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Abstract
Developing a methodology that allows identifying maximum electricity production with the

help of Organic Rankine Cycles (ORC) from the waste heat of an industrial process, at the

lowest specific cost, without jeopardising the increase of the industrial process’s thermal

efficiency. Such is the goal of this thesis. In order to reach this goal, a software tool which

is able to identify the most suitable cycle for a heat source regarding electricity production

and cost efficiency is developed and explained in detail. Three main areas of research can be

identified, the definition of waste heat, the analysis of experimental data with the help of data

reconciliation and the identification of a suitable working fluid and operation parameters of

an ORC for any given heat source.

A method for identifying, characterising and quantifying the available waste heat, which

can be converted into a useful form, for any industrial system, is presented. A distinction is

made between avoidable and unavoidable waste heat. Combined pinch analysis and exergy

analysis is used to characterise the waste heat potential of a given process. Based on the

study of two industrial processes, it will become clear how the constraints of a waste heat

analysis influence the outcome and the potential for the integration of ORCs. The studies

illustrate how the increase in energy efficiency and degree of heat recovery and integration

of a process can be contradictory to the production of electricity with ORCs. The concept of

data reconciliation is needed for the measurements, collected from two ORC demonstrators.

Apart from “classical" data reconciliation, a new method is presented, which consists in

including parameters as virtual measurements and time dependency of measurements. This

increases the redundancy of the system and thus the overall accuracy of the reconciled values.

A methodology, capable of choosing the designpoint, a suitable working fluid and a cycle

configuration, for the lowest specific investment cost while at the same time maximising the

electricity output, for a given process environment is developed. The new methodology uses a

multi objective optimisation (master optimisation) and Mixed Integer Linear Programming

(MILP) problem (slave optimisation). A novel approach of combining multi objective non-

linear master optimisations with single objective linear slave optimisations is introduced,

increasing the reliability of the algorithm.

Keywords: Waste heat, Organic Rankine Cycle (ORC), Pinch analysis, process integration,

exergy, thermo-economic, multi objective optimisation.
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Zusammenfassung
Ziel dieser Dissertation ist die Entwicklung einer Methode, welche es ermöglicht die grösst-

mögliche Menge elektrischen Stroms für die niedrigst möglichen spezifischen Kosten unter

Einsatz von Organic Rankine Cycles (ORC) zu bestimmen, ohne dadurch eine Effizienzstei-

gerung des Industrieprozesses selbst zu gefährden oder zu blockieren. Um dies zu erreichen

wurde ein Software Tool entwickelt, welches den mit Blick auf Stromerzeugung und Kosteneffi-

zienz am besten geeigneten Kreisprozess für eine gegebene Wärmequelle und -senke ermittelt.

Drei Hauptthemengebiete können unterschieden werden, die Definition von Waste Heat (Ab-

wärme), die Analyse von experimentellen Messdaten unterstützt durch Data Reconciliation

und die Bestimmung von optimalen ORCs und ihrer Betriebsparameter für eine beliebige

Wärmequelle.

Eine Methode zur Ermittlung, Charakterisierung und Quantifizierung von verfügbarer Abwär-

me von Industrieprozessen, welche in eine nutzbare Form umgewandelt werden kann, wird

präsentiert. Es wird unterschieden zwischen vermeidbarer und unvermeidbarer Abwärme.

Pinch und Exergy Analyse werden kombiniert um das Abärmepotential zu charkterisieren.

Aufbauend auf der Untersuchung zweier Industrieprozesse wird gezeigt, welchen Einfluss die

Vorgaben einer Abwärmestudie auf ihr Ergebnis haben und das Potential für den Einsatz von

ORCs bestimmen. Die Analyse zeigt, wie das Potential zur Stromerzeugung mit zunehmender

Prozessintensivierung und Prozesseffizienz abnimmt. Data Reconciliation wird eingeführt

und zur Untersuchung der Messergebnisse zweier ORC-Demonstrationseinheiten angewandt.

Zusätzlich zur “klassischen” Data Reconciliation führen wir eine innovative Erweiterung ein,

welche Parameter als virtuelle Messungen verwendet und die Zeitabhähngigkeit zwischen

zwei Messperioden ausnutzt. Hierdurch lässt sich die Redundanz des Systems erhöhen und

so die Präzision der durch Data Reconciliation bestimmten Werte. Das Software Tool und die

zugrunde liegende Methode wird vorgestellt. Diese neuartige Methode verbindet eine Pareto-

optimierung (auf dem Master-Level) mit einem Mixed Integer Linear Programming (MILP)

Optimierungsproblem (auf dem Slave-Level) und führt einen neuen Ansatz zur Steigerung der

Zuverlässigkeit bei der Ermittlung der Paretooptima ein.

Stichwörter: Abwärme, Organic Rankine Cycle (ORC), Pinch Analyse, Prozessintensivierung,

Exergy, Thermo-Ökonomie, Paretooptimierung.
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Introduction

Energy is one of the main drivers of modern society, therefore it is associated with growth and

well-being. As a consequence, the overall global energy consumption is increasing (figure 1),

this leads to an increase in CO2 and other greenhouse gas (GHG) emissions (figure 2), which

amplify climate change.

In an effort to limit climate change to a low level, many countries make an effort to decouple

the effects of growth of their gross domestic product (GDP) and their GHG emissions (Inter-

national Energy Agency, 2014d; United Nations Framework Convention on Climate Change,

1997). Because 69 % of global anthropogenic greenhouse gas emissions have their origin in

energy use, the use of GHG neutral or low carbon technologies, such as renewable energies or

carbon capture and storage (CCS), play key roles in the abatement of GHG emissions. Another

key role is played by the implementation of efficiency measures. The International Energy

Agency (IEA) calls efficiency the “first fuel” (International Energy Agency, 2013) and state:

“Energy efficiency improvements since the 1970s in 11 IEA member countries

saved 56 exajoules (EJ) or 1337 Mtoe [Mega Tons of Oil Equivalent] in 2011. Avoided

energy use was larger than the supply of oil (1202 Mtoe), electricity (552 Mtoe) or

natural gas (509 Mtoe) in 2011; these savings equate to 59 % of TFC [Total Final

Consumption] in the 11 IEA member countries that year. In monetary terms, 56 EJ

has a value of USD 743 billion (given an average global price of energy at USD

13.96 per gigajoule [GJ]).” (International Energy Agency, 2014d, p. 16).

The industrial sector has an important share in energy and fuel consumption: 29 % of the

worldwide total final energy consumption (TFC) in 2011 was attributed to industry (Interna-

tional Energy Agency, 2014e). The worldwide total final energy consumption (TFC) which is

used in form of heat represents 47 % (with industry accounting for 44 % of these) (International

Energy Agency, 2011). Thus, it seems logical that a large part of the aforementioned increases

in energy efficiency should be made in the industrial sector.

Another way of increasing the use of the fuel input into an industrial process (or increasing

the generated value per unit of energy) is to convert waste heat into additional products, such

as electricity. In a report (Energetics and US DOE, 2004) it was estimated that 20 % to 50 % of
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Figure 1: World total final energy consumption by fuel 1971 to 2012 in Mtoe (International Energy Agency,
2014e).

Figure 2: Trend in CO2 emissions from fossil fuel combustion (International Energy Agency, 2014b).

all energy input of industrial processes leave the process in form of waste heat. The potential

for waste heat conversion is therefore very large.

In this context the two laws of thermodynamics have to be considered. The first law relates

the energy efficiency to the waste heat production: increasing process efficiency reduces

waste heat production and even reduces specific energy consumption. The second law of

thermodynamics defines the quality of the heat. It states that the amount of useful energy

in form of work or electricity that can be produced by waste heat conversion depends on its

temperature level and on the ambient temperature.

Electricity and heat represent 42 % of the world CO2 emissions (International Energy Agency,

2014b). The electricity production from waste heat can therefore have an important impact

on CO2 emissions if it substitutes power production from the existing power plants. A further

(micro economic) motivation for waste heat use for electricity generation could be the reduc-
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tion of electricity imports and thus cost and dependency on local utilities and electricity grid

(International Energy Agency, 2014a).

However, if the industrial sector is supposed to make an important contribution to the reduc-

tion of greenhouse gases, the installation of waste heat recovery for external services and the

increase of process efficiency by heat recovery within the process could be contradictory: The

reduction of the fuel consumption by increase of the process efficiency has an impact which

is simple to estimate, for each kWh of heat which is not needed, one kWh of fuel is saved.

Whereas, a system to produce electricity from heat which is placed downstream of the process

will have an efficiency, significantly smaller than one. This is due to thermodynamic and

technical limitations and especially significant for heat at low temperatures. From a climate

protection point of view, it seems indicated to give priority to the reduction of the fuel input

by increasing a process’ internal efficiency.

This leads to several questions which we try to answer in this thesis:

• Considering the energy efficiency measures, how do we define the waste heat of a

process?

• How can we quantify the waste heat potential?

• How can we access the waste heat potential and produce a maximum of electricity?

After giving the broad context and motivation for this thesis, we will give some basic definitions

and explanations.

The Carnot Factor

The Carnot factorΘ defines the theoretically derived upper limit of thermodynamic efficiency.

For thermodynamic cycle between a heat source with the temperature Tsource and a heat sink

with the temperature Tsink it is given by

Θ= 1− Tsink

Tsource
. (1)

With this limit, it is easy to understand that electricity production potential increases with

the temperature of the heat source since the heat sink is in general the environment (Borel

and Favrat, 2010). Figure 3 shows how the maximum efficiency develops as function of the

temperature difference between a heat sink at 15 ◦C and a heat source. Also shown are 60 % of

the theoretical maximumΘwhich is representing an efficient Organic Rankine Cycle.
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Figure 3: Carnot factor: efficiency limit with a heat sink at 15 ◦C.

Waste Heat and Energy Efficiency Potentials

The possible competition between the use of waste heat (e.g. for electricity production) and

avoiding the creation of waste heat, renders the estimation of waste heat recovery (WHR)

potential a difficult task. Some considerations will however give an order of magnitude.

The estimation stated above considered that 20 % to 50 % of all energy input into industrial

processes leaves in the form of waste heat (Energetics and US DOE, 2004). But how much of

this is can be avoided?

In figure 4, the upper estimate of saving potentials by application of best practice commercial

technologies in manufacturing industries is shown (International Energy Agency, 2007). The

total savings from the adoption of Best Practice Commercial Technologies (BAT) in manu-

facturing Industries are estimated to be up to 38 EJ of primary energy equivalents per year.

The transformation from global primary to final energy has a factor of roughly 0.68. If we

assume, in a first approximation, that this factor is assigned proportionally to the consumers

and forms of energy, it could be applied to get to the final energy equivalents of the possible

savings (International Energy Agency, 2014e) (This is of course a very strong simplification).

This means that up to 25 EJ of the total final energy consumption could be saved per year.

The world wide total final energy consumption of the industry was 107 EJ in 2011 (International

Energy Agency, 2014e). If we consider the estimate of 50 % of energy leaving the industrial

processes in the form of heat, it represents 54 EJ of waste heat. Even if all the BAT efficiency

measures are applied, the quantity of available waste heat could be as high as 28 EJ per year or

a constant average heat flow rate of 884 GW.

If the entire waste heat was at 100 ◦C and the available heat sink at the world average tempera-

ture of around 15 ◦C, the Carnot factor gives a limit of 25.8 % maximum efficiency, or 15.5 % at

4
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Figure 4: Global savings from adoption of best practice commercial technologies (BAT) in manufacturing
industries, upper estimate (primary energy equivalents).

60 % of the Carnot factor. The average world electricity generation in 2011 was 2586 GW, if it

was possible to convert 15.5 % of the total waste heat into electricity, about 5.3 % of the global

electricity generation could be covered by waste heat without emitting additional CO2 during

the generation. Assuming a CO2 emission of 506.75 g/kWh (world average for electricity and

heat output 2007 (European Energy Agency, 2014)), results in saved electricity production

in other plants which is equivalent to a reduction of 608.4 Million tons of CO2 per year. Ac-

tually, the efficiency measures would also lead to considerable GHG emission reductions in

the process and a reduction of the electricity consumption. If we consider that the 25 EJ of

energy savings from BAT measures would emit the same amount of CO2 per kWh, the resulting

reduction would from BAT measures be as high as 3607 Million tons of CO2 per year (figure 5).

Therefore, motivation of this thesis is thus: How can the waste heat potential be tapped while

at the same time improving the energy efficiency of the industrial processes?

Pinch Analysis

A tool that we use throughout the thesis is Pinch analysis. It is used for in chapter 1 for the

definition of waste heat in the analysis and optimisation/integration of industrial processes

in chapter 2, in the evaluation of accessibility/availability of waste heat and in the optimal

integration of the waste heat recovery system in chapter 4. The method was developed by

Linnhoff and Flower (1982) and is a way to identify heat recovery possibilities within a process

in a manner such that the overall heat consumption of the process is minimal (Minimal Energy

Requirement (MER)). A detailed description of the method can be found in Kemp (2011). We

do, however, shortly describe the basic aspects here. In Pinch analysis, processing operations

are analysed in order to identify if and at which temperature they need heating or cooling

to perform their function. The analysis of the process results in a list of heating and cooling
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Figure 5: Estimation of the world waste heat potential after implementing BAT energy efficiency measures,
compared to the total final energy consumption of the world industry (107 EJ).

Figure 6: Construction of a hot composite curve, individual streams from process analysis (left) and summed
up to composite curve (right) (Kemp, 2011).

requirements, stating the temperatures and the quantities (enthalpies) of the needed heat

streams. Heat which has to be evacuated from a unit is referred to as hot stream or cooling

requirement, it can be used as a heat source. If a process unit needs heating, it is referred to

as cold stream or heating requirement since it needs to be heated up and can be used as a

heat sink. Subsequently, all hot and all cold streams are summed up to form the hot and cold

composite curves, respectively. These curves show how much heat is required or has to be

evacuated at which temperature. The construction of a hot composite curve is demonstrated

in figure 6.

Once the composite curves, including all hot and cold streams, are prepared, they are used

to identify the amount of heat than can be recovered within the process. In order to do so,

a minimum temperature difference ∆Tmin between hot and cold streams for a typical heat

exchange is defined. ∆Tmin depends on the heated and cooled materials and their thermody-

namic states as well as the available heat exchanger surface. Oftentimes, the corresponding

∆Tmin/2 is directly added or subtracted to or from the respective stream temperature, leading

to a composite curve with corrected temperatures which show the available heat or needed
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cooling requirements of the process. If corrected temperatures are used, it will be either

written explicitly or marked with an asterisk (*). In figure 7 (a) and (b), it is shown how the

MER is identified by horizontally sliding the cold composite curve under the hot composite

curve, each with corrected temperatures, until they touch. The point in which they touch is

called pinch point, or often abbreviated as pinch. By recovering heat from the hot streams to

heat up the cold streams, not only the need of a hot utility is reduced but also the deployment

of a cooling utility shrinks by the same amount. This is called the more-in more-out principle.

As ∆Tmin can be reduced by using a larger heat exchange area, the choice of ∆Tmin is hence

a trade-off between the investment in heat exchanger surface and energy saving. The use of

computer models plays a crucial role in this context. With well defined energy cost(s) and

investments, they allow to identify an economic minimum if energy cost and investment in a

Heat Exchanger Network (HEN) are well defined.

Another way to represent the process is the grand composite curve. It shows the horizontal

distance, ∆Q, between the hot and cold composite curves as a function of the temperature

(figure 7 (c)). Both diagrams, composite curves and grand composite curve, can be modified by

replacing the temperature with the corresponding Carnot factor=Θ= 1− Ta
T with the ambient

temperature Ta . Thus, the heat exergy is represented by the surface in the diagram (figure 7

(d)). In order to optimise the exergy efficiency of a process, the area between hot and cold

curves has to be minimized.

The Pinch analysis divides the process into two subsystems, above and below the pinch point.

Above the pinch point, it is characterized by an overall need for heating (heat sink). Below,

there is an overall necessity for cooling (heat source). As a consequence, no stream above

the pinch point should be cooled by a cold utility but rather by internal heat exchange, and

no stream below the pinch point should be heated by means of a hot utility. Additionally, no

internal heat exchange should cross the pinch point (no stream below the pinch should be

heated with a stream from above), in order to meet the MER.

Pinch analysis is also used to place heat pumps (Townsend and Linnhoff, 1983), and helps as

well with the introduction of heat exchanger networks (Linnhoff and Hindmarsh, 1983) which

is under constant development as shown in Smith et al. (2010) and Wang et al. (2012a). Many

more application examples can be found in Klemes (2013). Maréchal and Kalitventzeff (1997)

have introduced the use of rectangles integrated in the Grand composite curve, to identify the

possible situation of ORCs and the pressure levels within the ORCs.

Waste Heat Recovery Technologies

In the following we discuss different technologies for the recovery of waste heat and their

efficiencies. At first, the direct use of recovered waste heat is discussed, then technologies

for converting heat to electricity are presented. A simplified situation of the technologies

regarding their efficiency compared to the Carnot factor is shown in figure 8. This section

shows why organic Rankine cycles have been chosen as the conversion technology in this
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thesis. In chapter 4 it will be seen that efficient ORCs reach exergy efficiencies above 60 %.

However, for very low temperature differences (grey line) the temperature gradient in the heat

exchangers decreases the possible exergy efficiency.

Space heating: Even though, this thesis focuses on the generation of electricity from waste

heat, the use of heat (especially at low temperatures) can also be interesting for space heating

for example in the form of district heating networks. The advantage of the use in space heating

is that no transformation is necessary, only the transport of the heat to the consumer has to be

organised. This is typically done with water or pressurised water. The temperature levels used

in heat distribution systems are typically between 40 ◦C and 80 ◦C and the heat distribution

efficiency can be very high (90 %). However, it has to be mentioned that the heat demand is

varying with time and seasons. It is thus difficult to evaluate the waste heat valorisation only

with the first law of thermodynamics (Perry et al., 2008). Examples for the use of waste heat

for district heating can be found in Perry et al. (2008), Holmgren (2006) and Morandin et al.

(2014).

The example of district heating shows clearly why the use of a first law of thermodynamics

perspective on waste heat is not sufficient. In figure 9, the use of waste heat by a district

heating network is shown. It can be seen that the increase of energy efficiency of the process

(application of efficiency measures) does not reduce the minimum energy requirement or the

heat delivered by the hot utility, since the heating requirement of the district heating stays

unchanged. The heat demand of the district heating has to be satisfied and if less waste heat is

available, this is done by an increased heat transfer from the hot utility to the district heating.

However, the temperature at which the heat is needed changes visibly, while the process

needs heat at high temperature, the district heating needs it at low temperature. The grey area

represents the possible exergy savings, if the hot utility delivers the heat always exactly at the
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Figure 9: Use of district heating for waste heat recovery, (left) without and (right) with efficiency measures
on the process.

required temperature, it is visibly larger, after applying the energy efficiency measures. Thus,

decreasing the energy demand of the process has increased the potential to safe exergy. This

illustrates the need for exergy analysis.

Thermoelectric (TE) systems: TE systems for electricity generation use the Seebeck effect, that

means that they consist of two semiconductors (p-type and n-type) which form a thermocou-

ple. If heat is applied to one side, electrons are “pushed” from the n-type material and “holes”

from the p-type material towards the cold side, thus creating a potential difference between

the two semiconductors which can be used in a circuit in the form of current. Thermoelectric

systems exist for a wide range of temperatures up to above 1000 ◦C and have the advantage of

no moving parts, which makes them potentially maintenance free (Rowe, 1995). Unfortunately

TE elements available today are not only costly, but also have relatively low efficiencies. At

over 1000 ◦C the efficiency is still under 20 % and at 400 ◦C they do not reach 10 %. They are

however advantageous at very small sizes, since mechanical systems have physical limits of

size reduction (Vining, 2009).

Stirling Engines: The Stirling engine can be applied even with very low temperature differ-

ences between heat source and sink. It is a reciprocating engine in which a gas stays in the

cylinders without direct contact to the heat sources. It has the reputation of being reliable

with low maintenance (Kongtragool and Wongwises, 2003). The Stirling cycle can theoreti-

cally reach a high efficiency (it is actually equivalent to the Carnot efficiency), however the

machines internal irreversibilities are often substantial and at over 1000 ◦C a Stirling engine

realistically has an efficiency between 20 % and 35 % (Hsu et al., 2003).

Rankine Cycles: The Rankine Cycle (or Clausius Rankine Cycle) using water as a working fluid

is generally used in large thermal power plants. A schema of the Rankine cycle, is shown in

figure 10, where Q̇ is heat and Ė is (shaft) work (Borel and Favrat, 2010). In a Rankine cycle
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Figure 10: Schema of a Rankine cycle.

the working fluid (at condensation pressure) is pumped Ėin to a higher pressure (1-2), it is

preheated, evaporated and possibly superheated (2-3) Q̇in, it enters the expander (in this work,

generally a turbine) where the work Ėout is recovered (3-4), to close the cycle, the steam exiting

the expander is (4-1) de-superheated, condensed and possibly sub-cooled Q̇out before it enters

the pump again. The work that is used to drive a generator is recovered from the turbine.

Water is, however, not the only fluid that can be used as a working fluid within such a machine.

Quoilin and Lemort (2009) state that water cycles have a higher efficiency at high temperatures,

they need however pressures of 60 bar and higher to be efficient, which could be seen as a

risk in certain industries and increases maintenance of a machine and the size of the used

equipments. Other fluids can be used, which have lower boiling pressures and temperatures.

Also the shape of the T-s-curve influences the possible use; three types of fluids can be

distinguished when looking at the condensation curve:

• wet fluids with condensation curves dT
d s < 0

• isentropic with condensation curves dT
d s =∞

• dry fluids with condensation curves dT
d s > 0

In figure 11, it can be seen how this influences the use of a Rankine cycle, if a wet fluid is not

superheated at the intake of the turbine, the fluid will leave the turbine partially liquid, for a

dry fluid it leaves superheated (Jorge Facão, 2009).

Furthermore, it is possible to use mixtures of working fluids, which have beneficial properties.

A working fluid mixture shows a more or less strong temperature glide during the evaporation

(instead of obtaining a “plateau” in the case of a pure working fluid) (Angelino and Colonna di

Paliano, 1998). This can be used to better fit the cycle to heat sinks and sources (figure 12, the

area around the critical point has been approximated).
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Figure 11: Examples of dry (cyclohexane), wet (water) and isentropic (R123) working fluids (Jorge Facão,
2009).

By changing the thermodynamic parameters of the cycle, the properties can be influenced.

Heating the evaporated gas further, leads to a superheated turbine inlet, using a pump outlet/-

turbine inlet pressure above the critical point will avoid the working fluid to go through the

2-phase-area, called supercritical cycle (Schuster et al., 2010). Figure 12 shows examples for

the different cycles.

A Rankine cycle which uses an organic working fluid is consequently called Organic Rankine

Cycle (ORC). We use this term for cycles with or without superheating, for supercritical cycles

(also called transcritical) and those with mixtures as working fluids.

ORCs can be applied in many different sectors such as the cogeneration in biomass combus-

tion plant (Drescher and Brüggemann, 2007), in geothermal plants (Shengjun et al., 2011),

with solar heat (Tchanche et al., 2009), as bottoming cycles in conventional power plants (Roy

et al., 2010) and for internal combustion engines (Vaja and Gambarotta, 2010) which are forms

of waste heat recovery or even in Ocean Thermal Energy Conversion (OTEC) (Uehara and

Ikegami, 1990). Thus, the technology is quite mature and well documented as will be shown

in chapter 4.

The broad range of possible working fluids that can be used in the Rankine cycle lead to

an applicability in a large temperature range and thus ease the adaptation to different heat

sources. Therefore, this technology is ideal for the use in waste heat recovery (Quoilin et al.,

2011). The main focus is on organic fluids (ORCs) even though other fluids, like water and

ammonia, will be considered in the identification of suitable cycles. The exhaustive list of all

working fluids can be found in the tables A.1 to A.7 in appendix A. The integration of an ORC

12
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Figure 12: Temperature-entropy (T-s) diagram of different Rankine cycles.

into a process is shown in figure 13. The figure also shows how the ORC could be used, to drive

a heat pump, thus decreasing the need for the hot utility.

The Kalina cycle has been much discussed, it shows higher theoretical efficiencies compared

to ORCs in some applications by using a binary working fluid mixture of ammonia and water.

This pronounced advantage has unfortunately not been observed yet in real installations

and the reliability of the technology is questioned as well (DiPippo, 2004). The mentioned

drawbacks might be due to the matureness of the ORC compared to the rather rarely installed

Kalina cycle, we thus do not study this technology explicitly. However, the methodology we

introduce applies to mixtures in the same way as to pure fluids.

The “LOVE” project

This thesis was written in the context of a European Framework 7 project entitled “LOw-

temperature heat Valorisation towards Electricity production” (LOVE). The project was con-

ducted by a consortium of eight partners, two with an academic background and six from

industry. Goal of the LOVE project was to demonstrate how the energy efficiency of a process

industry could be improved by converting low temperature waste heat (below 120◦C) into
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Figure 13: Integration of waste heat recovery with ORC, district heating and heat pump.

electricity. During the project two ORC demonstrators were built, installed and tested, in order

to validate the technical feasibility of the waste heat conversion.
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Outline of the thesis

Developing a methodology that allows identifying maximum electricity production

with the help of Organic Rankine Cycles from the waste heat of an industrial process,

at the lowest specific cost, without jeopardising the increase of the process’s thermal

efficiency.

In the above paragraph we summarised the topic of and motivation for this thesis. In order to

reach these goals, a software tool which is able to identify the most suitable cycle for a heat

source in regards to electricity produced and cost efficiency is developed and explained in

detail. Before we can develop the tool we must identify the waste heat sources of industrial

processes (which requires defining waste heat as such), in order to quantify the ORC potential.

Additionally, we can benefit from the experience gained in the LOVE project in general and

with the demonstrators in particular. The measurement data from the LOVE demonstrators

is used to calibrate certain aspects of the tool. To this end, the data has to be prepared and

analysed.

Hereafter, an overview of the thesis structure is given, stating the questions we try to answer

and the conclusions we want to give in each chapter. At the beginning of each chapter we recall

these points and then give an introduction to the topic under study. We can identify three

main areas of research, the definition of waste heat, the analysis of experimental data with

the help of data reconciliation and the identification of a suitable working fluid and operation

parameters of an ORC. For every area, we include the state of the art in the respective chapters.

Each chapter brings an additional element to the topic, resulting in the end into a novel global

methodology. We close this thesis by recalling the main findings. The chapters of the thesis

are:

Defining Waste Heat

Chapter 1

Defining, identifying and quantifying the waste heat potential of an industrial

process.

In this chapter, we see that multiple definitions of waste heat exist in literature, however

most of them are implicit. It is pointed out that some authors consider waste heat simply

as any cooling or hot matter stream leaving the process. Some definitions from literature

have the notion of prioritising heat recovery within the process over implementing ORCs

or other technologies. However, to the best of our knowledge, there is no methodology

available defining qualitative as well as quantitative potentials. Thus, a method for identifying,

characterising and quantifying the available waste heat of an industrial system that can be

converted into a useful form is presented. A distinction is made between avoidable and
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unavoidable waste heat. The avoidable waste heat is the amount of waste heat that can be

avoided if one implements heat recovery or heat revalorisation measures. This distinction

is especially important when it comes to deciding on an investment for the integration of

a waste heat valorisation process. Combined pinch analysis and exergy analysis is used to

characterise the waste heat potential of a given process.

Waste Heat Recovery: Studies and Examples

Chapter 2

Studying waste heat potentials of the cement and the soluble instant coffee produc-

tion processes, showing how different depth of studies and perspectives influence

the result of the possible electricity production. Identifying the experiences from the

LOVE demonstrators which can help building a more realistic ORC identification

tool.

Based on two industrial processes, we study the identification of the waste heat recovery

potential in a given system. Using the definition of the heat transfer requirement of the process

unit operations, we analyse the heat recovery by heat exchange and the heat revalorisation

techniques that can be used in the process and therefore define the waste heat production

potential of the process. We show applications and studies which were conducted throughout

the thesis. It will become clear how the constraints of each study influence the outcome of a

waste heat recovery analysis. The studies illustrate how the increase in energy efficiency and

degree of heat recovery and integration of a process can be contradictory to the production of

electricity with ORCs. Additionally, we demonstrate in one example how the integration of a

commercially available ORC can be improved using integration techniques and Pinch analysis.

Eventually, the LOVE demonstrators are introduced and key learnings identified.

Waste Heat Valorisation System Characterisation

Chapter 3

Reconciling measurement data of the LOVE demonstrators with little redundancy,

with the aim of characterising the performances of the tested Rankine cycles and

identifying process unit parameters.

We introduce the concept of data reconciliation. It is needed for the measurements, collected

from the LOVE demonstrators. Unfortunately, the measurements showed large incoherencies,

which result from the difficult industrial environment prevailing in the cement industry.

Turbulent gas flows, inhomogeneous temperature profiles and condensation on tube walls and

thermocouples contributed to these incoherencies. Apart from “classical” data reconciliation,
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we present a new method, by including the use of parameters as virtual measurements and

the time dependency of measurements. This increases the redundancy of the system and thus

the overall reliability. We analyse the methodology using an unbiased virtual set of stationary

measurements of a simple heat exchanger. We then apply the methodology of reconciliation

to the data measured during the LOVE project and gain thus valuable information which is

used to calibrate the software tool used for the identification of suitable ORCs for a given heat

source.

Suitable Cycle Identification

Chapter 4

Introducing a methodology allowing for any waste heat source, the identification of

optimal Organic Rankine Cycles, regarding specific investment cost and the amount

of electricity produced.

Recent publications show that the identification of suitable working fluids is in general done

by considering a more or less small number of fluids and a predefined cycle configuration

(single-stage, two stage, super or transcritical etc.). In chapter 4 we develop a methodology,

capable of choosing the designpoint, a suitable working fluid and a cycle configuration, for

the lowest specific investment cost while at the same time maximising the electricity output,

for a given process environment. Qualitative and quantitative heuristic criteria such as Global

Warming Potential (GWP) and Ozone Depletion Potential (ODP) are used to orientate the

decision. The new methodology uses a genetic algorithm for the multi objective optimisa-

tion (master optimisation) and Mixed Integer Linear Programming (MILP) problem (slave

optimisation) for sizing of the cycles. The crucial point of this methodology is the choice of

the cycle configuration and working fluid within the MILP slave problem, thus reducing the

quantity of decision variables used in the master problem (multi objective optimisation). The

methodology is validated using examples from chapter 2.

Conclusion

Chapter 5

In the conclusions we present the strengths and weaknesses of the developed methodology

and give some perspectives for future development.
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1 Defining Waste Heat

After showing the context of this thesis, we will now look at the first procedure that is needed

for the integration of organic Rankine cycles into industrial processes: The definition of waste

heat and identification of the waste heat potential. This chapter is based on the paper Bendig

et al. (2012), presented at the PRES conference 2012 and the paper Bendig et al. (2013).

The definition of waste heat is revealed to be complex. A suitable definition as resource and

reserve, interesting for statisticians and stakeholders will be given. The recommendation to

consider waste heat only after realising possible saving opportunities is introduced. This last

recommendation is not only the key guideline throughout this thesis, it is also addressed to

policy makers and industrials.

1.1 State of the Art

Cost savings, the conservation of fossil resources, the limited availability of renewable re-

sources, restrictive legislation and considerations about the image of a company are the

driving forces behind the development of more efficient processes. The importance of energy

efficiency is obvious since it has not only been a major topic in energy research (Klemeš and

Varbanov, 2012) but also been emphasised by economic and political actors. For example the

International Energy Agency (IEA) foresees in the IEA 450 Scenario that more than 50 % of the

CO2-abatement will result from energy efficiency (International Energy Agency, 2009b). One

way to increase the value added per unit of energy spend is the use of waste heat to produce

additional services like electricity or space heating. Figure 1.1 shows the representation of

an industrial process in a general way, as a system converting raw materials into products

and byproducts by the use of energy as a driving force. Increasing the efficiency would be

equivalent to redirecting more of the vertical outlet streams into horizontal outlet streams.

“Waste heat” is a commonly used term in literature. Even though or because everybody

has an idea of its meaning, formal definitions are scarce and most of the time insufficient.

Synonymously used terms are “excess heat”, “residual heat”, “low grade heat” (Ammar et al.,
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Utilities

ORC Electricity

Figure 1.1: General representation of an industrial process with entering and leaving material and energy
flows (modified afterMaréchal and Kalitventzeff (1998)).

2012), “secondary heat” (Hnat and Coles, 1985) and in some cases “conversion losses” or more

general “inefficiencies” (International Energy Agency, 2009b).

The majority of the literature (Goldstick and Thumann, 1986) and legislators (International

Energy Agency, 2014c) define waste heat simply as heat dissipated to the environment, often

regardless of its temperature and possible use and re-use. This simple analysis of a process

in order to identify waste heat is strictly governed by the first law of thermodynamics and

is based on the energy balance (the higher the input, the higher the output). Ammar et al.

(2012) go a step further in their analysis, introducing a notion of usefulness within the process.

They define low grade waste heat as the heat that is not usable for heat recovery within the

process (temperature wise). This low grade waste heat is thus at a temperature Tsource which

is below the temperature Tsour ce,mi n marking the lowest economically viable heat recovery

within the process. At the same time they set a lower limit to the low grade waste heat which

is Tsink +∆Tmin (equation 1.1), where Tsink is the temperature of the heat sink (for example

the environment) and ∆Tmin is the minimum temperature difference needed in the heat

exchangers to make a transfer into the heat sink feasible.

Tsource,min > Tsource > Tsink +∆Tmin (1.1)
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This definition conveys the idea of heat recycling and thus process efficiency optimisation

with a clear hierarchy:

1. Heat recycling within the process (reduction of resource consumption by re-use of

available heat).

2. Heat recovery by a secondary process (delivering other useful services and thus by

expanding the system boundaries).

Even though this definition is considering the heat recovery possibilities in the process, it

does not take into account the quantity of heat available at different temperature levels. In

the situation, where more heat is available at high temperatures than the process can recover,

the opportunities for recovery in a secondary process of this (high temperature heat) would

be missed. In other words, not all the heat at a temperature equal to or above Tsource,min

can necessarily be used within the process since temperature is not the only criteria for heat

recovery, there must also be a heat sink equivalent to the heat load. In cases where the available

heat at high temperatures can be entirely used within the process the definition can however

be correct regarding heat loads.

The above mentioned approaches ignore asking the question of the energy input into the

system which would be a consistent way of applying the first law of thermodynamics.

Available Tools

The concept of Pinch analysis is introduced in the Introduction of this thesis and explained in

detail in Linnhoff and Flower (1982) and Kemp (2011). It is a method to identify economically

viable internal heat recovery within a process. It also allows to identify where to place heat

pumps (Townsend and Linnhoff, 1983) and calculating their optimal integration (Becker

et al., 2012). Pinch analysis helps as well with the introduction of heat exchanger networks

(Linnhoff and Hindmarsh, 1983). Pinch analysis fills thus a gap that the above definitions

of waste heat leave. Further, it identifies the minimum energy requirement of a process,

which has to be delivered by heat sources; it also defines a minimum energy requirement

for cooling/evacuation of heat, which could be understood as waste heat. These minimum

energy requirements make it possible to distinguish between avoidable (not optimised) and

unavoidable (occurs even if optimised) heat input and output.

Another method that has to be considered is exergy analysis (Szargut, 1979). It allows identify-

ing exergy losses within a system and gives thus a tool for identifying the unit operations which

lead to big losses. Many authors have worked on this concept to evaluate system performances

(Marmolejo-Correa and Gundersen, 2012), to identify ways to reduce the losses in a system

(Benali et al., 2012) and to use it as an objective function for energy optimisation problems

(Gerber and Maréchal, 2012). Linnhoff and Dhole (1992) have combined exergy analysis with

the introduction of Carnot composite curves. Applied to balanced composite curves, this can
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be used to visualise heat exergy losses in the heat exchange system of a process (Maréchal

and Favrat, 2005). Sorin and Rheault (2007) use exergy analysis for process intensification

and Aspelund et al. (2007) extend Pinch analysis by the use of exergy analysis. Cziesla et al.

(2006) uses the concept of avoidable and unavoidable exergy destruction. Studies exist, using

the exergy concept for the integration of waste heat (Stijepovic and Linke, 2011). Also, a great

number of studies using exergy analysis for integration of low temperature Organic Rankine

Cycles (ORC) (Quoilin et al., 2011), generally however these studies implicitly define waste

heat or consider it as ”given” without any clear definition.

1.2 Objectives

Defining, identifying and quantifying the waste heat potential of an industrial

process.

It can be seen from the literature that there are several partially overlapping definitions of waste

heat that are deduced from the first law of thermodynamics (waste heat as heat ”discharged

to the environment”), or which take into account possible internal heat recovery within the

process simply by comparing temperatures. However, there is need for a definition, which

takes into account two considerations:

1. Distinguish between avoidable and unavoidable waste heat in order to avoid making

investments in valorisation technologies (like ORC) with relatively low efficiencies,

instead of making the process itself more efficient and thus reduce the fuel input.

2. Estimate the use that can be recovered from the waste heat.

This definition has to be done in a way that future improvements of a process are not inhibited

by investments in waste heat recovery systems that might become obsolete by increasing the

process’ efficiency. Thus a methodology is needed to identify the potential of usable waste

heat, pointing out economic commitments attached. The tools of Pinch analysis and process

integration, especially the concept of maximum heat recovery which takes into account

temperature levels as well as the heat balance, are at disposition in order to identify and

quantify heat available in a process. In order to quantify the possible use of the energy and

to extent the concept beyond the first law and Pinch analysis, the tools of exergy analysis are

readily available.

Throughout this chapter, an example process will be used, in order to visualise different theo-

retical considerations, at the end of the chapter the findings are discussed and the definition

for waste heat is proposed.
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Figure 1.2: Example process, showing heat sinks and sources.

1.3 Finding the Waste Heat Potential

A simple process (figure 1.2), consists of three entering raw material feeds; Feed 1 (F1) is heated

by internal heat exchange (HEX1) and then split into two parts. One part is entering reactor 1

(R1) (exothermal) while the other part is mixed with a part of the product from reactor 1 (R1)

and conveyed to reactor 2 (R2) (endothermal). From reactor 2 (R2) comes product 2 (P2) which

is cooled down, first by internal heat recovery (HEX3) then by a cold utility (CU2). The other

part of the product from reactor 1 (R1) is a mixture of product 1 (P1) and gas (Gas), it is cooled

down before leaving the system, the cooling is done by use of internal heat exchange (HEX2

and HEX1), a cold utility (CU1) (e.g. cooling water) and a refrigeration cycle (E1, Comp, CU3,

Valve). Feed 2 (F2) and feed 3 (F3) are brought to reaction in reactor 3 (R3) (exothermal) and the

product is heated up by internal heat recovery (HEX2) and a hot utility (HU) before entering

reactor 1 (R1). We can identify three sources of heat, the heat released at the condenser (CU3)

of the refrigeration cycle and the heat released between states 8 and 9 as well as between 18

and 19.

These sources add up to a total available heat of 3750 kW. The possible waste heat valorisation

in a secondary process (such as the Organic Rankine Cycle) not only depends on the quantity

of heat available, but also on the temperature at which it can be recovered. A measure for the
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usefulness of heat is the extractable work or heat exergy Ė−
q (equation 1.2). The notations used

here are those of Borel and Favrat (2010). The superscript + or - indicate that a value is positive

when entering the system (+) or positive when leaving the system (-). Ė−
q is calculated for a

heat exchange following the temperature-enthalpy profile from the inlet (in) temperature to

the needed target (target) temperature of the heat requirement Q̇− for a given process unit.

Ė−
q =

target∫
in

(1− Ta

T (Q̇)
)δQ̇− =

target∫
in

Θ(Q̇)δQ̇− (1.2)

with the Carnot factorΘ:

Θ= 1− Ta

T
(1.3)

where the index a indicates ambient condition.

If we look at the heat that is evacuated from the process in an end of pipe manner, the

maximum extractable work from all heat sources (figure 1.2) could thus be measured with

the heat exergy Ė−
q (equation 1.2). It can be graphically represented by the surface between a

Carnot composite curve and the ambiance temperature level (Θ= 0). This is done by plotting

the Carnot factor as a function of enthalpy (equation 1.3) as shown in figure 1.3. For the

example process, the exergy potential represents 543.3 kW.

An investment into a secondary process to convert the work potential could be made. For

example a Rankine cycles could be integrated with the hot streams and a cold source to

produce mechanical power. Assuming upper energy conversion efficiencies, as can be seen in

chapter 4, one can estimate the production of mechanical power Ė−
q as being around 60 % of

the potential, here 326 kWel. However, it is also possible to change the energy balance by doing

additional heat recovery within the process, as can be seen from the flowsheet. Internal heat

recovery will reduce the heat requirement of the process and will reduce the heat load of the

cooling system by energy balance. This is called the ”more in, more out” - principle (Townsend

and Linnhoff, 1983). Both, the amount of remaining waste heat and its temperature levels

will be affected. This means that internal heat recovery and the use of waste heat valorisation

techniques are competing. This leads to two questions: How can the entire work potential be

quantified and visualised (Section 1.3.1) and how can an analysis be made to systematically

identify the minimum amount of waste heat (Section 1.3.2)?

1.3.1 Identifiying the Work Potential

The process is divided into process unit operations (PUO), which are directly participating

in the physical operations of the transformation of raw materials into (pre/by-) products on

one hand and utilities which are delivering the necessary means (heat as a driving force and

cooling) to the process operation units on the other hand. The PUOs can be distinguished
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Figure 1.3: Work potential of the example process’ (end of pipe) cooling requirements, in current configura-
tion.

by their corresponding heat requirements: heat demanding units and units needing cooling.

By analysing the PUOs on the flowsheet, one can define the heat transfer requirements that

are needed to convert the raw materials (F1 to F3) into products (P1 and P2) and byproducts

(Gas). One can distinguish between cooling requirements (6 to 10 and 17 to 19) and heating

requirements (1 to 2 and 13 to 16). All cooling requirements above the ambient temperature

(Q̇−
heat sources) can be assumed to be converted into work using the Carnot factor (equation 1.3).

One can imagine this as a sequence of ideal Carnot cycles producing work (Ė−
cooling). In the

same way, one can imagine the entire heating requirements above the ambient temperature

(Q̇+
heat sinks) to be supplied by ideal heat pumping in Carnot cycles corresponding therefore to

a work demand Ė+
heating (equation 1.3). A special role is attributed to the streams below the

ambient temperature since there the sign of the work potential is inversed. In order to evacuate

heat (Q̇−
heat sources,r) work has to be spent (Ė−

cooling,r) and while heating a stream (Q̇+
heat sinks,r)

work (Ė+
heating,r) is recoverable. This is schematically depicted in figure 1.4. The energy balance

with the ambiance of this system can be stated as the heat that has to be delivered or evacuated

after adding all work and heat terms. The heat balance is shown in equation 1.4 and the work

balance in equation 1.5.

Q̇+
ambiance = (Q̇+

in,r+ Ė−
heating,r)+ (Q̇+

in− Ė+
heating)− (Q̇−

out+ Ė+
cooling,r)− (Q̇−

out,r− Ė−
cooling) (1.4)
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Ė+ = Ė+
heating + Ė+

cooling,r − Ė−
heating,r − Ė−

cooling (1.5)

The exergy balance of the system streams indicates if the process is potentially a net producer

or consumer of work (equation 1.6). It represents the work that can be gained by cooling the

streams above the ambient temperature and heating the streams below with ideal Carnot

cycles minus the work that has to be invested in ideal Carnot heat pumps to heat the streams

above the ambient.

Ė+
q,balance =

Ni∑
i=1

target,i∫
in,i

Θ(Q̇)δQ̇+
sink,i −

Nj∑
j=1

target,j∫
in,j

Θ(Q̇)δQ̇−
source,j (1.6)

Where Ni and Nj are the number of considered streams.

A process is exergy demanding due to the temperature differences within the heat exchangers,

unless there is heat production in process units or entering or leaving feeds are not at ambient

temperature. In the example process the exergy balance is 28.2 kW, which means that the

process is overall exergy demanding. But, a positive balance does not necessarily mean that

there is no exergy recovery possible, since other sources of exergy might be available. Borel
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and Favrat (2010) define maximum work or exergy Ė−
total as the sum of all heat exergies Ė−

q all

amounts of work and electricity Ė− and all transformation exergies Ė−
y (equation 1.7).

Ė−
total =

∑
[Ė−]+∑

[Ė−
q ]+∑

[Ė−
y ] (1.7)

The transformation exergy Ė−
y (equation 1.8) concerns all the exergy involved in changes to

the material streams (pressure changes, chemical reactions etc.).

Ė−
y =∑

[kcz,jṁ
−
j ]− d Jcz

d t
(1.8)

Where the total specific coenthalpy (equation 1.9) is defined as:

kcz = hcz −Tas. (1.9)

The total specific enthalpy (equation 1.10), including enthalpy and entropy of formation is:

hcz = u + C̄ 2

2
+ g Z̄ + vP. (1.10)

Where Z̄ is the relative altitude and C̄ the absolute velocity. The total coenergy (equation 1.11)

is defined as:

Jcz =Ucz +paV −TaS. (1.11)

Where Ucz is total internal energy, pa the atmospheric pressure, V is volume and S entropy.

Since it is a term of accumulation it is nul for stationary systems. Furthermore, we will not

consider any exergy potential from the altitude or kinetic exergy.

It is thus possible to complete the above balance (equation 1.6) by adding the streams that

correspond to the hot utility. The hot utility adds exergy to the system in the form of fuel (e.g.

natural gas) and may consume electricity. A methane boiler with an efficiency of 95 % with

reference to the heat of the hot utility demand is used in the example process.

Adding fuel and electricity input to the exergy balance, the total extractable work is calculated

(equation 1.12):

Ė+
q,balance incl. hot utility =

Ni∑
i=1

target,i∫
in,i

Θ(Q̇)δQ̇+
sink,i −

N j∑
j=1

target,j∫
in,j

Θ(Q̇)δQ̇−
source,j

−∆kfuelṀ
+
fuel − Ė+

electricity

(1.12)

It is important to mention that the heat load of the cooling system is not identified as a work

potential. Since it is released to the environment and has therefore lost all its exergy. A value

of −3729.5 kW of ideally extractable work is obtained in the example process. The analysis

made here is based on given process unit operations that are neither optimised regarding their
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internal exergy losses, nor for internal heat recovery within the process. This analysis does

therefore not give an indication on how avoidable waste heat can be avoided and where and

how the work potential can be recovered. To resolve this we use the tools provided by Pinch

analysis.

1.3.2 Application of Pinch Analysis in the Context of Waste Heat

Pinch analysis (Kemp, 2011) is a way to calculate the maximum heat recovery by counter

current heat exchange within a process. This is conducted, such that the overall heat con-

sumption of the process is minimal (Minimum Energy Requirement (MER)) using the heat

transfer requirements of the process units (section 1.3.1). In Pinch analysis all hot and all cold

streams are summed up to form the hot and cold composite curve, respectively.

We introduce the minimum temperature differences ∆Tmin between hot and cold streams for

the heat exchanges. ∆Tmin depends on the heated and cooled fluids and on the thermody-

namic states as well as the needed heat exchanger surface. Oftentimes, and thus also in this

thesis, the corresponding ∆Tmin/2 is directly added or subtracted to or from the respective

stream temperature. Ideally, a specific ∆Tk,min/2 is attributed to each stream segment k, it

is a function of the expected film heat transfer coefficient and the heat load in this segment

(Marechal and Kalitventzeff, 2006; Bolliger et al., 2007). This leads to a corrected composite

curve with the corrected temperatures (equation 1.13), marked by an asterisk as superscript

(*) (Maréchal, 2010).

T ∗
k = Tk ±∆Tk,min/2 (1.13)

The correct choice of ∆Tmin is crucial since it represents a trade-off between the investment in

heat exchanger surface and energy savings. It guarantees that an identified heat recovery will

be economically viable. In the example process ∆Tmin is 5 K for an assumed set of economic

conditions. The hot and cold composite curves in corrected temperatures are displayed in a

temperature-enthalpy diagram, then the cold composite curve is slid horizontally along the

enthalpy axis under the hot composite curve until the two curves touch. The point where they

touch is called pinch point (see figure 1.5). It can be seen that the heat is cascaded from the

hot utilities through the process.

In the example process the resulting minimum energy requirement is 789.2 kW which is

2000 kW or 71.7 % less than the current heat requirement and results in a reduction of the

available (end of pipe) wasted heat by the same amount. In other words, by integrating heat

recovery the amount of heat that can be used for secondary services has been reduced by

2000 kW in comparison to a strictly end of pipe perspective.

Before looking at waste heat conversion, further ways to increase the energy efficiency of the

process can be explored. Other techniques of process integration show that introducing heat

pumps, vapour recompression, pressurised condensers etc, can increase the heat recovery
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Figure 1.5: Corrected hot and cold composite curves of example process, with explanations.

and exergy efficiency by bringing streams from below to above the Pinch (Maréchal and

Kalitventzeff, 1998). In the example process none of these options is viable. Examples for the

application of the process integration methods are available e.g. for sites with heat pump

integration (Becker et al., 2012) and for the agro-food industry (Muller et al., 2007). Such

modifications can be understood as a (partial) redesign of the process.

1.3.3 Heat Released by a Process

The overall heat-release by a process can be characterised with the help of energy balances.

The introduction of the heat cascade makes it possible to distinguish between avoidable and

residual (unavoidable) heat above the ambient temperature. It is possible to add the heat to

be evacuated by refrigeration, below the ambient temperature. The part below the ambient

temperature will not be treated in detail in this publication.

Residual Heat

The use of the heat cascade allows identifying the maximum recoverable heat in an economi-

cally viable heat exchanger network and in consequence to deduce the amount of heat to be

evacuated below the pinch point and above the ambient temperature. This requires the use

of a cold utility above the ambient temperature (figure 1.5). The heat, with a positive Carnot

factor which has to be evacuated will be called the residual heat. The temperature enthalpy
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profile of the residual heat can be deduced from the grand composite curves in corrected

temperatures as shown in figure 1.5. The residual heat can be used for any purpose without

affecting the energy bill of the process. This is the unavoidable amount of waste heat that a

process produces, in optimum heat recovery conditions. The residual heat is −1237 kW above

ambient temperature with an exergetic value of 166.4 kW, in the example process.

Avoidable Waste Heat

All additional heat from the process, that is used for waste heat valorisation leads to an ineffi-

cient operation due to the “more in, more out”-principle. Which means that the additional

heat is in fact the result of a surplus of heat input that has been spent in the process via the

hot utilities. In the example the avoidable part corresponds to 66 % of the original 2000 kW.

1.3.4 Global Exergy Balance

Combining Pinch analysis with the analysis of work potential as seen above in sections 1.3.1

and 1.3.2, makes it possible to identify the minimum global exergy that has to be evacuated

from the process. This is done by adding the needed heat exergy of the Minimum Energy

Requirement to the exergy balance (equation 1.6 modified with corrected temperatures).

Ė+
q,minimum global =

Ni∑
i=1

target,i∫
in,i

Θ∗(Q̇)δQ̇+
heat sink,i −

N j∑
j=1

target,j∫
in,j

Θ∗(Q̇)δQ̇+
heat source,j

target∫
in

Θ∗(Q̇)δQ̇+
MER-hot utility

(1.14)

Graphically (figure 1.6) this can be represented by two surfaces equivalent to available exergy

and two equivalent to exergy inputs. Applying this to the example process, the global exergy

balance (equation 1.14) is −205.3 kW.

1.3.5 Heat Transfer Exergy Losses

The difference between the work potential from the residual heat and the total unavoidable

work potential is the exergy destroyed in the heat exchange above the pinch point. This heat

transfer exergy cannot be used without changing the energy balances of the system. The

amount is graphically represented by the area between the hot and cold composite curves

above the pinch point in the Carnot composite curve diagram (Maréchal and Favrat, 2005)

(figure 1.6). It does not include the 3 kW exergy loss induced by the unavoidable ∆Tmin within
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the heat exchangers, since that is economically inaccessible. Mathematically the heat transfer

exergy loss L̇heat transfer can is expressed in equation 1.15.

L̇heat transfer =
Ni∑
i=1

target,i∫
in,i

Θ∗(Q̇)δQ̇+
heat sink,i −

N j∑
j=1

target,j∫
in,j

Θ∗(Q̇)δQ̇−
heat source,j

−Ė+
residual heat − Ė−

cooling,r

target∫
in

Θ∗(Q̇)δQ̇+
MER-hot utility

(1.15)

In a simple heat exchanger network this exergy is unavoidably destroyed (Borel and Favrat,

2010) it represents −59 kW in the example process. Minimising the transfer losses, improves

the overall efficiency of a system. The heat exergy loss is part of the waste exergy potential,

even though it is no heat and can only be accessed by changing the energy balance of the

system. Figure 1.6 illustrates the potential of the heat transfer exergy losses.

The accessibility of the exergy below the pinch point depends highly on the shape of the

composite curve and the desired application. Exergy below the ambient temperature can

be used as a heat sink e.g. for an ORC or for delivering cooling services for external users

(e.g. air conditioning). Figure 1.7 shows the grand carnot composite curve corresponding to

the composite curves in figure 1.6. The grand composite curve is useful for the integration

of utilities. Grand composite curve means that the horizontal difference between the hot

and cold composite curves (∆Q̇) is plotted as a function of T ∗. By replacing T ∗ with the

corresponding Carnot factorΘ∗ the grand carnot composite curve is drawn.

31



Chapter 1. Defining Waste Heat

self -su�cient  pockets , 

Heat  transfer  exergy  
loss , introduced by  
hot utility 

Residual  heat 
exergy,  
introduced by  
cold utilities  

  

 

Residual Heat Exergy 179.6 kW 
Heat Transfer Exergy 540.9 kW  

Residual Heat from  
process  1237 kW 

Ca
rn

ot
-F

ac
to

r

Heat [kW]

Figure 1.7: Corrected carnot grand composite curve of example process with explications.

1.3.6 Energy Conversion System Integration

A difficulty is the accessibility of the exergy potential, especially above the pinch point. A

general rule can be stated: The heat transfer exergy loss above the lowest pinch point is not

accessible without changing the energy balances. This is due to the fact that an additional

amount of energy is taken out of the system above the Pinch if we use this exergy. Increasing

the energy input above the pinch point is either achieved by importing energy from a resource

or using heat available below the Pinch via a heat pump or pumping it from the environment.

The integration of optimised utilities into the analysis is leading to a change in the potential

of residual heat and heat transfer exergy losses. Therefore, the integration with utilities and

heat recovery options has to be done simultaneously in order to find adapted solutions.

Figure 1.7 illustrates this for the example process: a gas boiler is assumed as a hot utility and a

refrigeration cycle (the same as shown in figure 1.1 using ammonia and with a compressor

isentropic efficiency of 75 %) as well as cooling water are assumed as cold utilities.

If the boiler is assumed to burn methane and has an energetic efficiency of 95 % we can

estimate the exergy input:

L̇combustion =∆k0
CH4

MER

0.95 ·∆h0
i,CH4

−
target∫
in

Θ(Q̇)δQ̇−
combustion gases

= 934.34kW−583.04kW = 351.3kW

(1.16)
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Where ∆h0
i,CH4

is the isobaric and mass specific lower heating value and ∆k0
CH4

is the isobaric

and mass specific exergy value of methane (Borel and Favrat, 2010).

The transformation exergy lost in the hot utilities (due to chemical reactions) is −351.3 kW

and the internal heat exergy losses within the process and between process and utilities is

−540.9 kW. It can be seen that the use of a heat pump around the pinch point would give

access to a large potential of additional exergy above the pinch point or allows reducing the

combustible input. Further improvements could be the use cogeneration to additionally

produce electricity from the exergy above the pinch point.

1.4 Changing the Global Energy Balance

As mentioned above, it can be difficult to exploit an exergy potential which is trapped in place

where not enough or no energy can be extracted. This can happen in three cases, when the

exergy is above the pinch point (a), when it is in between two pinch points (b), when it is in

a large exergy pocket, but the residual heat is not sufficient to exploit the potential (almost

activation of second pinch point) (c). In these cases the energy balance must be modified by

adding more energy. This can be done for example by including a cogeneration unit, increasing

the existing hot utility or by adding an additional heat pump. If and how it is done depends

on the economic viability of the options. Figure 1.8 illustrates the three cases (a) to (c) and

shows an example of the integration of a heat pump in order to access the exergy in an exergy

(or self-sufficient) pocket. If an ORC is integrated into the self-sufficient pocket (from case

(c)), the heat from the condenser and cooler is not sufficient to satisfy the heat requirements

of the process. In order to use the full exergy potential in the ORC, it is necessary to satisfy

the heating requirements, for example with a heat pump. The heat pump uses heat from the

process (at lower temperature) and from the environment.

1.5 Other Sources of Exergy from an Industrial Process

During this analysis the regard has turned from the concentration on sensible heat towards

the recovery of work potential or exergy from a process. Since in this thesis we will look at

waste heat, we will focus on the heat exergy below the pinch point. But for completeness,

there are other exergy sources that can be considered for efficiency improvement or electricity

generation. These are for example pressure drops within the process operation units which

may be avoidable but also all physical streams that leave the process not in equilibrium

with the ambiance and still have an above ambient pressure, or a chemical exergy potential.

Especially streams which are chemically valuable can often be used as secondary fuels. The

International Energy Agency (2007) estimates the potential of primary energy savings due to

the use of these waste streams to be between 1.5 EJ and 2.3 EJ per year. Also, the choice of

the system boundaries of the process has a major influence on the integration: the larger the
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system boundaries are chosen, the higher the potential for integration measures and thus the

smaller is the amount of actual unavoidable waste heat (Brown et al., 2005).

1.6 Definition of Waste Heat as Reserve and Resource

With these considerations we are able to give a definition on waste heat in analogy to other

energy vectors, such as coal or gas:

Reserve: Waste heat as a reserve is the net exergy that unavoidably leaves a process

or is lost within it, after its integration, minus the exergy that cannot be recovered

for technical or economic reasons.

Resource: Waste heat as a resource is exergy that unavoidably leaves a process or is

lost within it independent of the technological choices made within the process.

The waste heat reserve is thus defined in respect to the constraints of the used technology

and economic aspects while the waste heat resource is a theoretical potential. With changing
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energy prices, the results of the process integration change; the values are also influenced

by evolving technologies. That means that both values may change. This is another analogy

since natural reserves and resources are subject to changes due to changing prices, additional

exploration and evolution of exploitation techniques.

1.7 Discussion

In this chapter we developed a methodology for the definition of waste heat, which combines

different approaches and principles.

From the simple definition ”Waste heat is heat released to the environment” we deduce the

principle: ”Maximise the use of heat leaving the process (Q̇−
process,out)”.

From Pinch analysis and process integration we convert the principle of ”minimising the heat

input (Q̇+
process,in)” to ”minimising the energy input and maximising the internal heat recovery

which results into the minimisation of the heat release to the environment”.

With Exergy analysis we are able to characterise the exergy values attached to physical streams

and in consequence the exergy lost and destroyed (Ėloss) within the energy conversion systems

and the heat recovery in the process.

Combining these concepts, we propose to maximise the use of the exergy value of energy

leaving the system (Ė−
process,out) while minimising the total exergy losses (Ėloss) by a better

integration or redesign of the energy conversion system within economic constraints.

The example process which is used for illustration shows a waste heat release of 3750 kW

with an exergetic value of 543.3 kW following the first simple definition of (end of pipe) waste

heat. When defining waste heat following the proposed definition, including heat recovery

and energy conversion (reducing the need for hot and cold utilities by 2000 kW each), the

available heat is 1758.5 kW and the exergy available is 1074.8 kW. Among this exergy 179.6 kW

are available below the pinch point and above ambient temperature therefore they represent

the exergetic value of the residual heat (1758.5 kW see figure 1.7 ). 351.3 kW is the amount of

exergy lost in the combustion and would require changing the chemical path of the fuel (e.g.

use of fuel cell) to be accessible. The remaining 540.9 kW of exergy lost above the pinch point

can only be accessed by changing the energy conversion system and therefore the overall

energy balances. 3 kW of exergy are unavoidably destroyed due to the ∆Tmin assumption

economically required for the heat recovery system.

1.8 Conclusion

During the analysis we saw that Waste Heat is not simply the amount of heat that a process

releases to the environment in its current design. We advocate a use of the term Waste

Heat in a thoughtful way, in respect to the real potential of extractable work. We point out
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the difference between avoidable and unavoidable waste heat. The avoidable waste heat

should not be used for a secondary application, in order not to block investments into energy

efficiency. We define waste heat as the sum of the exergy that is available in a process after

pinch analysis, economically viable heat recovery, process integration and energy conversion

(utility) integration with the help of exergy analysis. This definition leads to different results

for the waste heat potential of a process, depending on the economic environment. Also it

requires a deep understanding of the process and process integration techniques. However,

it prevents any investment in secondary processes before being sure that available heat is

not better used within the process. For statisticians, the definition as reserve and resource

maybe applicable (especially in combination with existing best available techniques (BAT)

as proposed by the IEA (International Energy Agency, 2007)). For policy makers, a definition,

requiring an in-depth analysis of heat recovery possibilities may be interesting, if a programme

for supporting or subsidising ORC for waste heat recovery is made. This way it can be avoided

to subsidise the inefficient use of resources (fuel) in a process (leading to a high amount of

waste heat), but rather push for process efficiency measures first. For industry it is important

to be aware that an investment into an ORC might block the improvement of the process itself

and should be done after careful consideration of heat saving opportunities.

It is shown that a certain part of the exergy is not available due to ∆Tmin in the heat exchanges

and that the use of the biggest parts of the exergy (from the hot utilities) is accessible by either

adding heat from the environment via heat pumping or by use of additional fuel/combustibles.

This definition gives a tool for engineers to quantify rigorously the potential for waste heat

recovery within their process and being able to distinguish between avoidable and unavoidable

waste heat. With this definition it is possible to situate a conducted analysis of a process:

Were only the end of pipe sources of heat considered? Was the possible internal heat recovery

included in the analysis (integration)? Were possibilities for modifications to the process or the

utilities considered (redesign)? For use in this thesis, we will concentrate on the potential that

is below the pinch point and does not need the modification of the overall energy balances

(addition of fuel or electricity for heat pumping).
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2 Waste Heat Recovery: Studies and
Examples

After discussing the theoretical aspects of the definition of waste heat we take a closer look at

how this can be applied to problems and examples from industry and experimental installa-

tions which were studied throughout the thesis.

This chapter illustrates how the recommendation to apply heat integration before considering

the use of ORCs impacts the available waste heat potential.

2.1 Objectives

Studying waste heat potentials of the cement and the soluble instant coffee produc-

tion processes, showing how different depth of studies and perspectives influence

the result of the possible electricity production. Identifying the experiences from the

LOVE demonstrators which can help building a more realistic ORC identification

tool.

The depth of a waste heat analysis and it’s constraints have a big influence on the recoverable

waste heat potential that is identified. We study how the increase of energy efficiency of the

process itself will influence the possible electricity generation. We show this by identifying

the work potential of the residual heat (below the pinch point). In one example we study if

and how Pinch analysis can help to identify a suitable commercial ORC and how it should

be installed. Further, we analyse the LOVE demonstrators and the experiences we can gain

from them in order to improve the methodology for identification of a suitable ORC for a given

process.

2.2 Structure

The analyses show that industrial and practical requirements and constraints lead to a bou-

quet of types of studies all with a different perspective. For an easier understanding we will
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Chapter 2. Waste Heat Recovery: Studies and Examples

distinguish between three approaches in order of increasing depth and complexity when it

comes to the identification and use of Waste Heat:

• End of Pipe Heat Recovery

Using the “end of pipe heat” that is rejected by a process in its current state can help

identify the theoretical work potential of the cooling requirements without modifying

the process itself. This can lead to the use of avoidable waste heat. It is, however, the

approach that is most commonly used for the identification of waste heat potentials due

to its lower degree of complexity and ease of implementation as can be seen in chapter 1.

Three examples will be used for illustration. Two examples are taken from the cement

industry and one is a study that was conducted in the context of this thesis in a plant

producing soluble instant coffee. All three have the same type of analysis in common,

the end of pipe sources of residual heat are analysed and their potential for the delivery

of additional services is quantified. The instant coffee process has been analysed further

and integration of the process as well as partial redesign will be discussed. The cement

process has been analysed from different angles and theoretical integration and partial

redesign will also be discussed, based on a model.

• Integration into Existing Plants

The integration of waste heat recovery technologies in an existing plant allows to access

exergy pockets below the pinch point. It makes a pinch analysis necessary and reveals

potential for internal heat recovery. With this analysis is made sure that the possibilities

for heat recovery within the process are realised before the heat is used for secondary

purposes. Therefore, only unavoidable waste heat is used. However the process must be

studied in detail and all heating and cooling requirements identified.

• Redesign

This is a scenario tool in order to see where a development could go. Process modifi-

cations are studied and the utility system can be adapted to access exergy above the

pinch point or between pinch points. In the studies presented here, we see that the

industrial processes show lower potential for waste heat use. However, the energy input

is decreased, if it is integrated or partially redesigned. The redesign of a process with the

goal of minimising the heat input is not an evident procedure. It is to be understood as

a tool to evaluate where the limits of integration including the modification of process

unit operations might be. It is not to be understood as a clear indication on how to

build the process, unless all economic, security and reliability issues are included in

the analysis. With this approach, the instant coffee process is presented including the

measures that resulted from the study conducted in collaboration with Nestlé. The

cement process, based on a representative process model, with loosened technological

constraints is studied to reveal a possible limit of waste heat recovery.
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2.3. Soluble Coffee

For each of these approaches one or more examples will be shown, coming either from

theoretical considerations or from the experiences made with and in industry throughout the

thesis.

2.3 Soluble Coffee

A study on a Nestlé process for the production of soluble instant coffee (Nescafé) was con-

ducted in preparation of this work. One goal of the study was to identify possible energy

savings, another goal was to reveal the waste heat potential that could be used for electricity

production. The study was conducted in close collaboration with two engineers from Nestlé,

every step and measure was discussed, modified and re-checked in a feedback loop until a

satisfactory result was found. This feedback loop was crucial for the implementation, since

it made sure that realistic and applicable results were produced, and more importantly that

the measures had supporters from within the plant and process staff. Due to confidentiality

concerns, not every detail of the study will be disclosed in this thesis. The process that is

presented here, is situated at a site with several other processes and a central utility system

delivering the heating and cooling services. This means that a total site integration (Pouransari

et al., 2014) or a total site analysis (Maréchal and Kalitventzeff, 1998) would be the best way

to identify savings and possible interactions between the processes (Brown et al., 2005). An

example of a chemical cluster can be found in Hackl et al. (2010, 2011) and a resulting possi-

bility for using the heat in a district heating network in Morandin et al. (2014). In this case,

however, the analysis only focussed on the process under discussion, this is due to the fact

that other processes on site were planned to be exchanged, modernised or stopped without a

fix schedule, thus leaving their future energy profile unknown. This leads to a situation were a

modification of the utility system regarding temperatures and energy vectors is not sensible in

the immediate future.

As a result of the analysis several energy saving measures with a better practice approach,

could be realised within a short time horizon. Other measures requiring installations and

modifications to the process were realised after the necessary planning and engineering period.

More projects are in the pipeline. Another interesting point, regarding these savings, is the

possibility to use the same measures in other Nescafé plants of the same type. This reduces

the necessary engineering and risk (since the measures have been tested) and multiplies the

impact of the conducted study. In this chapter we will show some of the larger end of pipe

sources of heat that were found before the study was conducted.

2.3.1 Soluble Instant Coffee – Process-Description

The production of soluble instant coffee starts with the roasting of the coffee beans, a step in

which the raw beans are heated, to dry them and then heated further to temperatures from

170 to 230 ◦C (Illy and Viani, 2005) undergoing the reactions needed in order to make the

wanted coffee (Yeretzian et al., 2002). Afterwards the beans are rapidly cooled down, to stop
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Figure 2.1: Schema of the instant coffee process.

the reactions. From there the beans are transported to the mill and ground to powder. In the

following stage the most volatile aromas are separated, these will be reapplied to the finished

instant coffee. After this the ground roast coffee is mixed with recirculated water from the

coffee extraction process. The coffee extraction process consists of numerous steps, making

heating and cooling as well as the addition of liquid water and steam necessary. Several mass

flows leave the process: clean and impure water and steam, condensate, coffee grounds and

as a product coffee solved in water. An efficient extraction is not only important for the taste

of the final product, it is also crucial for the cost effectiveness of the plant, since the extraction

defines the raw bean input to product ratio.

The resulting coffee has a higher solid content than coffee for direct consumption. In order to

reduce the water content further, the coffee then undergoes three steps of evaporation, from

which the first evaporates the largest amount of water. The first step reduces the mass flow

rate to approximately 25 % and is (partially) equipped with mechanical vapour recompression

(MVR). The other two steps are (partially) using steam ejectors and reduce the steam to about

10 % of the initial mass flow rate.

The resulting coffee concentrate is cooled down, mixed with a part of the prior extracted

aromas and cooled further close to the freezing temperature. At this temperature it enters
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2.3. Soluble Coffee

the scraped surface heat exchangers which produce a partially liquid partially frozen slurry.

Then the freeze drying itself is conducted, first the slurry is frozen completely, afterwards the

water is sublimated (using heat) in a vacuum, leaving behind the dry instant coffee which is

afterwards processed for packaging. The “cold” steam from the sublimation is refrozen on a

cooling surface which is then de-iced allowing the condensate/melted liquid to be evacuated.

The process is shown schematically in figure 2.1

A detailed thermal model was prepared with the measurements and estimations from the

process. It considers over 130 heating and cooling requirements from the different process

unit operations. It was checked with measurements from the process. Since the site contains

several other processes, a clear attribution of the fuel consumption is not possible due to

missing measurements. However, the application of saving measures had the expected results.

The model can thus be seen as validated. This model was used in order to identify the potential

for energy savings as well as the units and places, which have to be modified in order to realise

them. We have normalised the heat represented in this chapter for confidentiality reasons.

The normalisation is done with regard to the end of pipe residual heat.

2.3.2 End of Pipe Heat Recovery

The end of pipe heat sources, which were identified by the process staff, are mainly from

two origins. The first is the roasting process which produces hot gases with up to 350 ◦C. It

originates in the combustion of natural gas, used for heating and drying the beans. The gases

are then vented to the environment. The other heat source is the so called bubble tank. During

the coffee extraction, a stream of water vapour is generated which can carry impurities, thus it

can not be re-cycled into the steam network. This steam can vary in temperature and pressure

and is poured into an open water tank, which at the same time regulates the pressure, reduces

the temperature and cleans the stream. The tank produces, however, considerable amounts

of wet air. Since the biggest part of the steam is condensed within the tank and the tank is at

atmospheric pressure we consider it as a heat source at exactly 100 ◦C.

In addition to these two large heat sources, several smaller ones at lower temperatures could be

used as well. The temperature enthalpy profile of the end of pipe heat is shown in figure 2.2. We

can estimate that from the 100 percent of this available heat about 15.8 % could be recovered

in the form of electricity, shown in figure 2.3, if we apply the rule of thumb that 60 % of the heat

exergy can be transformed to electricity. The temperatures of up to 350 ◦C are also interesting

for recovery. It is however obvious that 80 % of the heat is available at or below 100 ◦C.

2.3.3 Integration

With the measurements from the process we have build a thermal representation of the entire

instant coffee making. All heating and cooling requirements have been mapped regarding

their temperature and enthalpy. We have corrected each temperature by adding a ∆Tk,min/2

41



Chapter 2. Waste Heat Recovery: Studies and Examples

Te
m

pe
ra

tu
re

 [°
C]

Heat [%]

0 20 40 60 80 100
0

50

100

150

200

250

300

350

400

 

 

Figure 2.2: Heat temperature profile of end of pipe residual heat in the instant coffee process, normalised.
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(as described in equation 1.13), representing a realistic heat exchange for each stream (k).

Only 69 % of the heat that was available, in the end of pipe study, is available after integration.

The evaporation units, which work below atmospheric pressure, can be seen. They do not

create a pinch point in this situation, because the mechanical vapour re-compression (MVR)

system is over designed, with regard to a situation with complete internal heat recovery

(shown in the grand composite curve, figure 2.4). If the heat for evaporation was delivered

from within the process, the MVR could be smaller. The cooling requirements below ambient

temperatures have been removed from the graphs, since they do not influence the potential

for waste heat recovery directly. (The refrigeration cycles have a condensation level close to

ambient temperature.) Without the MVR, the evaporation and condensation plateaus of the

evaporators would define the pinch point. In the represented situation however the pinch

point is slightly below 100 ◦C and we can see that the hot gases from the roasting process are not

available for the use of an ORC. The heat should rather be reused within the process, reducing

the heat input from the steam network and thus the overall fuel consumption. An exergy

pocket is situated between the bubble tank and the evaporators, but since the temperature

difference is below 30 K and at temperatures below 100 ◦C the exergy content is relatively small.

Overall for 100 kW of residual heat evacuated, 11.7 kW of heat exergy are available (figure 2.5).

Given the low temperature of the available heat that could be used for secondary services and

the difficult accessibility in the exergy pockets, the production of electricity would have a very

low efficiency. Direct use of the heat in a low temperature district heating network would be a

better possibility.

2.3.4 Redesign

For the instant coffee production, an analysis of all process parts was conducted with the goal

to identify energy saving potentials, which can be realised by modifications to the process,

but without impacting the product. An additional constraint was introduced regarding the

hot gases from roasting. These will not be available as a heat source, anymore. The reason

being that another project at Nestlé had started during our cooperation in which a boiler was

developed, using the hot gases from the roaster to produce steam that can be injected into the

steam network. This project was done to reduce the fuel input into the sites boilers and could

be understood as a way of process intensification.

A major modification is introduced, regarding the way the steam is treated, which was formerly

condensed in the bubble tank. Instead of condensing in one open tank, two additional

pressurised vessels are introduced. The steam is condensed at the temperatures corresponding

to the pressure in the tanks. Steam and condensate are separated in a flash unit, before entering

the next step (second pressurised vessel or open bubble tank respectively). These pressurised

vessels (and some other modifications) allow a reduction of the overall heat input by over

20 % points as compared to the integrated situation discussed in section 2.3.4 (which is itself

an improvement on the situation of the process before the study). However, the absence of

the heat from the roasting introduces additional hot utility. Therefore, the overall amount
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Figure 2.6: Grand composite curve of the redesigned instant coffee process, without sub atmospheric parts
and without torrefaction, normalised.

of residual heat is about 70 % of the amount found in the end of pipe situation. Another

major modification is the introduction of additional mechanical vapour recompression in the

evaporation units. It is done to the exact extent as to activate a new pinch point. It should

be noted, that not all measures proposed in the study have been applied yet and the ones

that were realised have been partially modified. This was done, in order to respect constraints

that were not included in this analysis (space availability, the time window for modifications,

annual maintenance period etc.).

The resulting grand composite curve of this analysis including major process modifications

is shown in figure 2.6. The fact that several pinch points are activated shows the degree of

integration that is reached. As shown in chapter 1 the use of exergy in pockets between two

pinch points as well as exergy above the highest pinch point is only possible by the addition of

energy from utilities meaning by the input of additional fuel. As we have seen in the case of

the integrated process, the potential for electricity production is limited by the low available

temperatures and direct use of the heat for example in a district heating network should be

considered. The Carnot grand composite curve (figure 2.7) shows the heat exergy potential

which is less than 5.7 kW per 100 kW of heat that has to be extracted. The entire heat that was

available above the lowest pinch point is reused within the process, at an efficiency of (nearly)

one hundred percent. In other words, using the end of pipe heat as waste heat would have

come at the cost of achieved energy savings, which where achieved by integration and partial

redesign. The next step in integrating the process could be the integration of three heat pumps
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around the three pinch points. If all three are activated, the minimum energy requirement

could be decreased further. However, this option was not economically viable.
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2.4. Cement

2.4 Cement

The Cement process is one of the processes regularly cited (Engin and Ari, 2005; Worrell et al.,

2001) when it comes to waste heat, this is due to the high temperatures that can be found in the

process mass streams and the order of magnitude of the mass flow rates and thus the order of

magnitude of the enthalpy flow rates. Hot gases leave the process at several points, sometimes

at high temperatures, and several installations with waste heat recovery and valorisation via

Rankine Cycles exist in the world (Karellas et al., 2013).

2.4.1 Cement – Process-Description

The Cement-Industry has undergone great changes in the last century (Hewlett, 2004). During

this time major technology shifts have increased the quality and the capacity of the process,

while simultaneously greatly reducing its energy consumption. The industrial production of

cement started with the introduction of the bee hive kiln which was strictly run in a batch

process (Hewlett, 2004). Passing by the wet, semi-dry and finally resulting in the dry process,

cement production was made continuous. Today only a few wet and semi-dry plants are still

running. Here only the dry process will be considered as it is by far predominant in Europe.

The dry process started out with a relatively simple rotating kiln, and evolved due to the

introduction of cyclone preheaters and precalciners over the last 50 years (Hewlett, 2004;

Bendig et al., 2014a). One reason to install waste heat recovery in cement plants is the avail-

ability: apart from a few weeks of maintenance, a cement plant is running 24 hours /day and

7 days /week and also the distribution of plants in the world is wide, since cement is relatively

expensive to transport for a price per tonne which is low.

The Cement making process is depicted in figure 2.8 and the general description is based on the

sources Worrell et al. (2001); Hewlett (2004); International Energy Agency (2009a); Peray (1986,

1979); Sprung (2000) and CENTRE and Bureau (2013). Cement plants are typically erected

near deposits of calcareous materials (limestone, marl, chalk) containing high concentrations

of calcium carbonate (C aCO3). The material is extracted in a quarry, crushed, transported

to the cement plant and ground. Oftentimes during crushing and grinding it is mixed with

additional materials containing iron (-oxide) (Fe2O3), alumina (Al2O3) and silica (SiO2) to

precisely adjust the chemical composition and form the so called raw meal. Sources of these

additional materials may also be the combustibles (like tyres which contain iron).

In general the raw mill is build in a way that hot gasses coming from the preheating tower

are used to dry and start heating the raw meal. The hot gases from the mill are filtered and

send to a stack. The solids enter the preheating tower from the top. The tower consists of a

series of cyclones in which the raw meal is in direct contact with hot gases from the kiln. The

heat exchange is in pseudo counter flow, since the raw meal is transported from the top to the

bottom cyclone while the gases enter at the bottom and leave the preheating tower at the top,

depending on the plant, they are piped to the raw mill and/or directly to the filters and stack.
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In Europe there are typically four or five stages of cyclones while some big plants in Asia and

Oceania can have more stages of cyclones, depending on the humidity of the raw materials.

The more modern (or often modernised) cement plants are equipped with a precalciner.

This process unit is placed in between the last two cyclone stages and is equipped with a

burner/combustion chamber. As the name states, up to 90 % of the calcination (reaction

C aCO3 →C aO +CO2) takes place in the precalciner.

After leaving the preheating tower’s last cyclone stage, the hot meal enters a rotary kiln in

which the remaining calcination and the actual clinker burning is taking place. The rotary

kiln is fired from the opposite side of the raw meal inlet, but there might be additional fuel

input together with the meal, for larger combustibles (e.g. tyres). The solids have to reach

a temperature of 1450 ◦C in the kiln, in order for the clinkerization reactions (and melting

processes) to take place. The flame and gas temperatures are considerably higher. The entire

rotating kiln is inclined towards the clinker outlet and the material is transported towards the

outlet and mixed due to the turning movement.

At the outlet of the kiln the clinker falls onto the clinker cooler (in modern processes it is a

grate cooler) and is cooled down, quickly at first and then slower. This is achieved by blowing

air from below through the grates. A part of that heated air directly enters the kiln (where it is

needed as a source of oxygen for the combustion), a part is conducted to the precalciner, if

one is installed, and the rest (called mid air and/or end air) is send, first to a filter then to a

stack and vented into the environment.

The cooled down clinker is stored and depending on the dispatch, blended with gypsum

(sometimes also slags, fly ashes, pozzolanas or other materials), ground and blended. The

grinding takes place in the cement mill, which is typically a ball mill. To control the tempera-

ture and humidity, water can be sprayed during the grinding. Hot air is produced during this

process due to the mechanical friction and impacts as well as remaining heat in the clinker.

This hot air is filtered and vented to the environment.

2.4.2 End of Pipe Heat Recovery

There are four major streams of hot gas, which are leaving the system after being filtered. They

could be recovered at the outlet of the raw mill, the preheating tower, the cement mill and the

clinker cooler. Depending on the specific plant, they can vary in temperature and mass flow

rate.

Representative Process

We have build a model to study possibilities for heat recovery and will descirbe it in the

following. If needed a more detailed description can be found in Mian (2012) as well as Mian
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et al. (2013) and Bendig et al. (2014a). All concerned heating and cooling requirements are

also listed in appendix B. The thermal energy consumption of the representative process is

3.1 GJ /tclk which corresponds well to the consumption found in literature (Worrell et al., 2001),

the model can thus be seen as validated.

The model was designed to show a representative modern cement process as it can be found

in Europe. It was developed in collaboration with experts of HOLCIM AG and CEMEX SAB.

The following units are part of the model:

• Raw Mill

In the raw mill, the raw material coming from the quarries and silos enters at an assumed

humidity of 3 % (mass) at an ambient temperature of 25 ◦C. The raw meal leaves the mill

with humidity of 0.1 % (mass) and at a temperature of 50 ◦C. The gases coming from

the suspension preheating tower with 30.8 % (molar) of CO2 and a humidity of 6.1 %

(molar) at a temperature of 390 ◦C heat and dry the raw meal.

• Suspension Preheater/Cyclones

At the top of the 4 cyclones the raw meal enters at 50 ◦C and “falls” through the cyclones

in contact with the gas in counter flow. The meal passes the precalciner before entering

the last cyclone at 850 ◦C. The gases coming from the precalciner enter in the second

cyclone from the bottom at 880 ◦C and with a CO2 concentration of 31.5 % (molar) and

leave at the top cyclone at 390 ◦C,with a CO2 concentration of 31.6 % (molar).

• Precalciner

In the precalciner the raw meal enters at 626 ◦C and is heated up until the calcination

reaction takes place, calcining 92 % of the meal. To simplify, we assume that the calcina-

tion happens at a constant temperature of 850 ◦C. The meal leaves the precalciner at

850 ◦C and enters the bottom cyclone of the preheating tower. The gases that enter the

precalciner coming from the kiln have a temperature of 850 ◦C. Additionally air coming

from the clinker cooler at about 1050 ◦C and slightly heated ambient air at 60 ◦C are

added. Additional fuel is used for combustion.

• Kiln

In the kiln, the precalcinated hot meal coming from the preheating tower and precalciner

enters at 850 ◦C and a calcination rate of 92 %. Within the kiln (which has a diameter

of about 6 m) the meal is mixed and heated while the kiln is turning. (With the meal,

secondary fuels can be injected, often spent or unsafe tires.) At the other end of the kiln

the primary burner injects fuel and ambient combustion air at about 40 ◦C. Air from

the clinker cooler enters through the clinker outlet at about 1000 ◦C. Within the kiln,

the gases and solids move in counter flow. The gases reach a temperature of 2000 ◦C in

the burning zone and the solids are heated up to about 1450 ◦C, thus the clinkerisation

reactions take place.

• Clinker Cooler
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Figure 2.9: End of pipe heat sources of the cement process.

The clinker falling out of the kiln at about 1450 ◦C enters the grate clinker cooler. Cooling

air is blown from below through the grates, cooling the clinker quickly, the air is then

extracted in zones. The hottest part of it goes directly into the kiln and a second fraction

is piped to the precalciner, the rest leaves the cooler at temperatures of 225 ◦C and 400 ◦C.

The clinker leaves the clinker cooler at 100 ◦C.

• Cement/Clinker Mill In the cement mill, the clinker is ground into a powder. Depending

on the mode of operation the clinker enters cold or with remaining heat from the kiln.

There is a high production of heat stemming from friction due to the grinding process

in this ball mill. Water may be injected for temperature and quality control. A stream of

humid air leaves the mill with a temperature of 115 ◦C.

• Auxiliaries

The auxiliaries are other units that include hot or cold streams of minor importance.

All mechanisms that include large quantities of heat are either within these units or within

their input and output streams.

With the help of this model we can calculate the end of pipe heat sources. The gas composi-

tions, the temperatures, mass flow rates and the enthalpy that could be gained by cooling the

streams down to 35°C are listed in table 2.1. The index clk stands for clinker.
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Figure 2.10: End of pipe heat sources of the cement process, exergy.

Table 2.1: Hot Gases from Cement Plant.

Gas Origin N2 O2 CO2 H2O SO2 T ṁ ∆H
%v,dry %v,dry %v,dry %v,wet %v,dry

◦C kgwet /tclk MJ /tclk

Raw Mill 67 2 30 14 <1 103 878 176
Preheating Tower 66 <1 32 6 <1 390 1125 435
Clinker Cooler
- mid air 79 21 - 1 - 400 290 112
- end air 79 21 - 1 - 225 290 57
Cement Mill 79 21 - 1 - 115 559 46
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All these heat sources sum up to an available enthalpy of 826 MJ /tclk or for a cement plant

with a daily production of 3500 tclk /d the enthalpy flow equals 33.26 MW. The temperature-

enthalpy profile of all these gases combined, figure 2.9, shows that more than half of the heat

is at a temperature below 200 ◦C. The heat exergy is 230 MJ /tclk if an ambient temperature Ta

of 25 ◦C is assumed. This ambient temperature is rather high for Europe and is mainly reached

in summer, thus it can be seen as a conservative assumption when it comes to evaluating the

exergy potential. The potential is visualised as the surface under the Carnot-Enthalpy-Curve

in figure 2.10.

If we could convert approximately 60 % of the heat exergy into electricity by the use of one

or more Clausius Rankine Cycles with adapted working fluids, temperatures and pressures.

This means an estimated 138 MJel /tclk could be produced which is equivalent to 5.6 MWel for

a plant with a daily production of 3500 tclk /d.

Cement – LOVE-Demonstrators

The European Framework Seven Low-Temperature Heat Valorisation Towards Electricity Pro-

duction (LOVE)-project included the installation of two ORC-demonstrators in two cement

plants. One of the particularities of the project was the upper temperature limit of 120 ◦C

imposed by the call for proposals. The LOVE-consortium chose two heat sources for the

installation of the demonstrators: the hot (combustion) gas coming from the raw mill and the

hot air coming from the cement mill. The two demonstrators were not installed permanently,

thus the turbine, the generator, the cooling tower and other units were moved from one site to

the other. The experience with these demonstrators is described in Herzog et al. (2014) and

was presented at the ECOS-Conference 2014.

Demonstrator – Höver

The Cement Plant in Höver, Germany (near Hannover) fits the above description of the cement

process with the particularity that it is not equipped with a precalciner. The gas-stream that

was used for the LOVE-demonstrator was taken from the filtered flue gases coming from the

raw mill. The flue gas stream (index FG) was characterised in two measurement campaigns

and the findings used for the design of the demonstrators are shown in table 2.2. According

to these values the demonstrator was designed. The indices are dp for dew point, n for

normal conditions and g for gas. It can be seen that these values differ from those in table 2.1.

This is due to the different factory set-up (no precalciner) and air infiltration. The nominal

values of the operating parameters are given in table 2.3. The indices are in for inlet, evap for

evaporation, cw for cooling water, cond for condensation and src for source. By looking at the

volume flow rates, it can be seen that about one quarter of the total stream is taken for the

demonstrator, this is due to the LOVE-project proposal which included the construction of

demonstrators up to 100 kWel.
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Table 2.2: Gases for LOVE-Demonstrators.

Gas Origin N2 O2 CO2 SO2 T Tdp V̇g ,wet V̇n,g ,dr y

%v,dry %v,dry %v,dry ppm ◦C ◦C m3

h mn
3 /h

Höver Raw Mill ~72 ~8 ~20 ~50 112.0 61.7 ~400000 ~225000
Kollenbach
Cement Mill

~79 ~21 - - 110.0 60.0 ~56080 ~32000

Raw Mill

Suspension 
Preheating 
Tower

Cyclons

Solids

Gases

to stack

Solids

Evaporator

Finned Tube
Heat Exchanger

Packed Column
Heat Exchanger

Water
Loop

Water
Pump

NaOH
water 
neutralisation

R245fa
Pump

Turbine

Generator

Condenser

Water
Loop

Cooling Tower

Water
Pump

Air 
BlowerAir 

Inlet
Air 
Outlet

to stack

Figure 2.11: Schema of the demonstrator as it was used in the Höver cement plant, using an intermediate
water loop and direct water-gas contact.
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ṁ

co
ṁ
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A schematic of the Höver demonstrator is depicted in figure 2.11. The heat extraction from

the gas streams is done by a separate water loop, one part with a Finned Tube heat exchanger

(FiTu) and the other part with a Packed Column Unit (PCU) in which the water and the hot

flue gases are in direct contact and part of the latent heat can be extracted. Due to the direct

contact N aOH neutralisation of the loop water was necessary in order to keep the water from

becoming too acid while absorbing SO2 originating from the combustion. While most of the

installation was done in stainless steel, the fins of the FiTu were alumina and the tubes copper

for cost reasons, the packaging of the PCU was a polymer. In the three months testing period,

the demonstrator did run 55h in total. This relatively short time period of use is due to several

factors:

• Operation: An operator had to be controlling the operation, there was no time to develop

an automation system. Making it impossible to operate for the entire day and leading to

additional time used for start-ups.

• Corrosion: One consequence of the the long downtimes of the demonstrator is the de-

struction of equipment parts due to corrosion. The neutralisation system was designed

to keep control of the pH in the water loop while the system was running, it showed

ineffective during downtime. The FiTu and PCU were separated from the flue gas stream

during downtime by a flap. This flap let through a small fraction of the flue gases, due to

the high total volume flow, this fraction was enough to accumulate a large quantity of

acidic condensate at the bottom of the PCU, which was cool during downtime. When

starting up, this acidic water was pumped through the FiTu, which had copper tubes

connected to the otherwise stainless steel tubes by a small carbon steel tube. First the

carbon steel, then the copper tubes were breaching, attempts to repair the leaks only

helped for a few hours until the next leak would break open. An additional decisive

factor leading to this very fast corrosion was vibration caused by the blower that was

used to transport the cooled down flue gases to the stack, mechanically connected to

the FiTu via an I-beam.

• Turbine trips: The turbine had very strict security settings, including a narrow tem-

perature window for the working fluid at the inlet. The Turbine turned at a speed of

10200 rpm, that means that all the working fluid in the turbine had to be evaporated

and then the turbine brought up to speed before opening the inlet or outlet valves. But

the opening of the valves led to flashing effects (due to pressure drop) and fluctuating

temperatures. The R245fa-inlet temperature fluctuated mostly at start-up or change of

regime leading the turbine to trip.

• Imprecise measurements: The installation had very few redundant measurements, this

together with the challenging environment made the measured values only partially reli-

able. Especially the gas flow rates and temperatures near the dew point were difficult to

measure and rather imprecise. This led to difficulties in the control of the demonstrator,

thus intensifying the above problems.
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Figure 2.12: Höver demonstrator heat exchange.
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Figure 2.13: Detailed PCU heat exchange, design.

The real life performance of the installation was rather different from the nominal values. One

reason was the change of the flue gas composition. Changes in the fuels and the raw materials

(due to a not entirely homogeneous quarry) changed the humidity as compared to the one

seen in the pre-measurement campaigns. This led to dew points mostly between 50 ◦C and

60 ◦C which is significantly lower than the nominal dew point of about 61.7 ◦C. The effect was

an unplanned behaviour of the PCU, leading to evaporation of water from the water loop.

In figure 2.12 the heat exchange is presented, the crucial point being that the injection of

water into the PCU is done to condense part of the humidity in the flue gases. Two factors

are important for that: The gas has to enter the PCU at the dew point (or at least as close as

possible) and the water that is sprayed in has to be cold enough to recover a considerable

amount of heat from the gas (and at the same time condense part of the humidity). The gas

cooling delivers the largest part of the heat to the water. The water and the gas get in direct
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Figure 2.14: Detailed PCU heat exchange, real.

contact exactly at the dew point at which they also have an identical temperature, this is at

the bottom of the PCU, directly before the water is collected and send to the FiTu. Then, the

gas cools down in direct contact with the water, the condensing water from the gas stream is

represented as being transferred at the gas outlet of the PCU for better visibility, even though it

happens all along the cooling/condensation. In figure 2.13 the heat exchange detail of the PCU

is depicted as it was supposed to happen, in figure 2.14 the detail of the PCU heat exchange

how it took place in real life operation is shown. The observed dew point is at 55.7 ◦C, the gas

enters the PCU at roughly the same temperature as the supposed dew point 61.7 ◦C. This leads

to an evaporation of water as the gas gets in contact with it and a temperature drop of the gas

to 56.2 ◦C. All key values are presented in table 2.4.

The value Q̇evap identifies the enthalpy loss which is due to the evaporation of water in the PCU.

The net water balance of the PCU is + 0.107 kg
s for the design situation and - 0.045 kg

s for the real

situation. In order to keep the water loop operationable a water make-up has to be supplied.

The make-up water is at water grid temperature and induces thus an additional temperature

drop. The performance of the demonstrator was far from the nominal one. The produced

power reached a maximum at approximately 80 kWel throughout the test period (at a test with

an increased flue gas intake) and the overall system efficiency (recovered heat-to-electricity)

was mainly between 3 % and 3.5 %.

The difficulties in measuring and controlling the system in order to reach better performances

led to the development of a data reconciliation methodology explained in chapter 3.
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Figure 2.15: Schema of the demonstrator as it was used in the Kollenbach cement plant, using finned tube
heat exchanger as direct boiler.

Demonstrator – Kollenbach/Beckum

The demonstrator at the Kollenbach cement plant used a different heat source and had a

different design than the one above. It used a direct boiler for the working fluid and no

intermediate water loop. A schematic of the set-up can be seen in figure 2.15. In table 2.2

the results of the measurement campaign are shown and the resulting design parameters are

stated in table 2.3. The heat source is gas that leaves the cement mill and was heated not by

combustion but by mechanical movement in the mill and during the grinding process. Since it

is not a flue gas from combustion, the composition is that of air with some additional humidity

and some dust. In order to avoid cloaking of the direct boiler heat exchanger, it is installed

after dedusting.
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The Kollenbach demonstrator showed less problems than the Höver one. This was due to

the learning curve in the operation and the less difficult set-up as well as less aggressive heat

source. The total operation time was 516 h and many more test points could be reached, giving

a better understanding of the behaviour of the installation. The maximum power that could

be produced was 42 kWel instead of the 50 kWel we aimed at. The lower than expected power

generation was mainly due to two factors: for one the process was modernised in the year

after the measurement campaign and secondly the cement types that were produced did not

exactly match those produced throughout the measurement campaign. This led to lower

temperatures and lower volume flow rates.

Difficulties during operation arose from the measurement of the gas flow rate and temperature.

The conducts were winding for space reasons, this made the flow turbulent. But the Pitot tube

type measuring equipment could only estimate the flow rate based on the velocity at one spot.

Additionally the temperature of the gas was inhomogeneous over the section of the tube, thus

a precise measurement of either flow rate or energy content was not possible. We used data

reconciliation to estimate those.

The system efficiency of the Kollenbach demonstrator was in the same range as in Höver,

meaning between 3 % and 3.5 %, this might seem surprising, but can be explained by the

equivalent evaporation temperature as seen in the Höver demonstrator.

The electrical power shown in this chapter is the power produced by the generator. That means

that the power used to run the cooling system is not taken into account. The cooling tower,

which was the same for both installations was rented and not adapted to the exact needs. The

cooling power of the tower was not linearly controllable, it could only switch on or off three

arrays of fans if the temperature of the cooling water raised to much. Also, the cooling water

was pumped through simple firefighter tubes (fire hose), which led to a high pressure drop and

thus pumping energy. In the case of the Kollenbach demonstrator the power consumption

of the cooling system and other auxiliaries sometimes exceeded the generated power. The

encountered problems with heat exchangers, which are not well designed regarding the

desired exchange and the cooling system, which was very energy intensive, show the necessity

for energy integration during the planing phase. Also measurements which can be trusted for

correct planing and during operation are necessary.

2.4.3 Integration

Integration of a Commercial ORC

With one of our industrial partners, a study was done on a Cement Plant that uses parts of the

current cooling requirements to supply a district heating network. Even though economically

this might be a challenging project, it can also lead to better acceptance of the cement plant

and its impact on the environment and landscape by the local population. In cooperation with

people from the plant we analysed the opportunities for the replacement of the old, installation
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of an additional heat exchanger for the district heating and the possible combination with a

commercially available ORC.

Even though this analysis has not been done following a complete Pinch analysis of the process,

it is a step towards a proper integration into the process: instead of simply using the outlet

mass flows that are (anyway) vented to the environment, the heat is recovered in two spots of

the process where one is in between two process units. Our goal was not to find the optimal

solution but to give a comparison between the proposed commercial product and what we

estimated with a better integration into the heat sources, for the negotiations. After looping

back with the manufacturer of the commercially available installation, a suitable solution,

with one of their “off the shelf” products was found, that allowed for simultaneous use of the

district heating with changing heat demand and electricity production with the ORC.

The first source is hot air from the clinker cooler which can be cooled down from 300 ◦C to

120 ◦C, the second source is heat from cooling down the hot gases leaving the suspension

preheating tower before they enter the raw mill from 400 ◦C to 210 ◦C. The space heating and

warm water requirements of the district heating network are not constant over time. The

minimum heat demand of the network is about 2 MW and the maximum about 8 MW. We

analysed this in intervals of two MW in order to see the impact on heat recovery and electricity

production. The network has a feed-in temperature of 130 ◦C and a back water temperature

of 75 ◦C. In agreement with the manufacturer, a thermal-oil loop was introduced in order to

recover heat from the sources and deliver it to the cycle and district heating. The working fluid

used by the commercial machine is hexamethyldisiloxane (also called MM), which behaves

very similarly to toluene.

In order to give the experts from the industrial partners a better negotiating position, we

compared the first proposals of the manufacturers commercial machines with our solutions.

With the feedback from our calculations, the final proposal for an ORC done by the com-

mercial manufacturer showed a higher performance due to a better part load behaviour and

better integration with the process. The total energy available from the heat sources is about

14.280 MW. The produced electrical power, as it was calculated by the manufacturer with their

ORC is shown in table 2.5. It is remarkable that the net to gross power ratio is increasing with

decreasing power. Another interesting point is the cycle efficiency (heat input to net power) is

decreasing by only one percent point or about 4.8 %. The specific cost for such a system are

about 1300e/kWinstalled including the cooling system and about 1150e/kWinstalled without

the cooling system.

In order to compare the solution of the commercial unit and what a “made to measure”

solution could deliver, we calculated a supercritical cycle using R134a and a single stage cycle

using toluene, both without a thermal-oil loop (direct boiling), both with a design point for

12.280 MW heat input. Also we allowed to use the heat from further cooling of the gas from

the clinker cooler. The toluene cycle would produce approximately 27 % and the supercritical

cycle approximately 40 % more electricity. The constraints that were applied allowed only for
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Table 2.5: Commercially available ORC and histrict heating (values from vendor).

District Heating: 2 MW 4 MW 6 MW 8 MW

Available Heat for ORC MW 12.280 10.280 8.280 6.280
Produced Power, gross MW 2.540 2.152 1.714 1.248
Produced Power, net MW 2.422 2.060 1.648 1.201
Produced Power of Design % 100 83.7 67.4 51.1
Power net to gross % 95.4 95.7 96.1 96.2
Cycle efficiency, net % 20.7 20.9 20.7 19.9

one stage cycles, these limited the number of degrees of freedom in a way, that we used a

several stage sensitivity analysis in order to find these optimised cycles.

Even though there is a margin for amelioration regarding the commercial solution, the cooper-

ation lead to a concept that produces on average 37 % more electricity than the manufacturers

first proposal due to better integration and a more suitable cycle. This proves that the applica-

tion of Pinch analysis techniques can be used to improve the quality of integration of an ORC

into an industrial process and validates our methodology.

Representative Process

Here, we analyse the theoretical potential of the above described representative cement

process. All concerned heating and cooling requirements are also listed in appendix B. We

can see from figure 2.16 and figure 2.17 that the composite curves are pinched at the highest

combustion temperature, and that there is a high temperature difference between the cold

and hot curve from there on. This reveals the amount of exergy that is destroyed in the heat

transfer (only being used for heat exchange speed). The thermal energy consumption of the

representative process is 3.1 GJ /tclk. We showed in Mian et al. (2013) that there is potential

for integration of heat recovery technologies, additionally we could see above that more than

100 MJel /tclk of electricity could be produced in a modern cement process by integration of

one or more organic Rankine cycles with one or more stages, without having to completely

redesign the process. For a process which produces 3500 tclk /d this is equivalent to an installed

power of about 4 MWel. Another possibility would be to use the wasted heat within the process,

which makes rethinking of the process (-layout) necessary. However in a long-lasting industry

with installations that sometimes produce for over half a century and a challenging business

environment, development takes time. For this reason we present one option for further

integration: preheating of combustion air. Several configurations are imaginable for this:

• Hot gases directly from the cement mill

Today, the hot air from the cement mill is dedusted before being sent to a stack. Instead

of the stack it could be used as combustion air in the kiln and/or precalciner. However
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the temperature is relatively low (90 ◦C to 120 ◦C) and depending on the market situation,

the mill does not always run.

• Hot gases from the cement mill, further heated by kiln gases

The air from the cement mill could be heated further by the use of the hot gases from

the kiln (and possibly precalciner), e.g. after they leave the suspension preheaters and

before they enter the raw mill. Again the functioning of the cement mill might be an

obstacle.

• Hot gases from cement mill, further heated by clinker cooler gas

The air from the cement mill could be heated further by the use of the hot gases from

the clinker cooler. Again the functioning of the cement mill might be an obstacle.

• Hot gases directly from the clinker cooler

The hot air coming from the clinker cooler is already partially used as combustion air;

the degree of usage could be increased.

• Heat combustion gases with hot gases from the kiln

A heat exchanger can be used to heat the combustion air with the gases from the kiln

(and possibly precalciner) e.g. after the suspension preheaters and before the raw mill.

• Heat combustion gases with hot gases from the clinker cooler

The combustion air could be heated by the use of the hot gases from the clinker cooler.

• Combinations of the above

It is also possible to combine the above mentioned configurations; this might be espe-

cially interesting in plants with other operation modes and technologies.

In our model of a representative process, the quantity of primary combustion air and the

quantity of ambient combustion air for the burner in the precalciner have a ratio of approxi-

mately 1:2. Both streams could be preheated. It has to be mentioned that preheating can lead

to higher flame temperature, which increases the formation of NOx; we thus recommend the

use of efficient exhaust gas treatment. The heat that could be reused within the process by

preheating the combustion gases directly reduces the necessary heat input, due to the energy

balance. Depending on the mass flow rates and the humidity level, more than 30 MJ /tclk of

heat could be saved per 100 K of preheating both streams. It should be kept in mind that

the very low cost of fuels at the moment makes an investment into preheating technologies

economically challenging (Satterthwaite, 2013). Furthermore, we can see from the simulation

results that about 780 MJ /tclk are evacuated to the environment with material streams; fig-

ure 2.18 illustrates this by the means of an integrated composite curve, showing the Grand

composite Curve of all evacuated heat recovery potential (red) and the Grand Composite

Curve of the remaining streams (blue). The Grand Composite Curve is built by drawing the

heat difference (horizontal) between hot and cold composite curve over the temperature. The

heat losses, figure 2.19, are about 670 MJ /tclk which leave the system over the walls of the

process units.
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Figure 2.16: Composite curve of a representative cement process.
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Figure 2.17: Grand composite curve of a representative cement process.
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Figure 2.18: Integrated composite curve of a representative cement process showing evacuated heat.
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Figure 2.19: Integrated composite curve of a representative cement process showing heat losses.
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2.4.4 Redesign

To pretend to be able to redesign the entire cement process as a sub-chapter in one doctoral

thesis is of course presumptuous, we rather want to try to explore the limits of a possible

integration of the process-streams. In order to achieve this, we only look at the process steps

that directly take part in the transformation of the raw materials into clinker, while ignoring the

technology constraints of the process as it is today. This way we want to show how a redesign

of the system could theoretically lead to a modernised process with higher energy efficiency.

It should be noted that no process corresponding to these limits exists yet and to achieve it,

the used techniques would probably have to change drastically. In order to guarantee the

economic feasibility of the integrated process we keep the minimum temperature differences

of the representative production line we described above. These vary between 5 ◦C and 100 ◦C.

In the integrated process the following steps are considered:

• Heating of raw materials

• Drying of raw materials

• Calcination and clinkerisation

• Cooling of the CO2 produced by calcination

• Cooling of clinker

• Combustion of coal

• Cooling of combustion gases

• Preheating of air for combustion

All other steps are dependent on the technology used and might be avoidable in future times.

For the modelling of this process several major assumptions were made mainly on drying,

preheating and heat losses.

Drying

The most crucial assumption is that of the lowest possible drying temperature of the raw

material. This temperature will define the lower pinch point of the system. As we saw above,

in the representative process the drying takes place within the raw material mill, the hot gases

from the suspension preheater tower (cyclones) are used for this. The advantage of the high

temperature of these gases is the speed of drying (approx. 2 seconds). It seems therefore logical

that a lower drying temperature even if energetically advantageous, makes a higher exchange

surface and probably a longer exposure time necessary. Modelling a low temperature drying

process, can be done in several ways. We assume a drying process that uses hot air in direct

contact with the raw material; several configurations are possible. Two extreme cases can be

defined:
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1. The raw material and the drying air leave the drying process at the same temperature,

the lowest temperature possible (in figure 2.22 this is the ambient temperature plus

the minimum temperature difference for the heat exchange which equals 45 ◦C). The

mass flow rate of the air is defined by the outlet at which the air is saturated with

humidity (relative humidity at 100 %). The water within the raw materials enters the

drying process at ambient temperature. In consequence the drying air has to be heated

up to 187 ◦C. In this configuration the combustion gases should ideally be preheated up

to about 540 ◦C for a global minimum in fuel consumption.

2. The other extreme is to fix the drying air inlet temperature, instead of the relative

humidity of the outlet. This implies an increased mass flow rate but a reduced drying

temperature. To demonstrate this we fixed the drying air inlet temperature to 85 ◦C

(40 ◦C above the outlet). The result can be seen in figure 2.23. The exact trade-off

between mass flow rate (fan power) and low temperature requirement depends on

investment and energy costs. The supplementary air requires more heat for heating.

The ideal preheating temperature would be around 490 ◦C.

As a result it can be said that without any additional measures, the first extreme seems advan-

tageous. The second extreme could nevertheless be interesting for example if a steam cycle

was integrated.

Preheating

The other crucial technology is the air preheating. Since for the combustion a large quantity

of air is needed. If this air is preheated, the combustion temperature is raised. This principle

should be used by preheating the combustion air to the highest temperature possible. Typical

modern multi-fuel burners used in cement plants do not allow a very high preheating tem-

perature (<80 ◦C), further development in this area could lead to improvements in the fuel

consumption of cement processes, on the other hand, high preheating temperatures are tech-

nologically challenging. Preheating of the fuels could be an option, the problem being that the

fuel temperature should not exceed the temperature at which the gasification of the volatile

compounds starts. The volatile compounds, could be lost, which is environmentally critical

and leads to a loss in heat capacity, additionally the risk of self-ignition is higher. Preheating

large quantities of coal or petcock would also require considerable installations which is an

additional obstacle. Thus we will not consider preheating fuels.

Losses

A number of losses can be identified in the cement process. They occur due to heat transfer

from the inner streams through the process walls to the environment. As we saw above the

total amount of losses in the representative process is about 780 MJ /tclinker. The kiln is a major

contributor to the losses. The difficulty of estimating the proportion of the losses, which could
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Figure 2.20: Grand composite curve of extreme case 1.

be avoided or reused as heat, results from the fact that the temperature gradient is used in the

kiln to create a layer of clinker around the refractory bricks. These protect the refractory and

the steel from impacts and higher temperatures. If the kiln was insulated, it could reduce the

resistance and lifetime of both kiln and refractory. Since we are not considering the technology

constraints, we assume nevertheless that no losses occur or that they can be recovered in the

optimised process. Further assumptions are:

• 3 % Humidity in raw materials

• Stoichiometric combustion

• Neglecting crystallization energies

This integrated process would reduce the energy consumption to 2215 MJ /tclinker which is

over 28 % less than the representative modern process shown above. Reaching this would

require larger equipment due to the smaller temperature differences.

The composite curves of the integrated process in figure 2.20 to figure 2.23 show the limit

of the heat recovery potential caused by the lower pinch point (drying). The temperatures

below this pinch point are not interesting for recovery of heat for electricity production. We

can however see that there is still a considerable amount of exergy destroyed between the

combustion gases and the process streams. Unfortunately accessing this exergy is challenging.

As a blue-sky concept it is imaginable to introduce an “ultra-high” temperature Brayton cycle
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Figure 2.21: Grand composite curve of extreme case 2.

Table 2.6: Cement process and ORC potential.

Fuel requirement ORC potential
MJ /tclinker MJ /tclinker

Representative 3.1 >100
Integration and Redesign 2.2 0

based on air as working fluid and with a multi stage para-isothermal compression or a high

outlet temperature gas turbine. However the temperatures are far too high for the outlet of

modern gas turbines; it is imaginable that future technologies could be used with materials

that are performing at these extreme temperatures. Of course this would make it necessary

for the materials to withstand these high temperatures (2000 ◦C to 1000 ◦C) or efficient blade

and surface cooling in the equipment, including the compressors. None of those technologies

exist so far and their realisation is questionable. The second possibility would be to integrate a

cycle in-between the two lower pinch points. A steam cycle or supercritical steam cycle could

be used, yielding an assumed efficiency of 40 %. Approximately 10 MJel /tclinker of electricity

could be produced by adding the same amount of fuel or using a heat pump to close the heat

gap. Again for a 3500 tclinker per day cement plant, this could lead to an electricity production

of 0.4 MWel. Without changing the energy balance, however, the waste heat recovery potential

has to be assumed to be zero.
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2.5 Conclusion

In this chapter, we have seen three depth of study and perspectives to identify waste heat. All

three may be found in application, the end of pipe approach is seen commonly. It is easier to

make a study on waste heat following this approach than any other, since it does not require a

deep understanding of the process or investment into the process (for internal heat recovery).

It does however not identify possible fuel savings or efficiency improvements and may be

expensive in the long run, if a high investment is made using avoidable waste heat that would

better be used within the process (with a high efficiency).

The experiences made with the LOVE demonstrators have shown that imprecise measure-

ments lead to a faulty integration of the ORC with the heat sources and thus to low efficiencies

and low electricity production. Another key learning is that unexpected behaviour might lead

to material problems, it is thus most suitable to use stainless steel heat exchangers for waste

heat recovery in order to avoid corrosion in aggressive environments. Important as well was

the fact that a simple design, using a direct boiler with a short distance to the turbine, instead

of an intermediate cycle and a condensation unit led to far better operation times and more

stable operation. Finally the use of a cooling system which is sized according to the needs of

the ORC is crucial, otherwise the cooling system decreases the electricity production strongly.

It is further shown how Pinch analysis can be used to identify the potential for integration of a

secondary heat recovery technology into a process, it reveals at the same time possibilities

for heat recovery within the process and allows an intensive use of the available heat within

the heat cascade. The application of Pinch analysis to integrate a commercially available ORC

with predefined heat sources has shown, that it is a valuable technique to improve the quantity

of electricity produced.

The re-design of process can be seen as a scenario tool or a further step of process intensifica-

tion, the process unit operations may be changed or the utility system modified in order to

realise energy savings. The resulting amount of waste heat can be understood as a benchmark,

revealing how much heat and exergy are available in a situation, in which the process has been

thermally optimised. In our study conducted for and with Nestlé we have seen that it was

economically interesting to realise process modifications and that the resulting temperature

of available waste heat was at such a low temperature that the integration of an ORC is not the

best choice.

In case of the representative cement process, it is remarkable that the waste heat recovery

potential is close to zero and no waste heat recovery seems applicable, if the total energy

balance of the process remains unchanged.

All three depth of study have merits, we do however advocate to not stop a study after an

end-of-pipe analysis, in order to avoid making an investment which might reveal itself to be

blocking a more efficient process and direct fuel savings. We will use the results of this chapter

for the ORC-identification tool that is presented in chapter 4.
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3 Waste Heat Valorisation System Char-
acterisation

Through the LOVE project two demonstrators were installed in two different cement plants as

described above in chapter 2. We are in the lucky situation where we have actual experience

with the use of these two low temperature ORC demonstrators and access to the measurement

data in addition to the waste heat analysis also presented in the previous chapter. Some of the

results from the demonstrators will be used to verify the ORC identification tool and therefore

we look closely at the measurements. The problem we encountered during the measuring

period was the small number of redundant measurements and sometimes contradictory

results from the measurements we had. Thus we decided to use data reconciliation (also called

least square method) in order to have a coherent set of data regarding the physical constraints

imposed by models, representing the demonstrators. Thus the confidence into the reconciled

values could be increased. Additionally, a development for a new methodology, which we call

Enhanced Data Reconciliation, was introduced and tested. In the following the differences

between “classical” and enhanced data reconciliation will be explained, identifying limits and

possibilities of both methods. The method has been published and presented in the peer

reviewed conference ECOS 2014 (Bendig et al., 2014b).

As an outcome the possibilities and limits of enhanced data reconciliations are shown and the

data of the “LOVE” project are analysed. Parameters which can be used for the calibration of

the ORC tool are identified and quantified.

3.1 Objectives

Reconciling measurement data of the LOVE demonstrators with little redundancy,

with the aim of characterising the performances of the tested Rankine cycles and

identifying process unit parameters.

The overall objective is to reconcile the data from the LOVE demonstrators in a way that

they deliver coherent information about the functioning of organic Rankine cycles at low

temperatures in waste heat recovery. To achieve this we rely on data reconciliation, but we also
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develop a new methodology that can improve the reconciliation for data sets with low degree

of redundancy. We will extract the information, helping us calibrating the ORC identification

tool.

3.2 State of the Art of Data Reconciliation

Data Reconciliation has been used extensively in industries and research areas where a high

precision of production or experimental variables and parameters is necessary. This is the

case for example in the chemical and pharmaceutical industry but as well in nuclear power

plants or university experiments. A set of reconciled data is more coherent with the physical

constraints that characterise the measured system, than the corresponding set of measure-

ments. In other words, all mass and energy balances are closed and temperatures are coherent,

if the constraining model is done carefully. A global overview of data analysis can be found in

Romagnoli et al. (1999). The methodology of data reconciliation in chemical engineering is

often attributed to Kuehn and Davidson (1976); whereas the first application to an industrial

process is attributed to Reilly and Carpani (1963), as described in Crowe (1996). This method-

ology is based on least squares which Stigler (1990) says was first published by Legendre

(Legendre, 1805). The working principle of data reconciliation is to minimise the weighted

sum of all squared differences between measurements and corresponding reconciled values

(Equation 3.1). Since the reconciled values are connected (via the equations of the model),

this leads to the most probable state of the system corresponding to the set of measurements.

Practically, this means that a software model of the mass and energy balances of the instal-

lation is programmed. All thermodynamic states within the (sub-)system(s) are estimated

and compared to the measured values, then the sum of the weighted squared differences

between estimations and errors is minimised by adapting the estimations accordingly. The

most probable conditions that actually prevail in the set-up or operational unit are those

where the sum square error is minimal:

min
y,x

∑
i

(yi ,t − ŷi ,t )2

σ2
i

(3.1)

subject to ft (yt , xt ) = 0 (constraints: energy and mass balances)

where:

y = Reconciled value of the measured variable

ŷ = Value of measurement

x = Unmeasured variable, parameter

σ= Standard deviation or inaccuracy of measurement i

i Index of measurement (point)

t Index of timestep
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3.3. Enhanced Data Reconciliation

The methodology profits from a large number of measurements and redundancy as well as a

large number of equations connecting the different measurements and parameters (Kretsovalis

and Mah, 1987). Data reconciliation as described is suited for steady process and quasi steady

situations. Reading on Data reconciliation in dynamic situations can be done for example in

Minet et al. (2001) and in Ullrich et al. (2009). A special application of data reconciliation is

parameter identification as described by Romagnoli et al. (1999). Parameter identification

minimises the reconciliation problem for all previous time-steps in one equation:

min
yt ,xt ,π

∑
t

∑
i

(yi ,t − ŷi ,t )2

σ2
i

(3.2)

subject to
ft (yt , xt ) = 0 (constraints: energy and mass balances)∀t

st (yt , xt ,π) = 0 (other constraints depending on parameters)∀t

3.3 Enhanced Data Reconciliation

In many cases however, only a small number of measurements is available and redundancies

are scarce. For these cases we developed a methodology, which can transport information

from one measuring period to another by creating “virtual” measurements. The idea consists

in measuring in time intervals that are short enough in order to “re-inject” parameters or

variables of a measurement period t into the reconciliation of the measurement data from the

following time period t+1 in the form of measurements. We mark the re-injected variables yπ
with the index π. The estimation of the standard deviation of ŷπ,t is considered to be equal to

the variance of yπ,t−1 (Further explained in Section 3.5). The hypothesis that the true values of

the re-injected variables are constant over time is made:

yπ,tr ue,t = yπ,tr ue,t−1 (3.3)

We thus have:

min
yt ,xt ,yπ,t

(∑
i

(yi ,t − ŷi ,t )2

σ2
i

+∑
i

(yπ,i ,t − ŷπ,i ,t−1)2

σ̂2
π,i ,t−1

)
(3.4)

With the definitions:

yt = {yt , yπ}

ŷt = {ŷt , ŷπ,t−1}

ft = { ft (yt , xt ), s(yt , xt , yπ,t )}

And a now time dependent σt = {σi , σ̂π,i ,t−1}
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Figure 3.1: Schematic of Data Reconciliation and Enhanced Data Reconciliation.

We finally get:

min
yt ,xt ,yπ,t

∑
i

(yi ,t − ŷi ,t )2

σ2
i ,t

(3.5)

subject to ht (yt , xt , yπ,t ) = 0 (constraints: energy and mass balances, others)

The functioning is depicted in figure 3.1. This increases the information/redundancy of the

system and thus the overall precision.The methodology proposed here, does not need any

further information from the steps before, other than the chosen variables themselves and the

corresponding a posteriori accuracies of just one time step before. This way all information

from previous measurements is indirectly included. Additionally the re-injected values are

treated exactly like measurements and thus are optimised within the same step as the physical

measurements, making the calculation quick and easy to implement into any existing software.

These characteristics also make the methodology ideal for online use.

3.4 Approach

To demonstrate the methodology we will firstly introduce the calculation of the a posteriori

accuracy. Afterwards the implementation and the example process will be described. Then

we will have a look at several cases which demonstrate the possibilities and limits of the

approach. The first case will help understand the influence of the initial values for re-injected

variables and their inaccuracies. From the second case on we will introduce a set of steady

measurements which is subject to noise. We will analyse the influence of non-linearities in

the equations describing the system. In case 3 and 4 we will see how over- or under-specified

systems behave when using enhanced reconciliation. Finally in Case 5, a non-steady process

will be analysed. In all cases we assume the sets of measurements to be free of gross error and

the results of conventional reconciliation will be given for comparison.
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3.5 A Posteriori Accuracy

To use this methodology we rely on the a posteriori standard deviation of the reconciled values:

showing Equation 3.1 in vectorial form we get Equation 3.6.

min
Y ,X

(Yt − Ŷt )T Wt (Yt − Ŷt ) (3.6)

subject to (linear or linearized) At X t +Bt Yt +Ct

Where

Wt = di ag ( 1
σt

i ,t
) Weight Matrix

and

A = Matrix of constraint derivatives with respect to X

B = Matrix of constraint derivatives with respect to Y

Using the Lagrange formulation:

min
Y ,X ,λ

L = (Yt − Ŷt )T Wt (Yt − Ŷt )+2λT
t (At X t +Bt Yt +Ct ) (3.7)

Assuming stationary conditions (derivations of L to X ,Y and λ are null) we get:

MV = D (3.8)

Where

Mt =

Wt 0 AT
t

0 0 B T
t

At Bt 0

 ; V =

Yt

X t

λt

 ; D =

Wt Ŷt

0

−Ct


So the reconciliation problem becomes:

V = M−1D (3.9)

The sensitivity Matrix M−1(m +n ×p, where m is the number of measured and n the number

of unmeasured variables, p is the number of constraints) gives the possibility to see the

influences of the variables amongst each other (regarding both, the value of the variables and

the corresponding standard deviations), but also to give an estimate on the confidence or

variance of the reconciled value:

var (Yi ,t ) =
m∑

j=1

(M−1)2
i , j ,t

var (Ŷ j )
(3.10)
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and

var (Xi ,t ) =
m∑

j=1

(M−1)2
n+i , j ,t

var (Ŷ j )
(3.11)

The above is described in Heyen et al. (1996).

This is of great significance: if a variable can be determined not only by the corresponding

measurement, but also via calculation using other measurements and/or parameters, then the

confidence in the reconciled values is much higher and the a posteriori inaccuracy is going to

be small (oftentimes one order of magnitude smaller than the estimated a priori inaccuracy).

We can thus use the a posteriori inaccuracy in order to see, if the re-injected variables are

calculated with high precision, also we can use them as a priori inaccuracies for the next

calculation step:

A posteriori accuracy for re-injected variables (pseudo measurments):

σ̂π,i ,t = var (Yπ,i ,t−1) (3.12)

3.6 Implementation

For the results published here we used the commercial software Belsim Vali (Belsim, 2011) in

order to make the reconciliation.

A Matlab (MathWorks, 2012) program was used to handle the data flows, recover the data

coming from the measuring system, prepare it for the reconciliation, launch the reconciliation,

recover the reconciled files and store them adequately. In figure 3.1 you can see the work flow

visualised.

3.6.1 Illustrative Example

For testing the methodology we have created a very simple example and a number of “virtual”

measurements (we will talk about these below). The example process consists of a simple

water-to-air-heat-exchanger as could be used as cooling device in an industrial process (fig-

ure 3.2). We assume that the water enters the heat exchanger at 50 ◦C and leaves at 25 ◦C,

the mass flow rate is assumed to be 1 kg
s . Pressure at the entrance is 1 bar, the pressure drop

0.1 bar. On the air side we assume an entrance temperature of 15 ◦C and an outlet temperature

of 35 ◦C, the pressure is 1.2 bar at the entrance and the pressure drop is 1.5 mbar. The air

humidity at the entrance is 80 % consecutively the mass flow rate is 5.219 kg
s and the humidity

at the outlet 24.065 %. We will refer to these values as “true values”.
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Air: 15°C; 1.2 bar; 5.21 kg/s; 80% Rel. Humidity

Water:
50°C;
1 bar;
1 kg/s

35°C; 24.08% Rel. Humidity
Pressure Drop: 150 Pa

Heat Load:
104.82 kW

25°C
Pressure
Drop:
0.1 bar

Figure 3.2: Schematic of Water-to-Air-Heat-Exchanger.

Table 3.1: Available measurements in the example process.

Water side Air side

Water inlet temperature Tw,in
◦C Air inlet temperature Tair,in

◦C

Water inlet mass flow rate ṁw,in
kg
s Air inlet pressure pair,in bar

Water inlet pressure pw,in bar Air inlet humidity ϕair,in %
Water outlet temperature Tw,out

◦C Air outlet temperature Tair,out
◦C

Water outlet pressure pw,out bar Air outlet pressure pair,out bar

3.7 Steady State

3.7.1 CASE 1 – Initial Values Preparation Process

In order to illustrate the ideal behaviour of enhanced reconciliation we created a set of mea-

surements which all represent the true values. For this we assume to have the measurements

in table 3.1 available:

We assume the pressure drops to be fix and introduce them as parameters in our model.

This means that there is a redundancy concerning the pressures on water and air sides: two

measurements plus one fixed parameter (pressure drop). All other variables are measured

once or are calculable without redundancy. As a result, the variation of the measurements has

a bigger influence on the reconciled values.

We introduce four variables (including two parameters) for re-injection and thus enhanced

reconciliation:

• Air mass flow rate
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• Air outlet humidity

• Heat load

• Heat transfer coefficient

The heat load corresponding to the true values is 104.825 kW and the heat transfer coefficient

(assuming a heat exchanger surface of 15 m2, not counting fins) is of 0.5667 kW
m2 ·K

. For this

example we chose a simple approach, more complex calculations of heat transfers are shown

in chapter 4, section 4.3.5.

For all the measurements we use the exact value with a supposed inaccuracy σ of 1 %. We

will call this set-up CASE 1. Using it we can analyse the influence of the initial values and

inaccuracies:

At first, CASE 1.1, we use rough estimates of the four re-injected values as initial “virtual”

measurements:

Air mass flow rate: mai r,i n 5.2 kg
s

Air outlet relative humidity: ϕai r,out 25 %

Heat load: Q̇ 104 kW

Heat transfer coefficient: U 0.5 kW
m2 ·K

To test the behaviour of the enhanced reconciliation we inject these values with an inaccuracy

value of:

• a: 5 %

• b: 100 %

In order to compare the results, two measures of quality are used:

• The a posteriori inaccuracy (equation 3.12).

• the sum of the relative differences between reconciled and true values (Equation 3.1).

Dr el ,t =
∑

i


√

(yb,i ,t − yi ,t )2

yb,i ,t

∗100 [%] (3.13)

Where yb,i is the true value of variable i .

The development of the inaccuracies of the four re-injected variables of CASE 1.1a (5 %) and

1.1b (100 %) are shown in figure 3.3 and a detail in figure 3.4. The values of the inaccuracies

are shown as negative values; this is due to the Software Belsim Vali.

It can be seen that the first case leads to quicker reduction of inaccuracies, but the advantage

becomes very small after a few hundred time steps. The sum of the inaccuracies of the 14
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Figure 3.3: A posteriori inaccuracies of re-injected values, 5 % and 100 % initial values CASE 1.1.
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Figure 3.4: Detail of a posteriori inaccuracies of re-injected values, 5 % and 100 % initial values CASE 1.1.

above mentioned variables (measured and re-injected) of all the 1500 time steps shown in the

graphs is 10470.3 % for case 1.1a and 10889.6 % for 1.1b, if we only look at the last one hundred

time steps (from 1401 to 1500) we find 641.0 % (1.1a) and 641.1 % (1.1b). The inaccuracies of

the heat transfer coefficient decrease considerably slower than those of the other variables.

This is the effect of the smaller influence (redundancy) the other variables have on it. The

more a variable is influenced by other variables, the quicker the inaccuracy will decrease.

From the lower inaccuracy ( Equation 3.10 and 3.11) results a higher impact of the rough

measurements. This has as an effect that the otherwise precise measurements are reconciled

further apart from the true values in case 1.1a. Consequently, Drel (equation 3.13) at time step

1500 is higher for Case 1.1a (12.1 %) than for 1.1b (0.9 %).

Replacing the rough estimations by a set of initial values that corresponds to the true values

CASE 1.2 and test the two inaccuracies again (1.2a and 1.2b) shows that for a good estimation,

the choice of lower inaccuracies is advantageous: the sum of all inaccuracies of all the 1500

time steps shown is 10505.4 % for case 1.2a and 10892.5 % for 1.2b, if we only look at the last

one hundred time steps (from 1401 to 1500) we find 640.8 % (1.1a) and 641.2 % (1.1b). The

figures for CASE 1.2 show the same trends and are overall very close to those of CASE 1.1. As
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for Drel of all 14 variables at time step 1500, we find values in the area of 10 % to 3 % in both

cases, these differences result from rounding differences rather than the actual calculations,

therefore we consider that the differences are too small to be significant.

3.7.2 Non-linearities

An inconvenience of reconciliation is the behaviour regarding non-linear relations. To illus-

trate this we take a simple example: the calculation of the logarithmic mean temperature

difference (Equation 3.14).

LMTD = ∆Thot side −∆Tcold side

l n( ∆Thot side
∆Tcold side

)
(3.14)

Where ∆Thot side is the temperature difference between the water inlet and the air outlet,

∆Tcold side side is the temperature difference between the water outlet and the air inlet. This

is done assuming a counter flow within the heat exchanger. Additionally the hypothesis of

constant cp values is a prerequisite for the use of this formula (Borel and Favrat, 2010). If we

use the true values with an added noise, even though the noise is symmetrical/the distribution

is normal around the true values, a clear tendency (with one order of magnitude less than the

amplitude of the variations) for the LMTD can be observed. The values are on average higher

than the LMTD corresponding to the true values. In other words: equal amplitudes in different

directions or on different variables do not have an equivalent influence on the calculated

parameter. This illustrates that nonlinearities have to be treated carefully, especially because

error propagation and the combination of several biases, induced by different nonlinear

equations which are amongst each other also subject to relations (non-independent), can lead

to high errors. This is also to be kept in mind if those parameters are used for the enhanced

reconciliation directly, since the decrease of the “inaccuracy” leads then to an adjustment

towards a biased value, especially for the earlier measurements. However this is not a problem

uniquely concerning the new methodology of enhanced data reconciliation but concerns data

reconciliation and parameter identification in general.

3.7.3 CASE 2 – Measurements Subject to Noise

Measurements even in an overall steady system are rarely as precise as assumed in the first

calculations of CASE 1. In order to create sets of measurements that are more realistic, we used

several methods to produce a well-defined noise around the true values. This is supposed to

imitate noise induced by the measuring system and possibly local non-steady-conditions. This

means that we assume the global conditions to be unchanged from the true conditions, even

though the measurements vary around the true values. We used several (pseudo-)random

generators for the variations, always going for a normal distribution with 95 % of all values

between −1 % and 1 % around the true values (standard deviation of 0.5 %) and a set of values

that have a symmetric distribution of ±1% around the base, but that have been shuffled in a
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Figure 3.5: A posteriori inaccuracies of re-injected variables, CASE 2.1.

random order. The results for all these sets of measurements are equivalent, so we chose a

normally distributed set of values generated with a latin hypercube sampling pseudo random

generator provided by Mathworks/Matlab for the generation of the measurements used in

this paper. Since we know the true values we start with an estimation of the four precise

re-injected values (like in CASE 1.2), except for rounding errors. We analyse two sets of 6000

measurements. The first set (CASE 2.1) is a repetition of 1500 measurements four times; this

gives us the possibility to evaluate the evolution within the enhanced reconciliation, and

compare the influence of the changing re-injected values and their precisions on the same

measured values. Figure 3.5 shows the evolution of the inaccuracies of the four re-injected

values. Again, the negative sign of the percentages is due to the Software Belsim Vali.

It can be seen that the values decrease and reach a level below 0.1 % for all variables except

the inaccuracy of the heat transfer coefficient, which is subject to less influence from other

measurements and thus less redundancy. The relative differences of the reconciled re-injected

values and the true values in percent are shown in figure 3.6. The periodic character, due

to the four repetitions of the measurements is visible, especially regarding the heat transfer

coefficient. It can also be seen that the relative differences are all below or around 0.1 % after

approximately 2000 iterations.

To demonstrate the efficiency of the enhanced reconciliation, Drel values of all 14 variables

(ten measurements and four re-injected values) are analysed. We chose to base this analysis

on the last 100 measurements of each iteration, meaning we analyse the measurements from

1401-1500, 2901-3000, 4401-4500 and 5901-6000. The results are presented in table 3.2.

Additionally to the increase in accuracy that we saw above, it can be seen that the Drel values

decrease over time and thus that the estimations get better. Compared to conventional

reconciliation, the results are on average about 22 % better. To check if the tendencies seen

with the repetition of the same 1500 values, is also valid for other sets of data we repeated the

calculations. Below is one example with 6000 different values (CASE 2.2) (the first 1500 are
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Figure 3.6: Relative differences between true and reconciled values of re-injected variables CASE 2.1.

Table 3.2: Evolution of the Drel values Case 2.

Drel 1401-1500 2901-3000 4401-4500 5901-6000
Conventional
reconciliation

Average 4.355 4.320 4.302 4.290 5.238
Minimum 0.705 0.690 0.680 0.672 1.603
maximum 11.899 11.908 11.908 11.908 10.839

identical to CASE 2.1). The plot of the inaccuracies looks almost identical to that of CASE 2.1,

shown above in figure 3.5. The relative differences to the true values is shown in figure 3.7.

Again, the differences are very small, and after about 2400 time steps below 0.1 %.

Overall we can say that the evolution of the inaccuracies reveals a strong decrease over time.

This stabilizes the reconciled values and influences the minimum of the sum of all penalties

increasingly. Comparing the results from enhanced data reconciliation and classical data

reconciliation we find the following results: the conventional reconciliation leads to much

less stable reconciled values, as can be seen on the graphs below. The reconciled values follow

the measured values to a large extent and the relative distance to the true values can be a lot

higher for the four re-injected values as shown in figure 3.8. The relative differences can be

over 3 %, whereas the average relative differences are in all four cases below 0.01, which means

the distributions are more or less evenly around 0.

Also the inaccuracies do not decrease for the conventional reconciliation but they remain

close to a certain value as can be seen in figure 3.9.

Even though the variables chosen for re-injection do not all stabilize exactly at the true value,

the system shows in the sum less distance to the true values than the same system with

conventional reconciliation. The relative distances and the inaccuracies are one to three

orders of magnitude higher for conventional reconciliation.
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Figure 3.8: Relative differences between true and reconciled values in analogy to CASE 2.2 but with conven-
tional reconciliation.

3.7.4 CASE 3 – Over Specified Systems

In steady state conditions the methodology seems especially useful to be used on processes

with little to no redundancy on the measurements. In systems with redundancy the conven-

tional reconciliation leads to more corrections of the measured variables since the measure-

ments can be contradictory. To illustrate this we added two measurements to the process

(CASE 3.1):

• Air inlet mass flow rate.

• Air outlet humidity.

The heat load and the heat transfer coefficient are, as before, used for re-injection as virtual

measurements. Here, it makes sense to check the differences between raw, conventionally

reconciled and enhanced reconciled data. Since the raw data should be used to calculate
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Figure 3.9: A posteriori inaccuracies in analogy to CASE 2.2 but with conventional reconciliation.

Table 3.3: Analysis of redundant case.

Drel,mea 1501-3000
Enhanced
reconciliation

Conventional
reconciliation

Raw
measurements

Average 4.284 3.783 3.191
Standard Deviation 2.099 1.246 0.697
Average Inaccuracy, mea 0.67168 0.805 1
Average inaccuracy all 0.610 2.724 na

the heat load or the heat transfer coefficient (due to the fact that there are several ways to

calculate them with the measurements which do not lead to the same result), we will look at

the 12 measured variables only. We use the values from time step 1501 to 3000 since here the

enhanced reconciliation already shows a certain degree of stability.

We can see from these numbers, shown in table 3.3, that the set of measurements has a

relatively narrow distribution but a large inaccuracy and while the distribution is getting larger

for conventional and enhanced reconciliation, the confidence in the values gets better. The

average Drel,π of the re-injected variables is of 1.210 for the conventional reconciliation and

0.025 for the enhanced reconciliation. This shows the precision of the estimation of these

parameters, and the difference of the average inaccuracies of all variables (including the

re-injected ones) shows the advantage of the enhanced reconciliation in that regard.

In figure 3.10 the distribution is visualised by plotting a histogram of the average relative

difference per measurement Drel,mea/12, for the raw data, the conventionally reconciled and

enhanced reconciled data. It can be seen that the peak (and also the average) is approximately

at the same place but the distributions larger for the reconciled values. This is not surprising

since the reconciled values have been calculated under several constraints, this leads to

coherent data, with increased confidence in the values, but the errors are propagated and thus
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Figure 3.10: Distribution of average Drel values of measured variables for raw, conventionally and enhanced
reconciled data.

combine. The effect is even stronger for enhanced reconciliation since more constraints are

added but the confidence in the values and especially in the parameters increases.

3.7.5 CASE 4 – Under Specified Systems

A special case is a situation with an amount of measurements that do not entirely allow

to define the process (e.g. if a piece of the measuring equipment fails). In order to show

the behaviour we will reduce the amount of available measurements by one compared to

CASE 2, deleting the air outlet temperature (CASE 4.1). We introduce an estimation of 35.5 ◦C

(instead of a true value of 35 ◦C) and an inaccuracy of 10 %. As measurements we use the same

1500 points as in CASE 2.1. From the results it can be seen that even though the amount of

measurements would not allow to calculate the entire system we are able to reconcile values

with a Drel average of 1.457 for the last 100 time steps. At first it might be surprising that the

average Drel is lower than in CASE 3.1, but this can be explained by the fluctuation of the now

missing measurement that is included in the cases before. Even though the first estimation is

off, the reconciled values tend quickly towards the true value (figure 3.11).

In other words, the estimation of the other re-injected values gains more importance and

since it was precise for this test, it leads to higher overall precision.

When we do conventional reconciliation and we suppose the same 35.5 ◦C and 10 % inaccuracy,

the reconciled values are further off as can be seen in table 3.4.
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Figure 3.11: Relative differences between true and reconciled values of re-injected variables CASE 4.1.

Table 3.4: Drel values of case 4.1.

Drel 1501-3000
Enhanced
reconciliation

Conventional
reconciliation

Average 1.457 11.222
Minimum 0.424 9.049
Maximum 2.776 15.661

Average Penalty 0.378 0.259

3.8 Non-Steady State – CASE 5

The analysis is quite different for non-steady-state or transient processes. Under transient

we understand situations which can be separated into quasi-steady state situations, in order

to make reconciliation possible. The stabilising effect of the enhanced data reconciliation

asks for careful modelling. In order to make the enhanced reconciliation work, it has to be

made sure that the parameters for re-injection are actually constant. To demonstrate this we

show a first case (CASE 5.1). The inaccuracies are not re-injected for this demonstration. We

fixed the inaccuracies to 1.5 % and put as start values precise estimations as done above. The

measurement values used are a variation of the true values. We applied an increase to the air

inlet temperature from 15 to 20 ◦C, but keeping the heat load constant, the outlet temperature

is increased from 35 to 38 ◦C. These two temperature changes affect the mass flow rate and

the humidity at the air outlet as well as the heat transfer coefficient. The rest of the variables

are assumed to be constant, we call this data set the non-steady true values. In CASE 5.1 we

apply a gradient, which increases the temperature linearly and when arriving at the maximum

temperature decreases it with the same slope; one “cycle” of increasing and decreasing is

done in 1281 time steps. This is equivalent to a gradient of 0.052 % per time step regarding

the air inlet temperature. The plot of the true and reconciled values of the air outlet humidity

figure 3.12 and the relative distances figure 3.13 of the re-injected variables show the effect of

the stabilization.
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As we can see from figure 3.14 and table 3.5, the penalties are higher for the enhanced recon-

ciliation; this could easily be used as an indicator for a process that should otherwise be stable.

This can be especially interesting for tracking degradation or fouling of equipment.

We propose higher inaccuracies for non-steady states. Table 3.6 and figure 3.15 show the

impact of the inaccuracies.

By looking at the physics of the model, the only constant parameter is identified to be the

heat load. Thus a second non-stationary Case 5.2 is presented, which uses only the heat load

as re-injected parameter. In figure 3.16 it can be seen, that the system is stabilized by this

parameter. The Drel value of this case is 4.446 %, the estimation of the parameter heat load is

very precise.

In conclusion we can say that in the case of quasi-stationary transient situations the method-

ology can be used, but is very important to identify parameters that are actually constant.
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Table 3.5: Drel values of case 5.1.

Drel 1501-3000
Enhanced
reconciliation

Conventional
reconciliation

Average 29.238 5.514
Minimum 1.243 1.92
Maximum 61.565 13.072

Average Penalty 0.165 0.124
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3.9 Application to LOVE-Demonstrators

The data from the LOVE-Demonstrators (figure 2.15 and figure 2.11) have shown some strong

incoherences, which led to heated discussions in the LOVE-Consortium. For example, the

energy balance between the hot gases and the water loop showed a gap of sometimes more

than 100 kW which is too much, to be explained by losses. The reasons for these incoherences

were multiple: temperatures near the dew-point were disturbed by condensation on the

thermocouples, the gas flows were turbulent and inhomogeneous due to winding piping,

making it difficult to use them. We thus built flowsheeting models which represent the

thermodynamics of the demonstrators and which could be used to reconcile the measured

values.

We made tests with enhanced data reconciliation on the data from the demonstrators in

order to increase the reliability of the reconciliation. Since the enhanced reconciliation uses

information transfer between measuring periods, the state must be as steady as possible or the

identified parameters independent of the changes. Unfortunately the experiments in Höver

and Kollenbach were not steady enough to apply this novel method to the measurements

in most cases. We used the enhanced data reconciliation on the identification of the heat

transfer coefficient of the direct boiler with the environment. It was necessary to make a few

assumptions for this, which are shown below.

3.9.1 Model Description

The model is programmed in Belsim Vali (Belsim, 2011) and controlled by a Matlab script

(MathWorks, 2012), which saves the measurements in the right format, launches the Vali

model, recovers the results and stores them in an accessible format. The application of the

reconciliation is done in Vali for each set of data one by one.

The pretreatment of the raw data includes the application of a moving average. This is

necessary because the distance between the different parts of equipment and the resulting

transportation times of the fluids between them introduces a delay in occurring perturbations

and changes of state. In other words, it is a way to enable the stationary model to receive a set

of data which is coherent, without applying time shifts between measurements (measurement

A at time t corresponds to measurement B at t −5 etc.). It also has the advantage of reducing

the influence of local fluctuations e.g. due to a turbulent flow pattern, which appears like

“noise” in the raw data. The average is applied over a time period of 2 min and 35 s, which cor-

responds to the time the fluids need to circulate twice through the system for the installation

in Höver. The decision to chose a period of time corresponding to the twice the circulation

time through the system has been made, in order to average momentaneous perturbations

with two unperturbed values. An example of how this affects the measured data is shown

in figure 3.17. As can be seen in figure 3.18, the heat exchangers recovering the heat were in

and on the roof of a building (on the left), while the containers containing the turbine, and
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Figure 3.17: Panorama photo of the LOVE demonstrator in Höver.

other equipment were outside on the ground, leading to such a long circulation time. At the

Kollenbach installation the direct boiler was installed next to the container containing the

turbine, thus a shorter circulation time was achieved. Consequently the moving average was

chosen shorter, 1 min and 30 s were sufficient.

The prepared data files in an Excel format were then read line by line (data set by data set)

by the Matlab script and written into so called mea files. A mea file is a data format of Vali

which allows the software to read it as a set of measurements corresponding to the tags of

the model, with their corresponding inaccuracy. Vali reads the measurement data, does the

reconciliation as described above in chapter 3 and writes an output file. The output file is then

read by the matlab script and again the results are stored line by line (dataset by dataset) into

a spreadsheet.

The flow sheeting model itself takes all thermodynamic constraints (heat and mass balances)

into account. It is build in a way that parameters like the turbine isentropic efficiency can be

identified. For some values a set of additional equations is added to the problem, either by the

use of so called controllers, which link tags in simple linear equations or by the use of Flexcode

which is a Fortran like programming language.

The types of measurements that where included are: temperatures, pressures, mass flow rates,

chemical compositions, humidity, wattage of the generator. In case of the Höver demonstrator

shown in figure 2.11 a total of 75 measurements were used for the data reconciliation. In

case of the Kollenbach demonstrator shown in figure 2.15, 78 measurements were used. It is

higher because in the first demonstrator quite a few measurements failed and were replaced

only afterwards and with the experience from the first demonstrator additional measurement

points were installed.
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Figure 3.18: Temperature measurement before and after application of moving average.

Below we will show the analyses that have been used to calibrate the ORC identification tool.

3.9.2 Turbine Isentropic Efficiency

The turbine used in the project was especially designed and produced by Cryostar SA, a

member of the LOVE-Consortium. It was designed to be used in both demonstrators with

always the same inlet pressure. Some details of the turbine design-point can be seen in

figure 3.19 which shows the information plate by Cryostar.

The isentropic efficiency of the turbine is interesting to be analysed in detail since it shows the

behaviour of the turbine especially in part load conditions. Information about the part load

behaviour can be used to identify the potential for improvement. It is defined as:

ηis = hin −hout

hin −hout,is
(3.15)

where the index is stands for isentropic, in and out denote the inlet and outlet of the fluid at

the turbine respectively.

With the enthalpy difference

Ḣturbine = Ḣin − Ḣout (3.16)
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Figure 3.19: Cryostar turbine specifications.

the energy flow rate from the fluid is calculated. By subtracting the measurement of the

electrical power, the combined friction and heat losses in the turbine (cooling) and generator

are calculated:

L̇turbogen = Ḣturbine − Ėmea (3.17)

where L stands for losses, turbogen describes the set of turbine and generator, Ėmea is the

measured electrical power. The heat losses are mainly cooling of the generator and the turbine,

which is done by a very small flow of refrigerant. The refrigerant for cooling is extracted at the

turbine inlet and re-injected at its outlet. The cooling loss is thus part of L̇turbogen.

In figure 3.20 the model of the turbine is shown. It can be seen that a “turbine” unit is used for

the calculation of the isentropic efficiency, and a separate “blackbox” for the calculation of the

friction and cooling losses.

Out of all the measuring periods only situations with the most steady behaviour were picked

for further analysis. In figure 3.21 the range of stable measurements for the turbine isentropic

efficiency is shown in relation to the produced power. Over 6000 measurements are included

in this graph, which result from twelve measuring periods aiming at several different set-points.

The range of each cluster shows the difficulty of stabilising the installation and is an indicator

that the isentropic efficiency is not solely a function of the produced power. A clear trend

however can be seen. The nominal power of 100 kW was not reached during the experiments,

it is thus impossible to show the entire range of isentropic efficiencies. However, in discussions
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Turbine

Turbine inlet

Turbine outlet

Turbogenerator losses

Measured
electrical
powerBlackbox

Figure 3.20: Model of the turbine used for reconciliation.

with Cryostar an efficiency of over 90 % was stated. An efficiency of 77 % at about 13 kW and

thus about 13 % of the nominal power was observed, which shows the remarkable stability of

the turbine behaviour throughout the entire domain of part-load use.

Figure 3.22 visualises the evolution of the friction and heat losses L̇turbogen in the turbine

and generator. The values which increase from about 8 kW to about 12 kW while more than

quintupling the produced electricity, show that the need for internal cooling and the friction

losses remain in the same order of magnitude. We could deduce that the cooling needs may

vary with the volume and energy flow, it seems however reasonable to assume that the inner

mechanical resistance and friction losses of the units stay almost constant, since the rotation

speed is kept constant at 10200 rpm (figure 3.19). These values can be used for improving the

ORC identification tool, shown in the next chapter.

It can be seen that the isentropic efficiency is quite stable over the entire range of part load

use, the same is true for the sum of friction and heat losses of the turbine and generator,

this emphasizes the need for proper integration of the ORC into the process in order to

produce a maximum amount of electricity in every situation. This also shows that the LOVE-

Demonstrator can be used in a wide range of applications with fluctuating amounts of heat

available, if they are above the needed inlet temperature of the turbine (which can only vary in

a very narrow range).

3.9.3 Heat Transfer Coefficient

The other example that will be shown here is the heat transfer coefficient of the direct boiler.

The heat transfer coefficient is the relation between the heat flow rate that is transferred over a

surface per degree of temperature difference:

U = Q̇trans

AHEX ·∆TLM
(3.18)
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Figure 3.21: Isentropic efficiency of LOVE-turbine reconciled.

where Q̇trans is the transferred heat flow rate and AHEX is the surface of the heat exchanger.

The temperature difference ∆TLM is calculated with the LMT D (equation 3.14). This is a

simplifications since we do not have any measurements of the real temperature within the

heat exchanger available, the biggest error occurs since the working fluid phase change takes

place at constant temperature. For the ORC-tool discussed in chapter 4 will use more precise

heat transfer models, which is explained in section 4.3.5.

For this illustration we chose the heat transfer coefficient of the finned tube heat exchanger

at the Kollenbach installation, since it is closest to the heat exchangers assumed for the ORC

identification tool, chapter 4. In order to calculate the coefficient the Fortran-like Flex code is

used, which is a tool of Belsim Vali.

Tags or variables are used for the thermal parameters, while the heat exchanger surface

(3005 m2) is hard coded. This corresponds to the total heat exchange surface composed of

137 m2 of tube surface and 2868 m2 of fin surface. This means a ‘total surface’-to-‘tube surface’

ratio of 21.93-to-1. We will use this for the economic models in chapter 4.

The heat transfer coefficients of the direct boiler shown in figure 3.23 are overall values,

including preheating, evaporation and superheating of the working fluid. It is not trivial

to estimate the heat exchange surfaces that are involved into each of the aforementioned

steps, thus we will not divide the heat transfer to estimate individual values. The test points

were all made with an evaporation temperature corresponding to an evaporation pressure
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Figure 3.22: Friction and cooling losses of LOVE-turbogenerator reconciled.

of approximately 5 bar except for the ones that are encircled in red, which were made with

an evaporation pressure of 4 bar. The values are in a range from about 85 W
m2 ·K

to about

135 W
m2 ·K

. The dry fin efficiency was estimated to be 75 % (Maalouf et al., 2012a). The impact

of the volume flow on the heat transfer coefficient is apparent, both for all measured data

together and for each set point (cluster) individually. Figure 3.24 shows in detail the cluster

of measurements (bottom left corner), taken on the 23. of September 2013, revealing the

spreading of the measured points. The measurements are too scattered to use them for

enhanced reconciliation in a meaningful way. Further more, no simple relation between

volume flow rate, pressure and heat transfer coefficient is precise enough to describe the heat

transfer coefficient sufficiently, even though they are obviously correlated.

A special case where we have applied enhanced reconciliation is the estimation of the heat

transfer coefficient of the exterior of the direct boiler, which is not insulated. The difficulty

here is that neither the mass flow rate of the hot gases nor their average temperature can

be measured precisely due to a high degree of turbulence and an irregular temperature

distribution. This means that there are too few measurements for a good estimation of the

heat losses. Thus we can use an estimation of the cement specialists, who considered about

20 W
m2 ·K

for the heat transfer coefficient. This value was introduced as a “virtual measurement”

and the reconciled values re-injected in the following time steps. Thus it is a combination of

the cases 4 and 5 that we have seen before. The results can be seen in figure 3.25 and show

that the reconciled values are all in the same magnitude. They have not yet converged to a
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Figure 3.25: Heat transfer coefficient of the direct boiler with the ambient.

stable value since the measurement period was too short for that. Even though this does not

lead to the true value of the heat losses with absolute certainty, the overall reconciled values of

the demonstrator are coherent and there is no gap in the heat balances, as could be observed

regularly in the not reconciled measurement data.

3.9.4 System Exergy Efficiency

With the reconciled data we were able to identify the exergy destruction in the demonstrators.

Figure 3.26 shows these for the Höver demonstrator, it is interesting to see that the largest

amount of the destruction is not at the level of the pump or turbine but at the level of the heat

transfers. The destruction between the working fluid and the water circuit and from the water

circuit to the working fluid account for 35.6 % points. Also, on the cold side the destruction

is considerable accounting for 29.1 % from the condenser to the cooling water and from the

cooling water to the environment.

For the Kollenbach site, where no water loop is used, figure 3.27 shows that the exergy de-

struction is lower. Again turbine and pump do not account for the largest amounts of exergy

destruction, but the flue gas to evaporator destruction is considerable (32.8 %). Also, the

destruction due to high cooling water temperature is quite high (11.7 %).This shows that the

use of a direct boiler is beneficial. It also emphasises the importance of a good integration of

heat sources and heat sinks, since those generate high exergy destruction.
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Figure 3.26: Sankey diagram of the Höver demonstrator showing exergy losses.
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Figure 3.27: Sankey diagram of the Kollenbach demonstrator showing exergy losses.
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3.10 Conclusion

In this chapter we introduced the method of classical data reconciliation. We then proposed

a new methodology of (parameter) enhanced data reconciliation, taking advantage of time

interdependencies between two measurements made within a short period of time. It consists

in calculating variables (parameters) within a measured system and injecting these variables

in the next time step of reconciliation as additional (virtual) measurements. Due to an example

that was constructed we could show the influence of data reconciliation and enhanced data

reconciliation on the accuracy between true and reconciled values. We showed that the

methodology is effective for reducing the inaccuracy of the identified parameters. In the case

of a setting where the measurements allow only for just calculating all variables, the difference

between the reconciled and actual state of the process can be reduced. Thus the methodology

is particularly interesting for processes which are measured without many redundancies. We

also showed that the a priori inaccuracies for the initiation should be chosen large if the

parameters were roughly estimated and can be smaller if they were well estimated. Since

in general this is not known precisely, a large initial inaccuracy value should be chosen. For

transient processes the methodology has limited use in two ways, either to identify unwanted

non-steady behaviour, or like conventional reconciliation in order to better reconcile the

measurements and increase the confidence in the reconciled values. The latter is possible

only if the relation between the parameters and measurements is known and the parameters

are not influenced by the transient behaviour.

Other than in traditional parameter identification, this methodology does not need any further

information from the steps before t−1. Also it only requires few information from time step t−
1: the chosen variables and the corresponding a posteriori accuracies. This way all information

from previous measurements are indirectly included, making enhanced reconciliation ideal

for online identification of parameters. Additionally the re-injected values are treated exactly

like measurements and thus are optimised within the same step as the physical measurements,

making the calculation quick and easy to implement into existing software. The limits are

in transient processes, which fluctuate strongly and in which no relations with constant

parameters can be identified. This makes enhanced data reconciliation ideal for the use in

chemical processes which require a high precision, like in the production of pharmaceuticals.

Applying data reconciliation to the experimental data from the LOVE-project has improved the

coherence of the data and thus made them interpretable. Calculating the relative difference

between raw and true as well as reconciled and true values is of course not possible since

the true values are unknown in experimental data. The data are used to check and validate

assumptions made for the Organic Rankine Cycle tool, which is described in the next chapter.

Even though we tried to apply enhanced data reconciliation to the experimental data, the

results were not encouraging, leading to convergence problems, this is due to the fluctuations

that were observed and to the fact that the we did not have precise relations between mea-

surements and parameters which are constant. The efforts to make the process steady did not

have the success that was hoped for, when starting the LOVE project. One parameter however
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for which we have applied the enhanced data reconciliation is the heat transfer coefficient of

the external surface of the direct boiler, which we use to calculate heat losses.

We could gain valuable information for the ORC identification tool, developed in the following

chapter, from the LOVE measurement data. The turbine isentropic efficiency is very stable

even at extreme part loads. 77 % at a load of approximately 13 % of the nominal load, in a

range from 27 % to 80 % of the nominal load, the turbine has an isentropic efficiency of about

85 %, we will use this value in the tool. Also, the friction and cooling losses of the turbine and

generator could be estimated. They are in the range of L̇turbogen = 10kW and do not increase

or decrease much throughout the range of functioning. This is also what the manufacturer

stated. We will thus apply this value in the tool. The overall heat transfer coefficient of the

direct boiler was reconciled to be between 85 W
m2 ·K

and 140 W
m2 ·K

. This will be used to validate

our heat transfer models. We suppose that the heat losses to the environment of the direct

boiler could be avoided by the application of insulation, we will thus not use it further for our

methodology. Another important point is that the proper integration of the ORC with heat

sources and heat sinks is crucial to reach a high overall efficiency, otherwise high levels of

exergy destruction in the heat transfers are the consequence.
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4 Suitable Cycle Identification

The use of low temperature (waste) heat for electricity production is limited on one hand by

the low exergetic potential (Borel and Favrat, 2010) of the heat sources and by the investment

cost on the other. High investment cost (Lazzaretto et al., 2011) in suitable technologies and

low electricity prices for industry in many parts of Europe and the world accentuate this. This

makes it necessary to carefully study all options necessary, including proper integration with

the process. Identifying the right thermodynamic cycle to integrate with an industrial process

depends on the actual waste heat potential found in the process, identified with the definition

described in chapter 1 and methods in chapter 2. Once the potential has been quantified

and qualified, a methodology can be applied to systematically identify adapted cycles for

electricity production. We will extend the use of the term Organic Rankine Cycle (ORC) to

cycles using mixtures as working fluids or which have a supercritical evaporation.

4.1 Objectives

Introducing a methodology allowing for any waste heat source, the identification of

optimal Organic Rankine Cycles, regarding specific investment cost and the amount

of electricity produced.

We propose a methodology that allows at the same time to identify and integrate (size) an ORC

into an industrial process with the aim of transforming waste heat to the largest amount of

electricity, while keeping the specific investment costs for the cycle as low as possible. All this

should be done in a way, that as little working fluids are excluded from the analysis as possible,

since no single fluid can be identified to be suitable for all heat sources.

4.2 State of the Art

The identification of a suitable cycle is difficult for numerous reasons, there is a large number

of possible working fluids, the design of the cycle itself can have different forms (stages,
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extraction etc.), pressure and temperature levels for a given fluid and cycle can be varied

largely. Additionally the equipment to use can have different forms and materials. In the

studies below and in tables 4.1 and 4.2 (from Quoilin et al. (2011)) we can see that there is

no single fluid that arises from the studies, rather a distinct solution is needed for every heat

source. In the table, (C., C. 2005) is Chammas and Clodic (2005), (D., B., 2007) is Drescher and

Brüggemann (2007), (B.-G., N., 2007) is Borsukiewicz-Gozdur and Nowak (2007), (M. H. et al.

2007) is Madhawa Hettiarachchi et al. (2007), (D., B., 2009) is Desai and Bandyopadhyay (2009)

and (M., M. 2010) is Mikielewicz and Mikielewicz (2010). WHR stands for waste heat recovery,

ICE for internal combustion engine and CHP is combined heat and power.

Many studies have been carried out in an effort to identify suitable working fluids and/or

parameters. Compared to water cycles which often have pressures above 60 bar, ORCs in most

cases need lower pressures (Quoilin and Lemort, 2009), this decreases the complexity of the

needed equipments, on the other hand they can show lower efficiencies for high temperature

sources.

The studies use very different methodologies and are usually done for a single heat source:

Sun and Li (2011) uses optimisation for the operating conditions of an ORC using R134a, by

either maximising the net power generation or the system efficiency.

The use of ORC in solar plants is shown in Rayegan and Tao (2011) where the fluids are first

preselected and then chosen by a sensitivity analysis. ORCs as bottoming cycles in power

plants are discussed in Roy et al. (2010) in the form of a sensitivity analysis of the three fluids

R12, R123 and R134a varying the turbine inlet pressure and temperature. 31 pure working

fluids have been put to the test in a sensitivity analysis by Saleh et al. (2007) using the Backone

equation of state (EOS) with the pressure limited to 20 bar. Liu et al. (2004) present a link

between the cycle efficiency and critical temperature, but state that the link is weak and not

sufficient for making a decision.

Hung (2001) does a sensitivity analysis on several fluids, looking at irreversibilities and pointing

out that system efficiency and irreversibility reduction in the ORC often have opposite trends.

Heberle and Brüggemann (2010) use exergy analysis for identification of a suitable working

fluid, four fluids (R227ea, Isobutane, R245fa, Isopentane) are tested in a sensitivity type

analysis. One of the studies with the largest number of analysed fluids analysed is Drescher

and Brüggemann (2007). The study which was conducted for ORCs in biomass combustion

mentions that the most commonly used is Octamethyltrisiloxane (OMTS). The analysis is done

using the Peng-Robinson equation of state (EOS) and the entire database of the American

Institute of Chemical Engineers, Design Institute for Physical Properties (DIPPR). Since the

heat source is the combustion of biomass, the temperatures at the inlet are rather high. The

conducted study analysed only thermodynamic parameters.

The use of fluid mixtures has been studied in Angelino and Colonna di Paliano (1998), arguing

that wet natural heat sinks (like water streams, lakes, oceans etc.) have a rather isothermal

character while dry sinks show rather a sloped temperature profile, which makes the use of
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mixtures with a temperature glide on the hot and on the cold side interesting. StanMix was

used for property estimation.

Schuster et al. (2010) analyse supercritical Organic Rankine Cycles, studying the sloped ge-

ometry, which adapts better to certain heat sources. They use a sensitivity analysis on several

fluids. Chen et al. (2011) make a sensitivity analysis of 22 refrigerants which are mixed and

used in supercritical cycles.

An application as a bottoming cycle is studied in Chen et al. (2006), amongst other fluids CO2

in a supercritical cycle is compared to organic fluids and found thermodynamically better

under certain conditions, back work ratio and cost are not considered.

In other papers similar analysis have been done by choosing a more (Maraver et al., 2012) or

less (Heberle et al., 2012) large number of fluids and testing them with different parameters

Schuster et al. (2009).

Other authors do not only look at the thermodynamic indicators but include others: For the

use in Ocean Thermal Energy Conversion (OTEC) systems, very large (100 MW) ORCs are

optimised with as an indicator the heat exchanger surface-to-power output-ratio by Uehara

and Ikegami (1990). Shengjun et al. (2011) study ORCs with a 80 ◦C to 100 ◦C geothermal

source in an iterative sensitivity analysis, calculating several indicators: thermal efficiency,

exergy efficiency, recovery efficiency, heat exchanger area-to-power output, levelised energy

cost. 16 fluids are analysed and the Turton (see below) method is used for cost estimation.

More sophisticated optimisation techniques are applied by some authors: in Wang et al.

(2012b) a the heat exchanger surface-to-power output-ratio is used as an objective, the heat

recovery efficiency is also analysed, both objectives are added to a single objective function

(thus supposes that they are addable). The analysis includes thirteen fluids and is done with a

simulated annealing algorithm. The use of optimisation algorithm is done by Dai et al. (2009)

who use a genetic algorithm, with turbine inlet pressure and temperature as decision variable

and the exergy efficiency as single objective. The optimisation is done for 10 fluids and the

REFPROP database is used. A genetic algorithm is also used by Wang et al. (2013) the heat

exchanger surface-to-power output-ratio as objective .

Madhawa Hettiarachchi et al. (2007) study four fluids for use in a geothermal heat source,

stating that most geothermal sources are in a temperature range of 50 ◦C to 350 ◦C. Pressure

drops in the heat exchangers are studied extensively (which we left aside in our methodology).

The cycles are very large (10 MW) compared to the waste heat sources we saw during this

thesis. They use an iterative steepest descent method for optimisation, decision variables are

evaporation temperature, condensation temperature and the velocities of geothermal and

cooling water, as an objective they use the ratio of total heat exchanger surface to total net

power.
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Papadopoulos et al. (2010) choose a different path to identify working fluids with the help of

Computer Aided Molecular Design (CAMD) with group contribution methods, thus they are

able to analyse working fluids which are not identified as of yet. Their study results also states

that 90 % of the cost of the cycles are introduced by the heat exchanger cost.

The integration of ORC in Cement plants was studied by Karellas et al. (2013), using pressurised

water in an intermediate circuit for heat transportation. A sensitivity analysis of four different

organic fluids (R245fa, Neopentane, Pentane, Isopentane) is done and compared to a water

cycle, concluding that a water steam cycle performs best thermodynamically. Another example

for introduction of ORCs in Cement plants is presented by Legmann (2002).

All these methodologies are relatively heat source specific, or do not include investment cost

except as a heat exchanger surface. Another problem is the pre-selection of fluids which can

disqualify the method for some applications.

Two more complete and complex methodologies, partially similar to the one developed by us,

have been presented: Quoilin et al. (2011) propose a sizing and cost optimisation tool with a

few similarities to the methodology proposed below. They state that the use of regenerators

is not advantageous in waste heat applications and exclude them, which we do not have to

do since we are using heat integration. Similarly to us, they optimise power output (heat

source to power) and not cycle efficiencies (cycle input to power). The optimisation is done

in two steps, first the thermodynamic parameters, sizing and pressure drops are studied in

an iterative sensitivity analysis and in a second step the economic parameters are optimised.

Eight fluids are considered with the following decision variables for the optimisation of the

specific investment costw: the evaporation pressure, condenser and evaporator pinch as well

as the pressure drops in those two heat exchangers with a Simplex algorithm (which we also

use for the MILP solver described below). The cost functions are very different from the ones

we use and based on Belgian prices of the year 2010. The cycles that are shown have 3.5 kW

and above with minimum costs of 2136 EUR /kW.

A methodology which was very recently published and which shows several similarities to the

one presented here is proposed by Imran et al. (2014): a genetic algorithm is used for a multi

objective optimisation, minimising the specific investment cost, maximising the efficiency.

Five fluids are introduced in an iterative methodology, optimising some parameters. The

Turton method is used for cost estimation as described below. The cycles which result produce

between 30 kW and 120 kW and a specific cost of more than 3200 USD /kW.

The methodology proposed in this thesis, aims to analyse at the same time the economic

indicators and thermodynamic indicators (in a multi objective optimisation) with a methodol-

ogy that allows to choose between multiple fluids and cycle configurations. This is achieved

combined with an integration into the industrial process. In the following we will describe the

steps which are involved.
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4.3 Method Description – Multi-Objective-Optimisation

The methodology for the identification of suitable cycles is based on a prior identification of

the waste heat potential (as in chapter 1 and chapter 2) of an industrial process. The resulting

composite curves will be used for the integration of the low temperature electricity production

cycle (LTHC) (figure 4.1). The identification of suitable cycles is done with a Multi Objective

Optimisation approach. In a multi objective optimisation, cycles are generated and integrated

into the process by selecting a set of decision variables and then evaluated with respect to

multiple objectives. The best solutions are kept in order to create a list of Pareto optimal

solutions. A Pareto optimal set of solutions is reached, if the improvement of one objective

can only be achieved by deterioration of at least one other objective (Leyland, 2002).

The multi objective optimisation thus identifies a set −→z of solutions in the space which is

defined by the decision variables, which satisfy the objective functions F (−→z ,−→y ):

Minimise or Maximise(F (−→z ,−→y )) (4.1)

subject to:

−→
h (−→z ,−→y ) = 0
−→g (−→z ,−→y ) ≤ 0

−→
L (−→z ,−→y ) = Tr ue

(4.2)

The constraints (equations 4.2) represent the equalities (
−→
h (−→z ,−→y ) = 0), inequalities (−→g (−→z ,−→y ) ≤

0) and logical (
−→
L (−→z ,−→y ) = Tr ue) equations that define the problem.

The optimisation we apply is organised in a master and slave part. The master part being

the multi objective optimisation using a genetic algorithm and the slave optimisation, which

does the integration (Pinch analysis) and has the form of a Mixed Integer Linear Programming

(MILP) problem, with a single objective.

We use two optimisations for multiple reasons. The genetic algorithm allows to treat sub

models like black boxes. This makes the combination with existing tools very easy, since

they can be used as such and only the initial data have to be handed over and the results

have to be recovered. No equations or derivatives have to be transferred. This is especially

useful for thermodynamic models and for flowsheeting tools. It is unrealistic to recover the

equations from these models or tools or to reprogram them. One reason why we do not solve

the entire optimisation with the multi objective genetic algorithm is the resolution time. The

resolution time of the genetic algorithm increases exponentially with the addition of every

decision variable. This is due to the size of the search space which gains a new dimension

per decision variable and the combinatory possibilities of different decision variable values.

The other reason is the risk of not finding the global optimum. If many decision variables

are used in the genetic algorithm, there is a higher risk that parts of the search space are not
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Figure 4.1: Algorithm of cycle identification embedded in integration with Multi Objective Optimisation.
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analysed, thus the optimiser only converges to local optima instead of the global optimum.

The exclusive use of a mixed integer linear programming solver is difficult as well. One reason

is that many of the used equations are non-linear and performant and suitable mixed integer

non-linear programming solvers are not available. A linearisation of all models would lead to

a loss in precision, also it is unrealistic to redevelop all thermodynamic model equations with

the precision that is available in external tools. Therefore, combining both types of solvers

with the goal of using as little decision variables as possible in the genetic algorithm and to use

the speed of the mixed integer linear programming solver for as many equations as possible is

the compromise we chose.

4.3.1 Objective Function

In order to identify which cycles should be used within a particular industrial setting, one has

to be clear about the objectives on which the choice is based. Possible objectives from different

areas are: thermodynamic performance, economic indicators, environmental aspects, security

of electricity supply etc. A trade-off between different objectives can be represented by a list of

solutions, they are considered to have reached the optimum, if no objective can be increased

without decreasing another. The final choice (or weight) between the objectives depends on

the responsible persons for a possible investment.

Due to the design of our methodology (shown in figure 4.1) the master and slave optimisation

do not have the same objective functions. The overall optimisation obtains the results of the

master multi objective optimisation. The slave optimisation, however, has a single objective

and a linear objective function. This means that the role of the slave optimisation is to

orient the ORC choice towards the right solution. The solution is then re-evaluated in a

post-calculation using the non-linear equations of the multi objective master optimisation.

In the master optimisation (the multi objective optimisation) we consider two types of ob-

jectives (and objective functions) which we believe are the most likely to be used for the

decision:

Electricity Generation Maximisation:

Obj 1 = Max (Ė−
el) (4.3)

and

Specific Cost Minimisation:

Obj 2 = Min (CTM,spec = CTM

Ėel
) (4.4)

113



Chapter 4. Suitable Cycle Identification

Where CTM is the total module cost and Ėel, how these are calculated is explained throughout

this chapter. The maximisation of electricity production is equivalent to the increase of exergy

efficiency, thus they can be interchanged. The objectives are calculated by the use of a post-

calculation, after the integration, since at that point all necessary information are available.

The post calculation will be described below in section 4.3.8. Also we will see that in the

MILP slave optimisation (section 4.3.7), we have to chose one objective, which is due to the

limitations of the solver and the available information is not exactly the same of the two

mentioned above, this will be described in the section about the MILP.

4.3.2 Parameters and Constraints

There are several parameters that have to be set or chosen for the calculation of a cycle. Some

parameters are set up front in order to meet requirements and others will be used as decision

variables for the identification of the Pareto optimal solutions. There are qualitative and

quantitative parameters that can be constrained before starting the optimisation. Examples

of qualitative parameters are characteristics of the fluids like toxicity or flammability. Quan-

titative parameter are for example thermodynamic parameters like a maximum pressure or

temperature limits.

It is important to set the constraints on those parameters carefully before starting the optimi-

sation, because the resolution time depends exponentially on the space explored. Here we will

constrain the example problems and chose a maximum Global Warming Potential (GWP) of

the working fluids considered. Furthermore we will exclude all fluids that are already restricted

in use under the Montreal Protocol (United Nations Environmental Programm, 2014).

As an important design parameter, the number of stages and cycles can be constrained to a

certain number or to be larger or smaller than a certain number. To start with we will look at

single cycles, in a later extension dual cycles will be explained.

In order to minimize the decision variables, the subcooling temperature difference is fixed as

well as the mass flow rate of the cycle. The final mass flow rate and thus the size of the cycle

will of course be adapted in the process integration step; this means that depending on the

starting point (initial size), the solver of the integration step has to find a multiplication factor.

In our experience, choosing a base size within one or two orders of magnitude of the final

solution facilitates the quick convergence of the solver. The choice of fluids is limited to the

REFPROP data base (Lemmon et al., 2010) which we use for all thermodynamic calculations

in order to get coherent results. Other fixed parameters are turbine and pump isentropic

efficiencies.

The decision variables used for the optimisation are:

• Turbine inlet temperature

• Turbine inlet/Evaporation Pressure
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• Minimum Temperature Difference (∆Tmin) in heat transfers

• Condensation Start Temperature

These parameters allow fitting different cycle configurations with different heat sources pro-

files and heat sinks. Also they allow a maximum flexibility in the choice of the cycle, since

they can be applied to “classical” Organic Rankine cycles (with or without super heating) as

well as for mixtures or supercritical cycles. We will use a limit of 50 bar for our analysis, since

it was the maximum pressure that came up in the LOVE project in the discussions with the

industrial partners. This limit reflects the security concerns that arise from high pressures and

the risk of a leakage and the resulting dangers regarding the integrity of staff members and

installations. The Turbine inlet temperature is limited by the maximum temperature of the

heat source, the minimum temperature differences are left relatively wide between 0.5 ◦C and

30 ◦C. The condensation temperature is limited by the heat sink.

4.3.3 Genetic Algorithm

To generate the list of Pareto optimal solutions a genetic algorithm is used; it acts as an opti-

miser for the Multi Objective Optimisation. This algorithm is designed to copy the behaviour

of an accelerated evolution. At first a number of random sets of decision variables, repre-

senting the genes, is created and the resulting cycles (individuals of initial population) are

calculated. Afterwards the genes/decision variables can be combined from two individuals

and/or mutated. The algorithm keeps the individuals that behave well regarding the objectives

alive and thus creates families and converges towards the Pareto curve (set of Pareto optimal

solutions). The advantage of this optimisation algorithm is that the physical models can be

developed entirely separated, meaning also in separate software. Furthermore, no equations

have to be passed on to the optimiser, only the results. This makes it extremely versatile and

makes it especially suitable for non-continuous problems. In the first version of the tool that

we developed, the OSMOSE platform (Bolliger, 2010) was used, this platform is combined

with the Multi Objective Optimiser (called MOO) developed by Leyland (2002), which also has

been used by Gerber (2012), Gassner (2010) and others. This platform was developed in the

Matlab (MathWorks, 2012) language and had as an objective to be versatilely and applicable

to many different problems. Unfortunately the creation of the mathematical model, which is

then solved by the MILP solver explained below, did not satisfy all requirements for the tool in

its current state. Especially the solution time was quite long. The entire tool was redeveloped

using the programming language Python (Van Rossum, 2007), reducing and streamlining the

functioning to only the required functions. We recoded the tool for use with this new version

of OSMOSE, reducing the time for preparation of the mathematical model. The new tool also

uses a different genetic algorithm which comes in the Dakota (Adams et al., 2006) package

of mathematical solvers called Multi Objective Genetic Algorithm (MOGA) and explained in

detail in Eddy and Lewis (2001). The set of decision variables that is generated by the genetic

algorithm is first rounded (temperatures in K to the third digit after the dot and the pressure in

kPa to the first) and then passed to the thermodynamic calculations.
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4.3.4 Thermodynamic Models I: Thermodynamic Cycles

The thermodynamic models will be explained in two groups, the first group of thermodynamic

models are used to calculate the states of the working fluids and the mechanical and thermal

streams into and out of the cycles. The REFPROP (Lemmon et al., 2010) database and equations

are used for the calculation of the cycles via a script that allows direct access to the REFPROP

dynamic link library (dll).

The list of working fluids is given in appendix A, tables A.1 to A.5, where TC is the critical

temperature, pC the critical pressure and TB the normal boiling temperature. The data for

these tables were taken from: Lemmon et al. (2010); Calm (2008); Calm and Hourahan (2007);

United Nations Environmental Programm (2014); U.S. Environmental Protection Agency

(2014c); European Parliament and Council of the European Union (2014); Forster et al. (2013);

U.S. Environmental Protection Agency (2014b); United Nations Framework Convention on

Climate Change (2014); Facão and Oliveira (2009); U.S. Environmental Protection Agency

(2010); Tejon Carbajal (2009); U.S. Environmental Protection Agency (2014a) and Bundesamt

für Umwelt (2014). The fluids which are already under control due to the Montreal Protocol

(United Nations Environmental Programm, 2014) are listed in bold. Also in bold and with

an asterisk (*) are substances which are excluded due to their special character (highly toxic,

radioactive or for thermodynamic reasons (critical temperature below −100 ◦C)). In table A.6

and A.7 all the mixtures are shown, again the bold ones are those already under control of

the Montreal Protocol and thus excluded from the possible choices. R508a and b, R510a and

R416a were also excluded due to convergence problems of REFPROP, for example near the

critical point. It must also be noted that following decisions made after the Kyoto Protoco

(United Nations Framework Convention on Climate Change, 1997) and in an effort to reduce

the climate gas emissions throughout the EU and Switzerland, many other fluids will be

unavailable or their acquisition or use will be possible only under certain conditions. These

vary in the different legal frameworks (Bundesamt für Umwelt, 2014; European Parliament and

Council of the European Union, 2014) and over time. We will try to address that by limiting the

choice to working fluids with a GWP smaller than 3000.

The sequence of calculations for one set of decision variables is:

1. Check the feasibility:

• Is the set condensation temperature lower than the critical point?

• Is the set turbine inlet pressure above the condensation pressure resulting from

the set condensation temperature?

• Is the set turbine inlet temperature above the evaporation temperature resulting

from the set evaporation pressure?

• Is the turbine outlet “above” the two-phase-area?

• Are all thermodynamic parameters within the limits of the equations of state (EOS)

defined in REFPROP?

116



4.3. Method Description – Multi-Objective-Optimisation

900 1000 1100 1200 1300 1400 1500 1600 1700 1800
250

300

350

400

  4b  1
  2

  1b

  3b

  4

  2b   3

Te
m

pe
ra

tu
re

 [K
]

Entropy [J/kg.K]

Figure 4.2: T-s-diagram of a “simple” ORC with R1234yf, turbine inlet temperature at 120 ◦C and turbine
inlet pressure at 30 bar.

2. Check fluid by fluid what type of cycle applies (the area around the critical point has

been approximated in the figures):

• Calculate simple ORC characteristics (Figure 4.2)

• Calculate mixture cycle characteristics (Figure 4.4 )

• Calculate supercritical cycle characteristics (mixture (Figure 4.5) or single fluid

(Figure 4.3))

In figure 4.2 we can see that the cycles consist of several steps:

1 to 1b: Subcooling

1b to 2: Pump/Pressure Increase

2 to 2b: Preheating

2b to 3: Evaporation

3 to 3b: Superheating

3b to 4: Expansion/Turbine

4 to 4b: De-Superheating

4b to 1: Condensation

In the supercritical cycles the heating is done directly from 2 to 4b and there are no distin-

guishable points 2b or 3, in order to model this, these parts have been discretised into 20 linear

steps. In these steps the cp is assumed to constant. The information we need for our model
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Figure 4.3: T-s-diagram of a supercritical ORC with R1234yf, turbine inlet temperature at 120 ◦C and turbine
inlet pressure at 40 bar.

are the temperatures and the heat flow rate between one point and the next it is calculated by

e.g.:

Q̇1-1b = ṁ(h1b −h1) (4.5)

Where ṁ is the mass flow rate and h1 is the mass specific enthalpy at the first point and h1b

the mass specific enthalpy at the second point.

The isentropic efficiencies are considered as in chapter 3:

ηis,turb = h3b −h4

h3b −h4,is
(4.6)

where the index is stands for isentropic.

The shaft work of the turbine is given by:

Ėturb = ṁ(h4 −h3b) (4.7)

It has a negative value.

And the shaft work of the pump (positive value) is:

Ėpump = ṁ(h2 −h1b) (4.8)
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Figure 4.4: T-s-diagram of an ORC the mixture R407, turbine inlet temperature at 90 ◦C and turbine inlet
pressure at 30 bar.

With

ηis,pump = h2s −h1b

h2 −h1b
(4.9)

The net shaft power is thus:

Ėnet = Ėturb + Ėpump (4.10)

The overall heat input is thus Q̇2-3b and the overall cooling requirement Q̇4-1b. We thus have

an energy balance of:

Q̇2-3b + Ėpump +Q̇4-1b + Ėturb = 0 (4.11)

All feasible cycles are then calculated entirely considering a mass flow rate of ṁ = 1 kg
s , this

value is to be understood as an initial size, it will be multiplied by a factor which is determined

in the MILP-Solver, determining the optimal size. In order to solve the models, the assumptions

listed in table 4.3 are made.

The isentropic efficiencies have been chosen in accordance with the values observed during

the LOVE project with the two demonstrators. With the above models, all heating and cooling

requirements have been characterised and the turbine and pump work calculated. This is

done for all working fluids, then all cycles are put to the test in the MILP-Solver (described

below), which will give as a result the best cycle choice with the appropriate sizing.
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Figure 4.5: T-s-diagram of an ORC the supercritical mixture R407, turbine inlet temperature at 110 ◦C and
turbine inlet pressure at 49 bar.

Table 4.3: Assumptions made to calculate the ORC.

Description Value Unit

Pump isentropic efficiency efficiency ηi s,pump 0.70 -
Turbine isentropic efficiency ηi s,tur b 0.85 -
Subcooling after condensation ∆Tsub 2 K

Number of discretisation steps for
supercritical fluid temperature enthalpy profile

20 -

4.3.5 Thermodynamic Models II

The second set of thermodynamic models is used to calculate heat transfer coefficients fol-

lowed by the resulting heat exchanger surfaces. The size of surfaces are needed for economic

evaluation since the quantity of heat exchanged and the pinch temperature in a heat exchanger

represent a trade-off with the investment cost. By calculating the heat transfer coefficients,

it is possible to distinguish the different fluids further. The interest of this methodology is to

identify relative behaviour of working fluids; we thus consider a model heat exchanger for

all the fluids in order to calculate the heat transfer coefficients. This way the impact of the

working fluid is made obvious. This is not supposed to give us the final design of the used heat

exchanger, but rather to allow a ranking between the fluids possible.

The heat exchange surface calculation is done before the integration of the cycle into the

process. For this reason it is impossible to obtain the final surface, which would require the
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final temperatures between heat sources and sinks. The temperature difference between sinks

and sources is therefore assumed to be equal to ∆Tmin at every point (equation 4.12).

∆Tmin for LMT D (4.12)

Of course the final temperature differences are in most points higher than that and will thus

lead to a smaller overall surface in the final cost estimation described below in the post-

calculation. However, this estimation is conservative and less integrated solutions (with big

temperature differences between cycle and process streams) are penalised in regard to well

integrated (small temperature differences, close to ∆Tmin) solutions. This penalisation occurs

because of a stronger overestimation of the heat exchanger surface.

The heat transfer coefficient cannot be calculated the same way in every situation. We follow

the recommendations of the German Association of Engineers (Verein Deutscher Ingenieure

(VDI)).

The Dittus-Boelter-Equation (Incropera et al., 2006) is used for all situations where no evapo-

ration or condensation are involved, these are: Pre-heating; Super-heating; De-super-heating;

Sub-cooling; Entire heating for Super-/Trans-Critical-Cycles. The equation is:

Nu = 0.23Re0.8 Prn (4.13)

Where

n = 0.4 for heating

n = 0.3 for cooling

Re Reynolds number

Pr Prandtl number

Nu Nusselt number

With the Nusselt number being:

Nu = αd

k
(4.14)

Where α is the local heat transfer coefficient, d the hydraulic diameter and k the thermal

conductivity of the fluid.

The VDI-Method Hbb (Verein Deutscher Ingenieure (VDI) and GVC, 2006) (supposed vertical

tubes) is used for evaporation:

α(z)k

αLO
=

{
(1− ẋ)0.01

[
(1− ẋ)1.5 +1.9ẋ0.6(

ρ′

ρ′′ )0.35
]−2.2

+ ẋ0.6
[
αGO

αLO

(
1+8(1− ẋ)0.7(

ρ′

ρ′′ )0.67
)]−2

}−0.5
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(4.15)

Where

ẋ fraction of vapour flow

ρ′ liquid fluid density

ρ′′ gaseous fluid density

With the indices

LO entire massflow liquid

GO entire massflow gaseous

And z is the coordinate across the tube. The two local heat transfer coefficients αLO and

αGO are calculated with the above equation 4.13. The local heat transfer coefficient in the

vapour-liquid phase is then calculated in ten discrete points, varying ẋ from 0 to 1.

The VDI-Method Ja (Verein Deutscher Ingenieure (VDI) and GVC, 2006) (supposed vertical

tubes) is used for condensation:

Nu∗
F,x =

√(
KPh,l NuF,x,l

)2 + (
KPh,t NuF,x,t

)2 (4.16)

With the indices

t turbulent

l laminar

F film

Where

KPh the correction factor for phase limit.

Which is calculated in the laminar case:

KPh,l = 1+ (Pr0.56
F −1)tanhτ∗D (4.17)

and for the turbulent flow:

KPh,t = 1+ (Pr0.08
F −1)tanhτ∗D (4.18)

Where τ∗D is the dimensionless shear stress.

Again, the transfer coefficients are calculated in ten steps varying the value of ẋ from 1 to 0.

The α values of the different steps are then averaged over the entire evaporation and conden-

sation respectively. For the fluids which do not have the necessary equations in REFPROP

(unfortunately this is the case of the Siloxanes) to calculate the local heat transfers, the coeffi-
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cients are assumed to be 2000 W
m2 ·K

for subcooling, 3500 W
m2 ·K

for preheating, superheating,

de-superheating and condensation and 5000 W
m2 ·K

for evaporation.

The overall heat transfer coefficients are calculated with the relation:

U =
(

1

αout
+ 1

αsteel
+ 1

αORC

)−1

(4.19)

The heat transfer coefficient of the heat exchanger wall is assumed for a wall thickness of

0.002 m leading to αsteel = 8500 W
m2 ·K

, this represents the conductivity. The hot side of the

heat transfer is assumed to be hot air between 200 ◦C and 50 ◦C at ambient pressure, which

leads to an average heat transfer coefficient for the hot side of αout = 70 W
m2 ·K

. The cooling is

assumed to be done with liquid water at a temperature of 20 ◦C, we thus find a heat transfer

coefficient of αout = 1086 W
m2 ·K

. The overall heat transfer coefficients of the heating is thus

Uheating = 68.08 W
m2 ·K

, at the evaporation Uheating = 68.48 W
m2 ·K

, at the cooling and condensation

Uheating = 755.19 W
m2 ·K

and subcooling Uheating = 650.00 W
m2 ·K

. If we compare these values to

those found in the LOVE direct boiler (figure 3.23) which are in the range of 85 W
m2 ·K

to 140 W
m2 ·K

for heating and evaporating the working fluid, the assumptions we made for the tool are very

conservative and will lead to rather larger heat exchange surfaces, thus higher cost. This

means that the tool also applies for a less optimised heat exchanger than the one used in the

LOVE project which was studied in depth before installation (Maalouf et al., 2012b).

4.3.6 Economic Models

The MILP optimisation, solving the integration of the ORC into the process, can be set in

a way that the integration is done, optimising different characteristics. If cost optimisation

is selected for the integration, the solver will minimise the cost. If the mechanical power

output is optimised, the solver will chose and integrate the cycles in a way that a maximum

power output is achieved. For the mechanical power, the differences between the cycles

is resulting from thermodynamics. For the cost optimisation however, cost functions have

to be introduced in order to define the cost. The cost differences between fluids are made

quantifiable by calculating grass root costs using the cost functions defined by Turton (2012)

which are themselves a combination of methods proposed by Ulrich (1984) and data as well

as correction factors by Peters and Timmerhaus (1991); Guthrie (1969b, 1974, 1969a); Ulrich

(1984); Navarrete and Cole (2001), and Perry and Green (1997). The function for calculation of

the purchasing cost (C 0
p ) in US-Dollar of any type of equipment for ambient temperature and

pressure conditions made of carbon steel (CS) is given by:

log(C 0
p ) = K1 +K2 · log(A)+K3 · (log(A))2 (4.20)
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Where K1, K2 and K3 are equipment dependent parameters. A is the sizing parameter (“equip-

ment cost attribute”), which gives a characteristic size information depending on the type of

equipment.

If the gauge pressure is not equal to the ambient pressure, a correction factor Fp may have to

be applied:

log(Fp ) =C1 +C2 · log(pg )+C3 · (log(pg ))2 (4.21)

Where C1, C2 and C3 are the equipment depending parameters and pg is the gauge pressure

in bar. We use the following relation to transform absolute pressure to gauge pressure:

pgauge[bar] = pabsolute[bar]−1bar (4.22)

If the equipment is not made of carbon steel, a material factor FM (table 4.6) has to be applied

to account for the price differences of the materials and the different effort to process them.

The correction factors are included in the bare module factor FBM:

FBM = B1 +B2FM FP (4.23)

Where B1 and B2 are supposed to account for: Materials required for installation, labor for

installation, freight, insurance, taxes, construction overhead, contractor engineering expenses,

contingency, contractor fees, site development, auxilary buildings, off-sites and utilities (elec-

tricity, water consumption during set-up).

The change of prices and inflation over time are taken into account, It and It,ref are the

corresponding indexes. It,ref is the index of the year, in which the cost parameters where

established and It is the most recent available, or the index of the year of interest. These CEPCI

indexes (Chemical Engineering’s Plant Cost Index) are published by the journal of Chemical

Engineering (Vatavuk, 2002). Since the data we use here where all accounted in 2001 prices the

reference index is 397, as a reference we use the CEPCI of April 2013 (Chemical Engineering,

2013) which is 595.9:

It

It,ref
= 595.9

397.0
(4.24)
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Table 4.4: Equipment Cost Data.

Type of Equipment K1 K2 K3 Sizing parameter

Multiple Pipe Heat Exchanger 2.7652 0.7282 0.0783 Area, m2

Radial Turbine 2.2476 1.4965 –0.1618 Fluid power, kW
Centrifugal Pump 3.3892 0.0536 0.1538 Shaft power, kW

Finally the total module costs, which represent the cost for a development of the ORC on an

existing industrial site are calculated by adding an additional factor, which is quantified by

Turton to be 1.18:

CTM = 1.18CBM = 1.18
n∑

i=1
CBM,i (4.25)

Where i is an equipment and n the sum of all equipments.

The total module cost as the sum of the cost for each piece of equipment of the installation is

then:

CTM = 1.18
It

It,ref

n∑
i=1

FBM,iC
0
p,i = 1.18

It

It,ref

n∑
i=1

(B1,i +B2,iFM,iFp,i)C
0
p,i (4.26)

For the tool, three types of equipment are considered: multiple pipe heat exchangers, radial

turbine and centrifugal pump. The corresponding K values are shown in table 4.4, the pressure

correction values are given in table 4.4. In this work we limit the decision variable of the

turbine inlet pressure to 50 bar, the pressure corrections are valid up to a pressure of 100 bar.

Above this value, other factors have to be used, which can be found in Turton (2012). The

material factors are shown in table 4.6, only carbon steal (CS), copper (Cu) and stainless steel

(SS) are considered. The turbine material factors replace the turbine bare module factors.

The constants for the other bare module factors are summarized in table 4.7. As assumptions

for the ORC tool, the materials used are: carbon steal for the pump and the turbine and

stainless steel for the heat exchanger, tubes and shell, the pressures are calculated from the

thermodynamic data.

We assume that the heat exchangers used are of the same type as the direct boiler that was

used in the LOVE project, a finned tube heat exchanger. As we have seen in section 3.9 the

heat exchanger surface in the heat exchanger was (3005 m2 including the tubes and fins. This

corresponds to 137 m2 of tube surface and 2868 m2 of fin surface. We also thus know that

the ‘total surface’-to-‘tube surface’ ratio is 21.93-to-1. Since we are using multiple pipe heat

exchangers for the cost estimation we can not use the entire surface for the cost calculation,

125



Chapter 4. Suitable Cycle Identification

Table 4.5: Equipment Pressure Factors.

Type of Equipment C1 C2 C3 Validity

Multiple Pipe Heat Exchanger 0 0 0 pg <40 bar
0.6072 –0.9120 0.3327 40 bar<pg <100 bar

Radial Turbine 0 0 0 -
Centrifugal Pump 0 0 0 pg <10 bar

–0.3935 0.3957 –0.00226 10 bar<pg <100 bar

Table 4.6: Material Factors.

Multiple Pipe Heat Exchanger

CS-shell/
CS-tube

CS-shell/
Cu-tube

Cu-shell/
Cu-tube

CS-shell/
SS-tube

SS-shell/
SS-tube

1 1.3 1.7 1.8 2.7

Centrifugal Pump

Cast Iron Carbon Steel Stainless Steel

1.5 2.3 4.4

Turbine

Carbon Steel Stainless Steel

3.5 6.1

Table 4.7: Constants for Bare Module Factors.

Type of Equipment B1 B2

Multiple Pipe Heat Exchanger 1.74 1.55
Centrifugal Pump 1.89 1.35
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otherwise we will have a surface which is far too large. We will thus use only the tube surface for

the sizing parameter A in the cost estimation. For the LOVE direct boiler, the purchasing cost

were 39300 EUR for an exchanger that was made with copper tubes and aluminium fin-sheets.

If we apply the cost function (equation 4.20) with a surface of 137 m2 we get a purchasing price

of 47713.85 USD with a conversion factor of 0.8 EUR /USD a price of 38171.08 EUR is obtained

for a carbon steel version. Since the evaporation pressure of the LOVE demonstrator is about

5 bar the pressure correction is unity, the material correction would probably be 1.3, even

though the exact materials are not available. It should be noted here that before purchasing the

LOVE direct boiler, inquiries for other materials had been made and a stainless steel version

would have been twice as expensive, which also corresponds to the correction factor for a

complete stainless steel unit which is little more than twice as large (2.7). It is obvious how

close the estimated and the paid costs are, we thus consider this method validated and divide

all surfaces estimated with the thermodynamic models II by the ‘total surface’-to-‘tube surface’

ratio of 21.93-to-1. However, since the tool is supposed to work with all kinds of waste heat

streams, even very corrosive ones, we consider the heat exchangers to be made of stainless

steel per default, thus we apply the material factor of 2.7. Furthermore, we consider that

the there are 3 heat exchangers per cycle, namely a preheater, evaporator and superheater,

second an economiser and finally a de-superheater, condenser and subcooler. The total heat

exchange area is divided by three. This assumes that the three heat exchangers have the

same size. Physically this is of course a simplification and it is done on one hand to simplify

calculations and on the other hand, the heat exchanger cost are over estimated and thus more

conservative.

As for the cost of the turbine and the pump we use the cost equations as they are, they

underestimate the purchasing cost of the units when compared to the LOVE demonstrator,

but it has to be kept in mind that those were used for two very different installations and

chosen accordingly. The LOVE turbine was developed solely for the LOVE project, including

all the engineering and made to measure manufacturing. The cost for the LOVE turbine,

including the generator, were 288000 EUR, the turbine generator combination was developed

for 100 kWel which is approximately equivalent to a “fluid power” of 110 kW since we have

seen above that friction and cooling account for about 10 kW. If we calculate the purchase cost

of such a turbine with equation 4.20 we reach a cost of 33991.3 EUR. Including the correction

factor of 3.5 for carbon steel bare module cost of 118969 EUR is reached, this corresponds to

costs of 1189.69 EUR /kWel, considering the same losses as before. The high cost difference

between the “LOVE” turbine and a turbine estimated with the Turton method can be explained

by the experimental character of the tested turbine. In the “LOVE” project, the same turbine

was used in both demonstrators and was designed especially for this, which increased the

development cost drastically. The impact of size on the cost estimated with the Turton method

can be seen, if compared to a larger scale turbine of 1000 kWel. The specific cost are less than

half for the 1000 kWel when compared to the 100 kWel one.
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Table 4.8: Linearised Equipment Cost Data.

Type of Equipment L1 L2 Rang e R2

Radial Turbine 13110 273.92 100 to 250 kW 0.9977
Centrifugal Pump 2495.6 137.8 1 to 22 kW 0.9943
Multiple Pipe Heat Exchanger 114.01 338.83 10 to 100 m2 0.9998
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Figure 4.6: Linearisation of cost function – Turbine.

Economic Models for the MILP

The MILP solver, as the name states, can only use linear and integer equations. Thus cost

equation of Turton (equation 4.20) has to be linearised for each piece of equipment to a form:

C 0
p,l = L1 +L2 · A (4.27)

With respect to the linearisation A should satisfy:

Amin ≤ A ≤ Amax (4.28)

Where A is the sizing parameter, and L1 and L2 describe the size dependent and independent

impact on the cost. The results of a linearisation are shown in table 4.8, where range describes

the sizing parameters between which the linearisation was done. If the size exceeds the range

of the linearisation, the estimation will less precise. However, the costs are recalculated in the

post-calculation using the non-linearised equations.
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Figure 4.8: Linearisation of cost function – Heat Exchanger.

The correlation of the linearisation with the original cost functions is good since the range has

been chosen relatively narrow. Exceeding the linearised area will lead to an overestimation

of pump (31 % if exceeded 5 times) and expander cost (66 % if exceeded 5 times), and an

underestimation of the heat exchanger cost (15 % if the heat exchange area is exceeded 5

times). Overall cost will be overestimated for larger installations. If the range of the system

should be different, the cost calculations should be adapted. The linearisation of the three

considered units is shown in the following figures 4.6 to 4.8).

We have seen that the objective function of the master optimisation minimises the specific

investment cost equation 4.4. We can not calculate this in the slave optimisation since it is

not linear for differently sized ORCs. As cost variables, the MILP solver accepts two types of

cost, operation cost and investment cost. We will use this in order to do a work-around the
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impossibility of minimising the specific investment cost directly: we will calculate a simplified

version of the net present value (Turton, 2012) and use it for the objective function.

NPV =
n∑

i=1

Rt

(1+ i )t (4.29)

Where t is the a time period, Rt the return in period t and i the depreciation rate of the value.

We calculate the NPV for the yearly cost and revenues which consist of the operating cost Rop

and the electricity sales Rel. Like in the publication by Lazzaretto et al. (2011) two per cent of

the investment cost is assumed to occur as operation cost during the lifetime of the system.

Lifetime tl is assumed to be 15 years and yearly operating time top = 8000h.

Since the markets for electricity and other energy sources have shown to be volatile and

unpredictable during the last years, the prices (electricity and operation cost) are simply

assumed to develop with the value of money, so the depreciation rate is assumed to be 0. We

thus get:

NPV =
n∑

i=1
Rt (4.30)

Heat recovery is mostly interesting for larger industrial sites, so the entire electricity is as-

sumed to replace electricity import/purchase thus the price is based on the purchasing price

taken from Eurostat 2012 (European Union, 2014) second semester for industry with 2,000 to

20.000 MWh Band and is Cel = 0.1574EUR /kWh. The net shaft power Ėnet includes turbine

and pump shaft power.

Four values are calculated Cost1 and 2 describing the operating costs and electricity sales,

Cinv1 and 2 describe the total module costs, the first values Cost1 and Cinv1 are calculated

using the size independent part L1 of equation 4.27:

Cost1 = 0.02 ·1.18
It

It,ref

n∑
i=1

FBM,iL1,p,i (4.31)

Cost2 =−top · tl ·Cel ·1.32USD /EUR · Ėnet +0.02 ·1.18
It

It,ref

n∑
i=1

FBM,iL2,p,i (4.32)
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Cinv1 = 1.18
It

It,ref

n∑
i=1

FBM,iL1,p,i (4.33)

Cinv2 = 1.18
It

It,ref

n∑
i=1

FBM,iL2,p,i (4.34)

We can thus calculate the total lifetime value of the installation:

CMILP = Cost1+Cinv1+ fi · (Cost2+Cinv2) (4.35)

Where fi is the sizing parameter (or multiplication factor) of the ORC, that the MILP will use.

The costs calculated this way are not to be understood as final cost estimations of the instal-

lation. It is however a way to optimise the investment cost per produced electricity. In the

post computation described below the cost are re-evaluated, especially as the temperature

differences in the heat exchangers do not correspond to the final temperature differences,

thus overestimating the cost of the equipment as explained above in the Thermodynamic

Models II.

As pointed out at the beginning of this chapter, the objective functions of the MILP solver are

not the same as the ones for the overall optimisation. They are used, to orient the solutions

in the right direction. The post computation calculates the objective functions that are used

for the set of Pareto optimal solutions. That means, the assumptions made above (electricity

price, lifetime, yearly operation time etc.) do not impact the result directly. They are merely

used to identify the right solutions, not to give real values. The solutions found by the MILP

solver using the linear MILP objective functions are valid because both MILP objectives lead

to Pareto solutions which occupy partially the same solution space.

4.3.7 Integration – MILP-Solver

The integration is done using the tools of Pinch analysis (Bolliger, 2010) and is executed by a

Mixed Integer Linear Programming (MILP) solver. An MILP problem is a problem that contains

at the same time linear equations (including equalities, maximisations and minimisations)

as well as integer problems (these can be on-off problems, e.g. shall a unit be used or not,

or negative and positive whole number problems for example for the number of stages in a

cycle). Here a commercial solver is used to resolve a mathematical problem containing linear

equations and integer values. We use a solver by IBM called ILOG CPLEX (IBM, 2009) and a
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mathematical language called AMPL (Fourer et al., 1990). The linear equations are the heat

cascade and the sizing of the cycles as well as the objective functions and the cost functions.

The problem is constituted of several different elements (Maréchal and Kalitventzeff, 1998):

the process streams (heating and cooling requirements, with index pro), the streams of the

ORC, and the cooling utility. The process streams are not sizeable, while every unit (one ORC

or cooling utility) can be scaled with a sizing factor fi (for unit i) between fi,min and fi,max

which are chosen by the optimiser. The units which can be sized, ORCs and cooling utility,

are attributed an integer variable Ii which can turn the unit on or off. The entire problem

is separated in temperature intervals (transferring the heat from the cooling requirements

to the heating requirements from high temperatures to low temperatures) with the index k,

corresponding to the occurring temperatures. Also heat transfer from a temperature interval at

higher temperature to one at lower temperature is allowed, this amount of heat is designated

by Ṙk . Since we defined the heat in the thermodynamic models I for a mass flow rate of

ṁ = 1 kg
s we can suppose that for the sizeable units we get Q̇i,k = q̇i,k in temperature interval k

and the sizing factor fi carries the mass units, for the process unit the heat is Q̇pro.

With this information the solved MILP problems become:

Electricity Generation Maximisation (linked to the heat cascade by equation 4.11):

Obj 1 = Max (
ni∑

i=1
fi · Ė−

net,i) (4.36)

or Total (lifetime) Cost Minimisation:

Obj 2 = Min (
ni∑

i=1
fi ·CMILP,i) (4.37)

Subject to:

Heat Cascade =
ni∑

i=1
fi · q̇i,k +

npro∑
p=1

Q̇p,pro + Ṙk+1 − Ṙk = 0 ∀k = 1, ...,nk (4.38)

Ii fi,min ≤ fi ≤ Ii fi,max (4.39)

Rk = 0 ∀k = 1,nk (4.40)

Ii ∈ {1,0} (4.41)
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Since a cycle has an integer variable Ii and a multiplication factor fi , it is thus possible to add

constraints which define the number of chosen cycles to the problem of the type:

n∑
i=0

Ii = x (4.42)

where n is the total number of cycles. On the right hand side of the equation x can be chosen

freely between 1 and n (more precisely 0 and n although 0 would be nonsensical and lead to

the trivial solution of not investing into an ORC) and the equation can also be set with the

inequalities less than or equal to (“≤”) or greater than or equal to (“≥”). The integer problems

give the possibility to use or not to use a proposed cycle. If more than one cycle is allowed, it is

logical to increase the number of decision variables, the number of generated combinations

of turbine inlet temperature, turbine inlet pressure and condensation inlet temperature should

be multiplied by x (multiply by the number of units), thus several cycles with independent

characteristics (pressure levels, temperatures etc) can be combined. This case is discussed in

more detail in section 4.5. It should be noted that the resolution time of the solver strongly

depends on the number of integer variables.

The MILP-Solver then solves the problem for all cycles corresponding to the set of decision

variables at once, choosing amongst all “Ii , fi ” combinations that respect the constraints and

satisfy the objective. This way, the optimisation chooses between all fluids from the REFPROP

database that comply with the choices made in the beginning (Respecting the legislation, ODP,

GWP limits etc) and which are feasible. The result is then treated in the post calculation.

4.3.8 Post-Calculation – Indicators

In the post-calculation, the results from the MILP-solver are treated and prepared before being

passed on to the master optimisation/genetic algorithm. Both objectives are re-calculated

based on the results of the MILP-solution, which always optimises only one objective.

Since we know at this point the hot and cold composite curve of the problem with the in-

tegrated ORC, it is possible to calculate the logarithmic mean temperature (LMTD) (equa-

tion 3.14) for every heating and cooling requirement of the cycle (or cycles) and with that

the heat exchange surface is computed. The procedure for determining the temperature

difference is explained in the case of a heating requirement:

1. For the entrance and the exit temperature of the heating requirement, the corresponding

spot on the composite curve is identified.

2. The facing temperature, meaning the temperature that is horizontally on the other hot

composite curve is identified. This is done by changing the format of the composite
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curves from heat-temperature to temperature-heat coordinates (this has to be done

carefully since they are not bijective).

3. The resulting temperature differences of both, inlet and outlet of the segment are used

to calculate the LMTD.

4. If the temperature differences are equal, the temperature difference is used instead of

the LMTD.

5. The surface A is calculated:

A = Q̇

U ·LMT D
(4.43)

Where A is the surface, h the heat transfer coefficient obtained by the thermodynamic

models II, and Q̇ is the transferred heat, which is calculated by multiplying the heat of

that interval as it was determined with the thermodynamic models I with the multipli-

cation factor, obtained in the integration with the MILP.

6. The surfaces of all sections are then summed up.

This methodology supposes strictly horizontal heat exchange (with regards to the composite

curves) and parallel heat exchangers in the case of more heat transfers in the same temperature

range. Thus we do not have to take care of any jumps or gradient changes of the composite

curves within the temperature range of the heat exchange.

With the total heat exchange surfaces it is possible to re-evaluate the cost for the heat exchange,

this is done very much as described above in the economic models. Since the calculation is not

limited to linear equations any more, the original (non-linearised) equations of the economic

models are used, this is especially important if the characteristic parameter exceeds the range

used for linearisation. Again, 3 heat exchangers are assumed for every ORC, which are used

for preheating, evaporating, superheating, de-superheating, condensation and subcooling,

possibly including a regenerator, if the integration makes that useful. Also, the surface of each

of the heat exchangers is not calculated one by one, but it is a third of the total surface, thus

overestimating the cost, giving a more conservative total cost. This makes the calculation sim-

pler, especially because the existence and size of an economiser (ORC to ORC heat exchange)

does not have to be tested. For pump (shaft) and turbine (fluid) power, the calculated values

from the thermodynamic models I are multiplied with the multiplication factors determined

by the integration are used.

As objectives of the multi objective optimisation the tool uses as defaults:

• Net Electricity Generation:

Ėel = Ėturb + Ėpump + L̇turbogen (4.44)
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Where Ė is the shaft work of the component. The losses L̇turbogen are assumed to be

10 kW, in accordance with what was measured during the LOVE project (figure 3.22).

However, this assumptions showed to be non-realistic and should be corrected as

discussed in 4.6.1 and chapter 5.

• Specific Total Module Cost

CTM,spec = CTM

Ėel
(4.45)

In USD /kWinstalled.

Another implemented possibility would be to use the (heat) exergy efficiency instead of the

net generated electricity: This is done by dividing Ėel by the sum of the heat exergies of all

process heating and cooling requirements:

ηex = Ėel

Ė−
q

(4.46)

Also it is possible to calculate implemented performance indicators of the cycle(s) like cycle

efficiency and back work ratio, however

The multi objective genetic algorithm optimiser is programmed to minimise the objectives, it

is thus necessary to change the sign (here for the net generated electricity) accordingly, before

sending the value.

It would be possible to calculate the production cost per kWhel or the net present value (as we

have done above for the MILP-optimiser), it is however dependent on the yearly operation

time (now and future), the operation cost, the present and future electricity price and the

depreciation or even inflation of money, therefore we prefer to look at the specific investment

(total module cost).

4.4 Solution Reliability Increase

The chosen objective for the MILP-solver, can either be thermodynamic (maximizing the

power output, equation 4.36) or economic (minimising the total “linear” cost, equation 4.37).

After (re-)calculating the objectives in the post calculation, the resulting set of integer variables

and multiplication factors (Ii , fi ), together with the values of the objective functions, is passed

back to the multi objective optimiser. The result depends on the chosen MILP objective. This

can be seen as a reliability problem in the sense that it reveals the MILP to be the “bottleneck”

of the entire procedure: the problem solved by the MILP is not the same as the problem solved

by the master optimisation. Whenever an integration with a single objective is used in a multi

objective optimisation this occurs. In other words, the chosen objective in the MILP problem

decides towards which objective the Pareto front is developed.
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Figure 4.9: Algorithm detail of cycle identification showing before (left) and after (right) the reliability
increase.

One way to counter this would be to use a solver that can optimise both objectives, thus not

resulting in one solution but a function of solutions which are all Pareto optimal. For that

it would be necessary to introduce the entire problem as mathematical functions into the

slave optimisation, which is not realistic, especially for the thermodynamic data. Furthermore,

many equations that are used upstream of the MILP are not linear, they either would have to

be linearised (which is again not possible for the thermodynamic data) or a solver that can

handle non-linear equations would have to be used.

We answer this issue by running the multi objective master optimisation one time per each of

the two MILP objective functions. This increases the solution time, but is effective and does

not make a complete redesign of the tool necessary.

The second problem, which shows the MILP as a bottleneck, is that the MILP can only handle

linear equations. Therefore, the difference between the best solution and an n-best solution,

generated by the MILP solver, could by within the imprecision of the linearisation. Thus, when

evaluating the two options in the post calculation, the n-best MILP solution could actually

be better than the best MILP solution. This can reveal problematic in the case where the

economic objective is chosen for the integration (MILP problem).
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The other source of possible “misjudgement” by the MILP solver occurs due to the temperature

differences in the heat transfers, which cannot be determined before integration. This can be

a problem if two solutions have a similar electric power generation, with one having smaller

temperature differences than the other. The MILP will solve this problem with the ∆Tmin

instead of the real LMTD, thus overestimating the cost of the solution with higher temperature

differences. This might change the order of the solutions.

To react to the last two points we modified the way that AMPL recovers the output from

the CPLEX MILP solver in a way that not the one best, but the n best solutions for Ii , fi are

calculated. We then apply the post calculation to all generated sets of Ii , fi . With the list of n

objective pairs we apply a simple minimisation. If objective function 1 is chosen in the MILP

optimisation, we calculate:

Min (Obj 1k ) (4.47)

And then return the pair of Obj1k and Obj2k for which objective 1 was minimal. All the results

of the n-best solutions are stored and can be added to the set of solutions building the Pareto

curve, if wanted. This novelty is represented in figure 4.9 which shows the concerned part of

figure 4.1. We discuss the relevance and choice of n in the application section below.

4.5 Multiple Cycles and Multi Stage Cycles

The specific cost of a piece of equipment decreases with the size, with a small gradient for the

heat exchanger and bigger gradients for the pump and turbine, therefore it is economically

interesting to use bigger sized ORCs (economies of scale). However, if the shape of the heat

sources enthalpy-temperature profile has a small gradient or jumps, it might be interesting to

fit a heat recovery technology which allows to adapt better to the form of the composite curve.

The need for flexible integration of the cycles with the process is already partially answered by

the use of mixtures and supercritical cycles, which do not have an evaporation plateau, but

rather a sloped evaporation (mixtures) or no clear evaporation at all (supercritical).

In cases with more complex shapes of the hot composite curves, including jumps, gradient

changes or exergy pockets, more flexibility is advantageous. One solution to meet these

requirements is the use of multiple ORCs. This is relatively easy to achieve by modifying the

constraint function 4.42 in the way:

n∑
i=0

Ii ≥ 1 (4.48)

This will make the MILP solver chose more cycles, if the objective function is met in a better

way. However, since all cycle choices are calculated with the same set of decision variables,
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they all have the same turbine inlet temperature and pressure as well as condensation inlet

temperature. Therefore, this simple solution is not suitable for all types of heat sources, for

example in presence of an exergy pocket.

The solution to this problem is the generation of an additional set of decision variables by the

genetic algorithm, consisting of the turbine inlet temperature, the turbine inlet pressure and

the condensation temperature. With these additional variables, the thermodynamic models

and economic models are calculated for a second time, thus increasing the number of cycles

put to the test in the MILP solver. The constraints function could then be set as:

n∑
i=0

Ii ≤ x (4.49)

Where x is the number of independent sets of decision variables.

The use of multi stage cycles is also addressed with this approach. However, it supposes that a

multi stage system cost as much as two single stage cycles, which is probably simplified.

The proposed methodology of using the n-best solutions from the MILP solver has a new

importance, regarding the net electricity generated: if multiple cycles are allowed, the friction

losses that have to be subtracted from the electricity generation have to be multiplied by the

number of cycles, this is done in the post calculation, after the MILP solver:

Ėel =
n∑

i=0
Ėturbine,i +

n∑
i=0

Ėpump,i +
n∑

i=0
(Ii · L̇turbogen,i) (4.50)

However, the assumption of using a constant value for the cooling and friction losses has

showed to be non-realistic and should be corrected as discussed in 4.6.1 and chapter 5. It

can change the order of solutions, if two solutions with a similar sum of net shaft power are

observed, but which have a different amount of cycles.

4.6 Application and Discussion

The working principles of the ORC selection tool have been explained. Hereafter we will

analyse its behaviour with examples from chapter 2.
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Figure 4.10: Integrated composite curve of R245fa ORC with Kollenbach heat source.

4.6.1 Impacts of Size, Heat Sink Temperature and Minimum Temperature Differ-
ence using the Example of the Kollenbach Heat Source

To begin with, we conduct a general analysis. This is done with the example of the heat source

profile that has been observed on the Kollenbach heat source (on September 22, 2013). A cycle

with R245fa will be integrated into the heat source, modifying some parameters in order to

analyse specific behaviour. The heat source and heat sink that are used have the following

characteristics:

Gas Inlet Temperature 108 ◦C

Gas Outlet Temperature 60 ◦C

Available Heat 688.3 kW

Cooling Water Inlet Temperature 20 ◦C

Cooling Water Outlet Temperature 25 ◦C

The ORC is integrated with the following parameters:

Turbine Inlet Temperature 63 ◦C

Condensation Temperature 33 ◦C

Turbine Inlet Pressure 4.7 bar

∆Tmin 8 K

In figure 4.10 the ORC can be seen in the integrated composite curve of heat source and heat

sink. The large exergy destruction above the cycle is obvious, the exergy efficiency of the cycle
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Figure 4.11: Impact of heat source load on net electricity generation and specific investment cost.

is 22 % (calculated with the lower temperature of the heat sink) and the generated electricity is

33.62 kW.

Impact of Size

Firstly, the impact of different sizes on the specific investment cost is analysed. This is achieved

by multiplying the available heat of the source from 30 % of the observed size to 1000 %. Below

30 % the installation consumed more shaft power than it could produce. The resulting net

electricity generation and specific investment cost are shown in figure 4.11, it is obvious that

the cost decreases with increasing size. This is due to two effects, the first is the form of the cost

functions, which show the same tendency, the second is the use of a fixed value for L̇turbogen

which probably does not represent the real impact, particularly for very small or very large

turbines. We will talk about this in the conclusion (chapter 5). It becomes even more evident,

if the exergy efficiency is considered instead of the specific investment cost as in figure 4.12.

Impact of the Heat Sink

The impact of the cold utility is particularly important for waste heat recovery at low tem-

peratures because of the small overall temperature difference between heat source and sink

(as we have seen in the introduction). We vary the heat sink inlet temperature (and outlet

temperature in the same measure) from 5 ◦C to 25 ◦C at intervals of 5 K and adapt the ORC

accordingly to show the impact. Figure 4.13 shows how the net electricity generation increases

with a decrease in the cooling water inlet temperature. Figure 4.14 shows how it impacts the

exergy efficiency. The available exergy changes by almost 25 % from 5 ◦C to 25 ◦C. This not

only stresses, the importance of the right choice of cold utility for the application of waste heat

valorisation with ORCs, but also underlines the importance of the condensation temperature

as a decision variable.
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Figure 4.12: Impact of heat source load on net electricity generation and exergy efficiency.
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Figure 4.13: Impact of heat sink inlet temperature on net electricity generation.

Impact of the Minimum Temperature Difference

The influence of the minimum temperature difference between heating and cooling require-

ments (∆Tmin ) also has an important impact on the amount of electricity that can be exported

from the installation. By varying ∆Tmin and increasing the evaporation pressure as well as

decreasing the condensation pressure accordingly, the impact is demonstrated. Figure 4.15

and figure 4.16 show, respectively, how the net electricity generation is influenced and the

resulting specific cost. The optimal specific investment cost is reached at approximately 4 ◦C

for this installation. It reflects the trade-off between maximising the power output and keeping

the investment cost for the heat exchange surface area small. At higher ∆Tmin the cost rises

quickly, this is mainly due to the narrow available temperatures between heat sink and heat

source, which decrease the produced power. The analysis shows how important the minimum

temperature difference is as a decision variable.
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Figure 4.14: Impact of heat sink inlet temperature on exergy efficiency.
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Figure 4.15: Impact of ∆Tmin on net electricity generation.

The chosen ∆Tmin does not only influence the overall cost, it also influences the shares of the

turbine, the pump and the heat exchangers. Figure 4.17 shows these shares as a function of

∆Tmin.

Compared to the estimation found in Quoilin et al. (2011), who found a specific investment

cost of 2700 EUR /kW for a cycle using R245fa with an output of 4.8 kW, the cost found here

is considerably higher for the same size. However, they considered a heat source at 180 ◦C,

which increases the available exergy substantially. Still, the cost of our methodology can be

seen as too high for small installations, especially below 10 kW. This is due to the used cost

functions and the constant value of L̇turbogen.
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Figure 4.16: Impact of ∆Tmin on specific investment cost.

Other Solutions for Integration of a Single ORC with the Kollenbach Heat Source

Figure 4.18 shows the Pareto front for optimised integration of an ORC in the Kollenbach heat

source. It can be seen that the electricity generation can reach 70 kW which corresponds to

an exergy efficiency of 45 % with a specific investment cost of 14000 USD /kW. The cycle is

shown in figure 4.19, the working fluid is surprisingly Acetone. The minimum temperature

difference for this cycle is 1.5 K. The specific investment costs are distributed as follows: heat

exchangers 25 %, turbine 65 % and pump 9 %. At this point it is important to mention, that the

low pressure in the cycle (around 1.3 bar) leads to relatively high volumes. It is unclear, how

well this is represented in the cost functions that are dependent only on one sizing parameter

per type of equipment.

The specific investment cost could be as low as 4700 USD /kW for an ORC which produces

53 kW and has an exergy efficiency of 34 %. This is achieved with a cycle using the mixture

R422D as a working fluid. The minimum temperature difference for this cycle is 1.5 K, as well.

The specific investment costs are distributed as follows: heat exchangers 71 %, turbine 23 %

and pump 6 %. The cycle is shown in figure 4.20.

Both examples show the use of ORC internal heat exchange. The statement that an economiser

was not needed in waste heat recovery, made by Quoilin et al. (2011) can not be confirmed.
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Figure 4.18: Pareto front of the integration of ORCs into a waste heat source from the Kollenbach cement
process with both MILP objective functions.
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Figure 4.21: Pareto front of the integration of ORCs into a waste heat source from the cement process,
allowing maximum one cycle with both MILP objective functions.

4.6.2 Discussion of the Pareto Curves, Solution Reliability Increase and the Spe-
cific Investment Cost Using the Example of the Cement Heat Source used
with the Commercial ORC

The heat source that was discussed in chapter 2 in the context of the use with a commercially

available ORC is used to demonstrate the Pareto curves. The source has two streams of hot

gases which can be cooled down from 300 ◦C to 120 ◦C and from 400 ◦C to 210 ◦C, respectively.

The available heat is 14280 kW; 2000 kW will be used in district heating and the remaining can

be used by the ORC (table 2.5). The heat sink that is assumed, is the one that was proposed by

the manufacturer. It consists of cooling water entering at 25 ◦C and leaving at 40 ◦C.

The resulting Pareto front is shown in firgure 4.21. The optimisation has been done with

both MILP objectives (cost minimisation and power maximisation). It can be seen that the

generated solutions are overlapping. However, the front of Pareto optimal solutions is made

up of points generated by each of the optimisations. This validates the choice of using both of

the objective functions in the MILP.

The Pareto front shown in figure 4.22 has been generated with the same heat source. However,

the MILP problem was modified to allow two ORCs by setting the constraint of integer variables

(cycles) to

n∑
i=0

Ii ≤ 2. (4.51)

Again, both MILP objectives have led to solutions at a Pareto optimum and their choice is

validated. The example for this large heat source shows that the integration of two ORCs

has increased the maximum net generated electricity by almost 16 %, when compared to the
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Figure 4.22: Pareto front of the integration of ORCs into a waste heat source from the cement process,
allowing maximum two cycles with both MILP objective functions.

single ORC optimisation. However, the specific investment cost increases by 108 % with this

additional power generation.

One experience we made is the necessity to set a specific investment cost for the trivial solution

(no ORC), otherwise the solver pushed the solutions towards zero net electricity generation

and zero investment. We chose 10000 USD /kW in order to be above the resulting investment

costs.

Impact of the Minimum Temperature Difference - Set of Pareto Optimal Solutions

Figure 4.23 confirms the overall impact of ∆Tmin on the set of Pareto optimal solutions. The

trend of increasing cost with a decreasing minimum temperature difference is obvious. How-

ever, several clusters (or families) of solutions can be identified. Between two clusters the strict

order by ∆Tmin is not always respected, which shows that other factors also have an influence

(pressure etc.). The same is true for the generated electricity, as can be seen in figure 4.24. The

generated electricity globally increases for the set of Pareto optimal solutions with decreasing

minimum temperature difference.
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Figure 4.23: Impact of ∆Tmin on specific investment cost.
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Figure 4.24: Impact of ∆Tmin on net electricity generation.
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Figure 4.25: Histogram of the chosen MILP solution for an optimisation where one cycles is allowed and
specific investment cost minimisation is the MILP objective function.

Discussion of the Solution Reliability Increase for Optimisations with One and Two ORCs

For the single ORC optimisation, with power maximisation as the objective function in the

MILP, the solution of the post calculation is obviously the first result generated by the MILP.

This is due to the fact that the only difference between the objective functions of the MILP

(equation 4.37) and the multi objective optimisation (equation 4.46) are the friction and

cooling losses. For the cost function however, the different objective functions can lead to

different results. We introduced the solution reliability increase in section 4.4, to address this

problem.

To measure the effectiveness of this novel methodology, the number of times each solution

of the n-best has been found to be optimal is analysed. For the single ORC optimisation,

with minimisation of the specific investment cost as the objective function in the MILP

(equation 4.37) this is displayed in figure 4.25. Only solutions with a specific investment cost

below 10000 USD /kW have been considered. Out of the 23215 generated solutions, 503 times

the tenth solution was chosen, representing 2 %. In 90 % of all cases, the optimum would have

been missed, had we not introduced the solution reliability increase.

For the optimisation allowing two cycles, the best solution of the MILP solver may not be the

best solution in both cases, with cost minimisation and power maximisation. This happens,

because the applied correction regarding the friction and cooling losses (L̇turbogen ) depends

on the number of chosen cycles. It is thus necessary to validate a choice of n. First we chose

n = 10 for the n-best solutions, that was introduced to increase the reliability. Again, we

include in this analysis only generated cycles with a specific investment cost of less than

10000 USD /kW (which does not exclude any Pareto optimal solutions). In figure 4.26 we see

the resulting histogram of solutions chosen by the post computation, for the case of using
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Figure 4.26: Histogram of the chosen MILP solution for an optimisation where two cycles are allowed and
power maximisation is the MILP objective function.

the maximisation of the power output as an objective in the MILP. The tenth best solution

was chosen only four times in the 29385 generations. The optimum would have been missed

in less than 1 % of all cases, had we not introduced the method to increase the reliability.

As discussed in section 4.4 the cases in which the optimal solution is not found with only

one-best result from the MILP can have different origins, if cost minimisation is chosen as a

MILP objective: the linearisation of the cost function, the friction and cooling losses and the

overestimation of the heat exchanger surface in the cost functions of the MILP. This is reflected

in the histogram (figure 4.27), where we can see that the optimal solution would have been

missed in 86 % of all 28165 cases. The tenth solution, and thus the constraint, was activated in

2686 configurations, representing almost 10 %.

It could be speculated that in some of the 2 % for the single ORC and 10 % for the double ORC

cost optimisation, a higher number for n would have led to a better solution. The frequency

of activation of the tenth best solution stays low enough to validate the choice of n = 10

for the single cycle and should be increased for the double cycle. Thus the double cycle

optimisation with cost minimisation as MILP objective function has been executed again with

n = 15. Figure 4.28 shows the corresponding histogram. It can be seen, that in only 4 % of all

generations the 15th best solution was chosen. This corresponds to 4318 cases out of the total

23770 generations. We estimate this to be low enough. Figure 4.29 shows that it also led to a

slight improvement of the set of Pareto optimal solutions. The choice of n = 15 could thus be

validated for the double cycle optimisation with cost minimisation as MILP objective function.

It should be noted, that in 82 % of all generations the optimal solution would not have been

found without the solution reliability increase.

Overall, we can say that the introduction of the solution reliability increase by evaluating the

n-best solutions as the number of solutions considered is adequate for the integration of ORCs.
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Figure 4.27: Histogram of the chosen MILP solution for an optimisation where two cycles are allowed and
cost minimisation is the MILP objective function.

The 90 % of evaluations with the single ORC and minimisation cost as an objective, in which

not the first solution was the optimal one, show the importance of the methodology. For the

double ORC cost optimisation, the optimal solution would also have been missed frequently

(82 %), which shows how important this development is when combining a multi objective

non linear master optimisation with a linear single objective slave optimisation.
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Figure 4.28: Histogram of the chosen MILP solution out of the 15-best for an optimisation where two cycles
are allowed and cost minimisation is the MILP objective function.
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Figure 4.29: Pareto front of the integration of ORCs into a waste heat source from the cement process,
allowing maximum two cycles with both MILP objective function for 10-best and 15-best.
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Examples of Cycles Integrated with the Heat Source from Cement Industry

The example of a single ORC with the highest power generation could reach 4483 kW of elec-

tricity generation which corresponds to an exergy efficiency of 70 % with a specific investment

cost of 1068 USD /kW. The cycle is shown in figure 4.30. The working fluid in this configura-

tion is Propylcyclohexane. The minimum temperature difference for this cycle is 3.4 K. The

specific investment costs are distributed as follows: heat exchangers 50 %, turbine 47 % and

pump 3 %.

The specific investment cost could be as low as 737 USD /kW for an ORC which produces

3648 kW and has an exergy efficiency of 57 %. This is achieved with a cycle using Dodecane

as a working fluid. The minimum temperature difference for this cycle is 10.4 K. The specific

investment costs are distributed as follows: heat exchangers 33 %, turbine 64 % and pump 3 %.

The cycle is shown in figure 4.31.

For the integration allowing up to two ORCs, the solution which has the lowest specific

investment cost is a single cycle using again Propylcyclohexane as working fluid. The specific

investment cost are 744 USD /kW and the net generated electricity is 3382 kW, it is thus slightly

worse than the cost optimum for the single cycle optimisation. The minimum temperature

difference for this cycle is 5.3 K. The specific investment costs are distributed as follows: heat

exchangers 45 %, turbine 51 % and pump 3 %.

The cycle configuration allowing the highest electricity generation is composed of two cycles,

one with Dodecane and another with Toluene as working fluids. It is shown in figure 4.32

and generates up to 5044 kW of electricity which corresponds to an exergy efficiency of 78 %.

The minimum temperature difference for this cycle is 1.2 K. The specific investment cost are

2405 USD /kW and are distributed as follows: heat exchangers 72 %, turbine 27 % and pump

1 %.

From these examples, it can be seen that the net electricity generation compared to the

proposed commercial ORC can be increased by almost 77 % for a single cycle at comparable

specific investment costs. For the integration of two ORCs, the generation can be increased by

108 %, however the specific investment cost would be about twice as high.
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Figure 4.30: Integrated grand composite curve and cost distribution of Propylcyclohexane ORC with cement
heat source.
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Figure 4.31: Integrated grand composite curve and cost distribution of Dodecane ORC with cement heat
source.

154



4.6. Application and Discussion

Te
m

pe
ra

tu
re

* 
[°

C]

Heat [kW]

0%
20%
40%
60%
80%

100%

5044
Produced Power [kW]

Heat Exchangers

Turbine
Pump

ORCs - Toluene + Dodecane

Cement Heat Source

Heat Sink

District
Heating

Cost:

-6000 -4000 - 2 0 0 0 0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 0
0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

4 0 0

Figure 4.32: Integrated grand composite curve and cost distribution of two ORCs with Dodecane and
Toluene with cement heat source.

155



Chapter 4. Suitable Cycle Identification

1000

2000

3000

4000

5000

6000

7000

8000

-20.0% -15.0% -10.0% -5.0% 0.0%

Sp
ec

ifi
c 

In
ve

st
m

en
t C

os
t [

U
SD

/k
W

]

Exported Electrical Power [%]

End of
Pipe

With
Integration

Partial
Redesign

Figure 4.33: Pareto front of the integration of ORCs into the soluble instant coffee process, for the three
studies (end of pipe, integration and partial redesign).

4.6.3 Integration of ORCs into the Soluble Instant Coffee Process

In figure 4.33, the Pareto fronts of single ORCs integrated into the soluble coffee process are

shown. The three Pareto fronts correspond to the three different analyses of the plant and

its waste heat potential. It shows the impact on the available waste heat, corresponding to

the three analyses that have been explained in chapter 2, the waste heat that is available at

the end of pipe of the process, the waste heat available after internal heat recovery and that

after a partial redesign of the process. The generated electricity is relative to the heat that was

released by the process in the end of pipe analysis. As a heat sink, a local surface water stream

is assumed with a temperature of 8 ◦C and a cooling water release at 14 ◦C. This impacts the

available exergy and up to 17 kW of electricity for every 100 kW of heat can be generated in the

case of the end of pipe analysis, which corresponds to an exergy efficiency of 63 %. For the

case of partial redesign, a maximum exergy efficiency of 49 % can be reached. In the case of

the process with internal heat recovery, the shape of the composite curve makes the access

to parts of the exergy difficult (figure 2.5), thus the exergy efficiency reaches a maximum of

41 %. As discussed in chapter 2, the specific investment cost, resulting from the low amount of

exergy and the low temperature make an investment in an ORC unattractive for the analysis

including a partial redesign of the process. They are over 4500 USD /kW.

4.7 Conclusion

We present a novel methodology that is adequate for the identification of suitable working

fluids and cycle configurations for electricity production. The methodology is implemented in

a software tool, which allows the identification of optimal ORC for any given heat source and

heat sink. The tool is designed to use a multi objective optimisation as a master problem and

the integration of the cycle(s) with the process, as well as the choice of the working fluid(s)
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in an MILP solver as a slave problem. This ensures that all possible fluids are tested and the

best choice for the set of decision variables is made. It reduces the problem greatly since

the fluid selection is not a decision variable. The multi objective optimisation finds a set of

Pareto optimal solutions regarding two objective functions: the minimisation of the specific

investment cost and the maximisation of the generated electricity. Using the cost aspect is a

way to account for differences in heat transfer and the electricity production at the same time.

A novel approach regarding the combination of the non-linear multi objective optimisation

with a single objective MILP optimisation is introduced. The choice of only one objective in

the MILP problem and the necessary linearisation of not linear objective functions, leads to

solutions which are optimal regarding the MILP problem, but non-optimal regarding the multi

objective optimisation. We have addressed this in two manners. First, the multi objective

optimisation is run once for each objective of the MILP problem, leading to the development

of two separate areas of the Pareto curve. And second, by recovering n-best solutions from the

MILP instead of one. These solutions are then evaluated in a post calculation and the best

of the set is transferred to the multi objective optimiser. For the optimisation using power

maximisation as an objective function in the MILP, a value of n = 10 showed to be largely

sufficient. Also for the optimisation with cost minimisation as an objective function and a

single cycle, n = 10 results in precise solutions. However, for the MILP optimisation allowing

up to two cycles and minimising the cost, a value of n = 15 should be used. The analysis also

showed that in up to 90 % of all ORC evaluations, the first MILP solution was not the best

one regarding the non-linear objective functions. This reveals the importance of this novel

approach.

The generated costs, estimated by the tool have been compared with values from literature, it

was found that it overestimates cost for very small installations (generating less than 10 kW)

and that the cost for large installations are optimistic in comparison to the cost of a commer-

cially available ORC; however they are in the same order of magnitude.

The tool was efficient in finding the optimal integration of an ORC into a heat source for which

an offer of a commercially available ORC is available. It showed that an electricity generation

of up to 77 % more compared to the commercially available ORC would be possible with a

single cycle.

An estimation of the cost per produced kWh of electricity can be found in appendix C.
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5 Conclusion

In an effort to limit the impact of industrial energy consumption on climate, fuel savings

should be carried out through implementation of energy efficiency measures, where possible.

Energy saving potentials should always be addressed before installing a waste heat valorisation

system, such as an Organic Rankine Cycle (ORC). The motivation and topic of this thesis has

therefore been defined as:

Developing a methodology that allows identifying maximum electricity production

with the help of Organic Rankine Cycles from the waste heat of an industrial process,

at the lowest specific cost, without jeopardising the increase of the process’s thermal

efficiency.

In light of the given problem definition we will present the main conclusions of this work.

Building on this, we will define possible future research goals.

5.1 Results

Chapter 1 - Defining Waste Heat

No satisfying definition of waste heat, allowing to identify its unavoidable amount and the

potential to recover work has been found in the litterature. We have addressed this by com-

bining the techniques of process integration, Pinch analysis and exergy analysis to define the

energy and exergy potential of waste heat. This way, it is possible to simultaneously identify

the saving potentials within the industrial process under consideration and the potential for

waste heat recovery systems. An additional finding of this development is that in some cases,

available exergy can only be accessed by changing the overall energy balance of the process.

159



Chapter 5. Conclusion

Chapter 2 - Waste Heat Recovery: Studies and Examples

Different examples from industry have been studied regarding the evolution of their waste

heat potentials with respect to an increase of the degree of integration of the industrial process.

The waste heat decreases with increasing efficiency of the process. It is interesting to note

that, the amount of waste heat as well as the temperature levels decrease, as a result the

available exergy from waste heat recovery is reduced. Another, interesting finding in this

context, resulting from a theoretical analysis of a representative cement production process, is

that the extreme case of a partial redesign and a maximal integration would lead to almost no

waste heat above ambient temperature. However, the process shows a large exergy pocket,

which could be accessed by introducing a low temperature heat source.

By installing two low temperature Organic Rankine Cycle demonstrators, practical experience

was gained and analysed. This analysis was conducted with the goal of obtaining practical

knowledge, guiding the design of a realistic tool for the indentification of optimal ORCs. The

results show that a design with a direct heat exchange between source and working fluid led to

less difficulties, due to reduced complexity, as compared to heat recovery with an intermediate

water loop. Other key learnings from the demonstrators were that stainless steel should be

used to avoid corrosion in the heat exchangers and the installation of a cooling system sized

according to the size of the ORC is beneficial to avoid high pumping power.

Chapter 3 - Waste Heat Valorisation System Characterisation

With the goal of identifying parameters, which can be used to calibrate the mathematical

models for identification of optimal ORCs for waste heat valorisation, the measurement data

of the two ORC demonstrators were analysed. However, difficulties with the measurements

led to highly incoherent data. Therefore, we introduced the technique of data reconciliation

and used it to analyse the data collected during the measurement period. We developed a

novel methodology of using parameters, identified in one time period (t), as virtual mea-

surements in the next time period (t +1). This methodology is suitable for increasing the a

posteriori precision of the reconciled values in a steady state system and could therefore find

application in sensible processes, such as the production of pharmaceuticals. Since the ORC

demonstrators were mostly transient in their behaviour, we could not take full advantage of

this enhanced reconciliation. However, the measurements were reconciled with “classical”

data reconciliation. The analysis showed that the isentropic efficiency of the ORC turbine has

an almost constant value around 85 % over a wide range of part load use. We also identified

friction and cooling losses of the turbine as well as the overall heat transfer coefficients of the

direct heat source to working fluid heat exchanger. An exergy analysis of the demonstrators

revealed that exergy destruction in the heat transfer was very high, thus showing the need for

good integration of an ORC with heat source and heat sink. Furthermore, the heat sink should

be chosen at the lowest possible temperature to avoid exergy destruction.
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Chapter 4 - Suitable Cycle Identification

Using the findings from chapters 2 and 3, a novel methodology and software tool was devel-

oped, capable of optimally integrating an Organic Rankine Cycle with any given heat source

and heat sink. The study of literature on ORCs shows clearly that there is no single optimal

solution of working fluid or cycle configuration to match the wide range of heat sources and

sinks which are present in industry. Solutions must be tailor made for a given application.

The methodology and tool that we developed addresses this by optimising simultaneously

the cycle configuration, working parameters (such as pressure levels and temperatures) and

the choice of the optimal working fluid. The result of an optimisation with the tool is a set

of Pareto optimal solutions regarding two objective functions: (1) the maximisation of the

electrical power, generated by the ORC and (2) the minimisation of the specific investment

cost.

The tool is organised in a master multi objective optimisation and slave (single objective)

mixed integer linear programming (MILP) optimisation. Thermodynamic and economic

models are used in order to determine the characteristics of the generated solutions. A

large database of working fluids is tested within the MILP problem (instead of the master

optimisation), which allows to quickly find an optimal solution and to reduce the number

of integer variables of the master optimisation. The used set of four decision variables for a

single cycle and three more for every additional cycle was shown to be effective for finding

adapted cycle configurations.

Combining a single objective MILP solver with a non-linear multi objective optimisation has

been revealed to be problematic in two aspects: first, the choice of the objective function in

the MILP optimisation influences the overall convergence of the Pareto optimal solutions;

second, non-linearities and discontinuities in the objective functions (or their components)

of the multi objective optimisation can be higher than the difference between two solutions in

the linearised objective function of the MILP problem. We address the first issue by running

the optimisation once for every objective function of the multi objective optimisation, with

a corresponding objective function in the MILP problem. The second problem has been

addressed by a novel approach of generating n-best solutions in the MILP solver, rather than

only the optimal. These are re-evaluated after the MILP in a post calculation, which oftentimes

changes their order. The constraint of n = 10 has been tested and found to be sufficient for

single cycles, since in the optimisation showing the highest amount of non-linearities, the

constraint has been activated in only 3 % of the generated solutions. It should be increased for

cost optimisation with more than one cycle. For these cases, a value of n = 15 has been tested

and validated. Without this method, the optimal solution would not have been found in up to

90 % of all cases, if cost minimisation is chosen as the MILP objectve function.

Comparing the cost of the generated solutions originating from our methodology with values

from literature and a commercially available system, the estimations are in the correct order

of magnitude. In our tool, the cost of three types of equipment are estimated and used to
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Chapter 5. Conclusion

determine the specific investment cost. However, for very small units (< 10kW), the costs are

overestimated. This is on one hand due to the used cost functions, on the other hand due to

the considered constant value for friction and cooling losses of the turbine and generator. For

large installations we found cost to be rather optimistic, but within the order of magnitude of

a commercially available ORC.

For ORCs above 10 kW, the share of the different equipments, regarding investment costs, was

found to be in the range of 33 % to 72 % for the heat exchangers, 23 % to 58 % for the turbine

and 1 % to 14 % for the pump. The heat exchangers have thus a lower share than the 90 %

stated in some publications.

Main Contributions

In summary, a number of contributions were made in this work.

• We developed a novel definition of waste heat allowing to identify saving potential and

available exergy potential of an industrial process.

• we developed a software tool which is able and suitable to integrate Organic Rankine

Cycles into any waste heat source in an optimised manner,

– considering different cycle configurations,

– considering a large database of working fluids,

– calibrated with practical experiences from two ORC demonstrators and several

studies,

– calibrated with reconciled unit parameters of the ORC demonstrators,

– validated by application to two sources and analysis of different aspects.

• we identified the problems of combining a multi objective master optimisation and a

single objective MILP slave optimisation and addressed them by

– solving the MILP problem once for each objective of the master problem,

– introducing a novel methodology of using n-best solutions of the MILP problem

and re-evaluating them with the non-linear objective functions of the master

problem.

• we developed a novel methodology for enhanced data reconciliation capable of increas-

ing the a posteriori accuracy of the reconciled values of a steady state set of measure-

ments.
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5.2 Perspectives

Waste Cold

An interesting field to further explore is the quantification and use of cold as an exergy source or

heat sink of heat at temperatures below the ambient. If heat sinks, under ambient temperature,

exist in a process, they could be used to increase the efficiency of an ORC. However, a more

common case remains the need for cooling within a process. Since combustibles are often

relatively cheap compared to electricity, the proper reuse of cold within the process should be

studied carefully. Additionally, the use of residual heat in order to run cooling technologies,

in the form of tri-thermal systems, such as a mechanically coupled ORC and heat pump

combinations or thermally driven heat pumps (such as absorption or adsorption heat pumps),

could be economically interesting.

Enhanced Data Reconciliation

It would be interesting to mathematically prove or numerically demonstrate the equality of

equation 3.2 and equation 3.5 for t towards infinity:

Quod esset demonstrandum:

lim
t→∞ min

yt ,xt ,yπ,t

∑
i

(yi,t − ŷi,t,en)2

σ2
i ,t

= min
yt ,xt ,π

∑
t

∑
i

(yi ,t − ŷi,t,trad)2

σ2
i

(5.1)

Where the index en stands for enhanced reconciliation and trad for the traditional reconcil-

iation. For the numerical demonstration, a long set of stationary data would be ideal. This

would allow to complete the development given in chapter 2.

A clear comparison with the Kalman filter should be done. Enhanced Data Reconciliation has

many similarities with the Kalman filter and an analytical comaprison could be used to point

out the similarities.

Cycle Identification

Mixtures: The next step in further developing the proposed tool, would be to add a module

able to calculate mixtures of pure fluids from the REFPROP database, additionally to the

predefined ones. This would allow to design custom mixtures using the most adapted slope

for heat recovery from a given source and the analysis of Kalina cycles. This way the mixture

composition could be introduced as decision variables in the multi objective optimisation.

Several possible ways are imaginable in order to achieve this. The way most coherent with

the existing tool would be to add a single variable describing the mixing ratio between two

fluids. With this mixing ratio variable, binary mixtures of pairs of all fluids could be introduced
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and tested in the thermodynamic and economic models and put to test in the MILP solver at

the same time as all other cycles. This would be elegant, since only one additional decision

variable would be needed and a large number of cycles could be added. The disadvantage

could be the time to solve the MILP problem, which would increase due to the higher number

of integer variables (number of cycles) in the MILP problem. Another way would be to assign

a number to each fluid or fluid couples and introduce these as decision variables as well as

the variable for the mixing ratio. The advantage would be the decreased solving time of the

MILP solver. However, the solution of the multi objective optimisation could show difficulties,

since the choice of fluids by the multi objective optimiser works best if a logical link between

the different values of a variable exists. The introduction of mixtures, apart from being a

programming task, is mainly a thermodynamic challenge.The mixtures predefined in the

database are described by empirically defined mixing rules. For non predefined mixtures,

REFPROP estimates these mixing rules, potentially introducing inaccuracies in the same order

of magnitude as the difference between generated solutions.

Cost Function Refinement: As we have shown above, the cost functions for only three types of

equipment lead to a correct order of magnitude for the total module cost estimate. However,

it is possible to refine this estimate. The heat exchangers could be conceptually separated

into different types using the respective surfaces, for example a plate heat exchanger for

the condensation, instead of assuming the same type everywhere. Additionally, a decision

variable for the minimum temperature difference in each heat exchanger could be introduced.

A better cost model for the finned tube heat exchanger could be developed and a clear cost

function for the generator could be introduced and the turbine cost function adapted. An

additional point is the influence of volume on the equipment cost, which is especially relevant

for working fluids at low pressures. An analysis of the influence on the cost could help refine

the methodology.

Turbine and Generator Losses Function: Arguably, L̇turbogen is a function related to the installed

capacity rather than a constant value. It would be interesting to investigate such a function,

which will probably depend on the surface of the machine, since cooling and friction losses

depend on the surface of the turbine and generator. The surface is in return a function of the

volume, which depends on the installed capacity. However, thorough analyses need to be

conducted in order to obtain realistic results.

Uncertainties

Uncertainties could be considered at several levels of the tool, to make a better choice for a

cycle.

Fuel Cost: With an uncertain development of costs for combustibles, it would be interesting to

analyse how different price developments could influence the economics of an investment

into energy efficiency measures within an industrial process. This influences the amount of

available waste heat and thus the recovery of heat for electricity generation.
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Electricity Price: The electricity price development massively influences the payback of an

investment into waste heat recovery. If the price rises, the profitability will get better over

time, but the last years have shown that electricity prices for industry did not develop in this

direction.

Yearly operating time: The operating time of an industrial process depends on several factors,

for example the maintenance intervals etc, but it mostly depends on the demand for the

produced good(s). The development of the demand can fluctuate and thus the operating time

could vary, thus influencing the produced amount of electricity by an ORC using waste heat.

Part Load Use

Related to the production (and thus the operating time) and to the type of process, an ORC

could be used in part load. For some processes, the recoverable heat load is known in advance

and the behaviour of an ORC in part load operation could be simulated. On the side of the

ORC, the isentropic efficiency changes in part load operation, even though the LOVE project

has shown that the changes are relatively small for a large range of operation modes. Other

effects of a part load use concern the heat transfers, for example. The surface of the heat

exchangers is designed for nominal load and oversized for part load, thus making smaller

temperature gradients in the heat exchangers possible. If the part load hours are unknown,

an uncertainty analysis could be carried out. All these factors influence the payback of an

investment and a further development of the tool in this regard would be interesting.
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A Working Fluids

The list of working fluids is given in tables A.1 to A.7, where TC is the critical temperature,

pC the critical pressure and TB the normal boiling temperature. The data for these tables

were taken from: Lemmon et al. (2010); Calm (2008); Calm and Hourahan (2007); United

Nations Environmental Programm (2014); U.S. Environmental Protection Agency (2014c);

European Parliament and Council of the European Union (2014); Forster et al. (2013); U.S.

Environmental Protection Agency (2014b); United Nations Framework Convention on Climate

Change (2014); Facão and Oliveira (2009); U.S. Environmental Protection Agency (2010);

Tejon Carbajal (2009); U.S. Environmental Protection Agency (2014a) and Bundesamt für

Umwelt (2014). The fluids which are already under control due to the Montreal Protocol

(United Nations Environmental Programm, 2014) are listed in bold. Also in bold and with

an asterisk (*) are substances which are excluded due to their special character (highly toxic,

radioactive or for thermodynamic reasons (critical temperature below −100 ◦C)). In table A.6

and A.7 all the mixtures are shown, again the bold ones are those already under control of

the Montreal Protocol and thus excluded from the possible choices. R508A and B, R510A and

R416A were also excluded due to convergence problems of REFPROP. It must also be noted

that following decisions made after the Kyoto Protoco (United Nations Framework Convention

on Climate Change, 1997) and in an effort to reduce the climate gas emissions throughout

the EU and Switzerland, many other fluids will be unavailable or their acquisition or use

will be possible only under certain conditions. These vary in the different legal frameworks

(Bundesamt für Umwelt, 2014; European Parliament and Council of the European Union,

2014) and over time. We will try to address that by limiting the choice to working fluids with a

GWP smaller than 3000.
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Appendix A. Working Fluids
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Appendix A. Working Fluids
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Table A.6: Mixtures from REFPROP Data Base Part I.

Components GWP (100) ODP

Air* N2, O2, Argon
Amarillo* Natural Gas
Ekofisk* Natural Gas
Gulf Coast Gas* Natural Gas
High Co2 And Nitrogen Gas* Natural Gas
High Nitrogen Gas* Natural Gas
R401a R22, R152a, R125 1200.0 0.0
R401b R22, R152a, R124 1300.0 0.0
R401c R22, R152a, R124 930.0 0.0
R402a R125, Propane, R22 2800.0 0.0
R402b R125, Propane, R22 2400.0 0.0
R403a Propane, R22, R218 3100.0 0.0
R403b Propane, R22, R218 4500.0 0.0
R404a R125, R134a, R143a 3900.0 0.0
R405a R22, R152a, R142b, RC318 5300.0 0.0
R406a R22, Isobutane, R142b 1900.0 0.1
R407a R32, R125, R134a 2100.0 0.0
R407b R32, R125, R134a 2800.0 0.0
R407c R32, R125, R134a 1800.0 0.0
R407d R32, R125, R134a 1600.0 0.0
R407e R32, R125, R134a 1600.0 0.0
R408a R125, R143a, R22 3200.0 0.0
R409a R22, R125, R142b 1600.0 0.0
R409b R22, R124, R142b 1600.0 0.0
R410a R32, R125 2100.0 0.0
R410b R32, R125 2200.0 0.0
R411a Propylen, R22, R152a 1600.0 0.0
R411b Propylen, R22, R152a 1700.0 0.0
R412a R22, R218, R142b 2300.0 0.1
R413a R218, R134a, Isobutane 2100.0 0.0
R414a R22, R124, Isobutane, R142b 1500.0 0.0
R414b R22, R124, Isobutane, R142b 1400.0 0.0
R415a R22, R152a 1500.0 0.0
R415b R22, R152a 550.0 0.0
R416a R134a, R124, Butane 1100.0 0.0
R417a R125, R134a, Butane 2300.0 0.0
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Appendix A. Working Fluids

Table A.7: Mixtures from REFPROP Data Base Part II.

Components GWP (100) ODP

R418a Propane, R22, R152a 1700.0 0.0
R419a R125, R134a, DME 3000.0 0.0
R420a R134a, R142b 1500.0 0.0
R421a R125, R134a 2600.0 0.0
R421b R125, R134a 3200.0 0.0
R422a R125, R134a, Isobutane 3100.0 0.0
R422b R125, R134a, Isobutane 2500.0 0.0
R422c R125, R134a, Isobutane 3100.0 0.0
R422d R125, R134a, Isobutane 2700.0 0.0
R423a R134a, R227ea 2300.0 0.0
R424a R125, R134a, Isobutane, Butane, Isopentane 2400.0 0.0
R425a R32, R134a, R227ea 1500.0 0.0
R426a R125, R134a, Butane, Isopentane 1500.0 0.0
R427a R32, R125, R134a, R143a 2100.0 0.0
R428a R125, R143a, Propane, Isobutane 3600.0 0.0
R429a R152a, DME, Isobutane 13.9 0.0
R430a R152a, Isobutane 95.0 0.0
R431a R152a, Propane 38.3 0.0
R432a Propylen, DME 1.6 0.0
R433a Propylen, Propane 0.0
R434a R125, R134a, R143a, Isobutane 3245.0 0.0
R435a R152a, DME 25.6 0.0
R436a Propane, Isobutane 0.0
R436b Propane, Isobutane 0.0
R437a R125, R134a, Butane, Pentane 1805.0
R438a R32, R125, R134a, Butane, Isopentane 2265.0 0.0
R500 R12, R152a 8100.0 0.7
R501 R12, R22 4100.0 0.3
R502 R22, R115 4700.0 0.3
R503 R13, R23 15000.0 0.6
R504 R32, R115 4100.0 0.2
R507a R125, R143a 4000.0 0.0
R508a R23, R116 13000.0 0.0
R508b R23, R116 13000.0 0.0
R509a R22, R218 5700.0 0.0
R510a DME, Isobutane
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B Streams of Cement Model

Below a table showing the heating and cooling requirements in our model for the represen-

tative cement production process. All values are for a clinker production mass flow rate of

27.9009 kg
s .

Unit Name Tin Tout ∆Tmin/2 Load
◦C ◦C K kW

Raw Mill in 25.150 55.927 10.000 1254.830

Raw Mill a 55.927 85.256 10.000 1254.830

Raw Mill b 85.256 100.144 10.000 1254.830

Raw Mill c 100.144 100.144 10.000 1254.830

Raw Mill d 100.144 104.000 10.000 1254.830

Raw Mill qla 25.150 104.000 10.000 113.216

Raw Mill gas_sp 389.994 104.000 10.000 2477.260

Raw Mill dust 389.994 104.000 10.000 2652.400

Suspension Pre-Heaters cy8g 560.150 390.150 61.108 9017.620

Suspension Pre-Heaters cy2g 700.150 560.150 61.591 7806.610

Suspension Pre-Heaters cy3g 860.150 700.150 37.075 9297.370

Suspension Pre-Heaters cy4g 880.150 860.150 5.000 1200.402

Suspension Pre-Heaters_p cy1s 50.150 267.934 61.108 9017.620

Suspension Pre-Heaters_p cy2s 267.934 436.968 61.591 7806.610

Suspension Pre-Heaters_p cy3s 436.968 626.000 37.075 9297.370

Suspension Pre-Heaters_p cy4s 850.150 850.151 5.000 1200.402

Calcination hg_b 850.150 890.150 15.000 540.508

Calcination comb 1100.150 1100.149 15.000 45208.200

Calcination hg_a 1100.150 890.150 15.000 11358.100

Calcination_p hs_a 626.000 850.150 15.000 11513.700

Calcination_p ca_zone 850.150 850.151 15.000 39975.300

Calcination_p hs_b 850.150 860.150 15.000 348.131

Kiln comb_Kiln 2000.000 1999.999 100.000 605.630

175



Appendix B. Streams of Cement Model

Kiln b_a 2000.000 1821.650 100.000 3124.290

Kiln b_b 1821.650 1718.510 100.000 1953.840

Kiln b_c 1718.510 1531.470 100.000 3881.810

Kiln b_d 1531.470 1504.330 100.000 338.210

Kiln b_e 1504.330 1222.430 100.000 5864.050

Kiln b_f 1222.430 1177.160 100.000 894.941

Kiln b_g 1177.160 1050.000 100.000 2709.880

Kiln PrimaryFuel 25.150 60.150 50.000 25.882

Kiln PrimaryAir 25.150 40.150 20.000 61.982

Kiln_p c1_reac 850.150 850.151 100.000 1211.920

Kiln_p c1_heat 850.150 900.000 100.000 1651.320

Kiln_p c2_reac 900.000 900.001 100.000 595.844

Kiln_p c2_heat 900.000 910.000 100.000 323.840

Kiln_p c3_reac 910.000 910.001 100.000 2401.180

Kiln_p c3_heat 910.000 1027.000 100.000 3609.030

Kiln_p c4_reac 1027.000 1026.999 100.000 5525.060

Kiln_p c4_heat 1027.000 1227.000 100.000 5948.130

Kiln_p c5_reac 1227.000 1227.001 100.000 920.566

Kiln_p c5_heat 1227.000 1327.000 100.000 2961.240

Kiln_p c6_reac 1327.000 1327.001 100.000 445.109

Kiln_p c6_heat 1327.000 1377.000 100.000 1508.730

Kiln_p c7_reac 1377.000 1377.001 100.000 842.819

Kiln_p c7_heat 1377.000 1450.150 100.000 2281.470

Kiln_p c8_reac 1450.150 1450.151 100.000 605.630

Kiln_p CO2_4 1227.000 1027.000 100.000 84.867

Kiln_p CO2_3 1027.000 910.000 100.000 146.164

Kiln_p CO2_2 910.000 900.000 100.000 24.742

Kiln_p CO2_1 900.000 850.150 100.000 153.366

Kiln_p CO2_0 850.150 850.000 100.000 0.612

Grate Clinker Cooler st_air 25.150 1000.150 92.000 37.000

Grate Clinker Cooler m_air_a 25.150 225.150 92.000 37.000

Grate Clinker Cooler e_air_a 25.150 400.150 92.000 37.000

Grate Clinker Cooler_p cl1 1450.150 650.000 92.000 37.000

Grate Clinker Cooler_p cl2 650.000 250.000 92.000 37.000

Grate Clinker Cooler_p cl3 250.000 100.150 92.000 37.000

Losses gas_sp_l 389.994 104.000 10.000 1597.050

Losses ql_fm 104.000 50.150 10.000 2115.110

Losses cy1_l 560.150 390.150 61.108 1467.980

Losses cy2_l 700.150 560.150 61.591 1166.510

Losses cy3_l 860.150 700.150 37.075 1267.830

Losses cy4_l 880.150 860.150 5.000 133.378

Losses oscl 860.150 850.150 15.000 348.131
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Losses gasesandcd 890.150 880.150 15.000 668.473

Losses l_comb_Kiln 2000.000 1999.999 100.000 566.006

Losses l_b_a 2000.000 1821.650 100.000 953.274

Losses l_b_b 1821.650 1718.510 100.000 387.267

Losses l_b_c 1718.510 1531.470 100.000 327.688

Losses l_b_d 1531.470 1504.330 100.000 268.108

Losses l_b_e 1504.330 1222.430 100.000 357.478

Losses l_b_f 1222.430 1177.160 100.000 89.369

Losses l_b_g 1177.160 1050.000 100.000 29.790

Losses ql_c_l 1450.150 650.000 92.000 37.000

Losses ql_b_l 650.000 250.000 92.000 37.000

Losses ql_a_l 250.000 100.150 92.000 37.000

Losses qlo_l 1000.150 1000.149 92.000 37.000

Losses dust_cool 104.000 45.150 20.000 9.494

Vented cl4 225.150 35.150 0.100 1597.670

Vented cl5 400.150 35.150 0.100 3125.710

Vented gde 103.607 35.150 0.100 1300.410

Vented utile 150.150 35.150 0.100 3613.170

Vented ctwatercool 389.993 150.150 0.100 8202.130

Vented hot_air_cmill 115.150 35.150 0.100 1287.460
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C Economic Estimation of Electricity
Generation Cost

To give an order of magnitude of the cost per unit of electricity produced Cgen, we will make

a simple estimation. Starting from the specific investment cost CTM,spec [USD /kWel] and

assuming 2 % of these specific investment cost as operating cost per year, the cost of a kWh of

electricity is estimated. The influencing factors are the yearly operating time top [h/year] and

the payback or depreciation period tpb [year]. Equation C.1 shows how Cgen [USD /kWh] is

calculated:

Cgen = CTM,spec +0.02 ·CTM,spec · tpb

top ·1kWh /h · tpb
(C.1)

This estimation supposes a constant value of money over time. We see that the payback

periods of below 5 years, which are common in industry, need low investment cost and high

yearly operating time, in order to be a grid parity (tables C.1 to C.3). However, if the cost are

calculated over a lifetime of ten or 15 years as a utility company might do it, even with fewer

yearly operating hours and higher investment cost. This shows that partnerships between

industry and utility companies might be the way to proceed, to make investments into ORCs

using waste heat viable.
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Appendix C. Economic Estimation of Electricity Generation Cost

Table C.1: Cost per kWh of electricity Cgen in USD /kWh, for tpb = 5years, as a function of top and CTM,spec.

top: 2000 3000 4000 5000 6000 7000 8000
h/year h/year h/year h/year h/year h/year h/year

CTM,spec:
500 USD/kW 0.06 0.04 0.03 0.02 0.02 0.02 0.01

1000 USD/kW 0.11 0.07 0.06 0.04 0.04 0.03 0.03
1500 USD/kW 0.17 0.11 0.08 0.07 0.06 0.05 0.04
2000 USD/kW 0.22 0.15 0.11 0.09 0.07 0.06 0.06
2500 USD/kW 0.28 0.18 0.14 0.11 0.09 0.08 0.07
3000 USD/kW 0.33 0.22 0.17 0.13 0.11 0.09 0.08
3500 USD/kW 0.39 0.26 0.19 0.15 0.13 0.11 0.10
4000 USD/kW 0.44 0.29 0.22 0.18 0.15 0.13 0.11
4500 USD/kW 0.50 0.33 0.25 0.20 0.17 0.14 0.12
5000 USD/kW 0.55 0.37 0.28 0.22 0.18 0.16 0.14

Table C.2: Cost per kWh of electricity Cgen in USD /kWh, for tpb = 10years, as a function of top and
CTM,spec.

top: 2000 3000 4000 5000 6000 7000 8000
h/year h/year h/year h/year h/year h/year h/year

CTM,spec:
500 USD/kW 0.03 0.02 0.015 0.012 0.01 0.0085714 0.0075

1000 USD/kW 0.06 0.04 0.03 0.024 0.02 0.0171429 0.015
1500 USD/kW 0.09 0.06 0.045 0.036 0.03 0.0257143 0.0225
2000 USD/kW 0.12 0.08 0.06 0.048 0.04 0.0342857 0.03
2500 USD/kW 0.15 0.1 0.075 0.06 0.05 0.0428571 0.0375
3000 USD/kW 0.18 0.12 0.09 0.072 0.06 0.0514286 0.045
3500 USD/kW 0.21 0.14 0.105 0.084 0.07 0.06 0.0525
4000 USD/kW 0.24 0.16 0.12 0.096 0.08 0.0685714 0.06
4500 USD/kW 0.27 0.18 0.135 0.108 0.09 0.0771429 0.0675
5000 USD/kW 0.3 0.2 0.15 0.12 0.1 0.0857143 0.075
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Table C.3: Cost per kWh of electricity Cgen in USD /kWh, for tpb = 15years, as a function of top and
CTM,spec.

top: 2000 3000 4000 5000 6000 7000 8000
h/year h/year h/year h/year h/year h/year h/year

CTM,spec:
500 USD/kW 0.02 0.01 0.01 0.01 0.01 0.01 0.01

1000 USD/kW 0.04 0.03 0.02 0.02 0.01 0.01 0.01
1500 USD/kW 0.07 0.04 0.03 0.03 0.02 0.02 0.02
2000 USD/kW 0.09 0.06 0.04 0.03 0.03 0.02 0.02
2500 USD/kW 0.11 0.07 0.05 0.04 0.04 0.03 0.03
3000 USD/kW 0.13 0.09 0.07 0.05 0.04 0.04 0.03
3500 USD/kW 0.15 0.10 0.08 0.06 0.05 0.04 0.04
4000 USD/kW 0.17 0.12 0.09 0.07 0.06 0.05 0.04
4500 USD/kW 0.20 0.13 0.10 0.08 0.07 0.06 0.05
5000 USD/kW 0.22 0.14 0.11 0.09 0.07 0.06 0.05
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