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Numerical techniques for differential equations with multiple scales in
space or time

Assyr Abdulle

In this report we discuss recently developed numerical methods for multiscale
problems in time (a numerical integrator for stiff advection-diffusion-reaction equa-
tions with or without noise) and multiscale problems in space (a numerical homo-
genization algorithm that combines different physics at different scales).

Numerical methods for stiff advection-diffusion-reaction equations with
or without noise. Consider a system of (stochastic) ordinary differential equa-
tions originating from space discretized partial differential equations (PDEs)

(1) ẏ = F (y) = FD(y) + FA(y) + FR(y) +
m∑

j=1

F j
G(y)ξ̇j , y(0) = y0,

where FD(y), FA(y), FR(y), F
j
G ∈ Rn and ξj , j = 1, . . . ,m are independent one-

dimensional Wiener processes. Here FD(y) represent a diffusion term with eigen-
values close to the negative real axis, FA(y) advection terms with eigenvalues close
to the imaginary axis, FR(y) stiff (reaction) terms and F j

G (stiff) noise terms, re-
spectively. Classical numerical methods usually face the following issues

• a step size restriction for explicit methods due to the FD term (“CFL-type”
restriction), FR term (multiple reaction rates that can vary over order of
magnitudes) and F j

G term (“stiff” mean-square stable problems) [2],[8];
• large nonlinear systems at each time steps when using implicit methods
that can become quite involved, particularly for systems involving compli-
cated nonlinear structure [9].

In [6] we present a new partitioned implicit-explicit orthogonal Runge-Kutta
(RK) method (PIROCK) for the time integration of (1). Due to the use of a
stabilized explicit second order orthogonal RK Chebyshev method (ROCK2) [1] for
the FD term, the severe restriction of the CFL condition for explicit schemes can
be relaxed. A second order singly diagonally implicit RK that is unconditionally
stable is used for the FR term and a third order explicit method (stable on a portion
of the imaginary axis) is taken for the FA term. Finally an explicit stabilized
method is also used for the F j

G terms following the methods developed in [2],[5].
Other implicit-explicit or partitioned method have been proposed for (1)1, and

we mention the implicit-explicit Runge-Kutta-Chebyshev method (IRKC) derived
in [10] and the fully explicit partitioned Runge-Kutta-Chebyshev method (PRKC)
proposed in [11] (see [10],[11],[6]) for a more comprehensive literature review. For
problems with stiff reactions, the PIROCK method is more efficient than the
IRKC method as the number of function evaluations of the reaction terms FR

(solved implicitly) is independent of the (possibly high) stage number used in the
stabilized explicit method for the diffusion terms FD (it has also a better behavior
for advection dominated problems than IRKC). Compared to the PRKC method

1However, none of them have been developed for equations including (stiff) noise terms.
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(that can only handle non stiff reaction terms) the PIROCK method has larger
stability domains on both the real and the imaginary parts. PIROCK implemented
in a single black-box FOTRAN code available at http://anmc.epfl.ch, is fully
adaptive, provides a posteriori error estimators, and requires from the user solely
the right-hand side of the differential equation.

An adaptive numerical homogenization method for a Stokes problem.
Consider the Stokes problem in heterogeneous media with pore sizes ε that can
be several orders of magnitude smaller than the macroscopic size of the compu-
tational domain of interest Ω. Then, a full Stokes solver over Ω is often too ex-
pensive. For such problems we propose in [7] an adaptive multiscale micro-macro
homogenization method, using the framework of the finite element heterogeneous
multiscale method (FE-HMM) [4] with an adaptive strategy [3]. The new method
relies on adaptive mesh refinement on macro and micro problems and on rigorous
residual-based a posteriori error estimates derived in [7]. We propose a strategy to
adequately couple macro and micro error indicators (a challenging issue) in order
to achieve a desired accuracy with minimal computational cost on both the macro
and the micro scales.

Acknowledgements. This research has been partially supported by the Swiss
National Foundation.

References

[1] A. Abdulle, A. Medovikov, Second order Chebyshev methods based on orthogonal polyno-
mials, Numer. Math. 90 (1) (2001), 1–18.

[2] A. Abdulle, T. Li, S-ROCK methods for stiff Ito SDEs, Commun. Math. Sci. 6 (4) (2008),
845–868.

[3] A. Abdulle and A. Nonnenmache, Adaptive finite element heterogeneous multiscale method
for homogenization problems, Comput. Methods Appl. Mech. Engrg. 200 (37-40) (2011),
2710–2726.

[4] A. Abdulle, W. E, B. Engquist, and E. Vanden-Eijnden, The heterogeneous multiscale
method, Acta Numer. 21 (2012), 1–87.

[5] A. Abdulle, G. Vilmart, K. Zygalakis, Weak second order explicit stabilized methods for
stiff stochastic differential equations, SIAM J. Sci. Comput. 35 (4) (2013), 1792–1814.

[6] A. Abdulle, G. Vilmart, PIROCK: a swiss-knife partitioned implicit-explicit orthogonal
Runge-Kutta Chebyshev integrator for stiff diffusion-advection-reaction problems with or
without noise, J. Comput. Phys. 242 (2013), 869–888.
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