites measured in a screening campaign 

Table 3.3 shows the removal of 24 other micropollutants (analytical method B), which were analysed 

once on a 7-d composite sample (12 mg PAC l
-1

). About half of them were removed at a rate of over 

70%. We observe, however, a lower efficiency (< 60% removal) for most of the human 

pharmaceutical metabolites. Indeed, pharmaceutical compounds are usually transformed in the liver or 

kidney to more polar and hydrophilic metabolites in order to be readily excreted in the urine or bile 

(Ikehata et al., 2006). For instance, the metabolite 10,11-dihydro-10,11-dihydroxycarbamazepine has a 

log Kow of 0.13 compared to 2.45 for the parent compound carbamazepine (Miao et al., 2005). 
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Therefore, due to the low hydrophobicity of human metabolites, a lower PAC affinity is expected. The 

low removal of the UV filter oxybenzone and the antidepressant venlafaxine is not explained, 

however, given the good PAC affinity for those substances reported in the literature (Reungoat et al., 

2012; Snyder et al., 2007). 

 

Fig. 3.11 Influence of dissolved organic carbon (DOC) wastewater concentration on powdered activated carbon (PAC) 

removal efficiency of five micropollutants in wastewater. Average (diamonds) and standard deviation (error bars) of 

triplicates. Laboratory-scale batch adsorption experiments were conducted on 24-h composite wastewater samples collected 

during the same period at the Lausanne WWTP after either simple coagulation-precipitation treatment (DOC of 17 mg l-1), 

activated sludge treatment without nitrification (DOC of 11 mg l-1), or moving-bed bioreactor treatment with full nitrification 

(DOC of 5, 7 and 8 mg l-1). (10 mg l-1 PAC, SORBOPORTM MV-125). 

Possible influence of effluent organic matter on removal efficiency 

The adsorption process in complex matrix is not yet fully understood and can be influenced by many 

parameters, the main one being the competitive effect of the EfOM, either by direct competition for 

the adsorption sites or by pore blockage/constriction (Delgado et al., 2012). EfOM characteristics, 

mainly the concentration of low molecular weight and hydrophobic molecules, determine the 

competitiveness of the organic matter (de Ridder et al., 2011; Newcombe et al., 1997). Variation in the 

concentration and composition of the EfOM, due to different treatments of the wastewater 

(biodegradation, chemical coagulation, etc.) can thus lead to different micropollutant removal rates at 

the same PAC dose. This issue was investigated with laboratory batch adsorption experiments. Five 

micropollutants in Lausanne wastewater treated to different levels (coagulation/precipitation, 

biological treatment without nitrification or with full nitrification) were examined. A strong influence 

of the feed water DOC (from 5 to 17 mg l
-1

) on the substance removal with PAC was observed for all 

the compounds (Fig. 3.11), confirming the high competitive effect of EfOM for the adsorption sites. 

The highest PAC efficiency was observed in the effluent of the biological treatment with full 

nitrification (DOC of 5 mg l
-1

), significantly higher than in wastewater coming from a treatment 
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without nitrification (DOC of 11 mg l
-1

). Wastewater treated only with coagulation/precipitation (DOC 

of 17 mg l
-1

) led to a strong reduction of the PAC adsorption capacity, probably due to the presence of 

smaller biodegradable competitive molecules. Thus, different degrees of secondary treatment can lead 

to variable adsorption rates. Consequently, the PAC dose necessary to achieve an average overall 

micropollutant removal above 80% (whole treatment) in wastewater with a DOC of 5 to 10 mg l
-1

, was 

variable: 10 mg l
-1

 was sometimes sufficient but in most cases 20 mg l
-1

 was required. These minimum 

doses were noted in other studies as well (Boehler et al., 2012; Nowotny et al., 2007). 

Role of electrostatic and hydrophobic interaction in the adsorption process 

Electrostatic and hydrophobic interactions seem to play an important role in the adsorption process. As 

presented in Fig. 3.12, on average more than 80% (most more than 90%) of all the positively charged 

molecules were removed, independently of their hydrophobicity. Only the large molecule 

azithromycin, diprotonated at pH 7, was eliminated to a lower extent despite its higher hydrophobicity, 

possibly by size exclusion in the micropores of the PAC (Ji et al., 2010). The removal of the 

negatively charged and neutral substances was more dependent on their hydrophobicity, the most 

hydrophilic compounds being eliminated to a lesser extent. For the same log Dow, neutral and 

especially negatively charged compounds were on average less adsorbed than those that were 

positively charged. 

 
Fig. 3.12 Removal of 35 micropollutants with PAC-UF treatment as a function of micropollutant hydrophobicity (log 

Dow) and charge at pH 7. (A) positively charged, (B) negatively charged, and (C) neutral. Median removal of eight 48-72 

h composite samples. Correlation r between PAC removal and log Dow not significant (p-value > 0.05) for positively charged 

compounds and zwitterions, and significant for negatively charged ( r = 0.743, p = 0.014) and neutral compounds (r = 0.648, 

p = 0.005). 

The two PACs studied have a point of zero charge pHPZC > 7.3, thus the fresh PAC is expected to be 

neutral or slightly positively charged at the pH tested. However, in wastewater, the adsorption of 

EfOM, negatively charged at neutral pH, leads to a decrease in the PAC pHPZC due to the EfOM 

coverage, resulting from a net negative surface charge on the loaded PAC (Newcombe, 1994; Yu et 

al., 2012). As both EfOM and micropollutant adsorption occurred simultaneously, electrostatic 

attraction between the cationic compounds and the negatively charged surface of the loaded PAC are 

expected, even for hydrophilic substances. Conversely, charge repulsion should occur for the anionic 

substances. These electrostatic repulsions can be offset by hydrophobic partitioning (expulsion in the 

solute-water system) at high log Dow. Thus, in wastewater, hydrophobic interaction is expected to be 
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more significant for negatively charged and neutral compounds than for positively charged substances, 

as observed in our results. This assumption was tested in batch tests by de Ridder et al. (2011) where 

very similar behaviour was observed, confirming that both log Dow and charge interaction have a 

significant influence on micropollutant adsorption in wastewater. But, for neutral or negatively 

charged substances, log Dow was not by itself sufficient to explain the observed removals. Although 

hydrophobic partitioning has been reported as the dominant mechanism leading to PAC adsorption for 

compounds with log Dow > 3.7, other adsorption mechanisms such as hydrogen bond formation and pi-

pi interaction between micropollutants and the PAC surface have been reported to be more prominent 

as log Dow decreases (de Ridder et al., 2010). Thus, for hydrophilic compounds with the same log Dow, 

very different PAC affinities can be expected depending on the characteristics of the molecules. 

Separation of PAC with ultra- or sand filtration – Influence on micropollutant removal 

As observed in other studies (Snyder et al., 2007; Yoon et al., 2007), the influence of ultrafiltration on 

the removal of hydrophilic micropollutants (log Kow < 2.8) is expected to be negligible due to the 

relatively high molecular weight cut-off of the membrane (100-300 kDa) compared to the molecular 

mass of micropollutants (< 1 kDa). For more hydrophobic compounds, significant adsorption on the 

membranes can occur (Yoon et al., 2007), but at a much lower level than on PAC. Therefore, PAC 

adsorption is considered to be by far the main removal process in the PAC-UF system. To check this 

assumption and to evaluate another (cheaper) separation system, a sand filter was used instead of the 

UF membrane during seven campaigns. Good PAC retention (> 90%) was observed with less than 1-3 

mg TSS l
-1

 in the effluent. Similar micropollutant removal rates were measured with both separation 

systems (UF and sand filter), on average around 80%, indicating that the PAC, and not the 

ultrafiltration, was responsible for micropollutant removal. 

3.3.3 Ecotoxicological evaluation 

In addition to chemical analysis, the results of bioassays provided information on potential effects of 

the mixture of compounds. Both advanced treatments were able to reduce significantly the toxicity of 

the biological treatment effluent, both in bioassays with algae on enriched samples and in a chronic 

test on fish with continuous exposure to the raw effluent. 

 
Fig. 3.13 (A) Inhibition of photosynthetic activity (diuron-equivalent concentration) and (B) inhibition of growth 

(toxic-equivalent concentration) of the green algae Pseudokirchneriella subcapitata. (C) Estrogenic activity (YES, 

estradiol-equivalent concentration). Average results (±standard deviation) of three campaigns of one week in the raw 

wastewater (influent) and in the effluents of the biological treatment (BIO), the ozonation (OZ), the sand filter following the 

ozonation (SF) and the PAC-UF treatment. Ozone doses of 3.5, 6.0 and 6.7 mg O3 l
-1 (eq. 0.76, 0.91, 0.92 g O3 g

-1 DOC), and 

PAC doses of 10, 12 and 20 mg l-1 for, respectively, campaigns 1, 2 and 3. 
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3.3.3.1 Combined algae assay on enriched samples 

3.3.3.1.1 Photosynthesis inhibition 

As presented in Fig. 3.13 A, raw wastewater induced photosynthesis inhibition equivalent to 253 ± 92 

ng l
-1 

of diuron. This specific effect of substances acting on the photosystem II (Escher et al., 2008a) 

was not strongly reduced during the biological treatment (14 ± 37%, 228 ± 155 ng DEQ l
-1

), 

suggesting low biodegradability of these compounds. However, both advanced treatments led to a 

clear decrease in this effect with 82 ± 8%  removal (32 ± 9 ng DEQ l
-1

) during ozonation and 87 ± 

11% removal (18 ± 11 ng DEQ l
-1

) during PAC-UF treatment. The residual toxicity was significantly 

lower (p < 0.05) after PAC-UF compared to OZ in campaigns 1 and 3 (no significant difference in 

campaign 2). Photosynthesis inhibition was not significantly reduced after the sand filter following 

ozonation (27 ± 5 ng DEQ l
-1

), presumably due to the low biodegradability of those compounds. The 

overall removal in the WWTP was 87 ± 4% with ozonation followed by sand filtration and 92 ± 9% 

with PAC-UF treatment, showing the ability of these two treatments to improve the quality of the 

WWTP effluent. 

 
Fig. 3.14 Comparison of the green algae photosynthesis inhibition (in diuron-concentration equivalent DEQ) with the 

sum of the wastewater concentrations of the four most abundant photosynthesis inhibitors included in the analytical 

list (atrazine, diuron, isoproturon, and terbutryn), converted to DEQ based on their relative potency. Results of 19 

analyses on 7-d composite samples taken after the different treatments. Dashed line: linear regression. 

The herbicides atrazine, diuron and isoproturon, and the algicide terbutryn act as photosystem II 

inhibitors in plants and algae and can have a cumulative effect when present in a mixture (Brust et al., 

2001; Knauert et al., 2010; Nyström et al., 2002). A clear relation (correlation r = 0.909, p < 0.001) 

between inhibition of the photosystem II and the concentration of relevant pesticides measured in the 

samples was observed (Fig. 3.14). The sum of the relative potency of these four compounds, expressed 

as diuron equivalents, could explain, on average, 56% of the total inhibition observed. The other 

(unmeasured) compounds participating in the remaining photosynthesis inhibition are expected to be 

eliminated to the same extent as these four inhibitors. Indeed, a reduction of the concentrations of 

these inhibitors in advanced treatments led to a similar reduction of the photosynthesis inhibition. 

Similar effects were observed for ozonation in a previous study at the Regensdorf WWTP, 

Switzerland (Escher et al., 2009). 
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3.3.3.1.2 Algae growth inhibition 

A relatively high algae growth inhibition was observed in the raw wastewater (Fig. 3.13 B), with a 

non-specific toxicity of 26 ± 7.3 mg l
-1

 (baseline toxic equivalent concentration (Escher et al., 2008a)). 

This was clearly reduced (73 ± 6%, 6.9 ± 1 mg l
-1

) during the biological treatment. This non-specific 

toxicity, contrary to the photosynthesis inhibition, can thus be partially attributed to biodegradable or 

adsorbable compounds that were removed in this treatment. The advanced treatments were able to 

reduce the residual toxicity (attributed to non-readily biodegradable micropollutants) by 75 ± 7% 

during ozonation (1.67 ± 0.45 mg l
-1

) and 84 ± 5% during PAC-UF treatment (1.07 ± 0.17 mg l
-1

). This 

toxicity was significantly lower after PAC-UF compared to OZ in campaigns 2 and 3 (no significant 

difference in campaign 1). The sand filtration following ozonation was also able to reduce the growth 

inhibition from 10 to 46% (mean: 1.28 ± 0.16 mg l
-1

), the highest improvement being observed when 

the biological treatment was not effective, meaning that biodegradable toxic compounds remained in 

the ozone effluent. This resulted in a mean overall elimination (compared to WWTP influent) of 96 ± 

1% with ozonation followed by sand filtration and 97 ± 0.1% with PAC-UF treatment. In a 

comparable study, Escher et al. (2009) detected a higher maximum reduction of non-specific toxicity 

during biological treatment (70 - 99.5%) at the Regensdorf WWTP and a subsequently lower removal 

efficiency during ozonation. 

3.3.3.2 Estrogenic activity on enriched samples 

High estrogenic activity was detected with the YES in raw wastewater (37-100 ng l
-1

 estradiol 

equivalents, EEQ), which was then strongly reduced (88 ± 10%) during the biological treatment (Fig. 

3.13 C). The removal of estrogenic activity was dependent on the level of nitrification, from 75% 

without nitrification to 99% with full nitrification (< 1 mg N-NH4 l
-1

) (Fig. 3.15). The low 

estrogenicity level measured in the effluent of the biological treatment (0.7-8.3 ng l
-1

 EEQ) could, 

however, be sufficient to affect the fertility of sensitive fish species (Lahnsteiner et al., 2006), as 

shown also with the fish test (cf. §3.3.3.3). Estrogenic activity was further significantly diminished by 

89 ± 4% during ozonation and 77 ± 17% with PAC-UF, which is similar to results obtained by Stalter 

et al. (2011) and Escher et al. (2009). This resulted in a mean overall elimination (compared to WWTP 

influent) of 99 ± 1% with both advanced treatments. The residual estrogenicity observed in the 

effluents, significantly lower after OZ (0.1-0.65 ng l
-1

 EEQ) than after PAC-UF (0.29-1.32 ng l
-1

 EEQ) 

in campaigns 1 and 2 (no significant difference in campaign 3), was in most cases below the 

environmental quality standard of 0.4 ng l
-1

 proposed for 17-β-estradiol (Kase et al., 2011). Therefore, 

advanced treatments or biological treatment with full nitrification are efficient means to reduce the 

release of endocrine compounds, and thus to reduce the risk of feminization of fish and mussel 

populations. As the estrogenic activity was already very low after the ozonation, there was no 

improvement due to the sand filter. During one campaign an increase in estrogenicity was observed, 

presumably due to contamination of the new sand by estrogenic compounds. Indeed, an unexplained 

increase in bisphenol A concentration was measured after the sand filter for this case. 
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Fig. 3.15 Estrogenic activity removal in the biological treatment (activated sludge or moving bed bioreactor) as a 

function of the level of nitrification (NH4 removal). Estrogenic activity was measured with the YES on four 7-d composite 

samples in the influent and effluent of the biological treatment with various levels of nitrification. Dashed line: fitted 

quadratic trend line. 

3.3.3.3 Fish early life stage toxicity 

Both advanced treatments significantly decreased the toxicity of the WWTP effluent on the 

development of rainbow trout embryos for all endpoints measured: the overall survival of the fish, the 

hatching success, the swim up, the individual development (weight and size) and the induction of 

estrogenic effects. 

Overall survival 

The overall survival of the rainbow trout after 69 d of continuous exposure in the effluent of the 

biological treatment (BIO) was relatively low, with only 58 ± 6.6% survival (Fig. 3.16 A). The 

survival was significantly improved after the ozonation (OZ) (85 ± 6.6% survival) and the PAC-UF 

treatment (93 ± 3.8%) reaching a level statistically similar to the control (95 ± 2% survival). The 

subsequent sand filtration (SF) step did not improve the survival of the fish compared to the ozonation 

alone. 

Hatching success 

The hatching success of the fish reached 80 ± 5% in BIO effluent, which was significantly lower than 

in the control (100% success). Both advanced treatments improved the hatching success to a level 

statistically similar to the control, with 97 ± 3.8% for OZ, 98 ± 2.9% for SF and 100 ± 0% for PAC-

UF. However, the hatching progress was on average delayed for 2 d in OZ and SF effluents compared 

to PAC-UF or the control, and delayed for one week in the BIO effluent (Fig. 3.17 A). Delay in 

hatching after ozonation was also observed by Stalter et al. (2010b), and not notable in the sand filter 

effluent, as discussed below. 

Swim-up 

The swim-up, which is the developmental transition from larval stage to juvenile fish stage, appeared 

after 60 d in BIO effluent, delayed by 8 d compared to the control (Fig. 3.17 B). Both advanced 

treatments reduced the delay in the swim-up. The beginning of the swim-up appeared simultaneously 
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in PAC-UF effluent and in the control, but was delayed by 3 d compared to the control in OZ and SF 

effluents. A notable delay in the swim-up was also observed after ozonation by Stalter et al. (2010b), 

possibly due, in their case, to the presence of toxic oxidation by-products. 28% of the fish died during 

the larvae stage in BIO effluent, with only 45 ± 9% of the larvae reaching the juvenile stage at the end 

of the test. This was much improved after the advanced treatments, with 93.3 ± 3.8% of the larvae in 

PAC-UF effluent, 88.2 ± 10% in OZ, and 85.5 ± 10.4% in SF that swam up, showing no significant 

difference with the control (93.1 ± 3.1%). 

Weight and length of the fish 

Weight and length of the fish at the end of the test was relatively low in BIO effluent and increased 

significantly after the advanced treatments. Those parameters were however still significantly lower in 

OZ and SF effluents compared to the control, while no difference was observed in PAC-UF effluent 

(Fig. 3.16 B and C). The fish were on average 6.7% longer and 22% heavier in PAC-UF effluent than 

in OZ or SF effluents, and 32% longer and twice as heavy as in BIO effluent. The sand filter did not 

improve growth of the fish compared to the ozonation alone. 

 

Fig. 3.16 Results of the Fish Early Life Stage Test (FELST) with (A) the overall survival (average of three replicates 

per treatment), (B) the individual fresh weight (average of 69 to 152 fish per treatment), (C) the individual length 

(average of 69 to 152 fish per treatment) and (D) the vitellogenin concentration (average of 20 fish per treatment) of 

the fish larvae at the end of the test (after 69 d). Significant differences with the controls are represented by * (p value < 

0.05), ** (p < 0.01), *** (p < 0.001). All the endpoints for the control, OZ, SF and PAC-UF were significantly different from 

the endpoints of BIO. Ozone dose: 4.7 ± 1.5 mg O3 l
-1. PAC dose: 13.1 ± 2.6 mg l-1. 

Vitellogenin concentration 

The vitellogenin (VTG) concentration in the juvenile fish was significantly higher in the BIO effluent 

(63.1 ± 33.2 ng ml
-1

) compared to the fish in the control (10.6 ± 4.7 ng ml
-1

) (Fig. 3.16 D). Similar 

VTG concentrations (67.3 ± 26.9 ng ml
-1

) were found by Stalter et al. (2010b) in juvenile rainbow 

trout exposed to secondary effluent. VTG, an egg yolk precursor normally produced by mature female 
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fish, can be used as a biomarker for exposure to exogenous estrogens for juvenile and male fish 

(Jobling et al., 2006; Thorpe et al., 2000). The increase of VTG content in juvenile fish in BIO effluent 

indicates the presence of environmentally- relevant concentrations of estrogenic compounds. This 

effect was not observed after both advanced treatments, the VTG content in the fish being on par with 

the control in PAC-UF (10.2 ± 5.8 ng ml
-1

), OZ (9.9 ± 7.1 ng ml
-1

) and SF effluent (14.1 ± 9.1 ng ml
-

1
). These results confirm the ability of ozonation and PAC-UF to eliminate the estrogenicity in 

wastewater, as presented in Fig. 3.13 C. The minor increase of VTG in the fish exposed to SF effluent 

compared to OZ effluent, also observed in the YES, is probably due to contamination of the new sand 

by endocrine active compounds. 

 
Fig. 3.17 Hatching success (A) and swim-up (B) of the eggs and larvae of the rainbow trout in the effluent of the 

different treatments. Average and standard deviation of 3 replicates. Ozone dose: 4.7 ± 1.5 mg O3 l
-1. PAC dose: 13.1 ± 2.6 

mg l-1. 

Toxicity of the biologically treated effluent and possible influence of nitrite and ammonia 

As presented above, the effluent of the biological treatment impaired the survival and the development 

of rainbow trout, delaying their swim-up and their growth as expressed by lower biomass and body 

length. Besides the mortality observed (43%), a delay in the development can, for instance, increase 

the risk for predation in natural systems since larvae are unable to escape before the swim-up (Stalter 

et al., 2010b). Moreover, changes in VTG concentrations in fish can be an indicator for an effect on 

their reproduction system (Miller et al., 2007; Thorpe et al., 2007). Therefore, effluents from 

conventional WWTPs can have a significant impact on salmonid fish in natural environments in the 
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case of low dilution of the effluent. Besides the estrogenic substances and other micropollutants 

present in the effluent, macropollutants such as nitrite and ammonia or bacterial contamination could 

also affect the fish. 

Rainbow trout are sensitive to nitrite (NO2
-
), with lower growth rates observed at 0.3 mg N-NO2

-
 l

-1
 

and 65% mortality at 0.91 mg N-NO2
-
 l

-1
 (with 10 mg Cl

-
 l

-1
) (Kroupova et al., 2008). The toxicity can, 

however, be strongly inhibited by chloride ions (Lewis and Morris, 1986). The relatively high 

concentration of chloride in the investigated wastewater (80-170 mg l
-1

) could have therefore 

drastically reduced (up to a factor of 10) the toxic effect of nitrite. In the present study, NO2
-
 

concentrations varied between 0.04 and 0.55 mg N-NO2
-
 l

-1
 in BIO and OZ effluents and around 0.22 

mg N-NO2
-
 l

-1
 in PAC-UF effluent. Those concentrations are very unlikely to have induced significant 

lethal and sub-lethal effects on the fish. 

Embryos and larvae of rainbow trout are additionally very sensitive to ammonia (NH3), the unionized 

form of ammonium NH4
+
. Sub-lethal effects such as a decrease in the larvae weight were observed 

after 20 d of exposure at 0.006 to 0.18 mg N-NH3 l
-1

 (Vosylienė and Kazlauskienė, 2004) and a delay 

in development to the swim-up stage appeared at concentrations above 0.01 mg N-NH3 l
-1

 (Brinkman 

et al., 2009). Lethal effects were reported for concentrations above 0.022 to 0.13 mg N-NH3 l
-1

 

(Brinkman et al., 2009; Solbé and Shurben, 1989). In the present study, the concentrations of 

unionized ammonia, calculated according to Armstrong et al. (2012), were relatively high in the BIO, 

OZ and SF effluents, varying between 0.02 and 0.06 mg N-NH3 l
-1

 during the first 10 d, decreasing 

then below 0.01 mg N-NH3 l
-1

 in all effluents until the end of the test. The NH3 concentration in the 

PAC-UF effluent was always < 0.01 mg N-NH3 l
-1

 due to further nitrification in the reactor. Ammonia 

concentrations in BIO, OZ and SF effluents at the beginning of the test were therefore high enough to 

induce sub-lethal effects and even mortality. Ammonia could be thus partly responsible for the lower 

weight and length of the fish exposed to OZ and SF effluents, as well as for their delay in reaching the 

swim-up stage. The clear impact on fish development and the high mortality observed in the BIO 

effluent is, however, not attributable to ammonia toxicity alone as much smaller impacts and mortality 

rates were observed with the same ammonia concentration in OZ effluent. Therefore, the toxicity 

observed in the BIO effluent can presumably be related to compounds oxidized during ozonation, such 

as pharmaceuticals and pesticides. This demonstrates that several compounds influencing rainbow 

trout development and survival in the BIO effluent were removed in the advanced treatment. 

Ozonation and activated carbon are therefore efficient techniques to reduce effects of micropollutants 

on fish. 

Ozonation influence on fish toxicity 

Stalter et al. (2010b) reported that fish toxicity increased during the ozonation process, probably due to 

the formation of labile oxidative by-products such as toxic aldehydes or metabolites. These adverse 

effects were reduced after the sand filtration, probably due to biodegradation or spontaneous 

degradation of the reactive products. Unlike Stalter et al. (2010b), in our case ozonation clearly 

reduced the fish toxicity compared to the BIO effluent to a level close to the control. Moreover, the 

sand filter did not affect the residual toxicity of the OZ effluent. These contradictory results are likely 

due to different ozone reactor configurations and/or different water compositions. Indeed, the reactor 
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used in Stalter et al. (2010b) contained 3 chambers with an HRT of only 3 to 15 min (Zimmermann et 

al., 2011a), risking release of toxic reactive products or even residual ozone in the effluent. In our 

case, the fourth large contact chamber (Fig. 3.1 A) ensured complete reaction of ozone and reactive 

products within the reactor, with an overall hydraulic residence time (HRT) of 20 to 60 min depending 

on the flow. 

3.3.4 Costs and energy needs 

The costs of the construction and the operation of the pilot plants are presented in Table 3.4 for an 

average micropollutant removal of 80% compared to raw wastewater. An average ozone dose around 

5.7 mg O3 l
-1

 and a PAC dose around 15 mg l
-1

 (between 10 and 20 mg l
-1

) was needed to reach this 

level, remembering that the doses required varied according to the feed water quality. Although some 

substances were poorly eliminated with those doses, an average removal of 80%, as recommended by 

Swiss authorities, is a good compromise to reduce the load of micropollutants significantly while 

keeping the cost of the treatment in an acceptable range. Ozone-SF and PAC-SF had a similar cost 

(0.16-0.18 € m
-3

) with a similar average removal rate. Compared to the average price and energy 

consumption of wastewater treatment in Switzerland (0.54 € m
-3

, 0.33 kWh m
-3

) (Abegglen and 

Siegrist, 2012), these two advanced treatments increased the costs and the electricity consumption by 

about 30%, which represents an annual increase of about 20 € per inhabitant. The PAC separation by 

ultrafiltration was not optimized, generating high electricity consumption and high costs because of 

the rapid clogging of the membrane. Additional tests on other more efficient ultrafiltration systems (12 

months of operation) showed, however, that these prices could be reduced by a factor 4 to 5, reaching 

0.16-0.25 € m
-3

, with an electricity consumption of 0.1-0.2 kWh m
-3

 (Magnet et al., 2014). If these 

costs can be maintained for long term operation, UF separation will become a very competitive 

alternative, enabling high effluent quality. The costs of these advanced treatments (ozone-SF or PAC-

SF) for larger WWTPs could be reduced to less than 0.12 € m
-3

 due to the scale effect (Abegglen and 

Siegrist, 2012). 

Table 3.4 Costs and energy needs for construction and operation of the pilot plants. Costs are given excluding VAT, 

based on local (Swiss) prices in 2010 (0.17 € kWh-1 of electricity, 0.25 € Nm-3 O2, 2 € kg-1 PAC, 66 € h-1 staff costs) for an 

average removal of 80% of the 65 studied micropollutants (compared to raw wastewater). Investment costs are calculated 

with an interest rate of 4.5% y-1, with amortization periods of 10, 20 and 30 y for, respectively, electromechanical, 

mechanical and structural equipment. 

    

Ozonation 

with sand 

filter 

PAC with 

sand filter 

PAC with 

ultrafiltration 

Dosage   5.7 mg O3 l
-1

 15 mg PAC l
-1

 15 mg PAC l
-1

 

Capacity (average flow) [l s
-1

] 60 15 5 

Electricity consumption [kWh m
-3

] 0.117 0.08 0.9 

Operating costs [€ m
-3

] 0.043 0.054 0.404 

Investment costs [€ m
-3

] 0.133 0.107 0.399 

Total costs (excluding 

VAT) [€ m
-3

] 0.176 0.161 0.803 
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3.3.5 Comparison of the advanced technologies 

3.3.5.1 Micropollutant removal 

As presented in Table 3.3, ozone and activated carbon were both able to reduce of 80% or more the 

concentration of the majority of the micropollutants monitored. The average removal of the 40 

substances routinely studied was very similar between ozone (71% with an average dose of 5.65 mg 

O3 l
-1

) and PAC-UF treatment (73% with an average dose of 13 mg PAC l
-1

). However, for some 

compounds, different removal rates can be observed (Fig. 3.18). For instance, PAC-UF gave on 

average better removal of compounds without specific reactive moieties such as atrazine, 

propiconazole, ibuprofen or benzotriazole. On the other hand, ozone gave better removal of 

hydrophilic or negatively charged compounds such as gabapentin, sulfamethoxazole or diclofenac. 

 

Fig. 3.18 Comparison of the average removal of 40 micropollutants with PAC-UF treatment (dose of 10-20 mg PAC    

l-1, median 12 mg l-1), or ozonation (dose of 2.3-9.1 mg O3 l
-1, median 5.9 mg O3 l

-1 or 0.83 g O3 g
-1 DOC) during one 

year of operation (3 to 28 analyses depending on the substance). 

Some micropollutants were resistant to both treatments, although they could be mostly removed with 

higher ozone and PAC doses. A more economically feasible alternative would be to avoid their release 

into the sewer system. For instance, collection of patient urine in separate containers within the 24 h 

after X-ray examinations, and treatment of this urine in a separate system (such as incineration) could 

avoid the release of persistent iodinated contrast media in wastewater (Heinzmann et al., 2008). 

For the tested operation conditions and the micropollutants studied, ozone appeared to be more 

compound-specific than PAC. Many reactive compounds could be eliminated by more than 95% with 

the ozone dose applied but substances with low ozone reactivity were only partially removed. With 

PAC, fewer compounds were removed above 95% but also fewer substances were removed below 
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80%. Thus, for a same average removal of the 40 substances, PAC removed a broader range of 

compounds but to a lower degree than ozone. PAC efficiency was in general less predictable than for 

ozone, especially for compounds with low PAC affinity where high variations in the removal rate were 

observed, probably due to variation of the wastewater composition (competition for the adsorption 

sites). 

Removal mechanisms are different in ozone and PAC. At the ozone dose applied, no mineralization to 

CO2 seemed to take place (cf. §3.3.5.3), meaning that micropollutants were presumably transformed to 

(unknown) oxidation products. The transformation products are expected to lose their biological 

activity (Dodd et al., 2009; Larcher et al., 2012), but higher toxicity of the metabolites has also been 

reported in some cases (Larcher et al., 2012; Luster-Teasley et al., 2002; Rosal et al., 2009). Unlike 

ozone, PAC physically removes the micropollutant from the water, which avoids the release of 

unknown transformation products. 

3.3.5.2 Toxicity removal 

Ozone, with an average of 5.38 mg O3 l
-1

 (eq. 0.86 g O3 g
-1

 DOC), and activated carbon, with an 

average of 14 mg l
-1

, were both able to reduce the toxicity of WWTP effluent significantly and with a 

relatively similar efficacy. PAC-UF was slightly more effective than ozone in reducing toxicity to 

algae (PAC: 84 % [79-88%], OZ: 75% [67-81%]), photosynthesis inhibition (PAC: 87% [77-99%], 

OZ: 82% [77-92%]) and fish development impact (PAC: similar to control, OZ: delay in the 

development). On the other hand, ozone was slightly better in reducing estrogenic activity (PAC: 77% 

[58-90%], OZ: 89% [85-92%]). 

In other studies, increases in toxicity after ozonation compared to the feed water were observed, 

leading to mortality and delays in development of juvenile rainbow trout (Stalter et al., 2010b), 

reproduction inhibition of lumbriculus worms (Stalter et al., 2010a), mortality of zebra mussels 

(Stalter et al., 2010a) and growth inhibition of duckweed (Magdeburg et al., 2012). Increases of 

genotoxic and mutagenic potential after ozonation were also reported (Petala et al., 2008; Stalter et al., 

2010a). These effects were attributed to the formation of toxic oxidation by-products during 

ozonation, such as aldehydes, which could then be removed after sand filtration. Our study gave 

different results, with a clear decrease of the toxicity after ozonation in all bioassays. No genotoxicity 

or mutagenicity (Micronucleus, UmuC and Ames test) was detected in OZ effluents (Kienle et al., 

2011) despite the formation of bromate. This could be attributed to the longer reaction time in our OZ 

reactor, promoting the degradation of labile intermediate products (Petala et al., 2006). Reduction of 

toxicity during ozonation was also observed by Misík et al. (2011), Reungoat et al. (2010) and 

Takanashi et al.(2002), confirming that ozonation, if carefully designed, is comparable to PAC-UF 

treatment to improve the effluent quality. 

3.3.5.3 General improvement of water quality 

Advanced treatments had a positive impact on macropollutants and bacterial contamination, as 

presented in Fig. 3.19 and Fig. 3.20. The PAC-UF treatment, working as a bioreactor with addition of 

coagulant, enabled a significant reduction of the residual DOC (54 ± 10%), phosphorus (> 90%), NH4 

(85 ± 20%) and BOD5 (72 ± 18%), and complete removal of TSS, intestinal bacteria and coliphages (< 
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5 UFP ml
-1

, indicator of human viruses). The PAC-SF treatment had similar removal efficiencies for 

COD, TOC, DOC and NH4, but was less effective in removing TSS and phosphorus, and afforded 

only very limited disinfection with no elimination of total viable bacteria, only 11% removal of E. coli 

and 79% removal of enterococci (data not illustrated). Effluent colour intensity was greatly reduced 

after PAC-SF and disappeared after PAC-UF. PAC alone had an influence only on DOC (20-35% 

removal) and colour removal. The biologically active filtration steps (UF or sand filter) were the main 

cause for improvement of general water quality, UF being more efficient than the sand filter. 

 

Fig. 3.19 Removal of macropollutants with ozone, ozone/sand filter, PAC-UF and PAC-SF. Average and standard 

deviation of 14 (9 for PAC-SF) 24-h composite samples. Ozone dose of 3.8-7.0 mg O3 l-1, PAC dose of 10-20 mg l-1, 

coagulant (for PAC-UF only): 5-15 mg FeCl3 l
-1. TSS: total suspended solid, COD: chemical oxygen demand, BOD5: 5-d 

biochemical oxygen demand, TOC: total organic carbon, DOC: dissolved organic carbon, Ptotal: total phosphorus, Psoluble: 

dissolved phosphorus, NH4: ammonium. 

Ozonation was able to disinfect the effluent partially, with removal of coliphage virus below the 

detection limit (5 UFP ml
-1

) (> 95% removal) and a reduction over 97% in the concentration of fecal 

bacteria; this level being below the European standard for good bathing water quality (European 

Commission, 2006) (Fig. 3.20). Ozonation alone was able to reduce the colour of the effluent but not 

to reduce the concentration of macropollutants (Fig. 3.19), with little effect only on soluble 

phosphorus probably due to residual precipitation with FeCl3. The absence of DOC removal and the 

significant increase in BOD5 (49 ± 54%) suggest that organic pollutants were not mineralized but 

transformed to more biodegradable compounds, which were then partially removed in the sand filter. 

The sand filter was responsible for most of the macropollutant removals, with 80 ± 13% of TSS, 79 ± 

10% of Ptotal, 59 ± 21% of BOD5, 44 ± 34% NH4 and 20 ± 8% of DOC. 

Due to its nonspecific removal mechanism, PAC is able to eliminate other kinds of micropollutants not 

analysed here, such as dissolved heavy metals (Cr, Fe, Zn or Pb), which is not the case for ozone even 

with a sand filter (Martin Ruel et al., 2011; Renman et al., 2009). 
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Fig. 3.20 Influence of the treatments on the concentration of indicator bacteria in the effluent. Average of two 

campaigns (grab samples) with 6.9 mg O3 l
-1 or 20 mg PAC l-1. European standards for good bathing water quality (Directive 

2006/7/EC) are given for E. coli (1000 CFU/100 ml) and intestinal enterococci (400 CFU/100 ml) as comparative values. 

3.3.5.4 Feasibility and implications for WWTP 

Both advanced treatments proved to be technically feasible at large scale in the municipal WWTP, 

with reasonable and relatively similar costs (0.16-0.18 € m
-3

) in the case of PAC separation by sand 

filtration. 

PAC with ultrafiltration separation was not economically competitive although this could change for 

this rapidly improving technology, especially considering the other beneficial effects of membranes on 

water quality (disinfection, total PAC and suspended solid retention). PAC separation by sand 

filtration showed a good retention of the suspended solids, but release of low amounts of loaded PAC 

into the effluent cannot be excluded, thus membrane systems represent a safer alternative. 

The spent PAC has to be eliminated. Incineration with the sewage sludge is a good solution assuring 

complete mineralization of organic pollutants. Recirculation of the spent PAC to the biological 

treatment before its elimination can additionally improve the global micropollutant removal efficiency 

without impacting the quality of the biological treatment (Boehler et al., 2012; Zwickenpflug et al., 

2010), improving by the way sludge dewaterability (Satyawali and Balakrishnan, 2009). Addition of 

10 to 20 mg l
-1

 of PAC increased the WWTP sewage sludge production (dry matter) by 5 to 10% 

respectively. For plants that dispose sewage sludge on agricultural land (stopped in Switzerland in 

2006), separate treatment of the PAC is necessary, increasing the costs. 

Unlike ozonation where the dose was regulated by the oxidative demand of the water, PAC addition 

was only regulated by the flow to maintain a constant dose. Short pollution variations (< 1 d) are 

expected to be buffered by the long residence time and the high concentration of PAC in the system. 

But, in the case of longer pollution peaks, the treatment efficiency would likely be reduced. Regulation 

of the PAC dose by the amount of DOC in the feed water should be studied as DOC was shown to 

influence PAC efficiency. 
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Operation of the ozone reactor required staff training as well as specific safety measures due to the 

toxicity of ozone gas. As such, ozonation is not suitable for small WWTPs with non-permanent staff. 

Optimization of these treatments in terms of energy and resource consumption remains. Although they 

were able to reduce aquatic toxicity, their energy and resource consumption is still significant and 

should for example be balanced by energy efficiency measures on the WWTP and in the sewer system. 

In all cases, the application of the treatment should be proportional to its benefit. Additional studies on 

the environmental impact of these advanced treatments taking into account their life cycle are thus 

necessary, with a special focus on the PAC due to its energy-intensive production (Larsen et al., 2010). 

Given that the performance of these advanced treatments is relatively similar, selection of an optimal 

solution is nuanced. For a given WWTP the choice thus depends mainly on local conditions, involving 

consideration of multiple factors in a cost-benefit analysis. 

3.4 Conclusions 

 Of the 70 dissolved organic micropollutants detected in untreated wastewater, 50 were 

removed on average less than 50% in conventional treatment. Addition of a nitrification step 

significantly improved the removal of 24 substances. 

 Both advanced treatments, ozonation and PAC-UF, reduced the concentration of the 

remaining compounds on average by more than 70%, with an average ozone dose of 5.65 mg 

O3 l
-1

 or an average PAC dose of 13 mg l
-1

. 

 For the studied operation conditions, ozone appeared to be more compound-specific than 

PAC. Ozone was more effective in removing almost completely certain compounds and PAC 

acted better on a broad spectrum of micropollutants. Removal rates of micropollutants with 

low ozone reactivity or PAC affinity were depending more directly on variations in the feed 

water quality. 

 Ozone efficiency was strongly dependent on the presence of micropollutants with electron-

rich moieties. PAC efficiency was improved for hydrophobic or positively charged 

compounds. 

 Both advanced treatments significantly reduced the toxicity of WWTP effluent, with PAC-UF 

performing slightly better overall. 

 Both treatments proved to be feasible at large scale and for long term operation in real WWTP 

conditions, with similar costs if sand filters were used for the PAC retention. 

 For sensitive receiving waters, such as recreational waters or drinking water resources, the 

PAC-UF treatment seemed to be the most suitable technology, despite its current higher costs 

and energy consumption. Indeed, PAC-UF treatment led to a good removal of most 

micropollutants and macropollutants without forming problematic by-products, the strongest 

decrease in toxicity and a total disinfection of the effluent. 
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Table S 3.1 Physico-chemical properties of the 58 micropollutants routinely analysed. References: (Escher et al., 2011; 

Morasch et al., 2010; Reungoat et al., 2012; Schwarzenbach et al., 2003) 

  

Compound CAS-No M [g/mol]
a Log KOW

a
pKa

a
Charge at 

pH 7
b

Log Dow    

(pH 7)
c Type

d

Pharmaceuticals

Acipimox [51037-30-0] 154.1 -0.52 3.3 -1 -2.1 A

Atenolol [29122-68-7] 266.3 0.16 9.6 1 -1.3 B

Azithromycin [83905-01-5] 749 4.02 8.7; 9.5 2 2.8 B

Bezafibrate [41859-67-0] 361.8 4.25 3.7; 13.6 -1 2.7 A

Carbamazepine [298-46-4] 236.3 2.45 13.9 0 2.5 N

Ciprofloxacin [85721-33-1] 331.4 0.28 6.1; 8.8 1; Z; 0; -1 0.3 Z

Clarithromycin [81103-11-9] 748 3.16 9.0 1 1.8 B

Clindamycin [18323-44-9] 425 2.16 7.5 1; 0 1.4 B

Clofibric acid [882-09-7] 214.7 2.57 3.5 -1 1.0 A

Diatrizoic acid [117-96-4] 613.9 1.37 1.2; 7.9; 11.7 -1 -0.4 A

Diclofenac [15307-86-5] 296.2 4.51 4.1 -1 3.0 A

Fenofibrate [49562-28-9] 360.8 5.19 NA 0 5.2 N

Gabapentin [60142-96-3] 171.2 -1.1 3.7; 10.0 Z -1.1 Z

Gemfibrozil [25812-30-0] 250.3 4.77 4.7 -1 3.4 A

Ibuprofen [15687-27-1] 206.3 3.97 4.9 -1 2.6 A

Iohexol [66108-95-0] 821.1 -3.05 NA 0 -3.1 N

Iomeprol [78649-41-9] 777.1 -2.79 11.7; 12.6; 13.6 0 -2.8 N

Iopamidol [60166-93-0] 777.1 -2.42 11.1; 12.9 0 -2.4 N

Iopromide [73334-07-3] 791.1 -2.05 11.4 0 -2.1 N

Iothalamic acid [2276-90-6] 613.9 0.5 2.1; 11.2;12.6 -1 -1.2 A

Ketoprofen [22071-15-4] 254.3 3.12 4.5 -1 1.7 A

Mefenamic acid [61-68-7] 241.3 5.12 4.2 -1 3.7 A

Metoprolol [37350-58-6] 267.4 1.88 9.7 1 0.4 B

Metronidazole [443-48-1] 171.2 -0.02 2.5 0 0.0 N

Nadolol [42200-33-9] 309.4 0.81 9.7 1 -0.6 B

Naproxen [22204-53-1] 230.3 3.18 4.2 -1 1.7 A

Norfloxacin [70458-96-7] 319.3 -1.03 6.4; 8.7 Z; 0; -1 -1.0 Z

Ofloxacin [82419-36-1] 361.4 -0.39 5.7; 7.1 Z; 0; -1 -0.4 Z

Paracetamol [103-90-2] 151.2 0.46 9.4 0 0.5 N

Pravastatin [81093-37-0] 424.5 3.1 4.5 -1 1.7 A

Primidone [125-33-7] 218.3 0.91 NA 0 0.9 N

Propranolol [525-66-6] 259.3 3.48 9.4 1 2.1 B

Simvastatin [79902-63-9] 418.6 4.68 13.5 0 4.7 N

Sotalol [3930-20-9] 272.4 0.24 8.2; 9.1 1 -0.9 B

Sulfadimethoxine [122-11-2] 310.3 1.63 2.0; 6.7 -1 1.0 A

Sulfamethoxazole [723-46-6] 253.3 0.89 1.8; 5.8 -1 -0.2 A

Trimethoprim [738-70-5] 290.3 0.91 1.3; 7.2 1; 0 0.4 B

Endocrine disrupting compounds

17α-Ethinylestradiol [57-63-6] 296.4 3.67 10.4 0 3.7 N

Bisphenol A [80-05-7] 228.3 3.32 10.1 0 3.3 N

Estriol [50-27-1] 288.4 2.45 10.4 0 2.5 N

Estrone [53-16-7] 270.4 3.13 10.3 0 3.1 N

Nonylphenol [84852-15-3] 220.4 5.92 11.1 0 5.9 N

β-Estradiol [50-28-2] 272.4 4.01 10.5 0 4.0 N

Pesticides and other common chemicals

Atrazine [1912-24-9] 215.7 2.61 1.7 0 2.6 N

Benzotriazole [95-14-7] 119.1 1.44 8.4 0 1.4 N

Carbendazim [10605-21-7] 191.2 1.52 4.2 0 1.5 N

Chloridazon [1698-60-8] 221.6 1.14 3.4 0 1.1 N

Diazinon [333-41-5] 304.4 3.81 2.4 0 3.8 N

Diuron [330-54-1] 233.1 2.68 13.6 0 2.7 N

IPBC [55406-53-6] 281.1 2.54 NA 0 2.5 N

Irgarol [28159-98-0] 253.4 4.07 NA 0 4.1 N

Isoproturon [34123-59-6] 206.3 2.87 NA 0 2.9 N

Mecoprop [93-65-2] 214.7 3.13 3.1 -1 1.5 A

Methylbenzotriazole [29385-43-1] 133.2 1.71 8.8 0 1.7 N

Propiconazole [60207-90-1] 342.2 3.72 1.1 0 3.7 N

Tebufenozide [112410-23-8] 352.5 4.25 NA 0 4.3 N

Terbutryn [886-50-0] 241.4 3.74 4.3 0 3.7 N

Triclosan [3380-34-5] 289.5 4.76 7.8 0; -1 4.8 N
a
 Source: Morasch et al. (2010), completed with Escher et al. (2011) and Reungoat et al. (2012). 

b
 Source: 

www.chemicalize.org (last accessed 25.10.2012) 
c
 log Dow = log Kow - log(1+10

(pH-pKa)
) for acids and log Dow = log Kow - 

log(1+10
(pKa-pH)

) for bases ( Schwarzenbach et al. 2003). 
d
 A: acidic, B: basic, N: neutral, Z: zwitterion
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Table S 3.2 Sample preparation for estrogens analyses and enrichment for the bioassays (YES, algae assay). 

 

Solid phase extraction for estrogens Solid phase extraction for bioassays  

General Information     

Sample type Water samples 

Sample volumes 
250 ml wastewater influent 

500 ml wastewater effluent 

200 ml wastewater influent 

500 ml wastewater effluent 

Blank 500 ml ultrapure water 

Sample preparation    

Filtration Yes, with glass fibre filter type APFD 09050 (1 µm) (Millipore) 

Acidification Yes, with HCl to pH 3 

Addition of isotope-labelled 

internal mixed standard solution 

(IS) 

30 ng EE2-D4, E2-13C2, E1-D4, BPA-

D16 and NP-13C6 to each sample 
No 

Sample enrichment Solid phase extraction (SPE) 

SPE cartridges LiChrolut EN RP-18 (bottom: 100 mg LiChrolut EN, top: 200 mg LiChrolut RP 18) 

Conditioning 6 ml Hexane 

2 ml Acetone 

6 ml Methanol 

10 ml Water (pH 3.0)  

2 ml Hexane 

2 ml Acetone 

6 ml Methanol 

6 ml Water (pH 3.0) 

Washing 8 ml Methanol/Water (70:30, v/v) 

6 ml Acetonitrile/Water (30:70, v/v) 

No, only filling of the cartridge with water 

(pH 3.0) 

Elution 
4 ml Acetone 

4 ml Acetone 

1 ml Methanol 

Evaporation 
With N2 to ca. 100 μl 

With N2 to ca. 500 μl, then completing to 

1000 μl with ethanol 

Enrichment factor 1250 × wastewater influent 

2500 × wastewater effluent 

200 × wastewater influent 

500 × wastewater effluent 

Purification and storage of sample extract 

Sorbent Mini silica gel columns (1.00 ± 0.01 g) No 

Application of sample 100 μl sample + 2 × 0.2 ml 

Hexane/Acetone (60:40, v/v)  
 

Elution 7.1 ml Hexane/Acetone (60:40, v/v)   

Evaporation To dryness, fill-up with 200 μl Ethanol  

Storage  In the dark, at -20°C 

  

Table S 3.3 Specification for LC-MS/MS analytics of estrogenic active substances. 

LC-MS/MS analysis   

LC-MS/MS instrument API 4000 LC-MS/MS (Applied Biosystems, Warrington, UK) 

HPLC separation 

Gradient elution 

Eluent A = water/acetonitrile (90:10, v/v)  

Eluent B = acetonitrile/water (90:10, v/v) 

HPLC column MS C18 HPLC column (2.1 mm x 100 mm, particle size 3.5 μm)  

Ionisation Negative electrospray ionisation (ESI
-
) 

Calibration 
0 - 200 ng/ml E1, E2 and EE2 mixed standards 

0 - 2500 ng/ml NP+BPA standards 

Replicates 2 

Limit of quantification E1 0.6 ng/l; E2 1.1 ng/l; EE2 3.0 ng/l; BPA 4.9 ng/l; NP 22.9 ng/l 
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Chapter 4 Role of nitrification in micropollutant 

removal - Aerobic granular sludge as an example 

4.1 Introduction 

While conventional wastewater treatment plants (WWTPs) are not specifically designed to treat polar 

and hardly biodegradable compounds, several studies highlight attenuation across biological treatment 

processes (Verlicchi et al., 2012). As shown in Chapter 3, high variability in micropollutant removal 

was observed in Lausanne WWTP, Switzerland, possibly partially attributed to the level of 

nitrification reached during the biological treatment. Good ammonium removal (complete 

nitrification) was linked to better removal of many micropollutants (e.g., bisphenol A, atenolol, 

bezafibrate, norfloxacin, ofloxacin, metronidazole, methylbenzotriazole, simvastatin, gemfibrozil, 

naproxen, ketoprofen, mefenamic acid, iohexol or iomeprol). Most of these compounds were removed 

less than 40% in the WWTP without nitrification and above 70-80% in the WWTP with complete 

nitrification. Similar results were observed in several other WWTPs. For instance, a wide study 

conducted on 28 WWTPs in canton Vaud, Switzerland, showed that 10 out of the 27 micropollutants 

studied (mefenamic acid, atenolol, bezafibrate, gemfibrozil, iomeprol, ketoprofen, metformin, 

metoprolol, naproxen and pravastatin) were significantly better removed in WWTPs with nitrification 

than without (DGE, 2013). Clara et al. (2005a) reported that the removal of several pollutants 

(bisphenol A, estrone, estradiol, estriol, ibuprofen and bezafibrate) in activated sludge were strongly 

correlated with the sludge retention time (SRT), with low removal (< 50%) at SRTs < 2 d, and high 

removal (> 80%) at SRTs > 10 d (SRT of 10 d corresponding to the minimum sludge age 

recommended for nitrogen removal in WWTPs (at 10°C)). An extensive study made on 16 WWTPs in 

the United Kingdom during one year showed a strong positive correlation between bisphenol A and 

estrone removal efficiencies and the level of ammonium removed via nitrification (Gardner et al., 

2013). Similar correlations were found for ciprofloxacin, ibuprofen, triclocarban and 2-hydroxy-

ibuprofen in six WWTPs in Canada (Guerra et al., 2014), and for iopromide and trimethoprim in a 

WWTP in USA (Batt et al., 2006). Better micropollutant removal in nitrifying WWTPs was also 

reported in several other studies (Drewes et al., 2002; Kreuzinger et al., 2004). 

It is still not clear if these better removal efficiencies are due to (i) longer hydraulic retention times 

(HRTs) in nitrifying WWTPs (more time for biodegradation), (ii) longer SRTs (higher microbial 

diversity in the sludge, including slow growing organisms, increasing the number of possible 

metabolic pathways), (iii) lower food-to-microorganisms ratios (stimulation to metabolize less 

biodegradable compounds), (iv) co-oxidation by the enzyme ammonia monooxygenase (AMO) 

(responsible for ammonia oxidation), or (v) a combination of all these processes. 

AMOs are intracellular oxidative enzymes produced by autotrophic ammonia-oxidizing bacteria 

(AOBs) or archaea (AOAs) to catalyse the oxidation of ammonium to nitrite, which is further oxidized 

to nitrate by nitrite-oxidizing bacteria (NOBs). AMOs are relatively unspecific enzymes and have been 
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reported to co-oxidize also aromatic compounds, probably via hydroxylation reactions (Khunjar et al., 

2011; Yi and Harper, 2007). The role of AOBs in the removal of micropollutants in synthetic or 

spiked wastewater was investigated in several studies by selectively inhibiting the enzyme AMO with 

allylthiourea (ATU) in AOB-enriched activated sludge. A wide range of micropollutants was reported 

to be better removed with active (usually >70% removal) than inhibited (< 40% removal) AMOs, 

including naproxen, ketoprofen, gemfibrozil, diclofenac, indomethacin and fenoprofen (Tran et al., 

2009), bisphenol A and nonylphenol (Kim et al., 2007), bezafibrate and synthetic estrogens (Maeng et 

al., 2013), triclosan (Roh et al., 2009), trimethoprim (Batt et al., 2006), atenolol (Sathyamoorthy et al., 

2013) and artificial sweeteners (Tran et al., 2014), suggesting that this enzyme was involved in the 

degradation of these compounds. Several studies showed also that micropollutant degradation rates 

were positively linearly correlated with ammonia oxidation rates (Fernandez-Fontaina et al., 2012; 

Helbling et al., 2012; Tran et al., 2014; Yi and Harper, 2007) or with the initial ammonium 

concentration (Tran et al., 2009), indicating a link between nitrification and micropollutant removal. 

Most of these compounds were, however, also degraded (at a slower rate) with inhibited AMOs, 

showing that other metabolic or co-metabolic reactions occurred, probably linked to the heterotrophic 

microbial activity. Moreover, with real (not enriched) municipal activated sludge, despite better 

removal of several micropollutants were observed in sludge with higher nitrification capacities, 

inhibition of AMO did not significantly affect micropollutant (bisphenol A, triclosan, ibuprofen, 

ketoprofen, naproxen, atenolol, ranitidine, venlaflaxine and valsartan) removal rates (except for 

isoproturon), suggesting that the better removal observed with nitrifying sludge was not due to AMO 

oxidation but rather to differences in the heterotrophic bacterial community or to other enzymatic 

reactions in autotrophic organisms (Falås et al., 2012a; Helbling et al., 2012; Roh et al., 2009). 

Although it has been proven that AMOs play an important role in micropollutant removal in strongly 

AOB-enriched sludge, it is still not clear what the role of AOBs (or AOAs) is in municipal activated 

sludge, where they make up less than 2-5% of the total biomass (Limpiyakorn et al., 2005; 

Limpiyakorn et al., 2011; Sathyamoorthy et al., 2013).   

Aerobic granular sludge sequencing batch reactors (AGS-SBRs) are regarded as a promising 

technologies for municipal wastewater treatment due to their high compactness, simultaneous 

biological N- and P- removal ability (in only one tank), reduced energy and chemical consumption, 

reduced costs and simplicity/flexibility of operation compared to conventional activated sludge 

processes (Giesen et al., 2013; van der Roest et al., 2011). Aerobic granules are formed by self-

aggregation of microorganisms which perform different and specific functions, such as chemical 

oxygen demand (COD) abatement, nitrification, denitrification and phosphate accumulation. All the 

processes can occur simultaneously within the same granules due to the variety of redox conditions 

present: aerobic in the outside layer and anoxic/anaerobic in the inside layers, due to limitation of 

oxygen penetration depth related to heterotrophic and nitrifying activity (Lochmatter et al., 2013). As 

the COD concentration in the influent is often the limiting parameter to allow high P- and N-removal, 

AGS-SBR are mainly operated in a way to avoid aerobic heterotrophic activity, in order to save COD 

for anoxic heterotrophic denitrifying and phosphate accumulating organisms (Lochmatter et al., 2013). 

The good nitrogen removal ability of granular sludge and their relatively low content of strict aerobic 

heterotrophic organisms make this system a good model to study the direct effect of nitrification on 
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micropollutant abatement. Indeed, AGS-SBRs allow treating a wastewater with high COD content 

(close to real municipal wastewater), while limiting potential micropollutant biodegradation by aerobic 

heterotrophic organisms. Moreover, the potential of AGS-SBRs for micropollutant removal in 

municipal-like wastewater is still largely unknown, as only few studies have been performed on this 

topic (Amorim et al., 2014). 

The aims of this study were thus (i) to assess the potential of aerobic granular sludge for 

micropollutant removal in wastewater, and (ii) to study to direct effect of nitrification on the removal 

of micropollutant, in order to clarify the reasons leading to better micropollutant removal in nitrifying 

WWTPs: co-oxidation by AMO, longer reaction time or more diverse microbial community. To 

answer to these questions, two similar laboratory-scale AGS-SBRs were operated in parallel, one with 

complete nitrification and the other with inhibition of ammonia oxidation, treating a synthetic 

wastewater spiked with 36 micropollutants. Their micropollutant removal efficiencies were then 

compared with the ones of a full-scale WWTP with various level of nitrification, to corroborate the 

results. 

4.2 Materials and methods 

4.2.1.1 Synthetic wastewater composition 

A synthetic wastewater, with general characteristics (COD, P and N concentrations) similar to 

municipal wastewaters, was used to exclude any strong fluctuation of the matrix composition and to 

allow good development of the granular sludge (controlled conditions).The influent wastewater 

consisted of a mixture of two synthetic media (one containing the carbon source: acetate and 

propionate, one with the nutrients N and P) diluted nine times in lake water (from Lake Geneva, 

filtered at 1 mm), as described by Lochmatter et al. (2013). The final wastewater contained 286 mg l
-1

 

sodium acetate, 194 mg l
-1

 sodium propionate, 48 mg l
-1

 MgSO4, 40 mg l
-1

 KCl, 201 mg l
-1

 NH4Cl, 78 

mg l
-1

 K2HPO4, 31 mg l
-1

 KH2PO4, and trace elements (in addition to the elements already present in 

lake water: 53 mg l
-1

 EDTA, 1.3 mg l
-1

 ZnSO4, 6.5 mg l
-1

 CaCl2, 3.4 mg l
-1

 MnCl2, 2.9 mg l
-1

 FeSO4, 

1.6 mg l
-1

 (NH4)6Mo7O24, 1.1 mg l
-1

 CuSO4, and 0.9 mg l
-1

 CoCl2). This composition resulted in 

concentrations of about 450 mg l
-1

 of COD (half due to acetate, half due to propionate), 50 mg N-NH4 

l
-1

 and 20 mg P-PO4 l
-1

, thus comparable to concentrated municipal wastewater (Metcalf and Eddy, 

2003). The initial pH of the synthetic wastewater was at 7.2. 

For the micropollutant degradation experiment, the synthetic medium containing the carbon sources 

was spiked with a mixture of 36 micropollutants (mainly pharmaceuticals and pesticides), resulting in 

a final concentration in the synthetic wastewater of around 1 µ l
-1

 for each pollutant (cf. Table 4.1). 

These micropollutants were selected due to their ubiquity in municipal wastewaters (cf. Chapter 3). As 

the stock solution of micropollutants was prepared in methanol, this resulted to add 44 mg l
-1

 of 

methanol in the synthetic wastewater, increasing the theoretical COD up to 515 mg l
-1

. 

Allylthiourea (ATU, C4H8N2S), a selective inhibitor of ammonia oxidation by AOBs, was added in the 

synthetic wastewater of one reactor at a final concentration of 11.1 mg l
-1

 (95 µM) to inhibit 

nitrification. This concentration was reported to instantaneously and selectively inhibit ammonia 
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oxidation in activated sludge by chelation of  the copper from the active site of the ammonia 

monooxygenase (AMO) (Temizer Oguz, 2005). ATU is reported to have no effect on the second step 

of nitrification, that is oxidation of nitrite to nitrate by nitrite oxidizers (NOBs) (Temizer Oguz, 2005).  

Table 4.1 Micropollutants studied, with their initial concentration in the synthetic wastewater, and their analytical 

limit of quantification and recovery rates. 

 

4.2.1.2 Reactor setup and sequencing batch operation 

The reactor setup was similar to the one used by Lochmatter et al. (2013). Two identical double-

walled bubble column reactors (glass columns, 5.2 cm internal diameter, 142 cm height) with a 

working volume of 2.6 l each were used. The reactors were fed with the synthetic wastewater and 

continuously operated in sequential batch (SBR) mode. The SBR cycle, of a duration of 4 h 12 min, 

was composed of four steps (Fig. 4.1): (i) anaerobic/anoxic feeding with synthetic wastewater during 

60 min (21.7 ml min
-1

), followed by 2 min of anaerobic mixing (with nitrogen gas); (ii) intermittent 

Influent Effluent Theoretical
d

CV
f
 [%] Losses

g
 [%]

Atenolol Beta blocker A 1 100 99 1197 1247 (± 16) 1 -4

Atrazine Herbicide A 1 108 108 1205 1202 (± 74) 6 0

Azithromycin Antibiotic A 1 95 86 1108 775 (± 88) 11 30

Benzotriazole Corrosion inhibitor A 1 119 106 1179 1318 (± 168) 13 -12

Bezafibrate Lipid regulator N 5 111 107 1118 1122 (± 23) 2 0

Bisphenol A Plastic component N 6 217 54 1233 843 (± 193) 23 32

Carbamazepine Anticonvulsant A 1 105 100 1353 1372 (± 66) 5 -1

Clarithromycin Antibiotic A 1 112 101 1190 1092 (± 65) 6 8

Diclofenac Analgesic / Anti-inflammatory A 1 95 94 1149 1160 (± 75) 7 -1

Diuron Herbicide A 1 78 72 1084 863 (± 20) 2 20

Estriol Hormone N 100 116 42 1105 713 (± 81) 11 35

Estrone Hormone N 70 44 102 1188 567 (± 168) 30 52

Gabapentin Anticonvulsant A 1 93 99 1074 1050 (± 57) 5 2

Gemfibrozil Lipid regulator N 1 98 95 1036 1018 (± 22) 2 2

Ibuprofen Analgesic / Anti-inflammatory N 20 113 96 1248 1160 (± 48) 4 7

Iohexol Iodinated contrast medium N 20 187 103 4662 5484 (± 1384) 25 -18

Iomeprol Iodinated contrast medium N 5 97 116 5500 5421 (± 311) 6 1

Iopamidol Iodinated contrast medium N 4 63 94 4454 2413 (± 61) 3 46

Iopromide Iodinated contrast medium A 30 100 114 6860 7344 (± 437) 6 -7

Irgarol Algicide A 1 102 86 1064 604 (± 44) 7 43

Isoproturon Herbicide A 1 84 78 1197 1000 (± 22) 2 16

Ketoprofen Analgesic / Anti-inflammatory N 1 104 98 1134 1145 (± 59) 5 -1

Mecoprop Herbicide N 1 94 100 1178 1184 (± 34) 3 -1

Mefenamic acid Analgesic / Anti-inflammatory N 1 118 135 1145 1156 (± 26) 2 -1

Metformin Antidiabetic A 1 77 78 1216 1393 (± 50) 4 -15

Methylbenzotriazole Corrosion inhibitor A 1 104 106 1145 1206 (± 35) 3 -5

Metoprolol Beta blocker A 1 84 85 1219 1160 (± 18) 2 5

Metronidazole Antibiotic N 1 83 84 1311 1040 (± 34) 3 21

Naproxen Analgesic / Anti-inflammatory N 1 80 110 1207 1200 (± 33) 3 1

Paracetamol Analgesic / Anti-inflammatory A 1 113 117 1195 1234 (± 55) 4 -3

Primidone Anticonvulsant A 1 106 99 1217 1327 (± 64) 5 -9

Sotalol Beta blocker A 1 84 79 1147 1107 (± 130) 12 4

Sulfamethoxazole Antibiotic A 1 89 99 1062 1041 (± 19) 2 2

Terbutryn Algicide A 1 133 112 1283 857 (± 68) 8 33

Triclosan Biocide N 30 100 116 1115 362 (± 47) 13 68

Trimethoprim Antibiotic A 1 97 97 1229 1254 (± 376) 30 -2

d
 Initial theoretical concentration (based on the quantitiy of micropollutant spiked)

e
 Initial real concentration, measured 5 d after the preparation of the synthetic wastewater (storage at ambient temperature, non-sterile conditions). Average and standard 

deviation of four analyses

f 
Coefficient of variation (CV) (reproducibility) of four analyses of the influent concentrations

g
 Differences between the theoretical and measured initial concentrations. Due to losses during the storage time or analytical uncertainties

Measured
e

Initial concentration [ng l
-1

]

a
 A: acid UPLC mobile phase, column HSS T3. N: neutral UPLC mobile phase, column BEH C18

b
 Limit of quantification (LOQ), based on the lowest standard that could be clearly quantified

c
 Recovery rate (after correction with deuterated standards) of the samples (influent and effluent of the reactor) spiked with a known amount of pollutant (ratio 

measured/theoretical concentrations)

Compound Compound class
Analytical 

method
a

LOQ
b 

[ng l
-1

]

Recovery rate
c
 [%]
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aeration during 180 min, with alternation of 25 min aerated (3.6 lair min
-1

) and 5 min without aeration; 

(iii) 5 min settling; and (iv) 5 min for withdrawal. The effluent was withdrawn at the half of the height 

of the column, resulting to a water exchange ratio of 50% per cycle. The temperature was regulated in 

both reactors at 20 ±1°C, and the pH was controlled between 7.0 and 7.5 (by injection of NaOH or 

HCl 1 M). An intermittent aeration strategy (Fig. 4.2) was chosen to stimulate the denitrification in the 

reactor, according to Lochmatter et al. (2013). Each reactor was treating 7.44 l d
-1

, resulting in an 

average hydraulic retention time (HRT) of about 8 h.  

 

Fig. 4.1 Configuration and operation of the aerobic granular sludge sequencing batch reactor (AGS-SBR) 

The reactors were inoculated with flocculent sludge from the municipal WWTP of Thunersee 

(Switzerland), which treats N and P biologically (in activated sludge systems). Granular sludge (1-2 

mm diameter) was obtained in the reactors after around 30 d by progressive washout of bacteria not 

able to granulate, following the strategy developed by Lochmatter and Holliger (2014). The reactors 

were continuously operated during 55 d with synthetic wastewater (without micropollutant) to achieve 

stable and high nutrient removal efficiencies. During this period, the excess granular sludge produced 

was not purged to increase the biomass concentration. After 55 d, the biomass from both reactors was 

mixed and re-partitioned equally between the two reactors to assure identical sludge composition and 

concentration.  At the same time, micropollutants (at around 1 µg l
-1

), and, for one reactor, ATU (at 

11.1 mg l
-1

 to inhibit nitrification) were added in the synthetic wastewater. The two reactors were then 
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operated during 5 d more (15 HRTs) to assure stable conditions prior the sampling campaign for 

micropollutant analysis (at day 60). 

 

Fig. 4.2 Aeration sequence (0: off, 100: on) during the batch cycle and equivalent dissolved oxygen concentration in 

the reactor with complete nitrification. 

4.2.1.3 Sampling campaign for micropollutant analysis 

Five days after the addition of micropollutants and the inhibition of nitrification in one reactor, a 

sampling campaign was performed to evaluate the micropollutant removal efficiencies with and 

without nitrification. Two successive batch cycles were monitored in both reactors. Four samples were 

collected per cycle and per reactor: (i) in the raw wastewater (influent), (ii) after 1 h at the end of the 

anaerobic feeding, (iii) after 2.5 h at the half of the aeration phase, and (iv) after 4.2 h at the end of the 

batch cycle (effluent). Two extra samples were collected in the influent and effluent of the reactor not 

inhibited for quality control of the analytical method (recovery rate measurement). For the two 

sampling points taken during the batch cycles (after 1 and 2.5 h), the samples were withdrawn at the 

middle of the reactor during a mixing phase to assure homogeneous micropollutant concentrations and 

to estimate the biomass concentration. During each sampling, 300 ml were collected, directly 

centrifuged 20 min at 15,900 × g (at 4°C) and filtered at 0.7 µm (glass microfibers filters, Whatman). 

The recovered biomass (centrifugation pellets and filters) was used to determine the total suspended 

solids (TSS) concentrations. The filtered water was directly used for the analyses of micropollutants 

(280 ml), inorganic anions/cations (2 ml filtered at 0. 22 µm) and organic acids (acetate and 

propionate) (1 ml filtered at 0. 22 µm). At the end of the sampling campaign (after the two cycles), the 

residual biomass of each reactor was used to determine the sludge volume index after 10 min (SVI10 

min) and a fraction of the biomass was frozen (at -18°C) for microbial community characterization. 

4.2.1.4 Analytical methods 

4.2.1.4.1 Micropollutant analysis 

Analysis of micropollutants was performed with a screening method for 44 compounds (Table IX.3, 

Appendix IX) with off-line solid phase extraction (SPE) followed by ultra-performance liquid 

chromatography (UPLC) (Acquity UPLC system, with HSS T3 or BEH C18 column depending on the 

methods, from Waters, USA) coupled to a tandem quadrupole mass spectrometer (MS/MS) (Xevo TQ 

MS, Waters).  
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The off-line SPE method, with hand-assembled two layers cartridges (Oasis HLB and mixture of 

Strata X-CW, Strata X-AW and Isolute ENV+ phases), was similar to the one used in Chapter 3 and 

described by Morasch et al. (2010), at the difference that only 230 ml of sample were extracted, and 

that the samples were not acidified but adjust to neutral pH prior the extraction (to avoid pollutant 

degradation in acidic conditions). The cartridges were therefore also conditioned with non-acidified 

water and methanol. The extraction was performed within 24 h after the sampling campaign. After the 

extraction, cartridges were dried 30 min under air stream and frozen (-18°C during 11 d) until the 

elution. Elution of the cartridges was performed just before the analysis as described by Morasch et al. 

(2010). Eluate fractions were concentrated at 40°C under a gentle N2 stream to a volume of 500 µl and 

then diluted 2.5 times with the aqueous UPLC eluent, prior to the injection (10 µl) in the UPLC 

column. Two different UPLC methods, either with acidic or neutral eluents, were used depending on 

the compounds. The conditions of the UPLC gradient and the compounds analysed by each methods 

are presented in Appendix IX. 

Target compounds were identified and quantified using tandem mass spectrometry (MS/MS) (Xevo 

TQ MS, Waters) in positive and negative electrospray ionization modes (ESI), and detected in 

multiple reaction monitoring mode (MRM), according to Morasch et al. (2010). Losses during 

extraction and matrix effects were corrected by adding internal standard (deuterated pollutants at 500-

1000 ng l
-1

) before processing the samples. MS/MS conditions for each pollutant and for their 

associated deuterated standards are presented in Appendix IX.  A set of six standards (corresponding 

to 1 – 2000 ng l
-1

) was used to determine the calibration curves. The standards (spiked with the 

deuterated surrogates) were prepared in the aqueous UPLC eluent and directly injected into the UPLC-

MS without passing by an SPE step.  

The limit of quantification (LOQ) was between 1-5 ng l
-1

 for most compounds (cf. Table 4.1), except 

for ibuprofen (LOQ: 20 ng l
-1

), iohexol (20 ng l
-1

), iopromide (30 ng l
-1

), triclosan (30 ng l
-1

), estrone 

(70 ng l
-1

) and estriol (100 ng l
-1

). 

Quality control  

Prior processing the samples, two samples (one raw and one treated wastewater) were split in two, and 

one half was spiked with known concentrations (~500 ng l
-1

) of micropollutants to calculate the final 

recovery rates (after correction with the internal deuterated standards, calculated as the concentration 

difference between the spiked and unspiked samples). The final recovery rate in both samples varied 

between 80 to 120% for 31 out of the 36 compounds quantified (cf. Table 4.1), showing the relatively 

good accuracy (< ±20%) of the analytical method. Only for bisphenol A (recovery rates between 54-

200%), estriol and estrone (42-116%), iohexol (103-187%) and iopamidol (63-94%), the recovery 

rates were very variable. Therefore, for these five compounds, results have to be considered with 

precaution. The reproducibility of the analytical method, assessed by analysing four times the 

synthetic wastewater, was relatively good, with a coefficient of variation (CV) lower than 13% for all 

compounds except bisphenol A (23%),  estrone (30%), iohexol (25%) and trimethoprim (30%) (cf. 

Table 4.1). 
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4.2.1.4.2 Organic acid analysis 

Acetate and propionate concentrations were determined by high performance liquid chromatography 

(HPLC) (Co-2060 Plus, Jasco, Tokyo, Japan) equipped with an ORH-801 column (Transgenomic, 

Glasgow, United Kingdom) and a refractive index (RI) detector (RI-2021plus, Jasco, Tokyo, Japan). 

20 µl of sample were injected and separation of the compounds was conducted under isocratic 

condition at 0.5 ml/min with a mobile phase composed of 5 mM H2SO4 in pure water, during 18 min 

at 35°C. Limits of detection were at 0.1-0.2 mM for both acetate and propionate. 

4.2.1.4.3 Standard parameters analysis 

TSS were determined by centrifugation (20 min at 15,900 g) of a known volume of sample, followed 

by filtration of the supernatant at 0.7 µm (GMF Whatman filters). The dry weights of the 

centrifugation pellets, as well as the one of the biomass retained on the filters, were used to determine 

the dry suspended solids. Dry matter and water content were determined by overnight drying the 

sample at 105 °C. The mineral content was determined after 2 h combustion of the samples at 550 °C.  

Major inorganic anions and cations, such as ammonium (NH4
+
), nitrite (NO2

-
), nitrate (NO3

-
), and 

orthophosphate (PO4
3-

), were determined by ion chromatography (anions: ICS-90, IonPacAS14A 

column; cations: ICS-3000A, IonPacCS16 column) with conductivity detector (Dionex DX 500, 

Olten, Switzerland). 

Dissolved oxygen (DO) and pH were continually monitored with online electrodes (from Mettler 

Toledo). 

4.2.1.4.4 Bacterial community composition 

The relative composition of the bacterial communities in the granular sludge was characterized by 

terminal-restriction fragment length polymorphism (T-RFLP) analysis, targeting the hypervariable 

region of the Eubacteria 16S rRNA gene pool (FAM-labelled 8-F forward primer and 518-R reversed 

primer), with the method described by Weissbrodt et al. (2012). The bacterial community structures 

were expressed as relative contribution of all operational taxonomic units (OTUs) contributing to the 

total measured fluorescence. T-RF with size lower than 32 pair bases (pb) were not considered (back-

ground noise) 

4.3 Results and discussion 

4.3.1 Biomass concentration and nutrient removal 

At the time of the sampling campaign, both reactors contained relatively similar biomass 

concentrations, with, in the reactor with nitrification, 3.6 and 2.4 g l
-1

 TSS for the first and second 

batch cycle, respectively; and in the reactor with inhibited nitrification, 4.7 and 2.5 g l
-1

 TSS for the 

first and second cycle, respectively. The biomass decreased between the first and second cycles due to 

the sampling of high volume of water (total 0.6 l out of 2.6 l) for micropollutant analysis. The mineral 

content of the TSS was at 35-37% in both reactors. Despite homogenization of the biomass five days 

before, the granular sludge of both reactors was visually different, with more loose and filamentous 

granules in reactor without inhibition and more compact granules in the inhibited reactor. This resulted 
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in lower settleability in the first reactor (not inhibited), with a sludge volume index SVI10 min of 95 ml 

g
-1

 compared to 38 ml g
-1

 in the inhibited reactor. 

Prior to homogenizing the biomass of the two reactors, five days before the sampling campaign, both 

reactors showed good nutrient removal efficiencies, with complete (> 97%) phosphate removal and 

high nitrification-denitrification rates (> 90%). During the biomass homogenization, a thick biofilm 

was removed from the wall of the reactors, resulting in a strong loss of the nitrification capacity (< 

65% NH4 removal). As the goal was to reach complete nitrification in the reactor not inhibited, the 

intermittent aeration phases were extended. The addition of ATU in one reactor five days before the 

sampling campaign resulted in direct inhibition of the nitrification. At the time of the sampling 

campaign, the nutrient removal efficiencies were stable in both reactors.  

 

Fig. 4.3 Nutrient removal during two subsequent sequential batch cycles (starting at time 0 and 4 h 12 min). (A) In the 

reactor with nitrification and (B) in the reactor with inhibited nitrification. Dash-lines: equivalent initial concentrations 

in the reactor after dilution (1:1) with the previous batch cycle. 

Fig. 4.3 presents the evolution of N- and P- concentrations during two successive sequential batch 

cycles during the sampling campaign. In the reactor without inhibition (Fig. 4.3 A), complete 

nitrification was observed (> 99% NH4 removal, with less than 1 mg N-NH4 l
-1

 in effluent) during the 

two cycles, as well as partial denitrification of the nitrate produced (40% removal of total dissolved 

nitrogen). In the inhibited reactor (Fig. 4.3 B), as expected, no nitrification was observed, with only 

20% of NH4 and total dissolved nitrogen removal, probably by biomass uptake (production of new 

sludge). For the phosphate, opposite behaviours were observed, with only 22% of PO4
3-

 removed in 

the reactor with nitrification and 99% in the inhibited reactor. In the latter, classical behaviour for 

biological phosphorus removal was observed (Furumai et al., 1999), with release of the phosphates 

accumulated in the cells (in form of polyphosphates) during the anaerobic phase (first hour) and ortho-

phosphate uptake by polyphosphate-accumulating organisms (PAOs) during the aerobic phase.  

The low P-removal reached in the reactor without inhibition was probably linked to the intensive 

aeration applied to reach complete nitrification, which limited the denitrification rate during the 

aerobic phase. This resulted in the presence of relatively high nitrate concentrations in the reactor 

during the first anaerobic/anoxic feeding, deteriorating the P-removal efficiency (more efficient with 

complete anaerobic conditions) (Peng et al., 2010).  Very different behaviours for nutrient removal 

were thus observed between the two reactors. 
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Acetate and propionate, the two main carbon substrates, were completely (> 95%) consumed in both 

reactors during the anaerobic/anoxic feeding, confirming the unfavourable growth conditions for strict 

aerobic heterotrophic organisms in this system. 

4.3.2 Micropollutant removal 

The removal of the 36 micropollutants studied in the AGS-SBRs (average of two batch cycles) is 

presented in Fig. 4.4. In the reactor with complete nitrification, nine micropollutants were removed 

above 80%, while 17 were removed less than 20%. The average removal of the 36 pollutants was at 

only 42%, showing the restricted potential of AGS-SBRs for the treatment of micropollutants in 

wastewater. Apart for five compounds, very similar removal efficiencies were measured with or 

without inhibition of the nitrification, showing the limited role of AMO oxidation for the removal of a 

wide range of pollutants. Very good removal reproducibility was observed between the two batch 

cycles, despite lower biomass concentration in the second cycle. The kinetics of micropollutant 

removal, grouped as a function of the removal efficiencies, are presented below.   

 

Fig. 4.4 Micropollutant removal in the aerobic granular SBR (average and values of two batch cycles) in the reactor 

with or without (inhibited) nitrification. Average removal of the 36 pollutants: 42% with nitrification and 33% without 

nitrification. 

4.3.2.1 Micropollutants well removed (>70%) in all conditions 

Nine pollutants were well removed (> 70%) in both reactors, with or without nitrification (Fig. 4.5). 

The two macrolide antibiotics azithromycin and clarithromycin, as well as the biocide triclosan were 

rapidly removed already during the anaerobic/anoxic feeding. These three compounds are relatively 

hydrophobic (log Kow of 3.2-4.8) (cf. Table S 3.1, Chapter 3), which suggests that they were at least 

partially removed by adsorption. Indeed, although these pollutants can be biologically degraded, they 

are reported to have a good (azithromycin and clarithromycin) to strong (triclosan) adsorption affinity 

for activated sludge (Banihashemi and Droste, 2014; Jelic et al., 2011; Yan et al., 2014; Ying and 

Kookana, 2007). Their fast removal in the anoxic phase is coherent with the rapid adsorption kinetics 

observed for micropollutants onto activated sludge, with adsorption equilibrium usually reached in 

less than 30 min (Ternes et al., 2004) (longer time to reach equilibrium are, however, expected in 

granular sludge due to diffusion limitation). The positive charge of the two marcolides may favour 

electrostatic attraction with the granule surface, mainly negatively charged (Liu et al., 2014). It was 
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reported that both nitrifying bacteria (via AMO oxidation) and other non-ammonia oxidizing 

microorganisms play a role in triclosan degradation in nitrifying activated sludge (Roh et al., 2009). 

Thus, although this could not be seen in our results, it is likely that the three compounds were further 

degraded in the sludge after their initial fast adsorption. 

The two natural estrogens estrone (E1) and estriol (E3) were also rapidly removed (close to their limit 

of quantification) during the anaerobic/anoxic feeding. Due to their moderate hydrophobicity (log Kow 

of 2.5-3.1), neutral charge at pH 7 and good biodegradability, it is expected that they were initially 

rapidly adsorbed onto granular sludge and then progressively degraded during the aerobic phase. 

Indeed, it is reported that estrogens tend to sorb rapidly to activated sludge and then are further 

degraded in the sludge phase, especially under aerobic conditions (low degradation occurred under 

anoxic conditions) (Hashimoto and Murakami, 2009). The absence of effect of AMO inhibition on E1 

and E3 removal suggests that heterotrophic bacteria may have played a significant role in their 

degradation, as also reported by Maeng et al. (2013). 

Although ibuprofen is a relatively hydrophobic compound (log Kow of 4.0), it seemed to be mainly 

removed by biodegradation, as very low removal in the initial anaerobic/anoxic phase was observed 

(by considering the dilution effect with the previous batch). Its low adsorption affinity could be 

explained by its negative charge (at pH 7), which may lead to electrostatic repulsion with the 

negatively charged surface of the granules. Indeed, several other pollutants, negatively charged at pH 

7, such as diclofenac, mefenamic acid, gemfibrozil or bezafibrate, were only poorly removed in the 

AGS-SBRs, confirming that adsorption was not significant for these anionic compounds, despite their 

relatively high hydrophobicity (log Kow > 4.0). The good removal of ibuprofen in both reactors 

(without or with ATU) is consistent with the results of other studies, where presence of ATU did not 

significantly affect its removal (Falås et al., 2012a; Maeng et al., 2013; Tran et al., 2009). Moreover, 

pure culture of nitrifying bacteria (Nitrosomonas europaea) were unable to degrade ibuprofen (Roh et 

al., 2009), confirming that ibuprofen degradation was due to the activity of heterotrophic bacteria. 

The removal of paracetamol, sulfamethoxazole and gabapentin is expected to be due to biodegradation 

as these compounds have low hydrophobicity (log Kow < 0.9) and low sludge affinity (Yan et al., 

2014). Paracetamol is known to be easily degraded in WWTPs with or without nitrification (DGE, 

2013; Maeng et al., 2013; Margot et al., 2013b) and seemed to be well degraded also during the 

anoxic/anaerobic feeding. Sulfamethoxazole (SMX) was removed at a slightly higher rate in the 

nitrifying reactor but this was probably not due to AMO oxidation as complete removal was observed 

also in the inhibited reactor. SMX was reported to be only poorly removed (< 30%) in AOB-enriched 

nitrifying sludge (Suarez et al., 2010), confirming that the removal observed with the granular sludge 

was mainly due to heterotrophic bacteria. SMX removal in WWTPs is highly variable, ranging from 0 

to 70%, with average removal usually lower than 50% (DGE, 2013; Margot et al., 2013b). This lower 

efficiency in WWTPs may be related to the biological cleavage of the human metabolite N
4
-acetyl 

sulfamethoxazole, reconverted to the antibiotic sulfamethoxazole during the biological treatment in 

real wastewater (Göbel et al., 2007), while this could not occur in the synthetic wastewater in the 

AGS-SBRs. Gabapentin, well removed in the AGS-SBRs (with or without nitrification), was reported 

to be poorly removed (< 30%) in several WWTPs (DGE, 2013; Margot et al., 2013b; Reungoat et al., 
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2011), while it was well removed (> 80%) in few others (Kasprzyk-Hordern et al., 2009; Yu et al., 

2006). This variable removal rate in WWTPs cannot be explain by variable rates of nitrification, or by 

reformation of gabapentin by biological cleavage of a conjugated molecule, as gabapentin is not 

metabolized in the human body (no conjugate formed) (Kasprzyk-Hordern et al., 2009). Therefore, 

better gabapentin removal in AGS-SBRs or in some WWTPs may be due to the presence of specific 

heterotrophic microorganisms able to degrade this compound. 

 

Fig. 4.5 Kinetics of micropollutant removal with or without nitrification. Compounds well removed (> 70%). Average 

and values (error bars) of duplicates. Dash-lines: equivalent initial concentrations in the reactor after dilution (1:1) with the 

previous batch cycle. 

4.3.2.2 Micropollutants better removed with than without nitrification 

Five compounds were significantly better removed in the reactor with complete nitrification than in 

the one without (Fig. 4.6). This difference was particularly important for bisphenol A (BPA), even 

taking into account the moderate analytical reproducibility (± 23%) for this compound. The role of 

AMO in BPA oxidation was confirmed in other studies (Kim et al., 2007; Roh et al., 2009), where 

pure cultures of nitrifying bacteria (N. europaea) were able to degrade BPA only in absence of ATU. 

The good removal of BPA observed only in nitrifying WWTPs (Gardner et al., 2013; Margot et al., 

2013b) may thus be due to oxidation by AMO. However, in nitrifying sludge, BPA was reported to be 

also slowly degraded by heterotrophic organisms (Kim et al., 2007; Roh et al., 2009). It is thus likely 

that both ammonia-oxidizing organisms and other heterotrophic organisms, which might be favoured 

under condition favourable for nitrification, are responsible for BPA removal in WWTPs.  
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Even considering the moderate analytical reproducibility (± 25%) for iohexol, this compound was still 

significantly better removed without than with AMO inhibition. Oxidation of iohexol by AMO was 

not previously reported but biodegradation of this compound with nitrifying sludge was already 

observed (Hapeshi et al., 2013). Higher iohexol removal efficiencies were also observed in WWTPs 

with higher nitrification levels (cf. Chapter 3). AOB might thus play a role in iohexol degradation. 

Batt et al. (2006) and Pérez et al. (2006) observed that iopromide, another iodinated contrast medium 

with very similar structure than iohexol, was transformed by nitrifying sludge to a dehydroxylated 

metabolite, this metabolite being not observed when nitrification was inhibited. As iohexol contains 

two more hydroxyl groups than iopromide, it is possibly a better substrate for organisms present in 

nitrifying sludge, which may explain why it was better removed than the other iodinated contrast 

media. 

Naproxen (NPX) was slowly removed in the inhibited reactor and degraded significantly faster in the 

reactor with nitrification, suggesting that it could be partially oxidized by AMO. Similar results were 

observed in other studies with enriched nitrifying sludge (Tran et al., 2009). It was suggested that 

AMO might oxidize NPX through O-dealkylation mechanism, as observed for other aromatic ethers 

(Alvarino et al., 2014). In full-scale WWTPs, NPX removal was also reported to be positively 

correlated with ammonium removal (DGE, 2013; Fernandez-Fontaina et al., 2012; Margot et al., 

2013b), supporting the fact that nitrification might play a role in its removal. However, this might not 

only be because of the activity of AOBs but also to heterotrophic degradation, as no effect of 

nitrification inhibition was observed on NPX removal with activated sludge from full-scale nitrifying 

WWTPs (Falås et al., 2012a). 

The two triazine herbicides irgarol and terbutryn, with relatively similar chemical structures, were also 

clearly better removed in the reactor not inhibited, suggesting their potential oxidation by AMO. Very 

few studies have been conducted on the degradation of these two herbicides in WWTPs. It has recently 

been reported that both compounds were transformed in nitrifying activated sludge to a sulfoxide 

metabolite (oxidation of the sulfur group) (Luft et al., 2014), which may explain why atrazine, another 

structurally similar triazine herbicide but without the sulfur group, was not oxidize in the AGS-SBRs. 

Moreover, a slight but significant positive correlation between their removal and ammonium removal 

in WWTPs has previously been observed (cf. Chapter 3), supporting the possible link between irgarol 

and terbutryn removal and AMO oxidation. 
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Fig. 4.6 Kinetics of micropollutant removal with or without nitrification. Compounds better removed with 

nitrification (47-93%) than without (< 35%). Average and values (error bars) of duplicates. Dash-lines: equivalent initial 

concentrations in the reactor after dilution (1:1) with the previous batch cycle. 

4.3.2.3 Micropollutants only slightly removed (20-40%) 

Five micropollutants were slowly removed in both reactors, with no clear difference between the 

reactors (inhibited or not), despite a slightly better removal in the one with complete nitrification for 

bezafibrate, ketoprofen and mefenamic acid (Fig. 4.7). It has been reported that the removal of 

gemfibrozil, bezafibrate and ketoprofen in nitrifying sludge was reduced in presence of ATU, although 

these compounds were also partially removed with inhibited nitrification (Maeng et al., 2013; Tran et 

al., 2009). However, in activated sludge from full-scale WWTPs, ketoprofen removal was not 

impacted by ATU addition (Falås et al., 2012a). Therefore, both AOBs and other heterotrophic 

organisms may play a role in their degradation. The slow removal kinetics observed indicate that 

better removal efficiencies would be reached with longer HRTs. The higher removal efficiencies for 

these compounds (except for benzotriazole) observed in WWTPs with higher ammonium removal 

efficiencies (DGE, 2013; Margot et al., 2013b) (cf. Chapter 3) may thus be partially related to longer 

HRT in these WWTPs. HRTs are, however, also related to the microbial community composition, as 

shorter HRTs in a WWTP mean higher nutrient loads, which may affect the microbial composition. 

Thus both HRTs and the microbial composition may play a role for the removal of these compounds 

in WWTPs. 
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Fig. 4.7 Kinetics of micropollutant removal with or without nitrification. Compounds slightly removed (20-40%). 

Average and values (error bars) of duplicates. Dash-lines: equivalent initial concentrations in the reactor after dilution (1:1) 

with the previous batch cycle. 

4.3.2.4 Micropollutants not or poorly removed (<20%) 

Almost half of the micropollutants studied (17 out of 36) were not or only poorly removed in both 

AGS-SBRs (Fig. 4.8). Some of them were reported to be degraded in nitrifying activated sludge in 

batch experiments (biomass concentration 1-5 g TSS l
-1

), such as atenolol and metoprolol (~80% 

removal in 25 h) (Falås et al., 2013; Sathyamoorthy et al., 2013), iopromide and trimethoprim (~70% 

in 24 h and 100 h, respectively) (Batt et al., 2006), diclofenac (75% in 72 h) (Tran et al., 2009) and 

metronidazole (90% in 24 h) (Phan et al., 2014). Lower removals observed in this study may be due to 

shorter HRTs in the AGS-SBRs (~8 h), and to different bacterial communities in the granular sludge, 

with possibly a lower fraction of AOBs than in enriched nitrifying sludge and less diverse aerobic 

heterotrophic microbial community. The microbial community composition has, indeed, a strong 

influence on the degradation of some micropollutants in municipal WWTPs. For instance, diclofenac, 

which is hardly degraded in most activated sludge systems, was reported to be well degraded (> 90% 

in less than 24 h) with the biomass of some moving bed bioreactors (MBBRs) (Falås et al., 2012b; 

Falås et al., 2013). 
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Fig. 4.8 Kinetics of micropollutant removal with or without nitrification. Compounds poorly removed (< 20%). 

Average and values (error bars) of duplicates. Dash-lines: equivalent initial concentrations in the reactor after dilution (1:1) 

with the previous batch cycle. 
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4.3.2.5 Removal under aerobic versus anoxic/anaerobic conditions 

Except for the compounds rapidly removed by adsorption, faster (or at least similar) degradation rates 

were observed during the aerobic phase than during the anoxic/anaerobic step (considering the dilution 

effect with the previous batch). This was particularly the case for ibuprofen, iohexol, naproxen, 

bezafibrate, gemfibrozil, ketoprofen and mefenamic acid. Most of these compounds (apart iohexol), as 

well as several others (e.g., natural and synthetic estrogens, metoprolol, benzotriazole, 

methylbenzotriazole, valsartan, salicylic acid, erythromycin, roxithromycin) were indeed reported to 

be much better degraded under aerobic than anoxic/anaerobic conditions (Alvarino et al., 2014; Falås 

et al., 2013; Phan et al., 2014; Suarez et al., 2010). Only a few micropollutants were reported to be 

sometimes better degraded under anaerobic conditions: trimethoprim, sulfamethoxazole and possibly 

naproxen and clarithromycin (Alvarino et al., 2014; Falås et al., 2013). Aerobic conditions should thus 

be favoured to increase micropollutant removal in WWTPs. 

4.3.3 Comparison with full scale WWTPs 

The micropollutants removal potential of the AGS-SBRs was compared to the one of a full-scale 

municipal WWTP, with complete (> 97% NH4 removal) or without (< 25% NH4 removal) 

nitrification. Data for the WWTP came from the study presented in Chapter 3 at Lausanne WWTP, 

Switzerland, which has two biological treatments in parallel, a high load activated sludge without 

nitrification (SRT of 2 d) and a MBBR with partial to complete nitrification (could be adjusted by 

changing the flow treated). Even if not the same wastewater was treated with the AGS-SBRs and the 

WWTP (synthetic versus real municipal wastewater, respectively), both processes were operated in 

continuous with similar treatment objectives: good removal of COD and complete nitrification. The 

MBBR (with complete nitrification) had a lower HRT than the AGS-SBR (3.9 h versus 8 h in the 

biological part) but a higher biomass concentration (not measured but usually between 5-13 g TSS l
-1

 

in MBBRs (Falås et al., 2012b) versus ~ 3 g TSS l
-1

 in the AGS-SBR). 

As presented in Fig. 4.9 A, the MBBR was on average more efficient than the AGS-SBR regarding the 

removal of most micropollutants (average removal of the 34 compounds of 50% and 41%, 

respectively). Only three compounds were better removed with the AGS-SBR: clarithromycin, 

sulfamethoxazole and gabapentin. As clarithromycin was suspected to be mainly removed by 

adsorption onto the granular sludge, its higher removal may be related to uncompleted saturation of 

the adsorption sites of the granules, which were in contact with the pollutants only for a few days 

compared to several weeks in the MBBR (where adsorption is expected only on the new fresh biomass 

produced). Clarithromycin may also enter the WWTP trapped into faeces particles and then released in 

the water phase during the biological treatment, resulting in a low apparent removal of the dissolved 

fraction (Göbel et al., 2007). For sulfamethoxazole, the low removal rate in real municipal wastewater 

may be related, as discussed before, to the production of this compound during the treatment by 

biological cleavage the conjugated metabolite. Thus, for these two antibiotics, lower removal 

efficiencies in the AGS-SBRs would be expected after long-term operation with real wastewater. The 

good removal of gabapentin is promising as this compound is only poorly removed in conventional 

WWTPs. 
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Fig. 4.9 Comparison of micropollutant removal efficiencies between the granular SBR (synthetic wastewater) and 

Lausanne WWTP (real municipal wastewater), (A) with complete nitrification (> 97% NH4 removal, < 1 mg N-NH4 l
-1 

in effluents), (B) without nitrification (< 25% NH4 removal). For Lausanne WWTP, average and standard deviation of 6 

campaigns (24-72 h-composite samples) for complete nitrification (moving bed bioreactor), and 12 campaigns (24-72 h-

composite samples) without nitrification (activated sludge) (data from Chapter 3). 

A group of micropollutant was significantly better removed with the MMBR than the AGS-SBR (Fig. 

4.9 A): gemfibrozil, bezafibrate, mefenamic acid, ketoprofen, atenolol, metronidazole, 

methylbenzotriazole, trimethoprim, isoproturon and iopromide. Most of these compounds were 

reported to be better removed in WWTPs with high nitrification capacities (DGE, 2013; Margot et al., 

2013b). As the AGS-SBR had similar ammonium removal efficiency than the MBBR (complete 

nitrification on both cases), this gives a clue that the better removal observed in nitrifying WWTPs is 

very likely not due to AOB activity, but probably to the presence of a more diverse microbial 

community. As discussed before, aerobic conditions are favouring micropollutant degradation, and 

most pollutants are better (or at least as well) removed by heterotrophic organisms than by AOBs. 

Thus, the presence of a diversified aerobic heterotrophic microbial community seems to be the main 

reason for better micropollutant removal in nitrifying WWTPs, as also suggested by Falås et al. 

(2012b). The growth of these organisms is unfavoured in AGS-SBRs, which may explain the lower 

removal efficiencies reached. The presence of only simple carbon sources in the synthetic wastewater 
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does also not favour the development a diversified heterotrophic microbial community in the granular 

sludge. 

Fig. 4.9 B shows a comparison of the removal efficiencies between the AGS-SBR inhibited with ATU 

and the activated sludge reactor without nitrification. In this case, the AGS-SBR was more efficient 

for the removal of most micropollutants (average removal of 32% vs 22%). This demonstrates that, 

even if the granular sludge had lower degradation potential than conventional nitrifying sludge, it had 

higher potential than non-nitrifying sludge, confirming that conditions favourable for the growth of 

nitrifying bacteria might also be favourable for other microorganisms able to degrade micropollutants. 

As synthesized in Fig. 4.10, nitrification inhibition in the AGS-SBRs only affected the removal of a 

few pollutants (Fig. 4.10 A), while conditions allowing complete nitrification in WWTPs favoured the 

degradation of most micropollutants compared to WWTPs without nitrification (Fig. 4.10 B).  

 

Fig. 4.10 Comparison of micropollutant removal efficiencies between biological treatments without nitrification (< 

25% NH4 removal) or with complete nitrification (> 97 % NH4 removal, < 1 mg N-NH4 l
-1 in effluents). (A) In the 

granular SBR with or without nitrification inhibition. (B) At Lausanne WWTP, with either activated sludge (without 

nitrification) or moving bed bioreactor (with complete nitrification) (average removal of 6-12 campaigns, data from Chapter 

3). 
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4.3.4 Microbial community 

The relative compositions of the microbial community in the granular sludge and in the sludge from 

Lausanne WWTP are presented in Fig. 4.11. The composition is presented in terms of operational 

taxonomic unit (OTU) based on the results of the T-RFLP analysis. One OTU can correspond to 

several bacterial species, but also one species can be present in several OTUs. Affiliation of OTUs to 

specific bacterial species is thus not possible without other information (e.g., by pyrosequencing). 

Nevertheless, these results allow comparing the bacterial community composition between different 

sludge. 

As presented in Fig. 4.11, nitrification inhibition did not strongly affect the microbial compositions in 

the granular sludge. The same main OTUs were present in both sludge, but at different proportions, 

especially for OTU 302, much more present in the sludge not inhibited. Nitrifying population (AOBs 

and NOBs) can usually not be assessed by T-RFLP due to their relatively low abundance (< 1%) in 

granular sludge (Weissbrodt et al., 2012). Therefore, the changes in bacterial composition observed 

between the granular sludge inhibited or not were not due to a change of the proportion of AOBs. 

Filamentous granules were observed in the reactor not inhibited, suggesting that the dominant OTU 

302 was linked to filamentous bacteria. While a relatively diversified bacterial community was 

observed in the granular sludge (90% of the total abundance dominated by 26 and 45 OTUs, without 

or with inhibition, respectively), much lower diversity was measured in the non-nitrifying activated 

sludge, with only 11 OTUs dominating 90% of the total abundance. In the MBBR biomass (taken 

from the first tanks with low nitrification), higher diversity was observed, with 34 OTUs dominating 

90% of the total abundance. Although it is not possible to make a link between specific OTUs and 

micropollutant degradation, it can be observed that the sludge from the two AGS-SBRs had relatively 

similar composition and showed relatively similar removal efficiencies, while the two sludge from the 

WWTP had relatively different microbial communities and showed very different micropollutant 

removal efficiencies, with higher removal with the more diversified sludge. 

 

Fig. 4.11 Fingerprint (T-RFLP profiles) of the microbial community in the aerobic granular sludge (with or without 

nitrification inhibition with ATU) and in the sludge from Lausanne WWTP (activated sludge without nitrification, or 

sludge from the moving bed bioreactor (first reactor with low nitrification)). Numbers: size (in base pairs (bp)) of the 

TRFs for each operational taxonomic unit (OTU). Only OTUs with relative abundance >2% in at least one sample are listed. 
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4.4 Conclusions 

The main goals of this study were to assess the potential of aerobic granular sludge for micropollutant 

removal from wastewater and to clarify the reasons leading to better micropollutant removal in 

nitrifying WWTPs. Based on the results of this study, it can be concluded that: 

 AGS-SBRs treating synthetic wastewater showed a moderate potential for micropollutant 

removal, with only nine pollutants removed over 80% and 17 less than 20% (out of 36). 

 Autotrophic nitrifying organisms (especially AOBs) did not play a significant role in 

micropollutant removal, apart for a few compounds: bisphenol A, naproxen, iohexol, irgarol 

and terbutryn. 

  Several micropollutants were degraded faster during the aerobic phase than during the 

anoxic/anaerobic step, confirming the higher potential of aerobic conditions for micropollutant 

removal. 

 The operating conditions of AGS-SBRs, chosen to be unfavourable for aerobic heterotrophic 

organism growth in order to save COD for denitrification and biological phosphorus removal, 

may play a role in the low-to-moderate efficiency of this process for micropollutant removal. 

 The better removal efficiencies observed for several micropollutants in nitrifying WWTPs 

compared to nitrifying AGS-SBRs, despite similar nitrification efficiency, suggests that 

aerobic heterotrophic organisms may play an important role in micropollutant removal in 

nitrifying WWTPs, significantly more than the one of nitrifying organisms (present in much 

lower abundance). 

 In WWTPs, conditions favourable for the growth of nitrifying bacteria, such as long SRTs, 

low food-to-microorganisms ratio and good aeration, seem to be also favourable for the 

development of a diversified heterotrophic microbial community able to degrade 

micropollutants. Moreover, the longer HRT required in nitrifying WWTPs is expected to 

increase the removal efficiencies of pollutants with low to moderate degradation kinetics. 

 Nitrifying WWTPs have, therefore, a much higher potential than non-nitrifying WWTPs 

regarding micropollutant removal from municipal wastewater. However, even up-to-date 

nitrifying WWTPs are not able to remove all the micropollutants, with still almost half of 

those studied removed less than 50%. If better removal efficiencies are required, 

complementary treatments will be necessary. 
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Chapter 5    Screening of the range of pollutants 

oxidized by laccase  

5.1 Introduction 

As shown in Chapter 3, ozonation and adsorption onto powdered activated carbon proved to be 

effective technologies to treat micropollutants and are feasible in terms of implementation and 

operation on a large scale in WWTPs. But, these advanced treatments appeared not to be adapted for 

small WWTPs due to the cost of the treatment and the skills required for their operation. Moreover, 

they consume significant energy, which goes against the efforts made for the reduction of climate 

change. Thus, effort has still to be invested in research for the development of a treatment affordable 

for small WWTPs, with low equipment needs, skills and energy requirements. One potential means to 

reduce the impacts of micropollutants released by small WWTPs is to improve their biodegradation in 

a post-treatment step using microorganisms that produce oxidative enzymes such as laccases 

(Blánquez et al., 2008; Zhang and Geißen, 2012). 

The ability of fungal laccases to catalyse (alone or with the help of mediators) the oxidation of 

pharmaceuticals and biocides was demonstrated for several substances, such as endocrine compounds 

(Auriol et al., 2008; Cabana et al., 2007a), analgesic and anti-inflammatory drugs (Hata et al., 2010; 

Lu et al., 2009; Marco-Urrea et al., 2010a; Marco-Urrea et al., 2010b), antibiotics (Schwarz et al., 

2010; Suda et al., 2012), UV filter (Garcia et al., 2011), biocides (Kim and Nicell, 2006c) and various 

halogenated pesticides (Torres-Duarte et al., 2009). Due to their wide range of substrates and the sole 

requirement of oxygen as the co-substrate, laccases appear to be a promising biocatalyst to enhance 

the biodegradation of micropollutants in wastewater in a complementary treatment step. 

The goal of this preliminary study was thus to assess the potential of laccases and laccase-mediator 

systems for the removal of a wide range of micropollutants commonly found in municipal wastewater. 

More specifically, the goals were: (i) to screen which pollutants can be oxidized by laccase or laccase-

mediator systems, at high (20 mg l
-1

) and at environmentally relevant (1 µg l
-1

) concentrations in 

synthetic acidic wastewater, and (ii) to assess the potential of laccase and laccase-mediator systems for 

micropollutant removal in real treated wastewater at near neutral pH. 

5.2 Materials and methods 

5.2.1.1 Chemicals and enzyme 

Micropollutants, laccase powder from Trametes versicolor (ref. 38429, Sigma), 2,2'-azino-bis(3-

ethylbenzthiazoline-6-sulphonic acid) (ABTS), and all other chemicals were purchased from Sigma-

Aldrich Chemie GmbH (Buchs, Switzerland). 
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5.2.1.2 Laccase activity test 

Laccase activity was determined using a colorimetric assay by measuring the oxidation of 0.5 mM 

ABTS in oxygen-saturated acetate buffer (0.1 M) at pH 4.5 and 25°C. Laccase preparation was added 

to the solution after which the initial linear reaction rate, calculated from the formation of ABTS 

cation radicals, was measured as the increase of absorbance at 420 nm in a temperature-controlled 

spectrophotometer (U-3010, Hitachi, Tokyo, Japan). One unit of activity (U) was defined by the 

oxidation of one µmol of ABTS per min, using the extinction coefficient ε420nm of 36,000 M
-1 

cm
-1 

(Childs and Bardsley, 1975). 

5.2.1.3 Micropollutant analysis at high concentrations (mg l
-1

 range) 

Determination of micropollutant concentrations at the mg l
-1

 range was carried out by reverse phase 

liquid chromatography with a diode-array detector (HPLC-DAD) (LC-2000plus, Jasco, Tokyo, Japan, 

equipped with Bondapack-C18 column, 15-20 µm, 3.9 mm × 300 mm, Waters
TM

, Milford, USA). An 

aliquot of 50 µl of sample was injected. Separation of the compounds was conducted with a 1-h 

gradient, at 1 ml min
-1

, of pure H2O containing 0.1% acetic acid and increasing concentration of 

methanol (with 0.1% acetic acid) from 5 to 65% (v/v). Detection of the compounds was done by DAD 

at 200 nm. The limit of detection (LOD) was, for most compounds, around 0.3 mg l
-1

 (~1 µM). 

5.2.1.4 Micropollutant analysis at low concentrations 

Low micropollutant concentrations (ng l
-1

 to µg l
-1

) were analysed by online solid phase extraction 

(SPE), followed by ultraperformance liquid chromatography coupled with tandem mass spectrometry 

(UPLC-MS/MS). Five ml of sample were loaded via a 5 ml loop at a flow rate of 2 ml min
-1

 into the 

SPE cartridge (2.1 × 20 mm, with Oasis HLB 25 µm phase, Waters), which was previously washed 2 

min at 2 ml min
-1

 with pure methanol and conditioned 1 min at 2 ml min
-1

 with H2O with 1% (v/v) 

formic acid. The cartridge was then progressively eluted in back-flush mode with the gradient of 

solvents used for the UPLC at 0.4 ml min
-1

 during 12 min. The SPE effluent was directly injected into 

the UPLC column and served as UPLC mobile phase. Compounds were separated on the UPLC 

column (Acquity UPLC system, with BEH C18 column, 2.1 × 50 mm, 1.7 µm, Waters) at 30°C, eluted 

with an aqueous-organic mobile phase (SPE effluent) composed of (v/v) 94.8% H2O, 5% acetonitrile 

and 0.2% NH4OH (solvent A) and 5% H2O, 94.8% acetonitrile and 0.2% NH4OH (solvent B) in 

gradient mode, from 5 to 95% solvent B (v/v) in 12 min at 0.4 ml min
-1

. The column was previously 

equilibrated during 5 min at 0.4 ml min
-1

 with 95% solvent A and 5% solvent B. Target compounds 

were identified and quantified using tandem mass spectrometry (MS/MS) (Xevo TQ MS, Waters) as 

described in Appendix IX. Losses during extraction and matrix effects were corrected by adding 

internal standard (deuterated pollutants) before processing the samples. The detection limit was 

between 6 and 60 ng l
-1

 depending on the substances (cf. Table 5.1).  

5.2.1.5 Screening of the range of pollutants oxidized by laccase or laccase-mediator 

For this screening, a selection of 28 micropollutants commonly found in municipal wastewater (Table 

5.2, compounds with superscript a), including 16 pharmaceuticals, 10 pesticides/biocides, and two 

industrial chemicals, was tested. These compounds were selected due to the possibility to be analyzed 

easily by a cheap HPLC-DAD method. The reaction solution was prepared by diluting a stock solution 
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(1 g l
-1

 in methanol) of a mixture of micropollutants to a final concentration of 20 mg l
-1

 each in a 20 

mM citrate-phosphate buffer at pH 5.2. The 28 pollutants were separated in four mixtures of seven 

compounds each with different polarity in order to be able to separate them correctly with the HPLC 

method. Relatively high concentrations were tested to avoid a pre-concentration step before the 

analysis. Batch reactions were conducted in 2-ml glass vials containing 1 ml of oxygen-saturated 

reaction solution. Reactions were initiated by adding commercial laccase to reach a final laccase 

activity of 600 U l
-1

. A parallel experiment in the same conditions but with addition of a mediator, 

ABTS, at 100 µM (about 1 mole ABTS per mole of micropollutants) was also performed. The flasks 

were incubated for 7 to 24 h in the dark at 25°C under static conditions. After defined reaction times, 

aliquots (50 µl) were withdrawn from each vial and directly injected into the HPLC column to analyse 

micropollutant concentrations. 

5.2.1.6 Micropollutant oxidation assay with laccase in synthetic wastewater at low 

concentrations 

The reaction solution was prepared by diluting a stock solution (100 µg l
-1

 in pure water) of a mixture 

of micropollutants to a final concentration of 1 µg l
-1

 each in a 10 mM acetate buffer at pH 4.5. The 

mixture of compounds was composed of 31 micropollutants commonly found in municipal wastewater 

(Table 5.2, compounds with superscript b), including 17 pharmaceuticals, 8 pesticides/biocides, 5 

endocrine disruptors and one corrosion inhibitor. Batch reactions were conducted in 250 ml 

Erlenmeyer flasks containing 50 ml of oxygen-saturated reaction solution. Reactions were initiated by 

adding 5 ml of commercial laccase stock solution (1 g l
-1

 in pure water) to reach a final laccase activity 

of 500 U l
-1

. A parallel experiment in the same conditions but with addition of a mediator, ABTS, at 

1.4 µM (about 10 moles ABTS per sum of the moles of micropollutants) was also performed. The 

flasks were incubated for 20 h in the dark at 30°C on a rotating shaker at 150 rpm. Samples (8 ml per 

replicate) were then filtered at 0.22 µm (glass micro fiber filter, BGB Analytik) and immediately 

processed by online solid phase extraction (SPE) and analyzed by UPLC-MS/MS. Experiments were 

done in duplicate with four controls: i) mixture of pollutants without laccase, ii) mixture of pollutants 

with heat-inactivated laccase, iii) mixture of pollutants with ABTS and without laccase, and vi) 

mixture of pollutants with ABTS and heat-inactivated laccase. The first control was to assess the 

physico-chemical loss during the experiment, and the others to assess the influence of the presence of 

inactivated laccase or mediator alone on the removal rates. Removal rates by laccase were calculated 

relative to the second control, and by laccase-mediator relative to fourth one. 

5.2.1.7 Micropollutant oxidation assay with laccase in real wastewater 

Treated wastewater (TWW) (24-h composite sample, time proportional sampling every 15 min) from 

the effluent of the municipal WWTP of Lausanne (activated sludge without nitrification) was filtrated 

at 0.45 µm (glass microfiber filters) and then used for the tests. Two sets of experiments were 

performed: (i) with TWW slightly acidified (with HCl 1 M) to a pH of 6.5 (increasing to pH 7 at the 

end of the test), and (ii) with TWW not acidified, with an initial pH of 7.6 (reaching 7.8 at the end of 

the test). As for the test with synthetic wastewater, batch reactions were conducted in 250 ml 

Erlenmeyer flasks containing 50 ml of TWW. Reactions were initiated by adding commercial laccase 

to reach a high final laccase activity of 1000 to 1700 U l
-1

. A parallel experiment in the same 
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conditions (both pH values) but with addition of a mediator, ABTS, at 100 µM was also performed. 

The flasks were incubated for 12 h in the dark at 23°C on a rotating shaker at 150 rpm. Samples (10 ml 

per replicate) were then filtered at 0.22 µm (glass micro fiber filter, BGB Analytik) and the reaction 

was stopped by addition of 5 mM sodium azide (laccase inhibitor). Samples were then processed by 

online SPE and analyzed by UPLC-MS/MS for the determination of 41 micropollutants. Experiments 

were done in duplicate with two controls: i) TWW (pH 6.5) with heat-inactivated laccase, and ii) 

TWW (pH 6.5) with ABTS and heat-inactivated laccase. 

5.3 Results and discussion 

5.3.1 Micropollutants degraded by laccase and laccase-mediator systems 

The screening performed in buffer solution (pH 5.2) with relatively high concentrations of pollutants 

(20 mg l
-1

) and laccase (600 U l
-1

), with or without mediator (100 µM ABTS), showed that five 

pollutants (out of the 28) were completely oxidized by laccase alone (Fig. 5.1 A and B), and three by 

laccase and ABTS (Fig. 5.1 C and D). The 20 other pollutants tested were not significantly removed (< 

10%) during laccase or laccase-mediator treatments (Table 5.2, compounds with superscript a). 

All the pollutants oxidized by laccase alone were already reported to react and to be detoxified with 

this enzyme: the anti-inflammatory drugs diclofenac (DFC) (Lloret et al., 2013; Marco-Urrea et al., 

2010b) and mefenamic acid (MFA) (Hata et al., 2010), the plastic component bisphenol A (BPA) 

(Cabana et al., 2007a; Saito et al., 2004), the biocide triclosan (TCN) (Inoue et al., 2010; Kim and 

Nicell, 2006c), and the analgesic paracetamol (PCL) (Lu et al., 2009). The ability of laccase to oxidize 

DFC, a pollutant usually not significantly removed in conventional WWTPs and already toxic at low 

concentrations; MFA, a pollutant poorly removed in WWTPs and found in relatively high 

concentrations in effluents; or BPA and TCN, two substances with potential toxicity already at low 

concentrations (c.f. Table 2.2, Chapter 2), is promising and shows the potential of laccases for WWTP 

effluent quality improvement. The optimal conditions for the oxidation of these four substances were 

thus determined and are presented in Chapter 5. PCL, despite its very high concentrations in raw 

wastewater, is easily biodegradable and already almost completely removed in conventional WWTPs 

(c.f. Chapter 3), thus PCL treatment by laccase does not make really sense in municipal wastewater.  

To confirm that PCL was removed by laccase oxidation and not by other chemical or biological 

processes, controls with laccase inhibited with sodium azide (Fig. 5.1 C) or without laccase (data not 

shown) were performed. No PCL removal was observed in the controls, confirming the role of laccase 

in the removal process.  

Both PCL and BPA were oxidized very rapidly (> 90% removal in 30 min) by laccase at pH 5. TCN 

was also removed in a short time (> 90% removal in 2 h), while DFC and MFA were degraded at a 

slower rate. As shown in Fig. 5.4, PCL, BPA and TCN contain a phenol group which is known to be a 

good substrate for laccase (Gianfreda et al., 1999). This may explain their fast reaction. DFC and MFA 

contain both an (electron donating) aniline group, which is probably the group oxidized by laccase. 

This suggests that anilines react slower than phenols. PCL, with both a phenol and an aniline group, 

appeared to be a very good substrate for laccases.   
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Fig. 5.1 (A and B): Micropollutants removed by laccase catalyzed oxidation (600-700 U/l). (C and D): Micropollutants 

removed by laccase (600 U/l) – mediator (ABTS 100 µM) reactions. (A) Paracetamol (PCL) with laccase at pH 5 and pH 7 

and at pH 5 with inhibition of laccase activity with sodium azide. (B) Bisphenol A (BPA), triclosan (TCN), diclofenac (DFC) 

and mefenamic acid (MFA) with laccase at pH 5. (C) Naproxen (NPX) with laccase and ABTS at pH 4.1, 5.2 and 6.0, and at 

pH 5.2 with laccase but without mediator (Control). (D) Isoproturon (IPN) and sulfamethoxazole (SMX) at pH 5, with 

laccase (Lac), with or without ABTS. 

Among the three pollutants oxidized by laccase-mediator systems (LMS) (Fig. 5.1 C and D), only the 

anti-inflammatory drug naproxen (NPX) was previously reported to be degraded by LMS (at the time 

of the study) (Lloret et al., 2010). The ability of LMS to degrade NPX, usually found in relatively high 

concentrations in WWTP effluents, as well as the oxidation of the antibiotic sulfamethoxazole and the 

herbicide isoproturon, two pollutants potentially toxic at low concentrations (PNEC < 200 ng l
-1

) (c.f. 

Table 2.2, Chapter 2), suggests that laccase-mediated reactions may be of interest to improve effluent 

quality. This question was therefore addressed in Chapter 7. 

The effect of the pH on micropollutant oxidation by laccase or laccase-mediator was evaluated for 

NPX and PCL. For the other pollutant, this effect was studied more in details in the next chapters. As 

presented in Fig. 5.1 A and C, both compounds were oxidized faster at lower pH (pH 4-5). The lower 

oxidation rates under neutral-alkaline conditions may thus impact the removal efficiencies in 

municipal wastewaters (pH 6.5-8). 

During a screening with laccase and two different mediators, syringaldehyde (SA) and 1-

hydroxybenzotriazole (HBT), Nguyen et al. (2014a) recently observed that the antiepileptic primidone 

(with HBT) and especially the herbicide atrazine (with both SA and HBT) were removed during  

laccase-mediator treatment. As this was not observed in our screening with ABTS, a complementary 

experiment with atrazine and primidone with the mediators SA and acetosyringone (AS), as well as 

with various concentrations of ABTS were performed. As presented in Fig. 5.2 A, contrary to the 

observation of Nguyen et al. (2014a) with SA, atrazine was not degraded by any of the mediators 

tested, confirming our first screening. Primidone was not oxidized by laccase-mediator reactions with 
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SA and AS, but a low removal (around 20%) was observed with ABTS (Fig. 5.2 B). To confirm this, a 

test with different concentration of ABTS was performed, showing that no more than 20% primidone 

removal could be reached, even at high mediator concentrations (1 mM) and long reaction times (up to 

7 d) (Fig. 5.2 C). It cannot be excluded that the mediator HBT would perform better, but in any case, it 

seems that primidone is not easily degraded by laccase-mediator reactions. 

 

Fig. 5.2 Residual concentrations of (A) atrazine and (B) primidone during the treatment with laccase alone (●, 550 

U/l), laccase with ABTS (■, 500 µM), laccase with AS (▲, 500 µM) and laccase with SA (◊, 500 µM) (at pH 6, 20 mg/l 

initial pollutant concentration). (C) Evolution of primidone concentrations during the treatment with laccase (550 U/l) 

and different concentrations of ABTS (from 100 to 1000 µM) (at pH 5). 

5.3.2 Transformation of micropollutants at environmentally relevant 

concentrations 

Out of the 31 micropollutants tested at low concentrations (1 µg l
-1

) in acidic synthetic wastewater, 

seven were removed during the laccase treatment (Table 5.1): bisphenol A (BPA), diclofenac (DFC), 

mefenamic acid (MFA), and four estrogenic compounds, including the natural and synthetic hormones 

estrone (E1), β-estradiol (E2), estriol (E3) and 17α-ethynil estradiol (EE2). Losses of micropollutants 

were observed in both controls, without enzyme or with inactivated laccase. The losses were 

especially high for MFA and relatively high for DFC, two compounds that are not stable under acidic 

conditions (cf. Chapter 8). Thus, due to the long incubation at pH 4.5, acidic degradation or hydrolysis 

could occur, and seemed to be significantly more important at these low concentrations compared to 

what was observed at 20 mg l
-1

. Losses of the other compounds, stable at acidic pH, are not explained 

but could be partially due to sorption to the vessels or the filters, or to chemical degradation. The 

removals observed in the samples treated with laccase were significantly higher than the one observed 

in the controls, showing the ability of laccase to oxidize these substances even at very low 

concentrations (ng l
-1

 to µg l
-1

). The seven compounds were not anymore detected (concentrations 

below the LOD) in the samples treated with laccase, corresponding to a removal rate of over 90% 

compared to the samples treated under the same conditions with inactivated laccase. 
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Table 5.1 Concentrations (average ± SD of duplicate) of micropollutants before (Initial) and after 20 h reaction time 

at 30°C, pH 4.5, with 500 U l-1 laccase (Laccase treatment). Control 1: same conditions than the laccase treatment but 

without laccase. Control 2: same conditions than the laccase treatment but with inactivated (boiled) laccase. Removal rates 

were calculated based on the concentration of Control 2 to take account only of the transformation by laccase. LOD: 

analytical limit of detection. BPA: bisphenol A, DFC: diclofenac, MFA: mefenamic acid, E1: estrone, E2: β-estradiol, E3: 

estriol and EE2: 17α-ethynil estradiol. 

 

The 24 other micropollutants were not significantly removed (< 20%) by laccase or laccase-mediator 

treatments compared to the controls (Table 5.2, compounds with superscript b). On the contrary to the 

results at higher concentrations (20 mg l
-1

), isoproturon, naproxen and sulfamethoxazole were not 

significantly removed even by the laccase-mediator treatment. This may be due to the very low 

concentration of mediator (ABTS) used (1.4 µM), which may be not sufficient to oxidize these 

pollutants (c.f. Chapter 7). 

5.3.3 Micropollutant removal in real wastewater 

Due to analytical problems with the UPLC column, only five micropollutants could be unambiguously 

quantified in TWW: DFC, MFA, gemfibrozil, NPX and bezafibrate. These compounds were not 

removed in the controls with heat-inactivated laccase, or heat-inactivated laccase and ABTS. As 

presented in Fig. 5.3, none of them was neither clearly removed (less the 30% at pH 6.5 and not at all 

at pH 7.6) by laccase treatment at both pH values tested during the 12 h of reaction. The addition of 

the mediator ABTS allowed almost complete removal of both DFC and MFA at pH 6.5, enhancing 

strongly the reaction. ABTS did not, however, improve the removal of the other pollutants. At pH 7.6, 

the mediator did not enhance the reaction, even for DFC and MFA, as no significant removal of any 

pollutant was observed. 

 

Fig. 5.3 Diclofenac (initial concentration 1540 ng/l), mefenamic acid (810 ng/l), gemfibrozil (130 ng/l), naproxen (87 

ng/l) and bezafibrate (302 ng/l) residual concentrations in real treated wastewater after 12 h reaction with laccase 

(1000 to 1700 U/l), or laccase (1000 U/l) and ABTS (100 µM), at 23°C, at either pH 6.5-7 (slightly acidified) or pH 7.6-

7.8 (not acidified). Average and values of duplicates. 

Concentration BPA DFC MFA E1 E2 E3 EE2

LOD [ng l
-1

] 20 20 6 40 48 60 60

Initial [ng l
-1

] 1084 (±24) 1078 (±25) 1026 (±13) 1145 (±20) 1065 (±81) 971 (±20) 1196 (±80)

Control 1 (without laccase) [ng l
-1

] 678 (±14) 283 (±5) 78 (±14) 553 (±58) 545 (±29) 927 (±15) 497 (±134)

Control 2 (boiled laccase) [ng l
-1

] 765 (±20) 449 (±13) 118 (±16) 656 (±74) 680 (±34) 836 (±16) 365 (±4)

Laccase treatment [ng l
-1

] < 20 < 20 < 6 < 40 < 48 < 60 < 60
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The low removal efficiencies of DFC and MFA in TWW (pH 6.5 – 7.6) by laccase compared to the 

good removals observed at the same concentrations in acidic (pH 4.5) synthetic wastewater, as well as 

the low effect of laccase-mediated reaction in TWW on NPX removal compared to the good NPX 

removal observed under acidic conditions with LMS, confirm the strong effect of pH on laccase and 

laccase-mediator oxidation capacity. Treating micropollutants by laccase, alone or together with a 

mediator, in municipal wastewater (pH 7 – 7.5) will thus require either to acidify the water, or to find a 

laccase from another organism, more active at neutral to alkaline pH.  

5.4 Synthesis of the removal of micropollutants with laccase or laccase-

mediator systems 

Out of the 39 micropollutants tested in this study, nine could be oxidized by laccase, and three with 

laccase-mediator reactions (Table 5.2). In addition to these twelve compounds, seven other 

micropollutants frequently found in municipal wastewater have been reported in the literature to be 

oxidized by laccase or laccase-mediator reactions (Table 5.2). All the compounds oxidized by laccase 

contained either a phenol or an aniline (electron donating) group (Fig. 5.4).  

Table 5.2 Micropollutants degraded or not with laccase or laccase-mediator. Synthesis of the pollutants investigated in 

this study and of other micropollutants frequently found in wastewater (literature data) 

Degraded with: 
  

Not degraded 

Laccase Ref. Laccase - mediator Ref. 
  

 Ref. 

17α-ethinylestradiolb 
 

Isoproturonab 
  

Atenolola Iopromideb  

17β-estradiolb 
 

Naproxenab 
  

Atrazineac Irgarolab  

Bisphenol Aab 
 

Sulfamethoxazoleab 
  

Benzotriazoleab Ketoprofenab  

Diclofenacab 
 

Ciprofloxacin [4] 
 

Bezafibrateab Mecopropab  

Estriolb 
 

N,N-diethyl-m-toluamide 

(DEET) 
[2] 

 
Carbamazepineab Metformina  

Estroneb 
 

Norfloxacin [4] 
 

Carbendazimab Metoprolola  

Mefenamic acidab 
 

Oxybenzone [3] 
 

Clindamycinb Nadolola  

Paracetamola 
    

Clofibric acidb Oxazepamb  

Triclosana 
    

Diazinonab Propranololb  

Nonylphenol [1] 
   

Diuronab Propiconazoleab  

Octylphenol [6] 
   

Gemfibrozila Sotalolab  

Tertacycline [5] 
   

Ibuprofenb Terbutrynab  

     
Iomeprolab Trimethoprimab  

     
Iopamidolab Metronidazole [6] 

In italic: pollutants not investigated in this study. Results from the literature 

References: [1] (Cabana et al., 2007a), [2] (Tran et al., 2013a), [3] (Garcia et al., 2011), [4] (Prieto et al., 2011), [5] 

(De Cazes et al., 2014), [6] (Nguyen et al., 2014a) 
a Conditions of the test: pH 5.2 (citrate-phosphate buffer, 20 mM), 25°C, 600 U/l laccase activity, 20 mg/l pollutant, 

with or without 100 µM ABTS (mediator). Reaction time: 7-24 h. 
b Conditions of the test: pH 4.5 (acetate buffer, 10 mM), 30°C, 500 U/l laccase activity, 1 µg/l pollutant, with or 

without 1.4 µM ABTS (mediator). Reaction time: 20 h. 
c Atrazine was reported to be oxidized with the mediator HBT [6], not tested here 
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Despite the wide range of chemicals oxidised by laccase, and the potential of this enzyme to degrade 

pollutants even at environmentally relevant concentrations, treatment of non-phenolic or non-aniline 

compounds seems to be very limited, even with the addition of mediators. Indeed, the majority of the 

pollutants tested could not be removed by laccase or laccase-mediator treatment. Moreover, the strong 

pH effect on laccase reactions may strongly limit the feasibility of such treatment in real not-acidified 

wastewater.  

 

Fig. 5.4 Structures of the pollutants degraded by laccase. All are phenol or aniline compounds (on red). 

Although a pure enzymatic treatment with laccase to decrease the load of micropollutants in municipal 

WWTP effluents does not seem to be an interesting option (too narrow range of pollutant affected), 

using laccase in combination with other removal processes (e.g., biodegradation or adsorption) may 

significantly improve the quality of the effluent. Indeed, among the micropollutants degraded by 

laccase, six were proposed as priority pollutants in the European water framework directive (EC, 

2011): nonylphenol, octylphenol, isoproturon, diclofenac, 17β-estradiol and 17α-ethinylestradiol. 

Moreover, laccase treatment may be a very interesting option to remove diclofenac and mefenamic 

acid from wastewater, as these compounds are only poorly removed in conventional treatment and 

found in relatively high concentrations in WWTP effluents (c.f. Chapter 3). The ability of laccase to 

degrade oestrogenic compounds (hormones, bisphenol A, nonylphenol, octylphenol, triclosan) is also 

of great interest as these substances are linked to strong impacts on aquatic populations (e.g. fish and 

mussels feminization) downstream of WWTP outfalls (c.f. Chapter 1). Therefore, using laccase to treat 

micropollutants in wastewater may be a potential alternative to other advanced treatments, if the goal 

is to remove targeted toxic compounds and not to decrease the load of a wide range of pollutants. 

The assessment of the feasibility of laccase or laccase-mediator systems for the treatment of specific 

micropollutants in wastewater required first (i) to determine the operational conditions (pH, 

temperature, laccase activity, reaction time, mediator concentration) for which the treatment is 

efficient, and to compare them with the conditions found in municipal wastewater, and (ii) to 

investigate how to produce or maintain the enzymes inside the reactor and by which organisms. These 

questions were addressed in the three following chapters. 
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Chapter 6   Influence of treatment conditions on the 

oxidation of micropollutants by laccase 

An adapted version of this chapter was published in New Biotechnology (2013) 30: 803-813, with the 

name “Influence of treatment conditions on the oxidation of micropollutants by Trametes versicolor 

laccase”, by Jonas Margot, Julien Maillard, Luca Rossi, D. Andrew Barry and Christof Holliger. 

6.1 Introduction 

In order to develop an efficient biooxidative treatment, the influence of operational conditions on 

micropollutant oxidation by laccases has to be investigated. This study is a step towards this goal. 

Specifically, we aimed to understand better the combined effect of pH, temperature, reaction time 

(kinetics) and enzyme concentration on the removal of diclofenac (DFC), mefenamic acid (MFA), 

bisphenol A (BPA) and triclosan (TCN), catalysed by the laccase from Trametes versicolor. Special 

attention was paid to pH due to its potentially high influence on transformation rates (Kim and Nicell, 

2006b; Kim and Nicell, 2006c). The experimental design involved the response surface methodology 

(RSM) so as to cover a wide range of different experimental conditions with maximum information 

gain (Bezerra et al., 2008). A Doehlert design was chosen due to its flexibility with the number of 

factors studied, the possibility to move the range of values easily if the optimal conditions were not 

included in the first set-up, and the low number of experiments needed compared with other designs 

(Bezerra et al., 2008; Ferreira et al., 2007; Ferreira et al., 2004). As pollutant mixtures are common, 

the second objective of this study was to evaluate the effect of the presence of other pollutants in the 

reactive solutions compared to single-compound solutions. 

6.2 Materials and methods 

6.2.1.1 Selection of the micropollutants 

Four common wastewater micropollutants were selected considering their tendency to be oxidised by 

laccase (Table 6.1). DFC, a common anti-inflammatory drug, has been identified as one of the most 

important active pharmaceuticals present in the environment (Letzel et al., 2009). DFC is poorly 

removed in conventional WWTPs (Tauxe-Wuersch et al., 2005) and can affect fish at concentrations 

usually found in WWTP effluents (Letzel et al., 2009; Stülten et al., 2008; Triebskorn et al., 2004). 

MFA, another common anti-inflammatory drug, is found at relatively high concentrations in WWTP 

effluents (0.8 to 2.4 µg l
-1

) (Kase et al., 2011; Tauxe-Wuersch et al., 2005). TCN, an antimicrobial 

agent widely used as preservative in many personal care products, is ubiquitous in municipal 

wastewater (Singer et al., 2002). Despite its high removal rate (72-94%) in WWTPs (Singer et al., 

2002; Ying and Kookana, 2007), the concentration found in effluents can still be toxic for sensitive 

organisms (Ricart et al., 2010). BPA, a compound mainly used in plastic and thermal paper products, 

is detected in most WWTP effluents despite its relatively high removal rate (61-98%) during treatment 
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(Melcer and Klečka, 2011; Weltin et al., 2002). Due to its endocrine-disrupting ability at low 

concentrations (Crain et al., 2007) and its potential risk for human health, BPA is of special concern 

and has been banned in many products in Europe and North America (Canadian Governor General in 

Council, 2010; European Commission, 2011). 

Table 6.1 Main properties of the four micropollutants studied, which include two aniline (DFC and MFA) and two 

phenolic (BPA and TCN) compounds. In the molecular structure, groups in bold (in red) are considered to be oxidized by 

laccase. 

Compound Diclofenac Mefenamic acid Bisphenol A Triclosan 

CAS 15307-86-5 61-68-7 80-05-7 3380-34-5 

Molecular structure 

 
 

 
 

Molecular weight [g mol
-1

]
a
 296.16 241.29 228.29 289.55 

Water solubility [mg l
-1

]
a
 2.4 20 120 10 

Log Kow [-]
a
 4.51 5.12 3.32 4.76 

pKa [-]
a
 4.15 4.2 10.3 

d
 7.9 

b
 

Average Swiss WWTP 

effluents concentration [ng l
-1

]
c
 

647 870 331 116 

Environmental quality 

standards (EQS) [ng l
-1

]
c
 

50 4000 1500 100 
b
 

a SRC PhysProp Database : http://www.srcinc.com/what-we-do/databaseforms.aspx?id=386 (last accessed 09.07.2012) 
b Water Framework Directive - United Kingdom: http://www.wfduk.org/sites/default/files/Media/Triclosan%20-

%20UKTAG.pdf (last accessed 09.07.2012) 
c (Kase et al., 2011), d (Clara et al., 2004) 

 

6.2.1.2 Chemicals and enzyme 

Purified laccase from T. versicolor (ref. 38429, Sigma), BPA, DFC sodium salt, MFA and TCN 

(purity > 97%) were purchased from Sigma-Aldrich Chemie GmbH (Buchs, Switzerland), as well as 

acetate sodium salt, acetic acid, citric acid, sodium phosphate dibasic, 2,2'-azino-bis(3-

ethylbenzthiazoline-6-sulphonic acid) (ABTS), methanol (HPLC gradient grade), acetone and 

tris(hydroxymethyl)aminomethane (Tris). 

6.2.1.3 Laccase activity test 

Laccase activity was determined as described in Chapter 5. One unit of activity (U) was defined by the 

oxidation of one µmol of ABTS per min, at pH 4.5 and 25°C. Enzymatic assays were performed in 

triplicate with a coefficient of variation always smaller than 5%. The specific activity of the 

commercial laccase was measured as 7.3 U mg
-1

. 

6.2.1.4 Micropollutant analysis 

Determination of BPA, DFC, MFA and TCN concentrations was carried out by reverse-phase liquid 

chromatography with a diode-array detector (HPLC-DAD), as described in Chapter 5. Separation of 

NH

Cl

Cl OH

O

NH

CH3CH3

OH

O
CH3 CH3

OH

OH

O

Cl

OH

Cl

Cl

http://www.srcinc.com/what-we-do/databaseforms.aspx?id=386
http://www.wfduk.org/sites/default/files/Media/Triclosan%20-%20UKTAG.pdf
http://www.wfduk.org/sites/default/files/Media/Triclosan%20-%20UKTAG.pdf
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the compounds was conducted at 25°C with a 20-min gradient of pure H2O containing 0.1% acetic 

acid (pH 3.3) and increasing concentration of methanol from 40 to 65% (v/v) at a flow rate of 1 ml 

min
-1

. The quantification was done with DAD by summing the area of the peaks at 200, 224 and 278 

nm. The limit of detection (LOD) was around 0.3 mg l
-1

 (1 µM). Since TCN and MFA had the same 

retention times with this method, experiments with mixtures of micropollutants were only conducted 

with BPA, DFC and MFA. 

Low micropollutant concentrations (LOD of 6 to 60 ng l
-1

) were analysed by online solid phase 

extraction (SPE), followed by ultraperformance liquid chromatography coupled with tandem mass 

spectrometry (UPLC-MS/MS), as described in Chapter 5. 

6.2.1.5 Micropollutant oxidation assay with laccase 

The reaction mixture was prepared by diluting stock solutions (1 g l
-1

) of pollutants to a final 

concentration of 20 mg l
-1

 (67 to 87 µM, depending on the compound) in different buffers made of 

citric acid (1 to 16 mM) and dibasic sodium phosphate (7 to 37 mM) for pH 3 to 7.5, and Tris-HCl (40 

mM) for pH 8 to 9. Relatively high concentrations of micropollutants were tested in order to use a fast 

and simple analytical method (HPLC-DAD). As the studied micropollutants have limited water 

solubility, especially at low pH for MFA and DFC, the stock solutions were prepared in methanol 

(except for BPA, which was prepared in acetone). The final concentrations of methanol in the reaction 

mixture were between 6 and 12% (v/v) and 2% acetone, respectively, which prevented precipitation of 

the compounds. The effect of the organic solvents on laccase was tested and no difference in activity 

or stability between the solvent mixture and the aqueous control was observed after 24 h. Laccase 

stability was moreover not significantly influenced by the addition of micropollutants. Batch reactions 

were conducted in 8-ml glass vials containing 2 ml of oxygen-saturated reaction mixture. Diffusion of 

oxygen from the air was sufficient to maintain a high level of dissolved oxygen during the reaction (> 

69% saturation). Reactions were initiated by adding a desired amount of laccase stock solution (1 g l
-1

 

in pure water), the vials were well mixed (vortex mixer) and then incubated in darkness at different 

temperatures in thermostatic baths (10°C) or in thermostatic rooms (20 to 40°C) under static 

conditions. After defined reaction times, the oxidation was stopped by direct injection into the HPLC 

column. This allowed for rapid halting (less than 1 min) of the reaction without the need to add 

inhibitor compounds that could interfere with the analysis. Unlike other studies (Garcia et al., 2011; 

Kim and Nicell, 2006c; Lloret et al., 2010), samples were not acidified to stop the reaction so as to 

prevent the degradation or precipitation of MFA and DFC observed below pH 3 and to avoid 

increasing laccase activity at low pH prior to acidic inactivation of the enzyme. 

6.2.1.6 Experimental design 

In order to determine the optimal conditions and the combined effect of pH, temperature, reaction time 

and initial enzyme activity on the degradation of the four pollutants, a Doehlert experimental design 

(Ferreira et al., 2007; Ferreira et al., 2004) with Response Surface Methodology (RSM) was applied to 

minimize the number of experiments. Doehlert design involves conducting experiments in a 

hyperspherical experimental space filled uniformly. The number of experiments, N, that were 

conducted was calculated using N = k
2 

+ k + C0, where k is the number (here four) of factors and C0 

the number of experiments at the centre point (Ferreira et al., 2004). Reaction time was studied at five 
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different levels between 1 and 7 h. pH and enzyme concentrations were each studied at 7 different 

levels (pH 3 to 9 and enzyme concentrations 73 to 1380 U l
-1

). Temperature effects were tested at three 

levels (10, 25 and 40°C). Three experiments were conducted at the centre point to calculate the 

variance of the experimental response. A total of 23 experiments in different conditions were 

conducted (cf. Table 6.4 and Table 6.5). 

Two sets of experiments were conducted according to this design (23 experiments each, all performed 

in less than 36 h), one with a mixture of BPA, DFC and MFA and one with TCN alone. For the latter 

set of experiments, 28 additional experiments under the same conditions but with longer reaction times 

were also conducted to confirm the reaction kinetics (cf. Table 6.5). 

The same 23 experiments were also performed with a mixture of four other compounds, benzotriazole, 

carbamazepine, metoprolol and naproxen. As no significant removal (<10%) was observed in any of 

the tested conditions, these results are not presented here. 

To study in more detail the pH effect as a function of the reaction time and to evaluate the effect of 

mixtures, a new set of experiments was conducted with the four compounds separately, at 25°C and 

730 U l
-1

, and by varying only two parameters, i.e. pH from 3 to 9 and the reaction time from 0 to 26 

h. 

In addition, the effect on the degradation of a mixture of pollutants compared to the compound alone 

was assessed at pH 7.2, 26°C, 730 U l
-1

, and different reaction times from 0 to 20 h with BPA, DFC or 

MFA alone, in mixtures with the three possible pairs of compounds, and the three compounds 

together. Experiments were conducted in duplicate. Removal values of the duplicates did not differ 

from each other by more than 3%. 

To evaluate the efficiency of laccase treatment at very low micropollutant concentrations (ng to µg l
-1

), 

an experiment was conducted at pH 4.5 and 30°C with a mixture of BPA, DFC and MFA, and four 

estrogenic compounds, estrone (E1), β-estradiol (E2), estriol (E3) and 17α-ethynilestradiol (EE2), each 

at a concentration of 1 µg l
-1

. Micropollutants were analysed after reacting for 20 h with 500 U l
-1 

laccase. This experiment is detailed in section 5.2.1.6, Chapter 5. 

Controls without laccase and with boiled-inactivated laccase showed no removal of the compounds 

even after 40 h, except at low pH where partial removal (degradation or precipitation) of DFC was 

observed at pH 3, and of MFA below pH 5. In these cases, the calculation of the removal rate was 

corrected according to the control with inactivated laccase. 

6.2.1.7 Statistical analysis 

The results of the Doehlert experimental matrix were analysed by fitting a quadratic model (Eq. 6.1): 

4 4 4 4 2

0 1 1 1 1
,i i ij i j ii ii i j i i

Y a a X a X X a X  (6.1) 

to the results (RSM) in order to estimate the effect of each factor Xi (reaction time, pH, initial enzyme 

activity and temperature) and the two-by-two interactions (XiXj) on the removal of the compound Y. 

This model contains 15 coefficients (a0, a1, a2, ...), which were determined by least squares with 
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multiple regression. Each of them corresponds either to the linear effect of the coded factor Xi, to the 

quadratic effect Xi
2
, or to the two-by-two interactions between the factors XjXi. The significance of 

these coefficients was evaluated using ANOVA with correction of the sum of the squares for non-

perpendicular elements. Coefficients with a p-value higher than 0.05 (F-test) were considered as non-

significant. The factors were coded between -1 (minimum of the range) and +1 (maximum of the 

range), 0 being the centre of the experimental domain, to facilitate comparison amongst them. 

The relationship between coded values used in Eq. 6.1 and real values presented in Table 6.4 and 

Table 6.5 is given by Eq. 6.2: 

i

ii
i

U

UU
X

0

, (6.2) 

where Xi is the coded value, Ui the real value of the variable, Ui
0
 the real value at the centre of the 

interval and ∆Ui half of the interval (cf. Table 6.2 and Table 6.3). 

Table 6.2 Main factors influencing enzymatic degradation, with the range of the values studied, and U0 and ∆U used 

to code the factors for the Doehlert design with a mixture of DFC, MFA and BPA. 

Factors Variable Unit Minimum Maximum 
Centre 

value U0 

Range ∆U 

around the 

centre 

Reaction time X1 [h] 1.1 7.0 4.1 3.00 

pH X2 [-] 3.5 9.0 6.4 3.20 

Laccase activity X3 [U l
-1

] 73 1378 725 799.1 

Temperature X4 [°C] 10 40 25 18.97 

 

Table 6.3 Main factors influencing enzymatic degradation, with the range of the values studied, and U0 and ∆U used 

to code the factors for the Doehlert design for TCN alone. 

Factors Variable Unit Minimum Maximum 
Centre 

value U0 

Range ∆U 

around the 

centre 

Reaction time X1 [h] 0.5 5.7 3.1 2.61 

pH X2 [-] 3.1 9.0 6.0 3.48 

Laccase activity X3 [U l
-1

] 62 1184 623 686.7 

Temperature X4 [°C] 10 40 25 18.97 

 

6.2.1.8 Modelling the transformation rate 

Model including the effects of pH, temperature, enzyme concentration and reaction time 

To approximate the oxidation process and to allow predictions for a wide range of conditions, which is 

not feasible with the quadratic statistical model, a semi-empirical model was developed based on the 

behaviour observed in the experimental data. The influence of pH, temperature, enzyme concentration 
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and reaction time on the biooxidation of micropollutants by laccase was modelled by a global semi-

empirical model that was built by combining different sub-models, as presented below. 

For the reaction time, the order of the reaction kinetics appeared to be pH-dependent. At neutral pH, 

the data were well fitted by first-order kinetic models, but as the pH decreased, the order of reaction 

seemed to increase (Fig. S 6.1, Supporting information (SI)), probably due to the involvement of 

protons and hydroxyl anions in the reaction. Thus, to best fit the data, a kinetic model with a pH-

dependent reaction order was developed.  

By integrating the standard model of a chemical reaction rate (Eq. 6.3), describing the transformation 

of a reactant A as a function of the time t, k being the reaction rate constant and x the order of the 

reaction, we obtain the residual concentration of the compound [A] after time t, as a function of the 

order of the reaction (Eq. 6.4): 

xAk
t

A
v ][

d

][d
 (6.3) 

1,
1

1
with

][

][

/1

0

x
x

d

A

d
tk

d
A

d

d

 (6.4) 

The removal rate Y of the compound A can thus be described by Eq. 6.5: 

1,
1

1
with

][
1

][

][
1

/1

00

x
x

d
dAtk

d

A

A
Y

d

d
 (6.5) 

By assuming that the initial concentration of the reactant [A]0 = 1 (arbitrary concentration units as the 

initial concentration was always constant), the influence of the reaction order on the removal could be 

assessed by a simple model (Eq. 6.6). When x is close to 1, this model is very close to the exponential 

model (first-order reaction). 

d

dkt

d
Y 1 with .1,

1

1
x

x
d  (6.6) 

By fitting Eq. 6.6 to the experimental data (e.g., Fig. S 6.2, SI), the optimised reaction order for each 

pH was determined. The results of the fitting show that the apparent order of the reaction was 

influenced by the pH (Fig. 6.1). The apparent order of the reaction was close to 1 at around pH 7, but 

it increased to above 2 at pH 3. According to these results, the relationship between the apparent 

reaction order x and pH is roughly linear (Eq. 6.7), where b is the order of reaction at pH 0 (usually 

between 1 and 3) and a the slope of the decrease of the order of reaction with the increasing pH 

(usually between -0.03 to -0.3): 

bpHax  (6.7) 
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The global kinetic model with the pH-dependent reaction order could thus be described by using Eq. 

6.7 in Eq. 6.6. 

 

Fig. 6.1 Influence of the pH on the order of the kinetic reaction (determined with the best fitting of the experimental 

data) and approximation with linear regressions (lines). 

As observed in the experimental part, the pH and the temperature influence the reaction rate constant, 

k. The bell-shape effect of the pH on laccase activity was well approximated by a standard acid-base 

speciation model for weak polyacids with two pKa values (Eq. 6.8), which possibly correspond to the 

ionization of the amino acids involved in the catalytic process (Joshi et al., 2000). The values of pK1 

and pK2 gave the optimal pH range, the optimum being at the centre. C1 was used as an adjustment 

coefficient. 

110

1

110

1
21

11 pHpKpHpK
Ck . (6.8) 

The enzyme concentration E, which, obviously, influences the reaction rates, should in theory be 

included in Eq. 6.3 as another reactant. As the enzyme is a catalyst, its concentration is not expected to 

decrease with time (deactivation neglected). Therefore, the effect of E can be integrated in the 

apparent rate constant k. The influence of E, which showed a saturation behaviour at high 

concentrations, was well approximated by a simple Monod-like model with two coefficients K and C2 

(Eq. 6.9), with C2 being the constant rate at enzyme saturation (kmax) and K the half-velocity constant. 

For the initial value, K >> E could be used to simulate a linear effect of the enzyme concentration. 

EK

E
Ck 22 . (6.9) 

A simple Arrhenius model could be used to predict the effect of temperature on the constant rate, 

giving increasing activity with increasing temperature. However, for enzymatic reactions, denaturation 

of the protein occurs when temperature exceeds a certain level. Thus, a more realistic model was used. 

A generalized Arrhenius function, developed by Alexandrov et al. (2007) for enzymatic reactions was 

chosen amongst others (Santos et al., 2007) due to its straightforward estimation of the initial values of 

y = -0.3356x + 3.2497
R² = 0.9252

y = -0.2266x + 2.4349
R² = 0.9525
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the coefficients. In addition to the standard coefficients of the Arrhenius model, including the pre-

exponential factor C3 and the activation energy Ea (usually between 30 and 100 kJ mol
-1

 (Huber et al., 

2003; Kobelnik et al., 2010; Tita et al., 2009)), the generalized function (Eq. 6.10) needed two more 

coefficients, the optimal temperature To [°K] (usually in the range 30-60°C) and a parameter η 

determining the shape of the curve (usually between 1 and 10). R is the universal gas constant (8.314 J 

mol
-1

 K
-1

). 

f

f
Ck

1
33  where 

1 1
exp

Ea
f

R To T
. (6.10) 

The global model, which was able to describe the effect of the four operational parameters over a 

wide range of values, was built by combining the abovementioned sub-models in Eq. 6.11, with nine 

coefficients available for fitting.  

d

dkt

d
Y 1  with  

1)(

1

bpHa
d , (6.11) 

with the rate constant, k, combining the effect of the various factors, described by Eq. 6.12: 

110

1

110

1

1 21 pHpKpHpKEK

E

f

f
Ck , where 

1 1
exp

Ea
f

R To T

 (6.12)  

Here, Y is the removal fraction [-] of the compound, for the reaction time t [h], the pH [-], the initial 

enzyme activity E [U l
-1

], and the temperature T [°K]. The nine coefficients to fit are a and b for the 

effect of the pH on the order of the reaction, C a global adjustment coefficient, η, Ea and To, the 

coefficients of the generalized Arrhenius function, K the Monod empirical coefficient for the enzyme 

concentration, and pK1 and pK2, the empirical coefficients of the acid-base speciation model. 

The fitting of this model to the data was done by non-linear least squares regression (Levenberg-

Marquardt algorithm). Initial coefficient values were estimated based on the results of the quadratic 

model. All the calculations were performed using Matlab (MathWorks, Natick, USA). 

Model including only the effects of pH and reaction time 

The results of the additional experiments performed at fixed temperature (25°C) and enzyme 

concentration (700 U l
-1

) and variable pH and reaction times were fitted with a simple version of the 

semi-empirical model, by using Eq. 6.11 with the rate constant k defined in Eq. 6.13, as a function of 

the pH [-] only; C, pK1, pK2, a and b being the five coefficients that were fitted. 

110

1

110

1
21 pHpKpHpK

Ck  (6.13) 

 

http://fr.wikipedia.org/wiki/The_MathWorks
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6.3 Results and discussion 

6.3.1 Micropollutant removal by laccase under various conditions 

The percentages of removal of the micropollutants by laccase obtained under the different conditions 

are reported in Table 6.4 for DFC, MFA and BPA, and in Table 6.5 for TCN. A wide distribution of 

the removal between 0 and 100% was observed for the four compounds, demonstrating the ability of 

laccase to oxidise these compounds as well as the influence of the experimental conditions on 

degradation rates. The standard deviation of the three centre points was less than 3% for all the 

compounds. 

Table 6.4 Observed and predicted (with the semi-empirical model) removal rates of DFC, MFA and BPA present in a 

mixture and oxidized by laccase under different experimental conditions (Doehlert design). Lines 1-3 present the three 

centre points. The validation experiments were not included in the fitting process. 

 

 

  

pH Reaction time Laccase activity Temperature Observed Predicted Observed Predicted Observed Predicted

# [-] [h] [U l
-1

] [°C] [%] [%] [%] [%] [%] [%]

1 6.4 4.25 725 25 80 83 94 96 90 93

2 6.4 4.08 725 25 79 83 94 96 92 93

3 6.4 4.08 725 25 82 82 97 96 94 93

4 6.5 1.12 725 25 49 46 65 56 82 74

5 6.4 7.03 725 25 89 92 100 100 92 96

6 3.6 2.67 725 25 84 81 13 30 67 59

7 9.1 5.60 725 25 6 2 0 1 22 19

8 8.9 2.45 725 25 0 1 0 1 16 12

9 3.5 5.58 725 25 88 91 46 43 63 71

10 5.5 2.48 73 25 31 21 80 78 37 36

11 7.3 5.52 1378 25 72 73 52 52 95 96

12 7.3 2.52 1378 25 50 49 37 28 89 90

13 4.7 4.10 1378 25 92 95 100 100 96 95

14 5.4 5.47 73 25 34 39 91 96 47 56

15 8.1 4.08 73 25 5 1 0 2 9 11

16 5.7 2.53 562 10 42 43 95 98 62 63

17 7.2 5.55 888 40 66 72 39 45 95 98

18 7.3 2.53 888 40 36 43 18 20 88 93

19 4.4 4.05 888 40 100 93 100 89 99 95

20 6.3 4.13 236 40 71 61 83 83 93 90

21 5.7 5.53 562 10 57 66 98 100 81 80

22 8.6 4.13 562 10 2 1 8 2 5 12

23 6.6 4.10 1214 10 64 63 93 87 93 87

Validation experiments

1 7.3 4.00 1450 25 69 67 50 44 93 95

2 7.4 8.15 1450 10 50 50 45 51 86 91

3 7.4 25.15 1450 10 92 82 88 89 93 98

4 5.5 4.07 1015 29 88 94 59 100 95 96

Doehlert 

experiments

DFC removal MFA removal BPA removalFactors
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Table 6.5 Observed and predicted removal rates with the semi-empirical model of TCN alone and oxidized by laccase 

under different experimental conditions (Doehlert design). Lines 1-3 present the three centre points. Second section: 

conditions of the additional experiments with longer reaction time. Bottom section: validation experiments, not included in 

the fitting process. 

 

pH Reaction time Laccase activity Temperature Observed Predicted

# [-] [h] [U l
-1

] [°C] [%] [%]

1 5.9 3.05 623 25 84 83

2 6.0 3.10 623 25 86 83

3 6.0 3.12 623 25 89 83

4 6.0 0.53 623 25 37 36

5 6.0 5.70 623 25 91 92

6 3.2 1.80 623 25 33 29

7 9.0 4.43 623 25 1 2

8 8.9 1.80 623 25 3 1

9 3.1 4.40 623 25 47 51

10 5.0 1.82 62 25 27 18

11 7.0 4.47 1184 25 78 83

12 7.0 1.83 1184 25 54 59

13 4.1 3.10 1184 25 91 88

14 5.0 4.48 62 25 27 36

15 8.0 3.08 62 25 8 1

16 5.2 1.83 483 10 45 37

17 6.8 4.45 763 40 93 94

18 6.9 1.83 763 40 81 79

19 3.9 3.10 763 40 96 93

20 5.8 3.13 202 40 90 82

21 5.2 4.47 483 10 61 62

22 8.6 3.15 483 10 5 1

23 6.2 3.18 1044 10 66 65

Additional experiments with longer reaction time

24 6.0 7.25 623 25 96 94

25 3.2 8.50 623 25 72 70

26 8.9 8.50 623 25 2 4

27 5.9 9.73 623 25 95 96

28 5.0 8.50 62 25 53 54

29 7.0 8.50 1184 25 94 92

30 4.1 9.25 1184 25 96 97

31 8.0 9.22 62 25 13 3

32 6.0 8.97 623 25 96 96

33 9.0 9.50 623 25 1 4

34 3.1 9.47 623 25 72 72

35 7.0 9.52 1184 25 94 94

36 5.0 9.52 62 25 50 57

37 6.0 10.22 623 25 96 97

38 6.0 24.67 623 25 96 99

39 3.2 25.92 623 25 88 91

40 8.9 25.92 623 25 9 13

41 5.9 27.15 623 25 98 99

42 5.0 25.92 62 25 79 82

43 7.0 25.92 1184 25 97 99

44 4.1 26.67 1184 25 98 99

45 8.0 26.63 62 25 19 9

46 6.0 26.38 623 25 96 99

47 9.0 26.92 623 25 10 10

48 3.1 26.88 623 25 92 90

49 7.0 26.93 1184 25 96 99

50 5.0 26.93 62 25 77 83

51 6.0 27.63 623 25 98 99

Validation experiments

1 7.1 8.12 1457 10 69 70

2 7.1 26.00 1457 10 85 92

3 5.1 4.07 1020 29 97 96

Doehlert 

experiments

Factors TCN removal
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6.3.2 Significance of the experimental conditions on pollutant oxidation 

The fitting of the quadratic models (Table 6.6) showed that all factors had a significant influence on 

DFC, BPA and TCN oxidation by laccase. The pH had the largest effect, followed by enzyme 

concentration and temperature. The reaction time had a smaller influence, due to the high degradation 

rate observed after reacting for only an hour (lower limit of the domain). All quadratic terms were 

significant except for reaction time, clearly showing a non-linear response. A bell shape effect with an 

optimal value was observed for the removal of the compounds as a function of pH, and a plateau 

response was observed for the removal as a function of the initial enzyme activity (Fig. 6.2 for BPA 

and Fig. S 6.3, Fig. S 6.4 and Fig. S 6.5, SI, for the other compounds). MFA oxidation by laccase was, 

in the range of the conditions tested, only significantly influenced by the pH. Indeed, a temperature 

variation between 10 and 40°C did not show any significant effect, and high degradation rates were 

already observed at the lower limit of the tested domain for the reaction time and the amount of 

enzyme. These quadratic models gave valuable information on the general behaviour of the oxidation, 

but results could not be extrapolated outside of the tested range and the predictive capacity of these 

models appeared to be very poor. Polynomial models are moreover not appropriate to fit responses 

with asymptotic behaviour for low or high variable values or when the response should be non-

negative (Rawlings et al., 1998), which is the case for micropollutant degradation. The semi-empirical 

model developed here has greater predictive utility, and has some potential to help understand the 

degradation process. 

Table 6.6 Best set of coefficients for the quadratic models with their significance (p-value) based on ANOVA, their 

95% confidence intervals (according to (Rawlings et al., 1998) [1]) and their coefficient of determination R2. 

 

Coefficients

Constant a 0 80.20 [69  91] *** 92.30 [84  100] *** 96.49 [67  126] *** 86.00 [75  97] ***

Time a 1 16.12 [8  25] ** 6.89 [1  13] * 15.88 [-7  39] ns 17.79 [9  26] **

pH a 2 -49.10 [-58  -41] *** -32.07 [-38  -26] *** -51.57 [-75  -28] ** -23.30 [-32  -15] ***

Enzyme a 3 27.78 [19  36] *** 36.21 [30  42] *** 3.39 [-20  26] ns 28.76 [20  37] ***

Temperature a 4 13.97 [6  22] ** 18.61 [13  25] *** -11.62 [-35  11] ns 25.47 [17  34] ***

Time
2

a 11 -11.11 [-29  7] ns -4.80 [-18  8] ns -12.21 [-60  36] ns -22.92 [-41  -5] ns

pH
2

a 22 -47.84 [-65  -30] ** -69.17 [-82  -57] *** -116.50 [-164  -69] *** -84.24 [-103  -66] ***

Enzyme
2

a 33 -35.14 [-52  -19] ** -28.02 [-40  -16] *** -25.22 [-70  19] ns -31.69 [-48  -15] **

Temperature
2

a 44 -20.39 [-36  -5] * -1.25 [-12  10] ns -15.78 [-58  26] ns -0.39 [-16  15] ns

Time-pH a 12 1.83 [-20  24] ns 6.48 [-9  22] ns -17.21 [-77  42] ns -6.67 [-29  16] ns

Time-Enzyme a 13 9.31 [-15  34] ns -6.02 [-24  12] ns 10.14 [-56  76] ns 16.01 [-8  40] ns

Time-Temperature a 14 5.36 [-20  30] ns -8.50 [-26  9] ns 11.71 [-56  79] ns -5.92 [-31  19] ns

pH-Enzyme a 23 -12.59 [-38  13] ns 2.79 [-15  21] ns -5.88 [-74  63] ns -26.97 [-52  -2] *

pH-Temperature a 24 -18.32 [-44  7] ns 6.27 [-12  24] ns -43.30 [-112  25] ns -7.30 [-33  18] ns

Enzyme-Temperature a 34 -27.97 [-53  -3] * -25.81 [-44  -8] * -19.69 [-89  49] ns -9.17 [-35  17] ns

# of coef. 15 15 15 15

R
2

0.975 0.987 0.884 0.977

adj. R
2

0.918 0.957 0.613 0.924

Significance: *** = p-value < 0.001, ** = p-value < 0.01, * = p-value < 0.05, ns = non significant

In square barckets, 95% univariate confidence intervals [lower-limit upper-limit] according to [1]

TriclosanDiclofenac Bisphenol A Mefenamic acid
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Fig. 6.2 Influence of the pH, reaction time, temperature and enzyme concentration on the removal of BPA according 

to the quadratic model. For each plot, the two parameters that did not vary are fixed at the centre of their domain (pH 6, 4-h 

reaction time, 725-U l-1 laccase and 25°C). 

6.3.3 Validation of the semi-empirical models 

Model including the effects of pH, temperature, enzyme concentration and reaction time 

The results of the fitting to the experimental results of the Doehlert design using the semi-empirical 

model are presented in Fig. 6.3, Table 6.4 and Table 6.5. The best-fit coefficients for each compound 

are shown in Table 6.7. For the four compounds, the semi-empirical model fitted the data well, with 

coefficients of determination, R
2
, above 0.97, meaning that more than 97% of the variability of the 

results could be explained by the model. In most cases, deviations between observed and predicted 

values were less than 10%. 

Table 6.7 Set of best-fit coefficients for the semi-empirical model. These coefficients were used to predict the removal of 

each of the compounds present together in the solution (DFC, MFA and BPA) or alone (TCN). 

Compound pK1 pK2 C K Ea [kJmol
-1

] To [°K] η a b 

DFC 1.84 6.56 7044 3785900 108 317.6 1.02 -0.064 1.885 

MFA 5.40 5.42 425 352 55 295.3 1.62 -0.279 2.223 

BPA 4.09 7.29 5037400 726850000 49 312.0 9.57 -0.099 2.370 

TCN 3.84 6.54 50722 5275400 53 322.5 20.36 -0.030 1.750 

To validate the model, new experiments were conducted in a set of conditions not explored previously 

(Table 6.4 and Table 6.5). The predictions of the model for these new experiments were very close to 

the experimental data (Fig. 6.3), apart from one experiment with MFA at pH 5.5, where the removal 

was much lower than predicted. MFA is in fact not stable at low pH. It showed inconsistent behaviour, 

which lowered the reproducibility of the results. Apart from MFA at low pH, the model was adequate 
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for all the other experimental results and thus can be used to estimate the effect of the treatment 

conditions on the oxidation of these compounds by laccase. 

 

Fig. 6.3 Observed versus predicted removal rates with the semi-empirical model for diclofenac (DFC), mefenamic acid 

(MFA), bisphenol A (BPA) and triclosan (TCN). Circles ●: data used for the fitting. Squares ■: data used for the 

validation. Triangles ▼: addition of new data (done during the validation) into the fitting to improve the model. Dashed line: 

10% deviation around the predicted values. Coefficients of determination R2 are given for the data used for the fitting. 

Model including only the effects of pH and reaction time 

A simplification of the global model was developed for the compounds present alone in the solution, 

as a function of pH and reaction time only. The best set of coefficients for the prediction of the 

removal of each compound with this model is presented in Table 6.8. A very good model fit to the 

experimental data (R
2 

> 0.99 for DFC and BPA) was obtained, apart for the prediction of some 

experiments with MFA (Fig. 6.4). 

Table 6.8 Set of best-fit coefficients for the time-pH semi-empirical model. These coefficients were used to predict the 

removal of each of the four compounds present alone in the solution. R2: coefficient of determination of the fitting. 

Compound pK1 pK2 C a b R
2
 

DFC 3.41 5.47 0.827 -0.191 2.208 0.994 

MFA 6.19 6.36 14.855 -2.641 17.067 0.960 

BPA 3.62 6.68 6.601 -0.332 3.151 0.994 

TCN 3.97 6.60 2.480 -0.215 2.736 0.986 
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Fig. 6.4 Observed versus predicted removal with the time-pH semi-empirical model for DFC, MFA, BPA and TCN 

alone in the solution. Dash line: 10% deviation between observed and predicted values. 

 

Fig. 6.5 Influence of the pH and the reaction time (at 25°C and 700 U l-1 laccase) on the removal of DFC, MFA, BPA 

and TCN in pure solution according to the time-pH semi-empirical model. 
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The combined effects of the pH and the reaction time on the removal of the four compounds are 

presented in Fig. 6.5 according to the time-pH semi-empirical model. Comparisons between the 

experimental results and the prediction of the semi-empirical model are presented in Fig. 6.6. 

 

Fig. 6.6 Comparison between the experimental results (symbols) and the prediction of the time-pH semi-empirical 

model (line) for the removal of DFC, MFA, BPA and TCN in pure solution as a function of pH and reaction time, at 

25°C and 700 U l-1 laccase for DFC and MFA, 730 U l-1 for BPA and 630 U l-1 for TCN. 

 

6.3.4 Effect of treatment conditions on the transformation of micropollutants 

Fig. 6.7 (and Fig. S 6.6, Fig. S 6.7, Fig. S 6.8 and Fig. S 6.9, SI) show the combined effects of the 

treatment conditions on the oxidation of the four compounds (DFC, MFA and BPA in a mixture, TCN 

alone), according to the semi-empirical model. 

The influence of the enzyme concentration on the transformation rate was not proportional. The rapid 

increase of the removal rate observed with increasing amounts of enzyme at low concentrations faded 

out above 600 to 700 U l
-1

, reaching a plateau (Fig. 6.7). Similar behaviour was observed by Kim and 

Nicell (2006c) for TCN oxidation. This saturation effect can appear when the substrate concentration 

becomes the limiting factor. 
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Fig. 6.7 Influence of pH and reaction time (left, at 25°C and 725 U l-1 laccase) or laccase concentration and 

temperature  (right, at pH 6 and reaction time of 2 h) on the removal of diclofenac (DFC) (in a mixture with MFA and 

BPA), mefenamic acid (MFA) (in a mixture with DFC and BPA), bisphenol A (BPA) (in a mixture with MFA and 

DFC) and triclosan (TCN) (alone) according to the semi-empirical model. 
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The influence of temperature on the removal was studied for the range 10-40°C. No extrapolation 

outside this range was possible due to the limited amount of data used to calibrate the model. For the 

phenolic compounds (TCN and BPA), the temperature had a significant and almost linear effect (Fig. 

6.7). The removal of TCN and BPA increased for instance from 20% or 30%, respectively, at 10°C to 

more than 70% at 40°C when 700 U l
-1

 of laccase reacted for 0.5 h at the optimal pH. These results are 

consistent with other studies for TCN and BPA (Kim and Nicell, 2006b; Kim and Nicell, 2006c), 

where very similar behaviour was observed between 25°C and 40°C. For the aniline compounds (DFC 

and MFA), the temperature effect was non-linear in the range studied (Fig. 6.7). DFC removal 

increased in a similar way to TCN from 10 to 25°C, but then a plateau was reached, and no additional 

removal occurred at higher temperatures. For MFA, the effect of temperature was smaller, with a 

slight increase in the removal from 10 to 20°C, followed by a slight decrease above 25°C. Our results 

suggest that the optimal temperature is mainly dependent on the substrate properties since denaturation 

of the laccase probably did not occur in the temperature range tested (Dodor et al., 2004). 

The pH had a very strong influence on laccase activity, showing a clear bell-shaped response, with 

very low removal at very acidic (< 2) or alkaline pH (> 8) conditions, and complete removal around 

pH 5-6 (Fig. 6.6 and Fig. 6.8). The strongest pH effect was observed for MFA, where only a narrow 

pH range (between 6 and 7, optimum at pH 6.3) led to good removal of this compound in a single-

compound solution (Fig. 6.8). The optimal pH range for DFC removal in a single-compound solution 

was in a more acidic range, as also observed by Lloret et al. (2010), from pH 3.5 to 5.5 with an 

optimum at pH 4.5. For the phenolic compounds (BPA and TCN), the optimal pH range was from pH 

4 to 7, with an optimum around pH 5.5, similar to results reported in other studies (Cabana et al., 

2007a; Kim and Nicell, 2006b; Kim and Nicell, 2006c). Outside these ranges, compound removal 

decreased drastically. According to Xu (1997), the bell-shape pH profile can be explained by the 

balancing of two opposing effects: i) the pH influence on the redox potential of the enzymatic reaction, 

and ii) the enzyme inhibition by hydroxide anions at high pH. In fact, the redox potentials of the 

aniline compounds DFC and MFA and the phenolic compounds BPA and TCN are pH-dependent and 

decrease when the pH increases, due to the transfer of a proton during the reaction (Daneshgar et al., 

2009; Kuramitz et al., 2001; Liu and Song, 2006). As the redox potential of the active copper T1 of the 

laccase is less influenced by pH (Xu, 1997), the redox potential difference between the aniline or 

phenolic compounds and the T1 copper of laccase increases with pH, which increases the substrate 

oxidation rate. However, at higher pH the hydroxide anion is more prone to bind to the T2/T3 active 

coppers of laccase, stopping the electron transfer and inhibiting the activity (Xu, 1997). The pH can 

also alter the ionization of the amino acids and the charge of the compound, changing the shape and 

the electrostatic interactions of the enzyme and the ability of the substrate to bind to the active site 

(Joshi et al., 2000). The optimal pH is thus dependent not only on the laccase properties but also on the 

properties of the compound, as presented in Fig. 6.8. Even if laccase from T. versicolor seemed to be 

more active under acidic conditions (pH 5 to 6), its stability decreased at more acidic pH (Fig. S 6.10 

and Fig. S 6.11, SI). For slow kinetics, a compromise should be made between the activity and the 

stability to find the pH that allows the highest removal rate. 
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Fig. 6.8 Effect of pH on the removal of DFC, MFA, BPA and TCN in (A) single-compound solutions or (B) in a 

mixture of DFC, MFA and BPA at 25°C and 730 U l-1 laccase at different reaction times. Symbols: experimental data 

(not possible to represent in a 2D plot for the mixture due to the variation of the other factors). Lines: predictions of the semi-

empirical model. DFC: diclofenac, MFA: mefenamic acid, BPA: bisphenol A, TCN: triclosan. 

At the optimal pH, fast removal was observed during the first hours of the reaction for the four 

compounds (Fig. 6.7, detailed in Fig. 6.9 for DFC and BPA), especially for MFA and BPA. The 

removal rate, which followed first- to second-order kinetics depending on the pH, then decreased for 

increasing reaction times before reaching a plateau. At the optimal pH, 25°C, and for 730 U l
-1

 laccase, 

90% removal of single-compound solutions was reached within 40 min for BPA, 1 h 40 min for MFA, 

2 h 20 min for TCN and less than 5 h for DFC, all of which are in the range of hydraulic residence 

times used in biological wastewater treatments (Choubert et al., 2011). Under alkaline conditions, 

however, the transformation kinetics were very slow compared to acidic conditions (Fig. 6.9) 

 

Fig. 6.9 Kinetics of (A) DFC and (B) BPA transformation when present in single-compound solutions at 25°C, 730 U l-

1 laccase and different pH. Symbols: experimental data. Lines: predictions with the semi-empirical model. DFC: diclofenac, 

BPA: bisphenol A. 
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6.3.5 Effect of micropollutant mixtures 

Transformation rates were different if the compounds were present in single-compound solutions or in 

a mixture (DFC, MFA and BPA). The presence of other compounds caused a shift of the optimal pH 

for MFA degradation towards more acidic conditions (between pH 4.5 to 6.5, optimum at pH 5.4) 

(Fig. 6.8), probably due to competitive effects observed under alkaline conditions when DFC was 

present (see below). The presence of other compounds particularly affected the transformation of 

DFC, where a much wider optimal pH range was observed in a mixture (from pH 2.5 to 6.5, optimum 

at pH 4.5) compared to a single-compound solution. The optimal pH range for BPA was only slightly 

influenced by the presence of other compounds, but the rate was slower - a mixture needed 2 h to 

attain the same removal rate at that observed for a single-compound solution after 0.5 h (Fig. 6.8). 

The presence of other compounds can thus have a strong influence on the kinetics by either increasing 

(for DFC) or decreasing (for MFA and BPA) the reaction rate. For instance, at pH 7.2, 25°C, 730 U l
-1

 

laccase, and 20-h reaction time (Fig. 6.10), only 25% of DFC was removed in a single-compound 

solution, but 60% in the presence of BPA, and 95% in the presence of MFA. For BPA and MFA, by 

contrast, the presence of other compounds seemed to create a competitive effect, with reduced removal 

compared with single-compound solutions (Fig. 6.10).  

 

Fig. 6.10 Influence of micropollutant mixtures on the removal of BPA, DFC and MFA at pH 7.2, 26°C with 730 U l-1 of 

laccase. Symbols: experimental data from duplicates with standard deviation. Lines: adjustment of kinetic models with 

variable order of reaction. DFC: diclofenac, MFA: mefenamic acid, BPA: bisphenol A. 

Additional experiments (not presented in the published version) were performed with other mixtures 

of pollutants, including TCN and paracetamol (PCL). As presented in Fig. 6.11 A, at pH 6.6, the 

presence of PCL did not influence the (slow) oxidation rate of DFC, despite PCL was completely 

oxidized in 1 h. But a strong increase in DFC oxidation rate was again observed when MFA was 

present. On the contrary, PCL affected the oxidation of MFA, which started only once all PCL was 

removed (after 1 h) (Fig. 6.11 C). As PCL is very good substrate for laccase (c.f. Chapter 5), it is very 

likely that there was a competition between PCL and MFA for the enzyme. Similar to the results at pH 

7.2 or 6.6, at pH 5.2, DFC removal was also enhanced in presence of other pollutants, especially with 

TCN (Fig. 6.11 B). TCN was, however, strongly affected by the presence of other pollutants, with 

90% removal in 5 h in single-compound solution but only 10% removal in mixture with BPA and 

DFC (Fig. 6.11 D). 

BPA

Reaction time [h]

0 2 4 6 8 10

B
P

A
 r

e
m

o
v
a

l 
[%

]

0

20

40

60

80

100

Alone

with DFC

with MFA

with DFC + MFA

DFC

Reaction time [h]

0 5 10 15 20

D
F

C
 r

e
m

o
v
a

l 
[%

]

0

20

40

60

80

100

Alone 

with BPA

with MFA

with BPA + MFA

MFA

Reaction time [h]

0 5 10 15 20

M
F

A
 r

e
m

o
v
a

l 
[%

]

0

20

40

60

80

100

Alone

with BPA

with DFC

with BPA + DFC



 CHAPTER 6 

164 

 

 

Fig. 6.11 Influence of micropollutant mixtures on the removal of DFC, MFA and TCN at 25°C, at different pH values 

and in different mixtures. (A) DFC removal alone or in mixture with PCL and/or MFA at pH 6.6 and 700 U l-1 of laccase. 

(B) DFC removal alone or in mixture with TCN, BPA and/or MFA at pH 5.2 and 900 U l-1. (C) MFA removal alone or in 

mixture with PCL and DFC at pH 6.6 and 700 U l-1. (D) TCN removal alone or in mixture with BPA and DFC at pH 5.2 and 

750 U l-1 (average and values of duplicates). DFC: diclofenac, PCL: paracetamol, MFA: mefenamic acid, TCN: triclosan, 

BPA: bisphenol A 

Although most studies on laccase-mediated oxidation considered single-compound solutions (Cabana 

et al., 2007a; Huang and Weber, 2005; Inoue et al., 2010; Kim and Nicell, 2006b; Kim and Nicell, 

2006c; Lloret et al., 2010; Tsutsumi et al., 2001), our results show that the transformation rate can be 

noticeably different in mixtures. The application of laccase for wastewater treatment requires efficient 

removal in complex matrices containing a mixture of pollutants and other organic and inorganic 

compounds. Thus, the effect of mixtures should be better understood. Laccase produces reactive 

radicals that can break down to smaller molecules, polymerise or react with other molecules (Claus, 

2004; Dwivedi et al., 2011). As MFA and BPA are oxidised relatively rapidly by laccase, their 

unstable radicals could react with DFC, either as a mediator before returning to their initial stage, or 

by cross-linking to form a bigger molecule that is more prone to precipitate. This last assumption is 

more likely as more precipitates were visible in the mixtures. Moreover, the visually observed yellow 

colour of DFC transformation products was much lighter in the mixture, indicating formation of other 

transformation products. As MFA was a strong enhancer of DFC removal and possibly acted as a 

mediator, experiments were performed (at pH 5) with MFA mixed with naproxen, sulfamethoxazole 

or isoproturon, three compounds which can be degraded by laccase-mediator systems (c.f. Chapter 5). 

However, none of these three compounds was degraded in 5 h of reaction, suggesting that MFA was 

not acting as a strong mediator. The mechanistic description of the mixture phenomenon requires 

further investigations and may be very different at much lower pollutant concentrations (lower chance 
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to have cross reaction between two pollutants), but these preliminary results highlight the important 

role of mixture effects in the fate of micropollutants in a complex matrix such as wastewater. 

6.3.6 Transformation at low micropollutant concentrations 

The rate of enzyme-catalysed reactions is dependent on the substrate concentration, following in most 

cases a Michaelis-Menten model (Johnson and Goody, 2011). Thus, at lower micropollutant 

concentrations, even if similar pH and temperature effects are expected, slower transformation kinetics 

are expected. The experiment conducted at a concentration of 1 µg l
-1

 with a mixture of BPA, DFC, 

MFA, and four estrogenic compounds, estrone (E1), β-estradiol (E2), estriol (E3) and 17α-

ethynilestradiol (EE2) (c.f. Chapter 5), showed that over 90% removal of these seven compounds 

could be obtained in less than 20 h of reaction time with 500 U l
-1

 laccase, at pH 4.5 and 30°C. This 

demonstrates the potential of laccase to treat micropollutants, including natural (E1, E2 and E3) and 

synthetic (EE2) hormones, at very low concentrations (ng to µg l
-1

). The effect of the substrate 

concentration on the removal rate was therefore much lower than the effect of other parameters such 

as pH. For instance, 96% DFC removal was reached in less than 20 h at a concentration of 1 µg l
-1

 

whereas, under these conditions and according to the prediction of the semi-empirical model, this 

same removal level would be attained after 12 h for an initial DFC concentration that was 20,000 

times higher. However, this experiment does not lead to conclusions regarding reaction kinetics at low 

substrate concentrations. Further experiments would be necessary to clarify this point. 

6.4 Conclusions 

Laccase from Trametes versicolor was able to transform completely four problematic micropollutants 

usually found in wastewater: DFC, MFA, BPA and TCN. Operational conditions such as pH, enzyme 

concentration, temperature and reaction time were found to have a strong influence on the removal 

rate. The optimal pH for degradation was compound-dependent but always in the acidic range (4.5 to 

6.5), with slow removal kinetics for alkaline conditions. The influence of temperature was less 

significant but higher for phenolic (BPA and TCN) than for aniline compounds (DFC and MFA), the 

latter showing an optimum between 25 and 30°C. The semi-empirical model described well the 

experimental data and satisfactorily predicted the removal efficiency of additional experiments. 

Removal rates were quite different in micropollutant mixtures compared with single-compound 

solutions. Mixtures led to either increases or decreases in degradation rates, depending on the 

compound. Although conditions in municipal wastewater (pH 7-8, 10-25°C) are outside the optimal 

range, the results show that removal above 85% is possible for the four compounds tested under pH 

and temperature conditions found in wastewater, with sufficient enzyme concentration and reaction 

time. The ability of laccase to transform recalcitrant micropollutants such as DFC and MFA, even at 

low concentration, is very promising and could be a first step for further mineralization and 

improvement of the quality of WWTPs effluents. 
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6.5 Supporting information 

The supporting information of this chapter is presented below. 

 

 

Fig. S 6.1 Fitting of a first-order model (lines) to the 

removal of BPA (symbols) measured at different pH 

values (at 25°C with 730-U l-1 laccase). 

  

Fig. S 6.2 Fitting of the best-order model (lines) to the 

removal of BPA (symbols) measured at different pH 

values (at 25°C with 730-U l-1 laccase). 

 

 

 

Fig. S 6.3 Influence of the pH, reaction time, temperature and enzyme concentration on the removal of DFC according 

to the quadratic model. For each plot, the two parameters that did not vary are fixed at the centre of their domain (pH 6, 4-h 

reaction time, 725-U l-1 laccase and 25°C). 
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Fig. S 6.4 Influence of the pH, reaction time, temperature and enzyme concentration on the removal of MFA 

according to the quadratic model. For each plot, the two parameters that did not vary are fixed at the centre of their domain 

(pH 6, 4-h reaction time, 725-U l-1 laccase and 25°C). 

 

Fig. S 6.5 Influence of the pH, reaction time, temperature and enzyme concentration on the removal of TCN 

according to the quadratic model. For each plot, the two parameters that did not vary are fixed at the centre of their domain 

(pH 6, 3-h reaction time, 623-U l-1 laccase and 25°C). 
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Fig. S 6.6 Influence of the pH, reaction time, temperature and enzyme concentration on the removal of DFC according 

to the semi-empirical. For each plot, the two parameters that did not vary are fixed at the centre of their domain (pH 6, 4 h 

reaction time, 725 U l-1 laccase and 25°C). 

 

Fig. S 6.7 Influence of the pH, reaction time, temperature and enzyme concentration on the removal of MFA 

according to the semi-empirical. For each plot, the two parameters that did not vary are fixed at the centre of their domain 

(pH 6, 4 h reaction time, 725 U l-1 laccase and 25°C). 
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Fig. S 6.8 Influence of the pH, reaction time, temperature and enzyme concentration on the removal of BPA according 

to the semi-empirical. For each plot, the two parameters that did not vary are fixed at the centre of their domain (pH 6, 4 h 

reaction time, 725 U l-1 laccase and 25°C). 

 

Fig. S 6.9 Influence of the pH, reaction time, temperature and enzyme concentration on the removal of TCN 

according to the semi-empirical. For each plot, the two parameters that did not vary are fixed at the centre of their domain 

(pH 6, 4 h reaction time, 725 U l-1 laccase and 25°C). 
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Influence of the treatment conditions on laccase activity 

Fig. S 6.10 presents the stability of laccase in buffer solution at different pH and different incubation 

times while Fig. S 6.11 shows the residual laccase activity in different operational conditions after the 

reaction with the micropollutants. 

 

Fig. S 6.10 Stability of laccase from T. versicolor (560 U l-1 initial activity) at different pH (buffer citrate-phosphate 20-

40 mM pH 3-7, Tris-HCl 40 mM pH 8-9) as a function of incubation time at 25°C. The residual activity is relative to the 

initial activity in pure water. High stability is observed at neutral and alkaline pH values, but inactivation is observed for 

acidic pH values, with complete loss of activity in less than 15 d at pH 3. Error bars: standard deviation of duplicate. 

 

Fig. S 6.11 Simulation of the residual laccase activity [U mg-1 of laccase] at the end of the experiments of the Doehlert 

experimental design based on the results of the 23 experiments conducted with triclosan. For each plot, the two 

parameters that did not vary are fixed at the centre of their domain (pH 6, 3-h reaction time, 623-U l-1 laccase and 25°C).  
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The quadratic model can reproduce correctly the observed data, with a good fit (R
2
 = 0.988), as 

presented in Fig. S 6.12. Laccase stability seems to be mainly influenced by the pH, with the highest 

stability at neutral pH. In the ranges studied, the temperature and the reaction time did not have a 

significant influence on the stability. Laccase seems to be less stable when present at low 

concentration in the reaction mixture. 

 

Fig. S 6.12 Observed versus predicted residual laccase activities with the quadratic model at the end of the 

experiments of the Doehlert experimental design conducted with triclosan. 
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Chapter 7   Sulfamethoxazole and isoproturon 

degradation and detoxification by a laccase-mediator 

system 

An adapted version of this chapter was submitted for publication in Biochemical Engineering 

Journal, with the name “Sulfamethoxazole and isoproturon degradation and detoxification by a 

laccase-mediator system: Influence of treatment conditions and mechanistic aspects”, by Jonas 

Margot, Pierre-Jean Copin, Urs von Gunten, D. Andrew Barry and Christof Holliger. 

7.1 Introduction 

Bio-oxidation of micropollutants, catalyzed by oxidative enzymes such as laccase, attracted recently a 

growing interest from the scientific community (Nyanhongo et al., 2007). Laccases can oxidize a wide 

range of pollutants containing phenol and aniline moieties, including several pharmaceuticals and 

pesticides, requiring only oxygen as a co-substrate (cf. Chapter 5). Despite the promising potential of 

this class of enzymes, many pollutants are recalcitrant to laccase oxidation. One way to increase their 

range of action is to use redox mediators (Husain and Husain, 2008). Mediators are compounds that 

can be oxidized by laccase to free radicals, which in turn can oxidize pollutants less specifically, 

increasing the spectrum of compounds potentially degraded by these enzymes. Mediators are often 

described as “electron shuttles”, that, once oxidized to radicals by laccase, may be reduced back to 

their parent compound during the oxidation of a pollutant (Fabbrini et al., 2002).  

 

Scheme 1 Ideal laccase-mediator reaction model 

This ideal catalytic cycle (Scheme 1), where only oxygen is consumed during pollutant oxidation, is a 

means to increase the range of action of laccase. The mediator recycling does, however, not always 

happen and consumption of mediators during the reaction is possible. In this case, the term “laccase 

enhancer” is a better descriptor (González Arzola et al., 2009). Nevertheless, mediators or enhancers 

notably widen the substrate range of laccases. Despite several studies on laccase-mediator systems 

(LMS) for micropollutant removal in wastewater (Auriol et al., 2007; Garcia et al., 2011; Murugesan 

et al., 2010; Nguyen et al., 2014a; Tran et al., 2013a), the mechanistic aspects of the kinetics of 

pollutant oxidation, the fate of the mediator during the reaction, and the conditions required for an 

optimal pollutant oxidation are not completely understood. 
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A variety of organic compounds may act as mediators, as long as they can be oxidized by laccase and 

the free radical formed is stable enough to diffuse away from the enzymatic pocket. Furthermore, the 

reduction potential has to be high enough to oxidize a target compound (Medina et al., 2013). One of 

the most commonly used synthetic mediators is 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) 

(ABTS) (González Arzola et al., 2009). This compound is oxidized by laccases to a stable radical 

cation ABTS
•+

 (Fig. 7.1 B). Natural mediators have also been identified, mostly lignin-derived 

phenolic compounds, some of the most effective of which are syringaldehyde (SA) and acetosyringone 

(AS) (Medina et al., 2013). SA and AS have similar structures and are oxidized by laccase to an 

unstable phenoxy radical (Fig. 7.1). 

 

Fig. 7.1 Selected micropollutants (A) and mediators (B). In (B), ABTS oxidation by laccase to its stable radical cation 

ABTS•+ and eventually to the di-cation ABTS2+ (according to Fabbrini et al. (2002)); and oxidation of the mediators 

syringaldehyde and acetosyringone to their respective unstable reactive phenoxy radicals (according to Martorana et al. 

(2013)). In [], exact molar mass of the compounds (in g mol-1). 

To assess the potential of LMS for micropollutant removal in wastewater, two pollutants of 

environmental concern are investigated in this study: the sulfonamide antibiotic sulfamethoxazole 

(SMX) and the herbicide isoproturon (IPN) (Fig. 7.1 A). Due to its wide consumption and only poor 

removal in WWTPs, SMX is ubiquitous in municipal wastewater effluents (in average around 200 ng 

l
-1

 in Switzerland) (Kase et al., 2011) and may generate risks for sensitive aquatic organisms in the 

receiving waters (Bonvin et al., 2013b). IPN is a herbicide commonly used in urban areas (parks, 

gardens, cemeteries) and therefore also frequently detected in municipal WWTP effluents (Kase et al., 

2011). Due to its toxicity at very low concentrations, it was selected as a priority substance by the 

European Union (EC, 2013).  

The aims of this study were (i) to assess the potential of LMS for SMX and IPN degradation and 

detoxification with three mediators: ABTS, AS and SA, and (ii) to determine the influence of the 

operational parameters (pH, laccase, mediator and pollutant concentrations) on LMS-based oxidation 

kinetics. Based on these experiments (a) optimal conditions for pollutant degradation were identified, 
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(b) mechanistic aspects of LMS-based systems were elucidated, and (c) the potential of LMS for the 

treatment of micropollutants in wastewater was assessed. 

7.2 Materials and methods 

7.2.1.1 Chemicals and enzyme 

SMX and IPN (purity > 99%), laccase powder from Trametes versicolor (ref. 38429, Sigma), ABTS 

diammonium salt, SA, AS, and all other chemicals were purchased from Sigma-Aldrich Chemie 

GmbH (Buchs, Switzerland). Stock solutions of SMX (3.95 mM, 1 g l
-1

), IPN (4.85 mM, 1 g l
-1

), AS 

(10 mM, 1.96 g l
-1

) and SA (10 mM, 1.82 g l
-1

), were prepared in pure methanol and stored at -18 °C. 

Stock solutions of ABTS (10 mM, 5.14 g l
-1

) and laccase (2 g l
-1

) were prepared in pure water, stored 

at 4°C and replaced for any new set of experiments. A stock solution of aqueous chlorine (OCl
-
, 8.16 

mM) was prepared by diluting a sodium hypochlorite solution (~ 5%, Sigma) 100 times. The final 

OCl
-
 concentration was measured at pH 10.9 by spectrophotometry at 292 nm (extinction coefficient 

ε292nm of 362 M
-1

 cm
-1

) (Furman and Margerum, 1998). 

A stock solution of the ABTS radical cation (at 5 mM) was produced by chemical oxidation of ABTS 

(6.9 mM in pure water) with aqueous chlorine (2.5 mM), under acidic conditions (pH < 5), at a slightly 

under-stoichiometric ratio to avoid potential residual chlorine in the solution (Pinkernell et al., 2000). 

Another solution of ABTS radical cations was produced by ultrafiltration (Vivaspin 20 centrifugation 

devices, PES, MWCO: 3 kDa, from Startorius AG, Göttingen, Germany) of a solution of ABTS (500 

µM) oxidized by laccase, in order to remove (most of) the enzyme (> 60 kDa). The exact ABTS
•+

 

concentration was determined by spectrophotometry at 420 nm (ε420nm of 36,000 M
-1

 cm
-1

) (Childs and 

Bardsley, 1975). 

7.2.1.2 Laccase activity test 

Laccase activity was determined as described in Chapter 5. One unit of activity (U) was defined by the 

oxidation of one µmol of ABTS per min, at pH 4.5 and 25°C. 

7.2.1.3 Micropollutant, mediator and transformation product analyses 

Determinations of SMX, IPN, AS, and SA concentrations were carried out by reverse phase liquid 

chromatography with a diode-array detector (HPLC-DAD) (LC-2000plus, Jasco, Tokyo, Japan, 

equipped with Bondapack-C18 column, 15–20 μm, 3.9 mm × 300 mm, Waters
TM

, Milford, USA). 

Aliquots of 50 µl were injected. Separation of the compounds and the transformation products was 

conducted with a 30-min gradient, at 1 ml min
-1

, of pure H2O containing 0.1% acetic acid (pH 3.23) 

and increasing concentration of methanol (with 0.1% acetic acid) from 5 to 52% (v/v) or 15 to 60%, 

for SMX, AS and SA, or IPN determination, respectively. The compounds were detected at 268, 305, 

305 and 242 nm for SMX, AS, SA, and IPN, respectively. The limit of quantification (LOQ) was 

around 0.1 mg l
-1

 (~ 0.5 μM), and the accuracy of the measurements (coefficient of variation of 10 

injections) was around 1-2%. 

Characterization of the transformation products formed during the laccase-mediated reaction was 

carried out by HPLC coupled to a mass spectrometer (UPLC-MS). Aliquots of 10 µl of each sample 
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were injected in the column (Acquity UPLC system, with a HSS T3 (C18) column, 2.1 × 100 mm, 1.8 

µm, Waters), which was eluted at 30°C in 20 min at 0.4 ml min
-1

 with a mobile phase composed of 

pure water and methanol, in a gradient mode, from 2 to 95% methanol. Transformation products were 

characterized (m/z ratio and retention time) and quantified (signal intensity) by MS (Xevo TQ MS, 

Waters) in scan mode (40 – 2000 m/z, scan time 0.4 s) and a positive electrospray ionization mode 

(ES+, cone voltage 30 V). Based on the retention times, some of the transformation products 

characterized by MS could be related to transformation products observed by HPLC-DAD, which 

gave further information about their UV/visible absorption spectrum. 

7.2.1.4 Micropollutant oxidation assay in laccase-mediator systems under various conditions  

Micropollutant oxidation assays were performed at different pH values (3 to 9) in citrate or phosphate 

buffers (30 – 40 mM) containing the pollutant at around 100 µM (20 – 25  mg l
-1

) and variable 

concentrations of mediator (10 – 1000 µM). Batch reactions were conducted in 2-ml glass vials 

containing 1 ml of an oxygen-saturated reaction mixture. Reactions were initiated by adding laccase to 

obtain an initial activity between 100 and 650 U l
-1

. Vials were incubated in the dark at 25°C under 

static conditions for several hours (usually around 20 h). After defined reaction times (every 40 to 160 

min), aliquots (50 μl) were withdrawn from each vial and directly injected into the HPLC column to 

analyze micropollutant and mediator concentrations. Controls without laccase or without mediators 

were performed to assess micropollutant degradation by mediators or by laccase alone, respectively. 

Experiments were typically carried out in duplicate.  

Several experiments were performed under various conditions to better understand laccase-mediated 

reactions: (i) three mediators were tested (namely ABTS, AS and SA) with either SMX or IPN; (ii) for 

each mediator, degradation kinetics were studied at various pH values (from 3 to 9), diverse mediator 

concentrations (from 10 to 1000 µM), various laccase activities (100 to 650 U l
-1

), and various 

pollutants concentrations (50 to 150 µM). 

For the transformation product analyses by UPLC-MS, lower micropollutants concentrations were 

used: (i) IPN at 20 µM with 500 µM ABTS and 560 U l
-1

 laccase at pH 5, and (ii) SMX at 10 µM with 

50 µM mediator (ABTS, AS or SA) and 560 U l
-1

 laccase at pH 6. After defined reaction times (about 

every hour), 10 μl were withdrawn from each vial and directly injected into the UPLC-MS to follow 

the kinetics of transformation product formation. Controls with laccase and mediators without 

pollutants were also performed. 

Dissolved oxygen consumption experiments were conducted in a closed (airtight) cell containing an 

oxygen probe and 3 ml of reactive solution of pollutant, laccase and mediator. The cell was closed just 

after addition of laccase in an air-oxygen saturated solution, without any headspace. 

7.2.1.5 Evaluation of the role of the ABTS radical cation 

The role of the ABTS radical cation (ABTS
•+

) in the oxidation reaction was assessed by comparing 

degradation kinetics in solutions containing micropollutants (100 µM) and (i) only ABTS (550 µM) 

chemically oxidized by HOCl, (ii) chemically oxidized ABTS (550 µM) and laccase (280 U l
-1

), (iii) 

ABTS oxidized by laccase (160-200 µM, ultrafiltered) with very low laccase activity (< 10 U l
-1

), and 
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(iv) ABTS oxidized by laccase (160-200 µM, ultrafiltered) with further addition of laccase (200-250 U 

l
-1

). These experiments were conducted in duplicate, at pH 5 with IPN and pH 5 or 6 with SMX. 

7.2.1.6 Ecotoxicity test 

A growth inhibition assay on the green alga Pseudokirchneriella subcapitata was selected to evaluate 

the toxicity of the micropollutants before and after treatment with the laccase-mediator system, as 

green algae are among the most sensitive organisms to the herbicide IPN but also to the antibiotic 

SMX (Ecotoxicity database AiiDA: www.aiida.tools4env.com).  

For the toxicity test, mediators (AS and SA) and SMX stock solutions were prepared in pure water, as 

methanol is toxic to the green algae at the level present in the solutions (50% growth inhibition at 1 g l
-

1
 (0.125% v/v), data not shown).  

The samples tested consisted of IPN (100 µM) or SMX (150 µM) in a citrate-phosphate (20-40 mM) 

buffer at pH 5 or 6, respectively, with or without reaction during 40 h (with IPN) or 88 h (with SMX) 

at 25°C with a mediator concentration of 500 µM (either ABTS, AS or SA with SMX and only ABTS 

with IPN) and laccase (540 U l
-1

). Controls were performed with each mediator and laccase incubated 

without pollutant, at the same concentrations. Long reaction times were used to assure complete 

reaction of the pollutants and stabilisation of the transformation products. These solutions were then 

diluted 200 times (with IPN) or 20 times (with SMX) in the algae growth medium prior to the toxicity 

tests to achieve concentrations of pollutants (0.5 and 7.5 µM for IPN and SMX, respectively) in the 

algae medium that still allow them to grow (Pavlić et al., 2006; Yang et al., 2008).  

The algae growth inhibition test was performed according to the OECD guideline 201 (OECD, 2011) 

with the green algae Pseudokirchneriella subcapitata (Chlorophyceae ; strain SAG 61.81, from the 

Culture Collection of Algae, Göttingen, Germany), maintained as described by Valloton et al. (2009). 

Briefly, exponentially growing algae (initially about 50,000 cells ml
-1

 in sterile mineral AAP growth 

medium, pH 7.5) were exposed to the diluted samples over a period of 72 h, in an incubation shaker 

(Infors HT, Bottmingen, Switzerland) at 25°C and 90 rpm, with continuous illumination (70 µmol m
-2

 

s
-1

) by cool-white fluorescent lamps. Algae growth was determined as described by Daouk et al. 

(2013) by measuring the optical density at a wavelength of 690 nm (linearly correlated to the cell 

density) with a microplate reader (ELx800 
™

, BioTek
®
 Instruments, Winooski, Vermont) at the 

beginning and at the end of the test. The growth rate was calculated as the natural logarithmic increase 

in the optical density over time, and the growth inhibition was then determined by relative comparison 

of the growth rate of algae exposed to the sample to the one of algae growing in pure mineral media 

(controls), according to the OECD 201 guideline. Tests were carried out in triplicate, with a coefficient 

of variation for the growth rates below 16% and 2.5% for the samples and the controls, respectively, 

meeting the validity criteria of the OECD guideline. SMX and IPN were analysed before and after 72 

h of incubation in the samples not treated by laccase-mediator. Less than 3-6% loss was observed for 

both compounds, confirming a constant exposure during the test.  

7.2.1.7 Reaction modelling of laccase-mediator systems 

Based on the results of the experiments, a kinetic model of laccase-mediator reactions was established, 

considering Michaelis-Menten type kinetics for laccase/mediator reactions and second-order rate 

http://www.aiida.tools4env.com/
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kinetics for mediator/pollutant reactions (see Section 7.3.9). The various differential equations were 

solved numerically with the ode45 solver (variable step Runge-Kutta method) within MATLAB 

(MathWorks, USA). 

7.3 Results and discussion 

7.3.1 Oxidation of IPN and SMX with various mediators 

IPN or SMX did not react with the enzyme or the mediators alone during the time of incubation (up to 

72 h) (Fig. 7.2). Recalcitrance of SMX to laccase oxidation was recently reported (Shi et al., 2014), 

although this compound was oxidized by crude Phanerochaete chrysosporium laccase extract in 

another study (Guo et al., 2014), possibly due to the presence of other oxidative enzymes or mediators 

in the extracted solution.  

 

Fig. 7.2 Relative residual concentrations of (A) isoproturon (100 µM) at pH 5 in presence of the 3 mediators at 500 µM 

and 630 U l-1 laccase activity, and (B) sulfamethoxazole (80-100 µM) at pH 6 in presence of the 3 mediators at 100 µM and 

320 U l-1 laccase activity. Controls with only mediators (at 500 µM) and micropollutants (without laccase), as well as with 

micropollutants and laccase (without mediators) are also presented. Lac: laccase, AS: acetosyringone, SA: syringaldehyde, 

ABTS: 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid).After 24 h, stable concentrations were observed up to 3-4 d. 

With LMS, IPN was completely oxidized in the presence of ABTS in less than 20 h at pH 4-6 (Fig. 7.3 

A). The two other natural mediators (AS and SA) were on the contrary not able to mediate the 

oxidation of IPN, even at high concentrations (500 µM, pH 5) and for long reaction times (up to 96 h) 

(Fig. 7.2 A). 

SMX appeared to be much more reactive to LMS oxidation, with reasonable oxidation rates in 

presence of ABTS and very fast oxidation (almost complete removal in less than 1h) in the presence of 

both AS or SA at pH 6 (Fig. 7.2 B and Fig. 7.3 B-D). Very few studies have been published on SMX 

oxidation by LMS. Recently, a few studies showed that SMX could be oxidized by laccase in presence 

of several mediators (1-hydroxybenzotriazole (HTB), syringic acid, AS and SA) (Nguyen et al., 

2014b; Shi et al., 2014; Yang et al., 2013c). Oxidation by LMS of other sulfonamides 

(sulfadimethoxine and sulfamonomethoxine) was also reported (Weng et al., 2012). The mechanisms 

and the conditions for the oxidation of these pollutants by LMS are, however, still largely unknown. 
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Fig. 7.3 Pollutant and mediator residual concentrations during laccase-mediated reactions at various pH. (A) IPN 

(A.1) in presence of ABTS (A.2: oxidized ABTS HPLC signal). (B) SMX (B.1) in presence of ABTS (B.2). (C) SMX (C.1) 

in presence of SA (C.2). (D) SMX (D.1) in presence of AS (D.2). Experimental conditions: (A) 100 µM IPN, 500 µM ABTS, 

560 U l-1 laccase (lac). (B) 73 µM SMX, 100 µM ABTS, 315 U l-1 lac. (C) 75 µM SMX, 110 µM SA, 320 U l-1 lac. (D) 93 

µM SMX, 201 µM AS, 560 U l-1 lac. SMX: sulfamethoxazole, IPN: isoproturon, AS: acetosyringone, SA: syringaldehyde. 
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7.3.2 pH influence on the oxidation kinetics 

As shown in previous studies (Margot et al., 2013a; Margot et al., 2013c) (cf. Chapters 6 and 8), pH 

has a strong influence on the laccase activity, with higher activities (for T. versicolor laccase) under 

acidic conditions (pH 4-6) and almost no activity in alkaline solutions (pH > 7.5-8). It was therefore 

expected that LMS oxidation would also be strongly influenced by pH, especially during the first stage 

of the mediator oxidation by laccase. To further elucidate the effect of the pH, experiments were 

performed in the pH range 3 to 9. As presented in Fig. 7.3, kinetics of SMX and IPN abatement varied 

significantly as a function of pH. Fast oxidation of both compounds was observed at pH 5-6 for all 

three mediators, with decreasing rates at lower (3-4) or higher (7-8) pH-values. No significant 

oxidation was observed at pH 9. The optimal pH range for IPN and SMX oxidation was around 5-6 

(Fig. 7.4 and Fig. 7.6 C), significantly higher than the optimal pH for mediator oxidation (pH < 3-4) 

(Fig. 7.6 B). This difference could be related to a higher self-reaction of mediator radicals at lower pH 

(produced locally at high concentration), leading to a decreasing pollutant exposure with reactive 

species.  

 

Fig. 7.4 Influence of pH on the abatement of (A) isoproturon (IPN, 100 µM) with ABTS (500 µM, 560 U l-1 laccase), (B) 

sulfamethoxazole (SMX, 80 µM) with ABTS (100 µM, 315 U l-1 laccase), (C) SMX (80 µM) with syringaldehyde (100 µM, 

320 U l-1 laccase), and (D) SMX (100 µM) with acetosyringone (200 µM, 560 U l-1 laccase). Results for different reaction 

times. 
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7.3.3 Mediator consumption and effect of pH on the ratio mediator/pollutant 

Mediators are often described as electron-shuttles between laccase and the substrate, with catalytic 

action of the mediator (Scheme 1) (Fabbrini et al., 2002). However, it appears from our results that 

neither ABTS, SA or AS acted as catalysts. These three mediators were consumed during the reaction, 

with a mediator/pollutant molar ratio in excess of unity. For AS and SA, a clear decrease in their 

concentration was observed as the reaction progressed, up to their complete disappearance (Fig. 7.3 

C.2 and D.2). This consumption was independent on the pollutant concentration (Fig. 7.9 A.2, B.2). 

Although ABTS has been described as a catalytic mediator, with a constant recycling of its radical 

cation ABTS
•+

 during the oxidation of various substrates (Solís-Oba et al., 2005), no catalytic 

reactions were observed in this study. 

 
Fig. 7.5 Correlation between sulfamethoxazole (SMX) removal and the mediator consumption at various pH values. 

(A) With syringaldehyde (SA) (initial concentrations of 75 and 110 µM for SMX and SA, respectively). (B) With 

acetosyringone (AS) (initial concentrations of 93 and 201 µM for SMX and AS, respectively). 

The disappearances of the mediators AS and SA (Fig. 7.3 C.2 and D.2) were proportional to the 

disappearance of SMX (in most cases linear correlation r > 0.99) (Fig. 7.5). This allowed determining 

the stoichiometry of the mediator-SMX reaction (molar ratio of the SMX oxidized relative to the 

mediator consumed). These ratios were pH-dependent, varying from 1.7 (pH 5-6) to 2.4-2.5 (pH 3 and 

8), and from 2.4 (pH 6-7) to 16 (pH 3), for SA and AS, respectively (Fig. 7.6 A). 

 
Fig. 7.6 pH influence on the ratio mediator/pollutant and the rate of laccase-mediated reactions. (A) Stoichiometric 

ratio of mediator consumed per mole of SMX oxidized in presence of AS, SA and ABTS. Insert: zoom into the low ratio 

range. Error bars: standard deviation. (B) Initial maximum oxidation rates (Vmax, in µM h-1) of the mediators AS, SA and 

ABTS as a function of the pH. (C) Initial maximum oxidation rates (Vmax, in µM h-1) of SMX in presence of AS, SA and 

ABTS, and initial maximum oxidation rates of IPN in presence of ABTS as a function of the pH. Experimental conditions: 

(B) 201 µM AS with 560 U l-1 lac, 110 µM SA with 320 U l-1 lac, and 500 µM ABTS with 370 U l-1 lac. (C) 73-93 µM SMX 

with 201 µM AS (560 U l-1 lac), 110 µM SA (320 U l-1 lac) and 100 µM ABTS (315 U l-1 lac), and 100 µM IPN with 500 

µM ABTS (560 U l-1 lac). SMX: sulfamethoxazole, IPN: isoproturon, AS: acetosyringone, SA: syringaldehyde. 

0

50

100

150

200

0 20 40 60 80

A
S

 c
o

n
s
u

m
e

d
 [µ

M
]

SMX removed [µM]

pH 3.1

pH 4.2

pH 5.1

pH 6.1

pH 7.1

pH 8.1
0

20

40

60

80

100

120

0 20 40 60

S
A

 c
o

n
s
u

m
e

d
 [µ

M
]

SMX removed [µM]

pH 3

pH 4

pH 5

pH 6

pH 7

pH 8

A B

pH [-]

3 4 5 6 7 8

R
a

ti
o

 m
e
d

ia
to

r 
/ 

S
M

X
 [

m
o

l/
m

o
l]

0

2

4

6

8

10

12

14

16

18

AS

SA

ABTS

pH [-]

3 4 5 6 7 8

V
m

a
x 

[µ
M

/h
]

10-1

100

101

102

103

SMX with AS

SMX with SA

SMX with ABTS

IPN with ABTS

pH [-]

3 4 5 6 7 8

R
a
ti
o
 [

m
o
le

/m
o
le

]

0.5

1.0

1.5

2.0

2.5

3.0

pH [-]

3 4 5 6 7 8

V
m

a
x 

[µ
M

/h
]

10-1

100

101

102

103

104

105

AS

SA

ABTS

A B C



 CHAPTER 7 

182 

 

ABTS was not quantified during the reaction, but the radical cation ABTS
•+

 could be determined semi-

quantitatively (HPLC-DAD signal intensity at 414 nm). The disappearance of the ABTS
•+

 signal (Fig. 

7.3 A.2 and B.2) was closely linked to the removal of SMX and IPN (Fig. 7.3 A.1 and B.1), 

suggesting that the radical cation was involved and consumed during the reaction. The possibility that 

ABTS
•+ 

was reduced back to ABTS was ruled out as laccase activity stayed relatively constant until 

the end of the experiments, and thus ABTS was oxidized back to ABTS
•+

 at a much higher rate (~ 300 

µM per min) than its observed consumption (less than 1 µM per min). The molar ratio of ABTS 

consumed per SMX oxidized was also pH-dependent, with 1.1 at pH 6 and up to 2 mol/mol at pH 4 

(Fig. 7.6 A), which is lower than for SA and AS. With IPN, this ratio could not be determined as a 

function of pH, but at pH 5, a molar ratio ABTS/IPN of 2.28 (±0.3) was found (based on Fig. 7.8 B). 

IPN required thus 1.5 times more mediator than SMX for a similar extent of oxidation. 

The increase in the mediator/pollutant ratio at low pH, especially important for AS (from 2.4 to 16), is 

thought to be related to the very fast oxidation of the mediators at low pH, leading to fast production 

of reactive species that are more likely to react with each other than with the pollutants (presence in 

lower abundance).  

7.3.4 Effect of the concentrations of enzyme, mediators and pollutants on the 

pollutant oxidation rate 

To better understand the reactions involved in laccase-mediator systems, several experiments were 

performed in which either the mediator or the enzyme concentration was varied. 

7.3.4.1 Effect of the enzyme concentration 

It was observed that, at pH 5 (Fig. 7.7 A), the oxidation of IPN with ABTS was not significantly 

influenced by a variation of the laccase activity by a factor of five (from 120 to 600 U l
-1

), while a 

strong influence on the rates was observed when reducing the mediator concentration by a factor of 

five (from 500 to100 µM). Therefore, it can be assumed that at pH 5 the rate-limiting step was not the 

oxidation of the mediator by laccase but the reaction of the oxidized mediator with the pollutant. 

However, at higher pH, when the mediator oxidation by laccase becomes limiting, higher laccase 

activity is expected to increase the pollutant oxidation rate. 

 
Fig. 7.7 Influence of enzyme and mediator concentrations on isoproturon (IPN) oxidation at pH 5. (A) 100 µM ABTS 

and 120 U l-1 laccase (▲), 100 µM ABTS and 600 U l-1 laccase (■), 500 µM ABTS and 120 U l-1 laccase (●), and 500 µM 

ABTS and 600 U l-1 laccase (▼). (B) 560 U l-1 laccase and different concentrations of ABTS and IPN, but with a ratio of five 

(ABTS:IPN): 250:50 µM (▲), 500:100 µM (■) and 750:150 µM (●). Insert: relative concentration. Error bars: range of 

values of duplicates. 
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7.3.4.2 Effect of the mediator and pollutant concentration 

A strong influence of the mediator concentration on the pollutant oxidation rates under acidic 

conditions was observed for both SMX and IPN (Fig. 7.8 A and B). As shown in Fig. 7.8 C, the 

oxidation rates increased proportionally with increasing mediator concentrations, reaching a plateau at 

high mediator levels. The assumption behind this saturation effect (plateau) was that, at high mediator 

concentrations (and sufficient laccase activity), high levels of reactive radicals are quickly produced, 

with a tendency to react with each other (possibly already in the enzymatic pocket) rather than with the 

pollutants. However, this saturation effect was not observed when, instead of keeping the pollutant 

concentration constant, the pollutant level was varied in proportion to the mediator concentration so as 

to keep the mediator/pollutant ratio constant (Fig. 7.8 C and Fig. 7.7 B). In this case, a linear increase 

in the oxidation rate was observed as a function of the mediator (and pollutant) concentration, which 

was expected since the radical/pollutant ratio stayed constant. 

 

Fig. 7.8 Influence of mediator concentrations on sulfamethoxazole (SMX) and isoproturon (IPN) oxidation in presence 

of laccase at acidic pH. (A) Residual SMX concentrations (in µM) at pH 6 with various concentrations of ABTS (450 U l-1 

laccase). (B) Residual IPN concentrations (in µM) at pH 5 with various concentrations of ABTS (560 U l-1 laccase). (C) 

Initial maximum IPN oxidation rates (Vmax, in µM h-1) as a function of the ABTS concentration with constant initial IPN 

concentration (100 µM, ●), and variable IPN concentrations (50, 100 and 150 µM, ▲) to maintain a ratio ABTS/IPN of five 

(pH 5, 560 U l-1 laccase). Error bars: range of values of duplicates. 

In contrast to the results under acidic conditions, at pH 7, no effect of mediator concentrations on the 

rate of SMX oxidation by the three mediators was observed (Fig. 7.9). At the three mediator 

concentrations tested (100, 200 and 500 µM), SMX was oxidised at the same constant rate (zero order 

reaction) until all the mediator was consumed. As laccase is several orders of magnitude less active 

under neutral-alkaline than under acidic conditions (Fig. 7.6 B), this observation points towards rate 

limitation of the oxidation of the mediator by laccase. Enzymatic reactions follow Michaelis-Menten 

kinetics. Therefore, the rate of the reaction does not vary with the mediator concentration when it is 

present at sufficiently high levels to saturate all the reactive sites of the enzymes. The radicals 

constantly produced are thus expected to react directly with SMX, leading to zero-order kinetics as 

long as sufficient mediator is present.  

At a constant mediator/pollutant ratio (at pH 5) and with a sufficiently high mediator concentration, 

the relative pollutant removal rate appeared to be independent on the initial pollutant concentration 

(similar to first order kinetics) (Fig. 7.7 B). Although this was not tested with low mediator/pollutant 

concentrations, it is expected that this independency would not be valid once the mediator 
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concentration becomes lower than a certain threshold, related to the affinity constant of the enzyme for 

the mediator (Michaelis constant Km). 

 

Fig. 7.9 Influence of mediator concentrations on sulfamethoxazole (SMX) oxidation in presence of laccase at neutral 

pH. Residual SMX concentrations (in µM) at pH 7 with various concentrations of (A.1) acetosyringone (AS) (520 U l-1 

laccase), (B.1) syringaldehyde (SA) (455 U l-1 laccase), and (C) ABTS (450 U l-1 laccase). Residual concentrations of (A.2) 

AS and (B.2) SA at initial concentrations of 100 (●), 200 (■) or 500 (▲) µM with SMX (91-95 µM), or 500 µM without 

SMX (▼) (same experiments as in A.1 and B.1, respectively). 

7.3.5 Oxygen consumption during laccase-mediated reactions 

Some experiments, presented in Fig. 7.10, were performed in closed (airtight) cells to assess oxygen 

consumption during the laccase-mediated reactions. With AS and SA (at 500 µM, pH 7) (Fig. 7.10 A), 

a decrease in dissolved oxygen concentration was observed, resulting to about 40% consumption of 

the oxygen available to oxidize 100 µM of SMX (completely removed in 6 h, data not shown). This 

shows that no oxygen limitations are expected for SMX oxidation. Approximately 0.8 and 1 mole of 

oxygen were consumed per mole of SMX oxidized, with SA and AS, respectively. Oxygen 

consumption stopped once SA was oxidized, while, with AS, almost complete oxygen depletion was 

observed, possibly due to further oxidation of the transformation products. With ABTS (Fig. 7.10 B), 

fast oxygen consumption was observed with SMX, which was completely removed in about 3 h (still 

60% oxygen saturation), and slightly slower oxygen consumption was observed with IPN, which was 

also completely removed in about 18 h (20% oxygen saturation). Therefore, in both cases, oxygen 

should not limit the reaction. In presence of ABTS and laccase without pollutant, significantly slower 

oxygen consumption was observed. This suggests that oxygen was not only consumed for the 

oxidation of ABTS but also for further pollutant oxidation. About 1 and 2 moles of oxygen were 

consumed per mole of SMX and IPN oxidized, respectively. Complete oxygen depletion was observed 

during the reaction with ABTS, this occuring a long time after complete oxidation of ABTS to its 
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radical cation. This suggests that the ABTS radical cation, as well as possibly the other transformation 

products formed, were further slowly oxidized to unknown products. 

 

Fig. 7.10 Dissolved oxygen consumption during laccase-mediated oxidation of sulfamethoxazole (SMX) and 

isoproturon (IPN). (A) Oxidation of SMX (100 µM) in presence of acetosyringone (AS) or syringaldehyde (SA) (500 µM) 

and 300 U l-1 laccase, at pH 7. (B) Oxidation of IPN or SMX (100 µM) in presence of ABTS (450 µM) and 300 U l-1 laccase, 

at pH 5, or under the same conditions but without pollutants (ABTS alone). Average and values (interval) of duplicates. 

Although the setup was not designed to calculate precisely the stoichiometry of the reaction (oxygen 

diffusion from the air was possible before closing the cell), it was observed that about 0.25 mole of 

oxygen was consumed per mole of mediator (SA, AS and ABTS) oxidized during the initial phase of 

the reaction (when the mediator was still present at high concentration), suggesting a one electron 

transfer from each mediator molecule. 

7.3.6 Role of the ABTS radical cation for the oxidation of SMX or IPN 

For AS and SA, it is expected that the unstable and reactive phenoxy radicals generated during the 

oxidation by laccase (Fig. 7.1) are the reactive species causing the pollutant oxidation. For ABTS, it is 

not clear which reactive species are involved in pollutant oxidation. It is reported that ABTS
•+

 can 

oxidize several compounds, mainly polyphenols, phenols or anilines (Osman et al., 2006a; Solís-Oba 

et al., 2005). To elucidate the fate of the selected target compounds, we investigated if ABTS
•+ 

alone 

(oxidized chemically) could also oxidize SMX and IPN. As presented in Fig. 7.11 C and Fig. 7.12 C, 

no SMX or IPN removal was observed with ABTS
•+

 alone, while addition of laccase (280 U l
-1

) in the 

same solution led to complete removal of both compounds in a few hours. Low laccase activity (7-9 U 

l
-1

) enabled pollutant oxidation but when laccase was inhibited no degradation was observed with 

ABTS
•+

 (Fig. 7.11 and Fig. 7.12 A). This demonstrates that ABTS
•+

 is not directly responsible for 

SMX or IPN oxidation and that laccase is necessary to catalyze this reaction. 
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Fig. 7.11 Oxidation of isoproturon (IPN, 100 µM) with oxidized ABTS (radical cation ABTS*) at pH 5, with or without 

laccase. (A) Residual IPN concentrations in presence of 205 µM ABTS•+ (500 µM ABTS oxidized by laccase and 

ultrafiltered to remove the enzyme): (●) ultrafiltered solution (9 U l-1 residual laccase activity), (▲) ultrafiltered solution with 

addition of 200 U l-1 laccase. (B) ABTS•+ concentration (UV-Vis signal at 414 nm) for the experiment described in A; (■) 

with ultrafiltered solution, (▼) with ultrafiltered solution and 200 U l-1 laccase. (C) Residual IPN concentrations with (●) 540 

µM ABTS•+ (oxidized chemically with HOCl), or (▲) 540 µM ABTS•+ and 280 U l-1 laccase. Error bars: range of values of 

duplicates. 

 

Fig. 7.12 Oxidation of sulfamethoxazole (SMX, 100 µM) with oxidized ABTS (radical cation ABTS*), with or without 

laccase. (A) Residual SMX concentrations at pH 6 in presence of 160 µM ABTS•+ (500 µM ABTS oxidized by laccase and 

ultrafiltered to remove the enzyme): (●) ultrafiltered solution (7 U l-1 residual laccase activity), (▲) ultrafiltered solution with 

addition of 250 U l-1 laccase, (■) controls with ABTS•+ and sodium azide (10 mM), (◊) control with ABTS•+, laccase (250 U 

l-1) and sodium azide (10 mM). (B) ABTS•+ concentration (UV-Vis signal at 414 nm) for the experiment described in A; (■) 

with ultrafiltered solution, (▼) with ultrafiltered solution and 250 U l-1 laccase. (C) Residual SMX concentrations at pH 5 

with (●) 540 µM ABTS•+ (oxidized chemically with HOCl), or (▲) 540 µM ABTS•+ and 280 U l-1 laccase. Error bars in C: 

range of values of duplicates. 

To investigate if the reactive product responsible for pollutant degradation was formed during ABTS 

or ABTS
•+

 oxidation by laccase, ABTS was chemically oxidized by chlorine to form a solution 

containing only ABTS
•+

, which was then used to treat the pollutants by addition of laccase. A 

comparison between the removal efficiencies of IPN and SMX by laccase with oxidized ABTS
•+

 or 

laccase with ABTS showed almost identical results (Fig. 7.13), suggesting that the reactive species 

were formed from the reaction of ABTS
•+

 with laccase. Moreover, ABTS
•+

, which is quite stable in 

pure solution (half-life of 47 h at 20-23°C) (Pinkernell et al., 2000), was degraded in presence of the 

pollutants and laccase, at a rate strongly correlated with the removal rates of the micropollutants (Fig. 

7.3 A.2 and B.2 and Fig. 7.11 B). This suggests that laccase reacts with ABTS
•+

 producing reactive 

species, which in turn react with the pollutants. 
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Fig. 7.13 Oxidation of (A) sulfamethoxazole (SMX, 100 µM), and (B) isoproturon (IPN, 100 µM) with laccase (260 U l-

1) and either ABTS (■, 450 µM), or ABTS radical cation (◊, ABTS•+, 450 µM), at pH 5. ABTS•+ was produced before the 

reaction by chemical oxidation (at a stoichiometric ratio) of 450 µM ABTS with HOCl. Average and values (error bars) of 

duplicates. 

A transformation product with a UV/Vis spectrum similar to a degradation product of the ABTS di-

cation (ABTS
2+

) was detected in samples incubated with ABTS and laccase, suggesting an ABTS
2+

 

formation (see section 7.3.7). Although the direct oxidation of ABTS
•+

 (reduction potential E
0
 = 0.6 V) 

to the stronger oxidant ABTS
2+

 (E
0
 = 1.1 V) by laccase (E

0
 ~0.8 V) is thermodynamically 

unfavourable, it was suggested that this reaction could slowly happen inside of the enzymatic pocket 

(the electrostatic interaction in the binding site may lower the reduction potential of the ABTS di-

cation) (Branchi et al., 2005). ABTS
2+

 is reported to oxidize several compounds such as aromatic 

alcohols that cannot be oxidized by ABTS
•+

 (Bourbonnais et al., 1998; Majcherczyk et al., 1999). 

ABTS
2+

 (low solubility and very low stability in water) or one of its degradation products could 

therefore be the reactive species responsible for pollutant oxidation in the combined laccase/ABTS 

system (Branchi et al., 2005; Majcherczyk et al., 1999). A slow production of ABTS
2+

 may explain 

why the pollutant oxidation in the laccase/ABTS system takes several hours while the enzyme 

oxidizes ABTS completely to ABTS
•+ 

within a few minutes. These results indicate that in the present 

case, the real mediator is not ABTS but its radical cation ABTS
•+

, which is oxidized by laccase to a 

reactive species with higher reduction potential (possibly ABTS
2+

) which, in turn, reacts with IPN or 

SMX.  

7.3.7 Characterization of the transformation products 

Oxidation by LMS does not lead to complete pollutant mineralization because laccase and the 

oxidized mediators react mainly with some specific (electron donating) moieties of organic 

compounds. As shown in the chromatograms in Fig. 7.14, several transformation products were 

detected by UPLC-MS for the reaction of SMX in presence of the three mediators and for the reaction 

of IPN in presence of ABTS.  
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Fig. 7.14 UPLC-MS chromatograms before and during laccase-mediated reactions. (A) sulfamethoxazole (SMX) in 

presence of acetosyringone (AS), (B) SMX in presence of syringaldehyde (SA), (C) SMX in presence of ABTS, and (D) 

isoproturon (IPN) in presence of ABTS. Numbers in bracket: ID of the main transformation products (TPs). The structures of 

TPs 2, 8 and 14 (confirmed by other studies) is presented as well. Suggested structures for some of the other transformation 

products are shown in Fig. 7.16. 

7.3.7.1  Transformation products formed in the laccase-AS-SMX system 

During SMX oxidation by laccase in presence of AS, 10 main transformation products were detected 

(ID number 1 to10, Fig. 7.14 A). Six of them had a molar mass higher than SMX or AS suggesting 

that they were oxidative coupling products (Table 7.1). Several products (1, 2, 3 and 6) were also 

generated during the oxidation of AS by laccase. Product 2, with a mass of 168 g mol
-1

 and a 

maximum UV/Vis absorbance at 290 nm (Table S 7.1, Supporting information (SI)), was identified as 

2,6-dimethoxy-1,4-benzoquinone (DMBQ) (Fig. 7.14 B), as observed and confirmed in other studies 

(Ibrahim et al., 2013; Weng et al., 2012). Product 6, with a mass of 332 g mol
-1

, is likely (but exact 

structure not confirmed) a dimeric product of AS, as proposed in Fig. 7.16. Similar dimeric products 

were observed by Ibrahim et al. (2013). Products 4-5 and 7-10 were observed only when SMX was 

present. Product 8, with a mass of 403 g mol
-1

 and UV-Vis adsorption spectrum maxima at 200, 314 

and 405 nm, was identified based on similar studies (Shi et al., 2014; Weng et al., 2012) as a coupling 
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product between DMBQ and SMX (Fig. 7.14 B). The masses of products 5, 7, 9 and 10 (Table 7.1) 

suggest that they were also coupling products between AS radicals and SMX (structure suggestion in 

Fig. 7.16), as also proposed by Shi et al. (2014). All these transformation products appeared rapidly 

during the first hour of reaction, linked to the degradation of SMX and AS (Fig. 7.15 A and B). 

Concentrations of products 2, 4, 6, 7 and 8 were stable for more than 72 h. In contrast, products 1, 3, 5, 

9 and 10 vanished within this time (Fig. 7.15 B) suggesting that these products were either not stable 

or further oxidized by laccase, which is consistent with the additional oxygen consumption observed 

(cf. section 7.3.5). After 72 h, the two main (in signal intensity) products still present in solution were 

2 and 8 (Fig. 7.15 A). 

 
Fig. 7.15 Kinetics of sulfamethoxazole (SMX) and isoproturon (IPN) oxidation and transformation products 

formation by laccase-mediator systems. (A and B) SMX in presence of acetosyringone (AS), (C) SMX in presence of 

syringaldehyde (SA), (D) SMX in presence of ABTS and (E and F) IPN in presence of ABTS. Numbers in brackets: ID of 

the transformation products, corresponding to Fig. 7.14. 

7.3.7.2 Transformation products formed in the laccase-SA-SMX system 

During SMX oxidation by laccase in presence of SA, only five main transformation products were 

detected (Table 7.1). Two of them were the same as found with AS, namely products 2 and 8, which is 

not surprising because product 2 (DMBQ) is a typical product of SA oxidation (Ibrahim et al., 2013). 

These two dominant products were much more abundant with SA than with AS, with a 3.5 to 3.8 

times higher signal intensity (Fig. 7.14 A and B). The third most abundant transformation product was 

12, which is very likely a dimeric product of SA, with a structure similar to the dimeric AS (product 6) 

Reaction time [h]

0 1 2 3 4 72

R
e
la

ti
v
e
 M

S
 s

ig
n

a
l 
[%

]

0

10

20

30

40

80

100 (SMX)

(AS)

(2)

(4)

(6)

(7)

(8)

Reaction time [h]

0 1 2 3 4 72

R
e
la

ti
v
e
 M

S
 s

ig
n

a
l 
[%

]

0

10

20

30 (1)

(3)

(5)

(9)

(10)

Reaction time [h]

0 1 2 3 4 72

R
e
la

ti
v
e
 M

S
 s

ig
n

a
l 
[%

]

0

20

40

60

80

100 (SMX)

(SA)

(2)

(11)

(12)

(13)

(8)

Reaction time [h]

0 1 2 3 4 72

R
e
la

ti
v
e
 M

S
 s

ig
n

a
l 
[%

]

0

20

40

60

80

100 (SMX)

(ABTS)

(14)

(15)

(16)

Reaction time [h]

0 5 10 15 20

R
e
la

ti
v
e
 M

S
 s

ig
n

a
l 
[%

]

0

20

40

60

80

100 (IPN)

(ABTS)

(18)

Reaction time [h]

0 5 10 15 20

R
e
la

ti
v
e
 M

S
 s

ig
n

a
l 
[%

]

0

5

10

15

20 (14)

(17)

(19)

(20)

(21)

(22)

A

C

E F

D

B



 CHAPTER 7 

190 

 

(Fig. 7.16). Similar to AS, the five transformation products appeared during the first hour of reaction 

together with SMX and SA removal, and were then stable for more than 72 h (Fig. 7.15). 

Table 7.1 Retention time, molar mass and m/z of the parent compounds and the transformation products (TPs) 

detected by UPLC-MS during the laccase-mediated transformation of sulfamethoxazole (SMX) in presence of either 

acetosyringone (AS), syringaldehyde (SA) or ABTS, or isoproturon (IPN) in presence of ABTS. The numbers of the 

transformation products correspond to Fig. 7.14. Structures of compounds with similar masses are suggested for some 

transformation products and presented in Fig. 7.16. 

 

 

ID Retention time
Molar 

mass
a m/z of adducts

b
Type of products

c
Structures 

proposition
d

[min] [g/mol] [g/mol]

Parent compounds

(AS) 7.11 196 197+219 Acetosyringone (AS)

(SA) 6.6 182 183+205 Syringaldehyde (SA)

(ABTS) 6.44 to 7.69 514 514+515+536+558 ABTS (ABTS)

(SMX) 6.19 253 254+276 Sulfamethoxazole (SMX)

(IPN) 10.62 206 207+229+435 Isoproturon (IPN)

Transformation products AS+SMX

(1) 4.58 180 181+203 AS TP -

(2) 5.05 168 169+191 2,6-Dimethoxy-1,4-benzoquinone (DMBQ) (2)

(3) 5.85 182 183+205 AS TP (V)

(4) 7.91 248 249+271+519 - -

(5) 8.11 447 448+470 Coupling AS-SMX (III)

(6) 8.77 332 333+355+687 Dimeric AS TP (I)

(7) 9.1 415 416+438+454 Coupling AS-SMX -

(8) 9.37 403 404+426 Coupling SMX-DMBQ (8)

(9) 9.56 417 418+440 Coupling AS-SMX (IV)

(10) 10.06 445 446+468 Coupling AS-SMX -

Transformation products SA+SMX

(2) 5.05 168 169+191 2,6-Dimethoxy-1,4-benzoquinone (DMBQ) (2)

(11) 6.93 281 282+304 - -

(12) 8.38 318 319+341+659+351+373 Dimeric SA TP (II)

(8) 9.37 403 404+426+829 Coupling SMX-DMBQ (8)

(13) 9.66 348 349+371+367+381+719+403 - -

Transformation products ABTS+SMX

(14) 2.01 258 259+281 ABTS TP (14)

(15) 2.48 98 99 SMX fragment (VI)

(16) 8.26 238 239+261 SMX fragment (VII)

Transformation products ABTS+IPN

(17) 1.69 273 274+296 ABTS TP (VIII)

(14) 1.99 258 259+281 ABTS TP (14)

(18) 4.72 546 547+569 ABTS TP -

(19) 7.23 222 223+245 Hydroxy-isoproturon (IX)

(20) 8.56 445 446+468 Coupling IPN+fragment ABTS -

(21) 8.9 447 448+470 Coupling IPN+fragment ABTS -

(22) 11.61 232 233+255 - -
a
 Molar mass M deduced from the m/z of the adducts

b
 m/z of ESI MS adducts with positive ion mode: M+H: [M+1], M+Na: [M+23], 2M+Na: [2M+23], M+CH3OH: [M+32], M+NH4: [M+18]

c
 Transformation products may come from the mediator degradation by laccase (also observed without pollutant), or by reaction with the 

pollutant. In italics : suggestion based on the mass of the by-product. (-): no suggestion

d
 Refers to the structures proposed in Fig. 7.16, based on the mass and the relation log Kow/retention time of the proposed molecule. (-): no 

suggestion
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Fig. 7.16 Structures and molar mass of (A) the parent compounds, (B) the transformation products with confirmed 

structures (by other related studies) and (C) compounds (numbered with roman numbers) with similar masses and 

properties (polarity) as some transformation products (Arabic numbers refer to the ID of the transformation products, cf. 

Fig. 7.14) (hypothetical structures). 

7.3.7.3 Transformation products formed in the laccase-ABTS-SMX system 

During SMX oxidation by laccase in presence of ABTS, only three transformation products were 

clearly visible (Fig. 7.14 C, Table 7.1). Product 14 was also observed during ABTS oxidation by 

laccase without any pollutant and was identified as 3-ethyl-6-sulfonate benzothiazolinone imine, an 

ABTS fragment. Its chemical structure (Fig. 7.14 C) was elucidated in other studies (Marjasvaara et 

al., 2008; Osman et al., 2006b). Products 15 and 16 were possibly, based on their mass and retention 

time (relative to their log Kow), degradation products of SMX (Fig. 7.16). No coupling products with a 
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mass higher than the parent compounds were detected. The three products appeared gradually during 

72 h in parallel to the disappearance of SMX and ABTS (sum of ABTS and ABTS
•+

) (Fig. 7.15 D). 

The highest signal intensity was observed for the ABTS fragment 14, followed by SMX fragment 16. 

7.3.7.4 Transformation products formed in the laccase-ABTS-IPN system 

During IPN oxidation by laccase in presence of ABTS, seven transformation products were detected 

(Fig. 7.14 D, Table 7.1). Three of them (14, 17 and 18) were ABTS degradation products, also 

observed during ABTS oxidation without pollutant, and (at very low concentrations for 17 and 18) 

with SMX.  Product 14 was the same ABTS fragment as detected in the ABTS-SMX system and 

product 17 was probably also an ABTS fragment (Fig. 7.16). Product 18 had a higher mass (546 g 

mol
-1

) than ABTS (514 g mol
-1

), but could not be identified. Products 14 and 17 had UV/Vis 

absorption spectra with maxima at 200, 258, 286, 294 and 218, 258, 284, 292 nm respectively (Table 

S 7.1, SI). Similar adsorption spectra (220, 254, 284, 292 nm) were found for a decomposition product 

of ABTS
•+

 in neutral-alkaline solutions (ABTS
•+

 is unstable under alkaline conditions) (Majcherczyk 

et al., 1999), suggesting that products 14 and 17 were related to ABTS
•+

 degradation. Product 18 had 

an absorption spectrum with maxima at 222, 264, 292, 300 nm, which corresponds to the adsorption 

spectrum of a (not clearly identified) decomposition product of ABTS
2+

 observed in other studies 

(Majcherczyk et al., 1999). As proposed by Majcherczyk et al. (1999) and as discussed before, this 

result may suggest that ABTS
2+ 

was involved in the laccase-mediated reaction. Apart from product 17, 

which appeared rapidly (within 3 h) and then disappeared slowly, both products 14 and 18 appeared 

gradually at a rate proportional to ABTS (and ABTS
•+

) degradation (Fig. 7.15).   

The four other detected transformation products (19-22) had all a mass higher than IPN, suggesting the 

potential formation of coupling products. None of them could be identified but, according to its mass 

and retention time, product 19 could possibly be a hydroxylated IPN (Fig. 7.16). 

7.3.7.5 Influence of pH on the type of transformation products  

Several transformation products detected by UPLC-MS were related (by retention time comparisons) 

to transformation products observed by HPLC-UV/vis (chromatograms presented in Fig. S 7.1 to Fig. 

S 7.3, SI). Their relative abundance after complete reaction of the mediators with SMX could thus be 

determined at various pH values (Fig. 7.17).  

For SMX in the laccase-SA system (Fig. 7.17 A), the abundance of the dimeric SA (product 12) 

observed at low pH (pH 3) was a factor two higher compared to pH 4-7, and almost no dimeric SA 

was detected at pH 8. In contrast, the coupling product SMX-DMBQ (product 8) was much more 

abundant (10 times) at pH 6-8 than at pH 3. The production of DMBQ (product 2) during SA 

oxidation was the highest at pH 6-7. 

Similar observations were made in the laccase-AS system in presence of SMX (Fig. 7.17 B) where the 

coupling product SMX-DMBQ (8) was observed in high abundance at pH 7-8 but almost not detected 

at pH 3-4. The dimeric AS (product 6) was also almost absent at pH 8 but present in high abundance at 

pH 3-6. The production of DMBQ (product 2) during AS oxidation was highest at pH 6-7. 
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These results support the assumption that, at low pH, the reactive mediator radicals are rapidly formed, 

favouring their coupling to form dimeric SA and AS rather than reacting with SMX. Under neutral to 

alkaline conditions, most of the reactive SA or AS radicals (slowly produced) react directly with SMX 

to form the coupling product SMX-DMBQ (product 8) or decompose to DMBQ (product 2). 

The pH influenced also the relative product distribution in the laccase-ABTS system in the presence of 

SMX (Fig. 7.17 C). Product 17, an ABTS fragment, was more abundant at low pH while the ABTS 

fragment 14 was present at higher levels at a higher pH. This suggests that ABTS decomposes into 

different products depending on the pH. The abundance of the SMX fragment 16 was correlated with 

the percentage SMX removal observed at the different pH values. 

 

Fig. 7.17 Relative abundance of the main transformation products detected by HPLC-DAD after the complete 

reaction of sulfamethoxazole (SMX) in presence of laccase and mediators at various pH (peak surface of the compound 

relative to the maximum surface observed for the same compound at different pH). (A) In presence of syringaldehyde. (B) In 

presence of acetosyringone. (C) In presence of ABTS. (D) Structural propositions for the various products. Numbers in 

brackets refer to the ID of the transformation products detected by UPLC-MS (Fig. 7.14). For product 9, maximum peak area 

observed during the reaction (not stable, decrease with the time). 
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7.3.8 Toxicity of transformation products 

The evolution of the toxicity of the transformation products formed from IPN and SMX in laccase-

mediated systems was assessed by ecotoxicity tests with green algae. After the treatment, both 

pollutants were not detected in the solutions (> 99% abatement). The toxicity of the solutions 

containing mixtures of transformation products (section 7.3.7) was compared to solutions containing 

the parent compounds, or the mediator oxidized by laccase in the absence of the pollutant (Fig. 7.18).  

 

Fig. 7.18 Growth inhibition of the green algae Pseudokirchneriella subcapitata. After 72 h exposure to (A) 

sulfamethoxazole (SMX) (7.5 µM); SMX treated with a laccase (Lac)-mediator (SA, AS or ABTS) system (mixture of 

transformation products, TPs); or laccase with mediators in absence of SMX (mediators at 25 µM. SA: syringaldehyde, AS: 

acetosyringone); and (B) isoproturon (IPN) (0.5 µM); IPN treated with a laccase-mediator (ABTS) system (mixture of TPs); 

or laccase with ABTS (at 2.5 µM) in absence of IPN. Average and standard deviation of triplicates. 

SMX at 7.5 µM (1.9 mg l
-1

) inhibited 90% of algae growth compared to the control. Similar SMX 

toxicity to Pseudokirchneriella subcapitata were observed in other studies, with EC50 (concentration 

inhibiting 50% of the growth) reported in the range of 0.15 – 0.5 mg l
-1

 (García-Galán et al., 2009) or 

at 1.9 mg l
-1

 (Yang et al., 2008). Laccase-mediated treatments reduced this toxicity by 61% in 

presence of SA, 77% in presence of AS and 100% in presence of ABTS (Fig. 7.18 A), demonstrating 

the much lower algal toxicity of the mixture of transformation products compare to the non-treated 

SMX.  

To evaluate if the residual toxicity observed in presence of SA and AS was due to SMX 

transformation products or to mediator transformation products, the same bioassays were conducted in 

absence of SMX. High algae growth inhibition (66%) was observed in the solution with SA (25 µM), 

and lower but significant inhibition was observed with laccase-induced oxidation of AS and ABTS (17 

and 22%, respectively). Especially with SA, the residual toxicity was higher in absence than in 

presence of SMX transformation products. The product 2 (DMBQ) was produced in lower quantities 

in presence of SMX (Fig. S 7.2, SI) due to the reaction of the SA phenoxy radical with the pollutant, 

and also present in lower concentrations (2-8 times) in the oxidized AS solution (which was less 

toxic). This suggests that DMBQ might be responsible for a part of the toxicity observed with SA and 

AS. The toxicity of the oxidized SA was also reported in other studies (20% bacterial inhibition at 

0.25 µM) (Nguyen et al., 2014b). Mediator transformation products were thus probably the reason for 
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the residual toxicity observed after complete SMX oxidation. As the pH influences the relative 

abundance of each product (section 7.3.7.5), different toxicity may thus also be observed at various pH 

values, with possibly lower toxicity at alkaline pH (lower concentrations of DMBQ). 

IPN at 0.5 µM (103 µg l
-1

) inhibited 68% (± 3%) of algae growth (Fig. 7.18 B), which is similar to 

what was reported by Pavlić et al. (2006) (70% inhibition at 100 µg l
-1

). After the treatment in the 

laccase-ABTS system, more than 95% of this toxicity disappeared, showing the very low toxicity of 

the transformation product mixture compared to IPN. 

These results show that laccase-mediated reactions can significantly reduce toxicity of SMX and IPN 

to algae (among the most sensitive organisms for these pollutants) despite the formation of several 

transformation products. The synthetic mediator ABTS was most efficient with almost complete IPN 

and SMX toxicity removal, while residual toxicity was still observed with the natural mediators AS 

and SA. Laccase-mediated systems appear thus to be an interesting way to decontaminate effluents 

which are toxic to sensitive aquatic organisms. However, precautions must be taken when treating 

effluents with low toxicity because oxidized mediators (especially SA) may generate significant 

residual toxicity at low concentrations (< 25 µM). 

7.3.9 Mechanistic aspects of laccase-mediated reactions 

The ideal scheme of laccase-mediated reactions where the mediator is continuously recycled during 

the redox process (Scheme 1) does not correspond to the observations in this study. Based on our 

results, an alternative laccase-mediated oxidation model is proposed (Scheme 2). 

 

Scheme 2 Proposition of a laccase-mediator reaction model 

As illustrated in Scheme 2 and described in Eqs. 7.1-7.4, our results suggest that the mediator (med) is 

oxidized by laccase (lac) to reactive radicals (R
•
) (Eq. 7.1) that will either react by a radical-radical 

coupling reaction, producing products P1 (such as dimeric AS and SA) (Eq. 7.2), further react to more 

stable products (P2) (e.g. 2,6 DMBQ for AS and SA) (Eq. 7.3), or react with other compounds present 

in the solution, such as the pollutants (poll), at a stoichiometric ratio a (number of moles of radical 

needed to oxidize one mole of pollutant) to produce products P3 (e.g., oxidation products of SMX or 

coupling products SMX-DMBQ) (Eq. 7.4). k1 to k4 are the rate constants for reactions 7.1-7.4, 

respectively. This mechanistic description is coherent with the nature of the transformation products 

detected (section 7.3.7), as illustrated in Fig. 7.19 for SA and SMX. 
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Fig. 7.19 Laccase-mediated reactions in solution containing syringaldehyde and sulfamethoxazole, based on the main 

transformation products observed by UPLC-MS. The structure of the dimeric SA is only hypothesized (not confirmed). k1 

to k4: rate constants used in the kinetic model. 
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Based on this reaction model, a kinetic model was established (Eqs. 7.5-7.9), assuming a constant 

laccase recycling (catalytic cycle with no loss of activity during the reaction) (Eq. 7.5). As the 

oxidation rate of the mediator by laccase is influenced by the mediator concentration (rate increasing 

with the concentration until reaching a saturation with a plateau) (Fig. S 7.4, SI), a Michaelis-Menten 

type kinetics was used to model the mediator removal rate, with Km, the specific half-saturation 

constant of the laccase for a mediator (Eq. 7.6). 
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This model was used to simulate the behaviour of the laccase-mediated reactions under various 

conditions by assigning arbitrary values (based on rough fitting of the data) to the six undetermined 

variables k1, k2, k3, k4, Km and a. The five differential equations were solved numerically with the 

ode45 solver (variable step Runge-Kutta method) within MATLAB. The values of the parameters used 

for the simulations shown in Fig. 7.20 and Fig. 7.21 are presented in Table 7.2. The results of selected 

simulations are presented in Fig. 7.20. 

Table 7.2 Modelling parameters (arbitrary values) used to simulate the reactions presented in Fig. 7.20 and Fig. 7.21. 

 

The significant effect of the mediator concentrations on the laccase-induced oxidation rates of SMX 

under acidic conditions and the absence of such an effect under neutral conditions (Fig. 7.8 and Fig. 

7.9) were correctly reproduced by the model by varying the rate constant k1 (Eq. 7.1) (Fig. 7.20 A).  

As discussed before, under acidic conditions, increasing the mediator concentration increased the 

pollutant oxidation rate, reaching progressively a plateau (a maximum) at high mediator 

concentrations (Fig. 7.8 C). This saturation effect was attributed to significant cross-reactions between 

the radicals produced in high quantities (reactions of Eq. 7.2 favoured over Eq. 7.4), and were 

correctly reproduced by the model (Fig. 7.20 D). This saturation effect was not observed with constant 

mediator/pollutant ratios (Fig. 7.8 C), a phenomenon confirmed with the model (Fig. 7.20 D). Indeed, 

reaction rates of Eq. 7.2 and Eq. 7.4 were enhanced in the same way with the parallel increase in both 

mediator and pollutant concentrations. 

As discussed before, under acidic conditions a strong increase in laccase activity (up to a factor 5) did 

not significantly increase the pollutant oxidation rates, while an increase in the mediator concentration 

strongly enhanced the reaction (Fig. 7.7), suggesting that the oxidation of the mediator by laccase was 

not the limiting step. This phenomenon was well reproduced with the model by choosing a relatively 

high (non-limiting) reaction rate constant k1 (Fig. 7.20 B). At higher pH (lower k1), when the mediator 

oxidation by laccase becomes rate-limiting, the model shows that a higher laccase activity is necessary 

to increase the pollutant oxidation rate (Fig. 7.20 B). 

The increase in the required mediator/pollutant ratio observed at low pH (Fig. 7.6 A) was reproduced 

with the model by increasing the reaction rate constant k1 (as observed at low pH) (Fig. 7.20 C). 

Indeed, at low k1 values (-log(k1) > 5), the reaction is limited by the oxidation of the mediator by 

Parameters Fig. 7.20 A Fig. 7.20 B Fig. 7.20 C Fig. 7.20 D Fig. 7.21

k 1 [µM
-1

 h
-1

] 0.1 or 0.001 0.1 or 0.005 0 to 1 0.1 0.1

k 2 [µM
-1

 h
-1

] 0.005 0.0005 0.005 0.0005 0.005

k 3 [h
-1

] 0.005 0.0005 0.005 0.0005 0.005

k 4 [µM
-1

 h
-1

] 0.05 0.005 0.001 0.0015 0.05

K m [µM] 10 10 10 10 10

a [-] 1.7 2.2 1 2.2 1.7

Initial conditions

O2 [µM] 250 250 250 250 250

Laccase [µM] 200 40-200 200 200 200

Pollutant [µM] 100 100 110 2-200 0.1-150

Mediator [µM] 10-500 100-500 100 10-1000 0.5-750
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laccase (similar to the observations at neutral-alkaline pH) and the ratio mediator/pollutant is close to 

the minimum set for this simulation (ratio of 1). As k1 increases (-log(k1) < 5), corresponding to a 

decrease in pH, the reaction becomes more and more limited by the oxidation of the pollutant by the 

radical (k4). The radicals, rapidly produced, tend to accumulate in the solution and to react with each 

other or be further transformed (k2 and k3) rather than reacting with the pollutant. This leads to an 

increase in the mediator/pollutant ratio.  

The proposed model was able to qualitatively reproduce all the different scenarios observed in the 

experiments, confirming that the mechanistic description proposed is adequate to describe laccase-

mediated reactions.  

 

Fig. 7.20 Results of the kinetic model. (A) Influence of the mediator concentration (from 10 to 500 µM) on the pollutant 

(SMX) oxidation kinetics, with either the pollutant oxidation as the limiting step (k1 = 0.1 µM-1 h-1, similar to what is 

observed at pH 5-6, Fig. A, left) or mediator oxidation limiting step (k1 = 0.001 µM-1 h-1, similar to what is observed at pH 7, 

Fig. A, right). (B) Influence of ABTS and laccase (lac) concentrations on the pollutant (IPN) oxidation kinetics, with either 

the pollutant oxidation as the rate limiting step (k1 = 0.1 µM-1 h-1, similar to what is observed at pH 5-6, Fig. B, left) or 

mediator oxidation limiting step (k1 = 0.005 µM-1 h-1, similar to what is observed at pH 7, Fig. B, right).  (C) Stoichiometric 

ratio between the mediator consumed per mole of pollutant oxidized, as a function of the reaction rate constant k1 (in µM-1 h-

1). (D) Initial maximal pollutant (IPN) oxidation rates (Vmax in µM h-1) as a function of the mediator concentration (ABTS), 

with either constant IPN concentration (100 µM) or constant ABTS/IPN ratio (5 mol mol-1). The modelling parameters are 

presented in Table 7.2. 
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7.3.10 Practical implications 

This study highlights several points regarding the potential application of laccase-mediated systems 

for the treatment of micropollutants in contaminated waters. In particular, it is possible to assess the 

feasibility of treating very low pollutant concentrations in wastewater and how to enhance oxidation 

rates. 

7.3.10.1 Treatment of very low pollutant concentrations 

The model developed allowed assessing the oxidation kinetics for very low concentrations of 

pollutants. The time required to remove 90% of a (fictive) pollutant was modelled as a function of the 

pollutant concentration using two scenarios: (i) constant ratio mediator/pollutant (ratio of five), and (ii) 

constant mediator concentration (at 500 µM) (Fig. 7.21).  

 

Fig. 7.21 Modelling of the time needed to remove 90% of the pollutant as a function of the pollutant concentration.  

(A) With a constant mediator/pollutant ratio of five (log scale for the y-axis). (B) With a constant mediator concentration of 

500 µM. The modelling parameters are presented in Table 7.2. 

In the first scenario, when the pollutant, and therefore the mediator, were present at high 

concentrations (> 100 and 500 µM, respectively), the removal time was independent of the pollutant 

concentration (similar to the experimental results, Fig. 7.7 B). But, as shown in Fig. 7.21 A, this was 

valid only for pollutant concentrations > 100 µM, corresponding to mediator concentrations > 50 times 

the affinity constant of the enzyme for the mediator (Michaelis constant Km, chosen at 10 µM). At 

lower pollutant (and therefore mediator) concentrations, the time required to remove 90% of the 

pollutant was predicted to increase by a factor around 10 every time the mediator concentration was 

divided by 10 (18 min at 500 µM up to 60 h at 2.5 µM). The relatively low affinity of the enzyme for 

the mediator implies that adding mediator at concentrations lower than the Km of the enzyme (which is 

for instance around 20 µM for ABTS with this laccase, Fig. S 7.4, SI) will require excessively long 

reaction times (> 50 times the minimum).  

When the mediator concentration was kept constant (at a value far above the Km, scenario 2), only a 

limited effect of the pollutant concentration on the removal time was predicted (Fig. 7.21 B), showing 

the possibility, with high mediator doses, to treat pollutants rapidly even at very low pollutant 

concentrations.  

Treatment of low pollutant concentrations (e.g. 1 µg l
-1

 or 0.005 µM) will thus require very high 

mediator/pollutant ratios to avoid too long reaction times (e.g., a ratio above 4000 to keep a mediator 
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concentration above 20 µM), which may lead to increase the toxicity of the water due to the release of 

high quantities of mediator transformation products. 

7.3.10.2 Strategy to improve oxidation rates 

The results presented above show that, depending on the pH, different strategies have to be applied to 

optimize the rate of pollutant degradation in laccase-mediated processes. If the reaction is limited by 

the oxidation of a pollutant by the radical (pH < 6), increasing the laccase activity has almost no effect 

and the best strategy is to increase the mediator concentration. However, this increase should stay 

below a certain threshold (mediator/pollutant  ratio < 10) because at higher mediator concentrations 

reaction rates will reach a plateau due to high losses of the radicals formed from the laccase-mediator 

reaction (self-reactions). If the reaction is limited by the mediator oxidation by laccase (pH > 7), 

increasing the mediator concentration will not affect the oxidation rate of the target compound, as long 

as the mediator concentration is 50 times the Km value of the enzyme. The strategy in this case is thus 

to increase the laccase activity. When both reactions are limiting (pH 6-7), an increase in both laccase 

and mediator concentrations should be considered. 

7.3.10.3 Limitations of laccase-mediator systems for municipal wastewater 

Despite fast oxidation of SMX and IPN in laccase-mediated systems and their related toxicity 

removal, addition of laccase and mediators in real treatment systems to increase micropollutant 

removal faces many limitations in terms of its feasibility: (i) The high concentration of mediator 

required (> 10 µM) due to mediator consumption during the reaction, the relatively low affinity of 

laccase for the mediator and the possible loss of radicals by reaction with other matrix components. 

(ii) The potential formation of toxic transformation products due to the oxidation of the mediator. (iii) 

The formation of several mediator transformation products at concentrations possibly much higher 

than the target pollutant. Therefore, an application of LMS to treat municipal wastewater with very 

low micropollutant concentrations appears to be unrealistic. However, LMS may be an option for 

treatment of industrial wastewater that contains concentrated and toxic pollutants, such as effluents of 

pharmaceutical or pesticide industries. Indeed, in contrast to the biological water treatment, LMS are 

not subject to intoxication and may be used to reduce the toxicity of highly polluted effluents, prior to 

further biological treatment of the transformation products.  

7.4 Conclusions 

The use of laccase-mediator systems effectively transformed IPN (with ABTS) and SMX (with ABTS, 

AS ad SA) to less toxic transformation products, consisting mostly of coupling products. The pH had a 

strong influence on the oxidation kinetics (faster at low pH) and on the required mediator/pollutant 

ratio (higher at low pH). Indeed, the three mediators tested did not act as catalysts and were therefore 

consumed in the process. Our results suggest that laccase oxidizes mediators to reactive radicals, 

which either spontaneously degrade into more stable products, react with each other (coupling 

reactions between radicals) or with the pollutants. Despite the requirement of high amount of 

mediators, LMS appears to be a potentially promising technology to treat concentrated and toxic 

effluents.  
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7.5 Supporting information 

HPLC-DAD chromatograms 

 

Fig. S 7.1 HPLC-DAD (268 nm) chromatograms during the oxidation of acetosyringone (AS) by laccase with or 

without sulfamethoxazole (SMX). (A) Oxidation of AS (500 µM) by laccase (450 U l-1) at pH 7, without SMX. (B) 

Oxidation of AS (200 µM) by laccase (560 U l-1) at pH 7, in presence of SMX (100 µM). (C) Similar conditions as in (B) but 

at pH 6. Numbers in brackets refer to the ID of the transformation products detected by UPLC-MS (Fig. 7.14). 
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Fig. S 7.2 HPLC-DAD (268 nm) chromatograms during the oxidation of syringaldehyde (SA) by laccase in presence or 

absence of sulfamethoxazole (SMX). (A) Oxidation of SA (500 µM) by laccase (450 U l-1) at pH 7, without SMX. (B) 

Oxidation of SA (500 µM) by laccase (455 U l-1) at pH 7, in presence of SMX (100 µM). (C) Oxidation of SA (100 µM) by 

laccase (320 U l-1) at pH 6, in presence of SMX (80 µM). Numbers in brackets refer to the ID of the transformation products 

detected by UPLC-MS (Fig. 7.14). 
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Fig. S 7.3 HPLC-DAD chromatograms (242-268 nm) during the oxidation of ABTS (500 µM) by laccase in presence of 

(A) sulfamethoxazole (SMX, 100 µM, pH 6, 450 U l-1 laccase, signal at 268 nm), and in presence of (B) isoproturon (IPN, 

100 µM, pH 5, 503 U l-1 laccase, signal at 242 nm). Numbers in brackets refer to the ID of the transformation products 

detected by UPLC-MS (Fig. 7.14). Different HPLC methods were used in A and B (peaks not at the same retention time). 

Transformation products with (*): correspondence between the compounds appearing on the chromatograms by UPLC-MS 

and HPLC-DAD not completely confirmed. 
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Characteristics of parent compounds and transformation products 

Table S 7.1 Characteristics of the parent compounds and the detected transformation products (TPs) 

 

 

  

ID Retention time
Molar 

mass
Type of products

a
Structures 

proposition
b

Log Kow of 

proposed 

structures
c

Maxima UV/Vis 

absorbance
d

[min] [g/mol] [-] [nm]

Parent compounds

(AS) 7.11 196 Acetosyringone (AS) 1.23 218, 302

(SA) 6.6 182 Syringaldehyde (SA) 0.86 218, 308

(ABTS) 6.44 to 7.69 514 ABTS (ABTS) 1.99 224, 344, oxidized: 414, 648

(SMX) 6.19 253 Sulfamethoxazole (SMX) 0.43 200, 268

(IPN) 10.62 206 Isoproturon (IPN) 2.32 200, 242

Transformation products AS+SMX

(1) 4.58 180 AS TP - 208, 390-400

(2) 5.05 168 2,6-Dimethoxy-1,4-benzoquinone (DMBQ) (2) 0.28 200, 290

(3) 5.85 182 AS TP (V) -0.36

(4) 7.91 248 - -

(5) 8.11 447 Coupling AS-SMX (III) 3.23

(6) 8.77 332 Dimeric AS TP (I) 0.04/1.97 200, 260-270, 340-350, 500

(7) 9.1 415 Coupling AS-SMX -

(8) 9.37 403 Coupling SMX-DMBQ (8) 2.28 200, 314, 405

(9) 9.56 417 Coupling AS-SMX (IV) 3.14 200, 306-310

(10*) 10.06 445 Coupling AS-SMX - 200, 218

Transformation products SA+SMX

(2) 5.05 168 2,6-Dimethoxy-1,4-benzoquinone (DMBQ) (2) 0.28 200, 290

(11) 6.93 281 - - 200, 262, 502

(12) 8.38 318 Dimeric SA TP (II) -0.37/1.42 200, 280, 360, 560

(8) 9.37 403 Coupling SMX-DMBQ (8) 2.28 200, 314, 405

(13) 9.66 348 - -

Transformation products ABTS+SMX

(14*) 2.01 258 ABTS TP (14) 0.08 200, 258, 286, 294

(15*) 2.48 98 SMX fragment (VI) -0.74 200, 265

(16) 8.26 238 SMX fragment (VII) 1.91 200, 220, 304, 410-420

Transformation products ABTS+IPN

(17*) 1.69 273 ABTS TP (VIII) 0.4 218, 258, 284, 292

(14*) 1.99 258 ABTS TP (14) 0.08 200, 258, 286, 294

(18*) 4.72 546 ABTS TP - 200, 222, 264, 292, 300

(19) 7.23 222 Hydroxy-isoproturon (IX) 1.85

(20) 8.56 445 Coupling IPN+fragment ABTS -

(21) 8.9 447 Coupling IPN+fragment ABTS -

(22) 11.61 232 - -

a
 Transformation products may come from the mediator degradation by laccase (also observed without pollutant), or by reaction with the pollutant. 

In italics : suggestion based on the mass of the by-product. (-): no suggestion

d
 Determined by HPLC-DAD. In bold: main maxima. Transformation products with (*): correspondence between the compounds detected by UPLC-MS and 

HPLC-DAD not certain

c
 Calculated for unionisated species with the software ACD/ChemSketch

b
 Refers to the structures proposed in Fig. 7.16, based on the mass and the relation log Kow/retention time of the proposed molecule.  (-): no suggestion
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Determination of the Michaelis-Menten constant Km 

The half-saturation constant Km for the oxidation of ABTS by commercial laccase from Trametes 

versicolor was determined at pH 4.5 at various ABTS concentrations (1-1000 µM) using a 

Lineweaver-Burk plot. As shown in Fig. S 7.4, ABTS oxidation followed Michaelis-Menten kinetics, 

with a Km value of 19 µM. Similar values (13-25 µM) were reported in other studies for other 

Trametes versicolor laccases (Han et al., 2005).  

 

Fig. S 7.4 Influence of the initial ABTS concentration on the initial ABTS oxidation rate (Vi) by laccase. (A) Linear x-

axis scale. (B) Log x-axis scale. (C) Lineweaver-Burk plot of 1/Vi as a function of 1/ABTS (linearization of the Michaelis-

Menten equation: (1/Vi) = (Km/ Vmax)(1/[ABTS])  + (1 / Vmax)). Vmax: maximum rate achieved at saturating substrate 

concentrations. Km: substrate concentration at which the reaction rate is half of Vmax. Conditions: pH 4.5, 25°C, 10 mg l-1 

comercial laccase from Trametes versicolor. The Km value for ABTS with the selected laccase was found to be 19 µM. 

 

 

0

0.2

0.4

0.6

0.8

1

1 10 100 1000

R
e
la

ti
v
e
 r

e
a
c
ti
o

n
 r

a
te

 
[V

i/V
m

a
x
]

ABTS [uM]

0

0.2

0.4

0.6

0.8

1

0 250 500 750 1000

R
e
la

ti
v
e
 r

e
a
c
ti
o

n
 r

a
te

 
[V

i/V
m

a
x
]

ABTS [uM]

y = 1.165x + 0.0615
R² = 0.9993

0

0.2

0.4

0.6

0.8

1

1.2

0 0.25 0.5 0.75 1

1
/ 
re

a
c
ti
o

n
 r

a
te

 
[m

in
/u

M
]

1/ABTS [uM-1]

Km

Vmax/2

A B C



 CHAPTER 8 

207 

 

 

Chapter 8 Bacterial versus fungal laccase: Potential for 

micropollutant degradation 

The content of this chapter was published in AMB Express (2013) 3: 1-14, with the name “Bacterial 

versus fungal laccase : Potential for micropollutant degradation”, by Jonas Margot, Chloé Bennati-

Granier, Julien Maillard, Paqui Blánquez, D. Andrew Barry and Christof Holliger. 

8.1 Introduction 

In order to overcome the cost associated with the large amount of free laccase required in real 

applications (due to losses during the treatment), two strategies have been envisaged, i.e., (i) 

immobilization of the enzymes on solid supports in order to reuse them several times (Fernández-

Fernández et al., 2012) or (ii) production of the enzyme during wastewater treatment using laccase-

producing microorganisms and cheap substrates (e.g., agriculture or forestry waste) (Libra et al., 

2003). The latter option avoids expensive immobilization processes while it could further improve the 

degradation of micropollutants along with other oxidative enzymes produced by these organisms, such 

as peroxidases or oxygenases. It would, however, require growing and maintaining the laccase-

producing organisms in the wastewater treatment plants (WWTPs), a process that is still little studied 

(Blánquez et al., 2006; Libra et al., 2003; Zhang and Geißen, 2012). While the extensively studied 

white-rot wood-degrading fungi such as Trametes versicolor are attractive candidates with their high 

production rates of extracellular lignolytic enzymes (Nyanhongo et al., 2007), very little is known 

about the potential of bacterial laccases for bioremediation applications. Wastewater treatment 

involving bacteria is, however, considered to be more stable, as bacteria generally tolerate a broader 

range of habitats and grow faster than fungi (Harms et al., 2011). Moreover, in contrast to fungal 

laccases, some bacterial laccases can be highly active and much more stable at high temperatures, at 

high pH as well as at high chloride concentrations (Bugg et al., 2011; Dwivedi et al., 2011; Reiss et 

al., 2011; Sharma et al., 2007). 

Most bacterial laccases studied so far are located intracellularly, which is a disadvantage for 

micropollutant degradation (Sharma et al., 2007). However, some strains of Streptomyces spp. produce 

extracellular laccases, such as S. psammoticus MTCC 7334 (Niladevi et al., 2008a), S. cyaneus CECT 

3335 (Arias et al., 2003), S. ipomoea CECT 3341 (Molina-Guijarro et al., 2009) or S. griseus NBRC 

13350 (Endo et al., 2002). Moreover, laccases from S. psammoticus and S. ipomoea showed unusually 

high activity at the slightly alkaline pH values (7-8) found in wastewater, as well as tolerance to high 

NaCl (> 1 M) concentrations (Molina-Guijarro et al., 2009; Niladevi et al., 2008a). High laccase 

activity was also observed in the culture supernatant of S. psammoticus and S. cyaneus (Arias et al., 

2003; Niladevi et al., 2009), suggesting suitability of these strains for bioremediation applications. 
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The goal of this study was thus to assess the potential of four laccase-producing strains of 

Streptomyces bacteria, namely S. cyaneus CECT 3335, S. psammoticus MTCC 7334, S. ipomoea 

CECT 3341, and S. griseus NBRC 13350, together with the white-rot fungus T. versicolor, to select 

the best candidate for future use in municipal wastewater post-treatment, e.g., in a biotrickling or sand 

filter. More specifically, the goals were to study: (i) their ability to produce laccase in biologically 

treated wastewater on cheap substrates, such as agricultural, forestry or food industry wastes, in a 

sufficient quantity to oxidize the pollutants in a reasonable time (< 1 d), (ii) their laccase activity at 

different pH and temperature in order to determine optimal conditions for wastewater treatment, (iii) 

the inhibition of laccase activity by compounds present in wastewater such as salts, (iv) laccase 

stability in the pH range potentially found in the treatment, and finally (v) the laccase substrate range 

and their ability to oxidize different phenolic and aniline micropollutants in the pH range found in 

wastewater.  

8.2 Materials and methods 

8.2.1.1 Chemicals, choice of micropollutants, and commercial laccase enzyme 

Three micropollutants were selected as model compounds for this study because of their regular 

presence in municipal WWTP effluent at relatively high concentrations (average between 300-1000 ng 

l
-1

) (Kase et al., 2011), their potential toxicity (Crain et al., 2007; Triebskorn et al., 2004) and because 

they are prone to oxidation by the laccase of T. versicolor (cf. Chapter 6): the anti-inflammatory drugs 

mefenamic acid (MFA) and diclofenac (DCF), both aniline compounds, and the plastic additive 

bisphenol A (BPA), a phenolic substance. 

BPA, DFC sodium salt, and MFA (purity > 97%), laccase preparation from T. versicolor (ref. 38429, 

Sigma), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), 2,6-dimethoxyphenol (DMP), 

syringaldazine and guaiacol were purchased from Sigma-Aldrich Chemie GmbH (Buchs, 

Switzerland). All other chemicals used were purchased from either Sigma-Aldrich or Fisher Scientific 

AG (Wohlen, Switzerland). Soy flour, spelt flour and oat bran, all from organic production, and spruce 

wood chips were purchased at a local supermarket (Coop, Lausanne, Switzerland). Wheat straw flour 

was purchased from Provimi Kilba (Cossonay, Switzerland). Dry rushes (Juncus genus, stem 

diameter: 0.2-0.4 mm), dry ash branches (Fraxinus genus, with bark, diameter of the branches: 0.3-0.7 

mm) and dry beech sawdust (Fagus genus) were collected in a wetland and in the forest next to L’Isle 

(Switzerland). Oat bran and spruce wood chips were ground to obtain fine particles (< 1 mm). Ash 

branches and rushes were cut into sections of 0.5-1.0 cm, washed with tap water and oven-dried for 24 

h at 60°C. 

8.2.1.2 Microorganisms and inoculum preparation 

Pure strains of S. cyaneus CECT 3335 and S. ipomoea CECT 3341 (from Spanish Type Culture 

Collection, Valencia, Spain), S. griseus NBRC 13350 (from NITE Biological Resource Center, Chiba, 

Japan) and S. psammoticus MTCC 7334 (from Microbial Type Culture Collection, Chandigarh, India) 

were cultivated in GYM streptomyces medium (DSMZ, medium 65 (in g l
-1

): glucose – 4, yeast 

extract – 4, malt extract – 10, pH 7.2) at 30°C, 140 rpm during 4 d. Cell pellets were collected by 

centrifugation, washed 3 times with phosphate-buffered saline (PBS (in g l
-1

): NaCl – 8, KCl – 0.2, 
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Na2HPO4 – 1.44, KH2PO4 – 0.24, pH 7.4) and then stored as cells suspension (with typical cell density 

of ~7 × 10
3
 CFU ml

-1
) in PBS with 5% glycerol at -80°C to be used as inoculum. The strain T. 

versicolor ATCC 42530 (from American Type Culture Collection, Manassas, Virginia, USA) was 

maintained by sub-culturing it every 30 d on 20 g l
-1

 malt extract agar (15 g l
-1

) slants (pH 4.5) at 25 

°C. A mycelial suspension of T. versicolor was prepared by homogenizing 5-7 d grown mycelium in 

malt extract medium (20 g l
-1

, pH 4.5) as described by Blánquez et al. (2004), and then stored in saline 

solution (NaCl – 8 g l
-1

) at 4°C until use as inoculums (8.5 g l
-1

 dry volatile solid mycelium). 

8.2.1.3 Laccase production 

Production of laccase by the four Streptomyces strains was done in ISP9 mineral medium (Shirling 

and Gottlieb, 1966) composed of (in g l
-1

): (NH4)2SO4 – 2.64, KH2PO4 anhydrous – 2.38, 

K2HPO4·3H2O – 5.65, MgSO4·7H2O – 0.1, with the following trace elements (in mg l
-1

): FeSO4·7H2O 

– 1.1, ZnSO4·7H2O – 1.5, CuSO4·5H2O – 6.4 and MnCl2·4H2O – 7.9, pH 6.6 – 6.9. In this mineral 

medium, five different carbon sources were tested at 10 g l
-1

: soy flour, oat bran, glucose, wheat straw 

flour and spruce sawdust. Production of laccase activity by S. cyaneus was also tested in a modified 

and optimized ISP9 mineral medium, with 6.4 times less copper (1 mg l
-1 

CuSO4·5H2O), and with the 

same five different carbon sources (at 10 g l
-1

) except glucose, which was replaced by spelt flour. 

Finally, to test the ability of S. cyaneus and T. versicolor to produce laccase activity in wastewater, 

secondary treated wastewater was collected (grab sample) at the Lausanne (Switzerland) municipal 

WWTP in the effluent of a moving bed bioreactor with full nitrification. The ionic wastewater 

composition, measured by ion chromatography–conductivity detector (Dionex DX 500), was (in mg l
-

1
): P-PO4

2-
 – 1.0, SO4

2-
 – 229, Cl

-
 – 837, N-NO3

-
 – 93, N-NH4

+
 – 0.09, Mg

2+
 – 11.5, Ca

2+
 – 83, Na

+
 – 

74, K
+
 – 15.4. In this wastewater, five different sources of carbon were tested: soy flour (10 g l

-1
, 

initial pH after substrate addition: 6.8), spelt flour (10 g l
-1

, pH 7.1), rushes (20 g l
-1

, pH 5.5), ash 

branches (100 g l
-1

, pH 4.8) and beech sawdust (20 g l
-1

, pH 5.9). 

The liquid media and the wastewater, together with their carbon sources, were autoclaved 30 min at 

121°C and then inoculated with 0.33% or 0.67% (v/v) of, respectively, Streptomyces and T. versicolor 

inocula. Cultures were incubated at 30°C for 23 d and shaken at 140 rpm to ensure aerobic conditions. 

Every 1-3 d, 1.5 ml was withdrawn in aseptic conditions from each culture flask and centrifuged at 

10,000 g for 20 min. Cell-free culture supernatants were then used directly to determine laccase 

activity and pH. At the end of the incubation period, cell-free supernatants from the remaining cultures 

showing the highest activity were collected with the same procedure, filtered at 0.45 µm (Filtropur, 

Sarstedt), and stored at -20°C until they were used as extracellular crude enzyme preparations. 

8.2.1.4 Concentrated S. cyaneus laccase preparation 

For micropollutant degradation and laccase stability assays, as laccase activity in the extracellular 

crude enzyme preparation was not always high enough, 100 ml of cell-free culture supernatant of S. 

cyaneus (in modified ISP9 medium with soy flour), filtered at 0.45 µm, were concentrated 33 times by 

ultrafiltration (Vivaspin 20 centrifugation devices, PES membranes, MWCO: 30 kDa, from Startorius 

AG, Göttingen, Germany) to obtain 3 ml of laccase concentrated at ~2000 U l
-1

. 
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8.2.1.5 Laccase activity test 

Laccase activity was determined as described in Chapter 5, by measuring the oxidation of 0.5 mM 

ABTS in oxygen-saturated acetate buffer (0.1 M) at pH 4.5 and 25°C. Crude laccase preparation was 

added to the solution and the increase of absorbance at 420 nm was monitored with a temperature-

controlled spectrophotometer (U-3010, Hitachi, Tokyo, Japan). One unit of activity (U) was defined 

by the oxidation of one µmol of ABTS per min, using the extinction coefficient ε420nm of 36,000 M
-1 

cm
-1

 (Childs and Bardsley, 1975). 

The laccase ability to oxidise other substrates was determined by the same procedure, monitoring the 

oxidation at 468 nm (ε468nm: 27,500 M
-1 

cm
-1

)
 
(Muñoz et al., 1997), 470 nm (ε470nm: 26,600 M

-1 
cm

-1
)

 

(Koduri and Tien, 1995) and 526 nm (ε526nm: 65,000 M
-1 

cm
-1

) (Palmieri et al., 1997) for, respectively, 

2,6-dimethoxyphenol (DMP, at 0.5 mM), guaiacol (at 0.5 mM) and syringaldazine (at 0.01 mM, stock 

solution of 0.216 mM in methanol). 

8.2.1.6 Influence of the pH on laccase activity 

Laccase activity was measured at different pH values, from 2.6 to 8, in citric acid (2 – 40 mM) - 

dibasic sodium phosphate (8 – 130 mM) buffers, with four different substrates: ABTS (0.5 mM), DMP 

(0.5 mM), syringaldazine (0.01 mM) and guaiacol (0.5 mM). Aliquots of 200 µl of S. cyaneus crude 

laccase preparation (LSc), or 30 to 200 µl of T. versicolor commercial laccase solution (LTv, 0.1 g l
-1

) 

were added to a total of 1200 µl of reaction mixture, the activity of which was measured at 25°C as 

described above. The pH was measured in the solution after addition of the laccase preparation. 

Measurements were conducted in duplicate. 

8.2.1.7 Temperature influence on the activity 

Laccase activity was measured at different temperatures, from 10 to 80°C, in acetate buffer (0.1 M, pH 

4.5 at 25°C), with 0.5 mM ABTS. Aliquots of 30 to 200 µl of S. cyaneus crude laccase preparation, or 

30 µl of T. versicolor commercial laccase solution (0.1 g l
-1

) were added to 1200 µl of reaction mixture 

after which the activity was measured as described above. The temperature and pH were checked in 

the spectrophotometer cuvettes before and after the reaction. Measurements were conducted on 2 to 3 

replicates. As the pH of the acetate buffer is influenced by the temperature, the measured activities 

were corrected to an equivalent activity at pH 4.5, as described below. 

8.2.1.7.1 Correction of the activity to pH 4.5 

During the test, the pH of the acetate buffer in the cuvettes decreased when the temperature increased, 

from pH 4.62 at 10°C to pH 4.05 at 70°C (Fig. 8.1 A), following a linear relation (valid between T = 

2°C and 70°C, R
2
: 0.993): pH = -0.0099 T (°C) + 4.715.  
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Fig. 8.1 (A) Influence of temperature on the pH of 100-mM acetate buffer (pH 4.5 at 25°C). (B) Influence of the pH on 

the ABTS activity of T. versicolor laccase. (C) Influence of the pH on the ABTS activity of S. cyaneus laccase. Activities 

are given relative to that at pH 4.5 (set at 100%). 

The laccase activity with ABTS increases when the pH decreased from 5 to 4 (Fig. 8.1 B and C). 

Therefore, to assess the temperature effect alone without the pH effect, the measured activity values 

(ApH) were corrected to an equivalent activity at pH 4.5 (A4.5) with the following relation: A4.5 =  f4.5 

ApH. The correction factors f4.5, determined by regression, were, for T. versicolor laccase (valid from 

pH 3 to 6, R
2
: 0.999): f4.5 = -0.5601 pH + 3.5537, and for S. cyaneus laccase (valid from pH 4.1 to 5.6, 

R
2
: 0.995): f4.5 = 0.699 pH

3
 – 10.036 pH

2
 + 46.829 pH – 70.201. 

8.2.1.8 Stability at various pH 

Laccase stability was assessed in pure water, as well as in buffer solutions at various pH. Citric acid (5 

– 20 mM) - dibasic sodium phosphate (10 – 40 mM) buffers were used for pH 3 to 7, and Tris – HCl 

buffers (50 mM) for pH 8 and 9. Concentrated S. cyaneus crude laccase preparation or commercial T. 

versicolor laccase were added to the buffers to reach an initial laccase activity of 130 U l
-1

 and then 

incubated in the dark at 25°C for 55 d. The laccase activity and the pH in the solutions were monitored 

regularly. Experiments were conducted in duplicate. 

8.2.1.9 Inhibition by sodium chloride 

The inhibitory effect of sodium chloride was assessed by measuring the laccase activity with ABTS in 

acetate buffer (0.1 M, pH 4.5) containing from 0 to 600 mM (0-35 g l
-1

) of NaCl. Crude S. cyaneus 

laccase preparation or commercial T. versicolor laccase were added to the solution (initial laccase 

activity without inhibitors of 10 U l
-1

), incubated for 30 s, before measuring the activity with the 

addition of ABTS (0.5 mM). 

8.2.1.10 Micropollutant analysis 

Determination of BPA, DFC and MFA concentrations was carried out by HPLC-DAD as described in 

Chapter 6. 
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8.2.1.11 Micropollutant oxidation assay with laccase at different pH 

Micropollutant oxidation assays were performed as previously described in Chapter 6, in citrate 

phosphate buffer (30-40 mM) at three different pH values (5, 6 and 7) with a mixture of the three 

compounds at 20 mg l
-1

 each: DFC, MFA and BPA. Relatively high concentrations were tested to use 

a fast and simple analytical method (HPLC-DAD). Batch reactions were conducted in 2-ml glass vials 

containing 1 ml of oxygen-saturated reaction mixture. Reactions were initiated by adding laccase 

preparation to obtain an initial activity of 210-220 U l
-1

. For T. versicolor laccase, a stock solution of 

commercial enzyme (1 g l
-1

 in pure water) was used. For S. cyaneus laccase, concentrated crude 

enzyme preparation (laccase activity of 2000 U l
-1

) was added. The vials were incubated in the dark at 

25°C under static conditions for 12 d. As shown in Chapter 6, diffusion of oxygen from the air space 

was sufficient to maintain a high level of dissolved oxygen during the reaction. After defined reaction 

times, aliquots (50 µl) were withdrawn from each vial and directly injected into the HPLC column to 

analyse micropollutant concentrations. Controls without laccase were performed at the three pH values 

to assess chemical degradation. Duplicate experiments were conducted. Laccase activity and pH were 

analysed at the beginning and at the end of the incubation period in each vial. The pH stayed stable 

during the experiments in all the vials. 

8.2.1.12 Comparison of “commercial” versus “in house-produced” Trametes versicolor laccases 

Commercial T. versicolor laccases (ref. 38429, from Sigma) and laccases produced on wood substrate 

were compared for their micropollutant oxidation potential. 

Laccase production on wood substrate 

T. versicolor was grown in a glass column (used as a trickling filter) on oak wood by addition of 

mycelium inoculum on moistened autoclaved wood chips. Once the wood was completely colonized 

by the mycelium, a synthetic wastewater containing micro and macro nutrients (Borràs et al., 2008),  4 

g l
-1

 of glucose and 10 mM MOPS buffer (pH 7), was filtered through the colonized wood chips as in a 

trickling filter. The water was continuously recirculated and laccase activity was regularly monitored. 

After 3 d of recirculation, when the activity reached 2000 U l
-1

, the solution was filtrated at 0.22 µm 

and used as “produced on-site” laccase preparation. 

Micropollutants oxidation assay 

Oxidation of a mixture of three micropollutants, BPA, DFC and MFA, at 20 mg l
-1

, was conducted as 

described above, in 20 mM citrate-phosphate buffer at two different pH values: 5.8 and 6.8. 

“Produced” or “commercial” laccase preparations were added to the reaction mixture at the same 

initial activity of 570 to 580 U l
-1

. To have similar reaction mixture compositions between both 

experiments, the same amount of “produced” laccase preparation was also added, after heat 

inactivation, to the solution containing commercial laccase. Indeed, the “produced” preparation 

contained some organic substances leached from the wood substrate that may have an effect on the 

oxidation kinetics. Micropollutant concentrations were then monitored during 10 h. Duplicate 

experiments were conducted at 25°C. 
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8.3 Results 

8.3.1 Production of laccase activity by Streptomyces strains 

Among the four strains of Streptomyces tested in ISP9 medium, laccase activity was only detected in 

the culture supernatant of S. cyaneus (with soy flour: 35 U l
-1

, oat bran: 2.75 U l
-1

 and glucose: 3.75 U 

l
-1

) and S. ipomoea (with soy flour: 0.75 U l
-1

 and oat bran: 0.5 U l
-1

), despite notable growth of all four 

strains in the media containing soy flour and oat bran. No laccase activity was detected in the cultures 

of S. psammoticus and S. griseus, neither in ISP9 medium with the five different carbon sources, nor 

in another specific medium with wheat straw and yeast extract, as described by Niladevi and Prema 

(2008b). The absence of activity with S. psammoticus strain MTCC 7334 contrasts with studies of 

Niladevi et al. (2008a; 2008b; 2009). Although S. griseus was reported to produce extracellular 

laccase, this enzyme is assumed to be mainly localized in the cell wall (Endo et al., 2002), which could 

explain the absence of activity detected in the culture supernatant. No activity was detected in any 

culture when wheat straw flour and spruce sawdust were used as the sole carbon source. Depending on 

the substrate, S. cyaneus produced from 5.5- to 46-times more laccase activity than S. ipomoea, 

making this strain the best candidate among the tested Streptomyces strains for laccase production 

during wastewater treatment. Thus, only S. cyaneus was selected for further characterization. 

 

Fig. 8.2 Laccase activity in the culture supernatant of (A) S. cyaneus cultivated in modified ISP9 medium with soy flour, 

spelt flour and oat bran as carbon sources, (B) S. cyaneus cultivated in secondary treated sterile municipal wastewater with 

soy flour, spelt flour, rushes pieces, ash branches pieces (wood) and beech sawdust, and (C) T. versicolor cultivated in treated 

wastewater with the same carbon sources. 

Laccase activity in the supernatant of S. cyaneus cultures was enhanced in modified ISP9 medium 

(containing 6.4 times less copper) (Fig. 8.2 A), reaching on average 57 U l
-1

 with soy flour and 30 U l
-1

 

with spelt flour. Similar activities (200 U l
-1

 at 50°C, equivalent to about 50 U l
-1

 at 25°C) were 

measured with the same strain after 14 d of growth with soy flour by Moya et al. (2010). The activity 

increased rapidly after 4-5 d of incubation, once the strain had reached the stationary phase (Fig. S 8.1, 

Supporting information (SI)). Similar observations were made by Arias et al. (2003), who suggested 

that this increase in activity was related to cell death and lysis releasing intracellular laccase. After 8-9 

d of incubation, laccase production decreased and the activity reached a plateau, staying at a similar 

level until the end of the incubation (23 d). 
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8.3.2 Laccase production in treated wastewater 

Both S. cyaneus and T. versicolor were able to grow in sterile secondary treated wastewater containing 

different carbon sources. In S. cyaneus culture supernatant (Fig. 8.2 B), laccase activity was observed 

with soy flour (with a similar level to that in ISP9 medium but delayed by 2 weeks) and spelt flour (10 

times lower than in ISP9), but also with rushes (6.6 U l
-1

), suggesting that lignocellulose-containing 

waste could serve as substrate for laccase production. However, no or only very low activity levels (< 

1 U l
-1

) were observed with wood branches or sawdust, possibly due to the low pH (4.7) present in the 

wood medium and probable lack of essential nutrients (nitrogen and phosphorus) with sawdust as the 

sole substrate. 

Laccase activity of T. versicolor cultures in wastewater increased very rapidly after only 2-3 d of 

incubation (Fig. 8.2 C), reaching a maximum of 508, 778 and 945 U l
-1

 for spelt flour, soy flour and 

wood branches, respectively. Lower activity was observed with rushes (151 U l
-1

) and sawdust (79 U l
-

1
) but, unlike S. cyaneus, all lignocellulose substrates led to the presence of laccase activity in culture 

supernatant. High activity (e.g., 550 U l
-1

 with wood branches and soy flour) was still measured after 

45 d of incubation (data not shown), showing the ability of this fungus to survive in the long term on 

these lignocellulosic substrates. Laccase activity was 20-times higher in T. versicolor culture 

supernatants with soy flour and rushes than for S. cyaneus, and 175-times higher with spelt flour. 

Wood branches were the best substrate for T. versicolor laccase production. 

8.3.3 Comparison of “commercial” versus “in house-produced” T. versicolor 

laccases 

T. versicolor produces two main laccase isoenzymes, the proportions of which differ depending on the 

growth substrate or the presence of inductors (Bourbonnais et al., 1995; Moldes et al., 2004; Nakatani 

et al., 2010). As the kinetic properties of these two main isoenzymes differ slightly (Bourbonnais et 

al., 1995; Moldes and Sanromán, 2006), different proportions of isoenzymes in the mixture can lead to 

slightly different oxidation behaviour. Therefore, the commercially available laccase preparation from 

Trametes versicolor obtained from Sigma (Ref. 38429) may not be fully representative of the laccase 

produced in a biofilter system with wood chips as the substrate/support. To assess if there was 

significant difference on micropollutant oxidation kinetics by both laccase preparations, we compared 

the oxidation kinetics of three micropollutants, bisphenol A (BPA), diclofenac (DFC) and mefenamic 

acid (MFA), by either the commercial laccase (from Sigma) or laccase produced on wood substrate. 

As presented in Fig. 8.3, for both pH values tested, both laccase preparations had very similar 

oxidation kinetics for BPA and MFA, with no significant difference in the degradation rates. For DFC, 

the commercial laccase preparation was slightly less efficient at both pH values than the “produced” 

one, but with less than 10% difference in the removal rates. These very similar oxidation kinetics 

observed at two different pH values on three different micropollutants show that the commercial 

laccase preparation, which is a mixture of different proteins with at least two distinct enzymes 

displaying laccase activity (Fig. S 8.3, SI), is representative, for micropollutant oxidation, of the 

laccase produced on wood substrate in a trickling filter. Thus, to allow comparison with literature data 
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and to have a reproducible and constant proportion of the different laccase isoenzymes, commercial T. 

versicolor laccase preparation was used for the following experiments instead of culture supernatants. 

 

Fig. 8.3 Residual concentrations of (A) bisphenol A (BPA), (B) diclofenac (DFC) and (C) mefenamic acid (MFA), as a 

function of the reaction time with commercial (from Sigma) (●,▲) and produced (on wood substrate) (○,◊) laccase 

preparations from T. versicolor, at pH 5.8 and 6.8, 570-580 U l-1, 25°C. Average and values (error bars) of duplicate. 

Lines: variable order reaction model fitted to the data. 

8.3.4 Influence of pH on laccase activity with different substrates 

As shown in Fig. 8.4, laccase preparations of S. cyaneus (LSc, from the culture supernatants) and 

commercial laccase of T. versicolor (LTv) were both able to oxidize the four substrates tested, as also 

observed in other studies (Arias et al., 2003; Eichlerová et al., 2012). Compared to its activity with 

ABTS at pH 4.5 (close to the optimum), LSc was 4-, 10- and 46-times less active with DMP, 

syringaldazine and guaiacol, respectively. LTv was only 1.3-, 2- and 12-times less active with these 

three substrates compared to ABTS, showing a broader substrate specificity than LSc. 

 

Fig. 8.4 Influence of pH on S. cyaneus (♦) and T. versicolor (▲) laccase activity with different substrates: (A) ABTS, 

(B) 2,6-dimethoxyphenol, (C) syringaldazine and (D) guaiacol. Average and values of duplicates, at 25°C. 
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For the four laccase substrates, the pH had a very strong influence on the activity of both laccase 

preparations, with very low activity in slightly alkaline conditions (pH > 7) and maximum activity 

between pH 4 and 4.5 for LSc, and from less than 2.7 to 5 for LTv (Fig. 8.4). LSc activity was strongly 

dependent on the pH, with, for instance, an order of magnitude increase between pH 5.5 and 4.5 with 

ABTS (from 8.4 to 87 U l
-1

) and with syringaldazine (from 0.8 to 9 U l
-1

), and a rapid decrease of 

activity below pH 3.5 with all substrates.  

8.3.5 Influence of temperature on laccase activity 

Maximum activities (with ABTS, pH 4.5) were observed at 60°C and 50°C for LSc and LTv, 

respectively (Fig. 8.5 A), which is 10°C lower than optimal temperatures reported in other studies 

(70°C and 60°C respectively) (Arias et al., 2003; Rancaño et al., 2003). A rapid decrease in activity 

was observed above 70°C for both preparations, probably due to heat denaturation of the enzymes. For 

LSc, a rapid decrease in activity was also observed when the temperature decreased below 50°C, with 

only 25% of its maximum activity remaining at 25°C, compared to 73% for LTv. Both laccase 

preparations were still active at 10°C, showing 13 and 44% of their maximum activity for LSc and LTv, 

respectively. 

 

Fig. 8.5 (A) Influence of temperature on S. cyaneus (♦) and T. versicolor (▲) laccase activity. Average ± standard 

deviation of 2 to 3 replicates, at pH 4.5. (B) Influence of sodium chloride concentration on S. cyaneus and T. versicolor 

laccase activity. Average and values of duplicates, at pH 4.5, 25°C. Initial laccase activity (without NaCl) of 10 U l-1. 

8.3.6 Inhibition of the laccase activity by NaCl 

Both laccase preparations were sensitive to sodium chloride (Fig. 8.5 B), with, for LSc and LTv 

respectively, 4 and 20% of activity inhibition at 5 mM, a typical concentration for municipal 

wastewater, and more than 80 and 90% at 550 mM, a concentration found in various industrial 

wastewaters and in seawater (Lefebvre and Moletta, 2006; Leutz, 1974). The IC50 (inhibition 

concentration for which the activity was reduced by 50%) was observed at 130 mM for LSc and at 30 

mM for LTv, showing the higher sensitivity of the latter towards chloride ions. Similar IC50 (around 20 

mM Cl
-
) were observed for LTv by Enaud et al. (2011), but no information on LSc chloride inhibition 

was reported previously. 
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8.3.7 Stability of laccase at various pH 

The stability of laccases incubated at various pH and 25°C is presented in Fig. 8.6. The data were 

fitted with a bi-exponential equation to model various mechanisms of enzyme inactivation (Eq. 8.1) 

(Aymard and Belarbi, 2000) by non-linear least squares regression using MATLAB (MathWorks, 

USA), with A0 and At the activity at time 0 and at incubation time t respectively, a and b the pre-

exponential factors, and k1 and k2 the apparent first order rate constants: 

)(exp)(exp 21

0

tkbtka
A

At
 (8.1) 

 

Fig. 8.6 S. cyaneus (♦) and T. versicolor (▲) laccase residual activity as a function of incubation time at different pH in 

buffer solution at 25°C. Plots show the average and values of duplicates. Relative activity refers to the maximum activity 

measured during the test. The initial laccase activity was 130 U l-1 in all the tests. Lines: bi-exponential inactivation model 

fitted to the data. The white symbols (◊) represent S. cyaneus laccase residual activity in the tests where the pH increased 

gradually to 7.3-7.7 due to microbial growth. Due to change in pH, these data were not used to fit the model. The insert at pH 

6 shows the increase of T. versicolor laccase activity during the first days of incubation, also observed at pH 5, 7 and 8. 

The results of the fitting and the estimated half-life of laccase at different pH are presented in Table 

8.1. In pure water (both enzymes) and at pH 9 for LSc, the inactivation followed a simple exponential 

decay, k1 and k2 being equal (Table 8.1). Except for pH 5, 6 and 7 for LSc where the time series were 

too short to have confidence in the fitted model, a bi-exponential model was necessary to reproduce 
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the behaviour observed. In these cases, a fast initial inactivation rate, represented by a high apparent 

first-order rate constant (k2), followed by slower decay kinetics (k1) were observed. 

Table 8.1 Best-fit set of coefficients of the bi-exponential model (Eq. 8.1) fitted to the laccase stability results and 

calculated half-life at different pH values. 

 

LTv was more stable than LSc at acidic and neutral pH. Very fast inactivation of LSc was observed at pH 

3, with a half-life shorter than 3 min compared to 11 h for LTv. At this pH, instant precipitation 

appeared when LSc was added. At pH 4, no precipitate was visible, but LSc was still rapidly inactivated, 

with a half-life of 90 min. LSc and LTv stability increased as the pH increased, reaching the highest 

stability at pH 9 for LSc, with an estimated half-life of 82 d, and at pH 7-8 for LTv, with a half-life of 47 

d. When laccase was incubated in pure water (pH 6.5-7.5), the stability was significantly reduced 

compared to storage in a buffer at neutral pH; with half-lives of only 3 and 6 d for LSc and LTv, 

respectively. 

From pH 5 to 8, an increase in LTv activity was observed during the first 24 h of incubation, as 

illustrated for pH 6 in Fig. 8.6 D. At pH 6 and 7, this increase in activity was as high as 34%. A similar 

increase in activity (24 ± 1%) was also observed after sonication (15 pulses of 3 s at 100 W) of fresh 

laccase solutions, suggesting that this increase was due to a better dispersion of the enzymes that were 

initially partly aggregated (presence of particles with strong laccase activity). This phenomenon was 

also noticed in other studies (Margot et al., 2013c; Silvério et al., 2013). Changes of the storage 

conditions (pH and temperature) could also gradually influence laccase activity, possibly due to slow 

reorganisation of laccase structure or conformation (Kurniawati and Nicell, 2008). 

As the tests were not conducted under sterile conditions, bacterial growth (turbidity, confirmed by 

microscopy) was observed after 2 d in the incubation tubes containing LSc at pH 4 to 7, resulting in an 

increase in the pH to 7.3-7.7 in all these tubes (Fig. S 8.2, SI). An increase in activity following the 

increase in pH was observed (Fig. 8.6 B-E), suggesting a partially reversible pH inactivation of the 

enzyme. To verify this hypothesis, LSc and LTv were again incubated at pH 3.5 and 3, respectively, and 

S. cyaneus pH 3 pH 4 pH 5 pH 6 pH 7 pH 8 pH 9 Pure H2O

R
2

1.000 0.993 0.985 0.990 0.883 0.997 0.955 0.939

a 0.132 0.351 0.509 0.503 0.502 0.175 0.426 0.428

k 1 [d
-1

] 7.581 2.035 0.674 0.444 0.098 0.007 0.008 0.284

b 1.641 0.614 0.509 0.504 0.506 0.806 0.561 0.792

k 2 [d
-1

] 915.486 18.518 0.674 0.444 0.098 0.123 0.008 0.284

t 1/2 [d] 0.0016 0.063 1.1 1.6 7.1 7.2 81.9 3.1

T. versicolor pH 3 pH 4 pH 5 pH 6 pH 7 pH 8 pH 9 Pure H2O

R
2

0.998 0.997 1.000 0.999 0.997 0.994 0.992 0.994

a 0.653 0.038 0.149 0.682 0.791 0.807 0.736 0.531

k 1 [d
-1

] 0.591 0.012 0.038 0.030 0.010 0.010 0.012 0.132

b 0.343 0.930 1.013 0.388 0.241 0.244 0.233 0.637

k 2 [d
-1

] 36.717 0.230 0.170 0.134 0.133 0.256 0.382 0.132

t 1/2 [d] 0.45 3.0 5.8 14.4 47.3 47.3 33.6 6.4

R
2
: coefficient of determination of the fitting, a  and b : pre-exponential factors, k 1 and k 2: apparent first-order 

rate constants [d
-1

], and t 1/2: calculated half-life of the laccase [d]



 CHAPTER 8 

219 

 

their residual activity was followed over time. At a certain time, the pH of the solution of two of the 

four replicates was increased to 7.5 by addition of concentrated NaOH. The effect of this artificial 

increase in pH on laccase stability is presented in Fig. 8.7. For LSc, as expected, a very fast inactivation 

was observed in the four replicates, with more than 90% of inactivation within 1 h (Fig. 8.7 A). 

However, when the pH was increased to 7.5 after 3 h of incubation at pH 3.5, LSc activity increased 

again, reaching 86% of the initial activity after 4 d. At the same time, the precipitate observed at pH 

3.5 was again solubilised at pH 7.5. In the replicates maintained at pH 3.5, the activity reduced to an 

undetectable level after 1 d. After 2 d at pH 3.5, pH was increased to 7.5 in one replicate, leading to a 

slow LSc activity increase from the no-detect level to 10% of the initial activity. These results indicate 

that LSc is affected by two inactivation types, one that is fast but reversible and another that is slower 

but irreversible. The former type is exactly what was observed in the stability experiment (depicted in 

Fig. 8.6 B-E) when the pH increased due to bacterial activity. The irreversible LSc inactivation seemed 

to be relatively similar to LTv inactivation (Fig. 8.6 E), which seemed to be only affected by pH in an 

irreversible manner (Fig. 8.7 B). 

 

Fig. 8.7 (A) S. cyaneus laccase residual activity as a function of incubation time (at 25°C in buffer solution) at pH 3.5 

(♦), and reversible inactivation due to alkalinisation (NaOH addition) at pH 7.5 after 3 h (▲) or after 2 d (●). (B) T. 

versicolor laccase residual activity as a function of incubation time at pH 3 (♦), and laccase stabilisation due to 

alkalinization at pH 7.5 after 1 d (▲). Average and values (error bars) of duplicates. 

8.3.8 Micropollutant oxidation by laccase preparations 

The kinetics of laccase-mediated degradation of the plastic additive BPA and the two anti-

inflammatory drugs DFC and MFA at different pH are presented in Fig. 8.8. The residual 

concentrations were fitted with a variable order reaction model (two coefficients, Eq. 8.2), as proposed 

in Chapter 6, taking an initial concentration C0 of 1 (arbitrary units as the initial concentration was 

always constant). Ct is the residual concentration after a reaction time t, x the order of the reaction, and 

k the apparent rate constant of variable order. 
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The results of the fitting and the estimated half-life of the pollutants at different pH are presented in 

Table 8.2. The order of reaction varied mainly between 1 and 3, as observed also in Chapter 6.  
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Fig. 8.8 Residual concentrations of three micropollutants as a function of the reaction time with laccase preparations 

from S. cyaneus (♦) and T. versicolor (▲), and in a control without laccase (●). Degradation of bisphenol A (BPA), 

diclofenac (DFC) and mefenamic acid (MFA) at three different pH values (5, 6 and 7), at 25°C. Average and values of 

duplicates. The initial micropollutant concentration, present in mixture, was at 20 mg l-1 for the three compounds. The initial 

laccase activity was 210 and 220 U l-1 for T. versicolor and S. cyaneus laccases, respectively. Lines: variable order reaction 

model fitted to the data. 

Both laccase preparations were able to oxidize the three pollutants at all pH values studied. Except for 

BPA at pH 5, where both laccases had a very similar efficiency, LTv provided more efficient 

micropollutant oxidation, especially at pH 6 and 7. As observed previously (cf. Chapter 6), MFA was 

degraded in the control without laccase under acidic conditions, with a half-life of 1 h at pH 5 and 9 d 

at pH 6. Thus, at pH 5, it was difficult to distinguish between laccase oxidation and abiotic 

degradation. However, at pH 6 and 7, MFA was significantly oxidized by both laccases. The highest 

oxidation rates of BPA and DFC were observed at pH 6 for LTv, with half-lives of 9 min and 2.2 h, 

respectively, and at pH 5 for LSc with half-lives of 5.2 h and 32 h, respectively. 
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Table 8.2 Best-fit coefficients of the variable order reaction model for the degradation of bisphenol A, diclofenac and 

mefenamic acid and their respective half-lives at different pH values. 

 

The residual laccase activities in the reaction mixtures at the end of the test, after 12 d of incubation, 

are presented in Table 8.3. Loss of 97% of the initial activity was observed at pH 5 for LTv. Additional 

laccase inactivation (from 0 to 17%) seemed to occur over the course of the reaction, especially at pH 

5, compared to incubation in solutions without micropollutants (stability test). Unlike what was 

observed for oxidation of phenols (Kurniawati and Nicell, 2008), the laccase inactivation due to the 

catalytic reaction was, however, much lower than the inactivation due the test conditions (pH and 

temperature). At the end of the test, LTv activity was 17-times higher in the mixture at pH 6 than at pH 

5. The residual activity of LSc was slightly higher than that for LTv. This contrasts with the results of 

the stability test, where LSc was rapidly, but reversibly, inactivated at these pH values. 

Table 8.3 Residual laccase activity in the reaction vials after 12 d of reaction with the mixture of micropollutants at 

25°C and at different pH 

 
Residual activity 

a
 

 

Residual predicted 

activity 
b
 

 

T. versicolor S. cyaneus 

 

T. versicolor 

 

[%] [%] 

 

[%] 

pH 5 3.3 (± 0.2) 10.4 (± 0.2) 

 

20 

pH 6 53.7 (± 0.9) 52.0 (± 2.1) 

 

53 

pH 7 68.4 (± 1.0) 79.1 (± 0.1)   74 
a Average and standard deviation of duplicates, relative to the initial activity 
b Residual activity after 12 d predicted with the bi-exponential model based 

on the stability test (incubation at 25°C at the same pH but without 

micropollutants) 

 

S. cyaneus T. versicolor S. cyaneus T. versicolor S. cyaneus T. versicolor Control

R
2

0.997 0.997 0.985 0.993 0.992 0.999 0.996

x 1.596 2.167 2.547 1.986 1.321 2.696 2.936

k 3.936 7.623 0.925 2.763 7.733 339.154 34.015

t 1/2 [h] 5.2 3.4 32.2 8.6 2.4 0.09 1.0

R
2

0.993 0.998 0.982 0.999 0.997 1.000 0.969

x 0.998 2.964 2.175 1.729 1.814 1.437 2.382

k 2.553 233.949 0.469 9.868 1.667 23.333 0.124

t 1/2 [h] 6.5 0.15 54.8 2.2 13.4 0.83 225

R
2

0.995 0.994 0.980 0.999 0.993 0.998

x 0.984 1.190 3.120 1.270 4.014 1.438

k 1.566 3.939 0.251 1.402 0.204 0.741

t 1/2 [h] 10.6 4.5 151 13.0 276 26.2

R
2
: coefficient of determination of the fitting, x : order of the reaction, k : apparent variable-order rate constant, and t 1/2: calculated half-

life of the micropollutants [h]

Bisphenol A Diclofenac Mefenamic acid

pH 5 pH 5 pH 5

pH 6 pH 6

pH 7 pH 7 pH 7

pH 6
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8.4 Discussion 

For selection of microorganisms able to produce laccase on-site for treating micropollutants in 

wastewater, the potential of four strains of Streptomyces bacteria together with the white-rot fungus T. 

versicolor was assessed for (i) their ability to produce laccase in treated wastewater on cheap 

substrates, (ii) their laccase activity at different pH and temperature, (iii) laccase inhibition by chloride 

salt, (iv) laccase stability, and (v) the laccase substrate range and their ability to oxidize different 

micropollutants. 

8.4.1 Laccase production on different substrates 

Among the four Streptomyces strains assessed, only S. cyaneus produced laccase to a level potentially 

sufficient for the targeted application, for instance in a system with a long hydraulic residence time (of 

a few days to a few weeks such as wetlands). Despite the attractive possibility of producing (low 

amounts of) laccase in treated wastewater on lignocellulosic substrates (rushes) with S. cyaneus 

without the addition of other nutrients, the activity levels reached were not comparable with those 

obtained in T. versicolor cultures, which were more than 20-times higher. T. versicolor was found to 

produce high amounts of laccase (up to 945 U l
-1

) in treated wastewater with ash branches (including 

the bark) as the sole substrate, which is promising for the development of a fungal trickling filter for 

wastewater post-treatment. Indeed, this forestry waste is cheap and widely available in Switzerland, 

for example, and the activity reached in the supernatant is high enough – according to the study 

presented in Chapter 6  – to allow high removal (> 90%) of various micropollutants (BPA, DFC, MFA 

and triclosan) in an appropriate time range (less than 10 h) at pH 7 and 25°C, conditions that are found 

in municipal wastewaters. Maintaining T. versicolor in unsterile biologically treated wastewater is, 

however, still a challenge due to competition/predation by other microorganisms. This competition can 

probably be limited in the case of use of lignocellulosic materials as the sole substrate, as only few 

organisms can use them as carbon source. 

 

Fig. 8.9 Evolution of laccase activity in the supernatant of T. versicolor cultures (25°C, 140 rpm, pH 5-6.8) in sterile 

treated (activated sludge without nitrification) municipal wastewater with diverse substrates: glucose (10 g l-1), wheat 

straw pieces (47 g l-1), reed pieces (Phragmites australis, 153 g l-1), poplar (Populus spp., 124 g l-1) branches with the 

bark and pine wood chips (without bark, 123 g l-1). 

The composition of the growth substrate had a strong influence on laccase production by T. versicolor, 

as also observed in other studies on lignocellulosic materials (Özşölen et al., 2010). As only complex 
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substrates were used here (wood with bark, integral soy flour, etc.), it was not possible to identify 

which components induced laccase production. It seemed that the role of wood bark was significant as 

much lower activity (79 U l
-1

) was observed in T. versicolor cultures with only beech sawdust 

compared to that with ash branches (with the bark). These results were also confirmed by an additional 

experiment in treated wastewater (Fig. 8.9), where high T. versicolor laccase activity (> 550 U l
-1

) was 

observed in culture supernatant after 9 d of cultivation on poplar (Populus spp.) branches with the 

bark, on reed pieces (Phragmites australis) and on wheat straw, and low activity (< 30 U l
-1

) on pine 

wood chips (without bark) and glucose. Bark contains in general more lignin and polyphenols than 

wood (Harkin and Rowe, 1971), and aromatic or phenolic compounds related to lignin or lignin 

derivatives such as ferulic acid or vanillin, are known to induce laccase production by white-rot fungi 

(De Souza et al., 2004; Parenti et al., 2013). For S. cyaneus, induction of laccase production on 

lignocellulosic substrate was not observed. The role of laccase in Streptomyces spp. is, however, not 

clear and might be related more to morphogenesis than to lignin degradation (Endo et al., 2002). This 

is also supported by the means by which S. cyaneus likely produces extracellular laccase (cell lysis 

rather than active secretion). Indeed, the S. cyaneus laccase sequence deposited by Moya and co-

workers (GenBank HQ857207) does not harbour any secretion signal peptide (J. Maillard, 

unpublished data). 

8.4.2 Laccase activity at different pH values and temperatures 

Both laccases had optimal activity under acidic conditions (pH < 5) for all substrates. Slight variations 

of the optimal pH (< 3 to 5) were observed for the phenolic substrates, which are assumed to be related 

to the protonation/deprotonation state of the compound (Rosado et al., 2012). The pH range in which 

significant activity was measured was wider for LTv than for LSc, with LTv showing higher activity in 

the pH range 5.5 to 7. Both laccases showed, however, rather low activity under slightly alkaline 

conditions, impairing their use in non-acidified municipal wastewater (pH 7-8). 

The strong pH influence observed on the activity of both laccases on all the substrates could be 

related, as discussed in Chapter 6, to a balance between two opposing phenomena (Xu, 1997): (i) the 

increase in redox potential difference (and thus oxidation rate) between laccase type 1 copper site (T1, 

where the substrate oxidation takes place) and the phenolic or aniline substrates when the pH 

increases, and (ii) the increase in hydroxyl inhibition of laccase (binding of the hydroxide anion to the 

T2/T3 Cu, where the reduction of oxygen to water take place) at higher pH, possibly leading to a bell-

shape activity profile. Despite their relatively low amino acid sequence homology (Fig. S 8.5, SI), 

similar mechanisms are expected for both laccases as the three-dimensional structure of the active site 

of S. cyaneus laccase is presumably very similar to the one of T. versicolor laccase (see SI for details). 

This bell-shape profile was observed for both laccases on the phenolic substrates syringaldazine and 

guaiacol, but not on ABTS with LTv, which is consistent with the fact that the redox potential of ABTS 

is not dependent on the pH in the range tested (no protons involved in the oxidation) (Xu, 1997). Due 

to its phenolic structure, a bell-shape profile was expected for DMP, but not observed with LTv. The 

decrease in activity with the pH was, however, possibly out of the pH range studied (appearing at 

lower pH). The low LSc activity below pH 3.5 with all substrates was probably rather due to the fast 

inactivation of the enzyme at these pH values (50% inactivation in 2 min at pH 3) than to 

thermodynamic and kinetic considerations (variation of redox potential). 
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Both laccases had optimal activity on ABTS at 50 to 60°C. These optimal temperatures can, however, 

differ depending on the substrate (Margot et al., 2013c; Yang et al., 2013d). LTv showed significant 

activity in a wider temperature range than LSc, especially at lower temperatures (from 10 to 40°C). It 

retained 44% of its maximum activity at 10°C, making this enzyme more attractive for municipal 

wastewater treatment (10-25°C).  

8.4.3 Laccase inhibition by chloride 

Municipal and especially industrial wastewaters can contain relatively high chloride concentrations. 

Chloride (Cl
-
), similar to other halide anions (F

-
, Br

-
) or to the hydroxide anion (OH

-
), has been 

reported to either bind to the T2 Cu of laccase and to interrupt the internal electron transfer between 

T1 and T2/T3 active site (Xu, 1996), and/or to bind near the T1 active site, blocking the access of the 

substrate to T1 Cu or inhibiting the electron transfer (Enaud et al., 2011). Both laccases considered 

here were inhibited by sodium chloride, with LSc being slightly more tolerant. The chloride 

concentration in municipal wastewater which is around 2.5 to 5 mM (unpublished data, Lausanne 

WWTP), is not expected to affect laccase activity significantly (< 20%). However, chloride inhibition 

can be an issue for the treatment of industrial effluents from, for example, the pharmaceutical industry 

(around 90 mM Cl
-
 (Rajkumar and Palanivelu, 2004)), especially for LTv (> 60% inhibition). 

8.4.4 Laccase stability 

For all biotechnological applications, good stability of the enzyme under the treatment conditions is 

required. Enzyme inactivation is influenced by many different factors, the pH being an important one 

due to its effect on the structures of proteins (influence on the balance of electrostatic and hydrogen 

bonds between the amino acids) (Sadana, 1988). LSc incubated at 25°C in buffer solutions was 

relatively rapidly inactivated (t1/2: 0-2 d) at acidic pH (< 7) compared to LTv. However, this fast 

inactivation was reversible and LSc could recover most of its activity when the pH was switched again 

to alkaline conditions. The mechanism of this reversible pH inactivation is unknown, but could be due 

to refolding of the tertiary structure of the enzyme when the pH increases (Kurniawati and Nicell, 

2008), or possibly resolubilization of precipitated laccase. The irreversible LSc pH inactivation seemed 

to be in the same range as that observed for LTv. Thus, if the reversible pH inactivation can be avoided, 

both laccases would have relatively similar stability. This was observed during the micropollutant 

degradation test. Indeed, the 12 d stability of LSc at pH 5, 6 and 7 during this test was similar or even 

higher than that of LTv, and much higher than what was observed for LSc during the stability test. This 

suggests that the different incubation conditions, such as the presence of micropollutants (laccase 

substrate) and solvents (4% methanol and 2% acetone), prevented the reversible inactivation, possibly 

by limiting LSc precipitation/aggregation or by increasing the stability due to pollutant binding to the 

active centre of the enzyme (Mai et al., 2000). Laccase stability is thus not only dependent on the pH 

but also on the composition of the solution. This was also confirmed by the much higher laccase 

stability in buffer solution at pH 7 than in pure water at the same pH.  

Similar stability results for LTv were previously reported (Kurniawati and Nicell, 2008; Mai et al., 

2000). In most cases, a fast initial inactivation rate followed by slower decay kinetics was observed. 

Some authors explained this behaviour by the possible presence of two isoenzymes of laccase, one 
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being unstable and rapidly inactivated and the other being more stable (Kurniawati and Nicell, 2008). 

However, other mechanisms may also explain this biphasic behaviour (Aymard and Belarbi, 2000), 

such as a fast reversible inactivation followed by a slower irreversible one. T. versicolor is known to 

produce at least four different isoenzymes, which can differ significantly in their stability 

(Koschorreck et al., 2008b). The commercially available T. versicolor laccase preparation used in this 

study contains, as shown in Fig. S 8.3 (SI), at least two distinct enzymes with laccase activity, possibly 

explaining the observed biphasic behaviour. As the proportion of the different isoenzymes is reported 

to be influenced by the culture conditions (Moldes et al., 2004), stability may differ for other sources 

of T. versicolor laccase. The higher and relatively good laccase stability observed at neutral to alkaline 

pH values for both laccase preparations, LTv and LSc, is advantageous for the targeted applications in 

municipal wastewater (pH 7-8). Although laccases are known to be relatively stable at ambient 

temperatures and near-neutral pH, this is, however, the first time that long-term stability (45-60% 

remaining activity after incubation 55 d at 25°C) was reported for these two particular laccase 

preparations. 

8.4.5 Laccase substrate range and oxidation of micropollutants 

The broader the laccase substrate range is, the greater the potential for the enzyme to be used to 

remove micropollutants. Both laccases were able to oxidise the four aromatic model substrates tested, 

showing higher activity against the non-phenolic ABTS, followed by the phenolic compounds DMP, 

syringladazine and finally guaiacol. LSc was much less active on the phenolic substrates than on ABTS 

compared to LTv. These differences in reactivity are reported to be related to differences in shape and 

chemical composition of the substrate binding site of the enzymes (Rosado et al., 2012; Xu et al., 

1996). Differences in the phenol substitution seemed also to influence the activity. The electron-

donating property of the methoxy group is reported to reduce the redox potential of phenolic 

compounds, guaiacol (1 methoxy group) having a higher redox potential E
0
 than the two other 

substrates (2 methoxy groups) (Xu, 1996). For small o-substituted phenols, the redox potential 

difference (∆E
0
) between laccase type 1 copper site (T1) and the substrate seems to be the main 

driving force for the oxidation (Xu, 1996). Therefore, the lower the E
0
 value of the phenolic substrate, 

the faster will be the reaction rate, which is consistent with the results obtained here. For larger o-

substituents, other significant mechanisms such as steric hindrance may be observed (Xu, 1996).  

BPA, DFC and MFA are three common micropollutants found at relatively high concentrations in 

municipal WWTP effluent (average between 300-1000 ng l
-1

) (Kase et al., 2011). DFC is of special 

concern because it is not removed in conventional biological treatments (cf. Chapter 3) and can affect 

fish at typical WWTP effluent concentrations (1 µg l
-1

) (Triebskorn et al., 2004). Despite their very 

low activity at pH 7 on the model substrates, both laccases were able to reduce the concentration of 

these micropollutants significantly at neutral pH, which is for the first time reported for bacterial 

laccases. The oxidation rates were much higher at pH 7 with LTv compared to LSc, especially for the 

two aniline pollutants (DFC and MFA), confirming the wider pH range of this enzyme. LSc was less 

reactive with aniline (DFC and MFA) than with phenol compounds (BPA) compared to LTv. Both 

laccases rapidly oxidized BPA, with a similar rate at pH 5, while LTv was more effective for the 

oxidation of the two aniline compounds at all pH values. This difference in oxidation rate is thought to 

be either related to different affinity for the aniline substrates or to a lower redox potential of the T1 
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copper site of LSc, as observed for many other bacterial laccases (E
0
 < 0.5 V vs. SHE, compared to 

0.785 V for LTv) (Hong et al., 2011; Telke et al., 2009). 

The higher DFC degradation with LTv at pH 6 than at pH 5 contrasts with the study presented in 

Chapter 6, where the highest removal was observed below pH 5. This shift in the optimal pH is likely 

due to the different initial enzyme concentrations used, 3.5 times higher in the previous study. At low 

enzyme concentrations, the oxidation rate was slower and the time to reach a defined level of 

micropollutant removal longer. The longer the reaction time, the higher was the loss of laccase by 

inactivation, especially under acidic conditions. Thus, in the case of low enzyme concentrations, the 

gain associated with higher laccase activity at lower pH was offset by the loss of activity at these pH 

values due to the long reaction time. Higher degradation levels were thus observed at higher pH, 

where laccase was more stable. The loss of activity was limited in the case of high enzyme 

concentrations (fast reaction) and thus higher degradation levels were obtained at a lower pH value 

(close to the optimal pH for laccase activity). Therefore, depending on the laccase concentration, a 

compromise between laccase stability (higher at high pH values) and laccase activity (higher at low 

pH values) has to be found to determine the optimal pH for the treatment. 

8.5 Conclusion 

The evaluation of five laccase-producing organisms to improve micropollutant degradation in 

wastewater showed that T. versicolor was the most promising strain. This fungus produced more than 

20-times more laccase activity than S. cyaneus, the best candidate of the Streptomyces strains 

evaluated, and this especially in treated wastewater with forestry waste as the sole substrate, a cheap 

and widely available product. Laccase from T. versicolor (LTv) was moreover more active than that 

from S. cyaneus (LSc) near neutral pH and between 10 to 25°C, conditions usually found in municipal 

wastewater. Despite an optimal activity under acidic conditions (pH < 6), which limits their use in 

non-acidified wastewater, both laccases had the ability to degrade common wastewater 

micropollutants, BPA, DFC and MFA even at neutral pH, which is for the first time reported for a 

bacterial laccase. Micropollutant oxidation was faster with LTv, especially for aniline pollutants, 

showing the greater potential of this enzyme for the target application. Both laccases were relatively 

stable at slightly alkaline pH values, conditions found in municipal wastewater. Thus, altogether, 

despite a slightly lower resistance of its laccase to chloride, T. versicolor appeared to be the best 

candidate to be used in a post-treatment, such as a fungal trickling filter composed of wood support, 

for micropollutant degradation in wastewater. 
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8.6 Supporting information 

Evolution of extracellular laccase activity and biomass in S. cyaneus cultures 

 

Fig. S 8.1 Evolution of the extracellular laccase activity (■, right axis) and intracellular protein content (♦, left axis, 

indicator of the biomass) of S. cyaneus culture (in modified ISP9 medium with soy flour 10 g l-1). Intracellular proteins 

were measured with the Bio-Rad DC protein assay kit in the supernatant of pre-washed cells, lyzed by sonication (15 pulses 

of 3 s at 100 W). 

Evolution of pH during the laccase stability test - Example for the incubation at initial pH of 4 

 

Fig. S 8.2 Evolution of S. cyaneus laccase activity incubated at 25°C in citrate-phosphate buffer at an initial pH value 

of 4 and evolution of the pH due to bacterial growth. Average and values of duplicates (difference in the duplicate pH 

values lower than 0.06 unit). 
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Characterization of the commercial laccase preparation from Trametes versicolor from Sigma  

The commercially available laccase preparation from Trametes versicolor obtained from Sigma (Ref. 

38429) was analyzed by separating the proteins of 5 µl of concentrated laccase solutions (40 and 5 g l
-

1
) by sodium dodecylsulfate polyacrylamide (12%) gel electrophoresis (SDS-PAGE), following 

Sambrook et al. (1989). The SDS-PAGE was done with and without 10 min boiling of the proteins. 

Prior to staining the proteins with Coomassie brilliant blue, one of the duplicate gels was incubated in 

acetate buffer 100 mM, pH 4.5, with 0.5 mM ABTS to detect the laccase activity. 

As presented in Fig. S 8.3, the commercially available laccase preparation contains a mixture of 

different proteins, from 17 to ~80 kDa, with a major band around 66 kDa, which corresponds 

approximately to the reported mass of the best-characterized T. versicolor laccase isoenzymes 

(Bourbonnais et al., 1995; Moldes et al., 2004). Similar protein bands from this laccase preparation 

were also observed by Wang et al. (2012). Despite the denaturing properties of the SDS gel, laccase 

activity was observed in at least two distinct bands in the gel with unboiled samples, around 40 kDa 

and 66-70 kDa, suggesting the presence of at least two enzymes with laccase activity in the 

preparation. The 40 kDa protein showed lower intensity with Coomassie staining but had high laccase 

activity, suggesting that this protein is thus either very active or more resistant to denaturation than the 

66-70 kDa protein. These data show clearly that the commercially available laccase preparation 

contains a mixture of different proteins, several of which displaying laccase activity. 

 

Fig. S 8.3 SDS-PAGE of commercially available laccase preparation from T. versicolor from Sigma (Ref. 38429). Lanes 

1-5 and lane 9: Coomassie staining; Lanes 6-8: laccase activity with ABTS (0.5 mM in acetate buffer 100 mM pH 4.5). Lane 

1: protein ladder (Fermentas); Lanes 2 and 3: 125 g boiled and unboiled laccase, respectively; Lanes 4 and 5: 1 mg of boiled 

and unboiled laccase, respectively; Lanes 6-8: 1 mg of unboiled laccase recorded after increasing incubation time in ABTS 

solution (in green); Lane 9: same lane as 6-8 after additional Coomassie staining. Arrows: bands of proteins present in the 

commercially available laccase preparation.  
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Identification of one laccase candidate from S. cyaneus culture supernatant 

Extracellular crude enzyme preparation of S. cyaneus culture supernatant was concentrated 80 times 

by ultrafiltration as described in the manuscript, and then separated by sodium dodecylsulfate 

polyacrylamide (12%) gel electrophoresis (SDS-PAGE) following Sambrook et al. (1989). A protein 

band around 75 kDa corresponding to the predicted S. cyaneus laccase molecular mass (Arias et al., 

2003) was analysed by mass spectrometry (MS) after trypsin digestion and compared to profiles of 

peptides generated from available Streptomyces genomes and from the deposited S. cyaneus laccase 

sequence (GenBank HQ857207). This analysis was performed by the PCF laboratory (EPFL, 

Switzerland). 

MS analysis of the excised 75 kDa protein band obtained after concentrating S. cyaneus culture 

supernatant showed a profile matching with nine unique peptides (20% coverage) of the deposited 

laccase sequence (GenBank HQ857207). This latter protein sequence shows 84% amino acid sequence 

identity with the phenoxazinone synthase (PHS) of S. antibioticus (Hsieh and Jones, 1995) (Fig. S 

8.4). This laccase, along with several other Streptomyces proteins, form a distinct multi-copper 

oxidase family either classified as laccase (EC 1.10.3.2) or phenoxazinone synthase (EC 1.10.3.4). 

Functional differentiation between these two classes is unclear (Le Roes-Hill et al., 2009). The 

reported S. cyaneus laccase shows 33% sequence identity with the well-characterized CotA laccase of 

Bacillus subtilis (GenBank AAB62305) (Martins et al., 2002), and only very limited sequence identity 

with the EpoA laccase of S. griseus (GenBank BAB64332) (Endo et al., 2003) or the laccase of T. 

versicolor (GenBank CAA77015) (Fig. S 8.5). Despite its relatively low sequence homology with 

other well-characterized laccases, the structure and active site configuration of S. antibioticus PHS, a 

close parent of S. cyaneus laccase, is reported to be very similar to other laccases, with three conserved 

cupredoxin-like domains, T1 (type 1 Cu centre) where the substrate oxidation takes place, and a 

trinuclear Cu cluster T2 and T3 where the electrons are transferred and where the reduction of oxygen 

to water take place (Enguita et al., 2003; Smith et al., 2006). Thus, similar catalytic mechanisms for 

these enzymes are expected. It is, however, important to mention that the S. cyaneus laccase activity 

was measured in the culture supernatant, which might also contain several other laccases not yet 

identified or reported in databases. 
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Comparison of sequences of S. cyaneus laccase and S. antibioticus phenoxazinone synthase 

The amino acids sequences of S. cyaneus laccase and S. antibioticus phenoxazinone synthase are 

presented below. A high sequence identity (84%, in black) exists between both enzymes. A fifth 

copper centre, not present in other laccases, was identified. This copper is thought to participate in the 

stability of the structure but not in the oxidation mechanisms (Smith et al., 2006).  

 

Fig. S 8.4 Comparison of the amino acids sequences of S. cyaneus laccase (Scy-laccase, GenBank HQ857207) and S. 

antibioticus phenoxazinone synthase (San-PhsA, GenBank AAA86668). The residues that bind the different copper atoms 

(active sites T1 and T2, mononuclear, and T3, binuclear) are presented in colour, following Smith et al.(2006). The proteins 

are separated into three main domains, presented with the dashed lines with different colours. 

--- Domain 1 (37-236) --- Domain 2 (237-411) --- Domain 3 (439-628) 

type 1 copper-1 binding residues type 3 copper-2 binding residues type 3 copper-3 binding residues 
type 2 copper-4 binding residues New type 2 copper-5 binding residues 

                                                   -------------------------- 

San-PhsA       1 MIEQSDDRIDPIDGVLADGVLADDVLAKEREQAPAPGELTPFAAPLTVPPVLRPASDEVT 

Scy-laccase    1 ----MTDIIERLT----------DSDGKPEEEQLGTGELTPYTAPLPVPPVLRPASDDVL 

 

                 ------------------------------------------------------------ 

San-PhsA      61 RETEIALRPTWVRLHPQLPPTLMWGYDGQVPGPTIEVRRGQRVRIAWTNRIPKGSEYPVT 

Scy-laccase   47 HETEIALRPAWVRLHPQLPPTLMWGYDGQVPGPTIEVRRGQRVRIAWTNRIPKDSEYPVT 

 

                 ------------------------------------------------------------ 

San-PhsA     121 SVEVPLGPPGTPAPNTEPGRGGVEPNKDVAALPAWSVTHLHGAQTGGGNDGWADNAVGFG 

Scy-laccase  107 SVEVPLRTDGRPQSTTEPGREGVEPNKDVAALPAWSVTHLHGAQTGGGNDGWADNAVGFG 

 

                 ------------------------------------------------------------ 

San-PhsA     181 DAQLSEYPNDHQATQWWYHDHAMNITRWNVMAGLYGTYLVRDDEEDALGLPSGDREIPLL 

Scy-laccase  167 DAQLSEYPNDHQAVQWWYHDHAMNITRWNVMTGLYGTYLVRDDEEDALHLPCGEREIPLL 

 

                 ------------------------------------------------------------ 

San-PhsA     241 IADRNLDTDEDGRLNGRLLHKTVIVQQSNPETGKPVSIPFFGPYTTVNGRIWPYADVDDG 

Scy-laccase  227 LADRNLDTDEDGRLNGRLLHKTLIVQQQNPETGKPVSIPFSGPYNTVNGRIWPYADVDDA 

 

                 ------------------------------------------------------------ 

San-PhsA     301 WYRLRLVNASNARIYNLVLIDEDDRPVPGVVHQIGSDGGLLPRPVPVDFDDTLPVLSAAP 

Scy-laccase  287 WYRFRLVNASNARIYDLVLVDEDDNPVPGIVHQIGSDGGLLPRPVPVDFDGALPTLTAAP 

 

                 -------------------------------------------------- 

San-PhsA     361 AERFDLLVDFRALGGRRLRLVDKGPGAPAGTPDPLGGVRYPEVMEFRVRETCEEDSFALP 

Scy-laccase  347 AERFDLLVDFRGLAGRRLRLVNKGRNQPPGVSDPAGDVRYPAVMEFRVRESCETDTFELP 

 

                            ------------------------------------------------- 

San-PhsA     421 EVLSGSFRRMSHDIPHGHRLIVLTPPGTKGSGGHPEIWEMAEVEDPADVQVPAEGVIQVT 

Scy-laccase  407 EVLSGSFRRLTHDIEHGHRLIVLTPPATKGGGGHPEIWEMTEVQNPGDIQVPTEGVIQVT 

 

                 ------------------------------------------------------------ 

San-PhsA     481 GADGRTKTYRRTAATFNDGLGFTIGEGTHEQWTFLNLSPILHPMHIHLADFQVLGRDAYD 

Scy-laccase  467 GADGKTKTYRRTARTFNDGLGFTIAEGSHEQWSFLNLAPIVHPMHIHLADFQLLGRDAYD 

 

                 ------------------------------------------------------------ 

San-PhsA     541 ASGFDLALGGTRTPVRLDPDTPVPLAPNELGHKDVFQVPGPQGLRVMGKFDGAYGRFMYH 

Scy-laccase  527 VSGFDPAIGGTRSPIRHDAGTTIPLAPNELGHKDVFRVPGNQILRVMGKFDGAYGRFMYH 

 

                 -------------------------- 

San-PhsA     601 CHLLEHEDMGMMRPFVVMPPEALKFDHGGAHG---GHGEGHTG 

Scy-laccase  587 CHLLEHEDMGMMRPFVVMPPEALKFDHGAGHGGHDGHGAGHTG 



 CHAPTER 8 

231 

 

Phylogenetic tree between different multicopper oxidases 

 

Fig. S 8.5 Sequence likelihood analysis of laccases. The identified laccase of Streptomyces cyaneus (Scy-laccase, in red, 

GenBank HQ857207) was compared (using ClustalX and MEGA4) to characterized multicopper oxidases (indicated 

by *), and to protein sequences found in databases which show a minimal sequence identity of 50% (with >90% 

sequence length coverage) 

Legend for microbial species and sequence references: Eco-KatG: Escherichia coli (GenBank: YP_491509), 

used here to root the tree; Svi-PHS: Streptomyces viridochromogenes phenoxazinone synthase 

(WP_003993803); Shy-PHS: Streptomyces hygroscopicus (YP_006248289); San-PHS: Streptomyces 

antibioticus  (AAA86668) (Smith et al., 2006); Sac-PHS: Streptomyces acidiscabies (WP_010360990); Sla-

laccase: Streptomyces lavendulae (BAC16804) (Suzuki et al., 2003); Scl-laccase: Streptomyces clavuligerus 

(WP_003957540); Shi-PHS: Streptomyces himastatinicus (WP_009715166); Sri-PHS: Streptomyces rimosus 

(WP_004571981); Sgr-laccase: Streptomyces griseus (YP_001821963); Bsu-CotA: Bacillus subtilis 

(AAB62305) (Martins et al., 2002); Bli-CotA: Bacillus licheniformis (YP_077905) (Koschorreck et al., 2008a); 

Tth-laccase: Thermus thermophilus (YP_005339) (Miyazaki, 2005); Ahy-laccase: Aeromonas hydrophila 

(ACX47357) (Wu et al., 2010); Eco-CueO: Escherichia coli (YP_488426) (Grass and Rensing, 2001); Bha-

laccase: Bacillus halodurans (AAP57087) (Ruijssenaars and Hartmans, 2004); Neu-MCO: Nitrosomonas 

Europaea multicopper oxidase (PDB 3G5W) (Lawton et al., 2009); Ate-DhgO: Aspergillus terreus 

dihydrogeodin oxidase (BAA08486) (Huang et al., 1995); Tve-laccase: Trametes versicolor (CAA77015)   

(Jönsson et al., 1995); Sce-Fet3p: Saccharomyces cerevisiae (CAA89768) (Stoj et al., 2007); Sgr-EpoA: 

Streptomyces griseus (YP_001822531) (Endo et al., 2002); Sip-SilA: Streptomyces ipomoeae (ABH10611) 

(Molina-Guijarro et al., 2009); Sco-SLAC: Streptomyces coelicolor small laccase (CAB45586) (Machczynski et 

al., 2004).  
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Chapter 9    Development of a fungal filter to improve 

micropollutant removal in wastewater 

9.1 Introduction 

As shown in the previous chapters, the potential of laccase and laccase-mediated reactions for treating 

micropollutants in municipal wastewater is limited to specific compound classes (mainly phenols and 

anilines) and is strongly influenced by the pH, with very slow reaction rates in alkaline conditions. 

Thus, despites their high potential for specific bioremediation purposes (e.g., decontamination of 

effluents containing targeted toxic pollutants) (Majeau et al., 2010), pure enzymatic treatments with 

laccase or laccase-mediator systems appear not to be adapted for removing a broad range of pollutants 

present at very low concentrations in municipal wastewater (near neutral pH) (cf. Chapter 5).  

One option to face these limitations while keeping the high potential of laccase would be to treat the 

water directly with laccase-producing organisms, such as with the white-rot fungi Trametes versicolor 

or Pleurotus ostreatus. Indeed, white-rot fungi showed to have a much broader substrate range than 

laccase alone, due to the combined action of their various non-specific extracellular (laccase, 

manganese and lignin peroxidases) and intracellular (cytochrome P450 monooxygenases) oxidative 

enzymes (Yang et al., 2013b). Using the whole fungal cells instead of only some of their specific 

extracellular enzymes, may thus have many advantages to degrade pollutants (Harms et al., 2011): (i) 

the fungal cells can produce (via several extracellular oxidases) the hydrogen peroxide (H2O2) required 

for pollutant oxidation with peroxidases (Baldrian, 2008); (ii) compounds oxidized by laccases or 

peroxidases can be potentially further metabolized inside the cells (e.g., with quinone reductases) and 

possibly completely mineralized, avoiding accumulation of transformation products such as quinones; 

(iii) intracellular degradation may directly happen, initiated by the attack of cytochrome P450 or other 

intracellular enzymes (nitroreductases, phenol-monooxygenases, etc.), leading to mineralization or 

conjugate formation; and (iv) small fungal metabolites or by-products resulting from lignocellulosic 

material degradation (e.g., lignin-related phenols) may act as natural mediators, expanding the 

oxidative potential of laccases (Li et al., 2014). 

Due to their powerful and unique oxidative enzymatic system, white-rot fungi have the ability to 

degrade several micropollutants found in municipal wastewater (Cruz-Morató et al., 2014), including 

some hardly degradable for bacteria, such as carbamazepine (Jelic et al., 2012), diclofenac (Badia-

Fabregat et al., 2014), iopromide (Gros et al., 2014), mefenamic acid (Hata et al., 2010), clofibric acid 

(Cruz-Morató et al., 2013b), ketoprofen (Marco-Urrea et al., 2010c) or naproxen (Marco-Urrea et al., 

2010a). 

Using white-rot fungi to treat municipal wastewater is, however, challenging due to the operation 

conditions very far from their natural habitat (dry dead wood). So far, only few studies have been 

performed with fungal reactors treating real municipal wastewater under non-sterile conditions. Zhang 
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and Geissen (2012) were able to maintain the fungus Phanerochaete chrysosporium active up to 45 d 

in a plate reactor treating pre-treated municipal wastewater, but only with the addition of external 

carbon (glucose) and nitrogen (ammonium) sources. Cruz-Morató et al. (2013a) showed that Trametes 

versicolor could degrade several micropollutants in real municipal wastewater in an air-pulsed 

fluidized-bed bioreactor, provided that the water was acidified (pH 4.5) and nutrients (glucose, 

ammonium) supplied. Long-term operation in non-sterile municipal wastewater with Trametes 

versicolor was not reported but experiments with textile wastewater showed that a periodic renewal of 

the fungal biomass (every 21 d) was necessary for continuous operation under non-sterile conditions 

(Blánquez et al., 2008). Competition with and predation by other microorganisms appeared to be 

detrimental for the survival of the fungus. Several strategies have been proposed to deal with non-

sterile conditions (Libra et al., 2003): (i) acidification of the medium to pH 3-4.5 to limit bacterial 

growth (fungi are tolerant to low pH), (ii) limiting nitrogen in the medium to reduce the bacterial 

development (white-rot fungi can grow on substrates with very low amount of nitrogen (C:N > 350:1) 

(Boddy and Jones, 2008)), or (iii) growing the fungi on lignocellulosic substrates not easily degraded 

by bacteria (selective advantage). 

Several types of fungal bioreactors have been tested for continuous operation with municipal or 

industrial wastewaters, including air-pulsed fluidized-bed bioreactors (Blánquez et al., 2008; Cruz-

Morató et al., 2014), polyether foam plate bioreactors (Zhang and Geißen, 2012), fungal membrane 

bioreactors (Yang et al., 2013a), bubble column reactor (Spina et al., 2014), fixed-bed and stirred tank 

reactors (Rodarte-Morales et al., 2012) or rotating biological contactors (Pakshirajan et al., 2011; Šíma 

et al., 2014). 

Designing a fungal reactor to treat micropollutants in municipal wastewater is challenging due to the 

low competitiveness of white-rot fungi for simple substrates compared to native microorganisms and 

their short survival in unsterile wastewaters. In order to be competitive with other advanced 

treatments, the fungal treatment should, moreover, be affordable for small WWTPs, with low 

equipment needs, skills and energy requirements. 

The main goal of this study was therefore to design a fungal reactor which did not require glucose or 

expensive substrates addition, without pH adjustment and artificial aeration, and working in the long 

term under non-sterile conditions.  

The survival of the fungus in raw wastewater, with its high content of easily degradable compounds, is 

expected to be more challenging (strong competition with bacteria) than in treated wastewater (WWTP 

effluent), where most of the easy substrates for the bacteria are already consumed. Therefore, the 

fungal treatment should be placed at the outlet of the secondary treatment of the WWTP. An additional 

substrate for the fungus will thus be required. To avoid too much competition with other organisms 

and to give a competitive advantage to white-rot fungi, a lignocellulosic substrate could be used. The 

concept was therefore to develop a filter composed of woodchips, which will serve as support for the 

mycelium (fixed biomass) and substrate for the fungus. Indeed, white-rot fungi have the unique ability 

to degrade lignin in wood, a very complex natural polymer, in order to get access to their main 

substrates: cellulose and hemicelluloses (Baldrian, 2008). As only few organisms (mostly fungi) are 
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able to grow on wood, this strategy should limit the competition for the substrate and allow longer 

survival of the fungus in the system. 

In order to develop an efficient fungal reactor, the potential of the fungus to degrade micropollutants 

had first to be evaluated, in comparison with laccase and laccase-mediated reactions. The detailed 

goals of this study were therefore:  

1. To test the ability of Trametes versicolor to degraded pollutants degraded by laccase-mediator 

systems (in batch tests) 

2. To assess the range of micropollutants degraded by Trametes versicolor in real wastewater 

with lignocellulosic substrates (in batch tests) 

3. To design and test a fungal filter for long-term operation with synthetic and real wastewater 

9.2 Materials and methods 

9.2.1.1 Choice of micropollutants, chemicals and wastewater  

Eleven micropollutants which could be analysed by HPLC-DAD were selected as model compounds 

to assess and monitor the efficiency of the fungal systems for the treatment of micropollutant in 

wastewater. Three compounds were selected due to their possible oxidation by laccase-mediator 

systems but not by laccase alone (cf. Chapter 5): the anti-inflammatory drug naproxen (NPX), the 

antibiotic sulfamethoxazole (SMX) and the herbicide isoproturon (IPN). NPX and SMX are found in 

relatively high concentrations in WWTP effluents (cf. Chapter 3) and are thus interesting compounds 

to monitor. Moreover, degradation of NPX was proposed as an indicator of white-rot fungal activity as 

this drug is easily degrade by the fungi but not that well by bacteria (Rodríguez-Rodríguez et al., 

2010). Three other pollutants were selected for their property to be oxidized by extracellular laccase: 

diclofenac (DFC), mefenamic acid (MFA) and bisphenol A (BPA). DFC and MFA are poorly 

removed in conventional treatment and found in relatively high concentrations in WWTP effluents (cf. 

Chapter 3). DFC may generate, moreover, impacts on sensitive organisms at very low concentrations 

(cf. Chapter 1). Finally, five other pollutants poorly removed in WWTPs and among the most 

concentrated in effluents (up to several µg l
-1

) (cf. Chapter 3) were chosen: the anti-epileptic 

carbamazepine (CBZ), the corrosion inhibitor benzotriazole (BTZ), the antidiabetic metformin, the 

beta-blocker metoprolol and the antibiotic trimethoprim.  

Most of the chemicals used were purchased from either Sigma-Aldrich (Buchs, Switzerland) or Fisher 

Scientific AG (Wohlen, Switzerland). Deuterated micropollutant standards were purchased from 

Sigma-Aldrich, Dr. Ehrenstorfer, TRC (Toronto Research Chemicals), Sequoia Research Products, 

Acros Organics, and TCI, or were obtained from Ciba-Geigy and Altana Pharma. 

Real treated wastewater (TWW) was collected at the outlet of Lausanne municipal WWTP (220,000 

population equivalent). 24-h composite samples (time proportional sampling every 15 min) were 

collected after the biological treatment, with either activated sludge without nitrification or moving 

bed bioreactor with partial nitrification. Depending on the experiment, the sampled wastewater, if not 
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used directly, was either frozen (-18°C, for experiment with real micropollutant concentration) or 

stored at 4°C (for experiments with spiked wastewater).  

9.2.1.2 Laccase activity test 

Laccase activity was determined as described in Chapter 5. One unit of activity (U) was defined by the 

oxidation of one µmol of ABTS per min, at pH 4.5 and 25°C. 

9.2.1.3 Analyses of micropollutant, glucose methanol and standard parameters 

9.2.1.3.1 Micropollutant analysis at high concentrations 

Determination of micropollutant concentrations at the mg l
-1

 range was carried out by reverse phase 

liquid chromatography with a diode-array detector (HPLC-DAD) as described in Chapter 5. To 

analyse mixtures of pollutants (metformin, trimethoprim, metoprolol, BPA, DFC and MFA), a 1-h 

HPLC gradient from 98:2 to 35:65 of H2O:methanol (% v/v, with 0.1% acetic acid) was used. To 

analyse individual compounds, shorter isocratic methods (around 20 min) were developed, with a ratio 

H2O:methanol (% v/v, with 0.1% acetic acid) of 53:47 for NPX, 86:14 for SMX, 58:42 for IPN, 63:37 

for CBZ, and 92:8 for BTZ. Detection of the compounds was done at 232 nm for NPX, 268 nm for 

SMX, 242 nm for IPN, 214 nm for CBZ, 202 nm for BTZ, 234 nm for metformin, 208 nm for 

trimethoprim, 276 nm for DFC, 354 nm for MFA, and 200 nm for BPA and metoprolol. The limit of 

detection (LOD) was, for all compounds, between 0.1 and 0.3 mg l
-1

 (~1 µM). 

9.2.1.3.2 Micropollutant analysis at low concentrations 

Analysis of micropollutants at the low ng l
-1

 to µg l
-1

 range in real municipal wastewater was 

performed with a screening method for 44 compounds (Table IX.3, Appendix IX) by two different 

methods, either with (i) off-line solid phase extraction (SPE) or (ii) on-line SPE, both followed by 

ultra-performance liquid chromatography (UPLC) (Acquity UPLC system, with HSS T3 or BEH C18 

column depending on the methods, from Waters, USA) coupled to a tandem quadrupole mass 

spectrometer (MS/MS) (Xevo TQ MS, Waters).  

The off-line SPE method, with hand-assembled two layers cartridges (Oasis HLB and mixture of 

Strata X-CW, Strata X-AW and Isolute ENV+ phases), was similar to the one used in Chapter 3 and 

described by Morasch et al. (2010), at the difference that only 50 ml of sample were extracted, and that 

the samples were not acidified but adjusted to neutral pH prior the extraction (to avoid pollutant 

degradation in acidic conditions). The cartridges were therefore also conditioned with non-acidified 

water and methanol. After the extraction, cartridges were dried 30 min under air stream and frozen (-

18°C) (up to one month) until the elution. Elution of the cartridges was performed just before the 

analysis as described by Morasch et al. (2010). Eluate fractions were concentrated at 40°C under a 

gentle N2 stream to a volume of 500 µl and then diluted 2.5 times with the aqueous UPLC eluent, prior 

to the injection (10 µl) in the UPLC column. Two different UPLC methods, either with acidic or 

neutral eluents, were used depending on the compounds. The conditions of the UPLC gradient and the 

compounds analysed by each methods are presented in Appendix IX. 

For the on-line SPE (with cartridge 2.1 × 20 mm, Oasis HLB 25 µm phase, Waters) and the following 

UPLC separation, the same method than the one presented in Chapter 5 was used, with 5 ml of sample 
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extracted and injected. Two different UPLC methods, either with basic or neutral eluents, were applied 

depending on the compounds. The conditions of the UPLC gradient and the compounds analysed by 

each methods are presented in Appendix IX. 

Target compounds were identified and quantified using tandem mass spectrometry (MS/MS) (Xevo 

TQ MS, Waters) in positive and negative electrospray ionization modes (ESI), and detected in 

multiple reaction monitoring mode (MRM), according to Morasch et al. (2010). Losses during 

extraction and matrix effects were corrected by adding internal standard (deuterated pollutants at 250 

ng l
-1

) before processing the samples. MS/MS conditions for each pollutant and for their associated 

deuterated standards are presented in Appendix IX.  Extraction efficiencies and repeatability of the 

method in municipal wastewater are detailed by Morasch et al. (2010). A set of seven standards 

covering a wide range of concentrations (factor 200 to 450 between the lowest and highest 

concentrations tested) was used to determine the calibration curves. With the off-line SPE method, the 

standards (spiked with the deuterated surrogates) were prepared in the aqueous UPLC eluent and 

directly injected into the UPLC-MS/MS without passing by an SPE step. With the on-line SPE 

method, the standards (spiked with the surrogates) were prepared in Evian bottle water (due to its 

composition close to surface waters) and then processed as the other samples by SPE prior to be 

injected into the UPLC column.  

The advantage of the off-line method was the better purification of the samples (less matrix effect than 

with the on-line SPE) and the possibility to adapt the SPE cartridge for the analysis of very polar 

pollutants (such as metformin). This method required, however, relatively big volumes of samples 

(min 80 ml) and was time consuming, thus not very adapted for long-term monitoring of the fungal 

filters. The second method, with the on-line SPE, reduced the volume of sample required to only 12 ml 

and simplified substantially the cleaning and concentration procedures. This method, despite the 

stronger matrix effect, was thus selected for the fungal filter monitoring. Both methods had relatively 

similar sensitivity, with LOD, in samples with strong matrix effect, between 1 and 30 ng l
-1

 for most 

compounds (cf. Table 9.4). 

9.2.1.3.3 Methanol and glucose analysis 

Methanol and glucose concentrations were determined by HPLC equipped with an ORH-801 column 

(from Transgenomic) and with a refractive index (RI) detector (RI-2021plus, Jasco, Tokyo, Japan). A 

total of 20 µl of sample were injected and separation of the compounds was conducted under isocratic 

condition at 0.5 ml min
-1

 with a mobile phase composed of 5 mM H2SO4 in pure water, during 18 min 

at 35°C. Limits of detection were at 0.1 g l
-1

 (3 mM) and 0.01 g l
-1

 (0.05 mM) for methanol and 

glucose, respectively. 

9.2.1.3.4 Standard parameters analysis 

Total suspended solids (TSS) were determined by filtration of a known volume of sample at 0.45 µm 

(mixed cellulose ester Whatman filters). The dry weight of the filter (beforehand washed and dry at 

105°C) was measured before and after the filtration to determine the dry suspended solids. 

Dry matter and water content were determined by overnight drying the sample at 105 °C. The mineral 

content was determined after 2 h combustion of the samples at 550 °C. 
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Total viable bacteria were determined by counting the number of colonies (colony forming unit, CFU) 

at different dilutions of the sample (1 to 1000 times in NaCl – 8 g l
-1

) after incubation 1-2 d at 30°C on 

Plate count agar medium (from Merck: peptone from casein – 5 g l
-1

, yeast extract – 2.5 g l
-1

, 

D(+)glucose – 1 g l
-1

, agar-agar – 14 g l
-1

, pH 7) (plate count method).  

Major anions and cations were determined by ion chromatography with conductivity detector (Dionex 

DX 500), and dissolved organic carbon (DOC) and total dissolved nitrogen were analysed by catalytic 

combustion (Shimadzu TNM1).  

9.2.1.4 Correction of the micropollutant losses by filtration 

Prior to the analysis by HPLC-DAD, all samples had to be filtered at 0.22 µm to remove particles and 

microorganisms. The effect of the filtration on micropollutant concentrations was tested with several 

different syringe filters: filters in polyethersulfone (PES)  (Filtropur S, 0.2 µm, diameter 25 mm, 

sterile, from Sarstedt), in nylon (Simplepure Nylon 66, 0.22 µm, 13 mm, from BGB), or in 

polypropylene (PP) with glass microfibers (GMF) (Simplepure PP-GMF, 0.22 µm, 25 mm or 13 mm, 

from BGB). The pollutants of interest were spiked at 10 mg l
-1

 in citrate-phosphate buffer solution (20-

40 mM) at different pH and the solutions were analysed with or without filtration (1 ml filtered). A 

first test with different filters with NPX showed (Fig. 9.1 A) that important losses occurred, especially 

with PES (Filtropur) and nylon (BGB) filters in acidic pH, with more than 90% losses below pH 4. 

Fewer losses were observed with GMF filters and only below pH 5.5. GMF – 13 mm filters were thus 

selected for the experiments. As NPX losses were pH dependent, a sigmoid curve modelling the losses 

with GMF – 13 mm filters as a function of the pH was fitted to the data (Fig. 9.1 B). This model 

allowed correcting the NPX chromatogram surfaces for the losses due to the filtration (Eq. 9.1). The 

UV/Vis absorbance of NPX was also affected by pH, with less absorbance at lower pH, due to the 

protonation of NPX (pKa around 4.2). This loss of signal was also modelled with a sigmoid curve (Eq. 

9.2) (Fig. 9.1 C). These two models allowed correcting the NPX chromatogram surface for the losses 

due to filtration and the losses of signal due to pH (compared to pH 7) (Eq. 9.3), and therefore 

avoiding overestimating NPX removal due to analytical and processing artefacts. This correction was 

applied for all NPX analyses by HPLC-DAD. An example of the unfiltered, filtered and corrected 

HPLC-DAD signal for NPX at different pH is presented in (Fig. 9.1 D).  

Equations used to correct the NPX signal as a function of pH 

476.0
)286.2(exp486031

528.0

pH
S  (9.1) 

)1699.2exp(200001

9895.0
17478.01

pH
F  (9.2) 

FS

Signal
signalCorrected pH7

 (9.3) 

With S, the correcting factor for the losses of UV-Vis signal as a function of pH of the solution (pH) 

compared to pH 7; F, the correcting factor for the losses of NPX by filtration with GMF-13mm filters; 

and Signal, the chromatogram NPX surface measured at the pH of the solution. 



 CHAPTER 9 

239 

 

 

Fig. 9.1 (A) Naproxen losses during filtration with different filters as a function of the pH.  Filtration of 1 ml with filters 

Filtropur S (PES, 0.2 µm, 25 mm, sterile), filters BGB Nylon (0.22 µm, 13 mm) and filters BGB PP-GMF (0.22 µm, 25 or 13 

mm). (B) Adjustment of a sigmoid curve (model) to the losses by filtration with the GMF-13mm filters. (C) Adjustment of a 

sigmoid curve to the losses of UV-Vis signal due to change of pH (compared to pH 7). (D) Example of corrections of 

naproxen losses during filtration (cor: filter) and UV-Vis signal change (cor: pH) as a function of the pH of the solution. 

For most of the other pollutants tested (SMX, IPN, BTZ, CBZ, metformin, trimethoprim, metoprolol, 

BPA and DFC), no strong effect (< 15% losses) of the filtration (with GMF filters 13 mm) or losses of 

UV/Vis signal (< 20%) with change of pH were observed from pH 5 to 8. However, for MFA, high 

losses (up to 90%) were observed during filtration at pH 5, but only 16% losses were measured at pH 

5.8. As degradation of this compound was tested mostly at pH higher than 5.8, no correction of the 

filtration was performed for MFA.  

9.2.1.5 Fungal strain and inoculum preparation 

Pure strains of two white-rot fungi, Trametes versicolor (ATCC 42530 from the American Type 

Culture Collection) and Pleurotus ostreatus (wild strain isolated by Daniel Job in the 80s and 

conserved at the university of Neuchâtel, kindly provided by the same person), were maintained by 

sub-culturing them every 1-2 months on 20 g l
-1

 malt extract agar (15 g l
-1

) slants (pH 4.5) at 25°C. A 

mycelial suspension of each fungus was prepared by homogenizing 5-11 d grown mycelium in malt 

extract medium (20 g l
-1

, pH 4.5) as described by Blánquez et al.  (2004) (cf. Appendix V), and then 

stored up to a few months in saline solution (NaCl – 8 g l
-1

) at 4°C until use as inoculums (8.5 g l
-1

 dry 

volatile solid mycelium). 

9.2.1.6 Fungal pellet preparation 

Fungal pellets (1-3 mm) were prepared by growing the fungal mycelium in malt extract medium (20 g 

l
-1

, pH 4.5) at 25°C with agitation at 130 rpm during 5-7 d, until pellets were well developed. Pellets 

were then collected, rinsed with sterile water and used directly for the experiments (solid concentration 

of the pellets (dry weight): 17.5 to 22 g l
-1

, with 14% mineral). (Protocol detailed in Appendix VI). 

0

50

100

150

2 3 4 5 6 7 8

S
ig

n
a
l a

re
a
 [

-]

pH [-]

Unfiltered

Filtered

Unfiltered-cor: pH

Filtered-cor: filter

Filtered-cor: filter-pH

0

20

40

60

80

100

3 4 5 6 7 8

N
a
p

ro
x
e
n
 l
o

s
s
e
s
 

d
u
ri
n
g

 f
ilt

ra
ti
o

n
 [
%

]

pH [-]

Filtropur

Nylon

GMF-25mm

GMF-13mm

0%

20%

40%

60%

80%

2 4 6 8

L
o

s
s
 b

y
 f

ilt
ra

ti
o

n
 

pH [-]

Measures

Model

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

2 4 6 8

S
ig

n
a
l r

e
la

ti
v
e
 t

o
 

s
ig

n
a
l a

t 
p

H
 7

 [
-]

pH [-]

Measure1

Measure2

Model

D

A B C



 CHAPTER 9 

240 

 

9.2.1.7 Woodchips selection and preparation and wood inoculation 

Several wood species were tested as substrate for T. versicolor and P. ostreatus mycelium 

development: oak (Quercus genus), beech (Fagus genus), ash (Fraxinus genus), birch (Betula genus) 

and spruce (Picea genus). Dry branches of 10 to 40 mm of diameter were collected in the forests of the 

Swiss Plateau and shredded with the bark in woodchips of 5 – 15 mm length with a garden shredder 

(BioQuick 2500, Atika). Before use, woodchips were washed several times with tap water to remove 

the dust and small particles and soaked 30 min in water to saturate them. The water surplus was 

drained and the wet woodchips were autoclaved 30 min at 121°C. Sterile woodchips were then 

inoculated with 4% (v/v) of mycelial preparation and well mixed under sterile conditions. The wood 

was then incubated at 25°C during 5 – 7 d for Trametes versicolor or 2 – 3 weeks for Pleurotus 

ostreatus. When the woodchips were completely colonized by the mycelium (all white), they were 

well mixed to homogenize the mycelium and transferred to non-sterile glass columns. In each column, 

65 g of inoculated wood (about 20 -21 g dry weight) was added. The columns were then slightly 

shaken (but not compacted) to distribute the woodchips evenly and avoid large voids, and again 

incubated at 25°C for 2 – 4 d for Trametes versicolor or 1 – 2 weeks for Pleurotus ostreatus. Once the 

mycelium has covered again completely the wood substrate, the columns were ready to be use to treat 

wastewater. The inoculated wood contained 65 – 70 % water (w/w) and 2% (dry weight) of 

inorganics. 

9.2.1.8 Trametes versicolor growth inhibition assay 

In order to use fast and cheap analytical HPLC-DAD methods for micropollutant analysis, relatively 

high initial micropollutant concentrations (up to 10 mg l
-1

) were necessary. The effect of such 

concentrations on Trametes versicolor growth was tested for 9 pollutants prior the degradation tests: 

NPX, SMX, IPN, DFC, MFA, BPA, CBZ, metoprolol and triclosan. Fungal growth inhibition was 

performed in 96 well plates with an adapted version of the method developed by Stephen Mackay 

(EPFL-LBE, personal communication) to determine filamentous fungi growth kinetics (method 

described in Appendix X). Briefly, a sterile growth medium consisting of malt extract at 2 g l
-1 

at pH 5, 

spiked with individual micropollutants at 10 mg l
-1

 (with 1% v/v methanol), was inoculated with 3 × 

10
5
 cells (or spores) ml

-1
 of Trametes versicolor in the wells of the plate. The plate was then incubated 

at 28°C and the optical density (OD) was monitored at 405 nm during 96 h. Eight replicates per 

pollutants and per control were performed, with one control without pollutant and one control without 

pollutant but with 1% (v/v) methanol. At the end of the test, the growth curves were compared with 

the ones of the controls to determine the growth inhibition. 

9.2.1.9 Micropollutant degradation assay in submerged cultures in UAB medium 

To test the ability of Trametes versicolor to degrade pollutants which can be oxidized by laccase-

mediator systems, pure fungal culture in sterile synthetic wastewater was used. The synthetic 

wastewater was composed of a mineral medium (UAB medium) with micro and macronutrients, as 

presented in Appendix III (adapted with minor changes from Blánquez et al. (2004) and Borràs et al. 

(2008)), glucose – 8 g l
-1

 as carbon source, (NH4)2SO4 – 2.3 g l
-1

 as nitrogen source, (2-(N-

morpholino)ethanesulfonic acid) (MES) or (3-(N-morpholino)propanesulfonic acid) (MOPS) buffers 

at 10 mM for pH range from 5.5 to 6.7 and 6.7 to 7.9, respectively, and micropollutants spiked at 10 
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mg l
-1

 (with 1% (v/v) methanol). The pH was adjusted to the desired value with HCl or NaOH (1 M), 

and the synthetic wastewater was sterilized by filtration (Filtropur S, 0.2 µm, sterile) and inoculated 

with 20% (v/v) of Trametes versicolor pellets (final: 3.5 g l
-1

, dry weight). Batch experiments were 

performed in 100-ml Erlenmeyer flasks containing 50 ml of inoculated synthetic wastewater. Cultures 

were incubated at 25°C for 15 d and shaken at 130 rpm to ensure aerobic conditions. After defined 

time periods (every 1-2 h during the first 7 h, then every day), aliquots of 2 ml were withdrawn in 

aseptic conditions, filtered at 0.22 µm (BGB PP-GMF filters), and used to determine micropollutant 

(by HPLC-DAD) and glucose concentrations, laccase activity, and pH. Three micropollutants were 

tested individually, all at 10 mg l
-1

: NPX (at initial pH 5.5, 6.5 and 7.5), SMX (pH 5.5) and IPN (pH 

5.5). For each pollutant, one control in the same conditions but with fungus inhibited by 10 mM 

sodium azide was performed, and for NPX, a second control with not inoculated synthetic wastewater 

was also done. Experiments were performed in duplicates. 

9.2.1.10 Micropollutant degradation assay in submerged batch cultures in real wastewater 

Degradation of micropollutants in real wastewater by Trametes versicolor was tested in batch 

experiments with treated wastewater (TWW) from the municipal WWTP of Lausanne. TWW was 

collected (10 l of 24-h composite sample) at the outlet of the activated sludge tank with partial 

nitrification (12 mg N-NH4 l
-1

) the 7
th
 of December 2012. TWW was centrifuged (15 min at 15,900 × g 

and 15°C), filtered (not in aseptic conditions) at 0.22 µm (mixed cellulose ester membranes, from 

Millipore) to remove most of the microorganisms, and stored for 3 d at 4°C before the experiment. 

TWW was used without any pH adjustment (initial pH 7.89) or micropollutant spiking to be close to 

real conditions. 

As shown in Chapter 8, Trametes versicolor was able to survive in sterile TWW with lignocellulosic 

material as sole substrate. Using lignocellulosic substrates is thus a strategy to avoid strong 

competition for the substrate with other microorganisms present in wastewater. Based on previous 

experiments (Fig. 8.9, Chapter 8), wheat straw was selected as lignocellulosic substrate. The straw (M 

classic for rabbit litter from Migros) was chopped in section of 0.5 to 2 mm, washed with deionised 

water to remove the dust, dried overnight at 105°C, and autoclaved 20 min at 121°C.  

In 5-l sterile Erlenmeyers, 1.5 l of filtered TWW containing 15 g l
-1

 of autoclaved wheat straw was 

inoculated with 150 ml of fresh pellets from Trametes versicolor to reach a final biomass 

concentration of 2.0 g l
-1

 (dry weight). These batch cultures were then incubated in the dark at 25°C 

during 14 d on a rotary shaker at 150 rpm. After defined time intervals (2 h, 1, 2, 4, 7, 10, and 14 d), 

aliquots of 80 to 160 ml were withdrawn in aseptic conditions from each culture, centrifuged 10 min at 

15,000 g, and filtered at 0.22 µm on mixed cellulose ester membranes the first two days and then at 

0.45 µm with PES Filtropur S or GMF 0.45 Whatman syringe filters. Samples (50 ml) were then 

processed by off-line SPE and concentrations of 44 micropollutants were determined by UPLC-

MS/MS. At the same time, laccase activity and pH were analysed. Two controls were performed: (i) 

with TWW and wheat straw without inoculation with Trametes pellets, to evaluate the losses of 

pollutants by adsorption onto the straw or by microbial degradation, and (ii) with TWW, wheat straw 

and inactivated (autoclaved) pellets, to evaluate the loss by adsorption onto the pellets. The 

degradation test and the controls were performed in duplicates. 
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9.2.1.11 Long term survival experiment 

To evaluate how long Trametes versicolor could survive in TWW with only lignocellulosic substrates 

as carbon source, the fungus (pure culture) was cultivated in batch submerged culture in sterile TWW 

with either wheat straw or wood chips as sole substrate. Erlenmeyers (1 l) containing 400 ml of 

autoclaved TWW (collected at the outlet of the moving bed bioreactor with nitrification (pH 6.84) in 

Lausanne WWTP), and either 20 g l
-1

 of chopped wheat straw or 100 g l
-1

 of dry beech woodchips, 

were inoculated with 4% (v/v, 0.34 g l
-1

 dry volatile solid) of Trametes mycelial preparation. 

Erlenmeyers were then incubated at 25°C and shaken at 130 rpm during one year. Samples of 1 ml 

were regularly withdrawn in aseptic conditions to monitor pH and laccase activity. 

9.2.1.12 Design of a fungal filter 

Several configurations of fungal filters were tested to find a system that allows the fungus to survive 

while treating efficiently the wastewater. The first configuration tested was a trickling filter, where the 

water, spread at the surface with a shower system, trickled through the unsaturated 

woodchips/mycelium support (detailed results presented by Vargas (2013)). Although this solution 

allowed good development and survival of the mycelium on the wood, probably due to the constant 

unsaturated conditions (closer to their natural habitat), this system was ineffective or not reliable to 

treat water. Indeed, in trickling filters, water follows preferential pathways (unsaturated medium). If 

this is not a big issue in conventional trickling filters, as the biofilm develops where the water (which 

contains the substrate) flows, it was the opposite in our system: the mycelium disappeared where the 

water was flowing (too stressful conditions) and developed well in the more dry wood parts. Addition 

of a soluble substrate, glucose, allowed the growth of Trametes mycelium in the whole filters, 

especially where the water flowed. This led, however, to the clogging of the filter by the mycelium 

and to a short survival (less than 10 d) of Trametes in the system, probably due to the strong 

competition for the glucose. The low and unpredictable contact between the mycelium and the water 

in trickling filters made this system not reliable and not adapted for our purpose. 

As completely saturated conditions, which allow a good contact water-mycelium, were too stressful 

for the fungi (short survival), the idea was to alternate saturated (for good contact water-mycelium) 

and unsaturated conditions (closer to the natural habitat of the fungi). A sequential batch filter was 

thus developed (Fig. 9.2). This filter was composed of a glass column (35.9 mm internal diameter, 250 

mm height) filled at 60% (21 g dry weight) with beech woodchips colonized by the fungal mycelium. 

An electro-valve allowed automatically closing or opening the bottom of the filter. A pump, also 

controlled automatically, allowed filling the column and recirculating the water. This filter worked 

with sequential operations repeated every 5 min (Fig. 9.2): (i) the water to treat, 150 ml per batch cycle 

stored in a 500-ml bottle, was pumped in the filter at a flow of 66.7 ml min
-1

 during 1 min with the 

bottom valve of the filter closed (Filling of the filter). (ii) Water was then left in contact with the 

mycelium during 1 min to allow micropollutant degradation (Reaction time). (iii) The bottom valve 

was then open to drain the filter in the storage tank (Emptying), and (iv), the filter was maintained 3 

min in unsaturated conditions to allow for fungus recovery (Resting time). These sequential operations 

were repeated during 24 h up to several days until micropollutants were degraded. The treated water 

was then discarded manually and replaced by 150 ml of fresh wastewater to start a new batch cycle. 
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The filters were operated during several months with the same wood/mycelium substrate. The duration 

of each operation (1 min reaction time, 3 min resting time) was arbitrary defined based on previous 

experiments. Longer resting times than reaction times were chosen to give more chance to the fungus 

to survive in the system. The phase durations were programmed in an automat which was regulating 

the pump and the valve. This sequential mode of operation was applied for all the experiments 

described below. The set-up was composed of eight columns in parallel (Fig. 9.4 E), working in 

synchronisation, which allowed testing several conditions at the same time. Columns and bottles were 

open to the ambient air (not in a closed sterile environment) to be closer to real conditions in WWTPs 

and the system was operated at ambient temperature (22-24°C). 

 

Fig. 9.2 Configuration and sequential operation of the fungal wood filter. Water was treated in batch mode with periodic 

recirculation (every 5 min) in the filter. Every 1-3 days, the treated water was replaced by raw wastewater and a new batch 

cycle was started. Illustration of the same filter during different times of the process. 

9.2.1.13 Selection of the fungal strain – competition and survival in the filter 

Although Trametes versicolor is known for its ability to degrade many micropollutants, this fungus is 

not necessarily the best suited organism for a fungal filter treating municipal wastewater. Indeed, in 

addition to good degradation capacities, it should also be able to survive long enough in the filter. As, 

in preliminary experiments, we did not succeed to make survive Trametes versicolor in our systems 

more than 1 – 2 weeks (Vargas, 2013), another white-rot fungus was also tested. Based on the advices 

of Dr. Daniel Job (University of Neuchâtel), an expert in applied mycology for industrial processes, 

the fungus Pleurotus ostreatus was selected. Pleurotus ostreatus is known to be more resistant and 

more competitive than Trametes versicolor (D. Job, personal communication and Stamets (2005)) and 
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therefore could possibly resist longer in the fungal filter. These two fungi (Fig. 9.3) are common 

species in temperate climates in Europe (Borgarino and Hurtado, 2011; Stamets, 2005). 

 

Fig. 9.3 Trametes versicolor (left) and Pleurotus ostreatus (right) in their natural environment. Sources: Trametes: 

mycorance.free.fr/valchamp/champi61.htm; Pleurotus: www.mykoweb.com/CAF/species/Pleurotus_ostreatus.html. 

Comparisons between these two white-rot fungi were made for (i) their ability to colonize and to 

compete for woodchips in unsaturated conditions (Competition experiment) and (ii) their performance 

for NPX degradation in synthetic wastewater in the sequential batch fungal filter (Fungal filter 

experiment).  The first experiment is described below, the second in the next section (9.2.1.14). 

9.2.1.13.1 Competition experiment 

Sterile wet beech woodchips were inoculated by mycelium of either Trametes versicolor or Pleurotus 

ostreatus (in pure culture). Once completely colonized, the woodchips were disposed in each side (one 

for each fungus) of a horizontal glass column which contained in the middle fresh autoclaved wet 

woodchips (not inoculated). The column was then incubated in dry conditions at 25°C for 120 d. The 

colonization of the fresh wood by the two fungi or by other organisms present in the column (green 

mould) and any change in the column were regularly visually monitored. This experiment was 

conducted in duplicate. 

9.2.1.14 Micropollutant removal in the fungal filters – continuous operation in synthetic 

wastewater 

The micropollutant removal efficiency of the fungal filters inoculated with P. ostreatus mycelium was 

tested in several long-term experiments (continuous operation) with 10 different micropollutants in 

synthetic wastewater. Synthetic wastewater consisted of (unsterile) tap water in which different 

micropollutants (depending on the experiment) were dissolved at concentration between 5 to 20 mg l
-1

. 

Micropollutants were not spiked from a concentrated stock solution to avoid adding methanol in the 

water. The initial pH of the synthetic wastewater was around 7.8. Tap water, coming mainly from 

Geneva Lake, was selected as a simple model for TWW, as tap water is the main component of 

wastewater and has therefore relatively similar ionic composition. Of course, TWW has a more 

complex matrix, with, in particular, much higher microorganism, DOC and TSS concentrations (cf. 

Table 9.2). Therefore, experiments in real TWW were also conducted in a second stage. 

The fungal filters were operated in sequential reaction/resting phases (5 min cycle) as explained 

before, with water renewed (batch cycles) every 24 h to 7 days. The filters were operated continuously 
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during 40 to 140 d (7 to 31 batch cycles depending on the experiments). Micropollutant residual 

concentrations as well at laccase activity and pH were regularly monitored by withdrawing 2 ml of 

treated water during each sampling. 1 ml was filtered (PP-GMF filters, 0.22 µm) for micropollutant 

analysis (in the few hours following the sampling) and the other was directly used for laccase and pH 

determination. 

Naproxen in synthetic wastewater: Fungi comparison and long term experiment 

Three wood filters inoculated with P. ostreatus mycelium and three other inoculated with T. 

versicolor, as well as two wood filters not inoculated (controls) were tested in parallel for their 

efficiency to treat NPX at 10 mg l
-1

 in synthetic wastewater. After 16 d, only two filters with P. 

ostreatus were maintained and their long term efficiency was monitored during 120 d (31 batch 

cycles). 

Sulfamethoxazole in synthetic wastewater 

Two wood filters inoculated with P. ostreatus mycelium and one wood filter not inoculated (control) 

were tested in parallel for their efficiency to treat SMX at 10 or 5 mg l
-1

 in synthetic wastewater during 

a period of 80 d (21 batch cycles). 

Carbamazepine in synthetic wastewater 

The three filters (two inoculated with P. ostreatus and one control) used for the 80-d experiment with 

SMX were then used to treat CBZ at 10 mg l
-1

 for 60 d more (7 cycles). 

Benzotriazole in synthetic wastewater 

One wood filter inoculated with P. ostreatus mycelium and one wood filter not inoculated (control) 

were tested in parallel for their efficiency to treat BTZ at 10 mg l
-1

 during 64 d (7 batch cycles). 

Mixture of mefenamic acid, diclofenac, bisphenol A, metoprolol, trimethoprim and metformin 

Two wood filters inoculated with P. ostreatus mycelium and one wood filter not inoculated where the 

microbial activity was inhibited with 10 mM sodium azide (inhibited control), were tested in parallel 

for their efficiency to treat a mixture of MFA (20 mg l
-1

), DFC (5 mg l
-1

), BPA (20 mg l
-1

), metoprolol 

(5 mg l
-1

), trimethoprim (5 mg l
-1

) and metformin (10 mg l
-1

) in synthetic wastewater during a period 

of 42 d (14 batch cycles). As MFA, DFC and BPA are oxidized by extracellular laccase, 10 mM of 

sodium azide were added in the samples (1% v/v) for micropollutant analysis just after the sampling to 

stop the reaction (inhibition of laccase activity). 

Near the end of some of these experiments (with NPX, CBZ and BTZ), methanol at 1% (v/v) was 

added in the synthetic wastewater to assess the effect of an external carbon source on micropollutant 

degradation. Methanol consumption was also monitored. 

9.2.1.15 Identification of the removal mechanisms 

Several removal mechanisms may happen in the filters: adsorption, fungal degradation (by the whole 

cells or by extracellular enzymes) or microbial degradation by native microorganisms. To identify the 
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main removal mechanisms, several strategies were applied: (i) control experiments with wood filters 

not inoculated with fungal mycelium, to study the adsorption on the wood and the microbial 

degradation, (ii) biological activity inhibition in the filters by addition of 10 mM of sodium azide 

(azide anions inhibit several metabolic functions, such as the activity of cytochrome oxidases 

(respiratory inhibition), catalases, peroxidases, laccase, ATPases, etc. (Rachutin Zalogin and Pick, 

2014)) to evaluate the effect of adsorption alone (on the wood or on the wood colonized by the 

mycelium), (iii) desorption experiments (batch cycle with synthetic wastewater without pollutant) to 

measure the desorption of the pollutants from the wood/mycelium, and thus evaluate the importance of 

the adsorption phenomenon, (iv) modelling of adsorption kinetics/equilibrium and biodegradation 

kinetics to confirm the main removal mechanisms, and (v) degradation experiments with cell-free 

supernatants from the filters to evaluate the role of extracellular enzymes, or with whole supernatants 

to evaluate the role of the free compared to the fixed biomass. These different strategies were applied 

for some micropollutants, mainly NPX, during the experiments described in section 9.2.1.14.  

9.2.1.16 Micropollutant removal in the filter –continuous operation with real municipal 

wastewater 

As the synthetic wastewater contains much less microorganisms, TSS and DOC than real treated 

wastewater, two experiments in real TWW were performed to evaluate their impact on the efficiency 

of the fungal filters: (i) with TWW spiked with NPX at 10 mg l
-1

, and (ii) with TWW at the real 

micropollutant concentrations (not spiked).  

NPX in treated wastewater 

TWW was collected (20 l of 24-h composite sample) on 16 January 2014 in the effluent of the moving 

bed bioreactor (with partial nitrification, 6.6 mg N-NH4 l
-1

) at the WWTP of Lausanne. As there was a 

problem with the secondary clarifier, the sample contained high concentrations of TSS and was 

therefore centrifuged 20 min at 6200 g to reduce the TSS content. The whole TWW was then stored at 

4°C and progressively used as raw water for each new batch cycles of the experiment. 

Two wood filters inoculated with P. ostreatus mycelium and one wood filter not inoculated (control) 

were tested in parallel for their efficiency to treat NPX at 10 mg l
-1

, dissolved in real TWW, during a 

period of 140 d (29 batch cycles). NPX, laccase activity and pH were regularly monitored. 

Treated wastewater in real conditions 

TWW was collected (20 l of 24-h composite sample) on 12 June 2014 in the effluent of the moving 

bed bioreactor (with partial nitrification, 9.2 mg N-NH4 l
-1

) at the WWTP of Lausanne. The composite 

sample was well mixed (homogenized) and then separated in 20 individual bottles of 1 l each, directly 

frozen at -18°C. One day prior starting a new batch cycle with the fungal filters, one bottle of TWW 

was thawed at 4°C and then used for the batch cycle (150 ml per filters). This procedure allowed 

having very similar raw TWW for every batch cycles. 
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Fig. 9.4 Pictures of (A) beech woodchips, (B) columns used for the wood filters, (C) columns with woodchips colonized 

by P. ostreatus mycelium, (D) woodchips colonized by T. versicolor mycelium, (E) setup of eight filters in parallel with 

the electrovalves and the bottles, (F) woodchips colonized by a green mould, (G) development of a green mould in a 

fungal filter, (H) wheat straw colonized by T. versicolor mycelium, (I) large woodchips colonized by T. versicolor 

mycelium, (J) occasional appearance of P. ostreatus mushrooms out of the woodchips colonized by the mycelium. 
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Three wood filters inoculated with P. ostreatus mycelium, one wood filter inoculated with the fungus 

but inhibited with 10 mM sodium azide (inhibited fungus control) and one not-inoculated wood filter 

(wood control) were tested in parallel for their efficiency to treat micropollutants at real concentrations 

in TWW, during a period of 64 d (14 batch cycles). Micropollutant concentrations, laccase activity and 

pH were regularly monitored. During each sampling, 16 ml (out of 150 ml initially) were withdrawn 

from each filter and filtered at 0.22 µm (PP-GMF filters). 2 ml were directly used to determine laccase 

activity and pH, and the other 14 ml were spiked with 10 mM sodium azide to inhibit laccase activity 

and then frozen at -18°C until micropollutant analysis. A total of 44 micropollutants were analysed by 

on-line SPE followed by UPLC-MS/MS. At the end of each cycle, 15 ml, also filtered at 0.22 µm, 

were sampled for DOC analysis. Eight short batch cycles of 48 h each were performed at the 

beginning of the experiment to progressively reach the adsorption equilibrium in the wood, and then 

three long cycles of 5 and 18 d were carried out to assess slow degradation kinetics. Finally, three last 

batch cycles were performed after 55 d of operation. For these three cycles, the microbial activity in 

the wood control was inhibited with 10 mM sodium azide. Micropollutant analyses were done at the 

beginning (raw TWW) and at the end (after 48 h) of each cycle (apart for the 12
th
 and 13

th
 cycles, not 

analysed). During the 9
th
 and 14

th
 cycles, kinetics of micropollutant removal were monitored during 5 

d. 

9.3 Results and discussion 

9.3.1 Growth inhibition assay for Trametes versicolor 

As presented in Fig. 9.5, no growth inhibition of Trametes versicolor was observed with eight out of 

the nine micropollutants tested at 10 mg l
-1

. These micropollutants did not have any toxic effect at this 

concentration. Any significant difference in growth rate was neither observed between the control and 

the medium with 1% methanol. Methanol appeared to be not toxic at this concentration. However, 

with the antibiotic sulfamethoxazole (SMX), the growth was completely inhibited in the eight 

replicates tested. SMX was thus already toxic at 10 mg l
-1

, meaning that lower concentrations should 

be used in degradation experiments.  

 

Fig. 9.5 Growth curve (optical density) of Trametes versicolor in malt extract medium with 10 mg l-1 of micropollutant 

(with 1% methanol). Control: inoculum in malt extract medium without any pollutant. Average of 4 to 8 replicates. 
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9.3.2 White-rot fungi as a replacement of laccase-mediator systems 

Oxidation of micropollutants by laccase with the help of mediators showed interesting potential for the 

treatment of toxic and highly concentrated wastewaters (cf. Chapter 7). However, as also shown in 

Chapter 7, high concentrations of mediators are required and the mediator itself can generate toxic 

effects. An alternative to adding mediators would be to use directly the organisms that produce 

laccase. Indeed, it is known that white-rot fungi such as Trametes versicolor, in addition to produce 

high amount of laccase, have the ability to degrade pollutants by several other mechanisms, such as 

with other oxidative enzyme (cytochrome P450, peroxidases) (Yang et al., 2013b), or by producing 

natural mediators during degradation of complex substrates (lignin) which could enhance the action of 

laccase (Li et al., 2014). The potential of Trametes versicolor to degrade three pollutants oxidized by 

laccase-mediator systems, NPX, IPN and SMX, was therefore tested, as a possible alternative 

treatment to laccase-mediated systems.  

 

Fig. 9.6 (A) Naproxen (NPX, at 10 mg l-1) degradation by Trametes versicolor at different initial pH values in UAB 

medium. (A.2) Zoom on NPX degradation during the first hours of incubation. (B) pH evolution during NPX 

degradation tests. (C.1) Laccase activity evolution during the test. (C.2) Zoom on laccase activity during the first 2 d 

of the test. (D) Evolution a glucose concentrations during the experiment. Average and values (error bars) of duplicate. 

Azide: control with inhibited fungus with 10 mM sodium azide. 

As presented in Fig. 9.6 A.1, NPX was completely removed in less than 12 h at pH 5.5 in a defined 

growth medium containing glucose, and not significantly removed in the control with inhibited fungal 

pellets. NPX was therefore rapidly degraded by Trametes versicolor, as also reported in other studies 

(Marco-Urrea et al., 2010a). At pH 6.5 and 7.4, the degradation kinetics were much slower during the 

first hours of incubation (Fig. 9.6 A.2), but accelerated subsequently, together with a drop of pH (Fig. 

9.6 B), to reach 98% and 84% removal after 24 h, at pH 6.5 and 7.4, respectively (Fig. 9.6 A.1). The 

degradation kinetics were therefore pH dependant, becoming faster in acidic pH, similar to what was 

observed with laccase or laccase-mediated reactions (cf. Chapter 6 and Chapter 7). This indicates that 
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enzymatic reactions were probably participating in the degradation. Laccase may be involved (in a 

mediated reaction), but it is more likely due to other oxidative enzymes such as cytochrome P450 

(Marco-Urrea et al., 2010a). No significant difference in glucose consumption rates (Fig. 9.6 D) and 

extracellular laccase production (Fig. 9.6 C.2) were, however, observed between the cultures at three 

different initial pH values. Although pH affected NPX degradation kinetics, it did not seem to impact 

the fungal metabolism. Laccase production continued several days after complete glucose 

consumption, reaching very high activity, up to 2000 U l
-1

, after 30 d of incubation (Fig. 9.6 C.1).    

As presented in Fig. 9.7 A, both IPN and SMX were completely degraded in less than 4 d by Trametes 

versicolor. Despite high initial SMX concentrations were used (10 mg l
-1

), no fungal activity inhibition 

was observed, whereas the same concentrations inhibited completely fungal growth (cf. section 9.3.1). 

SMX and IPN are known to be degraded by several white-rot fungi (Del Pilar Castillo et al., 2001; 

Guo et al., 2014; Rodarte-Morales et al., 2011), but this is the first time that Trametes versicolor 

shows IPN degradation ability. The removal could be attributed to degradation/transformation and not 

to adsorption onto the mycelium as no (for IPN) or only limited removal (for SMX) were observed in 

the control with inactivated biomass. The removal rate correlated well with the glucose consumption 

(Fig. 9.7 D) but not with the laccase activity (Fig. 9.7 C), which increased only once all glucose was 

consumed. This suggests that laccase was not directly involved in the degradation.  

 

Fig. 9.7 (A) Sulfamethoxazole (SMX, 10 mg l-1) and isoproturon (IPN, 10 mg l-1) degradation by Trametes versicolor in 

UAB medium. (B) pH, (C) laccase activity and (D) glucose concentration evolutions during the experiment. Average 

and values (error bars) of duplicate. Azide: controls with inhibited fungus with 10 mM sodium azide. 

The drop of pH observed in all the culture media (at the three initial pH values, with the three 

pollutants), reaching at the end pHs between 2.5 and 5, was related to glucose metabolism, as the 

decrease in pH stopped once all glucose was consumed. Indeed, it was observed in several previous 
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experiments (Contijoch, 2014; Vargas, 2013) that glucose consumption by with-rot fungi was related 

to pH drop in the medium. This pH drop was not due to the production of CO2, which could acidify 

the water by dissolution (carbonic acid formation), as no increase in pH was observed after stripping 

the CO2 with nitrogen gas. White-rot fungi are known to produce extracellular organic acids (such as 

oxalic acid) during their metabolism (Mäkelä et al., 2002). Oxalic acid is thought to be produced by 

wood-degrading fungi to weaken the wood structure and thus increasing the pore size to permit 

penetration by lignocellulolytic enzymes (Hastrup et al., 2012) and possibly to inhibit bacterial growth 

(de Boer and van der Wal, 2008). Other studies showed that the pH decrease in the growth media of a 

mixed culture of fungi and bacteria was related to the excretion of gluconic acid, which results from 

the conversion of glucose by glucose dehydrogenase. No pH decrease was reported with other sugars 

(mannose, galactose) (Romano and Kolter, 2005). Although organic acid excretion was not analyzed, 

this was the most probable explanation for the pH drop observed. 

The ability of Trametes versicolor to degrade these three pollutants suggests that white-rot fungi may 

have higher potentials for micropollutant degradation in (not highly toxic) wastewater compared to 

laccase-mediator systems. 

9.3.3 Micropollutant degradation in real wastewater by Trametes versicolor in 

submerged batch cultures  

The potential of Trametes versicolor for micropollutant removal in real treated wastewater was tested 

in a batch experiment of 14 d in submerged cultures with wheat straw as sole external substrate 

addition. Although TWW was filtered to limit microbial competition and the wheat straw autoclaved, 

the water was not sterile. This resulted in important microbial growth, especially in the control with 

heat-killed fungal pellets (lots of substrate available). As it became very difficult to filter the samples 

(due to the microbial development), not all samples from each duplicate of the controls were analysed. 

Moreover, some samples at the beginning of the experiment (with the two controls) were lost due to a 

problem during the SPE. Despite these analytical problems, the removal kinetics could be determined 

for 23 micropollutants detected in the TWW (Fig. 9.8, Fig. 9.9 and Fig. 9.10). 

Three micropollutants, DFC, MFA and NPX were completely removed in less than 2 d with the active 

fungus, while no clear removal was observed in the controls (Fig. 9.8 A). These three pollutants were 

present in relatively high concentrations in TWW (400-800 ng l
-1

). Two other pollutants, IPN and 

gemfibrozil, were also clearly better removed with the active fungus (Fig. 9.8 A). For gemfibrozil, 

complete disappearance was observed after 2 d, followed by an increase in the concentration after 4 d. 

This increase, apart from possible analytical issues, may be due to up-take of gemfibrozil inside the 

fungal cells when the fungus was active and then release in the medium when the fungus died (cell 

lysis). In any case, gemfibrozil was partially removed from the water by T. versicolor, probably by 

degradation as reported by Nguyen et al. (2013). DFC and MFA are known to be degraded by laccase 

and high laccase activity was measured after one day of experiment (280 U l
-1

 and pH 6.3) (Fig. 9.8 

B), suggesting that laccase was, at least partially, involved in their removal. Degradation of NPX and 

IPN by T. versicolor was already demonstrated at high concentrations (cf. section 9.3.2).The ability of 

the fungus to degrade all these pollutants even at very low concentrations (ng l
-1

 to µg l
-1

) is therefore 

very promising. 
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Fig. 9.8 (A) Micropollutants well removed only with the active fungus (fungal degradation). Average and standard 

deviation of the residual micropollutant concentrations in wastewater of duplicates with (i) Trametes versicolor pellets and 

wheat straw (◊, Fungus), (ii) killed (autoclaved) Trametes versicolor pellets and wheat straw (▲, Killed fungus), and (iii) 

only wheat straw (■, Straw control). (B) Evolution of laccase activity (with the active fungus) and pH in the medium during 

the experiment. 

Six other micropollutants were partially removed from the TWW treated with the active fungus but 

also in the two controls: SMX, BTZ, gabapentin, atenolol, methylbenzotriazole and metronidazole 

(Fig. 9.9). Their removal can therefore not be attributed only to fungal degradation. As shown in 

section 9.3.2, SMX, at high concentrations, can be degraded by T. versicolor, and was therefore 

probably also degraded by the fungus in TWW. For atenolol, the removal was probably due to 

microbial degradation as very different removal kinetics were observed between the two replicates 

with the killed fungus: the native microbial community needed probably more time to developed in 

one replicate compared to the other. For BTZ and methylbenzotriazole, two pollutants found in high 

concentrations in TWW (4-8 µg l
-1

), as well as for metronidazole, it is not clear if the removal was due 

to slow adsorption onto the wheat straw, slow microbial degradation or a combination of both. These 

three compounds had good adsorption affinities for powdered activated carbon (PAC) (cf. Chapter 3), 

and, therefore, adsorption onto wheat straw may be significant. Gabapentin, on the contrary, had very 

low affinity for PAC and was thus not expected to be significantly adsorbed. The lower removal in the 

control with wheat straw, which presented less microbial growth than the two other media, suggests 

also that microbial degradation was probably the main removal mechanism for gabapentin. 
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Fig. 9.9 Micropollutants removed in all conditions (by adsorption or biodegradation). Average and standard deviation of 

the residual micropollutant concentrations in wastewater of duplicates with (i) Trametes versicolor pellets and wheat straw 

(◊, Fungus), (ii) killed (autoclaved) Trametes versicolor pellets and wheat straw (▲, Killed fungus), and (iii) only wheat 

straw (■, Straw control). For Atenolol, the two replicates with the killed fungus are presented, as they were very different. 

Twelve other micropollutants were not or only poorly (< 50%) removed during the 14 d of experiment 

(Fig. 9.10). This included the X-ray contrast media iopamidol, iohexol and iomeprol, as well as the 

antidiabetic metformin, found in very high concentration in TWW (4 – 60 µg l
-1

), several other 

pharmaceuticals (carbamazepine, bezafibrate, metoprolol, sotalol and primidone) and three pesticides 

(mecoprop, atrazine and terbutryn). The persistence of carbamazepine and the X-ray contrast media, 

compounds which were reported to be degraded by T. versicolor (Gros et al., 2014; Jelic et al., 2012), 

suggests that either (i) these compounds could not be degraded by the fungus in the conditions tested 

(near neutral pH, real TWW), (ii) other external energy sources or addition of nutrients (nitrogen) were 

necessary to degrade these compounds (Zhang and Geißen, 2012), or (iii) the fungus did not survive 

long enough to degrade significantly these pollutants. Indeed, as shown in Fig. 9.8 B, the fungus was 

very active the first two days of the experiment (strong increase in laccase activity and decrease in 

pH), but, after two days, laccase activity dropped rapidly and was negligible after 7 d. At the same 

time (after 2 d), a strong microbial development was observed (high turbidity) in the water containing 

the fungal pellets, together with an increase in pH (Fig. 9.8 B). This suggests that the fungus died after 

2-3 d and that the fungal pellets and enzymes were used as substrate for the development of other 

microorganisms.  

This experiment showed that, although several micropollutants were not affected, several others, 

including persistent compounds such as DFC, MFA and NPX, could be rapidly removed from real 

TWW by means of a fungal treatment with T. versicolor. However, T. versicolor was not able to 

survive more than one week in submerged cultures in real unsterile treated wastewater. The long-term 

survival of the fungus in the process was therefore the main challenge in order to potentially develop a 

fungal treatment able to remove micropollutant from municipal wastewater. 
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Fig. 9.10 Micropollutants not or poorly removed (less than 50%) in all conditions during the 14 d of experiment. 

Average and standard deviation of the residual micropollutant concentrations in wastewater of duplicates with (i) Trametes 

versicolor pellets and wheat straw (◊, Fungus), (ii) killed (autoclaved) Trametes versicolor pellets and wheat straw (▲, 

Killed fungus), and (iii) only wheat straw (■, Straw control). 

9.3.4 Long term survival of T. versicolor in submerged cultures 

The short survival time of T. versicolor in real TWW with lignocellulosic substrate as sole carbon 

source, observed in the previous section, could be due to two main causes: (i) the substrate (wheat 

straw) was not adapted to maintain the fungus alive (or active) more than one week, or (ii), the fungus 

was not able to survive in the presence of other microorganisms (competition for the substrate, 

predation, etc). The first assumption was tested by growing T. versicolor mycelium in sterile TWW 

(submerged culture) with either wheat straw or beech woodchips as sole carbon source and by 
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monitoring its long term activity. These conditions were close to the ones of the previous test (section 

9.3.3), with the difference that a pure culture of T. versicolor was used (no competition or predation 

possible). As presented in Fig. 9.11, laccase activity stayed at a relatively stable level during one year 

of incubation, with both wheat straw and woodchips. As laccase is not stable (half-life of 3 d) at the 

pH found in the culture media (pH 4.2 with woodchips) (cf. Chapter 8), a continuous laccase 

production was necessary to maintain this level of activity. Therefore, T. versicolor could survive and 

was still active after 363 d of incubation in TWW with wheat straw or woodchips as sole carbon 

sources. This suggests that the low survival of T. versicolor in unsterile TWW was due to competition 

or predation by other microorganisms, together with the stress of prolonged immersion in water. 

By comparison, T. versicolor was reported to survive 2 – 5 y in wood logs in natural environment 

(Boddy and Heilmann-Clausen, 2008). In natural conditions, high water contents in the wood impose, 

however, poor aeration, restricting aerobic processes and resulting in mycelia death if prolonged 

(Boddy and Heilmann-Clausen, 2008).  

 

Fig. 9.11 Evolution of (A) laccase activity and (B) pH in the submerged pure cultures of Trametes versicolor inoculated 

in sterile treated wastewater with either wood chips (Wood) or chopped wheat straw (Straw) as sole substrate. 

Experiment in duplicates (1 and 2). Incubation at 130 rpm and 25°C. 

9.3.5 Strategy to increase the survival of white-rot fungi in unsterile systems 

The survival of white-rot fungi in submerged environment in unsterile systems is a real challenge. 

Indeed, aqueous media are very far from the natural habitat of these fungi, which live on dry dead 

wood. Despite the strategy to use lignocellulosic substrate in submerged culture to avoid strong 

competition for the substrate with other organisms, submerged conditions in TWW were too harsh for 

the fungi, not allowing them to resist against predation or competition with other microorganisms.  

The strategy chosen was therefore to develop a process where the fungi would be closer to their 

natural habitat. Hence the idea to develop a fungal filter made of woodchips colonized by the fungal 

mycelium, with an alternation of saturated (to treat the pollutants) and unsaturated phases (to allow for 

fungus recovery). This sequential batch fungal filter is presented in details in section 9.2.1.12. 
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9.3.6 Selection of the wood species as support/substrate in the fungal filters 

Prior to testing the fungal filter, it was necessary to choose a wood species adapted for the growth of 

the mycelium. Observations made in the forests of the Swiss Plateau revealed that Trametes versicolor 

was growing mainly on oak and beech logs or tree stumps. These two wood species, as well as a few 

other species (ash, birch and spruce) were tested for the mycelium development of Trametes 

versicolor and Pleurotus ostreatus. Both fungi were able to colonize all the wood species, but the rate 

of colonization and the biomass produced (only visually quantified) were higher on beech and oak 

wood for both fungi. Beech was indeed reported to be the most common host tree species for wood-

degrading fungi in Switzerland (Küffer et al., 2008). Spruce woodchips was the substrate with least 

mycelial development, which is coherent with the natural habitat of these two fungi, mainly on dead 

deciduous and only very rarely on dead conifers (Borgarino and Hurtado, 2011). As beech is one of 

the most common tree species in the Swiss plateau, and thus easily available, it was selected as 

support/substrate for the fungal filters. 

Although the mycelium of both fungi developed well on the wet and sterile woodchips without 

addition of any other substrates or nutrients (Fig. 9.4 C, D, H, I), T. versicolor produced much more 

biomass and grew much faster than P. ostreatus, covering completely the substrate in 5 days and 

clogging completely the woodchips in 2-3 weeks. P. ostreatus grew more in a filamentous way 

(mycelium propagation), colonizing slowly the wood substrate (complete colonization in three weeks) 

without producing a lot of biomass (no clogging observed). More detailed results of this experiment 

are presented elsewhere (Contijoch, 2014; Vargas, 2013). 

9.3.7 Selection of a fungal strain - Colonization and competition for fresh 

woodchips 

As described in section 9.2.1.13, T. versicolor, despite its ability to degrade many micropollutants, 

was not necessarily the most adapted strain for the fungal filter, as it was very challenging to make it 

survive more than 10 d in an unsterile environment. Another more resistant and more competitive 

white-rot fungus, P. ostreatus, was therefore also tested. 

The ability of the two fungi to colonize and compete for fresh wet woodchips (incubated in dry 

conditions in a glass column, with the two fungal mycelium inoculated in each side) was compared. 

As presented in Fig. 9.12, after 7 d of incubation, the fresh wood started to be colonized by a green 

mould, naturally present in the ambient environment.  After 11 d, this green mould started to colonize 

also the area already covered by T. versicolor mycelium (parasitism), but not the one with P. 

ostreatus. After about 21 d, P. ostreatus started to colonize the fresh wood, despite the presence of the 

green mould and finally dominated all the woodchips in the column. 

This experiment showed that P. ostreatus had the ability to resist and to compete with the green 

mould, and to colonize slowly all the fresh wood, whereas T. versicolor mycelium was rapidly 

colonized by the green mould, without showing any mycelial invasion in the fresh wood area. These 

two fungi had therefore different strategies of wood colonization, with, for T. versicolor, fast growth 

and low competitiveness, and for P. ostreatus, longer lifespan, slower growth and higher 

competitiveness.   
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Fig. 9.12 Evolution of the wood colonization by Trametes versicolor (inoculated on the left of the first red line), 

Pleurotus ostreatus (inoculated on the right of the second red line) and the green mould (not inoculated, naturally 

present in the wood).  Yellow line and arrow: evolution of the front line of the Pleurotus colonization. Same results were 

observed in the duplicate experiment. 
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The type of green mould was not identified but it is known that several fungi of the genus 

Cladosporium, Aspergillus, Penicillium or Trichoderma can produce green spores forming the mould. 

Trichoderma spp. are especially known for their ability to attack other fungi to access to nutrients 

present in their cells, causing their death (Hatvani et al., 2012) . Moreover, Pleurotus is known to be 

more resistant than Trametes to the infection by Trichoderma spp. (Daniel Job, UNINE, personal 

communication), which is consistent with our observations. 

To better understand the effect of the presence of other microorganisms on the development of white-

rot fungi in natural environment, the interactions between fungi and between white-rot fungi and 

bacteria are discussed below. 

Interaction between fungi 

In wood, interactions between fungi are mainly (i) parasitism, where the parasitic fungus penetrates or 

lyses the cells of the host fungus to access to nutrients (Woodward and Boddy, 2008), or (ii) 

competition for space, as occupancy of territory (wood) is the only other way for the fungus to access 

the nutrients (Boddy and Heilmann-Clausen, 2008). Wood-inhabiting fungi have thus developed 

several different strategies to colonize dead wood, classified in three main categories: (i) competitive 

(C-selected), (ii) stress-tolerant (S-selected) and (iii) ruderal (R-selected), depending on the speed of 

the mycelium invasion, the tolerance to nutrient stress, the rate of growth, etc. One fungus can apply 

several of these strategies during its life-cycle and can thus have some characteristics of the three 

categories. R-selected fungi are favoured in the relative absence of stress in uncrowded environments 

resulting of a disturbance. They are characterized by their ability for rapid reproduction, effective 

dispersal, utilisation of simple easily available organic substrates (narrow enzymatic ability), and rapid 

growth. C-selected fungi are combative fungi favoured in relatively non-stressed, undisturbed 

conditions. They increasingly extend their territory, leading to competition with other fungi. They are 

characterized by long-life expectancy and wide enzymatic ability. S-selected fungi have the ability to 

cope with a particular abiotic stress or set of stresses, slow or intermittent reproduction and often slow 

growth (Boddy and Heilmann-Clausen, 2008). As the wood properties changes during its decay, 

different fungal species may succeed each other when the conditions become more adapted for another 

species. When fresh dead wood is available in non-stressful conditions, fungi with a preponderance of 

R-selected characteristics will first colonize the wood (early stage of decomposition). As colonization 

proceeds leading to no more uncolonized territory available, fungi with more C-selected characteristics 

begin to dominate (middle stage of decomposition). Once the wood resource is used up (which can 

take 3 to 9 years in small or large logs) and the main proportion of nutrient is contained within living 

mycelium or bacteria, C-selected fungi begin to decline and are possibly replaced by other fungi with 

more R-selected properties (Boddy and Heilmann-Clausen, 2008). 

Trametes spp. are classified as secondary combative invaders, with a preponderance of both R and C-

selected characteristics (Boddy and Heilmann-Clausen, 2008). This is coherent with our observation, 

with a rapid growth and reproduction (R-selected), and wide enzymatic ability (C-selected). Pleurotus 

ostreatus seems to have mostly C-selected characteristics (very competitive, long-life expectancy and 

wide enzymatic ability).The green mould can be clearly classified as a R-selected fungus, with rapid 

growth on uncolonized wood, probably narrow substrate range (fungal parasite) and effective 
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dispersal. After the early stage of colonization, the green mould was replaced by Pleurotus ostreatus 

(secondary invader). 

The ecological characteristics of the two white-rot fungi suggest that P. ostreatus is more adapted for a 

long term survival in the fungal filter. Contrary to T. versicolor, it has the ability to compete with the 

green mould, to colonize fresh wood, and, due to its slow growth, it will not clog rapidly the filter with 

its mycelium. 

Interaction between white-rot fungi and bacteria  

During wood degradation by white-rot fungi, the environmental conditions become very selective for 

bacteria because of rapid and strong acidification (production of organic acid by the fungi), production 

of reactive oxygen species and secretion of fungal secondary metabolites with antimicrobial activity. 

Bacteria that resist to these conditions may profit from the degradation activity of the fungi. Indeed, 

white-rot fungi exude many different extracellular enzymes and secondary metabolites, involved in the 

degradation of wood polymers (lignin, cellulose, hemicelluloses, etc.). The oligomers released are the 

main growth substrate for the fungi. These compounds, as well as the secondary metabolites and the 

extracellular enzymes released, are also appropriate substrate for bacteria. Thus, despite most bacteria 

cannot degrade wood, they can compete with the fungi for the lower molecular weight compounds 

released, depriving them for their main growth substrate (de Boer and van der Wal, 2008). Moreover, 

predation of fungal mycelium by some bacteria was also reported (bacterial mycophagy). However, 

predation of bacteria (cell lysis) by white-rot fungi seems more frequent. Fungi may use bacteria as a 

valuable source of nitrogen (de Boer and van der Wal, 2008). In short, bacteria may compete for the 

growth substrate of the fungi. To deal with that, white-rot fungi developed different strategy to inhibit 

bacterial growth (predation, acidification, or antimicrobial compounds production). These strategies 

are expected, however, to be less efficient in submerged environment, due to rapid dilution of the 

organic acids and antimicrobial agents produced (loss of the inhibitory properties). 

Most bacteria cannot degrade complex and difficult to access wood polymers. Fresh dead wood is, 

however, rapidly colonized by bacteria, which grow on easily degradable substrates like sugars, 

organic acids, pectin and easily accessible cellulose. The bacterial community that develops on the 

fresh dead wood may therefore inhibit or delay colonization of the wood by white-rot fungi (de Boer 

and van der Wal, 2008). Addition of dead wood in wastewater may also support the growth of bacteria 

for a certain period.  

9.3.8 Selection of a fungal strain - Comparison of the efficiency of the two fungi 

to remove naproxen in the fungal filter 

Although P. ostreatus seemed, according to its ecological characteristics, more adapted for long term 

survival in the filter, it was necessary to test its efficiency for micropollutant removal and its real 

survival in the filter, in comparison to the well known T. versicolor. NPX was selected as a model 

compound, due to its good degradability by T. versicolor and its low degradability by bacteria. The 

filters were operated in sequential batch mode during 16 d (8 batch cycles) with synthetic wastewater, 

with three filters with P. ostreatus and three with T. versicolor. 
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As presented in Fig. 9.13 (A.1 for Trametes and B.1 for Pleurotus), NPX was completely removed by 

both fungi in less than 24-48 h during the three first batch cycles. During the first cycle, important and 

fast removal was also observed in the wood controls (filters not inoculated), due to adsorption onto the 

wood chips. In the next cycles, the removal in the controls strongly decreased, as the adsorption 

equilibrium with the initial concentration was progressively reached (no more removal after three 

cycles). This effect was not observed in the filters with the active fungi, demonstrating that, in these 

filters, the removal was mainly by fungal biodegradation.  

Both fungi were well active (laccase production) during the three first cycles (7 d) (Fig. 9.13 A.2 and 

B.2), but from the 4
th
 cycle on, the activity of T. versicolor decreased drastically in all the replicates. 

At the same time, NPX removal efficiency decreased rapidly in all the filters with Trametes. From the 

4
th
 cycle on, NPX was probably not any more degraded but only removed by adsorption onto the 

wood/mycelium. This was confirmed by inhibiting Trametes in one replicate (Fungus 1) at the 5
th
 

cycle: no differences in NPX removal between the active and inhibited filters were observed, meaning 

that adsorption was the main removal mechanism. After 6 cycles (11 d), NPX was not anymore 

removed in the filters with T. versicolor. 

With P. ostreatus, on the contrary, no decrease in fungal activity or in NPX removal efficiency was 

observed during the 16 d of operation. Even in the last cycles, NPX was still almost completely 

removed in less than 24 h. To confirm that the removal was due to fungal degradation and not 

adsorption onto Pleurotus mycelium, at the 5
th
 cycle, the fungus was inhibited in one replicate (Fungus 

1). A rapid decrease in NPX removal efficiency was observed in the inhibited filter (no more removal 

after three cycles), while the two other active filters performed as well as before, confirming the fungal 

degradation. 

As also observed in pure submerged cultures (section 9.3.2), the pH seemed to influence NPX 

degradation kinetics in the filters. Indeed, despite an initial pH in the synthetic wastewater of 7.8, fast 

drop of pH to 4.5 – 5 was observed in all the filters during the first cycle (Fig. 9.13 A.3 and B.3). This 

initial pH drop, also observed in the wood controls, was probably related to the release of soluble 

organic acids from the wood (Risholm-Sundman et al., 1998) or to the natural acidity of wood (Landi 

and Staccioli, 1992). Acidification was stronger, especially after the first cycle, in the filters containing 

the fungi compared to the wood controls. This was probably due to the fungal production of low 

molecular weight acids (such as oxalate) (Plassard and Fransson, 2009), as discussed in section 9.3.2. 

NPX removal in the fungal filters was faster during the two first cycles, when the pH was below 6, 

which was probably related to stronger adsorption and faster degradation at low pH. NPX was, 

however, still relatively rapidly degraded by Pleurotus in the next cycles, although the pH stayed 

between 6.5 and 8. The ability of P. ostreatus to degrade NPX even in neutral-alkaline conditions is 

therefore a great advantage for municipal wastewater treatment compared to laccase-mediator systems 

(efficient only in acidic pH). 

Very similar results were observed between the three replicates for both fungi, showing the very good 

reproducibility of the treatment in the sequential batch fungal filters, and this even with open system 

(not sterile) with complex removal mechanisms (adsorption and biodegradation). This filters 
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configuration, with alternation of submersion/drainage, was thus much more reliable than the trickling 

filters (cf. section 9.2.1.12). 

 

Fig. 9.13 Kinetics of naproxen removal (A.1, B.1) during the batch cycles (◊ numbered) in three filters (Fungus 1, 2 

and 3) inoculated with (A) Trametes versicolor and (B) Pleurotus ostreatus, and in a wood filter not inoculated (Wood 

control). Evolution of laccase activity (A.2, B.2) and pH (A.3, B.3) during the batch cycles. The synthetic wastewater 

was renewed at each batch cycle. Arrow (batch cycle 5): inhibition of the biological activity (azide addition) in the fungal 

filter 1. 
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Despite, at the beginning, laccase activity in the filters with Trametes was almost three times higher 

than with Pleurotus, leading to slightly faster NPX degradation kinetics, T. versicolor was not active 

anymore in the filters after 7 d of operation. The sequential batch fungal filter was therefore 

unsuccessful to keep T. versicolor active in the system. On the contrary, and confirming the results of 

the colonization/competition test, P. ostreatus efficiently removed NPX and kept the same activity 

during the 16 d of operation. P. ostreatus was therefore clearly more adapted for this type of filter and 

these conditions. This fungus was thus selected for all the following experiments with the fungal filter. 

 

Fig. 9.14 Kinetics of naproxen removal (A) during the batch cycles (◊ numbered) in three filters (Fungus 1, 2 and 3) 

inoculated with Pleurotus ostreatus, in synthetic wastewater containing 1% methanol. Evolution of laccase activity (B) 

and pH (C) during the batch cycles. (D) Comparison of removal kinetics with or without methanol. 

9.3.8.1 Effect of methanol addition 

Methanol, due to its low cost, is often used as an external substrate to stimulate processes such as 

denitrification in WWTPs. Addition of another easy substrate in the fungal filters, such as methanol, 

could also maybe stimulate the fungal activity. Three fungal filters with P. ostreatus were thus 

operated in parallel to treat NPX in synthetic wastewater containing 1% of methanol. As shown in Fig. 

9.14, NPX was well removed in the three filters during the seven batch cycles performed, similar to 

the results of the filters without methanol (Fig. 9.13 B.1). In the three first cycles, laccase activity 

increased rapidly up to 565 U l
-1

, which was seven times higher than the maximum observed in the 

same filters without methanol. Despite this much higher laccase activity, the kinetic of NPX removal 

was, however, not different than the one in the filters without methanol (Fig. 9.14 D). Moreover, in the 

three filters, a green mould appeared on the wood and mycelium after 6 days, and developed with 

time. This coincided with a rapid decrease in laccase activity in the next cycles. Methanol was thus 
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probably stimulating laccase activity, but did not increase NPX removal kinetics, and favoured the 

development of the green mould (parasite of the fungus). Similar observations (laccase activity 

stimulation but green mould development) were made in a previous study with T. versicolor when 

glucose was added in the columns (Vargas, 2013). Addition of an easy substrate should thus be avoid 

to allow long-term operation (and activity) of the fungal filter. 

9.3.9 Efficiency of the fungal filter to remove micropollutants from synthetic 

wastewater 

As the sequential batch fungal filter with P. ostreatus proved to be efficient to treat NPX in synthetic 

wastewater during 16 d of operation, longer-term operation with several other micropollutants (at high 

concentrations in synthetic wastewater) were tested to evaluate the potential of this system. 

9.3.9.1 Naproxen 

As the two fungal filters with P. ostreatus of the previous experiment (section 9.3.8) were still active 

after 16 d (8 cycles), their operation was continued during almost 120 d to study their long term 

behaviour and efficiency to treat NPX (Fig. 9.15). From day 16 to 28 (13 d), the filters were not 

controlled and the synthetic wastewater was not renewed. During this period, the valve of one filter 

(Fungus 2) got blocked and the mycelium stayed in complete submersion during several days. When 

the filters were again operated normally (from the 9
th
 cycle onward), filter 2 was less efficient to treat 

NPX, and its efficiency decreased with time until no more NPX was removed (23
rd

 cycle, Fig. 9.15 A). 

Complete submersion of P. ostreatus during a prolonged time was thus detrimental for the fungus and 

led to its premature death. The other filter (Fungus 1) kept a very good efficiency during 80 d (24 

cycles), with more than 90% NPX removal in less than 48 h (Fig. 9.15 A). Afterward, the efficiency 

started to decrease rapidly, and the laccase activity became negligible. NPX was still degraded until 

day 96, but at a much lower rate. To try to stimulate the activity of the fungus, 1% methanol was 

added as substrate in the synthetic wastewater of both filters from the 29
th
 cycle onward. No 

stimulation of laccase production was observed and a slight decrease in NPX kinetic removal was 

notice for filter 1 (Fungus 1). In filter 2, NPX started to be again slightly removed, probably due to 

stimulation of the microbial activity. Indeed, as shown in Fig. 9.15 D, methanol was completely 

consumed, and at a same rate in both filters, very likely by the microbial community. Addition of an 

external carbon source was therefore more favouring the indigenous microbial community than the 

white-rot fungus, leading probably to its faster death. 
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Fig. 9.15 (A) Kinetics of naproxen removal during the batch cycles (◊ numbered) in two filters (Fungus 1 and 2) 

inoculated with Pleurotus ostreatus, and in a wood filter not inoculated (Wood control). Evolution of laccase activity 

(B) and pH (C) during the batch cycles. The synthetic wastewater was renewed at each batch cycle. From the 29th 

cycle, an external carbon source (methanol at 1% v/v) was added in both fungal filters. (D) Evolution of methanol 

concentration in the fungal filters. 

9.3.9.2 Sulfamethoxazole 

The removal of the antibiotic SMX, which can be degraded by T. versicolor (cf. Section 9.3.2), was 

also tested in the fungal filter with P. ostreatus.  As presented in Fig. 9.16, SMX was continuously 

degraded (> 90% in 48 h) by the fungus in the filters during 80 d (21 cycles). During the first 8 cycles, 

SMX was added at initial concentrations around 9 mg l
-1

. Rapidly, after 3-4 cycles, one of the replicate 

(filter 1) started to be less efficient than the other. This was possibly due to a toxic effect of SMX at 

these concentrations, as observed for T. versicolor (cf. section 9.3.1). As, from the beginning, filter 1 

was slightly less active than the second replicate, SMX was not always completely removed at the end 

of the cycle, and thus, the fungus in filter 1 was more and more exposed to SMX. This higher exposure 

could possibly impact the fungal activity and progressively decrease its efficiency to remove SMX, as 

observed during cycles 5 to 8 (with filter 1). It was therefore decided to decrease the initial 

concentration by half, to 4.5 mg l
-1

 (from cycle 12). This strategy was effective, as both replicates 

behaved then in a similar way, with constant SMX degradation until the end of the experiment. 

Similar to NPX, SMX was strongly removed by adsorption in the wood control during the first cycle, 

and then progressively less and less adsorbed in the next cycles. However, constant (slow) removal 

was observed in the control even once the adsorption equilibrium with the initial concentration should 

be reached, meaning that SMX was degraded. To check if it was degradation by photolysis (SMX is 

sensitive to photodegradation (Bonvin et al., 2013a)) or biodegradation by the native microbial 

community, the microbial activity was inhibited with azide from the 19
th
 cycle onward. Directly, the 
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removal in the control stopped. SMX could therefore also be degraded by the native microbial 

community, but at a slower rate than with the fungus.  

 

Fig. 9.16 (A) Kinetics of sulfamethoxazole removal during the batch cycles (◊ numbered) in two filters inoculated with 

P. ostreatus (Fungus 1 and 2) and in a wood filter not inoculated (Wood control). Evolution of laccase activity (B) and 

pH (C) during the batch cycles. The synthetic wastewater was renewed at each batch cycle, except for Fungus 1 and the 

wood control at the 9th batch cycle. The microbial activity in the wood control was inhibited (azide 10 mM) during the cycles 

19, 20 to 21. 

To evaluate the fraction removed by adsorption on the wood/mycelium, a desorption test was 

performed during the 14
th
 cycle: the synthetic wastewater was renewed without addition of SMX 

(initial concentration at 0 mg l
-1

). In the wood control, a rapid increase in the concentration (up to 0.9 

mg l
-1

) was observed (Fig. 9.16 A), whereas SMX was not detected in the two fungal filters. This 

showed that SMX was completely degraded during the previous cycle in the fungal filters (no 

desorption), whereas, in the wood control, desorption occurred, showing that adsorption was in 

important removal mechanism. 

9.3.9.3 Carbamazepine 

At the end of the experiment with SMX (Fig. 9.16), after 80 d of operation, the two fungal filters were 

still well active. They were therefore used to evaluate their potential to treat CBZ, a very persistent 

antiepileptic. As shown on Fig. 9.17, CBZ was very rapidly removed in both fungal filters, but at a 

similar rate as in the wood control (90 % removal in the first cycle). The three filters behaved indeed 

in a very similar way during the 60 d of operation (7 cycles). As, in each cycle, the removal stopped 

before complete CBZ elimination (reaching a plateau corresponding to the adsorption equilibrium), it 

could be attributed to adsorption and not to degradation. At each new cycle, CBZ was slightly less 

removed, due to a progressive saturation of the support. At the end of the last (7
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) cycle, still 50% 
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CBZ removal was observed. The good absorption affinity of CBZ for the wood supports was also 

observed with PAC (cf. Chapter 3), confirming that this compound can be well remove by adsorption. 

During the long 5
th
 cycle, which lasted 7 d, a constant, but very slow, decrease in CBZ concentration 

was observed in the two fungal filters, whereas a plateau was reached in the wood control (constant 

concentration). The same observation could be done for the long 7
th
 cycle, with a constant slow 

decrease in the fungal filter 2, the one that was still active, and no degradation in the wood control and 

the fungal filter 1 (which did not have anymore laccase activity). This suggested that CBZ was very 

slowly degraded by the fungus. Indeed, CBZ was reported to be degraded by P. ostreatus, probably by 

a combined action of the extracellular manganese peroxidase and intracellular cytochrome P450 

(Golan-Rozen et al., 2011). 

 

Fig. 9.17 (A) Kinetics of carbamazepine removal during the batch cycles (◊ numbered) in a filter inoculated with P. 

ostreatus (Fungus) and in a wood filter not inoculated (Wood control). Evolution of laccase activity (B) and pH (C) 

during the batch cycles. The synthetic wastewater was renewed at each batch cycle. From the 6th cycle on, an external 

carbon source (methanol at 1% v/v) was added in the fungal filter 1 (Fungus 1) and the wood control. The experiment with 

carbamazepine was started on day 79 with the filters tested previously with sulfamethoxazole. 

In order to possibly stimulate the fungal activity, methanol (at 1% v/v) was added as external substrate 

in the synthetic wastewater during the 6
th
 and 7

th
 cycles, in the fungal filter 1 and in the wood control. 

This resulted, in the fungal filter 1 (6
th
 cycle), of, first, a stimulation of laccase production (increase in 

activity) together with a drop of pH, followed, 2 d later, by a drop of activity together with an increase 

in pH. During the 7
th
 cycle, the fungus was not anymore active in the fungal filter 1 (with methanol). 

All these effects were not observed in the fungal filter 2 (without methanol), which kept the same 

activity until the end of the experiment. Addition of methanol did, therefore, not increase CBZ 

removal and led rapidly to the death of the fungus, probably by predation/competition by other 
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microorganisms. Indeed, at the end of the 6
th
 cycle, a green mould (probably a fungal parasite) 

appeared in the fungal filter with methanol, but not in the one without methanol or in the wood control 

with methanol. This confirmed again that the addition of an external easy carbon source was not in the 

favour of the white-rot fungus. The fungal filter without methanol addition was still active after 140 

days of operation in unsterile systems, without re-inoculation or addition of fresh woodchips. Several 

fruiting bodies (sporocarps) even appeared after 150 d out of the woodchips removed from the filter 2 

(Fig. 9.4 J).These results show the potential long durability of this system. As long as the fungus was 

active, the water was slowly acidified (from pH 8.0 to 6.5) during each batch cycle, which was not the 

case in the wood control or in the filter with inactive fungi. 

Following methanol addition during the 6
th
 cycle, methanol was consumed at a relatively similar rate 

in the wood control and the fungal filter (Fig. 9.18 A), suggesting that methanol was not specially used 

as substrate by the fungus. This was confirmed by an additional experiment in pure culture, were 

methanol was not significantly used as growth substrate by P. ostreatus and T. versicolor, but it 

stimulated laccase production by P. ostreatus (Contijoch, 2014). Together with methanol 

consumption, the appearance of one by-product was observed in all the samples coming from the 

fungal filters with methanol, but not in the other samples (wood filter with methanol or fungal filter 

without methanol). This by-product was detected by HPLC-RI with an ORH-801 column designed for 

organic acids, alcohols and carbohydrates analysis. The by-product appeared rapidly at the beginning 

of the batch cycle, coinciding with a fast drop of pH, and then disappeared completely after 3 d 

(probably by degradation), together with, in this case, a sharp increase in pH (Fig. 9.18). This 

suggested that the by-product formed following methanol addition was probably (but not confirmed) 

an organic acid produced by the fungus and degraded later by other microorganisms. Similar 

phenomena were observed following the addition of methanol in a filter treating BTZ (next section). 

 

Fig. 9.18 (A) Methanol consumption and (B) evolution of the pH and by-product (BP, probably organic acid) 

formation in the fungal and wood filters treating carbamazepine (CBZ) or benzotriazole (BTZ) in synthetic 

wastewater, after 10 g/l methanol addition. Results of the two last batch cycles of the experiment with CBZ (Fig. 9.17) and 

with BTZ (Fig. 9.19). 

9.3.9.4 Benzotriazole 

The removal of the corrosion inhibitor BTZ in the fungal filter was also tested. As shown in Fig. 9.19 

A, BTZ was rapidly removed (> 70%) during the first cycle in both the fungal filter and the wood 

control, probably by adsorption. Unlike for the other micropollutants, a progressive saturation of the 

adsorption on the wood control was not observed. Indeed, in each cycle, after a very fast removal by 

adsorption at the beginning of the cycle, BTZ was then still slightly continuously removed, without 
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reaching a plateau. This was a sign that BTZ was degraded, in both the wood and the fungal filters. 

Despite the degradation was slightly higher in the fungal filter, it was not possible to say if it was due 

to degradation by the fungus or by the native microbial community. During the 7
th
 cycle, whereas the 

fungus was almost dead, this slow degradation was still clearly visible, suggesting it was done by the 

microbial community.  

 

Fig. 9.19 (A) Kinetics of benzotriazole removal during the batch cycles (◊ numbered) in a filter inoculated with P. 

ostreatus (Fungus) and in a wood filter not inoculated (Wood control). Evolution of laccase activity (B) and pH (C) 

during the batch cycles. The synthetic wastewater was renewed at each batch cycle. From the 6th cycle on, an external 

carbon source (methanol at 1% v/v) was added in the fungal filter and the wood control. 

From the 6
th
 cycle onward, methanol was added as an external carbon source in both, the fungal and 

the wood control. Exactly as it happened with CBZ in the previous experiment, the methanol addition 

led first to a short stimulation of the fungus (with production of organic acid), but this was rapidly 

followed by the premature death of the fungus, as well as the appearance of a green mould on the 

mycelium. Unlike the effect with CBZ, methanol slightly stimulated the removal of BTZ in the fungal 

filter, probably due to the development of the microbial community. Despite a fraction of BTZ 

(around 40%) rapidly removed by adsorption during all the cycles, further removal by biodegradation 

(although possible) was very slow, with 90% removal observed only after 15 d (7
th
 cycle). 

9.3.9.5 Mixture of six micropollutants 

The last test of the fungal filters with synthetic wastewater was performed with a mixture of six 

micropollutants: two anti-inflammatory drugs – DFC and MFA, one plastic component – BPA, one 

beta-blocker – metoprolol, one antibiotic – trimethoprim, and one anti-diabetic – metformin. The 

removal of these compounds during the 42 d of operation of the fungal filters is presented in Fig. 9.20 

for MFA, DFC and BPA, and in Fig. 9.21 for metoprolol, trimethoprim and metformin. 
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Fig. 9.20 Kinetics of micropollutant removal during the batch cycles (◊ numbered) in the two filters inoculated with P. 

ostreatus (Fungus 1 and 2) and in the wood filter not inoculated (Wood control). The microbial activity was inhibited 

(10 mM azide) in the wood control. (A) For mefenamic acid, (B) for diclofenac, and (C) for bisphenol A. Evolution of 

(D) laccase activity and (E) pH. The synthetic wastewater containing the mixture of pollutants was renewed at each batch 

cycle.  

MFA, DFC and BPA were almost completely removed at each cycle in less than 12 h in the fungal 

filters during the 42 d of operation (Fig. 9.20 A, B, C). In the wood control, in which the microbial 

activity was this time inhibited from the beginning with azide to assess the effect of adsorption only, 

MFA and DFC were also completely removed by adsorption during the first cycle. At each next cycle, 

a progressive saturation of the filter was observed and after 4-5 cycles, no more removal of MFA and 
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DFC was observed in the wood control (the adsorption equilibrium with the initial concentration was 

reached). Adsorption of BPA in the wood control behaved differently, with less adsorption during the 

first cycles, but with only very slow saturation of the filter. Adsorption played thus an important role 

in BPA removal in the wood control during the 42 d of operation, with still 60% removal even after 14 

cycles. For MFA and DFC, but also for BPA, adsorption could not explain the complete removal 

observed in the fungal filter, indicating that degradation by the fungus was the main removal 

mechanism.  Part of the removal by degradation could be possibly attributed to laccase oxidation, as 

laccase activity was relatively high (50-250 U l
-1

) (Fig. 9.20 D) and these three compounds are known 

to be oxidize by laccase (cf. Chapter 6). However, as also confirmed in section 9.3.10.6, extracellular 

laccase oxidation was not the main removal mechanism, as fast removal was observed also when 

laccase activity was still low (for instance during the 13
th
 cycle with the fungal filter 2). It is indeed 

reported that the degradation of these three compounds by white-rot fungi is mainly due to other 

enzymes than extracellular laccase (Cabana et al., 2007b; Hata et al., 2010). 

Long term removal of DFC and BPA in unsterile synthetic wastewater by white-rot fungi (T. 

versicolor) was also reached by Yang et al. (2013a) in a fungal membrane bioreactor operated 

continuously (hydraulic retention time of 2 d) during 3 months, but with a much lower efficiency (80-

90% for BPA and around 55% for DFC). The fungal filter developed here seems thus more adapted 

for long term operations. 

The beta-blocker metoprolol was only slightly removed (< 40%) in the fungal filters, and with the 

same efficiency than in the wood control (inhibited with azide), indicating that adsorption was the 

main removal mechanism (Fig. 9.21 A). Adsorption in the wood control reached very slowly 

equilibrium with the initial concentration (no more removal after 10 cycles), whereas, in the fungal 

filters, slow removal by degradation appeared after 9-10 cycles, probably due to the development of 

the native microbial community. The fungal filters were thus ineffective to remove metoprolol, neither 

by adsorption or fungal degradation. The highest removal achieved, 60% after 16 d (fungal filter 2, 

13
th
 cycle), was probably mainly due to the microbial community present in the filter. 

The antibiotic trimethoprim was relatively well removed in the fungal filter during the 40 d of 

operation, with, on average, 77% removal (Fig. 9.21 B). During the first cycles, similar removal 

efficiencies were observed in the wood control, suggesting that the removal was, at the beginning, 

mainly due to adsorption. However, the wood control became progressively saturated, with less than 

25% removal observed during the 13
th
 cycle. This saturation did not happen in the fungal filters, 

indicating that trimethoprim was degraded, either by the fungus or by the native microbial community. 

The absence of complete removal after 16 d (cycle 13) in the fungal filters, which should not happen 

in the case of biodegradation, was possibly due to interferences during the quantification (strong noise 

on the chromatograms due to high release of wood components).  

The anti-diabetic metformin, a pollutant found in very high concentrations in WWTP effluents (> 10 

µg l
-1

, cf. Chapter 3), was only very poorly removed (< 40%) in the fungal filters during the 40 d of 

operation (Fig. 9.21 C). A slight adsorption was observed during the first cycle, but mainly in the 

wood control (60% removal). A progressive saturation of the filters was then observed, with no more 
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removal after 8 cycles. The fungal filter was thus ineffective to remove metformin, neither by 

adsorption or biodegradation by the fungus or the native microbial community.  

 

Fig. 9.21 Kinetics of micropollutant removal during the batch cycles (◊ numbered) in the two filters inoculated with P. 

ostreatus (Fungus 1 and 2) and in the wood filter not inoculated (Wood control). The microbial activity was inhibited 

(10 mM azide) in the wood control. (A) For metoprolol, (B) for trimethoprim, and (C) for metformin. The synthetic 

wastewater containing the mixture of pollutants was renewed at each batch cycle. 

9.3.9.6 Synthesis of the removal efficiency in synthetic wastewater 

As shown in the previous sections, the fungal filters were very effective to completely remove NPX, 

SMX, MFA, DFC and BPA in continuous operation during 40 to 80 d, with more than 90% removal in 

12 to 48 h (depending on the compound) in synthetic non-sterile wastewater. Fungal degradation was 

clearly the main removal mechanism for these five pollutants. Trimethoprim was also well removed in 

the fungal filters, with on average around 80% removal in 48 h, mainly by biodegradation (by the 

fungus or the native microorganisms). BTZ and CMZ were partially removed in the filters (between 

50 to 90% in 5 to 15 d), but mainly by adsorption on the wood/mycelium supports, despite a very slow 

degradation (possibly by the fungus) could be observed. Finally, metoprolol and metformin were only 

poorly removed (on average less than 40%), due to their low sorption affinity and low 

biodegradability. These experiments in synthetic wastewater showed that P. ostreatus could be 

maintained active in the fungal filters during more than 140 d under non-sterile conditions, in 
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continuous operation without addition of new substrate or re-inoculation of the fungus, while 

removing completely half of the pollutants tested in less than 48 h. 

9.3.10 Removal mechanisms 

As already discussed in the previous sections, micropollutants are removed by two main mechanisms 

in the fungal filters: adsorption onto the wood/mycelium and biodegradation by the fungus or the 

microbial community. The relative contribution of these mechanisms changed at each batch cycle. In 

order to understand better these two mechanisms and their evolution during the long-term operation of 

the filters, a modelling approach was used.  

9.3.10.1 Adsorption 

During the first batch cycles with almost all the pollutants, adsorption onto the wood/mycelium was 

the main removal mechanism, as relatively similar removal efficiencies were observed between the 

fungal filters and the wood controls. As described in Chapter 1, sorption processes are composed of 

two simultaneous reversible reactions, adsorption and desorption. Adsorption equilibrium is reached 

when the rate of both reactions becomes equal, meaning that the concentration on the solid phase, q, is 

in equilibrium with the concentration in the liquid phase, C.  The rate of adsorption/desorption, as well 

as the adsorption equilibrium can be approximated by simple models. 

9.3.10.2 Adsorption kinetic modelling 

Two approaches were compared to model the adsorption kinetics of NPX in the wood control, one 

derived from a Langmuir equilibrium model (with a maximum adsorption capacity), and the other 

from a Freundlich equilibrium model.  

For the “Langmuir type” kinetic model, based on the equations proposed by Oh et al. (2012), rates of 

adsorption and desorption are assumed to follow second-order and first-order kinetics, respectively. 

The variation of the concentration in the liquid, C [mg l
-1

], at a time t [d], is described by Eq. 9.4, 

while the change in the concentration on the solid, q [mg g
-1

], is described by Eq. 9.5. m [g l
-1

] is the 

concentration of adsorbent (dry wood), ka [l mg
-1

 d
-1

] and kd [d
-1

] are the second order adsorption and 

first order desorption rate constants, respectively, and qm [mg g
-1

] is the maximum adsorption capacity 

of the adsorbent.  

)(
d

d
qqCkmqkm

t

C
mad  (9.4) 

qkqqCk
t

q
dma )(

d

d
 (9.5) 

At the equilibrium the derivatives are equal to zero, and q can be expressed as a function of C, 

resulting to a Langmuir isotherm (Eq. 9.10, see below) with K = kd/ka, the Langmuir coefficient. 

For the “Freundlich type” kinetic model, according to Skopp (2009), the variation in the time of C and 

q are described by Eqs. 9.6 and 9.7, respectively, with ka [l
n1-1

 mg
1-n1

 d
-1

] and kd [l
n2-1

 mg
1-n2

 d
-1

] the 

adsorption and desorption rate constants, respectively, and n1 and n2 [-], two constants of the model.  
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At the equilibrium the derivatives are equal to zero, and q can be expressed as a function of C, 

resulting to a Freundlich isotherm (Eq. 9.8, see below), with Kf = (1/m) (ka/kd)
1/n2

 and n=n1/n2, the 

Freundlich coefficients.  

These two models were successfully applied to reproduce the adsorption kinetic of NPX in the two 

wood controls (Fig. 9.22). Indeed, the adsorption kinetics and the progressive saturation effect were 

both very well reproduced by the models, even in the wood control 2, where, at the 5
th
 cycle, a 

desorption test was performed. This demonstrated that the removal of NPX in the wood controls was 

only due to reversible adsorption phenomena onto the wood support. The sorption kinetics were 

relatively fast, reaching equilibrium in 8-9 h. Although the model was not fitted to other 

micropollutant concentrations, similar adsorption kinetics were observed for most of them in the wood 

controls. Both models appeared thus to be a good tool to predict the progressive saturation of the 

filters until they reach the adsorption equilibrium with the initial concentration.  

 

Fig. 9.22 Modelling of naproxen adsorption kinetics in the two wood filters (Wood control 1 and 2). Symbols: measured 

data. Lines: modelled values. Coefficients for the Freundlich kinetic model: ka – 837 [ln1-1 mg1-n1 d-1], kd – 618 [ln2-1 mg1-n2 d-

1], n1 – 0.026  [-], n2 – 0.1252 [-] , m – 130 [g l-1] (Equivalent to Kf – 0.0872 [ln mg1-n g-1], n – 0.2069 [-]).  Coefficients for the 

Langmuir kinetic model: ka – 1.6681 l [mg-1 d-1], kd – 1.6957 [d-1], qmax – 0.145 [mg g-1] , m – 130 [g l-1]. 

9.3.10.3 Adsorption equilibrium modelling 

Once the equality between the adsorption and desorption rates was reached, the concentrations onto 

the solid q and in the liquid C stayed constant. If C increased or decreased, then q (at equilibrium) also 

increased or decreased (cf. Fig. 9.22), following a defined relation (at a constant temperature and pH). 

This relation can be described by an adsorption isotherm, i.e., a function describing the concentration 

on the solid according to the one in the liquid, once the equilibrium is reached. The most commonly 

used adsorption isotherms are the two parameters models from Freundlich and Langmuir (Foo and 

Hameed, 2010). 
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The adsorption equilibrium of the micropollutants in the wood control was thus modelled using a 

Freundlich isotherm (Eq. 9.8): 

n

ifi CKq  (9.8) 

with Kf [l
n
 mg

1-n 
g

-1
] and n [-], the Freundlich coefficients, Ci [mg l

-1
], the concentration in the liquid 

phase at the equilibrium at the end of the cycle i, and qi [mg g
-1

], the concentration sorbed onto the 

solid at the equilibrium at the end of the cycle i. The concentration onto the solid qi was calculated for 

each cycle with Eq. 9.9, with Co and qo, the initial concentrations in the liquid and the solid, 

respectively, and m [g l
-1

], the concentration of adsorbent (solid medium). 

0with 0

0

1 q
m

CC
qq i

ii  (9.9) 

The coefficients Kf and n were then determined by linear regression of log(Ci) versus log(qi). The 

slope of the regression line gave n and the y-intercept gave log(Kf).  

By equalling Eq. 9.8 and 9.9, the theoretical concentration in the liquid at the equilibrium Ci could 

then be determined (by numerical solving of this implicit equation) for each cycle i as a function of the 

initial concentration Co. 

Freundlich isotherms are often able to reproduce well adsorption phenomena in wastewater, as they 

account for multisite adsorption onto heterogeneous surfaces (various adsorption sites). The theory 

behind this isotherm is that the stronger binding sites are occupied first, followed by the sites with 

lower adsorption energy, exponentially decreasing the adsorption capacity of the adsorbent. Complete 

saturation of the support is thus never reached (Foo and Hameed, 2010). But it is an empirical model 

which is valid only for the range of concentration used to calibrate it. Indeed, as the shape of the 

isotherm changes very rapidly, using it outside its calibration range may give completely wrong 

values. This was indeed observed when the coefficient n was far from 1 (data not shown).  Several 

other models with more physical meaning may also reproduce well the adsorption phenomena 

observed. A two parameters Langmuir model (Eq. 9.10) (Foo and Hameed, 2010) was therefore also 

tested.  

i

i

mi
CK

C
qq  (9.10) 

with qm [mg g
-1

], the maximum concentration onto the solid (maximal adsorption capacity), and K [mg 

l
-1

], the Langmuir coefficient. The Langmuir model assumes monolayer adsorption, which occurs only 

on a limited number of sites. Once all these sites are occupied (saturation), no more adsorption can 

occur (plateau of the isotherm) (Foo and Hameed, 2010).  

These two models were compared for NPX adsorption on the wood controls. Both models fitted well 

the measures (Fig. 9.23). As the Freundlich model showed slightly better fitting, it was used to 

determine the isotherms for each pollutant (Fig. 9.24). The Langmuir model may, however, enable 

better extrapolations at lower concentrations (slopes not so steep and isotherm more linear). 
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Fig. 9.23 Comparison of Freundlich and Langmuir isotherms to model the adsorption equilibrium of naproxen on two 

wood filters (1 and 2) in synthetic wastewater. 

As presented in Fig. 9.24 and in Table 9.1 (for the values of the coefficients), very different adsorption 

isotherms were found for each micropollutant. Some, like NPX, DFC and MFA, presented a very good 

adsorption affinity at low concentrations, but reached very fast the saturation (coefficient n < 0.3). 

NPX and DFC had very similar adsorption affinity, while MFA was adsorbed almost 3.8 times more. 

BPA, CBZ and metformin, on the contrary, showed lower adsorption affinity at low concentrations, 

but had (almost) linear isotherms, with no saturation effect observed at high liquid concentrations. 

BPA showed a very high adsorption affinity, with, for instance, a concentration adsorbed onto the 

wood 15 times higher than the one of NPX (for a concentration in the liquid around 10 mg l
-1

). CBZ 

had a lower adsorption affinity than BPA, but still much higher than metformin, poorly removed by 

adsorption. The adsorption of trimethoprim was comparable to the one of CBZ. Trimethoprim 

behaved, however, very strangely during the two first batch cycles (Fig. 9.21 B), with less adsorption 

than in the third cycle. This may be related to the pH, which was low in the two first cycles (pH 5-6) 

and then increased to neutral values (pH 6.5-7.8). As trimethoprim has a pKa at 7.2 (cf. Table 9.1), its 

charge changes with change in pH (trimethoprim is positively charged under acidic conditions and not 

charged in alkaline media) (Fig. 9.25), which may affect its adsorption affinity (possibly higher for the 

neutral form). 

 

Fig. 9.24 Freundlich isotherms for micropollutant adsorption in the wood filter in synthetic wastewater. 
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Table 9.1 Freundlich coefficients for the isotherms of micropollutant adsorption in the wood filter in synthetic 

wastewater and high pollutant concentrations (5-20 mg/l), and physico-chemical properties of the pollutants. 

 

These results show that the adsorption is strongly influenced by the characteristics of the pollutant. All 

the acidic compounds (NPX, DFC, MFA), mainly negatively charged at pH above 4.2 (cf. Table 9.1), 

had strong adsorption affinity at low concentrations but reached fast saturation (n << 1), while neutral 

or positively charged pollutants showed mostly linear adsorption isotherms (n ≈ 1). This suggests that 

the adsorption on wood is mainly driven by electrostatic interactions. As wood is mainly acid, it is 

expected to be mainly negatively charged at neutral pH, which should limit the adsorption of 

negatively charged pollutants (electrostatic repulsion), hence, possibly, the fast saturation effect 

observed for them.  

 

Fig. 9.25 Protonated and neutral forms of trimethoprim (depending on the pH, pKa of 7.2) (according to the database 

on www.chemicalize.org) 

The Freundlich isotherms allowed calculating how many batch cycles were necessary to reach the 

adsorption equilibrium with the initial concentration in the wood control (no more removal by 

adsorption). This information can be very useful to determine how many cycles have to be taken into 

account to evaluate the effect of biodegradation alone. As presented in Fig. 9.26 A, if no more removal 

by adsorption was predicted after 5-9 cycles for NPX, DFC and MFA; 20, 50 and 150 batch cycles 

were necessary to reach the ultimate adsorption equilibrium for metformin, CBZ and BPA, 

respectively. 

The effect of the initial pollutant concentration (10 mg l
-1

 versus 1 µl
-1

) on the removal efficiency by 

adsorption was (theoretically) assessed for two pollutants with very different isotherms: CBZ and 

NPX (Fig. 9.26 B).  For CBZ, which had a linear isotherm, same removal efficiencies were predicted 

independently of the initial concentration. However, for NPX, complete removal by adsorption during 

1000 cycles was predicted at 1 µl
-1 

compared to no more removal after 5 cycles at 10 mg l
-1

. This huge 

difference was due to the very strong adsorption affinity of NPX at very low concentrations (according 

to the Freundlich isotherm), and the fast saturation at higher levels. However, as mentioned before, it 

is very risky to extrapolate the Freundlich isotherm outside of the range from where it was calculated, 

as the slope of the isotherms changes very rapidly, especially when n is far from 1. Therefore, results 

with NPX at 1 µl
-1

 give only an indication that the removal efficiency can vary a lot depending on the 

Naproxen 1 Naproxen 2 Diclofenac Mefenamic acid Bisphenol A Carbamazepine Metformin Trimethoprim

K f  [l
n
 mg

1-n
 g

-1
] 0.0848 0.0653 0.0967 0.2794 0.1616 0.0811 0.0083 0.1557

n  [-] 0.225 0.278 0.150 0.241 1.144 0.978 1.400 0.508

Log Kow [-]
a

3.18 3.18 4.51 5.12 3.32 2.45 -2.64 0.91

pKa [-]
a

4.2 4.2 4.1 4.2 10.1 13.9 12.4 7.2

Charge at pH 7
b

-1 -1 -1 -1 0 0 +2  +1 and 0
a
 Source: compilation by Margot et al. (2013)  

b
 Source: www.chemicalize.org (last accessed 27.08.2014)
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initial concentration, but very different values will probably be predicted for an isotherm determined at 

these low concentrations. 

 

Fig. 9.26 Modelling of the residual micropollutant concentration in the liquid phase at the end (equilibrium) of the 

batch cycle with the wood filter (only adsorption) as a function of the number of cycles performed (based on the 

Freundlich equations). Conditions: 130 g l-1 dry wood, reused in each cycle. (A) With the real concentrations tested in 

synthetic wastewater. (B) Test of the Freundlich model with real and 10,000 time lower (1 µg l-1) concentrations. BPA: 

bisphenol A, CBZ: carbamazepine, MTF: metformin, MFA: mefenamic acid, DFC: diclofenac, NPX: naproxen. 

The isotherms were determined for adsorption onto the wood alone. The adsorption capacity on the 

wood covered by the mycelium may be different. According to the results with NPX (with inhibited 

fungus) (Fig. 9.13 B1), CBZ (Fig. 9.17), metoprolol and metformin (Fig. 9.21), slightly lower 

adsorption capacity was observed on the wood covered by the mycelium than on the not inoculated 

wood, probably due to the reduced access to the wood adsorption sites, covered by the mycelium. 

9.3.10.4 Biodegradation 

For pollutants such as NPX, SMX, DFC, MFA, BPA and trimethoprim, apart from the first cycles 

where adsorption dominated, biodegradation (by the fungus or by the native microbial organisms) was 

the main removal mechanism in the fungal filters. The degradation pathways and the possible 

metabolites produced were not studied (out of the goals of this study), but the evolution of the 

biodegradation rate with time was determined. For that, biodegradation (combined with the 

adsorption) of NPX in the fungal filters was modelled by pseudo first order kinetics (Eq. 9.11), 

assuming that fungal active biomass X [g l
-1

] was constant during the batch cycle (no growth or 

decay). 

CkCXk
t

C
s

d

d
 (9.11) 

With C [mg l
-1

], the residual concentration in the liquid, t [d], the reaction time, ks [l g
-1

 d
-1

], the second 

order rate constant, and k = ks X [d
-1

], the pseudo first-order rate constant. 

Solving Eq. 9.11 gave the residual pollutant concentration as a function of the reaction time and the 

initial pollutant concentration Co [mg l
-1

] (Eq. 9.12): 
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This pseudo first order model was fitted to the data by minimizing the sum of the square of the 

difference between the measures and the model and the rate constant k was calculated for each batch 

cycle. 

 

Fig. 9.27 Modelling of the kinetic of naproxen removal (degradation and adsorption) with a first order model. (A) 

Comparison between the model and the measures. (B) Evolution of the first order rate constant k as a function of the 

operation time of the filter (Insert: zoom on the lower k values). (C) Evolution of laccase activity in the filter. (D)Time 

for 90%naproxen removal as a function of the age of the filter. Results of the long term experiment with naproxen in 

synthetic wastewater (Fig. 9.15). 

As presented in Fig. 9.27 A, NPX removal followed first order kinetics very well, up to 80 d of 

operation, when the fungal activity started to decline seriously. The removal rate constant was very 

high during the two first cycles, probably by the combined action of both strong adsorption and low 

pH (which should increase the fungal activity) (Fig. 9.27 B). From the third cycle onward, the pH 

stayed close to neutral conditions and the removal rate constant was more stable, decreasing slowly 

with time from 4.5 to 0.27 d
-1

 after 85 d. The increase of the removal rate after 28 d was not due to 

faster degradation but to higher adsorption, resulting probably to the complete liberation of the 

adsorption sites during the previous long cycle. Apart from this phenomenon, a linear decrease in 

removal efficiency was observed, linked to the slow decay of the fungus, less and less active (laccase 

production) in the filter (Fig. 9.27 C). Modelling the removal rate allowed therefore quantifying the 

decay of the fungus and the long term efficiency of the filter. As the decay was progressive, starting 

from the beginning of the operation, it indicates that the conditions in the filter were not optimal for 

the fungus, allowing it surviving but too stressful to develop. Indeed, no mycelium development was 
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observed once the filter was immerged (which is an advantage to avoid clogging the filter), whereas it 

was growing very well in dry conditions. The decrease in the degradation rate with the age of the filter 

has for direct consequence to increase the time required to remove the pollutants. As shown in Fig. 

9.27 D, 90% NPX removal was reached in less than 12 h during the first cycles while it required up to 

55 h when the filter was 75 d old. As very long degradation times require important volumes of filters, 

the filters should be re-inoculated with fresh mycelium once a defined maximum reaction time is 

exceeded (possibly around 48 h).   

A trial was made to model at the same time adsorption and biodegradation kinetics, by combining Eqs. 

9.4-9.5 and Eq. 9.11 to evaluate the effect of each mechanism in the fungal filter. It was assumed that 

only the fraction in the liquid was degraded (Eq. 9.13), and that the fraction adsorbed was only 

behaving as a source of pollutant for the fungus, released in the liquid phase by desorption as the 

dissolved pollutants were consumed (Eq. 9.14). It was, however, not possible to fit correctly this 

model to the measurements (data not shown). This suggested that the adsorbed fraction of the 

pollutants was also degraded by the fungus. A more complex model with many parameters to fit (data 

not shown) did also not result in a better fitting than model with a simple first order kinetic. It 

appeared to be very complex to separate adsorption and biodegradation mechanisms.  

CXkqqCkmqkm
t

C
biomad )(

d

d
 (9.13) 

qkqqCk
t

q
dma )(

d

d
 (9.14) 

9.3.10.5 Influence of the duration of the resting time on NPX removal 

To possibly increase the removal rate of NPX in the fungal filters, it was tried, during one batch cycle, 

to shorten the resting time used in the sequential operation. The resting time was initially fixed 

arbitrary to 3 min, with 1 min feeding and 1 min reaction (cycle of 5 min). The resting was decreased 

to 1 min (cycle of 3 min), thus increasing the reaction time percentage to 1/3 of the cycle instead of 

1/5. On the contrary to what was expected, this change did not lead to a faster removal rate of NPX 

(Fig. 9.28), probably due to complex interactions between adsorption and degradation, as the adsorbed 

fraction could be possibly degraded even during the resting time. As shorter resting time may lead to 

faster decline of the fungus (more stressful conditions), the initial resting time of 3 min was kept for 

all the experiments. 

 
Fig. 9.28 Influence of the length of the resting time on naproxen (NPX) removal kinetics. Comparison between the 11th 

cycle (sequences of 5 min: 1 min feeding, 1 min reacting and 3 min resting) and the 12th cycle (sequences of 3 min: 1 min 

feeding, 1 min reacting and 1 min resting). Results of the long term experiment with naproxen in synthetic wastewater (Fig. 

9.15). 
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9.3.10.6 Role of laccase in micropollutant removal 

Some micropollutants, namely BPA, DFC and MFA, are subject to laccase oxidation. To evaluate the 

role of extracellular laccase on their removal in the filter, supernatants of the two fungal filters treating 

the mixture of six micropollutants (cf. section 9.3.9.5, Fig. 9.20) were collected during the 10
th
 cycle 

and filtered at 0.22 µm to remove all microbial cells but not extracellular laccase. They were then 

spiked with a mixture of BPA, DFC and MFA, and the removal rate due to laccase oxidation was then 

compared to the one monitored in the filters during the 10
th
 cycle. As shown in Fig. 9.29 A, BPA was 

rapidly oxidized by laccase in both supernatants, at a rate close to the removal observed in the filters. 

DFC and MFA were also oxidized by laccase in the supernatants, but at a rate much slower than the 

one observed in the filters (Fig. 9.29 B and C).  Although extracellular laccase was probably involved 

in the removal of BPA in the filters, these results confirm that laccase oxidation was not the main 

removal mechanisms for DFC and MFA, probably degraded by the fungus via the action of other 

intracellular enzymes, such as cytochrome P450 (Hata et al., 2010). Laccase activity is very sensitive 

to the pH, with usually very slow oxidation rates under alkaline conditions (cf. Chapter 6). For MFA, 

the effect of the pH of the supernatants was clearly visible, with lower removal at pH 7.5 (supernatant 

1) than pH 6.9 (supernatant 2). In the fungal filters, however, the pH was not strongly influencing the 

reactions, with fast removal observed for the three pollutants even in alkaline conditions.  The lower 

sensitivity of the fungal filter to the pH is a clear advantage, compared to an enzymatic process with 

laccase, for municipal wastewater treatment. 

 

Fig. 9.29 Comparison of (A) bisphenol A (BPA), (B) diclofenac (DFC) and (C) mefenamic acid (MFA) removal in the 

filters 1 and 2 inoculated with P. ostreatus (fungal filter) and in their respective filtered (cell free) supernatants. For the 

supernatants, average and values of duplicates. Laccase activity and pH: 136 U l-1 and pH 7.5, and 122 U l-1 and pH 6.9, in 

filter 1 /supernatant 1 and filter 2 /supernatant 2, respectively. Initial concentrations: BPA – 20 mg l-1, DFC – 10 mg l-1, MFA 

– 20 mg l-1. 

To evaluate the potential of extracellular enzymes produced in the filters for the degradation of other 

micropollutants, the supernatant of a fungal filter with T. versicolor with high activity (943 U l
-1

) and 

low pH (pH 5) was collected, filtered to remove the cells and spiked with eight micropollutants. Six of 

them, paracetamol, BPA, DFC, MFA and triclosan were rapidly oxidized by the extracellular enzymes 

(probably laccase), while IPN, NPX and SMX were not significantly removed (Fig. 9.30). This 

suggests that several pollutants, all phenols or anilines, may be potentially removed in the fungal filter 

by laccase oxidation. Several other extracellular enzymes may be also involved, such as manganese-

peroxidase or lignin-peroxidase, but all require the presence of H2O2, which was probably not present 

in the supernatant (fast reaction with organic matter). The participation of these extracellular 
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peroxidases to the degradation of micropollutant in the fungal filters was not studied but could be 

significant (Golan-Rozen et al., 2011).  

Despite the possible production of redox mediators by the fungus during lignocellulosic substrate 

degradation (Li et al., 2014), none of the compounds potentially degraded by laccase-mediator systems 

(IPN, SMX and NPX) were significantly removed in the supernatant (Fig. 9.30). Extracellular 

degradation by natural laccase mediator reactions in the filters is thus not expected to be a main 

removal mechanism.  

 

Fig. 9.30 (A) Micropollutant degradation in the cell free (filtered at 0.2 µm) supernatant from a wood filter inoculated 

with Trametes versicolor, with 943 U l-1 laccase activity, pH 5, spiked with 10 mg l-1 of pollutants. (B) Structures of the 

pollutants degraded. 

 

9.3.11 Micropollutant removal in spiked real wastewater 

The ability of P. ostreatus to degrade several micropollutants in the fungal filters treating synthetic 

wastewater in continuous operation during more than 140 d in non-sterile conditions showed the 

potential of this system. However, the synthetic wastewater was composed of tap water spiked with 

the pollutants, which, despite a relatively similar mineral composition (Table 9.2), is not fully 

representative of real treated wastewater (TWW). The main differences is found in the content of 

dissolved organic carbon (DOC) and dissolved nitrogen, present at 10 to 20 times higher 

concentrations in TWW, and total bacteria, more than 1000 times more concentrated in TWW (Table 

9.2). The presence of these nutrients (DOC and nitrogen), although at relatively low levels, and the 

high amount of bacteria may thus impact the efficiency of the fungal filter, by increasing the 

development and the competition/predation of other microorganisms. Therefore, the fungal filters were 

tested with real treated municipal wastewater (composition in Table 9.2), spiked with NPX at 10 mg   

l
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Table 9.2 Composition of the treated wastewater (TWW) and the tap water used in this study. For the tap water, 

average published values for 2013 for Lausanne, Switzerland (eauservice, 2014). 

 

As presented in Fig. 9.31, NPX in TWW was completely degraded in each batch cycle in less than 3 d 

in the two fungal filters, and this during the 140 d of continuous operation (21 batch cycles). In the 

wood control, NPX was completely removed by adsorption during the first cycle, but then, fast 

saturation of the filter occurred, with no more NPX removal observed in the wood filter from the third 

cycle onward. During the 50 first days (16 cycles), the filters behaved as expected, with similar 

degradation rates for both fungal filters and no removal in the wood control. Laccase activity, 

however, rapidly decreased, reaching a very low level (< 10 U l
-1

) after 20 to 30 d (depending on the 

filter). During these first 50 d of operation with real TWW, the filters behaved in a similar way as with 

synthetic wastewater. Therefore, apart from the faster decline of laccase activity in TWW, probably 

partially due to the degradation of the enzyme by the microbial community, operation of the filters 

with TWW did not impact the global efficiency of the system. 

After 50 d, starting from the 17
th
 cycle onward, a change of behaviour occurred in the three filters: (i) 

very fast degradation of NPX was observed in the fungal filter 2 (complete removal in less than 24 h), 

and, after a few cycles, also in the filter 1, and (ii) appearance of NPX degradation in the wood 

control. The fast removal in filter 2 was correlated with a significant increase in laccase activity and a 

strong acidification (down to pH 5) of the TWW at each cycle, suggesting that something stimulated 

the fungus, which became again very active. The removal in the wood control was probably related to 

the emergence of a microorganism able to degrade NPX. Attempts were made to isolate and identify 

Conventional parameters TWW
a

Tap water
b

Dissolved organic carbon (DOC) [mg l
-1

] 10.8 < 1

Total dissolved nitrogen (TN) [mg l
-1

] 15.2 < 1

N-NH4 [mg l
-1

] 6.6 < 0.025

N-NO3 [mg l
-1

] 8.0 0.9

N-NO2 [mg l
-1

] 0.5 0.001

Phosphate (PO4) [mg l
-1

] < 0.2 0.023

Sodium [mg l
-1

] 64 7

Magnesium [mg l
-1

] 9.9 8

Potassium [mg l
-1

] 12.3 1.5

Calcium [mg l
-1

] 77 59

Fluoride [mg l
-1

] 0.16 n.a.

Chloride [mg l
-1

] 112 12

Sulfate [mg l
-1

] 53 33

pH [-] 7.7 7.8

Conductivity [µS cm
-1

] 914 337

Total viable bacteria [CFU ml
-1

] 10
5

80
c

a
 Measured in the treated wastewater (TWW), effluent of the Lausanne WWTP (24-

h composite sample)

b
 Average quality of the tap water in Lausanne in 2013

n.a.: not analysed

c
 Measured in the tap water used during the experiment
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this organism, by plating the treated water in agar-medium containing NPX as sole carbon source, 

without success.  

 

Fig. 9.31 (A) Kinetics of naproxen removal during the batch cycles (◊ numbered) in two filters inoculated with 

P.ostreatus (Fungus 1 and 2) and in a wood filter not inoculated (Wood control). Evolution of laccase activity (B) and 

pH (C) during the batch cycles. The real treated wastewater, spiked with naproxen, was renewed at each batch cycle. 

The coincidence of the simultaneous change of behaviour in the wood control and the fungal filter 2 at 

the 17
th
 cycle suggests that is was possibly related to a change in the (microbial) composition of the 

raw TWW, although this was not expected as the same TWW (stored at 4°C) was used during the 

whole experiment. To know if the organisms responsible for NPX degradation were either (i) attached 

to the wood supports (fixed biomass), meaning that they were slowly selected in the system (biofilm 

development to avoid the washout at each new cycle), or (ii) in suspension in the liquid (free cells), 

meaning that they came mainly from the raw wastewater (renewed at each cycle), a new experiment 

was performed. The supernatant of the fungal filter 2 and of the wood control were collected at the end 

of the 22
nd

 cycle, once NPX was completely degraded. One part of the supernatant was filtered at 0.22 

µm to remove the microorganisms and the other part was used as is. The two fractions were then 

spiked with NPX at 10 mg l
-1

 (without methanol addition), and incubated 52 d at 25°C and 130 rpm to 

ensure aeration of the media. NPX concentration, laccase activity and pH were monitored with time. 

As presented in Fig. 9.32 A, NPX was not removed in any of the supernatants neither from the fungal 

nor the wood filters, filtered or not, and even an increase in concentration was observed along the 50 d, 

related to the evaporation of water in the cultures. This showed that the cells in suspension, as well as 

the extracellular enzymes, were not able to degrade significantly NPX. The fixed biomass was 

therefore responsible for the removal observed in the column, suggesting that, in the wood control, 

microorganisms were slowly selected for their ability to degrade NPX. 
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This experiment showed also that laccase was inactivated at a faster rate in the raw than filtered 

supernatants (Fig. 9.32 B). In both cases, 50% activity was lost during the three first days, showing the 

low stability of P. ostreatus laccase at pH 5.8-6. Then, the decline slowed down in the cell free 

supernatant, with still 21% of the initial activity after 24 d compared to only 2% in the raw 

supernatant. The higher inactivation in the raw supernatant was probably due to laccase degradation by 

the microbial community. 

 

Fig. 9.32 Test of naproxen (NPX) degradation spiked in the supernatants collected from the fungal filter 2 and the 

wood filter at the end of the 22nd batch cycle, filtered or not at 0.2 µm (cell free). (A) Residual NPX concentration. (B) 

Laccase activity and pH in the supernatant of the fungal filters. pH in the wood supernatant was stable at pH 8.4. 

Although no clear explanation could be deduced for this sudden change of behaviour in the filters, 

these results demonstrated that NPX can be very well degraded also by some native microorganisms 

present in TWW. It was also demonstrated that Pleurotus can survive four months in the filter treating 

real wastewater. After 120 d, the fungal activity in filter 2 became, however, very low, coinciding with 

a decrease in the acidification of the water and a decrease in NPX removal rate. Nevertheless, NPX 

was still completely removed in less than 5 d in the filters after 140 d of operation with real TWW. 

9.3.12 Micropollutant removal in real conditions 

The previous section showed that the fungal filters can be continuously operated during several 

months to treat micropollutants spiked at high concentrations in real wastewater. The last experiment 

consisted thus to test their efficiency for the treatment of a wider range of pollutants, at real (very low) 

concentrations in real wastewater. 

9.3.12.1 Wastewater composition 

The treated wastewater used came from a composite sample collected in the effluent of the municipal 

WWTP of Lausanne, at the outlet of a biological treatment with partial nitrification (moving bed 

bioreactor). Its mineral and physico-chemical composition is presented in Table 9.3. The composition 

was relatively similar to the TWW used in the previous section (cf. Table 9.2), with also a high 

concentration of bacteria. We can notice the relatively high concentration of TSS (25 mg l
-1

), due to a 

poor efficiency of the secondary clarifier.  
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Table 9.3 Composition of the treated wastewater (TWW) used for this experiment (24-h composite sample collected at 

the outlet of the municipal WWTP of Lausanne) and composition of the effluents of the fungal and the wood filters, 

after 48 h of treatment (cycles 8 or 9). 

 

The concentrations of micropollutants in the raw TWW are presented in Table 9.4. A total of 35 

micropollutants out of 44 could be quantified. Their concentrations varied between 1 ng l
-1

 (some 

pesticides) up to 11 µg l
-1

 (X-ray contrast media). Similar concentrations (less than 2.5 times variation) 

were found during a large monitoring study in the effluent of the same WWTP (cf. Chapter 3), apart 

for a few compounds present in concentration 4 to 10 times lower in the present study (azithromycin, 

clarithromycin, ibuprofen, metronidazole, simvastatin, atrazine, irgarol and isoproturon). The TWW 

used was thus well representative of the average quality of WWTP effluents.  

The TWW was analysed 12 times (at each new batch cycle), with, on average on the 35 

micropollutants, a coefficient of variation between the concentrations in each sample of only 10%. 

This demonstrated the low influence of the storage time (frozen samples) and the good reproducibility 

of the analytical method. 

Fungal filter Wood filter

Total suspended solids (TSS) [mg l
-1

] 25.2 (±2.3 ) 11.7 (±5.2) < 1

Dissolved organic carbon (DOC) [mg l
-1

] 9.4 (± 0.55) 45 28

Total dissolved nitrogen (TN) [mg l
-1

] 21.2 30.4 7.4

N-NH4 [mg l
-1

] 9.2 (±0.04) 1.5 (±1.23) < 0.1

N-NO3 [mg l
-1

] 10.2 (±0.1) 11.4 (±0.4) 0.36

N-NO2 [mg l
-1

] < 0.06 < 0.06 < 0.06

P-phosphate [mg l
-1

] < 0.06 < 0.06 < 0.06

Sodium [mg l
-1

] 66.3 (±0.3) 72.4 (±0.3) 71.9

Magnesium [mg l
-1

] 8.8 (±0.2) 8.0 (±0.6) 7.7

Potassium [mg l
-1

] 14.1 (±0.06) 15.9 (±2.7) 11.7

Calcium [mg l
-1

] 35.9 (±0.4) 31.8 (±3.0) 47.9

Fluoride [mg l
-1

] 0.2 (±0.02) 0.6 (±0.17) 0.43

Chloride [mg l
-1

] 102 (±0.2) 109 (±3.6) 111.3

Sulfate [mg l
-1

] 60.8 (±0.5) 62.7 (±1.6) 61.0

Bromide [mg l
-1

] < 0.1 < 0.1 < 0.1

pH [-] 7.8 6.9 - 7.3 7.8 - 8.0

Total viable bacteria [CFU ml
-1

] 3 × 104
1-4 × 105

5 × 103

Effluent
b
 of the

Raw TWW
aConventional parameters

a 
Average of 6 analyses for DOC, 3 for the anions/cations, 2 for TSS and 1 for TN

b
 After 48h of treatment, in cycles 8 or 9 (expected for TN, cycle 2). Average of 3 analyses for the 

fungal filter (1 for DOC and TN), one for the wood filter
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Table 9.4 Concentrations of 35 micropollutants in the raw treated wastewater and their removal efficiencies by the 

fungal or wood filters. 

 

9.3.12.2 Impact of the filters on the global quality of the water 

The evolution of the conventional water quality parameters during the fungal treatment are presented 

in Table 9.3. After 48 h of treatment in the fungal or the wood filters, the TSS content decreased 

significantly, especially in the wood filter, probably by trapping and degradation of the particles. The 

low amount of TSS after the fungal treatment was coherent with the absence of growth of fungal 

mycelium observed in submerged condition (no sludge production). A strong increase in dissolved 

organic carbon (DOC) was observed in the effluent of both filters, but especially in the one inoculated 

with the fungus. This phenomenon is discussed later in section 9.3.12.10. Total dissolved nitrogen 

increased in the fungal filters, probably due to the release of extracellular enzymes, while it was 

consumed in the wood filter. Ammonium was almost totally consumed in the fungal and in the wood 

filters, while it stayed at stable concentrations in the inhibited filter (11.1 mg N-NH4 l
-1

, data not 

shown). Nitrate was also consumed in the wood filter, but stayed stable in the fungal filters. The major 

Wood filter Wood filter

Pharmaceuticals

Atenolol Beta blocker 10 B 312 (± 41) 78 (± 22) 99 85 (± 10) 99

Azithromycin Antibiotic 5 B 88 (± 22) 40 (± 20) 77 51 (± 21) 83

Bezafibrate Lipid regulator 1 B 179 (± 21) 82 (± 28) 100 95 (± 8) 99

Carbamazepine Anticonvulsant 10 B 248 (± 27) 38 (± 9) 31 34 (± 4) n.a.

Ciprofloxacin Antibiotic 30 B 403 (± 25) 88 (± 2) 92 89 (± 3) 91

Clarithromycin Antibiotic 5 B 77 (± 12) n.a. n.a.

Diatrizoic acid Iodinated contrast medium 100 N 174 (± 16) n.a. n.a.

Diclofenac Analgesic / Anti-inflammatory 30 B 1308 (± 207) 98 (± 1) 13 97 (± 4) 15

Gabapentin Anticonvulsant 80 N 1699 (± 28) 92 (± 10) 98 98 (± 1) 99

Gemfibrozil Lipid regulator 5 B 79 (± 7) 96 (± 2) 81 98 (± 0) 97

Ibuprofen Analgesic / Anti-inflammatory 20 B 199 (± 28) > 96 > 96

Iohexol Iodinated contrast medium 3000 N 11621 (± 350) 48 (± 10) > 80 71 (± 5) > 80

Iomeprol Iodinated contrast medium 2000 N 11239 (± 50) 64 (± 24) 82 76 (± 19) 78

Iopamidol Iodinated contrast medium 500 N 3062 (± 99) 43 (± 13) 83 61 (± 11) 77

Iopromide Iodinated contrast medium 500 N 2497 (± 49) 48 (± 37) 97 77 (± 19) 96

Ketoprofen Analgesic / Anti-inflammatory 200 N 267 (± 34) n.a. n.a.

Mefenamic acid Analgesic / Anti-inflammatory 5 B 520 (± 63) 98 (± 1) 94 99 (± 1) 95

Metoprolol Beta blocker 10 B 425 (± 18) 70 (± 12) 86 75 (± 13) 90

Metronidazole Antibiotic 10 N 120 (± 2.6) 46 (± 6) 91 83 (± 11) 97

Naproxen Analgesic / Anti-inflammatory 15 B 778 (± 50) 75 (± 4) 30 98 (± 2) 26

Ofloxacin Antibiotic 30 B 166 (± 22) 81 (± 10) 91 89 (± 13) 96

Paracetamol Analgesic / Anti-inflammatory 20 N 22 (± 8) n.a. n.a.

Primidone Anticonvulsant 20 N 57 (± 6) n.a. n.a.

Simvastatin Lipid regulator 20 N 25 n.a. n.a.

Sotalol Beta blocker 10 B 147 (± 13) 64 (± 15) 82 74 (± 6) 85

Sulfamethoxazole Antibiotic 20 N 132 (± 20) 64 (± 8) 65 79 (± 6) 62

Trimethoprim Antibiotic 1 B 55 (± 5.5) 93 (± 3) 100 96 (± 5) 100

Atrazine Herbicide 2 N 2.4 (± 2.4) n.a. n.a.

Benzotriazole Corrosion inhibitor 50 N 5983 (± 400) 63 (± 3) -15 72 (± 3) -17

Diuron Herbicide 10 N 68 (± 0.6) 80 (± 2) 85 86 (± 6) 85

Irgarol Algicide 0.5 B 1.5 (± 0.7) n.a. n.a.

Isoproturon Herbicide 0.5 B 6.1 (± 0.7) 80 (± 3) 71 86 (± 6) 76

Mecoprop Herbicide 20 B 319 (± 46) 35 (± 4) 36 79 (± 5) 58

Methylbenzotriazole Corrosion inhibitor 50 N 3111 (± 227) 72 (± 2) 80 79 (± 1) 82

Terbutryn Algicide 0.3 B 14 (± 1) 99 (± 2) 100 99 (± 2) 100

Compound Compound class
LOD 

(ng l
-1

)
a

Analytical 

method
b

TWW concentration 

(ng l
-1

)
c

Biocides - pesticides - chemicals

a
 LOD: limit of detection in the samples with the strongest matrix effect (highest LOD)

b
 B: basic HPLC mobile phase. N: netural HPLC mobile phase

c
 Average and standard deviation of 12 and 2 analyses, for compounds with method B and N, respectively, of the raw treated wastewater (TWW)

d
 Average (and standard deviation) values of three fungal filters inoculated with P. ostreatus  and one wood filter not inoculated, measured durging the 9

th
 batch 

cycle and, for filter 2, also during the 14
th

 cycle. In bold, much higher removal with the fungus than without

n.a.: not analysed in the effluent of the filters, due to strong matrix effect or concentrations in the raw wastewater too close to the LOD

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

> 96

Removal (%) in 48 h
d

Removal (%) in 5 d
d

Fungal 

filter

Fungal 

filter

> 96
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minerals were not strongly influenced by the treatment and stayed at relatively stable concentrations. 

The wood filter significantly reduced (> 80%) the amount of total viable bacteria, while their 

concentration increased (4-10 times) in the effluent of the fungal filters, probably due to the release of 

dissolved substrates by the fungus (wood oligomers, extracellular enzymes, secondary metabolites) 

(de Boer and van der Wal, 2008). On the whole, the fungal filters released DOC and total dissolved 

nitrogen, which probably promoted bacterial growth, but decreased the concentrations of TSS and 

NH4. 

9.3.12.3 Fungal activity in the filters 

The evolution of laccase activity and pH during the 63 d of continuous operation (14 cycles) are 

presented in Fig. 9.33. Similar to what happened in the experiment with NPX spiked in TWW, laccase 

activity rapidly declined in the fungal filters, reaching very low level (< 5 U l
-1

) already after 17 d for 

filters 1 and 3, and after 22 d for filter 2.This fast decrease in activity was probably related, as 

proposed before, to microbial degradation of the extracellular laccase produced, together with the 

decline of the fungus in the filters.  After 50 d, the fungus was, however, not completely dead as 

several fruiting bodies (sporocarps) appeared out of the woodchips of filter 1 (Fig. 9.4 J). During each 

batch cycle, the water was acidified, at the beginning also in the wood control and in the filter with the 

inhibited fungus (linked to the intrinsic acidity of the wood), and then only in the active fungal filters. 

This constant acidification was probably related to continuous production of organic acids by the 

fungus, suggesting that the fungus was still active at the end of the experiment, despite very low 

laccase activity. 

 

Fig. 9.33 Laccase activity (A) and pH (B) in the treated waters from the three filters inoculated with P. ostreatus 

(Fungus 1, 2 and 3) and from the controls with the inhibited fungus or the wood not inoculated. Arrows: beginning of a 

new batch cycle (water changed), with the number of the cycle. 

9.3.12.4 Micropollutant removed in the filters in comparison with other technologies 

Out of the 35 pollutants detected in raw wastewater, 26 to 27 (with LOD low enough) could be 

quantified in the effluents of the filters and were studied in details. Their average removals after 48 h 

and 5 d during the 9
th
 cycle (once adsorption was less important), in the filters with or without 

inoculation with P. ostreatus, are presented in Table 9.4. Both types of filters (inoculated or not) were 
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very efficient to remove most of the micropollutants, with an average removal of the 27 pollutants of 

72% and 75% after 48 h, and of 82% and 77% after 5 d, in the fungal and wood filters, respectively. 

After 48 h, the wood filter was thus even more efficient than the fungal filters, with 19 micropollutants 

removed at more than 80%, compared to 12 in the fungal filters. The comparison of the removal 

efficiencies (Fig. 9.34 A and B) showed that the fungal filter was much more efficient to remove DFC, 

NPX and BTZ, and slightly more efficient to remove IPN, SMX, gemfibrozil and mecoprop, while the 

wood filter removed better most of the other pollutants, especially (after 48 h) the iodinated contrast 

media, azithromycin and metronidazole. After 5 d, most of these pollutants were also degraded in the 

fungal filter, which became on average more efficient: only CBZ was still removed less than 50%, 

while it was the case for CBZ, DFC, BTZ and NPX in the wood filter. 

After 48 h of treatment, the wood and fungal filters reached already similar average removal 

efficiencies as other advanced treatments such as ozonation and activated carbon adsorption. Indeed, 

the average removal of the same 27 pollutants during the pilot assays at Lausanne WWTP (cf. Chapter 

3) was of 74% with both ozonation (5.9 mg O3 l
-1

) and powdered activated carbon adsorption (12 mg 

PAC l
-1

), compared to only 32% in the conventional treatment (biology with partial nitrification).  

Despite relatively similar average removal efficiencies, not the same pollutants were well removed 

with the fungal filter or with the advanced treatments. Compared to ozonation (Fig. 9.34 C), 

gabapentin, ciprofloxacin, ibuprofen, the iodinated contrast media, and several herbicides were better 

removed in 48 h with the fungal filter, while most of the other compounds were better removed by 

ozonation, especially CBZ, azithromycin, sotalol, SMX, metoprolol, mecoprop and metronidazole. 

Compared to PAC (Fig. 9.34 D), the fungal filter (after 48 h) performed better especially for 

gabapentin, but also, inter alia, for DFC, gemfibrozil, ciprofloxacin or terbutryn, while PAC treatment 

removed better CBZ, BTZ, azithromycin, metronidazole, atenolol, NPX and, to a lesser extent, several 

other pollutants. After 5 d of treatment, the fungal filter performed better then PAC or ozone for most 

pollutants, apart mainly for CBZ and azithromycin, still poorly removed in the filters. As shown in 

Fig. 9.34 E, all the micropollutants were clearly better removed in the fungal filters than in 

conventional WWTPs. 

Despite the long reaction time required (over 48 h), the sequential batch filters appeared to be a very 

promising technology, able to reach similar removal efficiencies as the one reached (in 20 to 40 min) 

with ozonation (at 5.9 mg O3 l
-1

) and PAC (at 12 mg l
-1

). Similar reaction times (hydraulic retention 

times from 24 to 96 h) were applied in other fungal bioreactors operated in continuous mode 

(Blánquez et al., 2008; Cruz-Morató et al., 2013b; Jelic et al., 2012; Rodarte-Morales et al., 2012; 

Yang et al., 2013a; Zhang and Geißen, 2012), confirming that relatively long reaction times are 

necessary when using fungal processes. Higher removal efficiencies could be reached by increasing 

the reaction time in the filters (by increasing the size of the plant), or by increasing the dose of ozone 

and PAC in the advance treatments (more feasible solution in terms of operation). The fact that the 

wood filters performed, on average for the 27 pollutants, as well as the fungal filters will be discussed 

later.  
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Fig. 9.34 Comparison of the removal efficiencies of 27 micropollutants between the fungal filters and (A) the wood 

filters after 48 h, (B) the wood filters after 5 d, (C) ozonation with 5.9 mg O3 l
-1, (D) powdered activated carbon (PAC) 

at 12 mg l-1, (E) conventional WWTP (with partial nitrification). Data for ozonation, PAC and the WWTP are average 

values from one year of operation of a pilot installation in Lausanne WWTP (Margot et al., 2013b). Average removal 

efficiency of the 27 pollutants: 72% and 82% after 48 h and 5 d, respectively, in the fungal filter; 75% and 77% after 48 h 

and 5 d, respectively, in the wood filter; 74% with both ozonation and PAC.  

9.3.12.5 Kinetics of micropollutant removal 

The kinetics of micropollutant removal in the filters were studied during the 9
th
 and 14

th
 batch cycles 

for 26 micropollutants. To identify the main removal mechanism, the kinetics were compared between 

the fungal filters, the wood filters, as well as with the fungal and wood filters where the microbial 

activity was inhibited with azide. This allowed classifying the pollutants according to the main 

removal mechanisms: adsorption, fungal degradation, microbial degradation, or a combination of all 

these mechanisms. As the main mechanism changes with time (saturation of the adsorption sites and 

development of the native microbial community), this analysis represents what happens after 20 (9
th
 

cycle) to 60 (14
th
 cycle) days of operation 

Micropollutants mainly removed by adsorption  

Five pollutants, ciprofloxacin, ofloxacin, terbutryn, diuron and isoproturon (Fig. 9.35), were rapidly 

removed (> 80% in less than 24 h) in the wood and the fungal filters, and this, at a similar rate in the 

active and inhibited filters, suggesting that adsorption onto the woodchips was the main removal 

mechanism. High removal by adsorption in activated sludge was also reported for ciprofloxacin and 

ofloxacin (cf. Chapter 2), and good adsorption affinity of the three pesticides onto PAC (>75% 

removal) was observed in Chapter 3, corroborating the assumption of the removal by adsorption in the 

filters. Abiotic degradation (photolysis) could not be completely excluded but was probably not as 

significant as adsorption, as discussed later. 
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6 Ciprofloxacin 20 Metoprolol
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8 Diuron 22 Naproxen
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10 Gemfibrozil 24 Sotalol
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12 Iohexol 26 Terbutryn
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Fig. 9.35 Micropollutants well removed in all conditions, probably by physical processes (adsorption). Average and 

standard deviation of the residual concentrations of (i) 4 replicates for the filters inoculated with P. ostreatus (◊, Fungus), (ii) 

duplicates for the filter with P. ostreatus inhibited with sodium azide (■), and (iii) only one filter with wood (without 

inoculation, ▲) or with inhibited wood (●). Results of the 9th and 14th batch cycles. 

Micropollutants mainly removed by fungal degradation 

Three micropollutants were well removed in the active fungal filters but not (< 25%) in the wood or 

inhibited filters: DFC, NPX and BTZ (Fig. 9.36), suggesting that biodegradation by P. ostreatus was 

the main removal mechanism. The ability of the fungus to degrade DFC and NPX in the filters was 

shown (at higher concentration) in section 9.3.9, but this was not clearly observed for BTZ. Indeed, 

BTZ was certainly slowly removed in the filters with synthetic wastewater, but probably more by 

native microbial than fungal degradation. This assumption is supported by the results of the 

experiment with T. versicolor, where degradation of BTZ by native microorganisms was also observed 

(Fig. 9.9). In any case, biodegradation was the main removal mechanism, as no removal was observed 

in the inhibited filters. 

 
Fig. 9.36 Micropollutants well removed only in the fungal filters (fungal degradation). Average and standard deviation 

of the residual concentrations of (i) 4 replicates for the filters inoculated with P. ostreatus (◊, Fungus), (ii) duplicates for the 

filter with P. ostreatus inhibited with sodium azide (■), and (iii) only one filter with wood (without inoculation, ▲) or with 

inhibited wood (●). Results of the 9th and 14th batch cycles. 
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Fig. 9.37 Micropollutants well removed only in filters not inhibited (biological degradation). Average and standard 

deviation of the residual concentrations of (i) 4 replicates for the filters inoculated with P. ostreatus (◊, Fungus), (ii) 

duplicates for the filter with P. ostreatus inhibited with sodium azide (■), and (iii) only one filter with wood (without 

inoculation, ▲) or with inhibited wood (●). Results of the 9th and 14th batch cycles. 

Micropollutants mainly removed by biodegradation 

Twelve micropollutants were removed in the active fungal and wood filters, but not (or only poorly) in 

the inhibited filters (Fig. 9.37), suggesting that they were mainly removed by biodegradation. As 

degradation occurred in both the fungal and the wood filters, it was not possible to determine who was 

involved: P. ostreatus, the native microbial community or both.  MFA and SMX, two compounds 

potentially degraded by the fungus, were removed at the same rate in the wood and the fungal filters, 
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showing that not only P. ostreatus, but also the native microbial community had the ability to degrade 

these pollutants. Gemfibrozil was removed faster in the fungal filter, suggesting that it was also 

degraded by the fungus (also observed in the experiment with T. versicolor, Fig. 9.8), while 

bezafibrate and the iodinated contrast media were clearly removed faster in the wood filters, 

suggesting that they were probably only degraded by the native microorganisms. For trimethoprim, 

atenolol and sotalol, although no removal was observed in the inhibited fungal filter (inhibited since 

the beginning of the experiment), high removal was observed in the inhibited wood filter (inhibited 

only at the end of the experiment, two cycles before the measurements). This removal was probably 

partially due to adsorption, as the wood was possibly not yet (in only two cycles) at equilibrium with 

the initial concentration, but this has to be confirmed. 

 

Fig. 9.38 Micropollutants removed by combinations of biodegradation and physical processes (adsorption, etc.). 

Average and standard deviation of the residual concentrations of (i) 4 replicates for the filters inoculated with P. ostreatus (◊, 

Fungus), (ii) duplicates for the filter with P. ostreatus inhibited with sodium azide (■), and (iii) only one filter with wood 

(without inoculation, ▲) or with inhibited wood (●). In red: compound with only low removal in all filters. Results of the 9th 

and 14th batch cycles. 

Micropollutants removed by a combination of microbial degradation and adsorption 

For the five micropollutants gabapentin, methylbenzotriazole, metronidazole, metoprolol, and 

azithromycin (Fig. 9.38), a combination of biodegradation (most probably by the native 

microorganisms) and adsorption was probably the cause of the removal observed in the filters. Indeed, 

although faster removals were observed in the active filters, significant removal was also observed in 

the inactivated filters, but reaching a plateau before complete removal (sign of adsorption and not 

degradation). Thus, the filters were not yet at equilibrium with the initial concentration, still leaving 

some potential for more adsorption. The almost complete removal of gabapentin in 48 h in the active 

filters (while less than 50% removal was observed in the inactivated one) demonstrates that this 

compound can be degraded by the native microbial community (also observed in the experiment with 
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T. versicolor, Fig. 9.9). This result is of great interest as gabapentin is usually only poorly removed in 

conventional WWTPs, as well as by ozonation or PAC adsorption (cf. Chapter 3). 

Finally, CBZ was not or only poorly removed (probably by adsorption) in all the filters, active or 

inactive, confirming the high persistence of this pollutant to biodegradation. 

One analysis performed after 18 d of reaction in the inhibited fungal filters at the end of the 10
th
 cycle, 

showed that for metoprolol, atenolol, sotalol, trimethoprim, azithromycin, mecoprop, MFA, 

gemfibrozil, DFC and bezafibrate, no further removal in the inhibited fungal filter occurred during 

these 18 d (stable concentrations, apart from a low removal observed for sotalol and trimethoprim, 

data not shown). This confirmed that no significant biotic or abiotic degradation mechanisms occurred 

in the inhibited filters for these compounds 

9.3.12.6 Evolution of the removal efficiencies as indication of the removal mechanisms 

The removal rates of 15 micropollutants (compounds with analytical method B, Table 9.4) at the end 

of each batch cycle (after 48 h) were monitored during 12 cycles in all the filters to assess the 

evolution of the removal efficiency with time. Due to analytical interferences (strong matrix effect), 

this was not performed for the other compounds (with analytical method N, Table 9.4). Different 

evolution patterns of the removal efficiency between the different filters (wood, active or inhibited 

fungus) provide an indication of the removal mechanisms. For instance, the pattern observed for the 

inhibited fungal filter gave indication on the evolution of the removal by adsorption. The pattern of the 

fungal filter and the wood filter gave information on the removal by biodegradation by the fungus and 

the native microorganisms, respectively.  

As presented in Fig. 9.39 and Fig. 9.40, for most of the micropollutants studied, a strong removal by 

adsorption was observed in all the filters during the first batch cycles, decreasing then at each cycle in 

the inhibited fungal filter due to progressive saturation of the adsorption sites of the 

woodchips/mycelium. In some cases (e.g., gemfibrozil), even desorption from the wood occurred after 

a few cycles (negative removal), probably due to competition for the adsorption sites with wastewater 

components with stronger adsorption affinity. The behaviour of the inhibited fungal filter gave thus a 

good indication of the evolution of the adsorption mechanism. 

For some pollutants, such as gemfibrozil, MFA, NPX and DFC, the removal efficiency in the fungal 

filter was high (60-100%) and stayed more or less constant during the 12 cycles, while it (temporally) 

decreased in the wood or inhibited filters (Fig. 9.39 and Fig. 9.40 A). This suggests that these 

pollutants were mainly removed by fungal degradation. For gemfibrozil and MFA, and less clearly for 

NPX, a very interesting pattern was observed in the wood filter: the removal efficiencies, high during 

the first cycle, decreased then rapidly in the next cycles in the same way than in the inhibited filter, 

showing that the removal observed was only due to adsorption. After 5-6 cycles, however, the removal 

efficiencies started to increase again in the wood control, reaching high removal rates after 8-9 cycles. 

This phenomenon could be attributed to microbial degradation, as no significant removal was 

observed when the microbial activity in the wood control was inhibited (14
th
 cycle). This demonstrated 

that a microbial community, able to degrade MFA, gemfibrozil and NPX, slowly developed in the 

filters (biofilm formation on the wood substrate, which became darker). These organisms were very 
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likely coming from the TWW. The removal observed in the wood control was thus clearly due to two 

different and separated mechanisms: adsorption during the first cycles and degradation by the native 

microorganisms that slowly developed in the last cycles. An illustration of these different phenomena 

is presented in Fig. 9.39 A, with gemfibrozil as an example. 

 

Fig. 9.39 Evolution of the removal mechanisms (adsorption, microbial or fungal degradation) as a function of the 

number of batch cycles (48 h) performed. Example for (A) a pollutant (gemfibrozil) degraded by the fungus and by the 

biofilm (native wastewater microorganisms) that slowly develops, (B) a pollutant (sotalol) not degraded by the fungus but 

degraded by the native microorganisms, and (C) a pollutant (carbamazepine) neither degraded by the fungus or the native 

organisms. For the fungal filter: results for the filter 2. 

Several other micropollutants (Fig. 9.39 B and Fig. 9.40 B), such as sotalol, atenolol, metoprolol, 

bezafibrate, and, to a lesser extent, azithromycin and mecoprop, were very likely removed mainly by 

degradation by the native microbial community. Indeed, the removal efficiency in the fungal filter 

decreased (temporarily) during the first cycles to a similar way as in the inhibited filter, suggesting it 

was due to adsorption, while it increased rapidly in the wood filter, probably due to the development 

of the microbial community. The removal efficiency increased again after 9 cycles in the fungal filter 
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(coinciding with a strong decrease in laccase activity), very likely due to the (late) development of the 

native microbial community (microbial degradation). The removal observed in the fungal filter was 

thus not due to the fungus, but to, first, adsorption, and then, microbial degradation. The delay 

observed between the appearance of important microbial degradation in the fungal and the wood 

filters, faster in the latter, was probably linked to the fungal inhibition of the microbial growth when 

the fungus was still active (until the 9
th
 cycle), as discussed later in section 9.3.12.8. An illustration of 

these different phenomena is presented in Fig. 9.39 B, with sotalol as an example. 

Trimethoprim (Fig. 9.40 B) was almost completely removed during every cycle in the fungal and in 

the wood filters, while it was less removed in the inhibited filter, with decreasing efficiency at each 

cycle (saturation effect). Trimethoprim was therefore biologically degraded in the active filters. It was, 

however, not possible to determine if it was only due to native microbial degradation or also to fungal 

degradation. Similar to the observations made at higher concentrations (Fig. 9.21 B, section 9.3.9.5), 

trimethoprim behaved very strangely in the inhibited filter during the 2 first batch cycles, with less 

adsorption than in the third cycle. This was, as already discussed, probably related to a pH effect 

(change of the charge of the molecule). 

Terbutryn, ciprofloxacin and ofloxacin were almost completely removed in all the filters (inhibited or 

not) during each batch cycle (Fig. 9.40 C), suggesting that adsorption was the main removal 

mechanism, although abiotic degradation cannot be completely excluded, as ciprofloxacin and 

ofloxacin are very sensitive and terbutryn is relatively sensitive to direct photodegradation (Lányi and 

Dinya, 2005; Wang and Lin, 2014). However, these compounds are not more photosensitive than 

DFC, SMX or NPX (Andreozzi et al., 2003; Wang and Lin, 2014), not significantly removed in the 

inhibited filters. Moreover, rapid adsorption of ofloxacin and ciprofloxacin may protect them from fast 

photodegradation (Belden et al., 2007). It is therefore expected that these compounds were mainly 

removed by adsorption, and possibly partially by photodegradation. 

CBZ was relatively well removed (70-90%) in the wood and the fungal filters during the first cycle, 

the removal efficiency decreasing then slowly at each cycle, at a similar rate in both filters (Fig. 9.39 

C). The progressive saturation of both filters was an indication that the removal was mainly (if not 

only) due to adsorption. This slow saturation of the adsorption sites was confirmed by the similar 

results obtained at higher concentrations (Fig. 9.17). 
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Fig. 9.40 Evolution of the removal mechanisms (adsorption, microbial or fungal degradation) as a function of the 

number of batch cycles (48 h) performed. (A) Micropollutants degraded by the fungus. (B) Micropollutants not degraded 

by the fungus but degraded by the native microorganisms. (C) Micropollutants removed by adsorption. For the fungal filter: 

results for the filter 2. 

9.3.12.7 Freundlich adsorption isotherms at low concentrations 

The progressive saturation of the adsorption sites in the inhibited filters allowed determining (cf. 

section 9.3.10.3) the Freundlich adsorption isotherms at the low concentration ranges for a few 

micropollutants (Fig. 9.41 and Table 9.5). For most of them (CBZ, metoprolol, atenolol, trimethoprim 

and sotalol), the isotherms were relatively linear at low concentrations (ng - µg l
-1

). This was expected 

as, in synthetic wastewater (cf. section 9.3.10.3), a saturation effect was observed for trimethoprim 

only at concentrations above 2 mg l
-1

 (40,000 times higher) and no saturation effect was reached for 

CBZ even at 5 mg l
-1

. Different results were, however, observed for MFA and gemfibrozil. These two 
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pollutants reached a saturation of the adsorption capacity already at low concentrations (100-400 ng l
-

1
) in real wastewater, while they were (at least for MFA), still adsorbed at concentrations 10,000 times 

higher (> 4 mg l
-1

) in synthetic wastewater. For MFA, the maximum adsorption capacity on the 

woodchips reached around 10 ng g
-1 

in real wastewater, while it was 50,000 higher in synthetic 

wastewater (around 500 µg g
-1

). These strong differences of maximum adsorption capacities may be 

possibly due to competitive adsorption with the dissolved organic matter present in real wastewater, 

but also to a pH effect or to other more complex adsorption phenomena (which may differ at different 

concentrations) not covered by the simple Freundlich model. In any case, these results showed that, to 

be reliable, adsorption isotherms have to be determined in a water matrix similar to the real water and 

at concentration ranges that cover the real concentrations. Any extrapolation outside these 

concentration ranges may lead to completely wrong estimations, especially for non-linear isotherms (n 

<< 1). 

 

Fig. 9.41 Freundlich isotherms for micropollutant adsorption in the wood filter (for carbamazepine, mefenamic acid 

and gemfibrozil) or in the inhibited fungal filter (for metoprolol, atenolol, sotalol and trimethoprim) in real 

wastewater, at real concentrations. 

 

Table 9.5 Freundlich coefficients for the isotherms of micropollutant adsorption in the wood filter (for 

carbamazepine, mefenamic acid and gemfibrozil) or in the inhibited fungal filter (for metoprolol, atenolol, sotalol and 

trimethoprim) in real wastewater at real concentration (0.1-1 µg/l), and physico-chemical properties of the pollutants. 
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n  [-] 0.871 0.332 0.272 1.107 2.258 1.635 1.247
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 Source: compilation by Margot et al. (2013)  
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 Source: www.chemicalize.org (last accessed 27.08.2014)
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9.3.12.8 Fungal inhibition of the native microbial biofilm development 

As presented in section 9.3.12.6, micropollutants that were mainly removed by degradation by the 

native microbial community, were clearly better removed only after the 9
th
 cycle in the fungal filter 2, 

while they were already well removed after 3-4 cycles in the wood filter. This resulted probably from 

a delay in the development of the native microbial community in the fungal compared to the wood 

filter. The increase in removal efficiency for these compounds after the 9
th
 cycle in the fungal filter 

coincided also with a strong decrease in laccase activity (filter 2, Fig. 9.33). These results suggested 

that the fungus was preventing the growth of other microorganisms, which developed mainly once the 

fungus was no more active.  

This assumption was confirmed by the comparison of the efficiency of the three fungal filter replicates 

during the 9
th
 and 14

th
 cycles. Filters 1 and 3 (9

th
 cycle) and filter 2 (14

th
 cycle) had very low fungal 

activity (0.8-4 U l
-1

 laccase activity), while in filter 2 (9
th
 cycle), the fungus was still well active (23 U 

l
-1

). As presented in Fig. 9.42, the removal of sotalol, atenolol, metoprolol (not shown), bezafibrate, 

metronidazole, gabapentin, iopromide, and iohexol was much faster in filters 1 and 3 (with low fungal 

activity) than in filter 2 (well active). Moreover, when the fungus in filter 2 became inactive (14
th
 

cycle), the removal rates increased to a level similar or better than in filters 1 and 3. These results 

showed that the active fungus was not responsible for the degradation of these compounds, and 

confirmed that the active fungus probably prevented or inhibited the development of the microbial 

community, which was responsible for the removal of these micropollutants.  Indeed, P. ostreatus, as 

well as several other basidiomycetes, are known for their ability to inhibit the development of bacteria 

in their surrounding (e.g., by predation,  acidification of the medium or production of antimicrobial 

metabolite) (de Boer and van der Wal, 2008).  

 

Fig. 9.42 Difference in micropollutant removal kinetics between the three replicates (filters 1, 2 and 3) inoculated with 

P. ostreatus during the 9th batch cycle, and comparison with the kinetic observed in filter 2 during the 14th batch cycle. 

Filters 1 and 3 (9th cycle) and filter 2 (14th cycle) had very low fungal activity (0.8-4 U l-1 laccase activity), while in filter 2 

(9th cycle), the fungus was still active (23 U l-1). 
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It seemed that only the development of the attached microbial biofilm was impaired by the presence of 

the fungus (direct competition for space with the mycelium), but not the growth of free bacteria in the 

liquid phase, on the contrary stimulated by the fungus. Indeed, much higher (20 to 80 times) 

concentrations of free bacteria in the liquid phase were found in the effluents of the fungal filters than 

in those of the wood filter (cf. Table 9.3). Moreover, during the 8
th
 cycle, 2.6 to 3 times higher 

concentrations of total viable bacteria were measured in the effluent of the fungal filter 2 (4 × 10
5
 CFU 

ml
-1

) than in the effluents of the fungal filters 1 and 3 (1.3-1.5 × 10
5
 CFU ml

-1
). This higher bacteria 

concentration in the effluent of the filter 2 may be due to the much higher fungal activity in this filter 

(40 U l
-1

 laccase activity) compared to the two others (< 8 U l
-1

), and therefore to the release of higher 

amount of dissolved organic substrates for the bacteria (extracellular enzyme, metabolites, dead fungal 

cells, etc.).  

For the removal of pollutants mainly degraded by the native microorganisms, a wood filter with a well 

established microbial community will thus perform much better than an active fungal filter. On the 

other hand, the fungal filter will allow the removal of compounds difficult to degrade by the microbial 

community, such as DFC, BTZ or NPX. Therefore, combining fungal and native microbial 

degradation in two separated serial processes is the key to reach good micropollutant biodegradation in 

municipal wastewater. 

9.3.12.9 Synthesis of the main removal mechanisms in the fungal filters 

Based on all the previous results, the 27 micropollutants analyzed in this study could be classified 

according to their main removal mechanism in the fungal filter (Table 9.6). Five to seven pollutants 

were clearly degraded by the fungus, while at least 14 others were mainly removed by microbial 

degradation and six mainly removed by adsorption. Despite the good efficiency of the fungal filter to 

remove a wide range of micropollutants, the contribution of the fungus itself was only limited to a few 

compounds. Most of the efficiency of the filters was due to the native microbial community.  

Table 9.6 Synthesis of the main removal mechanisms in the fungal filters, determined for 27 micropollutants. 

Fungal degradation Native microbial degradation Adsorption 

diclofenac, gemfibrozil, 

mefenamic acid, naproxen, 

sulfamethoxazole, 

(benzotriazole, 

trimethoprim) 

atenolol, azithromycin, bezafibrate, 

gabapentin, ibuprofen, iohexol, 

iomeprol, iopamidol, iopromide, 

mecoprop, methylbenzotriazole, 

metoprolol, metronidazole, sotalol, 

(benzotriazole, trimethoprim) 

carbamazepine, 

ciprofloxacin, diuron, 

isoproturon, ofloxacin, 

terbutryn  

Compounds in bracket: clear distinction between fungal and native microbial degradation could not be done 
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9.3.12.10 Release of organic compounds 

One of the main drawbacks of the fungal filters, as designed here, is the release of high amount of 

dissolved organic matter in the treated water. Indeed, soluble wood components and organic matter 

(fungal metabolites accumulated during the incubation period) are leached in the water during the 

operation of the filter. As presented in Fig. 9.43 A, during the second batch cycle (not measured for 

the first cycle), the DOC concentration increased by 63 times (up to 600 mg l
-1

) and 27 times (255 mg 

l
-1

) in the effluents (after 48 h) of the fungal and wood filters, respectively. The release of DOC 

decreased then rapidly at each new cycle, due to progressive washing of the wood/mycelium. After 8 

cycles, the release of DOC was, however, still relatively high, with 45 and 28 mg l
-1

 in the effluent of 

the fungal and wood filters, respectively (compared to 9.4 mg l
-1

 in the raw TWW). The amount of 

DOC released was also dependent on the length of the cycle (Fig. 9.43 B). In a batch cycle of 5 d, 2.5 

times more DOC was released in the fungal filter than in a cycle of 2 d.  

 

Fig. 9.43 Release of dissolved organic carbon (DOC) during the batch cycle by the wood filters, inoculated (fungal 

filter) or not (wood control) with P. ostreatus. (A) Evolution of the DOC released as a function of the number of batch 

cycles (48 h) performed. (B) Evolution of the DOC released as a function of the duration of the batch cycle (compilation for 

cycles 8-10). TWW: raw treated wastewater. 

The soluble wood compounds released coloured also the treated water in a dark brown-yellow during 

the first cycles, the colour intensity decreasing then at each cycle to very light yellow after 10 cycles 

(Fig. 9.44). 

 

Fig. 9.44 Evolution of the colour of the water treated by the wood filter (not inoculated) as a function of the number of 

batch cycles (of 48 h) performed. TWW: raw initial treated wastewater. 

Despite the release of dissolved organic matter, bacteria did not develop in the water treated by the 

wood filter (decrease in total viable bacteria, Table 9.3), indicating that the soluble wood components 

were not easily biodegradable (possibly due to lack of essential nutrients). The release of these 
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compounds should therefore not lead to fast oxygen consumption in the receiving waters. 

Nevertheless, their toxicity for aquatic organisms should be assessed before further development of 

this system. Soluble wood component (hydrophilic wood extractives) are expected to be mainly lignin-

derivative compounds (Liu et al., 2011b), condensed tannins, flavonoids, proanthocyanidins and 

several other polyphenols, as well as low molecular weight organic acids such as acetic acid (Piškur et 

al., 2009; Rowe, 1989; Vek et al., 2013). 

In addition to the release of wood extractives, the fungal filters released probably also dissolved fungal 

metabolites, extracellular enzyme and wood oligomers, due to the fungal metabolism (de Boer and van 

der Wal, 2008). These compounds, despite their probable participation to the DOC released, seemed 

relatively easily biodegradable (bacteria developed well in the filters with high fungal activity), and 

therefore, potentially easily removed in an additional step by microbial degradation. 

The impact that the DOC released could have on the receiving waters is not clear. Similar compounds 

(such as refractory tannins, humic or lignin-derivative substances) are also present at high 

concentrations (from 10 up to 100 mg l
-1

 DOC) in many natural water bodies without generating 

ecological problems, known as dystrophic waters or blackwaters (due to the brown colour of the 

tannins, humic substances or organic acids lixiviated from forest soils or swamps) (Kerr et al., 2013; 

Liu et al., 2011b). However, high input of organic matter in an aquatic ecosystem not used to have 

such high content of DOC (oligotrophic waters) may generate several impacts, even if the DOC is of 

low bioavailability (Andreasson et al., 2009). High input may still possibly generate hypoxia (low 

dissolved oxygen level due to microbial activity) in poorly aerated rivers, which can be harmful or 

lethal to a wide range of organisms. Moreover, the DOC may contain compounds that can be toxic, at 

high concentrations, to sensitive organisms. Finally, high concentrations of DOC reduce light 

penetration through the water column, which may inhibit the growth and survival of submerged plants 

and algae (Kerr et al., 2013). It will be therefore important to determine, in additional studies, if the 

DOC released from the fungal filters will possibly generate such impacts or will be harmless for the 

aquatic organisms.  

Strategy to limit the release of organic compounds 

To face the problem of DOC released in the water, different strategies could be applied, such as (i) 

washing well and soaking the woodchips in water during several days (or weeks) before their 

inoculation, to extract most of the soluble organics prior their use in the fungal filter, (ii) avoiding too 

long reaction time (cycle duration < 2-3 d) in the fungal filter, and (iii) removing the bark of the dead 

wood branches before preparing the woodchips. Indeed, hardwood (such as beech) contains around 

4% of extractives while the bark contains around 20% (Helm, 2000). As bark can comprise between 

14 to 37% of the tree mass (Pérez Cordero and Kanninen, 2003), using woodchips without bark could 

possibly decrease the release of soluble organics by more than half. Applying these three strategies 

should reduce drastically the DOC of low bioavailability released by the woodchips and the coloration 

of the water. For the dissolved compounds produced by the fungus (metabolites, wood oligomers and 

extracellular enzymes), their production cannot be avoided, but most of these compounds can probably 

be degraded by the native microbial community in an additional step. These strategies still have to be 

tested to evaluate their efficiency. 
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9.3.13 Energy consumption of the fungal filters and practical implications 

The global aim of this study was to develop a process for micropollutant removal in municipal 

wastewater affordable for small WWTPs, with low equipment needs, skills and energy requirements. 

The sequential batch fungal filters go in this direction, with simple technical equipments (only a tank, 

pumps, valves and a simple control system), no continuous input of reagents, no need of specific skill 

for the operation and low maintenance (only for the pumps and valves, and every few months to renew 

the wood supports). The energy consumption for the operation of the filters was therefore also 

assessed to evaluate the full potential of this system.  

 

Fig. 9.45 Electricity consumption (for water recirculation) and space requirement by the fungal filter as a function of 

the duration of the batch cycle. Filter characteristics (scale up of the laboratory columns, but in the same operational 

conditions): Height: 125 cm, divided in 5 layers (25 cm) saturated sequentially (1 min immersion, 4 min drainage). Pump 

yield (energy): 0.5 [kWh/kWh]. Ratio volume of water treated per bacth cycle / volume of reactor (filter): 0.59 [m3/m3]. 

Percentage of volume of water recirculated every 5 min per volume treated per batch cycle: 9%.  Equations: x : duration of 

the batch cycle (h), y: electricity consumption (kWh per m3 treated) (left) or space requirement (m2 / capita, with 330 litres 

consumed per capita per day) (right). Grey zone: reaction time required for good micropollutant removal. 

Energy consumption for the operation 

During the fungal filter operation, the only energy consumption came from the pump used for the 

water recirculation. As about 45% of the water treated in a batch cycle was recirculated every 5 min on 

a height of 25 cm, this was equivalent to pump all the water of the batch cycle on about 135 cm every 

hour. The energy (electricity) required to pump the water, including the pump yield (50%) and the 

head losses, was of 7.27 Wh m
-3

 of water treated, per hour of treatment. The total electricity consumed 

per volume of water treated was thus dependant on the duration of the batch cycle, ranging from 0.17 

kWh m
-3

 for a cycle of 24 h, up to 0.87 kWh m
-3

 for a cycle of 5 d (Fig. 9.45). As a cycle of 48 h was 

sufficient to remove well (> 80%) many micropollutants, in synthetic but also in real wastewater, this 

would result in an electricity consumption of 0.35 kWh m
-3

, which is similar to the total electricity 

consumed actually in conventional WWTPs (Abegglen and Siegrist, 2012). By comparison, for similar 

average removal efficiencies, PAC adsorption and ozonation (both with sand filtration) consume for 

their operation around 0.08 and 0.12 kWh m
-3

, respectively (cf. Chapter 3), and PAC adsorption 

followed by ultrafiltration potentially less than 0.2 kWh m
-3

 (Magnet et al., 2014). In terms of energy 

consumption (for the operation), the fungal filters, as designed here (not optimized), are thus not 

competitive with other advanced treatments (3 times more electricity consumption) for a batch cycle 
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of 48 h, but start to be competitive when the batch cycle is shorter than 24 h (which allowed already a 

good removal of most pollutants).  

To be more competitive, the energy requirement of the process has thus to be reduced. Instead of 

recirculating every 5 min the water, which consumes a lot of energy, it would be much more efficient 

to keep the water static and to sequentially immerge and emerge the woodchips/mycelium. Similar 

systems, such as rotating biological contactors (RBC), are already used for treating wastewater and 

were recently proposed for fungal reactors (Šíma et al., 2014). RBC are composed of rotating disks, 

only partially immerged in wastewater, on which biomass grows as a static biofilm. Rotation leads to 

natural aeration of the biofilm, fluid mixing, convection through the media biofilm pores, and 

compound diffusion to the biofilm. RBCs are known for their low energy and maintenance 

requirement, with less than half the energy consumption of an activated sludge plant (Hassard et al., 

2014). Developing a rotating fungal contactor (RFC), where the woodchips/mycelium support is 

packed with a mesh in a rotating drum, partially immerged (one third) in the water, may drastically 

reduce the energy consumption of the system. Indeed, with a slow rotation speed (one rotation every 3 

min, to have 1 min immersion and 2 min resting), the resistance to rotation (friction) inside the water 

will be low and water will have time to drain before being too much dragged along with the drum in 

the emerged part. Rotation of the drum should therefore not require strong power. Such systems, still 

to be tested, should be able to compete easily for energy consumption with other advanced treatments, 

despite a reaction time of 24 to 48 h. 

Energy consumption for the woodchips/mycelium preparation 

Apart for the operation, energy is also required to prepare the supports (woodchips/mycelium). Energy 

consumption to shred the dry wood to produce woodchips is not expected to be important compared to 

other processes. The main energy cost for the support preparation was the sterilisation of the wood 

before its inoculation. Although the mycelium could sometime develop well in non-sterile wood, it 

was often not able to compete with a green mould, which develops much faster (Fig. 9.4 F). 

Sterilisation was thus a guarantee of good mycelium development. Based on the data of Kerry (2010), 

the wood sterilisation (laboratory-scale autoclave) required around 0.25 kWh kg
-1

 dry wood. 

Assuming a life expectancy of the filters up to 140 d, with a batch cycle duration of 48 h (70 cycles 

performed), 2 g l
-1

 of dry wood per treated water were necessary, corresponding to an energy 

consumption of 0.5 kWh  m
-3

 just for the wood sterilisation. This wood was then inoculated with 1-4% 

v/v of mycelium, which would correspond to adding between 0.14 to 0.57 ml of mycelium per litre of 

water treated. The additional energy consumption related to the mycelium preparation (medium 

sterilization) would correspond to 0.03 kWh m
-3

 treated (for 1% v/v mycelium in the wood). Although, 

at industrial scale, sterilisation is probably more efficient, and that significant optimization of the 

woodchips preparation is still possible, this shows that preparation of the inoculated wood support 

may consume more electricity than the operation of the filter itself. Same conclusions were drawn for 

a fungal bioreactor, where preparation of the inoculums was the most critical point (Gabarrell et al., 

2012). Production of PAC and ozone consumes also a significant amount of energy. A detailed life-

cycle assessment of the three processes would allow comparing the ecological impacts of these three 

treatments. 
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Footprint 

The space (footprint) required by the fungal filters was also estimated for a scale-up version of the 

laboratory columns used (but with the same operational conditions), of 125 cm high composed of five 

layers of 25 cm sequentially saturated. As presented in Fig. 9.45, a surface of 0.45 m
2
 and 0.89 m

2
 per 

capita for a batch cycle of 24 h and 48 h, respectively, would be necessary. This is lower than for 

constructed wetlands (2-4 m
2
 capita

-1
) (Matamoros et al., 2007), but more than 100 times higher than 

for ozonation or PAC adsorption (around 0.005 m
2
 capita

-1
) (Margot et al., 2011). Therefore, the high 

space requirement of this advanced biological system limits its potential application in WWTPs were 

space is not a limiting factor (mostly small WWTPs). 

Life expectancy of the filters and woodchips management 

The life expectancy of the fungal filters (fungal activity) varied between 50 to more than 140 days, 

depending on the test conditions. As the fungus was still well active after 140 d in some filters, this 

could be considered as an operation duration possible to reach in an optimized system. Even once the 

fungus was not anymore active, the filters were still efficient to remove many pollutants (degradation 

by the native microbial community). Thus longer operation times could be reached depending on the 

targeted pollutants.  

For a life-span of the fungal filters of 140 d and with batch cycles of 48 h, relatively high quantity of 

woodchips would be necessary (per volume of water treated): 2 g l
-1

 dry weight. Beech wood is widely 

available in Switzerland and forestry waste can be used to produce the woodchips, so their cost should 

be low. Once the filter loses its efficiency, the woodchips/mycelium will have to be renewed. This 

means that big quantities of waste will be produced, multiplying by ten the sludge production of 

WWTPs (around 0.2 g l
-1

 dry weight) (DGE, 2013). Woodchips, once slightly dried, are expected to be 

a good combustible and could improve the incineration of the sludge (wet woodchips contain around 

30% dry matter, so similar than dewatered sludge (Metcalf and Eddy, 2003)). 

To be more competitive with other advanced treatments, the fungal filters still have to be optimized to 

(i) reduce the time of treatment (to reach a batch cycle < 24 h) while maintaining the same efficiency 

(possibly by using another white-rot fungi), (ii) increase the life-span of the fungus (more than 140 d) 

and the long-term stability of the process, and (iii) significantly reduce the energy consumption. For 

that, other filter configurations should be tested, such as the rotating fungal contactor. Therefore, 

despite the promising possibilities to treat biologically many refractory micropollutants during several 

months, effort has still to be invested in research to design a fungal filter able to compete, in terms of 

feasibility and full-scale operation, with other advanced treatments such as ozonation and activated 

carbon adsorption. 
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9.4 Conclusions 

The main results of this study can be synthesised in the following points. 

Trametes versicolor was able to degrade several micropollutants (DFC, MFA, NPX, IPN, SMX and 

gemfibrozil) even at low concentrations in real treated wastewater, but it was not able to survive more 

than one week in unsterile water, due to competition/predation by other microorganisms. 

The other white-rot fungus, Pleurotus ostreatus, was much more resistant and competitive in an 

unsterile environment than Trametes versicolor. Despite its much slower growth and lower laccase 

activity, it was also able to degrade many micropollutants. It was therefore selected for the fungal filter 

development. 

A sequential batch fungal filter, composed of beech woodchips as support/substrate for the fungal 

mycelium, and working in alternation of saturated/unsaturated conditions, was designed. This system 

was very reliable, allowing good reproducibility of the treatment efficiencies. 

These fungal filters could be operated in continuous mode during several months (up to 140 d) to treat 

micropollutants in unsterile wastewaters (synthetic and real municipal treated wastewater), while 

keeping the fungus active without addition of any external substrate (including fresh woodchips), 

acidification, or re-inoculation. 

A wide range of micropollutants could be removed well in the fungal filters, including hardly 

degradable compounds such as DFC, NPX, SMX, gabapentin and X-ray contrast media, by a 

combination of fungal and microbial degradation and adsorption. The average removal efficiency of 

27 micropollutants (in real wastewater) reached 72 and 82% after 48 h and 5 d of treatment (batch 

cycle duration), respectively. After 5 d, only CMZ was removed less than 50%. This process was thus 

able to compete with other advanced treatments such as ozonation (at 5.9 mg O3 l
-1

) and PAC 

adsorption (at 12 mg l
-1

) (both with 74% average removal efficiency). 

Despite the good efficiency of the fungal filter to remove a wide range of micropollutants, the 

contribution of the fungus itself was only limited to a few compounds (DFC, NPX, MFA, SMX, 

gemfibrozil). Most of the efficiency of the filters was due to the native microbial community. 

Moreover, the fungus prevented or slowed down the growth of the microbial biofilm, reducing the 

removal of some pollutants compared to a wood filter not inoculated with the fungus. Therefore, 

combining fungal and native microbial degradation in two separated serial processes is the key to 

reach good micropollutant biodegradation in municipal wastewater. 

The main drawbacks of the fungal filters were the release of significant amount of DOC, leached from 

the woodchips, as well as important energy consumption (water recirculation) due to the long reaction 

times (24-48 h) needed for the removal of the pollutants. The long reaction time and the moderate life-

span of the filters (up to 140 d) resulted also in relatively high consumption of woodchips per litre of 

water treated (2 g l
-1

). 
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Despite good efficiency to treat micropollutants, simple technical equipments, ease of operation, only 

woodchips and electricity as sole inputs, and low maintenance, the fungal filters still have to be 

significantly optimized in order to eventually compete one day with ozone or PAC regarding the long-

term operational feasibility and stability at full-scale for the treatment of micropollutants in municipal 

wastewater.    
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Chapter 10   General conclusions and perspectives 

This last chapter gives an overview of the main achievements of this thesis concerning micropollutant 

removal from municipal wastewater, and highlights the needs for further research regarding different 

issues raised during this work.  

10.1 Main achievements of this thesis 

10.1.1 Micropollutant removal in conventional WWTPs 

This work confirmed that the removal of hydrophilic (low sorption affinity) and hardly biodegradable 

micropollutants, such as pharmaceuticals, pesticides and several household products, is particularly 

challenging with conventional biological treatments.  

The pilot study conducted at Lausanne WWTP demonstrated that undiluted WWTP effluents can 

impact the development and the survival of juvenile fish (rainbow trout). These effects were very 

likely linked to micropollutants toxicity as they could be strongly reduced after treatment of 

micropollutants with ozone or activated carbon. This confirms that advanced treatments are necessary 

to improve quality of surface waters. 

The role of nitrification in micropollutant removal was investigated in laboratory-scale reactors and in 

full-scale WWTPs. It was shown that the addition of a nitrification step improves significantly the 

removal of many micropollutants (cf. Table 10.1), and this, probably rather because of a higher 

diversity of aerobic heterotrophic microorganisms and longer HRTs in nitrifying WWTPs than to the 

action of nitrifying organisms. For WWTPs that do not plan to have advanced treatments, up-grading 

with a nitrification step is therefore recommended. However, even in WWTPs with complete 

ammonium removal, around half of the pollutants studied were still removed less than 50% (cf. Table 

10.1). Thus, nitrification is not sufficient for the protection of the receiving waters.    

10.1.2 Micropollutant removal with advanced physico-chemical processes 

Two advanced treatments were assessed in a comprehensive study based on large-scale pilot systems 

at Lausanne WWTPs: ozonation and powdered activated carbon (PAC) adsorption. Both technologies 

were efficient to remove most of the pollutants studied (cf. Table 10.1), with similar average removal 

efficiencies. They both significantly decreased the toxicity of the effluents towards a wide range of 

organisms. Both treatments proved to be feasible at large scale and for long-term operation in real 

WWTP conditions, with similar and reasonable costs if sand filters were used for the PAC retention. 
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Although these two treatments are relatively mature, a few issues should be clarified to optimize these 

processes: 

- PAC and ozone efficiencies appeared to be strongly affected by the dissolved organic carbon 

(DOC) content of wastewater. Regulation of the dose of reactant as a function of the DOC 

concentration, which was performed for ozone, has still to be tested for PAC.  

- Efficient and reliable separation of the spent PAC at reasonable costs is challenging and was 

not achieved in this study. Improvement in ultrafiltration technologies may be the key-point to 

solve this issue.  

- Despite ozonation decreased significantly the toxicity of the wastewater, contradictory results 

were observed in other studies, suggesting that the wastewater matrix composition could affect 

the toxicity of the by-products. This should be further assessed. 

10.1.3 Micropollutant removal with oxidative enzymes 

The potential of the oxidative enzyme laccase for micropollutant removal in wastewater and the 

optimal conditions for an efficient enzymatic treatment were determined. Despite the ability of laccase 

to degrade in a few hours several critical pollutants such as oestrogenic compounds, triclosan, 

mefenamic acid and diclofenac, and this even at environmentally relevant concentrations, the majority 

of the pollutants tested could not be removed. Moreover, the strong pH effect on laccase activity may 

strongly limit the feasibility of such treatment in real not-acidified wastewater. Indeed, the two fungal 

(from Trametes versicolor) and bacterial (from Streptomyces cyaneus) laccases tested were mainly 

active under acidic conditions. Under neutral-alkaline conditions, high enzyme concentrations and 

long reaction times were necessary, which restrains the application of this process in WWTPs. 

Therefore, enzymatic treatment with solely laccase to decrease the load of a wide range of 

micropollutants in municipal WWTP effluents does not appear as an interesting option.  

However, laccase treatment may be of interest if the goal is to remove only a few target pollutants, 

such as the endocrine disrupters responsible for fish feminization in many rivers. In this case, further 

research is needed especially (i) to increase the stability of the enzymes (relatively rapidly degraded) 

in municipal wastewater, (ii) to immobilized the enzymes on a support that stays in the system (to 

avoid the lost of free enzymes in effluents), (iii) to select laccases highly active and stable under 

neutral-alkaline conditions, (iv) to produce high quantity of laccase by a cheap process, and (v) to 

design a system feasible for long-term operation in WWTPs, without too high costs, energy 

consumption or maintenance needs, for instance by filtration through a fixed-bed containing high 

concentration of immobilized laccases. The semi-empirical model proposed in this thesis could 

become a useful tool to optimize the design and predict the efficiency of such systems as a function of 

the operation conditions (pH, temperature, HRT, enzymatic activity).  

The strong effect (enhancement or inhibition depending on the compounds) of mixtures of pollutants 

on the degradation kinetics with laccase, highlighted in this work, should also be further investigated 

to assess the impact of the wastewater matrix as well as the presence of other pollutants on laccase 

oxidation efficiency.   
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A comprehensive study on laccase-mediator systems (LMS) was performed, allowing a better 

understanding of the mechanistic aspects of LMS reactions. Addition of mediators was shown to 

widen the range of pollutants oxidized by laccase, allowing complete degradation and partial to 

complete detoxification (towards algae) of the herbicide isoproturon and the antibiotic 

sulfamethoxazole. Depending on the pH, different strategies were proposed to increase the oxidation 

rates. It was demonstrated that the synthetic mediator ABTS, in addition to be more efficient, allowed 

better removal of the toxicity of the mixture of transformation products than the natural mediators 

syringaldehyde and acetosyringone. Instead of acting as catalysts, as initially thought, the mediators 

were consumed during the reaction. Therefore, treatment of low micropollutant concentrations in 

municipal wastewater (especially at neutral-alkaline pH) would require relatively high doses of 

mediator, which might increase the toxicity of the effluent (due to the toxicity of the mediator itself) 

and generate significant costs. Thus, despite their interesting potential for concentrated industrial 

effluents, LMS appear not to be suitable for municipal wastewater treatment. 

10.1.4 Micropollutant removal with advanced biological processes 

Treatment of micropollutants with the laccase-producing white-rot fungus Pleurotus ostreatus appears 

to be a much more promising option. Indeed, the sequential batch fungal filters developed, with 

woodchips as substrate and support for the fungal mycelium, could be operated in continuous mode 

during several months (up to 140 d) to treat micropollutants in unsterile wastewaters, while keeping 

the fungus active without addition of any external substrate, acidification or re-inoculation. A wide 

range of micropollutants could be well removed by a combination of fungal and microbial degradation 

and adsorption. This process was able to compete with other advanced treatments such as ozonation 

and PAC adsorption regarding the average removal efficiency of 27 micropollutants in municipal 

wastewaters (cf. Table 10.1). This demonstrated that biological processes can be used to remove a 

wide range of micropollutants from wastewater. However, biological processes are rather slow and 

long reaction times (24 to > 48 h, versus < 40 min for PAC or ozone) were required for the removal of 

most pollutants. These long reaction times and the moderate life-span of the filters resulted in 

relatively high energy consumption (> 0.18 kWh m
-3

 for water recirculation and > 0.25 kWh m
-3

 for 

woodchips inoculation) and high woodchips requirement (> 1 g l
-1

). 

Therefore, despite good efficiency to treat micropollutants, simple technical equipments, ease of 

operation, only woodchips and electricity as sole inputs and low maintenance, the fungal filters have 

to be optimized in order to compete with ozone or PAC regarding their application in municipal 

WWTPs. More research is especially needed (i) to reduce the reaction times to less than 24 h, possibly 

by stimulating the growth (nutrient addition) of the active biomass, (ii) to decrease the energy 

consumption, for instance by changing the design of the filters (e.g., using a rotating fungal contactor), 

(iii) to increase the life-span of the fungus in the filters (for instance by testing other more resistant 

white-rot fungi), or, indirectly, to increase the quantity of water treated per filter (by a factor 10 

minimum), and (iv) to reduce the release of wood components in the treated water, for instance by a 

prior washing of the woodchips, and by removing the bark of the wood. In the case these objectives 

would be reached, which is not without challenges, fungal treatment of micropollutants in municipal 

wastewater might become a reality. 
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Table 10.1 Synthesis of the removal efficiencies of 43 micropollutants in municipal wastewater achieved by various 

biological and physico-chemical processes during this thesis. WWTP: wastewater treatment plant, PAC: powdered 

activated carbon. 

 
 

 

 

Removal efficiency [%]
WWTP without 

nitrification
a

WWTP with 

complete 

nitrification
b

Ozonation
c

PAC treatment
d

Fungal filter
e

Paracetamol 100 100 n.a. n.a. n.a.

Estriol 71 64 n.a. n.a. n.a.

Estrone 66 86 92 92 n.a.

Ciprofloxacin 59 64 53 63 89

Norfloxacin 59 96 75 82 n.a.

Simvastatin 50 87 n.a. n.a. n.a.

Ofloxacin 48 93 85 83 89

Sulfamethoxazole 40 23 93 64 79

Terbutryn 34 65 85 80 99

Atrazine 33 7 34 74 n.a.

Diatrizoic acid 33 23 16 15 n.a.

Ibuprofen 26 100 63 83 96

Mecoprop 26 39 60 48 79

Azithromycin 26 73 74 76 51

Irgarol 26 92 32 33 n.a.

Isoproturon 26 54 68 75 86

Propiconazole 24 38 32 66 n.a.

Clarithromycin 23 45 93 92 n.a.

Naproxen 22 63 90 81 98

Iopamidol 18 24 42 49 61

Metronidazole 17 66 64 79 83

Diuron 17 0 73 87 86

Mefenamic acid 16 80 98 93 99

Bisphenol A 16 91 91 86 n.a.

Ketoprofen 16 59 63 81 n.a.

Benzotriazole 16 26 64 90 72

Gemfibrozil 15 89 94 76 98

Iopromide 13 70 34 47 77

Methylbenzotriazole 12 71 80 96 79

Bezafibrate 9 67 81 79 95

Gabapentin 7 7 38 12 98

Metoprolol 7 0 88 95 75

Primidone 6 23 57 51 n.a.

Trimethoprim 6 47 99 94 96

Diclofenac 6 8 94 69 97

Atenolol 6 55 85 88 85

Sotalol 5 35 99 81 74

Iohexol 5 36 38 57 71

Carbamazepine 4 15 97 90 34

Iomeprol 4 27 43 54 76

Propranolol 4 20 99 99 n.a.

Carbendazim 1 4 79 93 n.a.

Clindamycin 0 0 99 82 n.a.

Average removal (27 pollutants)
f 18 48 74 74 82

a 
Average removal of 12 campaings (24-72 h composite samples) in WWTP with less than 25% NH4 removal

b 
Average removal of 6 campaings (24-72 h composite samples) in WWTP with > 97% NH4 removal (< 1 mg N-NH4 l

-1
 in effluents)

c 
Average removal of 12-28 campaings (24-72 h composite samples) during ozonation with an average dose of 5.7 mg O3 l

-1
 (eq. 0.8 g O3 g

-1
 DOC)

d 
Average removal of 8-24 campaings (24-72 h composite samples) during PAC treatment with an average dose of 12 mg l

-1

e 
Average removal of 4 batch cycles after 5 d of treatement in the fungal filter with P. ostreatus

Grey scale: white: < 25%, light grey: 25-50%, dark grey: 50-75%, black: >75% removal. n.a.: not analysed

f
 Average removal of the 27 micropollutants analysed in the fungal filter
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10.2 General conclusions 

This thesis opened new perspectives regarding biological treatment of micropollutants in wastewater, 

highlighting also the challenges of applying fungal and oxidative enzyme treatments in WWTPs. This 

work contributed to answer, at least partially, to several fundamental questions regarding 

micropollutant removal in WWTPs, as discussed below.  

10.2.1 Is biological treatment of micropollutants a feasible option? 

As demonstrated with the fungal filters, significant biological degradation/transformation is possible 

for most of the micropollutants studied. White-rot fungi can potentially degrade pollutants hardly 

degradable by bacteria, such as diclofenac, benzotriazole or naproxen, while the native wastewater 

microbial community can potentially degrade most of the other micropollutants. The ability of the 

native microbial community to degrade several pollutants poorly removed in WWTPs, such as X-ray 

contrast media, gabapentin, beta-blockers or pesticides, is very promising for the further development 

of biological filters used as post-treatment in WWTPs. Combining fungal and microbial processes 

opens therefore new perspectives for biological degradation of a wide range of pollutants in municipal 

wastewater.  

Although biodegradation of most micropollutants appears to be feasible, the question remains if these 

advanced biological treatments are a realistic option for WWTPs. Based on the results of this work, 

the answer is probably “not yet”. Indeed, several constraints were raised concerning the feasibility of 

their implementation in real WWTPs. 

For instance, keeping white-rot fungi active in real wastewater is highly challenging due to the 

conditions very far from their natural habitat. Expensive solutions for this issue were proposed in other 

studies, such as acidification or addition of nutrients (glucose, ammonium), which do not appear to be 

realistic in municipal WWTPs. The idea proposed in this thesis, using cheap and widely available 

woodchips as substrate for the mycelium, was relatively successful and allowed operating the filters in 

continuous mode during several months. However, once in contact with wastewater, the mycelium 

was not able to grow anymore and decayed slowly in a few months. The self-sustainability of white-

rot fungi in wastewater seems to be very difficult to achieve, meaning that a periodical re-inoculation 

of the system would be necessary. Therefore, a strong improvement of the life-span of the fungus in 

the system is a prerequisite to limit the relative high costs of fungal mycelium preparation and 

inoculation.  

Another constrain of biological micropollutant treatment is the relative long hydraulic retention times 

(HRTs) required, up to several days, which may considerably increase (by a factor of 2 to > 5) the size 

of WWTPs. The potential application of such treatments is thus limited to WWTPs having sufficient 

space available. Long HRTs are also synonym of higher financial and operation costs (low volume of 

water treated per equipment and energy inputs). Therefore, optimization of advanced biological 

processes in terms of energy and resource consumption, as well as decreasing the treatment time, for 

instance by increasing the active biomass in the system, are necessary before considering real 

applications. Increasing the active biomass without frequent re-inoculations is, however, limited by the 

quantity of nutrients available (or added) in WWTP effluents. Therefore, achievement of short HRTs 
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in biological processes treating very low concentrations of micropollutants seems difficult without 

addition of (potentially costly) external substrates, which may drastically change the microbial 

community composition and its efficiency for micropollutant degradation. 

Finally, the characteristics of the transformation products formed during biodegradation processes are 

still relatively unknown. Further research is needed to determine the degree of micropollutant 

mineralization and the relative toxicity of these products, as well as the products released by the wood 

filters. 

10.2.2 Which technology to apply for micropollutant removal in WWTPs? 

None of the technologies assessed in this thesis were able to remove efficiently all the micropollutants 

studied. The choice of one technology will thus depend on the target pollutants and on the benefits / 

drawbacks of each system. For the removal of target phenolic and anilines compounds, such as several 

endocrine disrupters, an enzymatic treatment with laccase might become interesting and should be 

further developed. However, if the objective is to remove (on average at 80%) a wide range of 

pollutants, pure enzymatic treatments are not adapted, but other solutions can be proposed, depending 

on the size of the WWTP. 

For WWTPs larger than about 2000-10,000 population equivalents (PE), both ozonation and PAC 

adsorption are feasible options, with possibly similar costs. The choice will thus depend on local 

constraints and secondary objectives, such as the need for disinfection, safety considerations, building 

constraints, adaptability of existing installations, availability of PAC or pure oxygen, incineration 

capacities for the spent PAC, type of treatment wanted (transformation versus removal), risk of 

releasing toxic by-products, waste production, etc. Advanced biological treatments, if further 

developed, will probably not be adapted for large WWTPs due to their high requirements in space. 

For small WWTPs (< 2000 PE) with non-permanent staff, ozonation is not an interesting option for 

safety reasons (ozone is a harmful gas that has to be handled with caution). PAC processes are also 

expected to be not adapted due to the potential technical issues related to handling of fine powders (for 

dosage and separation from water). Advanced biological treatments with white-rot fungi might 

become an interesting option but still have to be significantly optimized. Therefore, none of the 

options tested are, according to the current state-of-the-art, well adapted for small WWTPs and further 

research is needed.  

Combining biological degradation and adsorption processes appeared as a successful strategy in the 

fungal filters. Another technology, especially based on this combination of processes and probably 

more realistic than fungal treatments, should deserve more attention: biological activated carbon 

filtration (BAC). Indeed, using granular activated carbon (GAC) as a support in a slow gravity filter 

for the development of a self-sustaining native wastewater microbial community appears to be a 

potentially very interesting option for small WWTPs. Combining the high adsorption capacity of GAC 

and the interesting degradation potential of an adapted wastewater microbial community in a slow 

gravity filter, without frequent backflush (to avoid disturbing the biofilm) and with long enough HRTs 

(to allow degradation), may allow the removal of a wide range of pollutants with a relatively simple 

technology, and with low maintenance and energy consumption. Of course, GAC, like PAC, has to be 
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periodically renewed once completely saturated, but the possibility to regenerate GAC may reduce its 

costs and its environmental impacts.  

10.2.3 Objective of 80% micropollutant removal – Is it sufficient to protect 

aquatic organisms? 

Reducing by five, on average, the concentration of micropollutants in raw wastewater is the objective 

targeted by the new Swiss regulation. Is this reduction sufficient to protect surface waters? The pilot 

study performed at Lausanne WWTP, as well as other studies (Bundschuh et al., 2011b), demonstrated 

that an average removal of 80% of a wide range of micropollutants by ozonation or PAC adsorption 

improves substantially the quality of the effluent, reducing significantly potential adverse effects on 

aquatic organisms. Therefore, this objective seems to be appropriate, being a good compromise 

between environmental benefits and costs of the treatments. 

However, for limiting the risk for aquatic organisms, objectives in terms of concentrations in the 

receiving waters and not only in terms of removal efficiencies should fixed. Indeed, even if removed 

over 80% during the treatments, some micropollutants, either present at high concentrations in raw 

wastewater or toxic at very low concentrations, may still generate adverse effects at the concentrations 

found in effluents. Moreover, an average removal efficiency of 80% means that some compounds will 

be better removed but also some not well eliminated. Regarding only ecological impacts and not the 

reduction of the load, removing only a few compounds of high ecological risk may already be 

sufficient to reduce significantly potential adverse effects on sensitive aquatic organisms. Therefore, 

establishment of environmental quality standards (EQS) to protect aquatic life in surface waters, 

already existing for several micropollutants, has to be generalised for all relevant compounds in order 

to identify critical substances and to determine if the treatment objectives are adapted for the 

protection of surface waters.  

Estimation of the potential effect of micropollutants usually focused on individual substances, without 

considering the synergetic or antagonist effects of the cocktail of micropollutants present in 

wastewater. Closer collaboration between disciplines like WWTP engineering, ecotoxicology, 

chemistry, and biology is therefore needed to identify problematic substances and to limit the 

discharge of critical micropollutants. 

Reducing by 80% the concentration of micropollutant in wastewater will also lead to decrease, by 

maximum a factor of five, the contamination of drinking water resources. However, despite this 

significant reduction, this should not change the perception of the public concerning presence of 

micropollutant in their drinking water, as these substances will still be detected in tap water (especially 

with the new generation of analytical devices with lower limits of detection). Therefore, public 

information should emphasize the potential benefits of advanced treatments for the aquatic life rather 

than the very unlikely potential impacts on human health. 

The efficiency of advanced processes was mainly assessed for polar organic micropollutants such as 

pharmaceuticals and pesticides. Their efficiency for the treatment of other classes of micropollutants, 

such as heavy metals, PAHs, PCBs, surfactants, flame retardants, etc. should also be investigated as 

these compounds might also generate adverse effects on aquatic organisms. 
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10.2.4 Avoided versus induced impacts of advanced treatments 

Finally, a fundamental question without currently any clear answers has to be addressed: what are the 

potential environmental benefits of treating micropollutants in wastewater compared to the potential 

impacts induced? 

The benefits of advanced treatments for the aquatic environments downstream of WWTPs are 

certainly significant and are not questioned. But what about the pollution induced during the 

production of activated carbon (which requires high energy inputs and possibly non-renewable 

resources) or ozone, or for the operation of the processes and the elimination of the wastes produced? 

Are these impacts significant compared to the benefits of the advanced treatments?  

Although it is difficult to compare different environmental impacts, such as aquatic ecotoxicity with 

air pollution or climate changes, life-cycle assessment (LCA) methodology allows giving some rough 

comparisons. Based on LCA results of several studies, advanced treatments such as ozonation and 

activated carbon adsorption may generate significant additional environmental impacts (related to 

energy and chemical consumption), which might be higher or lower than the relative benefits of the 

treatment, depending on the methodology used (Høibye et al., 2008; Igos et al., 2013; Igos et al., 2012; 

Larsen et al., 2010; Muñoz et al., 2009; Papa et al., 2013; Wenzel et al., 2008). In any case, all the 

studies concluded that the environmental impacts of advanced treatments are not negligible. Therefore, 

significant optimization of these processes in terms of energy and chemical/resource consumption has 

to be performed. This could be achieved, for instance, by regulating the dosage of reactant as a 

function of the water quality, avoiding technical configurations that require more energy, recycling the 

wastes produced (off-gas rich in oxygen for ozonation, or spent PAC) in the biological treatment to 

increase the global efficiency of the system, choosing PAC made from renewable resources (forestry 

or agriculture wastes), regenerating and reusing the PAC, and limiting the dosage to the minimum 

necessary to achieve the protection objectives. 

High removal rates (> 90%) of most micropollutants can be reached with high doses of PAC or ozone, 

or with long HRTs for advanced biological treatments. These higher dosages or longer HRTs will, 

however, induce higher environmental impacts, which might become more important than the relative 

benefits of increasing removal efficiencies (Larsen et al., 2010). Therefore, an environmental trade-off 

between the reduction of ecotoxicity in the receiving waters and an increase in resources and energy 

consumptions has to be determined. 

In parallel to the uncontested necessity to remove toxic micropollutant from WWTP effluents (but 

with reasonable means), source control has to be implemented. Indeed, the best solution to avoid 

environmental impacts is always to limit the use and the dispersion of critical substances. Even for 

pharmaceuticals, whose benefits are obvious for human health, source control could be applied. For 

the same therapeutic effects, usually various drugs exist, some being easily biodegradable and others 

being persistent in WWTPs. Substitution of some of the most critical drugs (or pesticides, household 

products, etc.) by others more environmentally friendly (e.g., substituting the anti-inflammatory drug 

diclofenac by the other anti-inflammatory drug ibuprofen), as promoted in Sweden
5
, might already 

                                                      
5
 Reference: www.janusinfo.se/In-English/, last accessed 24.10.2014 

http://www.janusinfo.se/In-English/
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significantly decrease the risk for aquatic organisms without the need for advanced treatments. 

Therefore, political actions and public awareness are necessary in addition to technical measures at the 

WWTPs.  
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Appendix 

The main protocols used for the preparation of the reagents and the culture of white-rot fungi , as well 

as the parameters used for micropollutants analysis by UPLC-MS/MS are described below. 

I. Preparation of buffer solutions 

The pKa values (and thus the pH values) of the buffers change as a function of the temperature. The 

recipes below are for a pH at 25°C. The pH should always be measured at the same temperature than 

the one used in the experiment. 

Stock solutions 

Prepare first the stock solutions of the following reactants before preparing the corresponding buffers. 

Use always pure water (demineralised or miliQ). 

Stock solutions (50 ml) 

 Citric acid 0.1 M 

 M_mol Citric acid H2O 

[g/mol] mg ml 

192.12 960.6 50 

Sodium phosphate dibasic Na2HPO4 0.2 M 

 M_mol Na2HPO4 H2O 

[g/mol] mg ml 

141.96 1419.6 50 

Sodium phosphate monobasic dihydrate NaH2PO4*2H2O 0.2 M 

M_mol NaH2PO4*2H2O H2O 

[g/mol] mg ml 

156.01 1560.1 50 

Tris 0.2 M (tris(hydroxymethyl)aminomethane) 

M_mol Tris H2O 

[g/mol] mg ml 

121.14 1211.4 50 

Sodium acetate anhydrous CH3COONa 0.1 M  

M_mol CH3COONa H2O 

[g/mol] mg ml 

82.03 410.15 50 

Acetic acid glacial CH3COOH 0.1 M (density: 1.049 g/ml) 

M_mol CH3COOH H2O 

[g/mol] µl ml 

60.05 286.2 49.714 
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HCl 1 M (from HCl 37%, 440.3 g/l, 12 M, density 1.19 g/ml) 

M_mol HCl 37% H2O 

[g/mol] ml ml 

36.46 4.140 50 

NaOH 1 M (from anhydrous NaOH pellets) 

M_mol NaOH H2O 

[g/mol] g ml 

40.00 2 50 

 

Citrate-phosphate buffers 

To prepare citrate-phosphate buffer, use the citric acid and sodium phosphate stock solutions prepared 

before. By varying the volume of these two solutions, buffer at pH from 2.6 to 8 can be prepared. 

Adjust the pH to the desired value with NaOH or citric acid. 

Citrate phosphate buffer, pH 2.6 to 8, 25-50 mM, 40 ml, at 25°C 

Check the pH  and adjust at 25°C     

pH Citric acid 0.1 M Na2HPO4 0.2 M H2O 

  ml ml ml 

2.6 8.92 1.08 30 

3 8.234 1.766 30 

3.5 7.25 2.75 30 

4 6.266 3.734 30 

4.5 5.708 4.292 30 

5 5.15 4.85 30 

5.5 4.971 5.344 30 

6 4.164 5.836 30 

6.5 3.45 6.76 30 

7 2.316 7.684 30 

7.5 1.5 8.5 30 

8 0.608 9.392 30 

 

Tris-HCl buffers 

Tris-HCl buffers can be used for pH 7.0 to 9.0. The pKa of Tris (tris(hydroxymethyl)aminomethane) 

is at 8.07 at 25°C. 

Tris-HCl buffer, pH 8-9, 40 mM, 40 ml, at 25°C   

pH Tris 0.2M HCl 0.2M H2O 

  ml ml ml 

8 8 5.23 26.77 

9 8 1.33 30.67 
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Acetate buffers 

Acetate buffers can be used for pH 3.6 to 5.6. The pKa of acetate is at 4.76 at 25°C. The molecular 

weights are 60.05 g/mol for acetic acid glacial (1.049 g/ml), and 82.03 g/mol for anhydrous sodium 

acetate.  

To prepare large volume of acetate buffer pH 4.5, do as presented below.  

Acetate buffer, pH 4.5,  100 mM, 400 ml, at 25°C   

pH Acetic acid glacial (60.05g/mol) 
Sodium acetate 

CH3COONa pur 
H2O 

  µl mg ml 

4.50 1441.1 1443.8 400 

 

For the preparation of a 100 mM buffer, mix different proportions of sodium acetate 0.1 M with acetic 

acid 0.1 M until you reach the desired pH.  

Acetate buffer 100 mM, pH 3.6 to 5.6, 50 ml, at 25°C 

  Acetic acid 0.1 M Sodium acetate 0.1 M 

  ml ml 

3.6 46.3 3.7 

3.8 44.0 6.0 

4.0 41.0 9.0 

4.2 36.8 13.2 

4.4 30.5 19.5 

4.6 25.5 24.5 

5.0 14.8 35.2 

5.2 10.5 39.5 

5.4 8.8 41.2 

5.6 4.8 45.2 

 

MOPS buffers 

MOPS (3-(N-morpholino)propanesulfonic acid) is a biological buffer useful in the pH range from 6.5 

to 7.9 (pKa 25°C: 7.2). 

Molecular weight of anhydrous MOPS: 209.26 g/mol. 

To prepare 100 mM MOPS solution, dissolve 20.93 g MOPS in one litre of demineralised water. 

Adjust then the pH with NaOH or HCl 1 M (0.1 M) to the desired value. 
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MES buffers  

MES (2-(N-morpholino)ethanesulfonic acid) is a biological buffer useful in the pH range from 5.5 to 

6.7 (pKa 25°C: 6.1). 

Molecular weight of anhydrous MES: 195.24 g/mol. 

To prepare 100 mM MES solution, dissolve 19.52 g MES in one litre of demineralised water. Adjust 

then the pH with NaOH or HCl 1 M (or 0.1 M) to the desired value. 

Phosphate buffers 

Phosphate buffers are useful for the pH range from 5.8 to 8.  

Phosphate buffer 100 mM, pH 5.8 to 8, 100 ml, at 25°C   

pH Na2HPO4 0.2 M NaH2PO4 0.2 M H2O 

  ml ml ml 

5.8 4 46 50 

6 6.15 43.85 50 

6.2 9.25 40.75 50 

6.4 13.25 36.75 50 

6.6 18.75 31.25 50 

6.8 24.5 25.5 50 

7 30.5 19.5 50 

7.2 36 14 50 

7.4 40.5 9.5 50 

7.6 43.5 6.5 50 

7.8 45.75 4.25 50 

8 47.35 2.65 50 
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II. Protocol to determine laccase activity with ABTS 

In presence of oxygen, laccase catalyze the oxidation of the substrate ABTS (2,2'-azino-bis(3-

ethylbenzthiazoline-6-sulphonic acid), colourless, to its radical cation ABTS
·+

, dark green. Laccase 

activity can thus be determined by monitoring the change of absorbance in the green domain. In this 

study, one unit of enzyme activity [U] is defined by the oxidation of 1 µmol of ABTS per minute at 

25°C and pH 4.5. 

Equipment, reactants and material 

Thermo-regulated (25°C) spectrophotometer (420 nm, for kinetic studies). Acetate buffer 100 mM pH 

4.5 (see previous section), ABTS solution 10 mM (see below), 1 ml cuvettes for spectrophotometer. 

Protocol 

In a spectrophotometer cuvette of 1.5 ml, maintained at 25°C, add, in this order, the following 

reactants to obtain a final volume of 1000 µl: 

- 850 to 925 µl (depending on the amount of sample tested) of acetate buffer 100 mM, pH 4.5, 

well aerated 

- 25 to 100 µl of sample (culture supernatant), eventually centrifuged 5 min at 6000 g, or 

filtered at 0.2 µm 

- 50 µl of ABTS 10 mM (final concentration: 0.5 mM). Mix rapidly and start the measure.  

With a spectrophotometer, measure the absorbance A at 420 nm, 25°C, during 1 to 10 minutes. 

Calculate the initial slope of the reaction (∆A/min) in the linear part. If the slope is too steep (> 1 

∆A/min), reduce the amount of sample (100, 50 or 25 µl).  

The slope of the curve is then used to calculate the enzymatic activity in [U/l] (µmol of ABTS 

oxidized par minute and per litre of sample), by the following equation: 

]μl[

]μl[

[cm]]cml[mol

]molmolμ[10]minA[
]lminmolμ[

1-1-

-16-1
1-1-

V

Vslope
Activity tot


 

With : 

- ε  the molar absorptivity (also called molar extinction coefficient), expressed in M
−1

·cm
−1

, who 

changes for each compound and wave-length, and is equal to 36,000 M
-1

cm
-1

 for ABTS at 420 

nm 

- l the optical pathlength, which is 1 cm with these cuvettes 

- V the volume of sample added (in µl) 

- Vtot  the final volume in the cuvette (usually 1000 µl) 

Preparation of ABTS solution 10 mM in pure H2O 

Solution 10 mM, 5 ml Molar mass Pure H2O ABTS 

 

[g/mol] [ml] [mg] 

ABTS diammonium salt 548.68 5 27.434 
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III. Preparation of fungal culture media 

Preparation of UAB defined medium 

Prepare first a solution of micronutrient and macronutrient, as follow (do not autoclave) (adapted with 

minor changes from Blánquez et al. (2004), Borràs et al. (2008), and personal communication from the 

staff of the Universitat Autonoma de Barcelona (UAB)): 

Micronutrient Concentration Concentration Molar mass 

 
[g/l] [mM] [g/mol] 

Nitrilotriacetic acid  

(NTA, chelating agent)(C6H9NO6) 
1.5 7.85 191.14 

MnSO4·H2O 0.5 2.96 169.02 

NaCl 1 17.11 58.44 

FeSO4·7H2O 0.1 0.36 278.02 

CoSO4·7H2O 0.181 0.65 281.1 

ZnSO4·7H2O 0.1 0.35 287.55 

CuSO4·5H2O 0.01 0.04 249.69 

AlK(SO4)2·12H2O 0.01 0.02 474.39 

H3BO3 0.01 0.16 61.83 

NaMoO4·2H2O 0.012 0.05 218.98 

 

Macronutrient Concentration Concentration Molar mass 

 
[g/l] [mM] [g/mol] 

KH2PO4 20 146.96 136.09 

MgSO4·7H2O 5.3 21.50 246.48 

CaCl2·2H2O 1.335 9.08 147.02 

 

Then, in one litre of final solution, add the following ingredients: 

Defined medium Concentration Concentration Molar mass 

 
[g/l] [mM] [g/mol] 

Glucose (C6H12O6·H2O) 8.80 44.40 198.17 

(NH4)2SO4 2.368 17.92 132.14 

MES buffer (C6H13NO4S) 1.952 10.00 195.23 

Macronutrients 100 ml l
-1

 Dilution 10 

Micronutrients 10 ml l
-1

 
 

100 

For pellets formation, add also: 

Thiamine (vitamin B1) 
10 mg l

-1
 

 
300 
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The final UAB medium concentrations of selected compounds are presented below: 

Final major elements concentration 

Concentration Concentration Molar mass 

[mg/l] [mM] [g/mol] 

Glucose 8000 44.40 180.16 

N 502.1 35.84 14.01 

P 455.1 14.70 30.97 

Cl
-
 70.4 1.99 35.45 

SO4
2-

 1932.2 20.11 96.06 

 

For the preparation of UAB medium for micropollutant degradation experiments with T. versicolor, 

proceed as follow: 

Preparation of the defined medium (per litre of final medium) 

In a beaker, add:     Volume [ml/l] 

 - Macronutrients 100 

 - Micronutrients 10 

 - Glucose stock solution (444 mM, 88 g/l) 100 

 - Ammonium sulfate stock solution (179.2 mM, 23.68 g/l) 100 

 - MES (or MOPS buffer) 100 mM stock solution (19.52 g/l) 100 

 - Micropollutant stock solution (1 g/l in methanol) (final 10 mg/l) 10 

 - Demineralised water 

  

380 

Adjust the pH to the desired value with NaOH or HCl 1M 

 Sterilize by filtration (0.2 µm) in sterile erlenmeyers 

 Add, under sterile conditions: 

    - Trametes versicolor pellets (not diluted): final goal 3-4 g dry weight /l 200 
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Preparation of malt extract medium (20 g/l) 

For the preparation of white-rot fungi mycelium and pellets, a malt extract medium at 20 g/l is used, 

and prepared as presented below. 

In 2 litres beaker, add: 

- 1 l of demineralised water 

- 20 g of malt extract 

- Mix well (magnetic stirrer) and adjust the pH to 4.5 with HCl 1 M 

- Split the medium in the erlenmeyers and autoclave  

To prepare the malt extract (20 g/l) – agar (15 g/l) Petri plates, the same medium is used, as 

described below: 

In 1 litre beaker, add: 

- 0.5 l of demineralised water 

- 10 g of malt extract 

- 7.5 g of agar 

- Mix well (magnetic stirrer) and adjust the pH to 4.5 with HCl 1 M 

- Transfer the medium in a glass bottle and autoclave 

- When the medium is still warm, transfer it to the petri dishes under sterile conditions (in the 

laminar flow). Let it cool down (solidify) and store it at 4°C. 

IV.  Subculture of white-rot fungi in malt extract-

agar plate 

White-rot fungi are maintained on malt extract – agar Petri plate, and subculture every 1-2 months. To 

inoculate a new Petri plate, proceed as follow: 

- Prepare new malt extract (20 g/l) – agar (15 g/l), pH 4.5, Petri plates as described above. 

- Cut a square (0.5 x 0.5 cm, with a sterile knife) in an old Petri plate containing mycelium of 

the white-rot fungus. 

- Transfer the square of agar to the centre of a new malt extract – agar Petri plate, with the old 

mycelium facing the new agar medium. 

- Incubate at 25°C during 7 days, until the mycelium covers the whole plate. 

- Store the plate at 4°C during 1-2 months until the next sub-culture. 
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V. White-rot fungi mycelium preparation 

Equipments and reactants 

Scale, magnetic stirrer, autoclave, laminar flow, incubator at 25°C, rotating stirrer at 130 rpm, 

homogenizer (mixer), malt extract, NaCl, HCl (1 M), 7 days old white-rot fungi mycelium on agar 

plate. 

Material to autoclave 

- 5 erlenmeyers of 0.5 l with 200 ml of malt-extract medium (20 g/l, pH 4.5) 

- A bottle with 0.5 l of malt-extract medium 

- A knife or scalpel to cut the agar plate 

- A tablespoon 

- A big metallic sieve 

- An empty beaker of 3 l 

- A bottle with 1 l of demineralised water 

- A bottle with 0.5 l of NaCl solution at 8 g/l 

- An empty bottle of 0.5 l 

- A mixer 

Protocol 

Prepare 1.5 l of malt-extract medium (pH 4.5) as described above. Transfer 0.5 l in a bottle and split 

the remaining litre in 5 erlenmeyers (of 0.5 l) (200 ml/erlenmeyer). Autoclave with the other material. 

Once the medium has cooled down, in the laminar flow (under sterile conditions), inoculate each 

erlenmeyer with 6 squares (0.5 x 0.5 cm) of agar plate containing 7 days old (or older) mycelium of 

the white-rot fungus. Cut the squares of agar with the sterile knife.  

Incubate the erlenmeyers at 25°C, 130 rpm, during 5 to 7 days.  

If the white-rot fungus grows in very small pellets, add again after 5 to 7 days 100 ml of sterile malt-

extract (20-40 g/l, pH 4.5) in each erlenmeyer and incubate them again for 2 to 4 more days until the 

size of the pellets increases (easier to collect with the sieve). 

After 5 to 11 days, bring all the equipment in the laminar flow (sterile conditions), and: 

- Put the metallic sieve on the sterile beaker 

- Empty the erlenmeyers (2 to 3 in one time) in the sieve to collect the mycelium (pellets), and 

let it drain 

- Rinse the mycelium with sterile water (use 1 l of water for 1 l of growth medium) and let it 

drain 

- Collect the mycelium with the spoon and transfer it to a sterile 0.5 l bottle 

- Add to the mycelium (around 250 ml) the same volume of NaCl solution (8 g/l) 

- Homogenize the mycelium preparation with a sterile mixer (10’000 rpm) to break the pellets 

- Store the mycelium preparation at 4°C until use as inoculums (storage time: a few months). 
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VI. White-rot fungi pellets preparation 

Equipment 

Scale, magnetic stirrer, autoclave, laminar flow, incubator at 25°C, rotating stirrer at 130 rpm 

Reactants 

Malt extract, NaCl, HCl (1 M), white-rot fungi mycelium preparation 

Material to autoclave 

- 5 erlenmeyers of 2 l with 1 l of malt-extract medium (20 g/l, pH 4.5) 

- A tablespoon 

- A big metallic sieve 

- An empty beaker of 3 l 

- 5 bottles with 1 l of demineralized water 

- A bottle with 1 l of NaCl solution at 8 g/l 

- An empty bottle of 1 l 

- 10 ml tips cut at their end 

Protocol 

Prepare 5 l of malt-extract medium (pH 4.5) as described above. Split the 5 litres in 5 erlenmeyers of 2 

l (1 l/erlenmeyer). Autoclave with the other material. 

Once the medium has cooled down, in the laminar flow (under sterile conditions), inoculate (with 

sterile 10 ml tips cut at their end) each erlenmeyer with 6 ml of white-rot fungus mycelium 

preparation. 

Incubate the erlenmeyers at 25°C, 130 rpm, during 5 to 7 days until pellets are well developed. If 

pellets are too small, add sterile concentrated malt-extract (40 g/l) and incubated again until the pellets 

are bigger. 

After 5 to 7 days, bring all the equipment in the laminar flow (sterile conditions), and: 

- Put the metallic sieve on the sterile beaker 

- Empty the erlenmeyers (one at the time) in the sieve to collect the pellets, and let it drain 

- Rinse the pellets with sterile water (use 1 l of water for 1 l of growth medium) and let it drain 

- Collect the pellets with the spoon and transfer it to a sterile 1 l bottle 

- Eventually, in the case of long storage, add to the mycelium the same volume of NaCl solution 

(8 g/l). But as chloride inhibit laccase activity, avoid this step if you can use the pellets 

directly for the experiment 

- Store the pellets at 4°C until use in an experiment (storage time: a few weeks). 
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VII. Woodchips inoculation with white-rot fungi 

Equipment 

Scale, autoclave, incubator at 25°C 

Reactants 

Dry woodchips, white-rot fungi mycelium preparation 

Material 

2 l beaker, a big sieve, a spoon, 10 ml tips cut at their end, columns (biofilters) 

Protocol 

- In a 2 l beaker, add and weight 1 l (not compacted) of dry wood chips 

- Clean well the wood chips with tap water to remove the dust: fill the beaker with water, mix 

well the wood in the water, remove the water by using a sieve to retain the wood, and repeat 

this as many times as necessary to have relatively clear water at the end 

- Let the wood soak in the water during 30 min to 1 h to saturated it, and then remove the water 

with the help of a sieve 

- Autoclave the wet wood in the beaker and at the same time autoclave a spoon and 10 ml tips 

cut at their end 

- When the sterile wood is at ambient temperature, add 4% (v/v) (40 ml per litre of wood) of 

white-rot fungus mycelium preparation under sterile conditions (with a sterile 10 ml tip cut at 

the end to avoid the clogging of the tip by the mycelium) 

- Mix the mycelium with the wood with the sterile spoon in the beaker 

- Incubate the inoculated wood at 25°C during 5 to 7 days. Mix eventually after 3-4 days to 

aerate the support 

- When the wood is completely colonized by the mycelium (all white), transfer the wood to 

(non-sterile) columns. Weight the amount of wood added and add the same amount in all the 

columns. Shake slightly the column to distribute well the wood supports and to avoid large 

voids. Avoid to compact too much the supports (fast clogging of the column and 

heterogeneous fungal growth at the surface only of the supports) 

- Let the mycelium develop again for 2-4 days 

- When the wood is completely covered by a white mycelium, but not too clogged, the column 

can be used to treat water. 
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VIII. Ergosterol extraction and analysis 

Ergosterol extraction 

Equipment 

Sonicator with water bath at 45°C, water bath at 70°C, centrifuge, vortex, N
2 

gas evaporator, coffee 

grinder 

Material 

Note: All solvents must be HPLC-grade.  

• cyclohexane  

• potassium hydroxide 10% (w/v) in methanol (23.5 g KOH pellets 85% in 200 ml of MeOH) 

• methanol  

• deionized water  

• glass pipettes  

• 10-ml glass centrifuge tubes w/screw caps  

• 10-ml glass tubes for the N2 gas evaporator 

• autoanalyzer vials  

Methods 

Sample preparation 

1. Take minimum 10 g of wet wood chips-mycelium sample. Homogenize well and eventually 

grind it with a coffee mil. Homogenize again and take 5 g to measure the fresh and dry weight 

(to allow estimation of the dry weight of the sample analyzed). 

2. In a 10 ml centrifugation glass tube, add 0.5 to 1 g of ground sample and note the fresh 

weight. 

3. In the case of storage, flush with nitrogen gas, close the tube and freeze directly at -18°C to 

store the sample (ergosterol is not stable in contact with oxygen and light). 
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Extraction 

Note: Always work with cyclohexane in the fume hood. Retain all cyclohexane waste (including spent 

sample) for appropriate disposal.  

1. Preheat water bath to 70°C and sonicator bath to 45°C.  

2. In the centrifuge tubes containing the sample, add 1-ml cyclohexane and 3-ml 10% (w/v) 

potassium hydroxide (KOH, in methanol), and seal tubes with screw caps.  

3. Vortex to dissolve. 

4. Sonicate for 15-20 min at 45°C.  

5. Place tubes in water bath at 70°C for 90-min. Do not close completely the lids to avoid too 

high pressure in the tubes. Add regularly 1 ml cyclohexane to compensate the evaporation 

(check every 5-10 min). 

6. Remove from bath and add 1-ml deionized water and 2-ml cyclohexane to each tube.  

7. Vortex for 30-sec. (Important to be thorough.)  

8. Equilibrate the weight of the tubes (with water or cyclohexane) and centrifuge 5-min at 3500 

rpm (2170 g) (ambient temperature).  

9. Collect the top transparent (cyclohexane) phase with a glass pipette and transfer it to a clean 

glass tube (for evaporation). Do not collect the water phase! 

10. Add again 2-ml cyclohexane to sample solution.  

11. Vortex for 30-sec.  

12. Equilibrate the weight of the tubes and centrifuge 5-min at 3500 rpm. 

13. Collect the top phase and combine cyclohexane fractions from each sample in the tube for 

evaporation.  

14. Repeat a third time the point 10 to 13. 

15. Evaporate the cyclohexane phase collected completely under N
2 

gas. Evaporator plate should 

be set at 40°C.  

16. Dissolve the extract in 1-ml methanol. Seal the evaporator tube with Parafilm (to avoid too 

much evaporation) and vortex. 

17. Heat in 40°C water bath for 15-min to help dissolve the ergosterol. 

18. Vortex for 30-sec. Weigh first an ependorf tubes (1.5 ml) and then transfer all the content in it. 

Weigh the amount of sample added. This weight corresponds to the final volume of the 

extraction (methanol density at 25°C: 0.791 g/ml). Centrifuge 3 min at 6000 rpm to remove 

the suspended solids. 

19. Transfer the supernatant (in the case of presence of solids, take care not to pipette the solid 

phase) in an amber HPLC vial. Eventually, in the case of still visible suspended solids in the 

supernatant, filter through a 0.2-μm PTFE filter (attached to a syringe) in the amber HPLC 

vial. 

20. Store at 4°C in a dark box (ergosterol is light- and air-sensitive) before the analysis.  
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Ergosterol standards preparation 

Ergosterol standards should be prepared in methanol (HPLC grade). A stock solution at 400 mg/l is 

initially prepared and is then used for preparing all the range of concentrations (dilution in pure 

methanol), from 0.4 mg/l to 400 mg/l. 

Preparation of a stock solution at 400 mg/l in methanol: 

1. Preheat water bath to 40°C.  

2. Weigh 20 mg ergosterol standard into a 50-ml glass bottle (always close the bottle).  

3. Add 50-ml methanol (check the weight, with methanol density of 0.791 at 25°C). Vortex.  

4. Place in water bath at 40°C for 15-min. Vortex.  

5. Place in water bath at 40°C for another 15-min.  

6. Vortex until ergosterol dissolves completely. Repeat if necessary point 5. 

7. Store at 4°C protected from the light. 

HPLC separation and analysis 

Ergosterol is analyzed by HPLC-DAD, at 282 nm, with a reverse phase C18 column, with isocratic 1 

ml/min 88% methanol – 12% pure H2O. Injection volume: 50 µl. Retention time: 10 min. Length of 

the analysis: 20 min. 
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IX. UPLC-MS/MS parameters 

Table IX.1 UPLC conditions for the acidic and neutral methods used with the off-line SPE. 

 Method acidic (pH 2.2) Method neutral (pH 7) 

Eluent A 94% H2O, 2.5% MeOH, 1% formic acid,  

2.5% (5mM) NH4-formate 200 mM 

95% H2O, 5% acetonitrile 

Eluent B 91.5% MeOH, 5% H2O, 1% formic acid, 

2.5% (5mM) NH4-formate 200 mM 

95% acetonitrile, 5% H2O 

Gradient 92% A isocratic for 0.5 min, linear 

gradient to 100% B in 19 min 

86% A isocratic for 1.5 min, linear gradient 

to 99% B in 20.5 min 

Column HSS T3, 2.1 x 100 mm, 1.8 µm (Waters) BEH C18 column, 2.1 x 100 mm, 1.7 µm 

(Waters) 

Column Temperature 30 °C 30 °C 

Flow rate 0.3 ml/min 0.3 ml/min 

 

Table IX.2 UPLC conditions for the basic and neutral methods used with the on-line SPE. 

 Method basic (pH 12) Method neutral (pH 7) 

Eluent A 94.8% H2O, 5% acetonitrile, 0.2% 

NH4OH 

95% H2O, 5% acetonitrile 

Eluent B 94.8%  acetonitrile, 5% H2O, 0.2% 

NH4OH 

95% acetonitrile, 5% H2O 

Gradient 95% A, linear gradient to 95% B in 12 

min 

95% A, linear gradient to 95% B in 12 min 

Column BEH C18 column, 2.1 x 50 mm, 1.7 µm 

(Waters) 

BEH C18 column, 2.1 x 50 mm, 1.7 µm 

(Waters) 

Column Temperature 30 °C 30 °C 

Flow rate 0.4 ml/min 0.4 ml/min 
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Table IX.3 Tandem mass spectrometry (MS/MS) parameters for the screening of 44 micropollutants 

 

 

  

Substance Parent ion Daughter ion Cone voltage 
Collision 

energy

Surrogate to calculate 

recovery
Parent ion Daughter ion Cone voltage

Collision 

energy 

[m/z] [m/z] [V] [eV] [m/z] [m/z] [V] [eV] SPE off-line SPE on-line

17α-Estradiol 271.2 145.1 / 143.1 -55 40 / 45 17b-Estradiol-d3 274.24 145.09 -64 40 N B

17α-Ethinylestradiol 295 145.0 / 159.1 -60 35 / 25 Ethynylestradiol-d4 299.27 147.04 -55 44 N B

17β-Estradiol 271.2 145.1 / 143.1 -55 40 / 45 17b-Estradiol-d3 274.24 145.09 -64 40 N B

Atenolol 267.3 145 / 190 31 28 / 17 Atenolol-d7 274.42 145.18 36 36 A B

Atrazine 216.1 96.1 /174 29 23 / 18 Atrazine-d5 221.2 179.1 34 18 A N

Azithromycin 749.88 83.08 / 116.1 53 56 / 46 Azithromycin-d3 753.84 116.16 52 50 A B

Benzotriazole 120.15 92.08/ 65.02 39 15 / 16 Benzotriazole-d4 124.16 68.76 40 20 A N

Bezafibrate 360.1 154 / 274 -20 30 / 15 Bezafibrate-d4 364.1 278 -26 18 N B

Bisphenol A 227.1 133 / 212 -31 25 / 17 Bisphenol A-d6 233.21 215.1 -29 18 N B

Carbamazepine 237.3 165.15 / 179.07 33 36 / 35 Carbamazepine-d10 248.33 204.35 36 24 A B

Ciprofloxacin 332.1 231.1 / 288.1 30 40 / 18 Ciprofloxacin-d8 340.42 235.19 40 36 A B

Clarithromycin 748.5 158.1 / 590.3 32 33 / 20 Clarithromycin-d3 751.5 161 28 26 A B

Diatrizoic acid 615.07 233.17 / 361.09 35 36 / 14 Diatrizoic acid-d6 620.74 239 32 38 A N

Diclofenac 296 214.9 / 250 24 18 / 15 Diclofenac-d4 300.06 218.9 25 20 A B

Diuron 233 46.3 / 72.1 30 14 / 30 Diuron-d6 239.2 78.04 25 20 A N

Estriol 287.2 145 / 171 -53 39 / 37 Estriol-d3 290.19 147.2 -75 67 N B

Estrone 269.2 143 / 145 -47 48 / 36 Estrone-d4 273.21 147.05 -56 38 N B

Gabapentin 172.27 119.11 / 137.13 25 22 / 15 Gabapentin-d4 176.15 158.11 24 12 A N

Gemfibrozil 249 121 / 127 -20 15 / 10 Gemfibrozil-d6 255.1 121 /133 -22 18 / 12 N B

Ibuprofen 205 161 -20 10 Ibuprofen-d3 208.14 164.09 -16 8 N B

Iohexol 822 804.1 / 822 33 22 / 5 Iohexol-d5 827 809 35 20 N N

Iomeprol 778 405 / 778 35 40 / 5 Iomeprol-d3 781 408.1 36 45 N N

Iopamidol 778 559 / 778 35 25 / 5 Iopamidol-d3 780.9 562 36 26 N N

Iopromide 792 573 / 792 38 25 / 5 Iopromide-d3 795 795 38 5 A N

Irgarol 254.34 83.08 / 198.14 32 29 / 18 Irgarol-d9 263.18 199.09 30 20 A B

Isoproturon 207 47 / 72 25 16 / 22 Isoproturon-d6 213.35 78.08 29 18 A B

Ketoprofen 255.07 104.89 22 22 Ketoprofen-d3 258.29 105.06 / 212.22 30 24 / 15 N N

Mecoprop 213.05 70.9 / 140.9 -16 12 / 18 Mecoprop-d3 216.07 144 -22 12 N B

Mefenamic acid 240.15 192 / 196 -32 25 / 18 Mefenamic acid-d3 243.15 195 / 199 -32 25 / 18 N B

Metformin 130.1 60 / 71 22 12 / 16 Metformin-d6 136.17 60 22 12 A -

Methylbenzotriazole 134.18 79.06 / 106.12 35 17 / 12 Methylbenzotriazole -d6 140.05 81.06 36 22 A N

Metoprolol 268.2 116 / 133 30 18 / 24 Metoprolol-d7 275.26 123.06 34 18 A B

Metronidazole 172 82 / 128 22 21 / 15 Metronidazole-d4 176.05 127.95 24 14 N N

Naproxen 229 170 / 185 -15 20 / 5 Naproxen-d3 231.9 173 -14 16 N B

Norfloxacin 320.1 233 / 276.1 30 25 / 18 Norfloxacin-d5 325.1 281.1 27 18 A B

Ofloxacin 362.1 261.1 / 318.1 30 26 / 20 Ofloxacin-d8 370.41 265.31 36 28 A B

Paracetamol 152 93 / 110 20 25 / 15 Paracetamol-d3 155.16 93.03 28 22 A N

Primidone 219.28 91.08 / 162.16 20 20 / 11 Primidone-d5 224.29 167.6 21 12 A N

Simvastatin 419.54 199.25 / 285.31 24 17 / 12 Simvastatin-d6 425.24 199.09 22 12 A N

Sotalol 273.33 133.2 / 213.16 20 26 / 18 Sotalol-d6 279.1 261.1 20 12 A B

Sulfamethoxazole 254 92 / 156 27 26 / 16 Sulfamethoxazole-d4 258.2 96.09 26 28 A N

Terbutryn 242.1 91 / 186.1 28 28 / 19 Terbutryn-d5 247.1 191.1 30 18 A B

Triclosan 287 34.8 -23 12 Triclosan-d3 292 34.8 22 11 N B

Trimethoprim 291 123 / 230 39 27 / 24 Trimethoprim-d3 294.23 230.15 40 24 A B

UPLC-MS/MS method
a

a 
Method - A: acidic, N: neutral, B: basic
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X. Protocol for filamentous fungi growth kinetics using a 

high-through-put 96 well assay 

Description 

The method, developed by Stephen Mackay (LBE, EPFL, 01.07.2013), determines kinetic growth, 

rapidly and cost effectively running 8-12 variables simultaneously and comparatively. Carbon sources, 

pollutants, inhibitors, pH and defined media conditions can be rapidly assessed. The experiment uses a 

quantified spore inoculum added to a growth medium. Cultures are grown in 96 well plates over 

several hours to obtain a sigmoidal growth curve read at 405 nm. The filamentous fungi grow as a mat 

over the base of the plate which can be measured at OD 450. Data can be analysed directly as OD vs. 

time or indirectly as relative growth. OD Max can be compared directly, or alternatively, the gradient 

of the curve can be calculated. OD can be measured up to 1.0 but will level off before that depending 

on carbon concentrations. 96 well plates are sealed using a clear airtight sealing film with low 

background (OD 405nm = 0.05). The temperatures can be set, however due to internal temperatures; 

28°C is the lowest constant temperature. Condensation negatively affects readings, therefore holes 

need to be pierced in the film (6-8 for each well) to allow aerobic growth and reduce condensation. 

This however leads to evaporation; therefore experiments need to be run over short periods (48-96 

hours for minimal evaporation). Antibiotics are important as the microtiter plates, sealing film and 

spectrophotometer are not sterile. 

 

OD =0.35 

 

Materials 

 Spore inoculum  

 0.1% Tween 80 in ddH2O, autoclaved aliquots in 10ml test tubes 

 growth media with antibiotics filtered (Camp, Kan and Amp).  

 Biotek filter spectrophotometer 

 Neubauer cell counter + 0.1% Nile blue (filtered and aliquoted) 

 96 well microtiter plate (sterile or non-sterile)  

 Clear transparent adhesive qPCR sealing film for the 96 well plates 

Method 

Preparation of the media 
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1. Autoclave 0.1% tween 80 in ddH2O in >10ml test tubes 

2. Prepare aliquots of growth media sterilized by autoclaving or filtration. Add, if necessary, 

respective antibiotics (chloramphenicol 34µg/ml 1:100 (prepared in EtOH); Kanamycin 

50µg/ml 1:100 (ddH2O); Ampicillin 100µg/ml (ddH2O).  Prepare 25-50 ml media and filter 

aliquots into sterile 2ml tubes. Media should not be too rich. Preferably, use defined minimal 

media when comparing substrates (i.e. 2mM final concentration of carbon source). Buffers can 

be included such as 50-100 mM MOPS or MES to the maintain pH. Minimal media allows for 

a stationary phase to plateau. For rich medium, compare the gradients. 

Preparation of the spore culture and plate 

a) Inoculate starter cultures for spore inoculum.  

b) Grow pellets in rich culture medium. After 3-5 days, remove spores suspended in the liquid 

medium (~20ml). Centrifuge spores at high speed (9000 g) for 15 min. Carefully remove the 

liquid supernatant. There should be no visible pellet (or very small). If there is, it is due to 

smaller pellet mass (if homogenized well, it does not affect the assay). 

c) Resuspend the spores in 0.1% Tween 80 (10ul/10ml). Count cells using the haemocytometer. 

Use between 2 x 10
4
 (2 spores per 25 squares) and 2 x 10

5
 (20 spores per 25 squares). Stain 

spores for 5 min with 1:10 of 0.1% Nile blue stain (non-toxic) at room temperature (stain 

500µl-1ml for consistent counts; count 6-10 times to determine average). Add 10 ul on the 

edge of the plate (diffuse per capillarity). Visualize on the microscope at 400 X. Spores are 

small but distinguishable from media precipitates.  Dilute accordingly.  

d) Add 100 µl of growth media (at the concentration or with the compounds to test) per well in 

the 96 well plate. Preferably run 7 replicates per variable and use a spore-free control per 

medium variant (0.1% Tween 80) to monitor bacterial contamination. 

e) Add 100 µl of spore inoculum to each well (inoculate across the different media or at random 

to reduce uneven spore concentrations due to settling). Vortex intermittently.  

f) Seal the plate. Condensation will appear on the film. Pierce each well with a sterile needle 6-8 

times around the edges of each individual well. Rub the surface of the sealing film, or use the 

underside of a pre-warmed heating block to remove condensation. Condensation is difficult to 

remove, requiring ~30 min for the temperature of the medium to adjust. Mark the level of the 

medium in the side of the wells to monitor evaporation. 

Setup and reading the spectrophotometer 

a) Open the Gen 5 program, create a new protocol. Set the incubation temperature minimum of 

28°C for a constant temperature. Set the OD at 405nm. Read every 20 min for 48-96 hours. 

(NB. Do not set shaking). Validate the protocol.  

b) 30 min after inoculation (to standardize the time it takes to remove condensation and setup the 

spec), place the micro-titre plate in the pre-warmed spectrophotometer and start reading.  

c) The machine will read-every 20 min for several days. Monitor the curves real time on the 

program. Do not open the machine as this could result in condensation and changes in 

environmental oxygen/carbon dioxide which cause spikes. 

Note: It is best to use 7 or more replicates, due to the nature of non-uniform growth of the filamentous 

fungi as outliers do occur regularly. (Use at least 6 of the 7 readings). 
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