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Abstract
Neutron imaging is a highly versatile method that allows for non-destructive insight in the

three-dimensional materials’ distribution of a sample of interest and its change over time. It

has been used to tackle problems in numerous fields, virtually separating fossil from surround-

ing rock, studying water management in running fuel cells, alloy mixing and air entrapments

in friction stir welding of two different alloys and numerous others.

Neutron imaging evaluates the exponential attenuation of a neutron beam upon transmission

through an object, summarized by the Lambert-Beer law. The detected image contrast varies

depending on traversed material thickness and inherent interaction properties described by

the cross-section. Recording neutron projections under various sample rotation angles, one

can reconstruct the three-dimensional material distribution with computed tomography.

In case of crystalline materials, the periodic ordering of the nuclei into crystal lattices will

give rise to coherent elastic scattering or diffraction of a neutron beam only for specific

combinations of incident beam energy, angle and crystal lattice spacing.

Traditionally the full polychromatic beam spectrum coming from a spallation or reactor source

is used, giving high neutron flux and low image exposure times. However, as a consequence

the energy-dependent behaviour - the footprint of the crystallographic sample properties - are

averaged out over the beam spectrum. When imaging is performed with the spectrum limited

to a short wavelength band, also known as energy-selective imaging, one can investigate the

spectral dependence of the cross-section and use it as a new option for tuning the image

contrast.

In the time-of-flight approach, a pulse of neutrons is allowed to travel a certain distance and the

recorded arrival time is a measure for their speed and thus their energy. Alternatively, dealing

with a continuous stream of neutrons of all energies, one can pick out a short wavelength band

of interest using a monochromator, discarding all other neutrons. Several types exist, with

various levels of final beam monochromaticity. A neutron velocity selector is a rotating drum

with twisted lamellae coated with a strong neutron absorber. Depending on its rotation speed,

only neutrons of a particular velocity (and thus energy) are transmitted. A double crystal

monochromator uses a crystal to diffract a wavelength of interest out of the direct beam into

a well-defined direction. A similar, second crystal then diffracts it back in the original beam

direction. Developed in different areas of condensed matter research with neutrons, these

monochromators have been characterized for use in neutron imaging. The beam divergence,

necessary to illuminate a large samples, was also shown to induce variations in beam spectrum
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Abstract

across the field-of-view. A hybrid solution of a velocity selector in combination with crystal

wavelength bandwidth filters to increase monochromaticity, called TESI, was also explored.

Neutron scattering can sometimes stand in the way of accurately determining material content

from transmission data. Scattered neutrons might still hit the detector, suggesting increased

transmission and leading to an underestimation of the amount of material present. Local

variations in crystal properties and thus cross-section moreover can not be discerned from

material thickness or density variations in a neutron projection image. Energy-selective

imaging at very low energies, where no diffraction can occur anymore, is shown to be a

solution.

In case of single crystals, an energy-scan will yield for each pixel a cross-section pattern that

is a thumb print of the local crystal orientation and mosaicity. Through comparison with

simulated crystal cross-section patterns, this information can be extracted. It can be mapped

quantitatively at previously unattainable spatial resolution and speed compared to traditional

neutron diffraction methods with pencil beam scanning. Even overlap of a few crystals in the

neutron beam projection direction can be handled.

To resolve the cross-section pattern well enough for such method to work, very high energy-

resolution is required. It can be reached with time-of-flight, but hardly when using a monochro-

mator. However, one can think of the crystal as monochromator in itself, diffracting out

neutrons of particular energies depending on its orientation. It thus provides an easier and

faster option for characterization. When the crystal is fully illuminated by the neutron beam,

projections of the crystal by the diffracted neutrons are formed. Rotating the sample, pro-

jections under various sample angles can again be obtained, from which crystal shape can

be reconstructed in 3D. The position of the crystal on the detector is indicative of its orienta-

tion. In case of multiple crystallites, diffraction projections have additionally to be grouped

depending on their grain of origin, yielding a 3D grain orientation map in the end.

In summary, during this work the infrastructure for energy-selective neutron imaging has

been developed and characterized. New methods have been introduced that probe new crys-

tallographic sample properties previously unavailable in neutron imaging, their application

illustrated with various examples ranging from meteorites to turbine blades. A bridge has

been formed between neutron diffraction and imaging, but more work can still be done to

further develop methods, introduce simulations and expand the application range.

Key words: Neutron imaging · neutron tomography · energy-selective · diffraction contrast

imaging · topography · monochromator · crystal
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Zusammenfassung
Neutronen Imaging ist eine vielseitige Methode, die es erlaubt, zerstörungsfrei Proben und

deren 3-dimensionalen, inneren elementaren Aufbau sowie zeitabhängige Prozesse innerhalb

einer Probe zu studieren. Die Methode wurde bereits in vielen Forschungsfeldern wie der

virtuellen Separierung von Fossilen und umgebendem Gestein oder Legierungsmischungen

und Lufteinschlüssen in verschiedensten Schweissnähten erfolgreich eingesetzt.

Wie das Lambert-Beer Gesetz besagt arbeitet das Neutronen Imaging mit der exponentiellen

Abschwächung eines Neutronenstrahls beim Durchdringen einer Probe. Der detektierte Kon-

trast ist dabei abhängig von der durchdrungenen Probendicke und des materialspezifischen

Wirkungsquerschnitts. Durch Bilder von verschiedenen Rotationswinkeln einer Probe ist es

möglich, eine 3-dimensionale Rekonstruktion der Materialverteilungen innerhalb einer Probe

mittels Computertomographie zu erstellen.

In kristallinen Materialien kann ein Neutronenstrahl am periodischen Kristallgitter kohärent

gestreut oder diffraktiert werden. Dies ist abhängig von der Energie sowie des Einfallswin-

kels der Neutronen aber auch der Kristallgitterparameter. Klassisch wird für das Imaging

ein polychromatischer Strahl verwendet, um hohen Fluss und niedrige Belichtungszeiten zu

ermöglichen. Da aber die Eigenschaften von kristallinen Proben energieabhängig sind, mitteln

sich diese bei der Nutzung eines polychromatischen Strahls heraus. Die Nutzung eines schma-

len Energiebandes von Neutronen, auch bekannt als energieselektives Imaging, ermöglicht es

hingegen, die spektralen Abhängigkeiten von Wirkungsquerschnitten zu untersuchen und

eröffnet ein neues Feld, um unter anderem den Kontrast zu verbessern.

Der „time-of-flight“-Ansatz nutzt die unterschiedlichen Geschwindigkeiten der Neutronen mit

verschiedenen Energien, indem nur zu einer bestimmten Zeit gemessen wird, nach welcher

nur bestimmte Neutronen (mit bestimmten Energien) den Detektor erreichen. Alternativ kann

ein Energieband aus einem kontinuierlichen Neutronenstrahl geschnitten werden, indem

man einen Monochromator benutzt. Hier gibt es verschiedenste Möglichkeiten mit verschie-

densten Energiebandbreiten. Ein Geschwindigkeitsselektor ist eine rotierende Trommel mit

gebogenen, absorbierenden Lamellen, welche frequenzabhängig nur Neutronen einer be-

stimmten Geschwindigkeit (Energie) passieren lassen. Ein Doppelkristall-monochromator

nutzt die Reflektion einer bestimmten Wellenlänge durch einen ersten Kristall aus dem poly-

chromatischen Strahl und einer zweiten Reflektion zurück in die ursprüngliche Strahlrichtung.

Beide Arten von Monochromatoren sind für den Gebrauch beim Neutronen Imaging cha-

rakterisiert worden. Die für die Belichtung von grossen Proben nötige Strahldivergenz und
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Zusammenfassung

deren Einfluss auf Variationen im Energiespektrum des Strahls wurde ebenfalls untersucht.

Die Kombination eines Geschwindigkeitsselektors und eines Kristallfilters, hier TESI genannt,

wurde ebenfalls erforscht.

Neutronenstreuprozesse können die quantitative Auswertung von Transmissionsdaten er-

schweren. Gestreute Neutronen können immer noch den Detektor, allerdings an einer anderen

Stelle (Pixel) treffen, was zu einer höheren Intensität und einer Unterschätzung der Material-

dicke führen kann. Des Weiteren kann im der Projektion nicht mehr zwischen sich ändernden

Kristalleigenschaften (Wirkungsquerschnitten) und lokalen Dicke- oder Dichte-variationen

unterschieden werden. Energieselektives Imaging bei niedrigen Energien, bei denen keine

Diffraktion mehr auftritt, kann hier als Lösungsansatz dienen.

Im Falle eines Einkristalls liefert ein Energiescan ein genaues Muster von Wirkungsquer-

schnitten in jedem Pixel, was einen exakten Fingerabdruck der lokalen Kristallorientierung

und Mosaikstruktur darstellt der durch den Vergleich mit simulierten Kristallwirkungsquer-

schnitten gewonnen werden kann. Diese Information kann qualitativ mit einer bisher nicht

möglichen räumlichen Auflösung und Geschwindigkeit abgebildet werden im Vergleich zum

traditionellen Rastern von diffraktiven Neutronentechniken. Sogar der Überlapp von mehre-

ren Kristallen in Strahlrichtung kann akzeptiert und ausgewertet werden.

Um in der Lage zu sein, das Muster der Wirkungsquerschnitte auflösen zu können ist eine

äusserst hohe Energieauflösung nötig, welche durch die Nutzung des „time-of-flight“ Ansatzes

erreicht werden kann. Die Energieauflösung der anderen vorgestellten Methoden hingegen

ist dafür nicht ausreichend. Ein weiterer Ansatz ist es, den Kristall selber als Monochromator

nutzen. Dieser diffraktiert bestimmte Wellenlängen, abhängig von seiner Orientierung, aus

dem Neutronenstrahl. Dies ermöglicht eine schnellere und einfachere Charakterisierung. Ist

der Kristall voll Belichtet, so entstehen Abbildungen des Kristalls aus diffraktierten Neutronen.

Wird der Kristall nun rotiert, kann aus verschiedenen Winkeln eine 3-dimensionale Rekon-

struktion des Kristalls allein aus den diffraktierten Neutronen erfolgen. Im Falle von mehreren

Kristalliten müssen die verschiedenen Projektionen abhängig von ihrem Ursprung gruppiert

werden, um eine 3-dimensionale Kornorientierungskarte zu generieren.

Abschliessend ist festzuhalten, dass durch diese Arbeit die Infrastruktur für Energieselekti-

ves Imaging entwickelt und realisiert wurde. Neue, vorher unbekannte, Methoden, welche

die Möglichkeit eröffnen Kristalleigenschaften untersuchen zu können wurden eingeführt

und an verschiedenen Proben wie Meteoriten und Turbinenschaufeln demonstriert und eta-

bliert. Eine Brücke zwischen Diffraktion und Imaging könnte gebaut werden, auch wenn

es weiterhin viele Möglichkeiten der Verbesserung und Weiterentwicklung gibt. Besonders

im Bereich der Simulationen und der Anwendungsbeispiele ist hier weiterhin ein grosses

Potential vorhanden.

Stichwörter: Neutron imaging · Neutrontomographie · Energieselektiv · Diffraktion · Topogra-

phie · Monochromator · Kristall
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Prelude
When a neutron beam passes through a material, it is attenuated depending on the material

type and thickness it encounters along its path. When fully illuminating the object of interest

in a parallel neutron beam, one can thus capture a shadow image or radiograph to study the

spatial variation in sample property: one performs neutron imaging. Recording a series of

digital radiographs whilst rotating the sample, one can reconstruct the three-dimensional

material distribution and make a computed tomography. Moreover, neutron imaging is a non-

destructive testing (NDT) method, lending itself perfectly for in-situ studies and investigations

of unique and priceless objects.

Neutron imaging is nowadays routinely applied at large scale facilities world wide and has

solved problems in numerous fields ranging from e.g. water formation and transport in

operating fuel cells, to virtually separating fossils from the rock they are embedded in. It is

a rapidly evolving field, with new developments continuously being made. Neutron grating

interferometry allows access to phase shift and beam decoherence in a material, fast strobo-

scopic imaging for cyclic processes, polarized neutron imaging is sensitive to magnetic fields.

In this work, the imaging method suite is now further expanded with energy-selective neutron

imaging to study spatial variation in crystallographic material properties.

The basics of standard neutron imaging are described in chapter one. It serves as a foundation

later on expanded in infrastructure and analysis for energy-selective neutron imaging. The

general features such as neutron sources, typical beamline layout, detection systems, image

formation process and tomographic reconstruction methods are discussed. The probability of

interaction is however dependent on the energy of the incident neutrons, a feature averaged

out in standard polychromatic neutron imaging.

It is the goal of this thesis, to investigate the energy-dependent material response and

develop new tools and methods to unlock the mapping of linked crystallographic sample

properties to neutron imaging.

In chapter two, the energy-dependence of the cross-section which describes the neutron

interaction in matter is investigated in more detail. Given combinations of crystal orienta-

tion and incident neutron wavelength, dictated by Bragg’s law, will give rise to diffraction of

neutrons out of the direct beam. Monochromatic neutron imaging can thus access spatial

variation in crystallographic properties.
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How to obtain energy-resolving capability in neutron imaging is the subject of chapter three.

At pulsed sources, one can use the time of flight method, where one records the neutron arrival

time after the pulse which is representative of its velocity and thus energy. At continuous

sources, one has to use a monochromator to select a small band out of the generated energy

continuum. As this work was carried out at the SINQ continuous neutron source operated

at the Paul Scherrer Institut (CH), focus is on the later. Different monochromator types were

investigated and their performance towards energy-selective neutron imaging characterized.

We then have all the theoretical and experimental background to deal with new applications

of energy-selective imaging, little explored so far and for the first time investigated in this

work. The first one deals with a quantification problem in neutron imaging: some of the

neutrons scattered in the sample will still hit the detector. Such contributions lead to erroneous

conclusions on material content as tabulated or calculated reference cross sections assume all

scattered neutrons removed from the direct beam. However, for many engineering materials,

scattering contributions can be experimentally suppressed by energy-selective imaging in

their so-called absorption range. This is the subject of chapter four.

Many engineering materials are polycrystalline in practice. In the case of energy-selective

imaging of samples with few crystallites much larger than the detector resolution, the subject

of chapter five, spatial variation in intensity will be observed across the sample between

those grains oriented as such that they fulfill Bragg’s law, and those that do not. Such grain

mapping was first performed qualitatively with a broad energy-range. Subsequent work under

time-of-flight conditions with high energy resolution allowed for more quantitative spatial

mapping of such properties as crystallite orientation, mosaicity,...

However, the required energy resolution is higher than achievable with monochromators at

continuous sources. Alternatively, one can think of the crystal(lite) as a monochromator in

itself, diffracting neutrons out of the direct beam. In capturing these diffracted neutrons, one

obtains projections of the crystallites responsible. These too can be reconstructed, yielding a

three-dimensional mapping of crystallites’ shape and orientation. This neutron diffraction

contrast tomography (nDCT) is discussed in chapter six.

To conclude this work, a critical evaluation and applicability of the developed methods is

undertaken in light of the new time-of-flight imaging beamlines currently under construction

or given the go-ahead.
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1 Neutron imaging

In this chapter the basics of neutron imaging are introduced. First, the production of neutrons

through fission and spallation is discussed. The neutron beam is attenuated according to the

Beer-Lambert law when traversing a sample. This is exploited to obtain sample information in

2D (radiography) or 3D (tomography). The two main tomographic reconstruction algorithm

classes, filtered backprojection and algebraic reconstruction techniques, are discussed. The

required experimental infrastructure for a successful imaging instrument able to conduct such

experiments is then covered. Finally, the opportunities for going beyond standard neutron

imaging and motivation for this work are announced.

1.1 Neutron sources
1.1.1 Fission - Research reactors
The most widespread man made source of neutrons is the neutron induced fission reactor.

Heavy nuclei are bombarded with neutrons, breaking up into lighter fission fragments and

releasing tremendous amounts of energy. Fissile materials such as 235U and 239Pu have a high

probability of breaking apart after capture of a slow thermal neutron, having an energy of

25 meV. In case of 235U a highly excited 236U is formed, which generally splits up immediately

into two fission products of masses centered around 95 amu and 135 amu, two to three free

neutrons and prompt gamma rays. About 200 MeV of energy is released in the process1, most

of which is carried away as kinetic energy of the fission products and converted into heat

upon their collision with the surrounding material. Some of these fission products are highly

radioactive and slowly decaying, causing a nuclear waste problem. The released neutrons have

a mean kinetic energy of around 2 MeV. However, the probability for such a fast neutron to

induce a new fission reaction is very low compared to a thermal neutron. The fissile material

is therefore surrounded by a moderator, usually water, heavy water or graphite. When fast

neutrons collide with the moderator nuclei, they transfer a large fraction of their energy

into the recoil of the latter. After several collisions, the neutron energy spectrum features a

Maxwellian distribution around the moderator temperature, i.e. they are thermalized and

will induce new fission reactions. Carefully balancing neutron generation through fission and

neutron losses (absorption, neutrons leaving the reactor geometry) one obtains a sustainable

1The energy stored in chemical bonds as a reference, is in the order of a few eV , i.e. a million times lower.
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Chapter 1. Neutron imaging

chain reaction (figure 1.1). The initial neutrons for starting up the chain reaction in a reactor

loaded with new fuel elements are provided by an external radioactive source that can be

brought into the core [1] (see also section 1.1.3).

Figure 1.1: Schematic overview of a sustainable neutron induced fission reaction (edited from [2]).

The design of fission reactors is optimized for either heat production as in nuclear power

plants or neutron yield in research reactors for scientific usages such as neutron imaging.

An example is the FRM II research reactor operated by the Technische Universität München

in Germany (figure 1.2). It features a 93% enriched 235U fuel element, moderated by a sur-

rounding heavy water tank and the whole placed in a water pool for cooling and shielding.

Several secondary sources are present to change the final neutron energy spectrum supplied

to different beamlines. Of relevance to neutron imaging is a 20 l tank of liquid D2 at 25 K, fur-

ther moderating the neutrons to energies around 5 meV. The beam ports are typically placed

close to the core for the highest neutron flux intake, but tangential to it to avoid high gamma

radiation background.

Other operational world class imaging beamlines at reactor sources include CONRAD II at the

BER II reactor in Berlin (Germany), CG-1D at the HFIR reactor in Oak Ridge (USA) and DINGO

at OPAL in Sydney (Australia).

(a) (b)

Figure 1.2: View into the reactor pool (a) and layout (b) of the FRM II research reactor [3, 4].
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1.1. Neutron sources

1.1.2 Spallation

Another way of releasing neutrons from nuclei is by spallation reactions. When a heavy nucleus

is hit by a high energy proton beam of several hundreds of MeV, neutron emission takes place

by intra-nuclear cascade followed by de-excitation. A 1GeV proton has a corresponding

de Broglie wavelength of 0.1 fm. As such, it does not ’see’ the target nucleus as a whole,

but rather the individual nucleons that it consists of. In a direct reaction, it will transfer its

incidence energy in a cascade of elastic nucleon-nucleon collisions. Nucleons (e.g. neutrons)

that obtain high enough energy can escape from the nucleus. Lighter hadrons such as pions are

produced as well. The rest of the energy is distributed equally between the remaining nucleons

and a highly excited nucleus remains. In a second stage this nucleus de-excites, mainly by

neutron evaporation and also some emission of light charged particles (protons, deuterons, α

particles). Alternatively, the excited nucleus can split up into two fission fragments of similar

mass which in turn can undergo neutron evaporation. The de-excited nucleus is usually

radioactive and will decay until a stable end state is reached. The whole process is illustrated

schematically in figure 1.3.

Figure 1.3: Schematic overview of a spallation reaction: intra-nuclear cascade followed by de-excitation
through fission or neutron evaporation and final radioactive decay until a stable state is
reached [5].

The total number of neutrons produced per incident particle, the neutron multiplicity, is

roughly linear with the target’s mass number (and thus the number of present nucleons) and

slowly increases with the incident proton energy [6], illustrated in figure 1.4. The final neutron

energy spectrum contains all energies up to the incident proton beam one. A moderator can

be present to shift the spectrum towards thermal and cold neutron energies depending on the

application.
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Chapter 1. Neutron imaging

Figure 1.4: Neutron yield as a function of incident proton beam energy for various target materials [7].

The Paul Scherrer Institut in Switzerland, where most of this work was carried out, is home of

the SINQ spallation neutron source [8]. A quasi continuous neutron beam is produced by a

570 MeV, 1.5mA proton beam impacting on a lead spallation target at 51 MHz repetition rate.

The neutron yield lies around 10 neutrons/proton according to figure 1.4. Moderation and

cooling is provided by the enclosing heavy water tank. These thermal neutrons are used to

feed the NEUTRA imaging beam line. A smaller tank of liquid D2 is also present to additionally

generate cold neutrons (figure 1.5).

Figure 1.5: Layout of the SINQ spallation neutron source with label 1 pointing out the thermal modera-
tor, 2 the cold source, 3 the spallation target.

This is what the beam port of the ICON beam line for Imaging with COld Neutrons looks
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1.1. Neutron sources

onto, featuring a resultant colder spectrum than NEUTRA. The BOA beamline for neutron

Optics and other Applications, including imaging, looks indirectly at the cold source through

a neutron bender which effectively cuts off any thermal component in the beam spectrum.

The spectrum of these beamlines for imaging are shown in figure 1.6.

Figure 1.6: Neutron spectrum at the different imaging beamlines present at SINQ, normalized to their
peak intensity: NEUTRA (thermal), ICON (cold with a thermal component) and BOA (cold).

Several new imaging instruments at other spallation neutron sources are currently scheduled

or under construction: RADEN (formerly known as ERNIS) at JPARC (Japan), IMAT at ISIS

(UK), VENUS at SNS (USA) and ODIN at the ESS (Sweden). However, these are all pulsed

sources with high energy-resolving capability through time of flight (see chapter 3).

1.1.3 Other sources of free neutrons

There are several other methods to produce free neutrons, though in practice they are rarely

used for neutron imaging purposes due to their low neutron flux.

One can make use of radioactive sources [9] such as 252Cf, with a half life for neutron decay of

85.5 years. Alternatively, one can create neutrons via a two-step process as in an 241Am/9Be

source. The Americium decays by emitting an alpha particle, which is captured by the Beryl-

lium and stabilization occurs through neutron emission. When Chadwick discovered the

neutron in 1932, he did it using a combination of Polonium as an α emitter and Beryllium [10].

Alternatively, 124Sb/9Be can be used as a (γ,n) neutron source. Fast neutrons are always the

result and further moderation is required.
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Instead of a proton accelerator and spallation target, a more compact and technologically

simpler method is to have an electron beam of several tens of MeV impact on a heavy metal

target. Brehmsstrahlung is produced of all energies up to the electron beam energy. These

high energy photons in turn can be used to produce neutrons through (γ,n) reactions. An

example is the 45 MeV electron linac of the Hokkaido university, with lead target and liquid H2

moderator. It is used for pulsed neutron imaging, though the flux at the sample position is

only on the order of 103 n/s/cm2/kW [11].

1.2 Digital radiography
When a neutron beam of intensity I passes through an infinitely thin slab of material, thickness

dx, it will be attenuated along the way. The intensity reduction dI will be proportionate to the

incident intensity and the thickness. Denoting the proportionality constant Σ, the process can

be written as a simple differential equation:

dI = −ΣI dx (1.1)
dI

dx
= −ΣI (1.2)

Solving it for a macroscopic sample of thickness d and incident neutron beam intensity I0, we

obtain the well known Lambert-Beer law

I = I0e−Σd (1.3)

The parameter Σ represents the interaction probability of the beam with the material that

leads to its attenuation. For neutrons, it is called the macroscopic cross-section. It is often

decomposed into the nuclei density N and a microscopic cross-section σ, which is then a

property of the nucleus: Σ= Nσ. The density of nuclei can be estimated using the material’s

mass density ρ, the molar mass M and Avogadro’s constant NA = 6.022×1023 particles/mole:

Σ= Nσ= ρNA

M
σ (1.4)

When using a large neutron beam that covers the entire sample, in combination with a two

dimensional detector, one can apply the Lambert-Beer law to each neutron ray through the

sample hitting a detector pixel at coordinate (x, y). A neutron image or radiograph is thus

obtained.

The transmission image T (x, y) is found as the ratio (taken pixelwise) of the image with sample

I (x, y) and without I0(x, y), the latter also known as the flat field or open beam image. As such

non-uniformities in intensity across the field of view (due to incident beam intensity profile,

scintillator texture, lens aberrations, etc.) is eliminated. A dose normalization takes care of

the small temporal fluctuations in source intensity between the images inevitably taken at

different times. This is as simple as normalizing both images based on the intensity level in a

region D outside of the sample. A correction is also made for the Dark Current (DC), an offset

in the intensity levels due to the detector electronics:
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1.2. Digital radiography

I ′ = I −DC

I ′0 = I0 −DC ,

so

T (x, y) = I ′(x, y)

I
′∗
0 (x, y)

, (1.5)

with I
′∗
0 the open beam image normalized to the sample image dose2.

I
′∗
0 (x, y) = I ′0(x, y)∗

Î
D I ′(x, y)dxdyÎ
D I ′0(x, y)dxdy

. (1.6)

The procedure is illustrated schematically in figure 1.7.

Figure 1.7: Taking the ratio of the image with and without sample - dose normalized based on a region
D and dark current offset DC corrected - yields the transmission image T .

Neutron radiography thus allows to investigate the spatial variation in sample thickness if the

material (macroscopic cross-section) is known

d(x, y) =− 1

Σ(x, y)
lnT (x, y) (1.7)

or material distribution if the thickness is known

Σ(x, y) =− 1

d(x, y)
lnT (x, y). (1.8)

2One can equivalently work with the sample image normalized to the open beam dose.
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1.3 Why neutrons?

The Lambert-Beer law also holds for other types of penetrating radiation. In case an X-ray

beam is used, it is more common to speak of an attenuation coefficient µ instead of a cross-

section Σ. Though similar in principle, it is highly complementary in practice due to the

different interaction mechanisms involved. X-rays interact with the electrons in each atom,

thus the attenuation coefficient increases with the atomic number. Neutrons on the other hand

carry no charge, they do not ’see’ the electrons and interact mainly with the atomic nucleus3,

showing a much more capricious trend. This is illustrated for a selected number of elements in

figure 1.8, a comprehensive table of macroscopic cross-sections and attenuation coefficients

for all elements can be found in appendix A. Compared to X-rays, some light elements (e.g.

hydrogen) interact much more strongly with neutrons, translating in an increased sensitivity

to small amounts (e.g. water management in fuel cells [12]). Metals on the other hand interact

less with a neutron beam and larger samples can be probed.

Figure 1.8: Interaction probabilities of selected materials with X-rays and neutrons, depicted schemati-
cally by a difference in disk area [13].

An example of the complementarity in attenuation contrast is demonstrated in figure 1.9

showing the radiograph of a computer hard disk using the different types of radiation. Whereas

the X-ray image features high attenuation for the metallic conductors, the neutron beam is

mainly attenuated by the plastic microchip housings and printed circuit board resin - both

hydrogenous substances.

3They do however posses a magnetic moment, which leads to some interaction with the electronic shell.
However, it is of no relevance to the topics investigated in this work and shall not be considered further.
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1.4. Computed tomography

Figure 1.9: Radiographs of a computer hard disk, made using X-rays (left) and neutrons (right).

1.4 Computed tomography
Tomography aims to retrieve the three-dimensional distribution of the cross-sections in

the sample based on projections taken at different angular views of the sample. Several

reconstruction strategies exist.

1.4.1 Direct, analytical method: Filtered backprojection

Consider the recorded projection data of a slice through the sample. From the Beer-Lambert

law (eq. 1.3), the negative natural logarithm of the recorded transmission profile is the integral

of the macroscopic cross-section along a set of parallel lines through the sample onto the de-

tector. Mathematically, the Radon transform describes the formation of the parallel projection

P of an object function - in our case the macroscopic cross-section - under an angle θ:

Pθ(t ) =
∫ ∞

−∞

∫ ∞

−∞
Σ(x, y)δ(x cosθ+ y sinθ− t )d xd y , (1.9)

with (x, y) coordinates in the slice plane and t the coordinate of the projection. It can be

shown [14] that the one-dimensional Fourier transform of this profile

Sθ(w) =
∫ ∞

−∞
Pθ(t )e− j 2πw t d t (1.10)

equals the profile along a line at angle θ of the two dimensional Fourier transform of our object

function

S(u, v) =
∫ ∞

−∞

∫ ∞

−∞
Σ(x, y)e− j 2π(ux+v y)d xd y . (1.11)

This is known as the Fourier slice theorem, it is a cornerstone of the reconstruction algorithm

and is illustrated in figure 1.10. Performing this step for all sample projection angles θ, one

completely fills up two-dimensional Fourier space. One is then left with taking the inverse 2D

Fourier transform to end up with the distribution of the macroscopic cross-section Σ(x, y) in

real space.
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Figure 1.10: Illustration of the Fourier slice theorem (taken from [15]).

The practical implementation of the reconstruction procedure is known as the filtered back-

projection algorithm. After rewriting and combining the Fourier slice theorem and two

dimensional Fourier transform [14], the unknown cross-section distribution is found as

Σ(x, y) =
∫ π

0
Qθ(t )dθ, (1.12)

with

Qθ(t ) =
∫ ∞

−∞
Sθ(w)|w |e2π j w t d w . (1.13)

Equation 1.13 represents a filtering of the projection data Pθ in the frequency domain: Sθ(w)

is modulated by the ramp filter |w |. The filtered profiles at all angles θ are subsequently

backprojected and added (equation 1.12). Implemented using the fast Fourier transform,

this direct method for reconstructing the cross-section is very fast, a typical dataset being

reconstructed in the order of minutes. A schematic illustration is given in figure 1.11.

1.4.2 Algebraic reconstruction techniques

A completely different approach is to write out the image formation process as a series of

algebraic equations, going from a series of unknowns (the cross-sections throughout the

sample) to given projection data. The main advantage compared to direct analytical methods

lies in their superior performance when dealing with a limited number of projections or non-

equiangular spaced ones [16] and the ability to include more physics into the reconstruction

(e.g. imposing that the cross-section can not be negative).
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Figure 1.11: The filtered backprojection reconstruction algorithm: the recorded transmission profile
(1) is filtered in the frequency domain (2). Filtered profiles for all acquisition angles are
then backprojected and summed in real space (3). Image edited from [15].

The unknown sample content can be discretised on a grid of N cells, each attributed an

unknown macroscopic cross-section Σ j . The integrated cross-section seen by a detector pixel

pi , is then the sum of all Σ j encountered by a "fat" neutron ray - its width being the same as

the pixel - weighted by the fractional area of the fat ray within each cell j :

N∑
j=1

wi jΣ j = pi (1.14)

and this for each one of the M detector pixels i . The acquisition process according to this

principle is shown schematically in figure 1.12.

Figure 1.12: The algebraic reconstruction technique: rewriting the image formation process as a series
of algebraic equations.
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In other words, one has obtained a matrix equation

[w]M×N [Σ]N×1 = [p]M×1 . (1.15)

These matrices tend to be huge however (M usually being on the order of at least 1024 × 1024

pixels and N a similar number). Direct inversion is out of the question and one has to rely

on iterative methods to solve for Σ. Substantial computing power and time is required, even

though recent advances have been made in implementation on Graphics Processing Units

(GPUs) allowing for immense parallelization and significant speed up [17]. Still, several hours

are required in order to reconstruct a typical dataset. Different solution strategies exist:

ART (algebraic reconstruction technique) - In most ART implementations, the weights w are

simply replaced by 1s and 0s, depending wether or not a ray runs through the corresponding

cell. This binarization makes the implementation easier and faster, but causes considerable

salt and pepper noise. Moreover, the difference between each observed and computed ray

impact is calculated and corrected for each ray sequentially. Changes made by one ray in a

cell can thus be overwritten by the next.

SIRT (simultaneous iterative reconstruction techniques) - In response, the SIRT method

[18] calculates the corrections for each ray before simultaneously updating all cells with the

average of all proposed changes at once. Resulting reconstructions look better with much of

the noise smoothed out, at the expense of slower convergence.

SART (simultaneous algebraic reconstruction techniques) - In order to reduce the dis-

cretization error, the SART method [19] uses bilinear elements rather than a constant pixel

basis. Just like in SIRT, all correction terms are applied simultaneously at the end of each

iteration. A weighting window is introduced, favouring corrections near the center of the

reconstruction compared to the edges, as this is where the objects of reconstruction are

located.

1.5 Imaging beamline layout
Working with ionizing radiation, the experimental area is a heavily shielded bunker structure,

composed out of concrete blocks lined with steel of up to 1 m thickness. An anteroom can be

present to house all beam manipulation systems (monochromators, filters, grating systems),

separating them from the rest of the experimental (sample) area as they tend to get activated

and become a source of γ radiation. A labyrinth type entrance avoids radiation seepage by

neutrons scattered on sample and surroundings.

A shutter system stands in between the neutron source and the sample (e.g. [20]). When these

are opened, access to the experimental area is prohibited. Over a meter of steel is required to

stop the high energy neutrons. Thermal and cold neutrons are stopped using Boron, Lithium

and Gadolinium.

Neutron imaging is ideally performed with a parallel beam. Due to the vast dimensions of

neutron sources, no magnified imaging as with micro-focus X-ray tubes is possible. Moreover,
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1.5. Imaging beamline layout

a strategy of using lenses to reshape the neutron trajectory is hindered by a lack coherence

and electric charge. Some strategies exist [21, 22, 23], though still in their infancy and not used

in practice in neutron imaging. Thus, the beam is shaped by having an aperture of diameter D

in the neutron source shielding and performing the imaging experiment at a distance L away

from it. The final divergence is quantified by the so called L/D ratio and it has a direct impact

on the image resolution.

Imagine a sample with a perfectly sharp edge at a distance l from the detector. In a parallel

beam, this would give rise to a step in the transmission profile. However, if the beam is

originating from an aperture, diameter D, at a distance L, the recorded edge profile will be

smeared out over a distance

d = l/(
L

D
), (1.16)

as illustrated schematically in figure 1.13. An example from practice is presented in figure 1.14.

Figure 1.13: Effect of a pinhole of diameter D at a distance L from the sample on the edge blur d
recorded at a detector at position l behind the sample.

Figure 1.14: Radiographies of a small motor demonstrating the effect of the L/D ratio on image sharp-
ness [4].
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Though reducing the pinhole size can lower the geometric unsharpness, it will also reduce

the neutron flux. Increasing the beam path length comes with a bigger field of view and L/D

ratio, but again a lower flux. In practice, usually two measurement positions are available and

a choice between different aperture sizes. Typical numbers for the ICON beamline are given in

table 1.1, summarizing the L/D ratios, corresponding divergence angles and neutron flux [24].

Aperture 1 mm 10 mm 20 mm 40 mm 80 mm
L/D 6864 686 343 172 86
θ 0.5’ 5’ 10’ 20’ 40’
Flux [n s−1cm−2m A−1] - 3.2×106 1.3×107 - 1.4×108

(a)

Aperture 1 mm 10 mm 20 mm 40 mm 80 mm
L/D 12083 1208 604 302 151
θ 0.28’ 2.8’ 5.7’ 11.4’ 22.8’
Flux [n s−1cm−2m A−1] - - 3.9×106 - 5.2×107

(b)

Table 1.1: Beam divergence and flux at the ICON measurement position L=6.864 m (a) and L=12.083 m
(b).

Between aperture and sample, the neutron beam goes through vacuum flight tubes. These

limit intensity losses, background increase and activation of the surroundings predominantly

caused by scattering from air molecules (mainly by the N2 gas and humidity, i.e. H2O). More

than 5 percent of beam intensity is lost per meter for 5Å neutrons [25]. However, the higher

the vacuum, the thicker the entrance and exit windows of the flight tubes need to be and the

higher the neutron beam attenuation by them.

Additional motorized slits are installed to limit the beam size to the sample dimensions.

This avoids unnecessary activation and scattering of the surroundings leading to increased

background.

The sample stage needs to account for three categories of motion. Firstly, translation with

respects to the beam center allows to move a sample in and out of the beam (taking flat

field images) or moving it up and down (measuring tall samples by stitching). Secondly, a

goniometer corrects for sample tilt to have the rotation axis perpendicular to the beam. Lastly,

a rotation stage is present, a prerequisite for tomographic acquisitions.

It is placed as close to the detector as possible in order to limit geometrical blurring, i.e.

minizing l in equation 1.16.

The typical required infrastructure for neutron radiography and tomography is illustrated

using the ICON beamline, where most experiments presented in this work were performed.

Its layout is representative for a typical neutron imaging beamline. A sketch of the beamline is

provided in figure 1.15 with the most important components designated.
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1.6. Imaging detector systems

Figure 1.15: Layout of the ICON beamline as a tyical imaging instrument, with neutrons coming from
the right. Several shielding blocks have been omitted for clarity.

1.6 Imaging detector systems

Neutron imaging detectors are position sensitive detector systems featuring high spatial

resolution and relatively large field of view. Two main digital categories can nowadays be

distinguished: scintillator based systems convert neutrons to visible light detected with a

camera and microchannel plate detectors, converting the neutrons into secondary charged

particles for detection.

1.6.1 Film and imaging plates

First neutron imaging was performed using X-ray films, made sensitive to neutron radiation

by covering them with a conversion material such as a thin layer of Gadolinium. High spatial

resolution can be obtained (∼20µ) this way, though the dynamic range is limited and non-

linear. A new film is required for each radiograph. The result is an analog image on film, that

can later on be digitized [26].

Imaging plates [27], feature a film of BaFBr:Eu. Neutron irradiation excites it to a meta-stable

state. Afterwards, the imaging plates are placed in a scanner, where upon laser illumination

the material de-excites. Photons are emitted in the process and collected, their number being

a measure for the initial number of incident neutrons at that point. An intense white light

erases the imaging plate, which is thus reusable.

The ex-situ development of film and imaging plates makes them impractical for tomographic

purposes and they are nowadays but rarely used.
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Chapter 1. Neutron imaging

1.6.2 Scintillator based systems
This type of imaging detector system relies on a scintillator screen to convert the neutrons

into visible light. The most common one is the 6LiF ZnS:Ag one. Here, 6Li acts as a converter,

creating charged particles through the nuclear reaction

6Li +n → T +α+4.79 MeV

The triton and alpha particles induce ionizations along 40-150µm and 5-10µm path length in

solid [28]. These will stimulate photon emission from the ZnS:Ag phosphor crystals, which

are mixed together with the LiF crystals in an organic binder and coated on an aluminium

substrate. The large difference in refractive index between the ZnS and LiF (2.4 versus 1.4,

[29]) causes multiple reflections of the generated light on its way out of the scintillator and

makes it rather opaque to its own light. The thicker the scintillator screen is made, the higher

the neutron conversion efficiency by the 6LiF, but from around 450µm on, the light yield

does not follow this trend anymore [30]. The increased light diffusion that comes with thicker

scintillators also reduces the spatial resolution that can be obtained. In practice, 6LiF ZnS:Ag

scintillators of 50µm-300µm are used.

To obtain higher spatial resolution, one thus needs very thin scintillators. However, the

conversion efficiency of 6Li would then be too low. Therefore, one switches to Gd2O2S (Gadox)

scintillators. Natural gadolinium has a 50 times higher absorption cross-section for thermal

neutrons than 6Li (even 270 times higher for the 157Gd isotope). The thermal neutron capture

reactions

155Gd +n → 156Gd +γ′s + c.e.′s +7.9 MeV
157Gd +n → 158Gd +γ′s + c.e.′s +8.5 MeV

produce low energy conversion electrons c.e. (the most probable K level conversion electron

has an energy of 30 keV). As a result, they have a very short ionization range (∼5µm) [31],

meaning lower light yield, but the light also originates closer to the point of neutron interaction

and higher spatial resolution is obtained. Typical Gadox scintillator thicknesses lie between

10µm −30µm.

The scintillation light is then reflected vi a a 45° mirror to a high sensitivity CCD or CMOS

camera outside the direct neutron beam to limit irradiation damage. However, γ’s generated

in interactions of neutrons with sample and surroundings can still reach the camera chip and

create white spots or zingers in the radioraphs. Depending on the number of pixels on the

camera chip and the size of the scintillator area focused onto that chip with optical lenses,

different effective pixel sizes can be obtained. The whole is packed in a light tight box to

prevent stray light from the experimental area to falsify results.

Typical exposure times are in the order of seconds, the dynamic range large (typically 16bit or

65535 grey levels) and linear. The resultant images are most importantly digital, with huge

advantages for computed tomography, image processing, data storage.
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1.6. Imaging detector systems

In case of fast cyclic processes, stroboscopic imaging using a gated CCD with image intensifier

is used [32, 33]. To avoid motion blurring of the cyclic process, very short exposure times are

chosen. The recorded light intensity is correspondingly low, requiring photon multiplication

and triggering at the same moment in every cycle, allowing to stack the radiographs and obtain

sufficient image statistics.

At ICON, a whole range of such systems are available, covering a wide range of sample sizes and

resolutions: the so-called maxibox, midibox, micro set-up [24, 34] and the neutron microscope

under development (figure 1.16). Generally, the higher the spatial resolution, the longer the

exposure times, as one focusses the light of smaller scintillation areas, generated using thinner

scintillators onto a larger number of pixels.

Figure 1.16: Range of possible sample sizes and spatial resolution for the different neutron imaging
detector systems at the ICON beamline.

1.6.3 Microchannel plate detectors
A completely different class of neutron imaging detectors are based on Microchannel Plate

(MCP) technology. A microchannel plate is a thin slab (∼mm) of resistive material under high

voltage, perforated with microscopic channels (∼ 10µm, regularly spaced apart). Incident

photons or charged particles that hit the walls knock out electrons which will be accelerated

in the electric field and in turn knock out even more electrons, starting an electron avalanche

within that pore. By doping MCP glass with 10B, it becomes sensitive to neutron capture

through the reaction

10B +n →7 Li (0.84 MeV )+α(1.46 MeV )+γ′s(0.48 MeV )

generating the required charged particles. The event location is registered with an underlying

pixellated detector readout chip. A schematic overview is provided in figure 1.17. The main

difference compared to coating a converter material such as 10B or Gd straight on such a chip,
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Chapter 1. Neutron imaging

also used in neutron imaging [35], is the higher spatial resolution and signal intensity. As

the charge build-up is limited to a single pore, one can perform event centroiding and reach

resolutions down to ≈ 10µm [36] compared to ≈ 100µm. Its noiseless character and fast time

resolution (≈ 1µs) make it an ideal detector for time-of-flight neutron imaging.

Figure 1.17: Schematic overview of a microchannel plate detector for neutron imaging. Charged
particles are generated by neutron capture in borated glass, resulting in an electron
avalanche detected on an underlying pixellated readout chip (adapted from [37]).

1.7 The need for energy-selective neutron imaging
So far, we’ve considered a single constant value for the cross-section in the Beer-Lambert

law. However, reality is more complex and the cross-section, representing the neutron-matter

interaction processes that cause the beam attenuation, is wavelength dependent. Thus, the

Lambert-Beer law should be applied separately to each wavelength λ in the incident beam

spectrum s, each with its own cross-section Σ(λ). The recorded sample transmission will thus

be:

T =
∫
s I0(λ)e−Σ(λ)dε(λ)dλ∫

s I0(λ)ε(λ)dλ
, (1.17)

with ε(λ) the wavelength dependent detector efficiency. The above equation is in fact an

averaging operation of the wavelength dependent sample interaction over the incident beam

spectrum.

In the case of crystalline material, this wavelength dependency of the cross-section can be

very pronounced. The ability to perform neutron imaging at a single wavelength would allow

the investigation of the spatial variation in crystalline properties of the sample. In the next

chapter we investigate the interaction of neutrons with matter, absorption and scattering,

concentrating on the wavelength range of relevance to neutron imaging. It will shed light on

which crystalline properties are accessible and what their wavelength dependent cross-section

exactly looks like.
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2 Neutron interaction with matter

The probability of interaction between a neutron beam and the sample material is energy-

dependent. Especially in the presence of an ordered structure of atoms, it can vary dramatically.

In this chapter, we discuss the different types of interaction - absorption and scattering, both

coherent and incoherent, elastic and inelastic - and their energy dependences. It will help us

to understand which sample properties are newly accessible to us in energy-selective neutron

imaging as well as how best to measure them.

2.1 Cross-sections
In neutron imaging, we assume an ideally parallel beam of thermal or cold neutrons incident

on the sample nuclei. It is described by its wave vector k , of the same direction as the neutron

and of magnitude 2π/λ. It can either undergo no interaction, be absorbed and removed

from the beam or it can be scattered, changing its direction and/or energy as described by

an outgoing wave vector k ′. These interaction mechanisms are investigated in great detail

in further sections. Standard neutron imaging studies the spatial variation in transmitted

beam intensity. However, as we will see in chapter 6, under certain conditions one can also

perform imaging using a specific form of scattered neutrons, namely diffracted neutrons. The

interaction geometry for neutron imaging in all modalities is shown in figure 2.1.

Figure 2.1: Reaction geometry showing incident beam, target, scattered and transmitted beam
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Chapter 2. Neutron interaction with matter

The probability for an interaction to occur between neutron and nucleus is stated by the

corresponding microscopic cross-section σ:

σ= number of neutrons undergoing interaction per target nucleus [n/s]

incident neutron flux [n/s/cm2]

This material property has the dimensions of an area and is usually expressed in units of

barn (1bar n = 10−28 m2). One can picture it as the area of a virtual disk around the nucleus’

position, with interaction occurring when a neutron passes through it and no interaction

when the neutron flies by unperturbed further away1.

The macroscopic cross-section Σ takes into account the density of nuclei N in a target material

of interest, Σ= Nσ.

In case we are only registering the number of outgoing interacted neutrons in a certain

direction Ω with solid angle dΩ subtended by a detector, we can investigate the angular

dependence of the interaction process as represented by the differential cross section

dσ

dΩ
(2.1)

The differential cross-section e.g. manifests itself in diffraction imaging experiments. The

total microscopic cross-section is then found again through simple integration over all angles.

Conversely, one can also define the differential energy cross-section distinguishing between

outgoing neutrons by the energy range dE they fall into and do not by their direction:

dσ

dE
(2.2)

This is what we observe in energy-selective transmission imaging, making a series of radio-

graphs at different wavelengths.

Finally, the double differential cross-section gives the probability of observing the interacted

neutron in the angular range dΩ and energy range dE :

d2σ

dΩdE
(2.3)

2.2 Interaction with a single nucleus
2.2.1 Absorption
When a neutron hits a nucleon of the atom’s core, the recoil nucleon and neutron will hit other

nucleons which will recoil themselves and hit other nucleons in turn and so on. Rapid energy

sharing thus occurs and a compound nucleus is formed, which quickly de-excites by prompt

gamma radiation. The resultant compound nucleus is however not necessarily stable and

radioactive decay (or a chain of decays) will occur until a stable end state is reached. The time

scale for this process is highly dependent on the initial type of target nuclei and can range from

seconds to millions of years. Therefore it is important prior to neutron imaging experiments,

1The basic unit originates in the approximate geometric cross-section of a Uranium nucleus [38].
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2.2. Interaction with a single nucleus

to check possible sample activation on the nuclide chart (e.g. [39]) as it might compromise its

release by radiation safety authorities.

Resonances exist for energy states of the compound nucleus in the keV-range, characterised

by a high cross-section and narrow energy width [40]. Each isotope has a unique resonance

pattern ’finger print’, which is exploited in resonance neutron imaging possible at a few pulsed

sources only [41].

The primary absorption mechanism is radiative capture, the cross-section σr is given by the

Breit-Wigner formula for a single isolated resonance [42, 43]:

σr = λ2

4π
g J

ΓnΓγ

(E −ER )2 +Γ2
R

(2.4)

with λ the wavelength of the incident neutron and g J the spin factor for the compound state

of total angular momentum J. Γn is the neutron width dependent on the density of final states

available to the incident neutron and thus proportional to the neutron velocity Γn ∝ v . Γγ is

the emitted gamma width independent of the neutron velocity as for a compound nucleus

the incident and exit channel are decoupled. Finally, E ∝ v2 is the neutron energy and ER the

energy of the resonance of width ΓR . For thermal and cold neutrons, far from resonance, the

equation 2.4 tends to the familiar 1/v law. More qualitatively, one can state that the slower

the neutron, the more time it has for interacting with the nucleus and thus the higher the

cross-section. Figure 2.2 illustrates the radiative capture cross-section for 27Al over a large

energy range retreived from the ENDF/B-VII.1 database using JANIS [39].

Figure 2.2: Radiative capture cross-section for 27Al.
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Chapter 2. Neutron interaction with matter

A few isotopes also have a resonance in the thermal range (e.g. 157Gd at 1.67 Å or 113Cd at

0.66 Å). These are typically used in neutron detectors or as shielding material (shutter, beam

limiters, beam dump...) in neutron imaging and scattering experiments due to their high

capture efficiency.

2.2.2 Scattering

However, more than absorption, neutron scattering is the dominant interaction mechanism

for a large number of materials. For a selected number of materials, reappearing as samples in

this work, their respective absorption and scattering cross-section are shown in figure 2.3. An

important consequence is that, though the Beer-Lambert law assumes all interacted neutrons

(absorbed or scattered) removed from the beam, some of these scattered neutrons will still

reach the detector. The number of observed neutrons is thus higher than expected from

applying the Beer-Lambert law on a straight path through the sample, leading to quantification

errors. The issue is dealt with in more detail in chapter 4.

Figure 2.3: Tabulated [44] total microscopic scattering and absorption cross-sections for selected
materials.

First, we investigate the scattering from a neutron of wave vector k from a single, fixed nucleus

at position r = 0. We make use of the particle-wave duality for the incident neutron and

represent it by a plane wave e i k ·r . As the force exerted by the nucleus is central, the scattered

wave can be decomposed in eigenfunctions of angular momentum. Now consider the incident

neutron (mass m, velocity v) striking just at the surface of the nucleus, at r = R, being in the

range of a few femtometers. The angular momentum involved in the impact is mvR . Quantum

mechanics dictates it is quantized, so

mvR = ~
√
`(`+1), (`= 0,1,2,3...) (2.5)

so for thermal and cold neutrons (v = 2200m/s and below), only `= 0 or S-wave scattering is

possible, which is isotropic. Equation 2.5 shows that `= 1 or P-wave scattering does not set on

until energies in the MeV range, far above the energy range considered in this work. Thus the
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2.2. Interaction with a single nucleus

wave function associated with the scattered neutron is

ψ(r )|r>R = f
e i k ·r

r
, (2.6)

f being the scattering amplitude. The total flux of scattered neutrons can be found integrating

over a virtual sphere of radius r around the nucleus:

v ·4πr 2 · | f e i k ·r

r
|2 = 4πv | f |2 (2.7)

The incident flux being

v.|e i k .r | = v (2.8)

The scattering cross-section, or chance that an incident neutron is scattered from the nucleus

is then given by the ratio of (2.7) to (2.8):

σs = 4π| f |2 (2.9)

The bound2 scattering length b is defined as

b =− f , (2.10)

and can be interpreted geometrically as the radius R of an impenetrable rigid sphere at which

scattering occurs. In this strongly simplified model, the total wave function

ψ(r ) = e i k .r −b
e i k .r

r
(2.11)

needs to become zero at the interface, resulting in R = b. The minus sign in (2.10) is introduced

by convention to take into account the 180° phase shift between incident and outgoing wave

and obtain positive values for the scattering length for scattering from an impenetrable rigid

sphere3. However, in practice it is often simply interpreted as the proportionality constant

between incident and scattered wave.

In principle it is possible to find the scattering length by solving the Schrödinger equation

in the nuclear potential and joining the wave function between incident and scattered wave.

However in practice, nuclear theory does not yet provide a description for the potential

2Also a free scattering length can be defined. It corresponds to the situation of neutron scattering from a free
nucleus instead of a rigid one, in which case a recoil has to be taken into account. However, passing on to the
center of mass system, this problem is equivalent to scattering of a neutron of reduced mass m′ = mM/(m +M)
from a fixed nucleus and we will not consider it further here.

3A few isotopes exist with a negative scattering length (e.g. 7Li, 48Ti, 55Mn,...). Instead of an infinite potential
associated with an impenetrable sphere, the Fermi model describes the nucleus as simple potential well of constant
depth V ≈ −40MeV and width R [ f m] = 1.2A1/3, with A the atomic mass number. Solving the Schrödinger
equation for this potential and joining the wave functions inside and outside the nucleus, the scattering length
is found again as the zero of what is now the extrapolated outer wave function [45]. A few atomic masses (and
corresponding potential well widths) will give rise to resonances between the wave functions and will have a
negative root [46].
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Chapter 2. Neutron interaction with matter

accurate enough. Experimental values are used instead, determined through experiments

involving diffraction, neutron interference, refraction, reflection or even gravitometry [47].

They are tabulated and can be found e.g. in [47, 44].

A priori suggesting an isotropic scattered wave solution (eq. 2.6), one can propose a potential

V̂ (r ) = 2π~2

m
δ(r ) (2.12)

which yields the correct result when deriving the scattering cross-section through application

of Fermi’s golden rule for calculating the interaction probability on quantummechanical

grounds [48]:

d2σ

dΩdE
= k ′

k

( m

2π~2

)2 ∑
ξ,χ

pξpχ
∑
ξ′,χ′

| < k′ξ′χ′|V̂ |kξχ> |2δ(~ω+Eχ−Eχ′), (2.13)

with the initial neutron wave vector k , spin state ξ and target state χ, their final states denoted

by k ′, ξ′, χ′; p the probabilities of those states and ~ω the change in neutron energy. Inserting

(2.12) into this equation for the case of an unpolarized beam and no energy exchange with the

target nucleus, again we find σs = |b|2.

V̂ is however not a true potential but rather a pseudo potential, since the solution is found

in the Born approximation which is violated for such a strong potential as one containing

a δ-function. It is rather an artifice constructed such as to yield the correct result in this

approximation and outside the nucleus.

Instead of a gamma ray, a neutron can also be re-emitted after neutron absorption4. The

nuclear potential scattering cross-section (equation 2.9) should be corrected by addition of

a resonance term and interference term [43]. However, far from resonances, these terms

become independent of the neutron energy. Moreover, the compound nucleus model implies

isotropic particle emission as the incident neutron direction is "forgotten". This reaction

channel can thus be incorporated in the experimental constant scattering length b.

2.3 Scattering from a rigid array of nuclei

Consider an array of N nuclei, with the lth nucleus at Rl. The Fermi potential then becomes

V̂ (r) = 2π~2

m

∑
l

blδ(r−Rl) (2.14)

4Charged particle emission for slow neutron capture is only found for a few lighter elements, e.g. 3He(n,p),
6Li(n,α), 10B(n,α).

26



2.3. Scattering from a rigid array of nuclei

Thus < k ′|V̂ |k > becomes, expanding the bra-ket notation,

< k ′|V̂ |k > = 2π~2

m

∑
l

bl

∫
e−i k ′.rδ(r −Rl )e i k .r dr (2.15)

= 2π~2

m

∑
l

bl e iκ.r , (2.16)

with κ= k −k ′. Introducing it into equation (2.13), with the quantum numbers χ for a rigid

lattice referring only to the isotope and nuclear spin distribution and the energy of the lattice

system to a very good approximation independent of this so as to be dealing with elastic

scattering, we find:

dΣs

dΩ
=∑

l ,l ′
b∗

l ′bl e iκ.(Rl−R ′
l ), (2.17)

with

b∗
l ′bl =

∑
λ

pλ <λ|b∗
l ′bl |λ> (2.18)

the averaging over the isotope and nuclear spin distribution. The scattering length bl depends

on the isotope and nuclear spin of the nucleus associated with position Rl . As there is no

correlation between the nuclei at Rl and R ′
l ,

b∗
l ′bl =

|b|2 , l 6= l ′

|b|2 , l = l ′
(2.19)

Hence, equation (2.18) can be split up into two terms

b∗
l ′bl = |b|2 +δl ,l ′

(
|b|2 −|b|2

)
, (2.20)

so the differential cross-section (2.17) can be rewritten as the sum of a coherent term

(
dΣ

dΩ

)
s,coh

= |b|2
∣∣∣∣∣∑

l
e iκ.Rl

∣∣∣∣∣
2

, (2.21)

with b often referred to as the coherent scattering length, and an incoherent term(
dΣ

dΩ

)
s,i nc

= N (|b|2 −|b|2) = N |b −b|2. (2.22)

Physically, this can be interpreted as follows. Due to the presence of different isotopes and

nuclear spin states with different scattering lengths, the array of nuclei is not truely periodic.

However, it can be seen as a superposition of a periodic array with mean scattering length

and (random) corrections. Where the former gives rise to an interference factor - making

the coherent scattering cross-section highly dependent on the geometry of the system - the

incoherent scattering cross-section is simply proportional to the mean-square of the deviation

and isotropic.
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Neglecting the nuclear spin, for different isotopes ξ of abundance cξ,

b =∑
ξ

cξbξ (2.23)

Next, we consider a single isotope only. In the interaction of a neutron with spin 1/2 and a

nucleus of spin I , states of total angular momentum J+ = I+1/2 or J− = I−1/2 with multiplicity

2J +1 and corresponding scattering length b+, b− are available to the neutron. Occupation of

each of these states is equiprobable, so the chance of interaction with J+ is:

2I +2

(2I +2)+2I
= I +1

2I +1
(2.24)

and for J−:
2I

(2I +2)+2I
= I

2I +1
, (2.25)

so that

b =
(

I +1

2I +1

)
b++

(
I

2I +1

)
b− (2.26)

Combining (2.23) and (2.26) we can find a general expression for b and mutatis mutandis |b|2:

b = ∑
ξ

cξ
1

2Iξ+1

[(
Iξ+1

)
b+
ξ + Iξb−

ξ

]
(2.27)

|b|2 = ∑
ξ

cξ
1

2Iξ+1

[(
Iξ+1

) |b+
ξ |2 + Iξ|b−

ξ |2
]

(2.28)

Tabulated are the so called bound (in)coherent scattering cross-sections for single nuclei [44].

These are defined as:

σcoh = 4π|b|2 (2.29)

σi nc = 4π(|b|2 −|b|2) (2.30)

Equation (2.30) corresponds to the total microscopic incoherent scattering cross-section -

integrating equation (2.22) over the unit sphere and normalizing to a single nucleus. The

tabulated bound coherent scattering cross-section (eq. 2.29) does not take the interference

factor implied by the periodic structure into account. It is rather a constant describing its

strength.

The tabulated bound coherent and incoherent scattering cross-sections are illustrated in table

2.1 for some materials typically encountered in neutron imaging and scattering. Hydrogen has

a nuclear spin of 1/2 and spin incoherence dominates dramatically. Likewise, for Vanadium,

the coherent scattering lengths b+ and b− have opposite sign and are present in almost equal

ratio 9/2:7/2. Iron on the other hand is a strong coherent scatterer as one isotope of spin zero

is highly abundant.
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Element Isotope (abundance [%]) Nuclear spin σcoh [b] σi nc [b] σa [b]
H 1/2 1.77 80.26 0.33
Al 1.495 0.0082 0.231
V 51V (99.75) 7/2 0.032 5.08 5.08
Fe 11.3 11.6 2.25

54Fe (5.84) 0 2.2 2.5 2.59
55Fe (91.68) 0 12.8 12.8 2.48
56Fe (2.17) 1/2 0.64 2.0 1.28

Cu 7.49 0.55 3.78

Table 2.1: A selection of single atom scattering cross-sections for materials typically encountered in
neutron imaging and scattering, the absorption cross-section is given for completeness.
(from [44, 48]).

2.4 Scattering from a rigid crystal lattice

2.4.1 Describing a crystal lattice

In this section, we consider our array to be a crystal lattice and further develop the formulation

for the coherent cross-section. The incoherent cross-section (eq. 2.30, independent of the

nuclei positions) remains unchanged.

A crystal is a periodic repetition of a unit cell in space. The unit cell is described by its

subtending base vectors a1, a2 and a3 and has a volume V0 = a1 · (a2 ×a3). The lattice vector

l denotes moving from one unit cell to the next: l = l1a1 + l2a2 + l3a3, with l1, l2, l3 integers.

The position of different atoms within the unit cell are described by the vector d = d1a1 +
d2a2 +d3a3, with d1, d2, d3 rational numbers. All lattice sites are thus described by the vector

Rl d = l +d . An example of the crystal lattice and its descriptors is given in figure 2.4.

Figure 2.4: A set of base vectors for a body-centered cubic lattice for which the unit cell contains two
atoms at d = 0 and d = 1/2(a1 +a2 +a3).
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An equivalent reciprocal lattice of vectors τ can be defined by

e iτ·l = 1 (2.31)

The reciprocal lattice is then described by τ = t1τ1 + t2τ2 + t3τ3, with the reciprocal base

vectors

τ1 = 2π

V0
a2 ×a3 (2.32)

τ2 = 2π

V0
a3 ×a1 (2.33)

τ3 = 2π

V0
a1 ×a2. (2.34)

The volume of a unit cell in reciprocal space is then

τ1 · (τ2 ×τ3) = (2π)3

V0
. (2.35)

Crystal lattice planes and crystallographic directions are often represented by a set of three

integers h, k, l, referred to as the Miller indices. (hkl ) denotes the plane defined by its intercepts

with the base vectors at a1/h, a2/k and a3/l . A zero index represents a plane parallel to the

corresponding base vector (or equivalently intersecting it at infinity). [hkl ] denotes the

direction ha1 +ka2 + l a3. The families of planes and directions equivalent due to crystal

symmetry are denoted as {hkl } and < hkl > respectively.

2.4.2 Single crystal cross-section

For a crystal lattice with N atomic positions l , equation (2.21) is simply rewritten as

(
dΣ

dΩ

)
s,coh

= |b|2
∣∣∣∣∣∑

l
e iκ.l

∣∣∣∣∣
2

. (2.36)

The cross-section is large when the scattering vectorκ coincides with a reciprocal lattice point

τ whereas it drops off rapidly when κ moves away from such points. In the limit for a large

crystal ∣∣∣∣∣∑
l

e iκ.l

∣∣∣∣∣
2

∝ δ (κ−τ) , (2.37)

the proportionality constant found through equating and integrating both sides. The differen-

tial coherent scattering cross-section thus becomes [48](
dΣ

dΩ

)
s,coh

= N (2π)3

V0
|b|2 ∑

τ
δ (κ−τ) . (2.38)
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In the case of multiple atoms per unit cell, it is generalized to:(
dΣ

dΩ

)
s,coh

= N (2π)3

V0

∑
τ

F (τ)δ (κ−τ) , (2.39)

with the structure factor F defined as

F (τ) =∑
d

bd e iτ.d . (2.40)

The condition for coherent scattering can be represented graphically by the Ewald construct

depicted in figure 2.5. Here, the incident neutron is represented by the wave vector k impinging

at the origin O of the reciprocal lattice. As the scattering is elastic, the wave vector k ′ for the

scattered neutron must have the same magnitude. Therefore, starting at the same point A

as k , its end point must lie on a circle with center A and radius |k | = |k ′| = k. Only for the

intersections of this circle with the reciprocal lattice, is the condition for coherent elastic

scattering (also known as diffraction or Bragg scattering) κ=τ fulfilled. From figure (2.5), it

can be seen that

sin(θ) = τ

2k
(2.41)

As the reciprocal lattice vector is perpendicular to the lattice planes in real space and has a mag-

nitude τ= n2π/d , with d the lattice plane spacing and n an integer, this can be reformulated

as

2d sinθ = nλ, (2.42)

the well known Bragg law.

Figure 2.5: Ewald construct showing the condition for Bragg scattering
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Alternatively, Bragg’s law can also immediately be derived in real space. From figure 2.6, it

is clear that if the path difference between the scattered neutron waves is a multiple of the

wavelength nλ,n = 1,2,3, ..., the scattered waves are in phase. Trigonometry reveals the path

difference to be 2d sinθ and the condition for constructive interference thus leads to equation

2.42 again. For any deviation from this condition, the waves are no longer in phase and the

reflected intensity quickly falls to zero.

Figure 2.6: Derivation of Bragg’s law in real space, with a neutron beam of wavelength λ incident under
an angle θ on a crystal lattice of plane spacing d .

The total cross-section is then found by integration of equation (2.39) over dΩ, or equivalently

over dk ′/|k ′|:

Σs,coh = N
(2π)3

V0

2

k

∑
τ
|F (τ)|2δ(τ2 −2kτsinθ), (2.43)

the delta function being equivalent to the fulfilment of the Bragg law. Thus, wavelength-

dependent neutron imaging of single crystals will feature sharp dips in the transmission

spectrum due to coherent elastic scattering wherever the Bragg condition is met.

As an illustration to equation (2.43), the transmission pattern of a copper single crystal is

shown in figure 2.7. Apart from their location, equation (2.43) tells us how the Bragg dips

become more pronounced for longer wavelengths (Σs,coh ∝ 1/k). Their number decreases

and separation increases for longer wavelengths. This can be understood in the context of the

Ewald sphere again: with short wavelengths, a large Ewald sphere is associated, with many

intersection possibilities with the reciprocal lattice. With increasing wavelengths, the Ewald

sphere grows smaller and intersections more scarce. From a certain point on, it will be so small

that no intersections are possible anymore. Energy-selective transmission imaging of single

crystals is thus best performed using cold neutrons, allowing for higher contrast and placing

less stringent demands on the energy-resolution required to separate the peaks. We will get

back to this in chapter 5, with newly developed methods and applications for extracting single

crystal properties at high spatial resolution.
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2.4. Scattering from a rigid crystal lattice

Figure 2.7: Transmission spectrum of a copper single crystal (taken from [32]).

2.4.3 Powder cross-section

A powder or an ideal polycrystalline material can be considered an ensemble of single crystals

in all random orientations. With typical crystallite sizes in the order of O (10µm) [49] and

sample diameters of O (1cm), a thousand crystallites are present in the beam direction. The

formula for coherent scattering can thus be found through averaging the one for a single

crystal (equation 2.39) over all orientations of τ:(
dΣ

dΩ

)
s,coh

= 2π2N

k2V0

∑
τ

1

τ
|F (τ)|2δ

(
1− τ2

2k2 −cosθ

)
. (2.44)

The argument of the δ-function represents a cone of opening angle 2θ. Neutrons can scatter

in all directions defined by these so-called Debye-Scherrer cones. Again, the total cross-section

can be found through integration:

Σs,coh = 4π3N

k2V0

τ<2k∑
τ

1

τ
|Fτ|2, (2.45)

which can be rewritten in more common terms of wavelength λ and lattice spacings as dhkl :

Σs,coh = λ2N

2V0

2dhkl<λ∑
dhkl

dhkl |Fhkl |2. (2.46)

The cross-section will increase quadratically with increasing wavelengths - promoting the

use of cold neutrons - and feature sharp Bragg edges at λ= 2dhkl . For larger wavelengths, the

(hkl) lattice planes can no longer scatter neutrons out of the direct beam and the cross-section

drops sharply. Past the largest 2dhkl coherent scattering can no longer occur, this is the Bragg
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cut-off . Equation (2.45) is illustrated in figure 2.8 for a rigid Body Centered Cubic (BCC) lattice

of cube side a.

It should be noted that preferred orientation or texture [50] can lead to large deviation of this

pattern [51, 32]. Orientations that are overrepresented compared to the random distribution

will lead to increased scattering (higher cross-section) for the corresponding Bragg wavelength

at the expense of underrepresented orientations.

Figure 2.8: Total coherent scattering cross-section for a theoretical rigid body-centered cubic lattice of
cube side length a (taken from [48]).

2.5 Scattering from a crystal lattice with thermal motion
2.5.1 Phonons and the Debye model
So far, we have assumed a rigid crystal lattice. However, in reality, the sample is at a certain

temperature and associated nuclei oscillate around an equilibrium position. This makes

it possible for the neutron to exchange some of its energy with the crystal, setting it into

oscillation or absorbing energy from the crystal vibrations. The part of the cross-section

involving energy exchange is referred to as the inelastic cross-section, whereas for the elastic

cross-section the energy of incident and scattered neutron remain the same.

The nature of these vibrations have been studied extensively, development of different models

driven by their ability to explain the evolution of the volumetric specific heat capacity with

temperature. The oldest model developed by Dulong and Petit (1819), assumes the nuclei

as vibrating independently around their equilibrium lattice position. The energy associated

with these vibrations resembles the classical case of a mass-on-a-spring harmonic oscillator.

A continuum of potential energies is possible, E = 1
2 kx2, k the effective spring constant

and x the deviation from equilibrium. However, though the model describes the atomic

mass dependency of the specific heat capacity fairly well, it also states it erroneously to be

independent of temperature.
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2.5. Scattering from a crystal lattice with thermal motion

Einstein introduced a quantum mechanical treatment of the harmonic oscillator (1917), the

energy associated with the vibrations now quantized as phonons - similar to photons for

electromagnetic field oscillations - with E = ~ω(n + 1/2). Here, ω represents the angular

frequency of the phonon and n the quantum state number. Though the Einstein model

describes the temperature dependence of the specific heat capacity well at moderate and

room temperature, it breaks down in the low temperature limit.

Debye solved this issue by renouncing the concept of independent vibrations. Oscillations of

nuclei in one lattice plane also have an impact on the movement of neighbouring planes and

vice versa[52, 53]. This interdependent vibration of nuclei can be broken down into modes,

schematically illustrated in figure 2.9 together with the other models. The shortest possible

wavelength or highest order mode (maximum angular frequency ωD ) of such joint oscillation

then corresponds to twice the interatomic distance in the 1D case. Any shorter wavelength

is irrelevant, as unlike electromagnetic waves, the phonon concept is only meaningful at the

nuclei’s positions, being defined as the movement of nuclei. The associated temperature θD =
~ωD /kB is called the Debye temperature, with kB = 1.38.10−23 J/K the Boltzmann constant.

It marks the transition from collective thermal lattice vibrations to the independent atomic

vibrations considered before. Physically, materials with high θD feature strong bonds and

many collective vibration modes, the Dulong-Petit model will as such be a bad descriptor. A

low Debye temperature on the other hand indicates weak bonds, little interaction between

the nuclei’s position, the Dulong-Petit and Einstein model of independent vibrations being a

good descriptor. Throughout the rest of this section, the Debye phonon model is used.

2.5.2 Elastic scattering cross-section

In the presence of vibrations of the nuclei, the differential coherent elastic scattering cross-

section is formed by correcting equation (2.38), derived for a rigid lattice, by the Debye-Waller

factor (
dΣ

dΩ

)el

s,coh
= Nσcoh

4π

(2π)3

V0
|b|2 ∑

τ
δ (κ−τ)e−2W (κ), (2.47)

where 2W corresponds to the mean square displacement of a nucleus, weighed by κ2 [48].

Thus, the Debye-Waller factor decreases with increasing temperature and larger κ. The height

of the Bragg edges for higher (hkl) reflections at smaller wavelengths will generally decrease

and the coherent elastic scattering eventually tend to zero in contrast to figure (2.8).

The total elastic coherent scattering cross-section then becomes (using the Debye model to

evaluate the Debye-Waller factor) [54]:

σel
coh(E) =σcoh

π2~2

2mEV0

≤2k∑
τ 6=0

w(τ)

τ
e
− 3~2Φ1(θ)

2MkB θD
τ2

, (2.48)

with m the neutron mass, M the nuclei’s mass, θ = T /θD the temperature relative to the Debye

temperature and the function

Φm(θ) =
∫ 1

−1

εm

eε/θ−1
dε. (2.49)
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Figure 2.9: Schematic representation of the different lattice vibration models and associated energies.
An example of a mode in the Debye model is shown by the blue line, the red one being an
alternative albeit meaningless one above the Debye temperature.

The exponential Debye-Waller factor in equation (2.48) was also rewritten by Vogel in terms of

an isotropic displacement factor Bi so to lend itself better to Rietveld refinement of Bragg edge

transmission patterns in his BETMAn code [55], an approach overtaken by Boin in his more

recent nxs simulation library [56]:

e−2W (κ) := e
− Bi so

4d2
hkl , Bi so = 3h2Φ1(θ)

MkBθD
. (2.50)

Likewise, the differential incoherent scattering cross-section for the static lattice is adjusted to(
dΣ

dΩ

)el

s,i nc
= Nσi

4π
e−2W (κ) (2.51)
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and the total elastic incoherent cross-section becomes [54]

σel
i nc (E) =σi nc

1

12

M

m

kBθD

EΦ1(θ)

(
1−e

−12 m
M

E
kB θD

Φ1(θ)
)

(2.52)

2.5.3 Inelastic scattering cross-section
A straightforward approach after deriving the elastic neutron scattering cross-section in which

no energy with the crystal is exchanged, would be to consider interactions with the emission

or absorption of only one phonon, then two, three, etc. However, the convergence of such

a multiphonon expansion quickly worsens and its terms grow increasingly complex as the

neutron energy increases [57]. Instead, Placzek suggested a mass expansion for the total

incoherent cross-section of polycrystals built out of heavy nuclei [58, 59], later generalized by

Wick [60] to include light nuclei:

σtot
i nc =σi nc

∞∑
n=0

( m

M

)n
An(E ,θ), (2.53)

and the coefficients An are tabulated (e.g. in [48]) or can be calculated [54]. It is a rapidly

converging series and usually only the first three terms are taken into account. The evaluation

simplifies in the epithermal range - but also applicable over the thermal energy range - to [54]

σtot
i nc (E) ≈σi nc

(
M

m +M

)2 [
1+ 3mkBθD

4ME
Φ3(θ)

]
. (2.54)

The total inelastic incoherent cross-section is then found by subtracting (2.52) from (2.54),

σi nel
i nc =σtot

i nc −σel
i nc . (2.55)

For coherent inelastic scattering involving a single phonon, the allowed interactions are

strongly restricted by the laws of conservation of energy and momentum, the one phonon

cross-section being strongly peaked around certain scattered neutron energies and directions.

However, for two or more phonons involved, much more scattering channels are open to

the neutron and the coherent inelastic scattering cross-section becomes a smoothly varying

function with negligible interference effects. Moreover, looking at the total cross-section

introduces additional averaging over all solid angles and scattered neutron energies [45] and

the scattering behaviour can be considered incoherent. This is known as the incoherent

approximation, introduced by Placzek [61] in the limits of short and long wavelengths. Binder

[62] found these approximations to be suitable also in the thermal region.

The total inelastic coherent cross-section is found as

σi nel
coh (E) = σcoh

σi nc
σi nel

i nc (E). (2.56)

The partial cross-sections for the different interaction channels (absorption as well as scatter-

ing, both coherent and incoherent, elastic and inelastic) were simulated for iron using the nxs
code [51], which is based on the formulas covered in this section.
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Figure 2.10: Total and partial cross-sections for α-iron simulated with nxs.

2.6 Application to neutron imaging
Now that we know what mechanisms are behind the final observed transmission spectrum,

we can consider what information can be extracted from it. In other words, which sample

properties can be mapped at high spatial resolution through energy-selective neutron imaging.

The Bragg edge pattern depends on the crystallographic phase. By comparing monochromatic

radiographies at wavelengths slightly shorter and longer than a Bragg edge of a particular

phase, one can enhance radiographic contrast for that phase compared to other phases with

no Bragg edge at that position and a more slowly varying cross-section [32, 63].

Radiography at a wavelength slightly longer than the last and highest Bragg edge features

increased sample penetration depths as the cross-section is lowest here. For instance, lead

has an average microscopic cross-section of 11.4 barn in a polychromatic thermal spectrum

versus only 1.4 barn at 6 Å, past the Bragg cut-off, increasing the penetration depth from 6 cm

to 50 cm). Conversely, one can increase sensitivity of neutron imaging by radiography at

wavelengths just short of the Bragg cut-off, where the cross-section is at its highest.

Preferred orientation or texture [50] can lead to large deviation of the Bragg edge pattern

[51, 32]. Orientations that are overrepresented compared to the random distribution will lead

to increased scattering (higher cross-section) for the corresponding Bragg wavelength at the

expense of under-represented orientations. Mapping of texture variations across a sample of

interest is thus possible [64].

Energy-selective neutron imaging past the Bragg cut-off, means scattering is suppressed and

one becomes insensitive to the sample’s crystallography. This strategy is exploited in chapter 4

and is shown to yield better quantitative results in specific cases.

The Bragg edge position itself is determined by the lattice spacing, which becomes smaller
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or larger under compression or tension. The local shift in observed Bragg edge position is a

measure for mapping strain across a sample [65, 66].

A schematic summary of the different modes of energy-selective imaging around Bragg edges

is given in figure 2.11.

Figure 2.11: Schematic overview of the different modes of energy-selective neutron imaging of poly-
crystalline material.

In case of single crystals one no longer observes Bragg edges, but rather distinct Bragg peaks.

The peak positions pattern can be used to map spatial variation in crystal orientation and the

peak width is a measure for the local mosaicity. A limited number of pattern overlap (multiple

crystallites in the beam direction) can be tolerated. Imaging strategies and applications in this

regime are treated in chapter 5.

At the same time, when a single crystal undergoes diffraction and is fully illuminated by

the neutron beam, Bragg’s law implies that all these diffracted neutrons follow the same

direction. One thus obtains a parallel projection of the single crystal in that direction, formed

by diffracted neutrons at positions dependent on the crystal orientation. Even tomographic

extension is possible, if data under multiple sample rotation angles is acquired. Chapter 6

discusses this unconventional neutron imaging modality, its advantages and disadvantages in

more detail.

A schematic juxtaposition of both modes of crystal(lite) imaging is shown in figure 2.12.
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Figure 2.12: Schematic overview of neutrons of particular wavelengths being diffracted on the lattice
planes of large crystallites, forming projections themselves used in diffraction imaging
and intensity losses studied in transmission imaging.
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3 Energy-resolving capability for
neutron imaging
A prerequisite for energy-selective neutron imaging is the limitation of the wavelength band

used in recording a radiograph, as otherwise the energy-dependency of the cross/section is

averaged out over the incident polychromatic beam spectrum. This can be achieved in several

ways.

At pulsed sources, one can use the time lag between the source pulse and the neutron arrival

at the detector, which is representative for the neutron velocity i.e. its energy: the so called

Time-of-Flight (TOF) method.

At continuous neutron sources however, one has to use a monochromator device to select

the desired wavelength out of the incident polychromatic spectrum that is provided by the

neutron source. Several types exist and most of them have their origin in neutron scattering,

using a narrow pencil beam. However, it was found that their use with a broad, slightly

divergent neutron beam as in neutron imaging will induce a spatial variation in delivered

spectrum across the field of view. In this chapter, several monochromators are investigated

and characterized w.r.t. energy-selective neutron imaging. After neutron filters, a mechanical

neutron velocity selector is discussed, a double crystal monochromator and finally the newly

developed TESI monochromator. The majority of the presented findings and conclusions

have already appeared in publications by the author in [67, 25, 68].

3.1 Time of flight
If a pulse of neutrons is generated at time t = 0 and the neutrons are allowed to travel a certain

distance L, then their arrival time t is indicative of their speed v = L/t , with L the flight path

length. Using the De Broglie relation, one can link it to the neutron wavelength:

λ= h

mnL
t , (3.1)

with h Planck’s constant and mn the neutron mass. Recording a radiograph with very short

exposure time at time t means making a monochromatic image at wavelength λ.

E.g. Engin-X comes with a flight path of 50 m [69], so from eq. 3.1, a 0.01 Å wavelength bin

around 1.8 Å corresponds to a radiograph of 125µs exposure time, taken 22.7 ms after the

pulse. Repeating the process for a series of periodic pulses and stacking the results, ensures

sufficient neutron statistics. Typically such measurements are performed with a gated CCD
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[32] or an MCP detector as described in section 1.6. The latter detector was also used for the

time of flight imaging performed at ISIS (UK) that will be presented in chapter 5.

Alternatively, if one is only interested in the spectrum and no spatial information is required,

one can use a 3He counter [70] as well. This method is e.g. applied for determining the

transmission spectra of the different monochromators characterized in the following sections.

The initial neutron pulse can be generated in several ways. At spallation sources, one can have

pulses of protons hitting the spallation target, generating in turn pulses of neutrons. The final

neutron pulse width depends on the initial proton pulse width and its further broadening

in the moderator, due to the uncertainty on the number of collisions and path length of the

neutrons in the moderator. However schemes exist to minimize such broadening, e.g. by

having a decoupled moderator [9, 71] .

Also pulsed nuclear reactors have been built. The JINR institute in Dubna (Russia) operates the

IBR-2 reactor, feeding several neutron scattering beamlines and with a project to develop one

for neutron imaging newly initiated [72]. Its unique reactor design features a rotating reflector

near a PuO2 core, producing intense neutron pulses by making the reactor periodically super-

and subcritical [73, 74].

At continuous sources, one has to use a chopper to make use of the time-of-flight method. A

rotating disk, opaque to neutrons and featuring a narrow opening slit, chops up the continuous

neutron beam into pulses.

The pulses should be sufficiently separated to avoid pulse overlap: the fastest neutrons in

a pulse overtaking the slowest ones from the previous pulse. The wavelength uncertainty is

directly related to the timing uncertainty (detector time bins and neutron pulse width), as

from eq. 3.1 it directly follows ∆λ/λ = ∆t/t . Electronics offset and precise path length are

usually calibrated for with a transmission wavelength scan of materials with a well-known

Bragg edge, usually beryllium is taken with a Bragg cut-off at 3.959 Å.

At pulsed sources using TOF imaging, capturing the whole field of view as a single time frame

for a monochromatic image, the spectral distribution is inherently uniform across the field of

view. Of course, the parallax of the field of view comes with a certain difference in path length

for the neutrons hitting the center compared to the sides. However, the effect is negligible as a

numeric calculation shows. For our 50 m flight path and taking a field of view of 10 cm, the

path length difference is only 50−
p

502 +0.052 = 25.10−6 m, so for a thermal neutron travelling

at 2200 m/s, a time difference of 11 ns only, well below the initial neutron pulse width and

detector time binning in the order of tens of microseconds.

3.2 Filters
The simplest although coarsest and least flexible way of energy selection is having a filter of a

material that cuts off part of the spectrum. This can either be by exploiting a strong neutron

resonance (e.g. cadmium for filtering out thermal neutrons) or the Bragg cut-off. For the

latter, one relies on the fact that the cross-section is higher on the lower wavelength side of the

final Bragg edge than on the higher wavelength side. Having a sufficiently long neutron path

42



3.3. Mechanical neutron velocity selector

length through the material ensures only neutrons of wavelengths larger than the Bragg cut-off

remain. The filter performance can be improved by cooling with e.g. liquid nitrogen. This will

reduce the inelastic scattering component of the cross-section and increase transmission of

wavelengths longer than the Bragg cut-off. By selecting the right material, one can tweak the

wavelength cut-off, e.g. beryllium for 3.95 Å, graphite for 6.7 Å.

Working with the transmitted beam through the filter, the properties for imaging are not

affected, apart from a reduced intensity. An example of a beryllium-filtered spectrum (recorded

at ICON using the time-of-flight method, with a chopper and 3He counter) and its practical

realization at the ICON beamline is shown in figure 3.1. For technical reasons (design and

reliability in an activated and inaccessible position), it is not cooled.

(a) (b)

Figure 3.1: Recorded spectrum at ICON with a 100 mm thick beryllium filter in the neutron beam (a)
and a 3D rendering of its incorporation (the green cylinder) in the aperture wheel (b).

3.3 Mechanical neutron velocity selector

3.3.1 Principle

A Mechanical Neutron Velocity Selector (MVS) consists of a rotating drum with twisted lamel-

lae coated with a strong neutron absorber. Depending on its rotation speed, only neutrons of

the right velocity or energy will pass through the device [75]. The resulting monochromaticity

∆λ/λ is given by the ratio of the opening angle of the blades over their twist angle. As such it is

a fixed design property and usually on the order of 10%-15%. There is a limit to the shortest

wavelength that can be chosen, lying around 2.5 Å- 3 Å, imposed by the maximum rotation

speed of the device. Though the spectral width is quite wide, it also implies a reasonably high

flux and limited increase in exposure time, making it the most suitable choice for investigating

slowly varying energy-dependent effects – e.g. imaging across the Bragg cut-off at long wave-

lengths where the source intensity is low. The field of view is usually large (∼10 cm). Such a

device has been available at ICON since 2008 [24] and has been included in the ANTARES II

upgrade at FRM II in München (Germany), online as of spring 2014.
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The velocity selector type monochromator is common at Small Angle Neutron Scattering

(SANS) beamlines [76] and has only recently been put to use at imaging beamlines as well. The

broad beam characterizing the latter instead of a pencil beam has some important implications

that will be discussed in this section.

Such a device has already been experimentally characterized in terms of (1) its positive in-

fluence on spatial resolution coming from additional beam collimation [77], and (2) the

determination of central beam divergence by time-of-flight measurements of the output

spectrum [78] as well. However, no information on the spectral distribution over the field of

view is available but non-uniformities have clearly been observed [79, 80]. Here, the spatial

and spectral neutron distributions are characterized, along with explanations of their origin

and discussion on the implications for imaging data analysis.

3.3.2 Experiments
Three series of measurements were performed to characterize the change in wavelength over

the field of view when using a neutron velocity selector, the results of which are presented and

explained in the sections below. The experiments were conducted at the ICON beamline (PSI,

Switzerland).

In the first experiment, an energy scan was made of an iron plate of 95 mm by 95 mm, with

5 mm thickness. Images of the sample and open beam were recorded from 2.8 Å to 6.0 Å in

steps of 0.1 Å. A 100µm thick 6Li ZnS scintillator was used in combination with an Andor CCD

camera of 1024 × 1024 pixel. Any shift in the incoming neutron wavelength distribution over

the iron plate implies a change in the transmitted spectrum which affects the Bragg edge

position measured as a function of the velocity selector wavelength setting. This Bragg edge

position was determined pixel by pixel by the position of the minimum of the derivative of

the measured wavelength-dependent cross-section. The principle is schematically depicted

in figure 3.2. The comparison of the physically constant (110) Bragg edge at 4.05 Å with the

experimental data yields a wavelength shift map for this wavelength.

In a second experiment, the evolution of the wavelength shifts over the field of view is studied

for all wavelengths in comparison to the 4.05 Å ((110) reflection) using the method described

above. An energy scan was made of a 95 mm × 90 mm × 3 mm vanadium plate. This material

is predominantly an incoherent scatterer with negligible coherent scattering cross-section

(see section 2.3). As such, the total cross-section of Vanadium exhibits no Bragg edges and is

monotonously increasing according to a linear function of the wavelength (Figure 3.3). Thus

any difference in incident beam wavelength distribution over the plate results in a different

transmission wavelength-integrated intensity on the detector. Transmission images were

obtained with the same detector set-up as above for wavelengths from 2.8 Å to 6.0 Å in steps of

0.1 Å.

In a third experiment, the shift in wavelength over the field of view for a 4 Å velocity selector

wavelength setting was determined through time-of-flight. A chopper running at 50 Hz was

used in combination with a 3He counter tube. Its entrance window was 29.2 mm × 25.5 mm
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and flight path length 7098 mm. The monochromatic beam spectrum was measured for five

steps of 25.5 mm in the vertical direction. The vertical slit entrance window of the chopper

does not allow for horizontal stepping.

Figure 3.2: The wavelength shift (∆λ) over the field of view is measured by macroscopic cross-section
(Σ) across a 5 mm thick iron plate setting a series of velocity selector wavelengths (λ0).

Figure 3.3: Total wavelength-dependent cross-section of vanadium (dark blue line) together with
simulated beam wavelength distributions at two specific velocity selector frequencies as
illustration.

3.3.3 Device description

The mechanical neutron velocity selector available at the ICON beamline is mounted at

position 1, close to the beam port (see figure 3.4) at 2.5 m from the beam entrance aperture. It

was originally constructed at Risø (Denmark) in 1980 to be used on a SANS machine and later

on recycled at ICON. It is a user-friendly device mounted on rails to easily slide it in and out of

the beam.
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Figure 3.4: ICON beamline layout (left) equipped with the mechanical velocity selector (right).

The wavelength setting is integrated to the beamline operating software. The device has been

calibrated at the beam center through time of flight measurements using a chopper and a 3He

counter (figure 3.5). The minimum wavelength lies at 2.75 Å and monochromaticity ∆λ/λ at

15%.

Figure 3.5: Beam spectra after monochromatization with the mechanical neutron velocity selector at
the ICON beamline.

The relevant velocity selector parameters are listed in Table 3.1 , with turbine blade subtending

angle (α), drum length (L), average blade radius (R) and number of lamellae (N ). The opening

angle β between to blades is given by 360°/N .

α L R N

12.5° 400 mm 82.5 mm 156

Table 3.1: Velocity selector parameters at the ICON beamline.
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3.3. Mechanical neutron velocity selector

A wavelength change over the field of view is inherent to the use of a neutron velocity selector.

The wavelength shift is generated by the change in horizontal divergence over the field of

view. Following the framework suggested by Hammouda [76], the neutron wavelength and

monochromaticity after beam passage through the velocity selector is given by:

λ = αe f f h

Lmnω
(3.2)

∆λ

λ
= β

αe f f
(3.3)

αe f f = α+γ L

R
(3.4)

where λ is the neutron wavelength after the velocity selector, ω the rotation frequency and

γ the horizontal tilt (with sign) of the incoming neutron beam with respect to the velocity

selector rotation axis - or in the reference frame of the velocity selector, the divergence of the

incident neutrons w.r.t. the central ray. The constants h and mn denote Planck’s constant

and the neutron mass respectively. The relation (3.2) is obtained by equating the neutron

flight time over the distance L to the opening time of the revolving skewed turbine blades. The

monochromaticity is found as the ratio of the opening angle of the blades compared to the

blade tilt and for the numbers in table 3.1, estimated as ∆λ/λ= 18%.

For these experiments, conducted at position 2 (7.1 m from the aperture), the maximum

horizontal divergence γmax of the incoming neutrons that hit the side of a 100 mm x 100 mm

field of view is approximately 0.4°. Using the parameter values listed in table 3.1 it is possible

to calculate the horizontal wavelength shift expected when setting the device to calibrated

rotation frequency for 4.05 Å. An estimate of 1.3 Å wavelength shift over the field of view is

obtained.

3.3.4 Results and discussion
A map of the wavelength deviation ∆λ over the field of view with respect to the velocity

selector’s calibrated wavelengths at the beam center is given in figure 3.6a. For each pixel, the

transmission intensity across the iron plate versus the set wavelength was recorded, and the

measured wavelength setting for the (110) Bragg edge was determined and compared to the

known real physical value of 4.05 Å to get the shift map. The experimental Bragg edge position

was determined by fitting a Gaussian to the derivative of the transmission spectrum, with a

final uncertainty of about 2%. In summary, a shift in incident wavelength over the field of view

is observed to be 1.3 Å over 95 mm horizontally and 0.5 Å over 95 mm vertically.

Experimental data are in good agreement with estimated values in the previous section.

However, assuming a symmetrical horizontal divergence γ, the above formalism does not

provide any explanation for the diagonal trend observed in the shift map.

The measurement has been repeated with the iron plate rotated by 90° around its normal axis.

However, no significant change in the results has been observed, ruling out the possibility of it

being due to spatial inhomogeneity of any kind (e.g. texture) within the iron plate.
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(a) (b)

Figure 3.6: (a) Wavelength shift map at 4.05 Å determined from the Fe Bragg edge measurements and
(b) wavelength shift map at 6 Å determined from the vanadium plate measurement.

The incident horizontal and vertical beam divergence was measured by rotating a 10’ neutron

Soller collimator [81] in these respective planes. Such a collimator exists of a series of neutron

absorbing gadolinium foils, parallel to each other and with a certain spacing in between which

determines the collimator’s acceptance angle. The beam divergence was found symmetric,

even though the beam port insert itself (so called "Zapfen unit") is slightly asymmetric [82].

The diagonal trend must therefore be attributed to the device itself.

A misalignment of the velocity selector drum (of the device as a whole or given its history of

the drum within the device) with the incident beam is thus expected to be the cause.

Moreover, the implications of having the velocity selector entrance window on the upper side

of the device should be considered. It is thus sensitive to horizontal divergence and spatial

variation in central wavelength lies dominantly in the horizontal direction. Conditions for

energy-selective tomography are thus not ideal. Reconstruction algorithms, as covered in

section 1.4, assume a constant averaged scalar cross-section in each sample volume element.

However, under rotation the projected position of such a volume element changes horizontally

within the field of view. The neutron wavelength traversing the volume element thus also

changes under rotation and with that the recorded cross-section contribution to the projection.

A tomography covering 360° is therefore recommended instead of 180°, as it will tend to better

average out the arising artifacts.

However, the effective wavelength bandwidth that affects the reconstructed cross-section

will be broader than the original velocity selector monochromaticity. Changes in incident

spectrum across the field of view have been studied extensively by the X-ray community,

where the so-called heel effect [83] occurs when using a directional X-ray tube: X-rays leaving

the target head in one direction travel a longer distance through the target than in another

direction and their spectrum is hardened more.
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3.3. Mechanical neutron velocity selector

The wavelength shift over the field of view at other wavelengths, was determined from the

vanadium plate energy scan, setting different wavelength values. As the vanadium macro-

scopic cross-section is a monotonous linear increasing function of the neutron wavelength, the

measured transmission over the plate can directly be related to the incident beam wavelength.

A correction for neutron scattering contributions was preliminarily made by comparing a

vanadium transmission image at 4.05 Å to the iron plate shift map; the latter being based

on the measurement of the Bragg edge position so that the influence of scattering can be

neglected. As the scattering cross-section for vanadium is approximately constant over the

energy range under investigation, 2.8 Å- 6 Å, the single calibration at 4.05 Å can be applied to

the whole set of data.

As an illustration, the wavelength shift over the field of view at 6 Å is shown in figure 3.6b.

In comparison with the data of the iron plate, the higher noise levels are caused by a larger

sensitivity to noise in original transmission data (lower flux at longer wavelengths) and by

additional contribution of the Bragg edge based shift map noise induced by the calibration

method.

Exploiting equations 3.2 and 3.4, it is possible to derive the relation between the wavelength

shift map ∆λ1 and its calibrated beam center wavelength λ1,

∆λ1

λ1
= γL

αR
(3.5)

The right side of the equation is constant at each position over the field of view, so that, once a

single shift map ∆λ0 at λ0 is determined, it is possible to derive it for any other wavelength

setting:

∆λ1

λ1
= ∆λ0

λ0
(3.6)

Figure 3.7 plots ∆λ/λ of vanadium at two extreme positions of the field of view scanned

over the whole 2.8 Å- 6.0 Å wavelength range. The positions are the top left and bottom right

corner (see figure 3.6), since they exhibit the largest negative and positive shifts respectively,

illustrating equation 3.6. Uncertainty bars denote the standard deviation on the data obtained

as a 10 x 10 pixel average and is largely due to noise. Thus, it suffices to measure the wavelength

shift map over the field of view only once, e.g. with the Bragg edge method, and derive it for all

wavelengths through pixelwise evaluation of equation 3.6.

Finally, the wavelength shift in the vertical direction was measured with TOF. Results are

summarized in table 3.2, together with the results of the iron Bragg edge based method,

averaged over the time of flight window for direct comparison.
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Figure 3.7: ∆λ/λ at top left and bottom right position for the vanadium plate wavelength scan as given
in figure 3.6.

Vertical position Time of flight Fe(110) Bragg edge

35.4 mm 0.21 Å 0.20 Å

17.7 mm 0.10 Å 0.08 Å

0.0 mm -0.03 Å -0.03 Å

-17.7 mm -0.17 Å -0.14 Å

-35.4 mm -0.24 Å -0.23 Å

Table 3.2: Vertical wavelength shift measurement determined through time of flight, compared to
results obtained through iron Bragg edge measurement.

3.3.5 The velocity selector at ANTARES

A new mechanical neutron velocity selector has been installed at the ANTARES II beamline,

developed by ASTRIUM GmbH. For comparison, its spectral non-uniformity has been in-

vestigated in the same way. The main construction parameters are given in table 3.3. For a

field-of-view of 15 cm at 9 m from the pinhole, the maximal beam divergence is ±0.49°. The

expected difference in central wavelength across it, using equations (3.2) and (3.4), is then

0.36 Å. The monochromaticity is estimated according to eq. (3.6) as ∆λ/λ= 360°/144
23.5° = 10.6%,

close to the 10% listed by the manufacturer in its specification sheet.

α L R N

23.5° 250 mm 115 mm 144

Table 3.3: Velocity selector parameters at the ANTARES II beamline.
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3.3. Mechanical neutron velocity selector

Figure 3.8 shows the mapping of the experimental deviation in central wavelength compared

to the 4.05 Å Fe(110) Bragg edge position, which is indeed of that magnitude. It is notable

that here the pattern is indeed symmetric and the wavelength gradient is now in the vertical

direction. As can be seen from a photograph of the device, the neutron beam goes through

the left side of it, i.e. the blades lie horizontally w.r.t. the neutron beam and it is the vertical

divergence that causes the shift in central wavelength. The horizontal divergence causes the

slightly stronger gradient on the right side of the map than on the left, as a slightly different

velocity selector radius is seen by these neutrons (eq. 3.4). In this case, the effective spectral

distribution affecting the reconstructed tomographic slices will not be broadened and corre-

sponds to the velocity selector’s monochromaticity. However, a gradient will be present along

the reconstructed sample’s height.

(a)

(b)

Figure 3.8: (a) Deviation between the observed central wavelength setting λobs and the actual constant
physical one for the (110) iron Bragg edge at 4.05 Å. (b) Photograph of the velocity selector
installed at the ANTARES II beamline.

3.3.6 Conclusion
The variability in the incident neutron beam wavelength distribution over the field of view,

related to using a mechanical velocity selector monochromator was determined by the combi-

nation of three different experiments. A difference in measured Bragg edge position of an iron

plate resulted in a wavelength shift map at 4.05 Å. Time of flight measurements confirmed the

result. A wavelength scan of a vanadium plate demonstrated that from one wavelength shift

map, it is possible to extrapolate the maps for other beam center selected wavelengths.

The knowledge of the shift map is the first crucial step towards correcting energy-selective

radiographies and tomographies of large objects experiencing different incident beam wave-
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lengths over the full sample. For small samples and fields of view (∼ 15 mm × 15 mm), as are

typical in high-resolution tomography, the wavelength change can be ignored.

Alternatively, the different incident beam wavelength over the field of view can also be ex-

ploited to make short wavelength scans by simply translating the sample over the field of

view. A clear advantage of this method is the need of one open beam image only to cal-

culate wavelength-dependent transmission, instead of taking one at every velocity selector

wavelength setting, effectively increasing the wavelength scan speed.

3.4 Double Crystal Monochromator

Some applications (e.g. residual stress mapping), need a higher energy-resolution. Here, a

Double Crystal Monochromator (DCM) might be used instead. It is based on obtaining the

desired wavelength by Bragg reflection from a crystal:

2d sinθ = nλ , (3.7)

d being the used crystal plane spacing, θ the set crystal angle, λ the reflected wavelength

of order n = 1,2,3. . . . A second crystal is then used to diffract the beam back to its original

direction, although now translated compared to the original one. This is the so-called (+n,-n)

configuration. The non-reflected neutrons are absorbed on a beam dump. In neutron imaging,

generally pyrolytic graphite’s (002) reflection is used with higher order reflections λ/2, λ/3,. . .

(n=2,3,. . . in equation 1) suppressed with a Be filter [84, 85]. The monochromaticity is in

general 2%-5% depending on the set wavelength and mosaicity of the crystals used.

Also here, the use of a broad, slightly divergent beam has consequences on the spatial variation

of the final incident wavelengths over the field of view.

3.4.1 Device description

A double crystal monochromator is installed at the BOA beamline, its design shown in figure

3.9. The crystals are made of pyrolytic graphite with a mosaicity of 0.6°. The 32 1×2 cm2

crystals are placed in two holders (one for each reflection) constituted of two rows of 8 crystals

each. Without any collimation downstream from it, the DCM provides a rather homogeneous

field of view of about 5 ×5 cm2. Only by adding a 10’ vertical collimation the Field Of View

(FOV) no longer appears homogeneous due to the limitation of divergence-based smearing

and shows a distinct minimum corresponding to the vertical separation of the two crystal rows.

In the horizontal direction such an effect is not visible. The device was upgraded in summer

2014, with the replacement of the small crystals with two 10×5 cm2 crystals of 0.8° mosaicity

in order to provide a more uniform field of view. The wavelength range of this device is 2.4-6 Å,

with a peak width (full width at half maximum) of ≈ 0.05 Å measured by time of flight.
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3.4. Double Crystal Monochromator

Figure 3.9: Schematics of the layout of the DCM available at BOA. In this figure, the main components
are highlighted: the entrance slit (1), the two crystal rows providing the energy selection
(2), the linear and rotation motors providing control over the position and angle of the
crystals (3), the beam dump (4) and the exit slit (5). The casing and the magnets providing
the guiding field are not drawn for clarity. The arrows show the neutron path.

3.4.2 Spatial variation of the spectrum across the field of view

Working with a large field of view means a slightly different angle for neutrons illuminating

one edge of the field of view versus neutrons hitting the opposite edge. This small change in

incidence angle on the crystals, translates in a small change in reflected wavelength, following

Bragg’s law (eq. 3.7). As with the velocity selector, the broad neutron beam that marks neutron

imaging, will also cause a small variation of the spectrum across the field of view. The effect is

illustrated schematically in figure 3.10.

Figure 3.10: Schematic top-down view on the BOA double crystal monochromator. Neutrons hitting
the left of the detector-screen (looking downstream) have a slightly smaller Bragg angle
w.r.t. the crystals, selecting out a slightly smaller wavelength than the central neutron rays.
The opposite is true for neutrons hitting the right of the field of view.
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As the crystals are mounted vertically at BOA, the wavelength gradient will be in the horizontal

plane. The spectrum was recorded with the time-of-flight method, using a combination of

a chopper and 3He counter for set monochromator wavelengths of 3 Å, 4 Å, 5 Å and 6 Å. The

mean incident wavelength varied by ∼0.05 Å over 5 cm, see figure 3.11a. For a two dimensional

mapping of the wavelength variation, again the Bragg edge of an iron plate was scanned. It

illustrates nicely how only the horizontal beam divergence plays a role. Results agree with

an estimate based on Bragg’s law (eq. 3.7): with dPG(002)=3.36 Å, a wavelength of λ=4.05 Å is

selected by setting a Bragg angle of θB =37.06°. With the detector at 6 m downstream of the

aperture and a field of view of -3 cm to 5 cm around the beam center, the actual Bragg angles

for neutrons hitting the left and right of the scintillator screen are corrected by −atan(3/600) =
−0.286°and atan(5/600) = 0.477°. The selected wavelengths thus vary by 0.072 Å.

(a)
(b)

Figure 3.11: Horizontal variation across the field of view of the peak wavelength selected by the double
crystal monochromator as determined through time-of-flight (a) and a two dimensional
mapping of the peak wavelength position through scanning of the iron (110) Bragg edge.

3.4.3 Higher order contamination of the spectrum
The second effect is due to the higher order Bragg diffraction that occurs in the crystal for

n = 2,3... in the Bragg’s formula (eq. 3.7). For an angle that should diffract the wavelength

λ, the Bragg condition is also fulfilled by λ/2 and λ/3 (and so on), resulting in spurious

contributions from higher energy neutrons in the spectrum. This effect is unavoidable in

a (−n,+n) configuration. Given the incident spectrum of BOA, this effect becomes very

substantial at higher wavelengths, when the flux is low and the second order wavelength falls in

a region of the spectrum where the flux is high. This effect was measured, and proved to be non-

negligible as shown in figure 3.12. Here, the recorded spectra for four different settings of the

double crystal monochromator are plotted, together with the relative intensity contribution

of the different orders to the total number of registered neutrons. It is clear that the amount

of contamination from higher order diffraction increases with the wavelength, becoming

actually higher than the first order component at 6 Å. Little neutron flux is available at this

54



3.4. Double Crystal Monochromator

long wavelength, whereas the incident BOA spectrum reaches it maximum right around 3 Å at

the wavelength of the second order component. Figure 3.13 shows a measured transmission

spectrum through a 5 mm thick nickel plate and a 4 mm thick BCC iron single crystal as

measured with the double crystal monochromator. Spurious Bragg edges and Bragg dips are

clearly observed due to higher order contamination: no diffraction for BCC iron is possible

above 4.05 Å and yet a Bragg dip is observed at 5.4 Å , a reproduction of the dip at 2.7 Å by

second order diffraction. Thus, the use of filters (e.g. beryllium) is highly recommended when

using the double crystal monochromator.

(a) (b)

Figure 3.12: Recorded time of flight spectra for the double crystal monochromator set to 3 Å, 4 Å, 5 Å
and 6 Å (a), with the relative contributions of the higher order components to the total
number of neutrons as registered by an imaging detector.

Figure 3.13: Transmission spectrum through 5 mm polycrystalline nickel (top) and 4 mm single crys-
talline BCC iron (bottom). Spurious Bragg edges and Bragg dips due to higher order
contamination of the spectrum are marked.
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Alternatively, Si(111) and Ge(311) monochromators have their 2nd order reflections forbidden

based on crystallographic grounds as the corresponding structure factor equals zero. However,

such crystals are of such high quality and reflect such a narrow spectral band that exposure

times would be impractical for imaging purposes. Deformation by hot bending and flattening

does increase the mosaicity [86], though such treatment is not really available off the shelf

and would be very costly (in terms of time and money). Therefore the choice falls on pyrolytic

graphite for neutron imaging and a Be filter to remove higher order contributions for first

order wavelengths above 4 Å at the cost of increased attenuation. Alternatively, one can use a

third pyrolytic graphite crystal set to scatter out the second order contribution.

3.5 TESI - a Transmission based monochromator for Energy-Selective

Imaging

In this section, we present a newly developed type of monochromator, named Transmission

based Energy-Selective Imaging (TESI), where a set of crystals is used to flexibly filter the

MVS spectrum of ∆λ/λ≈ 15% further down to ∆λ/λ≈ 2−5% through the out-scattering of

undesired wavelengths. As such, one can work with the transmitted beam of high monochro-

maticity without higher order contamination and keeping the original divergence (and thus

spatial resolution). The beam is not displaced which eases compatibility with other present

imaging plugin devices (e.g. for grating interferometry).

3.5.1 Principle

A schematic representation of the TESI principle can be found in figure 3.14. First the rotation

frequency of the MVS is set to the desired central wavelength λ. The resulting Gaussian

wavelength pass-band is still quite wide with ∆λ/λ≈ 15% (figure 3.14a). They are removed

by adding a pair of crystals of low mosaicity ∆θ1, set to diffract a small wavelength band

before and after the peak in MVS spectrum at λ±δλ1 (figure 3.14b) will reduce the width

of the central peak in the transmitted beam spectrum. However, two secondary wavelength

peaks or side lobes at λ±δλ2 are still present as the remainder of the original broad MVS

spectrum. By adding a second pair of crystals and setting them to diffract these wavelengths

out of the original beam direction (figure 3.14c). Being further away from the central peak,

one can use crystals of higher mosaicity ∆θ2 that can diffract out a larger wavelength range

without compromising the central peak. A third and a fourth crystal pair can be added to

further suppress the induced side lobes (particularly at long wavelengths). Using the beam

transmitted through matched pairs of crystals in combination with a MVS, the collimation of

the monochromatized beam that reaches the sample are unchanged and its spectrum does

not contain higher-order contributions.
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3.5. TESI - a Transmission based monochromator for Energy-Selective Imaging

Figure 3.14: TESI principle: starting from the transmission spectrum of the mechanical velocity selector
(a), a first crystal pair of low mosaicity is added (b) after which a second crystal pair of
higher mosaicity is added to lower the side lobes (c). The total transmission spectrum is
indicated by the solid blue line and the crystal transmission spectra by the dashed gray
one.

3.5.2 Design

TESI is designed as a plug-in device that can easily be mounted in front of the MVS at the ICON

beamline. It has capacity for ten crystals, mounted on independently controllable rotation

stages with an accuracy of 0.005°. The control of the stages is integrated in the beamline

operating system for user-friendly remote manipulation of the positions. Unused crystals

can be flipped out of the beam instead of being removed from the device, so as to preserve

calibration. Currently eight highly oriented pyrolytic graphite crystals of varying mosaicity

(see calibration subsection 3.5.3) are installed, measuring 40 mm × 10 mm × 5 mm (width x

height x thickness). A shielding unit, comprising of 32 mm boron carbide plastic and 30 mm of

lead featuring a 10 mm x 10 mm window, is present to protect the motors and electronics from

radiation damage and activation. A 3D drawing of the device is shown in figure 3.15.

Figure 3.15: TESI (right, inset) device installed at the ICON beamline (left). Neutrons enter the device
from the right, passing through shielding aperture (1), crystals (2), mechanical velocity
selector (3) and detected at position (4).
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3.5.3 Calibration
All crystals have been characterized using the time-of-flight technique and their alignments

within the TESI device calibrated. To this end, a chopper was used spinning at 7.17 m upstream

of a synchronized 3He counter tube having 512 time bins of 35µs, providing a resolution of

0.019 Å per bin.

The transmission spectrum was recorded for each crystal separately and for diffraction wave-

lengths λset from 3 Å -6 Å in steps of 0.25 Å. Subsequently, it was fitted over a relevant wave-

length range λset −3σMV S ≤λ≤λset +3σMV S , with σMV S the standard deviation of the MVS

Gaussian transmission spectrum. The crystal behaviour can then be summarized by a con-

stant transmission level in combination with a Gaussian profile for neutron diffraction from

the (002) planes. Pyrolytic graphite crystals, however, are not single crystals, their crystal

planes are aligned only in one direction, [00`], and scattering from non-(00`) planes can occur

for wavelengths until 4.25 Å causing reduced transmission and possible asymmetry around

the (002) diffraction wavelength [87]. The continuous fit function thus becomes:Tl − Ae−
(λ−λ0)2

2σ2 λ≤λ0

Tr − [A+ (Tl −Tr )]e−
(λ−λ0)2

2σ2 λ>λ0

(3.8)

Here, T represents the general transmission level left (T1,λ≤λ0) and right (Tr ,λ>λ0) of the

observed central wavelength λ0 differing from λset thus giving information on angular offsets

that can be used for calibration. The amplitude A characterizes the filtering strength of the

crystal and the standard deviation σ is representative for the filter width (mosaicity). An

example of the fitted transmission spectrum is presented in figure 3.16.

Figure 3.16: Recorded and fitted transmission profile of crystal 2, set for diffraction at λset =4 Å (left)
and 5 Å (right).

The obtained mosaicities of the different crystals are summarized in table 3.4, converted from

fitted σ [Å ] to the more commonly used ∆θ [°], the full width at half maximum of the Gaussian

diffraction intensity versus crystal angle profile using equation 3.7.

Crystal No. 1 2 3 4 5 6 7 8

∆θ [°] 0.4 0.5 0.4 0.4 1.1 1.0 1.7 1.7

Table 3.4: Experimentally determined mosaicities of the used pyrolytic graphite crystals.
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3.5.4 Imaging characteristics

Spectrum

Once all crystals have been characterized and calibrated, the angles for the first (low-mosaicity)

crystal pair are set to generate a narrow central peak and the Nelder-Mead simplex algorithm

[88]] is subsequently used to find the optimal angles for the other crystals that minimize the

spectral content in the side lobes.

Figure 3.17a shows the recorded spectra from 3 Å to 6 Å using all 8 crystals. The available

wavelength range is limited on the short wavelength side by the MVS reaching its maximum

rotation speed and on the long wavelength side by the pyrolytic graphite diffraction range.

The reduced intensity because of the spectral filtering by non-(00`) reflections can clearly be

observed below 4.25 Å, whereas longer wavelengths follow the tapering of the ICON spectrum.

The monochromaticity ∆λ/λ≈ 15% of the MVS was drastically reduced to 3.7 % in this scan

(approximately constant as in this case also the high-mosaicity crystals were used at short

wavelengths with smaller MVS spectral bandwidth, filtering wavelengths in side lobe and

central peak). However, the final spectral width is not a fixed monochromator property like it

is for an MVS or DCM. Rather, having a set of rotatable crystals of different mosaicity as filters,

TESI offers a very flexible spectrum shaping capability. Any spectral width up to ∆λ/λ≈ 15%

set by the MVS can be obtained, as exemplified in figure 3.17b, with a monochromaticity of

resp. 7.7 %, 6.3 %, 4.4 % and 2.4 %. It offers the freedom to flexibly compromise between flux

and energy-resolution, depending on the application. One can even imagine a more exotic

spectrum, e.g. an asymmetric peak spectrum (figure 3.17c) by filtering out wavelengths on

one side of the MVS spectrum only. Such a spectrum could be useful e.g. for crystallographic

phase contrast imaging around a Bragg edge with high energy resolution and high flux.

Figure 3.17: Beam spectra for an energy scan from 3Å to 6Å per 0.5Å (a), for 4 different set monochro-
maticities (b) and for an asymmetric peak profile (c).

Intensity and field of view

Further performance of the monochromator was tested under typical imaging conditions. An

area measuring 125 × 125 mm2 of a 100µm thick 6Li-based scintillator was focused using a

50 mm optical lens onto a 1024 × 1024 pixel2 Andor DW-434 CCD camera in order to record
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beam intensity and profile. An energy scan without sample was made with TESI set for 5 %

monochromaticity.

As expected due to the higher level of monochromaticity, the exposure rates are quite low: 15 -

40 gray levels pixel−1 s−1 at a proton beam current of 1.5 mA, evolving with the wavelength

similarly to the flux profiles recorded with time-of-flight in figure 3.17. Typical exposure times

are thus in the order of 3-5min/image to obtain sufficient statistics for imaging, which is on

par with the performance of double crystal monochromators.

The flat field image of neutrons passing through the monochromator set-up (MVS + TESI)

is shown in figure 3.18. One can clearly distinguish the rectangular region of lower intensity

corresponding to the projection of the crystals at the detector position and the flux decrease

by narrowing of the spectrum. The fully illuminated area bears the asymmetric marking of the

internal beam port structure, imaged through the TESI shielding acting as a pinhole.

Clearly, the desired beam spectrum will only be realized in the center region, with neutrons

having passed through all the crystals. Nonetheless it is useful to make an analysis of the

spatial variation in spectral contamination across the field of view. To this end, a Bragg edge

scan of a 5 mm thick iron plate was made covering the entire field of view. The resultant

transmission spectrum was at each point compared to the central one. The region of less than

10 % normalized root mean square error between recorded spectra is delimited by the contour

overlay in figure 3.18. Outside of this region, spurious Bragg edges start appearing due to a

mismatch between crystal setting and the non-uniform distribution of the MVS spectrum [67].

Depending on the application and sample dimensions, one can opt to slit down the beam to

cover only the central region or have larger samples wholly scanned at once, albeit only with

the central region at the highest spectral purity.

Figure 3.18: Radiograph of the neutron illuminated area at the ICON middle position. Also indicated is
the contour of 10 % NRMSE of a Bragg edge scan at each position compared to the center,
indicative of the spectral purity across the field of view.

Bragg edge measurement

As an illustration of the increased energy resolution that can be obtained using TESI to further

narrow down the MVS spectrum, the Bragg edges for an iron and a lead plate were measured
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between 3 Å and 5 Å using the imaging set-up described above. The spectral width using TESI

was set to ∆λ/λ = 5 % as a typical test compromise between energy-resolution and exposure

time. The Bragg edges are resolved much sharper than in the case of the MVS alone, where

∆λ/λ = 15 % (figure 3.19). The wavelength scan was repeated with a standard DCM for imaging

at the BOA beamline [25], featuring two pyrolytic graphite crystals in (+n,-n) configuration

and fixed ∆λ/λ = 2.5 % at 4 Å. The measured evolution in microscopic cross-section is in good

agreement to each other, with the Bragg edges resolved slightly sharper by the DCM delivering

a beam of narrower albeit fixed wavelength spread. The cross-section evolution for an ideal

polycrystal was calculated using NXS [51] and added as a reference.

Figure 3.19: Wavelength-dependent cross-section of an iron (left) and lead (right) plate measured
with and without the TESI insert and compared to a measurement with a double crystal
monochromator (shown by the uncertainty band of the measurement) and NXS calcula-
tions.

3.6 Discussion and conclusion: energy-selective imaging at pulsed

or continuous sources?
Several methods enabling energy-selective neutron imaging have been discussed. Each has its

own advantages and disadvantages. Prosaically phrased, one has to select the right method for

the right job: time-of-flight at pulsed sources or a monochromator at continuous sources, high

energy resolution and long exposure times or lower energy resolution but faster acquisition.

But also the experimenter’s locality and scarce availability of neutron sources, pulsed or

continuous, play a role.

Imaging at pulsed sources using the time-of-flight method offers the best wavelength reso-

lution for energy-selective imaging. Moreover, it can very flexibly be traded off for imaging

statistics (and total exposure time) by simply recording fewer frames of larger exposure time for

each pulse. At continuous sources, one has to select the proper monochromator as a function

of energy-resolution versus exposure time: a velocity-selector with ∆λ/λ≈ 15% and ∼1 min

exposure time or a double crystal monochromator or, more flexibly, TESI with ∆λ/λ≈ 2−5%
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and ∼5 min exposure time.

To make a wavelength scan, one selects a single wavelength, discarding all others, to record

one wavelength frame of the scan. This has to be repeated for each frame.

At pulsed sources on the other hand, a wavelength scan can be performed very efficiently,

as for each pulse all time (or equivalently wavelength) frames of the scan can be recorded

simultaneously.

This feature is an important drive for all the imaging beam lines curently being built or

planned at pulsed sources. However, when monochromatic imaging at a single wavelength

only is required, imaging at a continuous source has the advantage that this wavelength is

continuously provided for. At pulsed sources, it only comes at the pulse repetition rate. Though

the peak neutron flux at pulsed sources is orders of magnitude higher than at continuous

sources, the average flux is actually lower [89].

Use of a monochromator for imaging at a continuous source inevitably comes with a change

of the spectral distribution across the field of view, whereas time-of-flight imaging at pulsed

sources suffers no such non-uniformities. It is therefore advisable for each experiment to

make a calibration scan of an iron plate as described in previous section so a true pixelwise

characterization or correction is possible.

As a practical reference guide to the future user, table 3.5 lists some of the typical characteristic

values for different energy selection methods at the SINQ spallation source at Paul Scherrer

Institut. White beam numbers are given for completeness. The time-of-flight (TOF) values are

based on experiences measuring at ISIS at the Rutherford Appleton Laboratory in the UK. It

should be noted that the field of view was limited by the MCP detector, not by the beam size.

Exposure times are considerably longer - the time averaged neutron flux is lower by one order

of magnitude [90] - but in this time the monochromatic radiographies spanning the whole

spectrum are recorded in parallel.

Monochromaticity Field of view Exposure time Wavelength shift

White - 15 × 15 cm2 5 s -

MVS 15 % 10 × 10 cm2 1 min 1 Å

DCM 2.5 % 10 × 10 cm2 5 min 0.1 Å

TESI 2-15 % 2.5 × 6 cm2 5 min - 1 min -

TOF < 0.5 % 2.5 × 2.5 cm2 2.5 h -

Table 3.5: Typical values for neutron imaging with a white beam and using monochromators (MVS:
mechanical velocity selector, DCM: double crystal monochromator) at SINQ and time of
flight (TOF) imaging at ISIS.

The opportunities for energy-selective imaging using time-of-flight at pulsed sources are thus

clear. Therefore, since 2008, a series of yearly workshops called NEUWAVE was initiated to

promote the hitherto absent neutron imaging at pulsed sources. Today, IMAT at ISIS (UK)
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and RADEN at JPARC (JP) are near completion, VENUS at SNS (US) is under construction and

ODIN at the future ESS (SE) has been approved as a day one instrument.

However, again, also at continuous sources, neutron imaging in general and energy-selective

imaging in particular still has a major role to play. For the newly developed imaging methods

discussed in the following chapters, also its application options at the different types of

neutron sources is analyzed.
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4 Quantification by energy-selective
neutron imaging

Beam hardening and scattering contributions hinder quantitative analyses in neutron imaging.

In this chapter the problem is discussed and current remedies reviewed. A new strategy is pro-

posed: energy-selective imaging at wavelengths past the Bragg cut-off. It is first demonstrated

for digital neutron radiography of an iron step wedge and computed tomography of a stepped

iron cylinder. Two practical applications are given for illustration: the determination of alloy

composition in Renaissance bronzes (previously published in [91]) and the integrity of copper

discs prior to machining as linear accelerator cavity structures.

4.1 The trouble with quantification

Investigating a sample with neutron imaging, one looks at the spatial variation in attenua-

tion based on changes in local thickness and different constituting materials based on their

different cross-sections. This often suffices for morphological analyses, e.g. shrapnel in

medieval cannon balls [92].

However, if one wants to perform quantitative analyses of material compositions or derive a

quantity (i.e. "put a number on it"), certain aspects of the physics of the measurement might

falsify the results.

A major challenge is correcting for the neutron scattering contributions to the digital ra-

diographs. For many materials, scattering forms the dominant contribution to the total

cross-section. Some neutrons scattered inside the sample or from the surroundings, may still

hit the detector and are misinterpreted as a higher transmission along a straight neutron flight

path from source through sample to detector. As a result, if left uncorrected, the measured

cross-section or material content, will be an underestimation compared to tabulated values or

describing formulas (chapter 2). A schematic overview is given in figure 4.1, showing neutrons

(top to bottom) undergoing multiple scattering, scattering without hitting the detector, scat-

tered neutrons still hitting the detector, neutrons being transmitted without undergoing any

interaction, absorption and scattering from the surroundings. A cross marks the scattering

contributions that give rise to quantification errors.
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Figure 4.1: Neutron interactions during an experiment, some of which falsify the transmission mea-
surement (marked with a cross).

A second effect originates in the use of a polychromatic neutron beam spectrum in com-

bination with a wavelength-dependent cross-section, as figure 4.2 illustrates for the ICON

spectrum and the total microscopic cross-section of iron. After transition through a thin slab

of iron, the shorter wavelengths in the spectrum will be attenuated more than the longer ones.

Upon traversing macroscopic sample thicknesses (an assembly of the considered thin slabs),

the average of the final transmitted beam spectrum is shifted towards longer wavelengths.

With it, also the observed macroscopic cross-section changes. The mechanism is called beam

hardening [93], a term coined in the X-ray community where the attenuation coefficient

decreases with increasing energy and the X-ray beam energy spectrum shifts to higher average

energies (hard X-rays). It should be pointed out that in neutron imaging, depending on the

presence and magnitude of Bragg edges, the opposite trend ("beam softening") can occur: a

shift to longer wavelengths or lower energies as in this case for iron. To illustrate the effect,

the expected mean neutron wavelength for the ICON spectrum s is calculated after traversing

several thicknesses d of iron:

λav g =
∫
sλI (λ)e−ΣFe (λ)d dλ∫
s I (λ)e−ΣFe (λ)d dλ

. (4.1)

The result is shown in table 4.1 and shows a clear increase in mean neutron beam wavelength

after filtering through increasingly thick iron slabs.

Thickness [cm] 0 0.5 1.0 1.5 2.0 2.5

λav g [Å] 2.86 2.91 2.98 3.07 3.17 3.27

Table 4.1: The mean neutron beam wavelength increases by filtering through increasingly thick iron
slabs.
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Figure 4.2: Illustration of the beam hardening effect: given the iron cross-section, the shorter wave-
lengths in the ICON spectrum will be attenuated more than the longer wavelengths. Upon
transition through layers of iron, the beam spectrum will gradually shift to longer wave-
lengths.

4.2 Existing quantification strategies
Several strategies already exist to take into account the above mentioned hindrances for

quantification.

A first approach is a hardware correction, where a honeycomb-type collimator of a neutron-

absorbing material is placed in between sample and detector. Neutrons following a straight

path through the sample reach the detector, while scattered neutrons hit the walls of the

collimator and are removed from the beam. The principle has been around from early days of

modern neutron imaging [94] and is still in use today [95, 96]. A set-up for scatter reduction

using a microchannel plate as collimator has been developed as an instrumental plugin at

PSI in 2014 [97]. It assumes no prior sample knowledge, but requires a careful alignment

with the beam, increased sample-detector distance leading to a loss in spatial resolution

and the decreased image intensity because of the duty cycle of the channel plate collimator.

Moreover, the parallel neutron beam that is let through the collimator can still suffer from

beam hardening.

A second method can be dubbed as a black body correction [98]. A radiograph is made of

the sample, containing a certain scattering contribution. Subsequently, another radiograph

is made with part of the sample covered with a small strip of a strong neutron absorbing

material. The detector contribution in the region behind it is then coming solely from the

neutrons scattered in sample and surroundings. This measure for the scattering contribution

is then used to correct the original radiograph. This method works well, though requires more

radiographs, especially for complex shaped samples.

A third strategy is to add the extra measurement of a calibration sample (e.g. a step wedge

of the relevant sample material) to the experimental program. As such, one can derive a

recalibration curve between observed and theoretical cross-section [99].
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A fourth approach is to use Monte Carlo codes to simulate the imprint of beam hardening

and scattering contribution to the radiography. This method was e.g. persued by Hassanein

[100, 101]. Based on a parameterization of experimental set-up and a simplified sample

description, so-called point-scatter functions are calculated for each pixel, i.e. the detection

probability for neutrons scattered in a homogeneous material layer and originating from a

point-like source. All these scattering contributions are then subtracted from the original

image to give a corrected image. An advantage of this method is its post-processing nature, no

additional measurement time is required.

A principle disadvantage is the need for detailed a priori knowledge of the double differential

cross-section, required for accurate simulation. They are however not always well-known and

usually derived for idealized materials, which can differ greatly from actual sample conditions

(e.g. the presence of texture). Moreover, the uncertainty becomes large for very short sample

to detector distances and large scattering contributions to the radiographs. Further practical

disadvantages are the required access to MCNP which is export controlled and that the method

is computationally expensive. It is mainly developed for isotropic scattering of water in the

thermal regime however, not for the cold energy range with directional scattering occurring.

Though MCNP only includes double differential cross-sections for a few materials, advances

are made in developing routines capable of simulating Bragg edges [102] for arbitrary materials.

An interesting alternative is the open source code McStas [103, 104] for neutron ray tracing. It

has the capability of simulating both Bragg edges from neutron scattering in polycrystalline

material and further tracking of the scattered neutrons [105]. It might be an excellent candidate

for further developments of a simulation based quantification tool for cold neutron imaging

of polycrystalline material.

4.3 Principle of energy-selective imaging past the Bragg cuf-off
A different strategy for quantification of polycrystalline material lies in energy-selective

neutron imaging at wavelengths longer than the Bragg cut-off . This is the longest wave-

length at which coherent elastic scattering or diffraction can occur, corresponding to twice

the largest crystal lattice spacing. Bragg’s law can no longer be fulfilled for longer wavelengths.

Instead of using hardware to eliminate the scattered neutron component in the beam or using

software to simulate and correct scattering and beam hardening effects, one can thus avoid

their occurrence in the first place.

The reduced wavelength bandwidth and the more slowly varying cross-section in this wave-

length range greatly suppress beam hardening.

As no coherent elastic scattering can occur at such long wavelengths, neutron imaging be-

comes insensitive to spatial variation in crystallography-based properties such as texture and

grain size that can cause strong deviations of the assumed ideal cross-section (section 2.4).

For many structural materials, coherent elastic scattering is by far the most dominant scat-

tering mechanism. By experimentally avoiding its occurrence, the effect of scattering contri-

butions is largely abated. Only the much smaller incoherent scattering component remains.

Iron for instance, has a tabulated coherent scattering microscopic cross-section of 11.22 barn,

whereas the incoherent scattering cross-section is only 0.4 barn. Absorption by neutron cap-
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ture is dominant at wavelengths longer than the Bragg cut-off, dubbing it the absorption

range.

Quantitative neutron imaging in the absorption range comes at the price however. Exposure

times increase by an order of magnitude, as one monochromatizes the beam at long wave-

lengths where flux is low. Moreover, its applicability is limited to polycrystalline material with

low incoherent scattering which persists at wavelengths past the Bragg cut-off.

4.3.1 Proof of principle: radiography of an iron step wedge
The transmission profile of a α-iron step wedge was examined at the ICON beamline for

imaging with cold neutrons. Having a Bragg cut-off at 4.05 Å, the availability of cold neutrons

is a prerequisite. The sample measured 10 mm × 25 mm, with the thickness varying from

5 mm to 25 mm in steps of 5 mm (figure 4.3a).

Using a 100µm thick 6Li ZnS scintillator, the neutron signal was converted into visible light

and detected with a 1024×1024 pixel2 CCD camera. The sample was positioned with its flat

back pressed against the scintillator.

The transmission profile was recorded for two different incident beam spectra: (a) the poly-

chromatic ICON spectrum already shown in figure 4.2 and (b) a reduced wavelength band after

the Bragg cut-off centered around 5.0 Å. The latter was realized using a Mechanical Neutron

Velocity Selector providing a Gaussian wavelength band of monochromaticity ∆λ/λ= 15%.

As no high energy-resolution is required and short exposure times are preferential, this is the

monochromator of choice. The result is shown in figure 4.3b.

(a) (b)

Figure 4.3: Iron step wedge sample (a) and corresponding digital radiographs for a polychromatic
beam spectrum and using the velocity selector for imaging with a reduced wavelength band
around 5 Å (b).

The observed microscopic cross-section σ was thereupon calculated based on the Beer-
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Lambert law (equations 1.3 and 1.4):

σ=− 1

N d
lnT , (4.2)

for each step of the wedge (of assumed known design thickness d). The nuclei density used

was calculated based on the standard iron mass density and molar mass.

N = 7.874[g /cm3]

55.85[g /mole]
·6.022 ·1023[nucl ei /mole] = 8.49 ·1022nucl ei /cm3 (4.3)

It was repeated for both a polychromatic beam spectrum (σexp,pol y ) and the one with the

velocity selector in place (σexp,5.0Å). The result is shown in figure 4.4. On the one hand, a clear

violation of the Beer-Lambert law is observed for the polychromatic data: the microscopic

cross-section is not constant, but decreases with thickness. On the other hand, the results for

energy-selective imaging past the Bragg cut-off are independent of the thickness.

Figure 4.4: Microscopic cross-sections of iron as a function of thickness: experimental values (σexp )
and calculated spectral averages (σ) for polychromatic (pol y) and monochromatized (5.0Å)
beam spectra. Error bars fall within the data point markers.

A typical quantification task is the determination of material thickness from digital radiogra-

phy:

d =− 1

Nσ
lnT (4.4)

The question boils down to which reference cross-section is to be used. It can be taken from

tabulated data, e.g. several cross-section databases exist depending on the nation such as

JENDL (Japanese), JEF (European), ENDF-B (USA), BROND (Russia) or CENDL (China) [106].

It should be noted that these are assumed constant values for a Maxwellian thermal spectrum.

Clearly, deviations when using a cold neutron beam are to be expected. Using NXS [51], the

wavelength-dependent cross-section of ideal iron (random orientation of the crystallites) is
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simulated. The averages over the two beam spectra used in the experiment are then calculated

for use as a more accurate reference. Comparison to experimental data (figure 4.4) shows

good agreement at 5 Å , but in case of a polychromatic beam spectrum the agreement only

holds for the thinnest layers as a result of neutron scattering and beam hardening.

The thickness of the step wedge is thus calculated and shown in figure 4.5. The sharp variation

in cross-section across each step edge indicates there is little cross-talk through scattering

between the steps, justifying the pragmatic choice of a single step wedge measurement instead

of five radiographs of single slabs of different thicknesses. Energy-selective neutron imaging

at wavelengths longer than the Bragg cut-off reproduces the design profile. Standard poly-

chromatic imaging shows deviation of up to 13% at 25 mm thickness, due to aforementioned

problems of scattering and beam hardening.

Figure 4.5: Thickness profile of the iron step wedge, per design, derived from standard white beam
digital radiography and from energy-selective imaging in the absorption range at 5 Å.

4.3.2 Proof of principle: tomography of a step cylinder
In computed tomography, beam hardening and scattering lead to cupping artifacts: virtual

volume slices show a reconstructed cross-section profile decreasing inwardly. The cross-

section at the innermost voxels is reconstructed based on neutron rays that have had the

largest path lengths through the sample. Thus they have seen the most beam hardening and

scattering contributions, lowering the observed cross-section.

To illustrate the effect, a tomography was made of an iron step cylinders in a white beam and

energy-selective in the absorption range. The step cylinder was 20 mm high and its diameter

varied from 5 mm to 20 mm in 4 steps. A total of 375 projections were made for the white beam

tomography and 225 for the energy-selective tomography. The measurements were performed

at the BOA beamline [25]. The energy-selective tomography was performed using the double

crystal monochromator with a Beryllium filter to eliminate the higher-order contamination

of the spectrum. As the wavelength band is more narrow than for a velocity selector as used
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in the previous subsection, a shorter wavelength closer to the Bragg edge was chosen, where

flux is higher: 4.5 Å. A 200µm thick 6Li ZnS scintillator was used and the pixel size was 135µm.

Figure 4.6a shows a 3D rendering of the sample surface from the reconstructed white beam

tomography. The line profiles of the reconstructed cross-section through the bottom step are

shown next to it for both spectra. The expected constant cross-section profile are given for

comparison. Like for the step wedge radiography, they were derived from simulation of the

wavelength-dependent cross-section using NXS and taking the average over the respective

beam spectra. Good agreement is found for neutron imaging at 4.5 Å with severe cupping

artefacts present in the polychromatic measurement. The reconstructed cross-section profile

through the other steps show similar trend, though less pronounced as the amount of material

is also less.

(a) (b)

Figure 4.6: Volume rendering of the reconstructed iron step cylinder (a), the profile of the reconstructed
cross-section along the blue line is shown in (b).

4.3.3 Discussion and outlook

The question remains open which mechanism is mostly responsible for quantification errors:

scattering contributions or beam hardening? At cold neutron wavelengths, scattering will

tend towards back reflection, limiting scattering contributions on the detector. However,

Bragg edges in the cross-section are more pronounced compared to thermal neutron wave-

lengths, worsening the effect of beam hardening. Conversely, for thermal neutron wavelengths,

scattering is in the forward direction, but the cross-section exhibits an approximately flat

wavelength-dependent profile, with Bragg edges limited in height.

Repeating the above mentioned quantification experiments at NEUTRA (thermal), ICON

(thermal and cold) and BOA (cold) for comparison would therefore be highly interesting. An

MCP-type collimator could be used to separate the scattered neutron contribution from the

beam hardening effect.
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4.4 Application 1: Historical copper alloy composition

4.4.1 Problem setting

The Rijksmuseum Amsterdam holds an important collection of Renaissance bronze statuettes

which were being studied from both art historical and scientific point of view.1 Until some

decades ago this and similar collections were only studied from a stylistic point of view. That

approach started to change in the last quarter of the 20th century when interdisciplinary

studies from both a scientific and art history took place. Thus numerous studies have led to

new attributions which consequently have been published in museum catalogues or scholarly

papers [107, 108, 109]. In the vast majority of these studies researchers made use of traditional

analytical equipment. Stylistic features and covered parts of a sculpture were studied with the

naked eye, microscopy, videoscopy or X-radiography. For the determination of alloys Atomic

Absorption Spectroscopy (AAS), Inductive Coupled Plasma (ICP) and X-ray Fluorescence (XRF)

measurements have been used most frequently. The alloy composition of ancient artefacts

is important to archaeometallurgy, as it can be linked to a place of manufacturing and date

[110, 111].

However, except for XRF, these methods all require sample taking, which museum curators

prefer to avoid as renaissance bronzes are often very precious objects. XRF is thus used

in museums more easily since it requires a simple set up and relatively little cost, as many

museums nowadays operate hand held X-ray Fluorescence (XRF) devices. However, it is

only a surface analysis technique and will penetrate the copper alloy up to a maximum of

approximately 20-30µm [112]. Several drawbacks of this method appear. Primarily, the surface

has to be completely clean before a measurement can take place, taking segregation effects of

an alloy into consideration [113]. Secondly the data obtained by XRF research has proven to

be inconsistent after an inter laboratory research among XRF users in museums [114].

In search for different Non-destructive Testing (NDT) methods neutron tomography was found

to provide bulk information on alloy heterogeneity without any prior sample preparation.

Earlier studies have proven that neutron imaging can be used to detect different materials

(casting remains and soldering repairs) within a Renaissance bronze sculpture (figure 4.7).

However, results were limited to a qualitative indexing of macroscopically separated regions

of different materials (bronze approximated as copper and a core material) [115, 116]. As a

result, this new study took place to quantitatively distinguish different copper alloys directly in

neutron imaging based on the attenuation. Samples are cast according to traditional casting

techniques and the copper alloys have been selected according to contemporary treatises.

1The term Renaissance bronze is used throughout this paper to reflect the type of objects. Bronze usually
consists of a copper tin/lead alloy yet Renaissance bronzes can also consist of copper zinc alloys which are indeed
brasses.
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(a) (b) (c)

Figure 4.7: Photo (a) and neutron tomography surface (b) and volume (c) rendering of a Renaissance
Bronze from the Rijksmuseum depicting a Striding Nobleman (reference BK-16083, about
35 cm height), showing different attenuation of the neutrons as a result of different compo-
sition at the ankles, knees and shoulder part.

4.4.2 Experimental set-up

For the purpose of this study 19 copper binary alloys have been reconstructed where the

alloyed metal with copper was either tin, lead or zinc as given in table 4.2. All samples with an

average size of 4.5×8×50 mm3 have been cast and cooled down to ambient temperature and

subsequently cut down to the same dimensions in thickness (4.1×7.0×45 mm3). The alloys

are composed according the occurrence of historical alloys based on contemporary literature.

Neutron imaging of these specific copper alloys was performed at the NEUTRA and ICON

beamlines at PSI.

Neutron imaging with a polychromatic thermal spectrum was first performed at NEUTRA. A

cooled highly-sensitive 2048×2048 pixel2 CCD camera was looking onto a 100µm 6LiF ZnS

scintillation screen for neutron detection, with exposure times of 20s.

Based on these experiments and due to beam time constraints, a number of alloys were

selected for further energy-selective neutron imaging measurements at ICON: Cu-Sn alloys 5,

6, 7, 8 and Cu-Zn alloys 15, 16, 17, 18. In this case a 1024×1024 pixel2 CCD camera was looking

was used, again in combination with a 100µm 6LiF ZnS scintillator. The mechanical neutron

velocity selector was used for monochromatization.

The sample to detector distance was in both cases 1 cm given by the holder size.

74



4.4. Application 1: Historical copper alloy composition

Alloy no.
Composition [%]

Cu Sn Zn Pb

1 99 1 0 0

2 97 3 0 0

3 95 5 0 0

4 93 7 0 0

5 90 10 0 0

6 85 15 0 0

7 80 20 0 0

8 75 25 0 0

9 70 30 0 0

10 99 0 0 1

11 97 0 0 3

12 95 0 0 5

13 93 0 0 7

14 95 0 5 0

15 90 0 10 0

16 85 0 15 0

17 80 0 20 0

18 75 0 25 0

19 70 0 30 0

Table 4.2: Copper alloy compositions under investigation with thermal neutrons.

4.4.3 Evaluation strategy

Both scattering and absorption of neutrons occurs in the sample. In the thermal wavelength

region many and little pronounced Bragg edges are present (as seen in section 2.4.3) and

the wavelength-dependent microscopic cross-section of isotope i can be approximated by

a tabulated mean scattering cross-section term σscat t
i and an absorption cross-section term

proportional to the neutron wavelength, typically determined from tabulated σabs
i ,2200m/s (the

microscopic absorption cross-section of a thermal neutron, i.e. having a velocity of 2200 m/s)

[44]:

σi (λ) =σscat t
i +

σabs
i ,2200m/s

1.798
λ[Å] (4.5)

The density of nuclei Ni in an alloy can be calculated as

Ni = xiρNA

Mi
, ρ = 1∑

i xi /ρi ,0
(4.6)

with xi the alloy components weight fraction, Mi its molar mass, NA Avogadro’s constant,

ρ the density of the alloy calculated based on the natural densities ρi ,0 of the components
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brought together in the alloy. The final macroscopic cross-section that governs the attenuation

becomes

Σ=∑
i

Niσi (λ) (4.7)

When making a standard radiography, all wavelengths present in the used neutron beam

spectrum s contribute to an effective recorded intensity (neglecting the wavelength-dependent

efficiency of the set-up) with sample of thickness d in place, Ie f f and without it, I0,e f f :

Ie f f =
∫
s

I0(λ)e−Σ(λ)d dλ, I0,e f f =
∫
s

I0(λ)dλ (4.8)

From which an effective macroscopic cross-section can be calculated as

Σe f f =− 1

d
ln

(
Ie f f

I0,e f f

)
, (4.9)

a quantity that allows us to distinguish between alloys.

4.4.4 Results and discussion

Thermal white beam measurements at NEUTRA

Figure 4.8 depicts the theoretical and experimental values of Σe f f for the measured alloys

listed in table 4.2. The theoretical values were calculated according to the formulations above:

calculating the microscopic cross-section according to equation (4.5) based on the data library

and atomic density according to equation (4.6), the recorded effective transmitted intensity

can be found (equation (4.8)) as well as effective macroscopic cross-section (equation (4.9)).

The experimental values where determined as the mean Σe f f value in its distribution over

the entire sample image (after open-beam corrections and background removal). Error bars

indicate the 1σ uncertainty limits.

Figure 4.8: Overview of the effective cross-section theoretically expected (filled circles) and determined
from measurements (empty circles)
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The measured effective cross-section nicely follows the theoretical behaviour, though a sys-

tematic offset exists because of scattering contibutions and beam hardening. Qualitatively,

this has little influence on the relative discrimination between different copper alloys, as can

e.g. be present in historical bronzes when mended after their construction [113].

A clear deviation from the expected trend can be found for the lead-rich alloys 11, 12 and 13.

This can be explained from the theoretical calculation assumption that these alloys consisted

fully out of copper and lead, while in truth air pockets, porosities appear in bronze materials

of such high lead concentrations (figure 4.9). Though hardly visible on the sample surface,

they clearly appear in the bulk-sensitive neutron radiographies. A maximum of 0.4 ,% of lead

can exist in the solid copper [117]. This increased sample heterogeneity also leads to increased

uncertainty for these alloys. Here, a computed tomography would be necessary to separate

both material thickness and cross-section in the reconstructed slices, as the outer sample

thickness no longer corresponds to the true material thickness.

Figure 4.9: Impression of porosity in historically cast copper/lead alloys: neutron transmission mea-
surement of alloys 11,12 and 13 (a, right to left) as well as photographs of the alloys em-
bedded in resin and subsequently cut open - alloy 11 (b), alloy 12 (c) and alloy 13 (d) – to
demonstrate the presence of porosities in the bulk.

Energy-selective measurements with cold neutrons at ICON

In the absorption range, equation (4.5) can again be applied to describe the cross-section,

though σscat t
i is now limited to σscat t

i ,i nc , the incoherent scattering component (also tabulated).

The scattering contribution to the transmission radiograph is negligible in the absorption

range for the alloy component materials Cu, Sn, Zn and Pb. Hence, no scatter correction is

necessary, making it ideal for quantitative studies as ours.

An illustration of the recorded wavelength-dependent cross-section evolution is presented in

figure 4.10 for the case of alloy number 7. The wavelength spread is too large to separate the

(111) and (200) Bragg edges and they are seen as a single edge ranging from 3.5 Å to 4.5 Å. Better

wavelength resolution would be required to resolve these edges, e.g. by using a double crystal

monochromator or TESI. However, in the absorption range, the broad wavelength spread is an

advantage since it means a higher neutron flux on the sample in wavelength regions of limited

source flux and simple linear cross-section behaviour. Image exposure times increased to 60 s

only.
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Figure 4.10: wavelength-dependent cross-section example as measured for the Cu0.8Sn0.2 alloy No. 7.

The alloy composition was again determined through comparison of measured and theoretical

cross-section values in the absorption range. All data points above 5 Å were used for increased

statistics. No scattering correction was made. Results are summarized in figure 4.11. Very

good agreement with production values exists. Uncertainty on the composition was around

1 % only.

It was not possible to distinguish between Sn and Zn as secondary alloy component through

energy-selective imaging, as they are both taken up in the copper Face Centered Cubic (FCC)

phase and as such do not form any new and distinguishable Bragg edges. One could neverthe-

less work with a “Sn equivalent” alloy component as proposed in [118]. Moreover, composition

reconstruction for binary alloys where one knows in advance the present secondary alloy ele-

ment (e.g. through XRF) pose no problem. Often historical objects are first analyzed to exclude

any metal present that will negatively influence the half-life of the objects after exposure to

neutrons.

Figure 4.11: Alloy component weight fractions from theory and energy-selective imaging in the absorp-
tion range. A small horizontal offset has been introduced for clarity.

78



4.5. Application 2: Integrity of copper discs for SwissFel C-band cavity production

4.4.5 Conclusion

Neutron imaging was used to quantitatively determine historically-relevant binary copper

alloy composition. Radiographies using the full polychromatic beam spectrum showed a clear

need to correct for neutron scattering contributions if one wants to draw quantitative rather

than qualitative conclusions. Radiographies in the absorption domain allowed to successfully

retrieve composition information without needing any scatter correction at the cost of limited

increase in exposure time. As a result, the way is now paved for quantitative tomography in

the absorption range for 3D spatially localized composition information in historical bronze

sculptures.

4.5 Application 2: Integrity of copper discs for SwissFel C-band cav-

ity production

4.5.1 Problem setting

The linear accelerator for the SwissFEL free electron laser is composed of a series of copper

cavities, soldered together and put under a high RF field to accelerate an electron beam. These

cavities are custom built, by precise machining out of 99.99 % pure copper discs (113 mm

diameter, 23 mm thickness) that were forged to preclude occurrence of porosities from casting.

However, pitting was observed on the surface of the final product (figure 4.12a). It would have

a detrimental effect on the accelerator performance, as a smooth cavity surface is required to

prevent electrical discharges.

To address the question if these are due to the machining or the result of porosities already

present in the pristine copper discs, several such discs were inspected using neutron imaging

(figure 4.12b). The large sample thickness impeded the use of X-rays as transmission would be

too low (around 1 % only at 100 keV).

(a) (b)

Figure 4.12: Copper cavity segments showing surface pitting after machining (a) and neutron radiogra-
phy set-up of a pristine forged copper disc (b).
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4.5.2 Initial examination at NEUTRA
Initial examination took place using a polychromatic thermal neutron spectrum at the NEUTRA

imaging beamline at PSI. Experimental parameters are listed in table 4.3. Radiographies were

made with the sample in contact with the scintillator surface to obtain the highest spatial

resolution.

Large spatial variations in transmission are observed over the sample (figure 4.13). Clear

cupping artifacts due to scattering contributions are visible: the observed transmission tapers

off at increasing disc radius. The effect is aggravated by the close contact between sample and

detector.

In order to calculate the thickness (equation 4.4), a constant macroscopic cross-section of

Σ=0.9 cm−1 is assumed, found by averaging the theoretical copper cross-section over the

NEUTRA spectrum. A thickness of 15 mm is found in the center of the disc, a gross underesti-

mation of the reality. Moreover, thickness variations of over a millimetre are found superposed

to the cupping profile, unrealistically large to be attributed to production flaws. Therefore,

spatial variation in macroscopic cross-section instead of thickness is suspected to exist, as

crystallography (e.g. texture and grain size) and density might vary due to the manufacturing

process.

Scintillator 50µm 6LiF ZnS

Field of view 129.6×153.6 mm

Pixel size 60µm

Exposure time 60 s

Table 4.3: Experimental parameters for the neutron imaging of SwissFEL copper discs at NEUTRA.

4.5.3 Energy-selective neutron imaging at BOA
The hypothesis formulated above is verified by energy-selective imaging at wavelengths longer

than the Bragg cut-off for copper (i.c. the (111) Bragg edge at 4.17 Å ). At such long wave-

lengths, coherent elastic scattering is no longer possible and the cross-section (and a fortiori

the neutron digital radiograph) becomes insensitive to the sample’s crystallography. The

experiment was conducted at the BOA beamline, using the double crystal monochromator in

combination with a Beryllium filter. Further experimental parameters are listed in table 4.4.

Wavelength 4.5Å

Scintillator 200µm 6LiF ZnS

Field of view 138×138 mm

Pixel size 135µm

Exposure time 195 s

Table 4.4: Experimental parameters for the energy-selective neutron imaging of SwissFEL copper discs
at BOA.
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Indeed, the transmission image at 4.5 Å now appears homogeneous. A small horizontal

gradient is present due to the shift in incident wavelength across the field of view as discussed

in chapter 3. Cupping artifacts are no longer present. The spatial variation in transmission

observed for polychromatic thermal neutron radiography, can thus be attributed to spatial

variation in the sample’s crystallography instead of thickness or density variations. The nature

of the variations in crystallography are however beyond the scope of this investigation.

Taking the theoretical macroscopic cross-section of Σ = 0.88cm−1 at 4.5 Å , a thickness of

22.3±0.5 mm is found. No porosities were detected.

(a) (b)

Figure 4.13: Radiographies of copper discs for SwissFEL linear accelerator cavities to be machined out
of: measured using a polychromatic thermal spectrum at NEUTRA (a) and a monochro-
matic one at 4.5 Å at BOA (b).

4.5.4 Conclusion
Polychromatic thermal neutron imaging is subject to artifacts as scattering contributions and

sensitive to spatial variation in crystallography across the sample that impede quantitative

determination of copper disc thickness and porosity presence. Energy-selective imaging in

the absorption range yields correct thickness results and does not pick up any porosities above

the noise level.

4.6 Summary
Energy-selective imaging of polycrystalline materials in the absorption range has been pro-

posed to experimentally avoid effects hindering quantification. Beam hardening and scatter-

ing contributions are suppressed and one becomes insensitive to variations in crystallographic

properties. The ICON and BOA beamline are suitable for such experiments as they feature the

required cold neutron spectrum and energy-selective capability. Exposure times are however

increased by one order of magnitude. Both proof-of-principle experiments and practical

applications were shown.
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5 Energy-selective neutron imaging of
crystals
After polycrystals with a transmission spectrum featuring Bragg edges, we turn our attention

to single crystals and ensembles of a few of them, oligocrystals. As the number of crystal

orientations present in the neutron beam is now limited, a wavelength scan of such samples

will exhibit distinct Bragg peaks in its cross-section.

In this chapter, we show how the pattern of Bragg peaks recorded at each pixel can be indexed

to reveal an orientation map of the sample, which in turn can be used to segment the present

crystallites - even overlapping ones in the beam direction. Mapping of the peak widths yields

information on the mosaicity variations across the sample.

Two applications are shown for illustration. In a first one, energy-selective neutron imaging

is used to map parameters of the (002) Bragg peak in the cross-section of pyrolytic graphite

monochromator crystals. It demonstrates its capability as a fast crystal inspection tool with

high spatial resolution.

A second example is one from geoscience: neutron radiography and tomography of a nickel-

iron meteor with a limited wavelength band, revealing the large kamacite and taenite crystal-

lites present (previously published in [119]).

5.1 Quantitative analysis of a single crystal wavelength scan
5.1.1 Experiment
The wavelength-dependent cross-section of single crystals was investigated by means of

energy-selective neutron imaging.

The experiment was performed at the ROTAX beamline [90] at the ISIS pulsed spallation

source, located at the Rutherford Appleton Laboratory in the UK. Originally designed as a

multi-purpose diffractometer, it is nowadays used for in-house development and crystal

alignment. It looks onto the methane moderator at 95 K of target station 1. The proton

accelerator delivers 25 pulses per second, with 1 pulse out of 5 diverted to the new target

station 2. A final integral flux of around 106 n/s/cm2 is available at the sample position.

The MCP detector for neutron imaging developed at Berkeley [120] was used, having a round

active area of 28 mm diameter and a pixel size of 55µm. A total of 1450 successive time bins

of 10.24µs were recorded simultaneously and stacked for each pulse. A final exposure time

of 2 hours was required to obtain sufficient image statistics. The flight path was calibrated

to be 16 m, based on the Bragg edge positions of aluminium present from the flight tube
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Chapter 5. Energy-selective neutron imaging of crystals

windows. Thus, the wavelength scan was performed with 0.0025 Å wide bins. The recorded

beam spectrum is shown in figure 5.1.

Two iron single crystals of the BCC crystal structure were examined. One was shaped as a cube

(4×4×4 mm3), the other as a cylinder (10 mm diameter, 40 mm height).

Figure 5.1: Measured spectrum at the ROTAX beamline (ISIS, UK), at the center pixels of the MCP
detector (inset) used in this experiment. The four largest Bragg edges for Aluminium (from
the traversed flight tube windows) used for calibrating the flight path length are marked.

5.1.2 Evaluation strategy

Separating the coherent elastic scattering contribution

A white beam (by integration of all wavelength frames) detector image, showing both crystals,

is presented in figure 5.2a. For each pixel however, the transmission spectrum is available. It

features sharp Bragg peaks from coherent elastic scattering on a smooth varying background

formed by absorption and the other types of scattering. Based on the describing formulas

derived in chapter 2, the wavelength dependence of their corresponding cross-section is

approximated as:
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5.1. Quantitative analysis of a single crystal wavelength scan

Σabs ∝ λ (5.1)

Σi nel
coh ∝ Σi nel

i nc ∝ 1

λ
+λ (5.2)

Σel
i nc +Σi nel

i nc ∝ λ2 (5.3)

The following fit function is then used for the cross-section of all but the coherent elastic

scattering:

Σtot −Σel
coh =α · 1

λ
+β+γ ·λ+δλ2 , (5.4)

with α,β,γ,δ fit parameters. Thus, also any wavelength dependence in detector efficiency

is taken into account. This part of the recorded cross-section can be used for investigating

compositional and thickness variations across the sample, as any white beam radiography,

though for the remainder of this chapter we focus on the information comprised within the

coherent elastic cross-section. An example of the transmission spectrum of the cylindrical

single crystal is shown in figure 5.2b, with contributions from coherent elastic scattering

separated from the rest.

(a) (b)

Figure 5.2: Detector image (integrated over all wavelength frames) showing the two single crystals (a)
and the macroscopic cross-section behaviour at the center pixels, with the contribution
from the coherent elastic scattering separated from the other interaction types (b).

Indexation strategy

The starting point for the indexation of the Bragg peaks is the consideration [121] that an {hkl }

lattice plane can only give rise to a Bragg peak up to λ= 2dhkl , which follows from Bragg’s law

(eq. 2.42). For a BCC iron crystal, the three longest upper wavelength bounds are listed in

table 5.1. This puts a limit on the number of lattice plane families the longest wavelength peak

can belong to. In case of the pattern from figure 5.2b, the rightmost Bragg peak λ1 has to be a

{110} peak.
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Chapter 5. Energy-selective neutron imaging of crystals

Now that the lattice plane responsible for the first Bragg peak is known, one can derive the

angle θ1 between the incident neutron beam and the lattice plane normal n110, i.c.

θ1 = acos(λ1/2d110) (5.5)

In the crystal reference system, this means the incident beam direction is restricted to the

envelope of a cone of semi-angle θ1 around n110. Only one degree of freedom is left, φ, the

angle describing the cone envelope. For each possible beam direction nφ, all Bragg peak

wavelength positions λhkl for all hkl lattice plane normals nhkl are calculated:

λhkl = 2dhkl cosθhkl , (5.6)

with

θhkl = acos
(
nhkl ·nφ

)
. (5.7)

For our iron single crystal, the geometry is illustrated in figure 5.3a. It should be pointed

out that turning to the crystal reference system instead of the lab reference system, has the

advantage that the freedom of rotation of the crystal around n110 is already encompassed

within φ.

{hkl } 2dhkl

{110} 4.05 Å

{200} 2.87 Å

{211} 2.34 Å

Table 5.1: Upper wavelength bounds for the occurrence of the three largest {hkl } families of BCC iron.

Similarity between calculated and experimental pattern

The calculated Bragg peak pattern is subsequently compared with the experimental one. De

Gelder et al., [122] define the similarity S f g between two patterns f and g as

S f g =
∫

w f g (r )c f g (r )dr√∫
w f f (r )c f f (r )dr

∫
wg g (r )cg g (r )dr

, (5.8)

with

c f g (r ) =
∫

f (x)g (x + r )dx (5.9)

the cross-correlation function between the two patterns and

w f g (r ) =
1−|r |/l |r | < l

0 |r | ≥ l
(5.10)

a triangular weighted window function. It takes into account that two patterns can bear much

resemblance, but have peak positions slightly offset w.r.t. each other, something that would be
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5.1. Quantitative analysis of a single crystal wavelength scan

ascribed a low correlation value but has a high similarity. This will be due to e.g. insufficient

accuracy in the TOF to wavelength conversion, the initial choice of lattice parameter (typically

from literature values which can also vary by a few percent) and inevitably the discretization

step for φ. The normalization by the denominator in equation 5.8 ensures comparability of

similarity values for all φ. The evolution of the similarity for our iron crystal case study is

shown in figure 5.3b. The Bragg cone envelope angle φ corresponding to its maximum, fixes

the incident beam direction w.r.t. to the crystal reference system. Oversampling of φ will lead

to increased computation times, while for undersampling one might miss the similarity peak

and lose accuracy. Good results have been obtained with sampling at 1° intervals. A final

coordinate transform brings us back to the lab reference system.

If more than one candidate plane existed for the longest wavelength Bragg peak, one would

have to consider all of them and retain the one yielding the highest similarity to the experi-

mental pattern.

(a) (b)

Figure 5.3: Possible beam directions w.r.t the single crystal upon considering the longest wavelength
Bragg peak as {hkl } (a) for which the similarities between calculated and experimental
patterns are calculated (b).

Orientation and mosaicity mapping

For each pixel, the coherent elastic cross-section pattern is now indexed: it is known which

crystal lattice plane gives rise to which Bragg peak (figure 5.4a) and what the orientation of the

crystal is (figure 5.4b). The cylindrical single crystal was indeed put with its [100] direction

facing the beam port during the experiment, whilst the crystal cube was put in randomly and

by chance both crystals orientations turned out to be misaligned by 15° only.

More information can be extracted from the pattern however. The peak width for instance, is

a direct measure for the mosaicity of the crystal, which can also be mapped across the field of

view (figure 5.5). Many single crystals are not perfect across their entire volume, but rather

consist of small blocks that are slightly misaligned, which broadens the Bragg peak. Though

the effect is ignored here, one should in principle deconvolve the instrumental broadening due
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to finite neutron pulse width and detector time binning (e.g. [123]) as well as beam divergence,

in order to obtain the through sample mosaicity.

(a) (b)

Figure 5.4: Indexed coherent elastic scattering cross-section, with the experimental pattern in blue,
calculated Bragg peak positions in red (a). An orientation map is shown next to it (b), with
RGB color values corresponding to the direction cosines of the beam direction w.r.t. the
principal crystallographic axes.

Figure 5.5: Peak width ∆λ (Full width at half maximum) of the Bragg peak given rise to by the (-1 -1 0)
crystal plane.

In case there is more than one single crystal in the beam direction, i.e. a sample of multiple

crystal(lites), pattern overlap will occur. The indexation scheme does not require much

modification however. All experimental peak positions are put in a queue. Again, the longest

wavelength peak is taken as a basis for indexation. As it will be due to one of the present

crystallites, the highest similarity will be found between calculated single crystal pattern and

experimental Bragg peaks due to that same crystallite. These peaks are indexed and removed

from the queue. There is a new longest wavelength peak in the queue now and the indexation

process is repeated until the queue is empty.
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5.1. Quantitative analysis of a single crystal wavelength scan

The two crystals were rotated to have them partially overlapping in the transmission direction.

The indexed spectra at a detector region behind the cylinder alone, the cube alone and behind

the both of them, is shown in figure 5.6.

(a) (b) (c)

Figure 5.6: Indexed spectrum of the coherent elastic cross-section recorded behind the cylindrical
single crystal (a) and the cube shaped crystal (b). Also in the region of crystal overlap, Bragg
peaks are correctly identified as belonging to different grains, in this case two of them are
identified and indexed.

Segmentation

With multiple crystals present, next to or behind (causing pattern overlap) each other, seg-

mentation of the crystals is not straightforward. A modified version of the segmentation by

fast scanning and adaptive merging algorithm [124] is developed.

We define a crystallite as a spatially connected region of similar crystal orientation. Typically,

a high-angle grain boundary is characterized by a misorientation by more than δ=15° across it

[50].

The segmentation algorithm is illustrated schematically in figure 5.7. Consider an M×N matrix

of pixels (coordinates i , j ). The first pixel is by default classified as a first grain, Gr ai nI D = 1

(fig. 5.7a). We now run over all pixels, increasing the column index until the last one is reached,

then turning to the next row (fig. 5.7a-l). At pixel (i , j ), each orientation indexed is compared

to the ones for the pixel above it (i −1, j ) and to its left (i , j −1).1 If the misorientation with

one of these is smaller than a set value δ, the pixel is registered under the same Gr ai nI D (fig.

5.7b, for a pixel position with only one indexed orientation; fig. 5.7d,e in case of grain overlap).

Otherwise, a new Gr ai nI D is initiated (fig. 5.7c for a pixel position with only one indexed

orientation; fig. 5.7f in case of grain overlap). In the case of one crystallite bulging out into the

other one in the direction of smaller column indices, the protrusion will at first erroneously be

considered a new grain (fig. 5.7). This is however set straight later on at higher pixel indices:

in case the misorientation of pixel (i , j ) with its neighbours at (i −1, j ) and (i , j −1) is in both

cases smaller than δ and yet the two neighbours have a different Gr ai nI D , the two segmented

grains are merged (fig. 5.7h). Upon completion of the algorithm, having run once over all

pixels and orientations, one ends up with a segmented grain map for the entire recorded field

of view (fig. 5.7i). The orientation maps of the segmented crystallites are shown in figure 5.8,

in this case the two single crystals were rotated to have partial overlap in transmission.

1Only one of these for pixels bordering the edge of the matrix.
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(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 5.7: Illustration of the crystallite segmentation algorithm for the simplified case of three crystal-
lites with no more than two crystallites overlapping. The neutron beam would be coming
from the top.

(a) (b) (c)

Figure 5.8: White beam transmission radiograph of two BCC iron single crystals, partially overlapping
(a). The two crystals can be segmented and an overlay of their respective orientation maps
is shown in (b) and (c). RGB values correspond to the direction cosines of the listed beam
direction w.r.t. the principal crystallographic axes.
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5.1. Quantitative analysis of a single crystal wavelength scan

5.1.3 Considerations for tomographic extension
The long acquisition time for such a high wavelength-resolution scan, in combination with

the requirement to record them under various sample rotation angles, puts a restraint on the

tomographic extension of the method developed above. Nevertheless, in light of ongoing

developments to increase neutron flux (new sources such as ESS [125], focusing guides [126]),

it is useful to consider the options.

The recorded transmission spectrum is the result of joint attenuation by all crystallites i of

thickness di present in the beam direction:

T (λ) =∏
i

e−Σi (λ)di (5.11)

Taking the negative natural logarithm and explicitely separating contributions from coherent

elastic scattering:

− lnT (λ) =
[
Σabs(λ)+Σi nc (λ)+Σi nel

coh (λ)
]

d +∑
i
Σel

coh,i (λ)di , (5.12)

with d =∑
i di and assuming a single material element for simplicity.

The first term on the right hand side is independent of crystal orientation. Integrated over

the entire recorded wavelength range, the resultant radiograph is sensitive only to the tra-

versed material type and thickness. If available over a set of sample rotation angles, it can

- as in standard white beam tomography - be used to reconstruct the sample’s 3D material

distribution.

Regarding the second term, we have seen how to separate the Bragg peaks belonging to the

different grains and segment the different crystallites. Each term i of the summation can be

integrated over the wavelengths of the Bragg peaks attributed to crystallite i , sB ,i ,

Σel
cohdi =

∫
sB ,i

Σel
coh,i (λ)di dλ (5.13)

yielding a set of radiographs of the individual crystallites. The individual Bragg peak heights

depend on the wavelength (eq. 2.43) and thus on the rotation angle (eq. 2.42). Integrating

over all peaks not only increases crystallite projection image statistics, but also averages out

wavelength/angular-dependence before tomographic reconstruction. Alternatively, one can

correct for the wavelength-dependence and reconstruct a normalized value at the Bragg wave-

length, e.g. Σel
coh,i (λ110,i )di /λ110,i , or renormalize the crystallite projections under different

angles w.r.t. each other, as they all represent the same diffracting volume. Collecting either

quantity for all rotation angles, one can reconstruct the three-dimensional crystallite shape.

A first theoretical glance, suggests also tomographic reconstruction of the mosaic spread in a

single crystal is feasible. The observed Bragg peak at a certain pixel, follows a Gaussian distri-

bution centered on λobs and of standard deviation σobs (representative of the mosaicity of the

crystal plane giving rise to that Bragg peak): G(λobs ,σ2
obs). It is the result of the additive contri-
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bution of the cross-section in each of N voxels v traversed by the neutron beam before striking

that pixel, each of which can also be associated with a Gaussian wavelength-dependence:

G(λv ,σ2
v ). As a sum of Gaussian distributions is again a Gaussian distribution

N∑
v=1

1

N
G(λv ,σ2

v ) =G

(
N∑

v=1

1

N
λv ,

N∑
v=1

(
1

N
σv

)2
)
=G(λobs ,σ2

obs), (5.14)

one can reconstruct the mosaicity at each voxel,σv from projection maps,σobs , under different

angles. However, more in-depth investigation is still required, e.g. finding the proper wave-

length normalization here too, though outside the scope of this work.

It should be noted that the above only holds in the kinematic approximation [127], with

no extinction occuring, so the cross-section for coherent elastic scattering is independent of

sample thickness and the recorded Bragg peak amplitudeΣel
coh(λB ,i )di is directly proportionate

to the crystal thickness.

5.2 Monochromatic imaging of oligocrystals

In the previous section, we analysed the full transmission spectrum and Bragg peak pattern at

each pixel to map orientation and mosaicity. However, such wavelength scans at high spatial

and temporal resolution are very time consuming. What information can already be obtained

from a single radiograph of reduced wavelength bandwidth?

Again we turn to Bragg’s law (eq. 2.42). Suppose we have two neighbouring crystallites

(sufficiently large to be spatially resolved by our imaging set-up). By definition, they are

misoriented w.r.t. each other. As such, they will diffract at different wavelengths. By restricting

the beam spectrum to a narrow wavelength band, one will observe a region of reduced intensity

in the digital radiograph, corresponding to projections of the crystallite oriented as such as

to diffract at a wavelength within that band. Information on crystallite morphology can thus

readily be obtained (see section 5.4 for examples), without the need for time-consuming

energy-scans at high energy resolution.

Choosing a wavelength band above the Bragg cut-off, no diffraction by the crystallites is

possible anymore and one only observes a change in the elemental distribution within the

sample2.

The principle is illustrated schematically in figure 5.93.

2See chapter 4 for more details on imaging in this wavelength range.
3The transmission data shown, was recorded for the iron crystal cube at 0°and 10°, with sample and experimental

conditions already described in section 5.1.1.
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Figure 5.9: Principle of imaging with a reduced wavelength band in case of few, large crystallites.
Depending on the chosen wavelength, diffraction can occur from a crystallite, resulting in
a region of reduced intensity in the digital radiograph, corresponding to the projection of
that crystallite (case 1 for the bottom crystallite, case 2 for the top one). At long wavelengths
past the Bragg cut-off, no crystallite contrast can be observed (case 3).

5.3 Application 1: monochromator crystals for CAMEA

5.3.1 Introduction

CAMEA, short for Continuous Angle Multi-Energy Analysis, is a new concept for a time-of-

flight inelastic neutron spectrometer at ESS [128]. Such instruments are used for the studies

of phonon and magnon excitations by studying the direction and the energy of scattered

neutrons. Current time-of-flight spectrometers only analyze at a single energy of scattered

neutrons.

CAMEA on the other hand, would use a set of crystals placed behind each other in the scattered

beam direction, each one selecting out a different energy to analyze. The spectrometer’s

efficiency would thus be boosted significantly, allowing studies of weaker interactions or fast

investigations of dynamic processes.

The currently foreseen design is sketched in figure 5.10. The instrument will include 15

analyzer-detector banks, each one counting 10 analyzers of at least 5 pyrolytic graphite crystals,

measuring 5-10×1 cm2.

Given the difficulties in producing large homogeneous pyrolytic graphite crystals and the

amounts to be procured, a fast quality assurance method is required. The option of energy-

selective neutron imaging is investigated to this end.
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Figure 5.10: Simplified view on the CAMEA time-of-flight spectrometer considered for ESS. A close up
of one of the 9 angular segments, reveals it to consist of 10 consecutive analyzer-detector
banks, each analyzer constructed out of several pyrolytic graphite crystals. (Image taken
from [128])

5.3.2 Experiment

Three pyrolytic graphite monochromator crystals were investigated. They were manufactured

by Panasonic, each measuring 10×50×1 mm3, two of them having a mosaicity of 1° and one of

1.3°. They were fixed with there back sides pressed against a single 0.5 mm thick flat aluminium

plate so that they could be imaged together.

The experiment was conducted at BOA, using a double crystal monochromator in combination

with a Beryllium filter to suppress the higher-order spectral contamination. The crystals were

turned to a Bragg angle of 38.8° w.r.t. the incident neutron beam, to have them diffracting at

4.2 Å - a wavelength in the typical CAMEA working range. The incident wavelength was then

stepped from 4 Å to 4.4 Å per 0.02 Å. For the imaging itself, a 100µm thick 6Li-based scintillator

screen was used together with the Andor Ikon-M CCD camera, having 1024×1024 pixel2

focused on a 109×109 mm2 field-of-view. The exposure time for a single image was 195 s.

Photographs of the experiment are shown in figure 5.11.

(a) (b) (c)

Figure 5.11: Experimental set-up with (a) the double crystal monochromator (with the cover removed),
(b) the Beryllium filter and (c) the three crystals mounted together on a rotation stage in
front of the midibox imaging set-up. Arrows indicate the neutron beam direction.
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5.3.3 Results and discussion

At first, the (110) Bragg edge of a 5 mm thick iron plate was scanned to determine and correct

the wavelength shift w.r.t. monochromator setting at each pixel (see chapter 3).

The measured macroscopic cross-section exhibits a Gaussian behaviour as a function of

wavelength. For each pixel, it is fitted for improved accuracy of the defining parameters

(figure 5.12). Note that due to the wavelength shift correction, experimental points no longer

correspond to the set wavelength interval from 4 Å to 4.4 Å per 0.02 Å.

Figure 5.12: Observed variation in macroscopic cross-section (blue circles) and fitted Gaussian profile
(solid green line) for an arbitrary pixel behind the right-most crystal in figure 5.13.

Figure 5.13 shows a map of the fitted amplitude A, a measure for the variation in reflective

power. The recorded peak position λ0 is influenced by local variation in either orientation or

lattice spacing (Bragg’s law, eq. 2.42). The map of the fitted Gaussian’s standard deviation σλ is

affected by variations in mosaicity. One should disregard the region around the outer nodges

where the crystals were screwed to the aluminium backing.

All three crystals were homogeneous in their reflectivity and mosaicity. It can immediately

be inferred that the middle crystal was the one of 1.3° mosaicity and the outer ones of 1°.

The mapped Bragg peak position however shows some interesting features. The left most

crystal has an average Bragg wavelength offset of 0.05 Å compared to the other two. Following

Bragg’s law and a d002=3.36 Å, this corresponds to a misalignment of 0.5° of the crystal planes

w.r.t. the sample surface, though a systematic error in the screw mount can not be ruled out.

Alternatively, a 1 % smaller lattice plane spacing would have a similar effect.

In the middle crystal, a clear split in Bragg wavelength is observed between its left and right

half. No mounting offset can be invoked to explain such a dichotomy. Rather, it is a property

of the sample itself and most likely the result of non-uniform crystal growth.
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Figure 5.13: Map of the fitted Gaussian amplitude A, peak position λ0 and standard deviation σλ of
the three investigated pyrolytic graphite crystals.

5.3.4 Conclusion
The conducted experiment shows that energy-selective neutron imaging can be used for

the investigation of monochromator crystal quality at high spatial resolution. Information

is obtained for each sample point simultaneously, versus the scanning with a pencil beam

approach at diffractometers and spectrometers. In short time spans of around 1.5 hours, it is

possible to inspect over 10×10 cm2 of projected monochromator surface for spatial variation

in reflectivity, mosaicity and orientation/lattice spacing at a resolution of ≈100µm.

5.4 Application 2: morphological and phase analysis of iron-nickel

meteorites
5.4.1 Introduction
In order to univocally characterize a metallic material, a textural analysis is a mandatory

requirement. Traditionally this necessity is satisfied by means of microscope observation

on specifically prepared portions of the sample. For this purpose, portions of the sample

have to be cutted, polished, chemically or electrochemically etched, etc. making this analysis

intrinsically destructive. Therefore, traditional metallographic analysis is not suitable when

performed on rare and unique objects of high scientific and economic value. Lots of interesting

items fall in this category: sculptures and artistic goods, archaeological finds, rare coins and

meteorites.

In the case of metallic meteorites, namely iron meteorites, the study of texture is extremely

important since it provides data regarding the formation and the minero-chemical evolution

of the asteroids and planetary systems. Iron meteorites are the biggest and heaviest examples

of extraterrestrial material that fall to earth. They are constituted by Fe-Ni alloys, mainly

kamacite (metallic iron BCC structure with up to 7.5 % nickel in solid solution) and taenite
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(metallic iron, FCC structure with nickel ranging from 25 to 70 %). Few other compounds such

as sulfides (troilite and daubreelite), phosphides (schreibersite) and oxides (chromite, spinel)

generally account for less than 5 % by volume. Nevertheless these tiny amounts are important

indeed since they provide useful indications for meteorite classification.

Slowly cooling of the meteorite’s parental body below about 900°C gives rise to the exolution

of taenite bands from bulk kamacite resulting in a fine intergrown of these two phases named

Widmanstätten patterns, a peculiar feature characteristic of iron meteorites. Observing the

relative thickness of the taenite bands, a fundamental geochemical parameter such as parental

body cooling rate, can be profitably inferred [129, 130].

Texture and phases investigation using penetrative radiation such as X-rays and neutrons offer

an advantage in respect to the classical approach being not destructive. While radiography

and tomography is similar in principle for both beams, it is very complementary in practice

due to the different interaction mechanisms: X-rays interact with the electronic shell while

the chargeless neutrons with the atomic nuclei.

In this section we present the results of an in depth tomographic study performed on a iron

meteorite (Mont Dieu meteorite) by means of energy-selective neutron imaging. This method

has already been reported to be sensitive to crystalline properties of metallic objects [131, 32],

which is now for the first time applied to iron-nickel meteorites and extended with the use of

advanced 3D reconstruction methods.

Mineral inclusions, oxidation crust and main iron body can be studied in 3D. Moreover

different phases and crystallites can be identified and orientation characterised. This tech-

nique allows to determine the relative 3D distribution of compositionally very similar phases

such as taenite and kamacite providing evidence of the capability of this non-destructive

technique to allow a 3D metallographic analysis without sample preparation.

5.4.2 Materials and experimental set-up

The meteorite sample (figure 5.14) was obtained from the Museo di Scienze Planetarie di

Prato (catalogue n° MSP-PL 1412)4. The meteorite was found in July 1994 in the forest of Mont

Dieu (Ardenne, France) and the name Mont Dieu was officially attributed by the Meteoritical

Society [132]. Bulk metal composition is the following: 0.4 wt% Co, 7.5 wt% Ni, remaining

Fe [133]. According to the original description, the meteorite is constituted by taenite and

kamacite intergrowth and it is characterized by the presence of troilite (FeS) and schreibersite

((Fe,Ni)3P) along with rare chromite (Cr2O3).

4We gratefully acknowledge its curator Dr. Vanni Moggi-Cecchi for providing the sample.
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Figure 5.14: Photograph of the investigated Mont Dieu meteorite sample mounted on its holder.

Neutron imaging on the meteorite has been performed at the ICON beamline at the Paul

Scherrer Institut [24]. A monochromatic beam was produced by inserting a mechanical

velocity selector in the beamline, close to the aperture. The transmitted neutron beam is

converted into visible light using a 100µm thick 6Li ZnS scintillator, which is then guided

via a mirror to an Andor DW434 CCD camera with 1024×1024 pixels. The field of view was

110 mm×110 mm with 107µm pixel size, allowing to image most of the sample. Using different

light focusing optics, a 55 mm×55 mm image was obtained at 54µm pixel size, for a high

resolution measurement of the meteorite tip.

Radiographies were taken at mean wavelengths of 3.0 Å, 3.2 Å, 3.4 Å, 3.6 Å, 3.8 Å, 4.0 Å, 4.2 Å and

5.0 Å, for both described resolution settings. Subsequently, two energy-selective tomographies

at 5.0 Å and 3.6 Å were made. Projections were obtained for 376 sample rotation angles

equiangularly spaced from 0°to 180°, with a projection exposure time of 38 s.

An isotope analysis by gamma spectroscopy was carried out on the sample after the initial

wavelength scan to make sure no radioactive isotopes with a long half-life would be formed

during future tomographies and the sample could be returned safely to the museum.

5.4.3 Principle

As discussed in section 5.2, a different beam attenuation is expected across the meteorite

sample depending on the local lattice plane orientation of the different crystallites towards

the primary beam. By varying the incoming neutron wavelength or by changing the sample
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scattering angle, i.e. rotating the sample with respect to the incoming beam, one can get

different crystallites come into contrast. This is demonstrated in the next subsection.

The largest lattice plane distances for the present kamacite and taenite phases as determined

from previous neutron diffraction experiments [134] are listed in table 5.2, implying a Bragg

cut-off at 4.14 Å.

Lattice plane d-spacing

(110) 2.027 Å

(200) 1.433 Å

(a) Kamacite

Lattice plane d-spacing

(111) 2.071 Å

(200) 1.794 Å

(220) 1.268 Å

(b) Taenite

Table 5.2: Two largest lattice spacings of Kamacite (a) and the three largest ones of Taenite (b).

5.4.4 Results and discussion

Wavelength radiographic scan

Figure 5.15 shows neutron transmission radiographies of the meteorite for different wave-

lengths yielding contrast between differently oriented grains. A radiography at 5.0 Å allows to

distinguish between elemental (e.g. mineral inclusions) and crystallographical sample features

as no diffraction can occur at this wavelength for the present crystalline phases, i.e Bragg’s law

cannot be fulfilled. Two different types of morphology can be distinguished: convex crystallites

of centimetre size (probably kamacite) and needle-type structures of sub-millimetre thickness

(the lamellar Widmanstätten patterns of taenite and kamacite). The wavelength scan also

holds basic orientation information of the crystallites. Selecting some specific crystallites

and supposing them to be single crystals or highly oriented polycrystals, the wavelength of

minimum transmission corresponds to the fulfilment of the diffraction condition and can thus

be related to the crystallite orientation with the incident beam through equation 2.42. As an

example, the crystallite indicated in figure 5.15 with the top arrow exhibits a fitted minimum

transmission at 3.74 Å (inset). Attributing this needle-like crystallite to the Taenite phase on

morphological grounds, the application of Bragg’s law together with table 5.2, tells us this

attenuation can only happen by diffraction from the (111) crystal planes under a Bragg angle

θ=64.5°. With the incoming neutron beam normal to the meteorite surface, the (111) direction

is thus at 25.5° normal to the surface.
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(a) (b)

(c) (d)

Figure 5.15: Radiographies taken at different mean neutron wavelengths. Arrows illustrate crystallites
coming in and out of contrast with the inset showing the transmission variation for the
grain indicated by the top arrow.

Tomography at 5 Å

At 5.0 Å, the Bragg law can no longer be fulfilled for the phases present in the meteorite, having

lattice spacings as in tables 5.2a and 5.2b. As such, diffraction at the crystallites is no longer

possible and no contrast between them is observed anymore. In this wavelength regime, the

isotope dependent absorption contrast dominates. Tomographic reconstruction using the

standard filtered back projection algorithm allows for segmentation of the different material

regions present in the sample: main iron-nickel body, the outer oxide crust and mineral

inclusions. A 3D volume rendering of the sample together with a virtual slice through the

meteorite are presented in figure 5.16. These features can then be further quantified for future

meteor classification. E.g. in the above mentioned figure, the oxidated layer on the left side

is only 1.7 mm thick, while on the right side it is penetrating over 1 cm into the bulk and the

volume fraction of supra-millimetre mineral inclusions (attributed to FeS nodules [133] and

characterized by the lower macroscopic cross-section) was determined to be 3%.
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(a)

(b)

Figure 5.16: Threedimensional volume rendering of the investigated meteor sample (a) - grid lines are
10 mm apart – with the virtual cutting plane for the slice shown in (b).

Tomography at 3.6 Å

At 3.6 Å diffraction effects are visible in the transmission signal. During sample rotation,

crystallites will move in and out of contrast depending on their orientation with respect to the

incoming neutron beam. This is illustrated for the marked crystallite in figure 5.17 , where

again by applying Braggs Law one can determine this (Kamacite, based on morphology)

crystallite has its (110) direction at 27.4°with respect to the incident beam.

In such case, simply reconstructing the full tomographic dataset would lead to erroneous

results, as the attenuation induced by each sample volume element changes with its orien-

tation in the beam and does not contribute to every projection as assumed in the standard

reconstruction algorithm.

A solution is found in selecting from all the acquired projections the ones where a crystallite

of interest contributes to. The crystallite’s volume is then reconstructed based on those

projections by means of algebraic reconstruction techniques (chapter 1, section 1.4.2). In this

class of algorithms, the reconstruction task is rewritten as the matrix equation Ax = b, with x

being the unknown 3D volume, b the recorded projections and A the projection system matrix.

The problem is generally underdetermined and is solved iteratively. Though computationally

more intensive, it offers superior performance when reconstructing objects using a limited

number of non-equiangular projections and allows to include additional reconstruction
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constraints [135]. In this work, reconstruction was performed with the ASTRA-toolbox [136]

using the SIRT algorithm. The available reconstruction at 5 Å was used as a mask for the

sample geometrical outline. As such, the crystallite rendered in figure 5.18 was reconstructed

using the projections acquired between 12° - 46°, 58° - 107° and 129° - 153° only.

Though not applied here, one could rescale the absorption cross-section profile obtained from

the tomography at 5 Å to 3.6 Å according to the 1/v-law and subtract it from the 3.6 Å slices

to end up with only the reconstructed scattering cross-sections responsible for crystallite

contrast.

(a) (b)

Figure 5.17: Projections at 0°(a) and 21.5°(b) illustrating the changing crystallite contrast. An iterative
reconstruction of that crystallite is shown in figure 5.18.

Figure 5.18: Threedimensional rendering after reconstruction of the crystallite marked in figure 5.17,
with grid lines 5 mm apart.

A more detailed view on the difference in reconstruction is given in figure 5.19. Standard

reconstruction using the filtered back projection algorithm over all projections from 0° - 180°

shows several non-physical artefacts: stripes of reconstructed negative cross-section along the

meteors’ long axis due to zero recorded transmission in this direction (also called starvation

artefact) and streaks of reconstructed material sticking out of the meteor due to missing
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angular information with the diffracting grain not appearing in every projection included in

the reconstruction. These artefacts can be avoided using the iterative reconstructor through

the applied nonnegativity and mask constraints and more contrast at the grain region is

obtained.

Figure 5.19: Reconstructed meteor slice using the filtered backprojection for 0° - 180° (a) and the SIRT
algorithm over 12° - 46°; 58° - 107°; 129° - 153° (b).

The crystallite was selected for reconstruction based on visible inspection of acquired pro-

jections after the measurement. For future investigations one can envisage actively aligning

diffraction vector and rotation axis to have a crystallite of choice in diffraction condition for

all projections for the purpose of reconstruction, similar to [137]. Alternatively, as crystallites

stay in diffraction contrast over tens of degrees due to the broad incident wavelength band,

one could apply stereoscopy methods to obtain limited 3D spatial information as well.

In principle, one could also use the diffracted beam to obtain crystallite orientation and shape

information, similar to the well established 3DXRD and DCT synchrotron methods [138, 139].

First attempts in this direction for neutrons are reported in the next chapter, though an initial

examination of the Mont Dieu meteorite could not reveal sharp diffraction projections, the

crystallite’s mosaicity being too high.

5.4.5 Conclusion
Using energy-selective neutron imaging it was possible to identify morphology and location

of mineral inclusions and oxidation crust of an iron-nickel meteorite in a non-destructive

way. Moreover, using wavelengths that allow for diffraction to occur in the sample, one can

distinguish between the differently oriented crystallites and even make a 3D crystallite recon-

struction using algebraic reconstruction techniques. These results are of strong importance in

the characterization of the evolution of meteorites and can give innovative data which might

change in the future the classification criteria of meteorites.
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In this chapter, we perform neutron imaging investigations from a different perspective,

using diffracted neutrons. Neutron imaging typically investigates the variation in transmitted

neutron beam intensity through material and thickness dependent attenuation in the sample.

The neutrons that are removed from the direct beam through absorption and scattering are

ignored or deemed a nuisance (e.g. a hindrance to quantification). However, in this chapter,

we will see how neutron imaging can be performed beneficially using neutrons that underwent

a specific type of scattering, namely diffraction, yielding crystal orientation information. After

outlining the advantages of the technique and the required set-up [140], an example of digital

neutron diffraction radiography is given, followed by an 3D extension of the method for single

crystals [141] and polycrystals [142].

6.1 Motivation
High energy-resolution is required to resolve all Bragg peaks of the transmission spectrum for

indexation and orientation mapping, the Full Width at Half Maximum (FWHM) of the Bragg

peaks of the iron crystals examined in the previous chapter (fig. 5.6) e.g. being on the order of

0.02 Å. Neutron imaging at such high energy-resolutions is only present at TOF facilities.

At continuous sources, the peak broadening and overlap induced by the monochromator’s

energy-spread function (which stands around 0.1 Å FWHM for a typical DCM) greatly compro-

mises the method.

Working with an incident wavelength bandwidth larger than the crystal’s Bragg peak FWHM

also leads to a loss of image contrast as the recorded transmission radiograph is defined by

the ratio of the wavelength-integrated beam intensity with and without the crystal (eq. 1.17).

Small variations in the crystal’s local Bragg reflectivity will thus hardly be picked up.

However, one can think of the crystal as a monochromator in itself. Depending on its orien-

tation in a white or pink neutron beam, it will diffract neutrons of specific wavelengths λB

under an angle θB out of the direct beam. Bragg’s law stipulates the relation between crystal

lattice plane angle (plane spacing dhkl ) with the incident neutron beam θB and the diffracted

wavelength λB :

2dhkl sinθB =λB . (6.1)

With the whole crystal volume illuminated, these diffracted neutrons will form a projection of
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that volume on any position-sensitive detector they fall on.

Working now outside the direct beam area, one only detects the diffracted neutrons1, by

default obtaining the highest possible intensity contrast for the coherent elastic scattering

process.

The position of the diffraction projections on the detector is determined by the orientation

of the crystal. A higher orientation sensitivity can be obtained than for the case of energy-

selective transmission imaging. Consider e.g. a BCC iron crystal, with (110) plane oriented

to diffract neutrons towards a detector at 90°. A misorientation of 0.1° will lead (taking the

derivative of Bragg’s law) to a change of the diffracted wavelength by 0.005 Å – a number hard

to pick up even with TOF. On the other hand, the position of the diffracted neutron projection

on that detector, placed 50 mm away, will change by 175µm, well above the typical spatial

resolution of neutron imaging detector systems.

Moreover, the angular separation of the diffraction projections of differently oriented crystal-

lites, relaxes the upper limit on the number of crystallites that can be dealt with compared to

transmission-based methods.

Diffraction imaging or topography2 has a long history in the X-ray community since Berg

obtained his first diffraction projections on rock salt in 1931 [144]. Stimulated by the avail-

ability of high-intensity synchrotron radiation beams, a multitude of variations nowadays

exists at different dedicated beamlines [145, 146]. One can work with a polychromatic or

monochromatic beam that can either fully encompass the sample or be limited to a line sec-

tion through it. Extension to 3D also exists with X-ray diffraction tomography methods such as

topo-tomography [137], Diffraction Contrast Tomography (DCT) [139] and 3DXRD [147]. But

whereas X-rays interact with the electron shell of the atom, neutrons interact with the nucleus,

yielding techniques similar in principle, though complementary in practice: neutrons gener-

ally offer bulk penetrability of metals, e.g. iron, nickel or lead crystals. Neutron topography

has been carried out mainly in the ‘70s and ‘80s using X-ray films with a gadolinium convertor

foil as also used for neutron radiography at that time [148].

The advent of digital methods at the dawn of the new millennium revolutionized neutron

imaging and brought routine tomographic investigations. In the following sections, it is now

extended to diffraction radiography and tomography using advanced algebraic reconstruction

algorithms.

1Apart from a background formed by scattering from the surroundings and incoherent sample scattering.
2The term topography was coined by Ramachandran in 1944 [143] and used throughout literature as a synonym

to diffraction (contrast) imaging. To avoid confusion with topography in geoscience or the suggestion that it would
only be a surface method, more and more preference is given to the term of diffraction contrast imaging, a trend
which is followed in this work.
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6.2 A double detector set-up for neutron diffraction contrast imag-

ing
Transmission and diffraction imaging pose somewhat different detector demands. Trans-

mission imaging is performed in the direct forward beam direction at the highest resolution

possible. The diffracted neutron signal on the other hand does not follow the incident neutron

beam direction anymore. In a cold neutron beam, the diffraction directions tend towards side

and backscattering, illustrated in table 6.1.

1st reflection 2nd reflection

Al 83.1° 99.9°

Cu 95.9° 118.1°

Fe (BCC) 99.8° -

Ni 99.3° 123.2°

Table 6.1: Smallest two diffraction angles (w.r.t. the transmitted beam direction) formed by the two
crystal planes of largest interplanar distance for typical engineering materials at the average
wavelength of 3.1 Å of the ICON beamline.

Moreover, a large field of view is required to cover sufficient angular range at the cost of a

loss in resolution. A solution to these conflicting demands has been found using a double

detector set-up, combining the micro set-up for high resolution transmission imaging in the

beam direction and the midi set-up on a movable stage aside from the direct beam, facing the

sample, for diffraction imaging (figure 6.1).

Slight modifications have been introduced to allow for efficient imaging of backwards scattered

neutrons (figure 6.2). The incident neutron beam is limited using a 4 cm thick block of borated

plastic featuring an aperture the size of the micro set-up field of view. It is then allowed to

traverse the mirror, which is a thin plate of polished aluminium measured to attenuate the

beam by less than 5 %. A special scintillator has been produced with uncoated center, so

back-reflected neutrons from the sample can still be converted into visible light with high

efficiency by the coated region, without the incident beam being significantly attenuated. The

neutron beam subsequently goes through the sample, with the transmission image recorded

by the micro set-up and the diffracted neutrons forming grain projections on the midi set-up

scintillator.

Camera trigger and feedback signals are logically combined and the whole is emulated as a

single virtual camera in the existing beamline operating system. As such, both camera’s can be

triggered and start measuring simultaneously. The exposure times can be set independently

and the camera with the longest acquisition time (exposure plus read-out time) will determine

when the next trigger is sent. The set-up thus allows for simultaneous recording of transmitted

and diffracted neutrons, making optimal use of the available beam time and providing easy

sample aligning.
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(a) (b)

Figure 6.1: Schematic overview (to scale) of the double detector set-up for sidewards scattering with
the midi set-up on the left at 90° w.r.t. the sample for diffraction imaging and the micro
set-up in the beam direction behind the sample for transmission imaging (a). A picture of
the set-up installed at the ICON beamline is shown in (b).

Figure 6.2: Schematic overview of the double detector set-up for backwards scattering with close-up
on the right. Neutrons fly in from the left (1), beam size limited by an aperture (2), go
through the mirror (3) and hit the sample (4). The transmission signal is subsequently
captured on scintillator of the micro set-up (6) and the grain diffraction projections on the
customized midibox scintillator (5). The light is then guided via the mirrors to the CCD
camera on top (7).
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6.3 Neutron diffraction contrast radiography
The strength of digital neutron radiography with diffracted neutrons is exemplified with an

investigation of single crystal Nickel-base superalloy turbine blades.

6.3.1 Introduction
Jet engines and land-based gas turbines have the turbine blades subjected to the highest

temperatures and loads carried out as single crystal Nickel-base superalloys. They are charac-

terized by superior strength and resistance to creep, thermal fatigue and corrosion compared

to conventionally cast blades, having their <001> crystallographic direction aligned to the

blade axis of highest load [149, 150].

They are produced by pouring molten superalloy in a ceramic mold with a chiller at the base

where solidification and grain nucleation starts. The top of the mold is situated in an oven,

the unidirectional temperature gradient ensures that the grain growth, dendritic in nature,

is columnar. The process is fastest for grains that have their <001> direction aligned to the

temperature gradient. Already a few centimeters away from the chiller surface, one is left with

only <001> oriented crystallites. The mold then narrows into a helical shaped grain selector.

Only a few favorably oriented dendrites are able to grow into it and only one can emerge on

the other end where the blade shaped part of the mold will start. The manufacturing set-up is

shown schematically in figure 6.3.

Figure 6.3: Schematic illustration of the casting process of single crystal superalloys, taken from [151].

The dendrite cores in the blade are typically spaced 200-600µm apart and small misorienta-

tions of 0.1°- 1° will persist [152].

White beam synchrotron diffraction imaging has a.o. been used to investigate the change

in mosaic structure that comes with different growth conditions [153, 154]. However, due to

the high attenuation of X-rays in Nickel, such measurements were performed on thin slabs,

typically a few hundred micron thick, cut out of the blade.

109



Chapter 6. Neutron diffraction contrast imaging

Tomimitsu [155] performed monochromatic neutron diffraction imaging measurements on a

3 mm thick slab of a prototypal turbine blade to verify the homogeneity of the "single crystal"

(sic) and the suggested macroscopic growth direction in the different blade parts. An X-ray

dental film and a Gadolinium (n,γ) converter foil were used in the experiment.

In this section, we explore white beam digital neutron diffraction imaging of a full commercial

turbine blade as a tool for non-destructive testing of the mosaic structure in bulk.

6.3.2 Experiment
The experiments were conducted at the ICON beamline using the double detector set-up. In

order to increase the neutron flux, the 40 mm aperture was selected. The full polychromatic

beam spectrum was used. Three small single crystal Nickel-base superalloy turbine blades

were obtained from the Sulzer company [156] for our investigation, two of them were grown

along the vertical blade axis, a third one along the horizontal [157]. Detailed imaging param-

eters used for the different sample scans are listed in table 6.2. A tomography was made of

blade No. 1, rotating it over 360° in 625 steps. Single radiographies were made of blades No. 2

and No. 3.

Blade 1 Blade 2;3

Transmission Diffraction Transmission Diffraction

Camera angle 0° 90° 0° 90°

Pixel size 27µm 130µm 27µm 68µm

Field of view 27.6×27.6 mm2 102×102 mm2 27.6×27.6 mm2 102×102 mm2

Scintillator 20µm Gadox 100µm 6Li ZnS 20µm Gadox 100µm 6Li ZnS

Exposure time 11 s 15 s 15 s ; 40 s 20 s ; 45 s

Sample distance 88 mm 69 mm ; 78 mm

Table 6.2: Parameters of the neutron imaging systems used for simultaneous imaging in transmission
and diffraction mode.

6.3.3 Results and discussion
An example of a combination of transmission and diffraction image is presented in figure

6.4. A photograph of the sample under approximately the same angle as seen by the side

scatter detector is provided as well, illustrating the interpretation of the diffraction image as a

sample projection formed by the diffracted neutrons on the side detector. Other diffraction

projections can be discerned too, emerging from neutron scattering of different wavelengths

from different crystal lattice planes.

Laue pattern

A single crystal put in a white beam will produce a Laue pattern on a position sensitive detector

and the investigated turbine blades are no different. The diffraction projections can likewise

be indexed based on comparison between experimentally observed spot positions (taken
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as the projection’s center of mass) and simulated ones. The distance between them on the

detector is minimized for multiple sample rotation angles, as the fairly large distance between

sample and diffraction detector needed to avoid projection overlap will also limit the number

of them observed on a single image.

The geometric procedure for simulating the Laue pattern was adapted from Marín [158] and

generalized to account for arbitrary detector orientation. A list of all lattice plane normals is

calculated for an arbitrary orientation of the crystal in the lab reference system. The directions

of the diffracted beams are the ones of the incident beam rotated 180° around each of these

normals. The Laue spots are then found as the intersections of the diffracted beams with the

detector plane, discarding any that would fall outside of the detector’s field of view.

The crystal lattice planes are described w.r.t. to the crystal base vectors a1, a2 and a3. There

are many conventions to describe the orientation of a crystal in the lab reference system [50].

We adopt the use of Euler angles (φ1,φ,φ2) to describe the orientation matrix E , the matrix

elements of which can be found in appendix B, equation B.1. The sample rotation during

tomography is described by the rotation around the z-axis Rz in the lab reference system so

that for each projection, the crystal base vectors are described by

a ′
i = Rz E ai , i = 1,2,3. (6.2)

The (hkl) crystal planes are subtended by the three points a ′
1/h, a ′

2/k and a ′
3/l . The normal

vectors nhkl to those planes are found from the cross product

nhkl =
(

a ′
2

k
− a ′

1

h

)
×

(
a ′

3

l
− a ′

1

h

)
. (6.3)

The Bragg diffracted beam vector chkl equals the incident beam vector rotated by 180° around

nhkl and taken in the opposite direction. Say the incident neutron beam follows the x-axis

in the lab system, 1x . That rotation then boils down to a coordinate transform that depicts

nhkl onto the x-axis, Anhkl x (appendix B), performing the 180° rotation Rx , followed by the

transform back to the original system A−1
nhkl x and taking the antivector:

chkl =−A−1
nhkl x Rx Anhkl x 1x . (6.4)

the diffracted neutron path can be described by the parametric equation shkl chkl , the scalar

shkl being the distance of any point on it to the origin of the lab system. Where the diffracted

beam intersects the detector plane - defined by a point Od et and a normal vector nd et - both

schkl and Od et will lie in the same plane, perpendicular to nd et , so

(shkl chkl −Od et ) ·nd et = 0, (6.5)

so

shkl =
Od et ·nd et

chkl ·nd et
. (6.6)
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Where it only remains to be checked if the Laue spot position shkl chkl on the detector plane

also falls within the FOV.

The crystal plane responsible for the diffraction projection and the orientation of the crystal

within the lab reference system is then found by looking for the euler angles that minimize the

difference between simulated and experimental spot positions over multiple projections (i.e.

changing Rz ).

Figure 6.4: Diffraction image (left), transmission image (top right, same scale), photograph (middle)
and a top-down set-up overview (bottom right) for measurement of a single crystal Nickel-
base superalloy turbine blade.

The blade’s crystal orientation thus obtained can then be combined with the standard tomo-

graphic reconstruction based on transmission projections (figure 6.5). Not surprisingly, we

find the [001] direction, the one that can withstand the highest loads, along the vertical blade

axis.

Figure 6.5: Threedimensional rendering of the tomographic reconstruction of a turbine blade based on
transmission projections, together with its crystallographic orientation as indicated by the
base vectors and determined based on indexed diffraction projections. The blade height
was 22 mm.
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However, much more information can be obtained. As can already be seen from the diffraction

projection of weaker intensity in the upper left corner in figure 6.4, a columnar substructure is

present. However, slices from the reconstructed transmission tomography reveal no cooling

channels that might explain the intermittent dark columns through an absence of scattering

material (figure 6.6).

Figure 6.6: Virtual slice through the tomographic reconstruction of the transmission data of turbine
blade No. 1. The inset shows the height in the blade that the slice corresponds to.

The dendritic microstructure

The small misalignment of the dendritic cores as described by Husseini et al. [152], will induce

small differences in the direction of the diffraction projections of each dendrite, leading to

regions of increased intensity where these overlap and an intensity loss where they diverge. The

effect is schematically illustrated in figure 6.7. It gives rise to columnar diffraction projection

features, following the growth direction as in this blade the vertical misalignment component

does not give rise to diffraction projection overlap with horizontally neighbouring dendrites.

Figure 6.7: Schematic illustration of how regions with slightly different orientation can give rise to
intensity gain and loss lines on a detector.
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In order to verify the hypothesis, diffraction projections for two blades of different growth

direction were inspected. A photograph, neutron transmission image and simultaneously

recorded neutron diffraction projection for these two blades are shown in figure 6.8. The

diffraction projections indeed exhibit a columnar structure, once in the vertical direction (in-

dicative of vertical dendritic growth for blade No. 2) and once in the horizontal one (horizontal

dendritic growth). Also noteworthy is the darker region where the base plate is expected for

blade No. 2, caused by self-shielding in this thick Nickel-base part of the sample.

The two blades were thereupon cut with a diamond wire saw 5 mm below the top edge. They

were embedded in resin, polished and etched using a solution containing 60 ml ethanol,

40 ml HCl and 2 g of Cu(II) chloride. The dendritic microstructure was analyzed using optical

microscopy with green lighting. Micrographs (stitched together) of the blades’ cross-sections

are presented in figure 6.9. They reveal clearly that indeed, Blade No. 2 shows vertical dendritic

growth while Blade No. 3 a horizontal one.

6.3.4 Conclusion

Neutron diffraction imaging offers a non-destructive insight in the crystallographic microstruc-

ture of single crystal turbine blades at very short measurement times. It can be performed in

parallel to traditional transmission based tomography which reveals the material distribution

(e.g. presence of cooling channels), making optimal use of available neutrons.

(a) (b) (c)

(d) (e) (f )

Figure 6.8: Inspection results of turbine blade No. 2 (top row) and No. 3 (bottom row): photograph (a,d),
neutron transmission projection (b,e) and diffraction projection on the side detector (c,f).
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(a)

(b)

Figure 6.9: Optical micrographs of the cross-section of the vertically grown turbine blade No. 2 (a) and
horizontally grown No. 3 (b).

6.4 Neutron diffraction contrast tomography of a single crystal
6.4.1 Experiment

To investigate going from single diffraction projections (i.e. radiography) to tomography, a

cube shaped BCC iron single crystal, measuring 4 mm × 4 mm × 4 mm was rotated over 360° in

376 steps using a white beam3. The different imaging parameters used during this experiment

are listed in table 6.3.

Transmission Diffraction

Camera angle 0° 90°

Pixel size 13.5µm 68.3µm

Field of view 27.6×27.6 mm2 102×102 mm2

Scintillator 20µm Gadox 100µm 6Li ZnS

Exposure time 70 s 80 s

Sample distance 70 mm

Table 6.3: Parameters of the neutron imaging systems used simultaneously in the transmission and
diffraction tomography.

3The author would like to thank Prof. Dr. R. Schäfer from Leibnitz Institut für Festkörper- und Werkstofforschung
(IFW) Dresden for providing the sample.
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6.4.2 Method

Recorded signal components

Repetita iuvant, the in-beam detector records the attenuation of the neutron beam as it

passes through the sample, following to a good approximation (in particular for small sample

thickness) the Lambert-Beer law:

I = I0e−
∫

d Σdx , (6.7)

I being the recorded intensity profile, I0 the incident beam profile on the sample and Σ the

material and density dependent macroscopic cross-section averaged over the incident beam

spectrum, the integral of which over the traversed neutron path d through the sample is

recorded. Transmission was defined as I /I0, the ratio of the images with and without sample.

The intensity recorded with the side detector can be split into two classes. First, coherent

elastic scattering from the single crystal sample that will give rise to recorded sample projec-

tions via diffraction. Under the approximation of kinematic diffraction, the local diffracted

intensity for each point in the crystal adds up along the diffracted beam path through the

sample. Changes in crystal quality (defects) induce an increased local scattering power or

Bragg reflectivity as also neutrons that do not satisfy the Bragg condition in the crystal matrix

can still diffract in the deformed region around the defect [159]. In the absence of strong

internal orientation and strain gradients, parallel diffraction projections are thus formed. They

move through the field of view as the sample is rotated, according to Bragg’s law (eq. 6.1), the

changing Bragg angle between crystal plane and the incident neutron beam equal to the angle

between the plane and the exiting recorded diffracted beam.

The second component stems from incoherent sample scattering, which is approximately in-

variant under sample rotation if the sample’s horizontal dimension change is small compared

to the detector distance, together with scattering from the sample surroundings (air, concrete

shielding, detection system and sample mount). As it is approximately constant as opposed

to the moving first component, it is easily determined for each pixel taking the median over

all acquired projections and can subsequently be subtracted to end up with only the sample

neutron diffraction projections in our radiographs.

Projection segementation

Next, all diffraction projections of the sample need to be segmented out of the recorded radio-

graphs as future input for the reconstruction. As the recorded neutron signal is typically weak,

this is performed in several steps. Firstly, all pixel regions with a Signal to Noise Ratio (SNR)

above a threshold thi g h are selected. A size criterion is subsequently applied to distinguish

between sample diffraction projections and bright spots formed by gamma rays hitting the

camera chip: connected pixel regions should have an area bigger than S pixel2. Region growing

down to a tl ow SNR threshold is then applied in order to also include the less intense parts

of the diffraction projection. A closing and smoothing operation finalizes the segmentation.

Typical values for these parameters are listed in the results section.
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Set-up geometry

In order to identify at what direction through the sample the diffraction projections segmented

previously were taken, their centers of mass at all sample rotations are identified and together

with detector position, orientation relative to the sample holder and the sample rotation, these

are transformed into a fixed, non-rotating sample coordinate system. The projection direction

is then easily found as the vector connecting these points and the crystal’s center of mass

(determined geometrically for simple samples or from the transmission tomography for more

complex sample shapes).

The sample’s center of mass position w.r.t. the side camera needed for the reconstruction was

refined further based on Friedel pair registration: if the (hkl) lattice plain fulfills the diffraction

condition, then also (-h-k-l) will diffract (i.e. its Friedel pair) after turning the sample 180°. In

the sample frame of reference, the two detected Friedel pair diffraction projections form a

line through the diffracting crystal. Acquiring multiple Friedel pairs then yields the crystal’s

center as the intersection of these paths. As the sample rotation angles were not symmetric

over 180° but over 360°, a standard often used in transmission tomography for higher spatial

resolution, 20 more diffraction projections were recorded for sample rotation angles in the

180°- 360° interval symmetric to angles recorded in the prior tomography scan.

Reconstruction

The 3D spatial distribution of the macroscopic cross-section is reconstructed by applying the

commonly used filtered back projection algorithm on the negative logarithm of the acquired

transmission projections. Based on taking the Fourier transform of a projection intensity pro-

file for each rotation angle (or Radon transform) followed by an inverse 2D Fourier transform

yielding the spatially resolved reconstruction (Fourier slice theorem), the method is highly

efficiently implemented using the fast Fourier transform [14].

The 3D distribution of the local scattering power can also be retrieved from its acquired

integral footprint in the recorded segmented diffraction projections. Existing transmission

imaging reconstruction algorithms can be used if one protracts the diffracted neutron path to

a virtual parallel neutron source (see figure 6.10 for a schematic impression). A normalization

of each projection to its integrated intensity is performed prior to reconstruction as they are

all originating from the same diffracting volume, though different projections have different

intensities because of different structure factors, spectral distribution of the incident neutron

wavelength spectrum and different effective scintillator thicknesses for different diffracted

neutron detector incidence angles. To reconstruct the – relative – local scattering power,

we apply the three dimensional simultaneous iterative reconstruction technique (3D-SIRT)

available in the ASTRA package [136]. The method relies on rewriting the reconstruction

problem as an (underdetermined) matrix equation linking the unknown sample volume to the

recorded projections and solving it iteratively (as explained in detail in section 1.4.2). Though

computationally expensive, in particular with out of plane acquisitions requiring a full 3D

approach, it offers superior performance dealing with few, non-uniformly spaced acquisition

angles [16].
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Figure 6.10: Schematic overview of the experiment geometry showing acquired neutron transmission
signal and the diffraction projection profile that can be assumed to originate from a virtual
source.

6.4.3 Results and discussion
Figure 6.11 shows a typical recorded image on the side detector, background corrected, with

two sample diffraction projections segmented (indicated by the red circumference – thi g h = 5,

tlow =2, S = 20×20 plx2).

Figure 6.11: Background-corrected recorded signal on the side detector, for a sample rotation angle of
95.7°, with segmented sample diffraction projections (outlined in red).

Figure 6.12 shows all diffraction projection directions acquired on the unit sphere, with the

sample axis system indicated by the (cyan, green, red)-tripod. It clearly shows a good angular

coverage around the sample, however irregular and mostly out of plane requiring a full 3D

algebraic reconstruction. A total of 522 diffraction projections were found, with a horizontal

angular separation of 0.66° on average, with a maximum of 6.6°.
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Figure 6.12: Segmented diffraction projection directions on the unit sphere in the sample frame of
reference, indicated by the (cyan, green, red)-tripod. Grid line separation is 10°.

For the cubic sample in the same position as for figure 6.11, a close up of the two segmented

diffraction projections is shown in figure 6.13, together with the transmission projection

recorded simultaneously. As the sample induces an attenuation of the neutron beam, the

transmission projection shows the sample as dark on a white background, whereas the diffrac-

tion projections are formed by an increase of detected neutrons and thus bright on a dark

background. One can clearly recognize the cube’s shape, even though statistics are low.

Figure 6.13: Transmission projection (a) and diffraction projections of the central (b) and top (c)
segmented projections in figure 6.11 for the sample at 95.7°.

The subsequent reconstruction based on transmission and diffraction projections is illustrated

in figure 6.14 by a 3D volume rendering. The object’s shape, orientation and size are recon-

structed correctly and consistently. The sample appears homogeneous in its macroscopic

cross-section, i.e. its material distribution. The reconstructed distribution of local Bragg

reflectivity however is higher on one side, implying reduced crystal quality there. Note the

polycrystalline sample holder present in the transmission reconstruction and absent in the

single crystal diffraction tomography.
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Figure 6.14: Volume rendering of the macroscopic cross section as reconstructed from transmission
data (gray) and regions of increased local Bragg reflectivity (green).

A comparison of virtual slices through both reconstructions is given in figure 6.15. A distinct

blur of the diffraction reconstruction can be observed. This is due to the incident beam

divergence and finite source size - characterized in neutron imaging by the beamline’s L/D,

the ratio of source to sample distance over source size – in combination with a certain sample

to side detector distance l . Though neutron imaging beamlines can to a good approximation

be considered parallel for transmission imaging purposes, the standard L/D=343 also used

in this experiment, together with l=70 mm - 99 mm (diffraction projection in the center of

the side detector versus in a corner) yields an observed sample point spread l /(L/D)=200µm-

290µm. Future care should be taken to work at the highest practical beam collimation and

lowest sample to side detector distance possible.

A higher local Bragg reflectivity is registered towards the outer edges of the sample. This

is however an artifact ascribed to the virtual source assumption applied on a large sample

of non-negligible neutron attenuation. As the source-facing side of the sample sees higher

incident beam intensity than the back, also the diffracted intensity coming from this side will

be higher. Incorporating all acquired sample orientations will result in lower reconstructed

central scattering power compared to the outer edges, much similar to cupping artifacts due

to beam hardening in transmission imaging. However, though beyond the scope of this work,

the attenuation information contained within the transmission tomography could in principle

be included in the diffraction reconstruction.

The used approach bears resemblance to existing monochromatic synchrotron diffraction

contrast tomography methods such as topo-tomography [137] where the local Bragg reflectiv-

ity is reconstructed using conventional filtered back projection after tedious alignment of the

rotation axis with the diffraction vector so all diffraction projections fall on the same detector

position. Here, we rotated a single crystal around its vertical axis in a white beam, resulting

in many diffraction projections to reconstruct the local Bragg reflectivity from, without prior

sample alignment and making more efficient use of the far lower neutron flux.
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Figure 6.15: Horizontal, coronal and sagittal virtual slices through the sample from transmission (a,c,e)
and diffraction contrast tomography (b,d,f). Reconstructed geometries agree well, though
where the left column reflects material distribution, the right column shows the variation
in relative Bragg reflectivity of the single crystal.

6.5 Neutron diffraction contrast tomography of a polycrystal
6.5.1 Introduction

Polycrystalline materials are omnipresent in modern society, from everyday metals and ce-

ramics to increasingly complex alloys. Their properties such as behaviour under load can

often be traced back to the crystallites that comprise them: their size and orientation. In

order to understand materials’ behaviour and develop new materials tailored to ever-higher

industrial needs, it is of the utmost importance to be able to probe these crystallite properties

(e.g. [160, 161, 162, 163]). Conversely, these properties can also yield information on ancient

metal working methods long forgotten [164].

Optical and electron micrography are standard tools in metallography that provide extensive

information on the samples’ microstructure. These are however surface methods, requiring

extensive polishing and etching, and 3D information is only available through tedious serial

sectioning - though nowadays largely automatized [165, 166]. Thus, there is a clear need for a

faster, bulk, non-destructive alternative, particularly as this is required for in-situ experiments,

or the study of priceless cultural heritage samples (e.g. [164, 167, 168]).
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With the advent of synchrotron radiation, several such methods have appeared. Differential

Aperture X-ray Microscopy (DAXM) [169] uses a polychromatic pencil beam and analyzer wire

to scan the sample and record a Laue pattern for each point and derive an orientation map for

the scanned volume. Three-dimensional X-ray Microscopy (3DXRD) [147, 138] and related

X-ray diffraction contrast tomography (which will be referred here to as Syn-DCT) [139, 170]

rotate the sample in a parallel monochromatic line- or box-beam, recording and indexing

projections formed by diffraction from the illuminated grains. It allows the reconstruction of

grain shape from the projected intensity profiles, and grain orientation from the projection

positions on the detector. Recently, the method has been extended to more widely available

polychromatic lab-based X-ray tube sources (Lab-DCT) [171].

The penetration depth of X-rays is however limited for common metals. Thicker samples can

be probed using a neutron beam, particularly with respects to heavy metals. After treating a

single crystal in the previous section, we now extend neutron Diffraction Contrast Tomography

(nDCT) to polycrystalline material. After a description of the analysis method and set-up,

the characterization of grain size, shape and orientation of a polycrystalline aluminium test

sample is presented and compared to measurements with the well-established Syn-DCT.

6.5.2 Properties of a cold neutron imaging beam for DCT

Neutron imaging studies the spatial variation in the attenuation of the neutron beam across a

sample of interest, which depends on the traversed material and path length. By recording

such projections or radiographs under different sample rotation angles, one can retrieve the

three-dimensional material distribution through tomographic reconstruction. The attenua-

tion originates from the removal of neutrons from the beam through absorption and scattering,

coherent or incoherent, elastic or inelastic.

Many metals feature dominant coherent elastic scattering or diffraction, occurring when

Bragg’s law (eq. 6.1) is fulfilled. The neutrons are diffracted in a direction of twice the Bragg

angle w.r.t. the transmitted beam direction. With the whole sample illuminated by the neutron

beam, they form a projection of the crystallite volume in that direction.

Neutron imaging makes use of large 2D position sensitive detection systems with high spatial

resolution and a linear response with high dynamic range, qualifying it to be extended towards

imaging diffracted neutron projections. Driven by neutron imaging beam properties, the

developed nDCT method has many traits in common with either Syn-DCT or Lab-DCT, the

principal set-up sketched in figure 1a and reflected upon further below.

Parallel beam

The neutron imaging beam is kept as parallel as reasonably possible, as any divergence would

lead to image blurring [172]. A typical number is about 10’ divergence. Given the nature of

neutron sources and lack of neutron optics, a cone beam geometry is not possible. Thus, we

will obtain parallel diffraction projections of the crystallites in the sample, much like Syn-

DCT (illustrated in figure 6.16b) and without the mirrored and astigmatically magnified spot

projection that are observed in Lab-DCT.

Moreover, a parallel beam will ensure Friedel pair symmetry, i.e. diffraction projections from
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the (hkl) plane and the (-h-k-l) plane after 180°sample rotation will lie on a straight line through

the grain of origin in the sample frame of reference. This principle serves as the backbone of

the Syn-DCT indexing routine [139]. It is however violated in the Lab-DCT case, with the cone

beam resulting in different beam incidence angles.

Polychromatic spectrum

Neutron imaging is typically performed using the full polychromatic beam spectrum from the

source or white beam, a full tomography taking a few hours. Using either a mechanical neutron

velocity selector or a double crystal monochromator, one can perform energy-selective

neutron imaging with a bandwidth of ∆λ/λ=15 % or 2 %-5 % respectively. Though this band-

width can be considered a pink beam by comparison to Syn-DCT standards (∆λ/λ=0.01 %), it

is a compromise between exposure time and available neutron flux (≈107 neutrons/s/cm2,

whereas synchrotrons operate at 1017 photons/s/cm2).

In this respect, nDCT bears much resemblance to Lab-DCT. Whilst rotating the sample, the

crystallites’ lattice planes will be able to diffract neutrons (of different wavelengths) over a

considerable angular range, depending on the incident beam spectrum. The crystallites’

diffraction projections will form a curved trajectory on the detector and one has to follow a

discrete angular stepping scheme in order not to induce any motion blurring. In contrast,

with a monochromatic beam the projections must be integrated over the rotation angle to

ensure all parts of a grain are imaged. As such, many more projections for tomographic

reconstruction can be gathered from one lattice plane family and one can use much coarser

angular stepping (typically a factor 10-20×, 1° versus 0.05-0.1°) than the monochromatic

Syn-DCT case, partially making up for longer exposure times. The Bragg wavelength λB is not

sufficiently restricted for refinement of the angular range (θB , based on Bragg’s Law) in which

to look for Friedel pairs or to recalibrate positions and tilts of detector and sample. In contrast,

such geometric refinements can be made after grain indexing by comparing observed and

predicted diffraction spot projections [170].

Figure 6.16c illustrates the grain diffraction projection trajectories accumulated over a 20°

sample rotation (11 steps), with the spectrum bandwidth limited by a mechanical neutron

velocity selector.

Cold neutron wavelengths

Syn-DCT and lab-DCT typically use rather hard X-ray energies, typically in the order of 40 keV.

This corresponds to a wavelength of 0.31 Å. In addition, the structure factor for X-ray scattering,

determining the intensity of the diffraction signal, is highest for low diffraction angles. These

two characteristics favour the forward scattering geometry typically used for X-ray DCT. The

average neutron wavelength at e.g. the ICON beamline for cold neutron imaging is however

3.1 Å [24]. As a result, in nDCT the diffraction angles are typically higher, tending towards

side- and back-reflection. At the same time, the neutron scattering structure factor is rather

independent of the diffraction angle, enabling other geometries to be exploited effectively.

Detecting [140] and indexing [170] diffraction projections in such a geometry has already been

shown to be feasible. Indeed, figure 6.16b and 6.16c show diffraction projections acquired in
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back-reflection mode, with the incident beam passing through the detector center, onto the

sample. The diffracted neutrons are captured on that detector and the transmission image is

recorded on a second in-line detector (figure 6.16d).

Figure 6.16: (a) Sketch of the set-up for cold neutron diffraction contrast tomography (see the next sub-
section for the detailed experimental realization). (b) Illustration of diffraction projections
from an aluminium sample captured in back reflection. The dashed line marks the region
where the beam passed through the detector. (c) Maximum intensity projection rotating
the sample over 20° showing the curved spot trajectories. (d) Transmission projection
captured on an in-line detector.
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6.5.3 Experiment

The sample was a coarse-grained aluminium tensile test sample, cylindrical with a gauge

volume of 7 mm diameter and 9 mm height. It was machined out of a pure aluminium casting,

subsequently deformed to 5 % plastic strain and finally recrystallized for one hour at 500°C.

To avoid spot overlap and to limit the number of reflections, and to avoid ambiguity in

assigning {hkl} types to diffraction spots, the experiment was not conducted with the full

spectrum. Instead, two consecutive scans were performed in a cold pink beam provided by

the mechanical neutron velocity selector. This provided Gaussian spectra with ∆λ/λ=15 %

monochromaticity, centered around 4.3 Å and 3.7 Å respectively, in order that the {111} and

{200} Debye-Scherrer rings aligned to the midibox custom scintillator center radius. The

midibox scintillator was positioned 32 mm from the sample in order to image diffraction spots

having angles from 115°< 2θB <160°, for all azimuthal angles. At both wavelengths, the sample

was rotated from 0° to 360° in 180 equiangular steps. The imaging parameters used during this

experiment are listed in table 6.4.

Transmission Diffraction

Camera angle 0° 180°

Pixel size 27µm 131µm

Field of view 27.6×27.6 mm2 142×154 mm2

Scintillator 20µm Gadox 200µm 6Li ZnS

Exposure time 115 s 125 s

Sample distance 32 mm

Table 6.4: Parameters of the neutron imaging systems used simultaneously in the transmission and
diffraction tomography.

6.5.4 Data processing

The data processing route for nDCT is based on the standard algorithms of Syn-DCT and

lab-DCT. The details of the beam geometry and spectrum described in subsection 6.5.2 imply

certain choices, which are summarized here.

Preprocessing

The images acquired are preprocessed as normal to correct detector artifacts and to remove

contrasts arising from the direct beam, leaving only diffraction spot contrasts. Diffraction

spots are then segmented from the images using a marker-mask reconstruction approach to

allow a low threshold value without over segmentation of noise. As in the case of lab-DCT,

and in contrast to Syn-DCT, the segmentation is 2D, and intensities in consecutive images are

not associated. The polychromatic illumination means that the whole of a grain diffracts in a

given image, and it is not necessary to integrate over adjacent images.
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Pair matching

Friedel pairs of spots are identified based on diffraction spot meta-data (position, size, in-

tensity, etc). For a given spot, its pair spot is found offset by a sample rotation of 180°. In

addition to this, the search area of the image in which the pair diffraction spot can be found

is reduced because the grain must lie inside the sample volume. In the sample frame of

reference, projecting the sample volume from the spot position onto the 180° rotated detector

plane provides this reduced search area. In contrast to the monochromatic case, it is not

possible to further reduce the search area by restricting the allowed 2θB angles. The geometric

construction based on the positions of the pair of spots provides the diffraction angles and a

path through the sample upon which the grain center must be located. In the polychromatic

case the {hkl} family cannot be determined from the diffraction angle. It may be possible to

identify the {hkl} type if the beam spectrum can be restricted such that only one family of

reflections is visible in a particular scan, or so that the {hkl} type can be determined from the

profile of diffracted intensity as a function of 2θB for a line of spots arising from the same

scattering vector [171].

Indexing

Indexing of the grain positions and crystallographic orientations is then performed using

the INDEXTER algorithm, described in [139]. The function is configured to allow many pairs

arising from the same (hkl) plane to be associated with a given grain. In contrast, in the

monochromatic case this would be limited to two pairs per (hkl) for a 360° sample rotation.

Reconstruction

Finally, the reconstruction of grains is identical to the Syn-DCT case. The grains are individually

reconstructed using again the 3D parallel beam SIRT algorithm [136], using the diffraction

spots as projections. The grain reconstructions are assembled to form a 3D grain map. The

radiographs recorded on the forward detector are used to reconstruct an absorption contrast

tomogram of the sample. Finally, any gaps between reconstructed grains are eliminated using

a 3D morphological dilation under the mask of the absorption reconstruction.

6.5.5 Results and discussion

Neutron DCT results

The final reconstructed grain volume is rendered in figure 6.17. Orthogonal slices through

the volume showing the grains color-coded by their orientation are shown in figure 6.18. In

total, 1895 {111} and 1504 {002} diffraction spots were identified from the two pink beam scans.

Pair matching was performed on the two sets of spots, yielding 457 and 372 pairs respectively

(approximately 50 % matching). The datasets were merged, to create a single pool of data from

which to index and reconstruct grains. The INDEXTER algorithm identified 12 grains, using

633 spot pairs (76 % of those available). A forward simulation step (using the grain orientations

and positions from indexing to simulate diffraction spot positions on the detector) was used

to add remaining unassigned spots to grains. In total, 1492 diffraction spots were used for

grain reconstructions (44 %). Unused diffraction spots tend to be smaller, weaker spots, often
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affected by overlap with other spots or with the insensitive central region or edges of the

detector.

Figure 6.17: nDCT reconstruction of the grain volume (random colors).

Comparison to synchrotron DCT

In order to confirm the 3D grain shapes and orientations determined by nDCT the same

sample was measured using the standard synchrotron technique at beam line BM05 of the

ESRF. The validity of Syn-DCT in resolving grain boundary and orientation has been confirmed

repeatedly, e.g. using phase contrast tomography [173] or EBSD [174]. A total of 3600 images

were acquired using a detector with a pixel size of 13 microns placed 32 mm behind the sample,

and a monochromatic beam energy of 30 keV and 0.01 % monochromaticity. The volume

scanned was smaller than in the neutron case (7 mm diameter, 3.8 mm vertically). Figure 6.18

shows sections through the reconstruction for comparison to nDCT results. With the beam

energy used, attenuation due to 7 mm of aluminium – corresponding to the total traversed

path length by photons diffracted in the center – is almost 90 % (compared to 5 % for the

neutron measurements). As a result, this region hardly contributes to any of the recorded grain

projections, and the assumption that the diffraction spots represent linear projections of the

grain volumes is violated. As such, the quality of the reconstruction is degraded, and the grain

shapes are less accurate than would typically be the case. In contrast, the weaker interacting

neutrons encounter no such problems, illustrating their potential for investigations of coarse

grained bulk metallic samples.

However, the reconstructed grain map and grain orientations are sufficient to confirm the

validity of neutron DCT result. To quantify the error in grain orientations, the seven grains

common to the two datasets were used. A global rotation was applied to the synchrotron grain

orientations in order to minimize the difference with the neutron grain orientations and allow

for comparison between the two separate experiments, though this procedure also eliminated

possible systematic orientation error. The remaining mean misorientation magnitude was

0.12°, representing the random part of the combined orientation errors in the two datasets.
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Chapter 6. Neutron diffraction contrast imaging

Figure 6.18: Ortho-slices through the neutron (left) and synchrotron (right) DCT reconstruction of the
same aluminium sample, with the location of the cut planes clarified in the 3D legend.
The crystallites are color coded by their orientation based on the inverse pole figure color
map for a top view on the sample.

Discussion

It is useful to consider the potential scope of the nDCT technique compared to the established

grain shape and orientation mapping methods.

The more weakly interacting neutron beam has the advantage it can penetrate much thicker

samples, especially metallic ones, than its X-ray counterpart. Typical sample diameter can be

in the centimetre range rather than the millimetre one.

The comprising grain size can also be much larger, ranging from the sample size (single crystal

limit) down to about one millimetre. Given the available neutron flux at present and scheduled

future neutron sources, the lower bound is determined mainly by the need for sufficient image

statistics in the diffraction projections from the individual grains and not by spatial resolution

achievable in neutron imaging. Current developments in neutron optics might mitigate the

constraint by focusing the broad incident beam and subsequently defocusing it to a narrow

parallel beam, gaining an order of magnitude of intensity in the process [126].
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The intragranular mosaicity has a direct impact on the diffraction projection blur, detrimental

to the grain shape reconstruction. Assume the grain can diffract an angular range α around

the Bragg angle θB (this includes the added contribution of the beam divergence) and the

detector is at a distance x from the sample. The blur can then be calculated as 2αx tan(2θB )

in the azimuthal and 2αx/cos(2θB ) in the radial direction for the Debye-Scherrer circles the

diffraction projections lie on. A reasonable estimate for the typical geometry and dimensions

used in this work would be an allowed mosaicity of 0.1°- 0.2°. Moreover, the smaller the grain,

the larger the relative blur for the same mosaicity, underlining the grain size lower limit of one

millimetre.

Whereas the Syn-DCT method is able to handle a few thousand grains per scan, this number

is more restricted in the neutron case. Spot overlap is aggravated due to the larger wavelength

bandwidth causing diffraction projections to persist over a larger angular range (O [15°] versus

O [0.1°]). This can be reduced to a few degrees by using a double crystal monochromator

instead of a neutron velocity selector. However, apart from reducing the transmitted beam

intensity, this limits the number of families that can be imaged simultaneously and might

require additional scans. Taking into account above considerations, the number of grains

that can be dealt with will be limited to a few hundred in the nDCT case. For samples with a

large number of grains per cross section, one can limit the beam height and stack a series of

reconstructions.

The comparison with synchrotron data demonstrates the advantage of nDCT compared to

Syn-DCT for large samples with large and low mosaicity grains. Here, the high penetration

depth of the neutron beam – even in the face of bulky metal samples – is advantageous. The

two methods are thus rather similar in principle, though highly complementary in practice,

with diffraction neutron imaging expanding the range of samples that can be probed. An

overview of the different grain mapping techniques and their working area in terms of grain

size and number is given in figure 6.19.

Figure 6.19: Application range in terms of sample crystallite size and number for the new nDCT
technique and other methods mapping grain shape and orientation.
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6.6 Summary
Diffraction contrast tomography was performed with neutrons for the first time using a double

detector set-up, delivering information on the spatial distribution in crystal reflectivity and

orientation. A new set-up was devised to this end, where the traditional transmission neutron

tomography set-up is completed with a second imaging detector, recording projections formed

by neutrons diffracted from the single crystal or crystallites.
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Neutron imaging beamlines can be found around all major neutron sources, are under design,

construction or commissioning. From its early days as a film-based inspection tool of engi-

neering components, it has turned into a recognized scientific research method, to which this

thesis work can be considered a contribution.

7.1 Summary
This work started with an overview of the requirements for neutron imaging, reviewing com-

ponents from neutron source to detector, making considerations such as for spatial resolution

and discussing data analysis like Computed Tomography (CT) algorithms. It is clear that

neutron imaging is a very versatile technique, also reflected by its application as a research

tool in numerous disciplines. With this work, an effort was made to further extend it by intro-

ducing new set-ups, methods, analysis strategies for the investigation of crystalline materials.

The principal interaction mechanisms of neutrons and matter relevant to neutron imaging

were discussed, with an emphasis on coherent elastic scattering which is sensitive to crystalline

structure. It exhibits strong variations in interaction probability, represented by the cross-

section, as a function of the neutron energy.

In order not to average out the energy-dependent cross-section behaviour and the crystallo-

graphic sample information it contains, one needs to perform neutron imaging with a reduced

wavelength band. As was seen, this is either done using the TOF method at pulsed neutron

sources or with the aid of various kinds of monochromators at continuous sources. In case

of the latter, the experimenter should be aware of the variation in incident energy across the

field of view.

The fact that for many metals coherent elastic scattering is the dominant interaction mech-

anism and that it is characterized by a wavelength cut-off was exploited for quantification

purposes: scattering is suppressed when using wavelengths longer than the final Bragg edge

and one becomes insensitive to (variations in) the sample’s crystallography.

Energy-selective imaging of single crystals and crystallites is then investigated in great de-

tail. Analysis strategies for recovering orientation information and mosaicity at high spatial

resolution are discussed for digital radiography, together with strategies to extend it to CT.

Conversely, such samples can also be investigated not by the footprint of a lack of neutrons
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through diffraction at specific wavelengths in transmission, but instead by directly imaging

these diffracted neutrons: diffraction contrast imaging.

The different modalities in which neutron imaging can be performed, including the ones de-

veloped in the frame of this work, are summarized in figure 7.1. Neutron imaging experiments

can be classified - though not necessarily restricted to a single category - depending on the

time scale of the sample changes, the dimensions probed (2D/3D), whether one images in

transmitted or diffracted beam direction and beam manipulation to probe sample properties

other than simple material distribution.

Figure 7.1: Overview of the multi-modal universe of neutron imaging and its terminology.

7.2 Transmission or diffraction? Continuous or pulsed?
The past two chapters both dealt with neutron imaging of single crystals and ensembles

of them (coarse grained polycrystalline materials). But when to apply which? There is no

straight answer: it depends on the sample, what information we are interested in, or simply

which beam line we have been granted beam time at. In this section, we will dwell on the

requirements and intricacies of both methods, so as to aid the reader in selecting the proper

imaging modality for his experiment.

In energy-selective transmission imaging, the orientation of the crystal at each pixel position

is found through indexation of the Bragg peaks in the wavelength-dependent transmission

pattern. Very high energy-resolution is required, giving preference to a TOF imaging beam
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line. However, if one is only interested in a single Bragg peak (e.g. the Pyrolytic Graphite (PG)

monochromator crystal in section 5.3), skipping the indexation step, using a monochromator

at a continous source will do just fine.

A cold neutron spectrum is preferred, since, as can be told from experimental data (figure

5.4a) or theoretical considerations (section 2.4.2), Bragg peaks become more pronounced and

better separated for longer wavelengths, easing indexation. Still, overlap of a few crystallites in

the beam direction will already give rise to too much Bragg peak overlap for this technique to

remain useful.

Diffraction contrast imaging, features angular separation of the projections of the differently

oriented crystallites, putting less constraints on the number of crystallites that can be treated.

The experiments performed in the context of this dissertation featured side- and back reflec-

tion for working at a cold neutron imaging beamline. Nothing however speaks principally

against performing diffraction contrast imaging with thermal neutrons. One then simply deals

with forward diffraction angles. As an illustration, table 6.1 for the two smallest diffraction

angles of selected materials at 3.1 Å is retaken for the thermal neutron wavelength of 1.8 Å in

table 7.1.

1st reflection 2nd reflection

Al 45.3° 52.8°

Cu 51.1° 59.7°

Fe (BCC) 52.7° 77.8

Ni 52.5° 61.4°

Table 7.1: Smallest two diffraction angles (w.r.t. the transmitted beam direction) formed by the two
crystal planes of largest interplanar distance for typical engineering materials at the average
thermal neutron wavelength of 1.8 Å.

Less energy-resolution is required, as the crystal will diffract only neutrons from a limited

wavelength band out of the direct beam, the bandwidth in question depending on the crystal

mosaicity.

However, this mosaicity should be quite low, as the corresponding angular range of the

diffracted beam will blur any diffraction projections. Shorter sample to detector distances

decrease the blur, though a certain minimum distance is required to cover sufficient angular

range without projection angles becoming too oblique.

In energy-selective transmission imaging, the sample can be put as close to the detector as

possible and an increased mosaicity will only result in an increased Bragg peak width in the

cross-section pattern. The highest spatial resolution can be obtained this way.

It goes without saying that any method fit for continuous sources, can also be performed at

pulsed sources, simply integrating the detected neutron counts over their arrival time. One

can e.g. perform diffraction contrast tomography in TOF and use the additional wavelength

stamp to determine the lattice plane family. However, one should take measurement time
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constraints into account and strive for the highest efficiency.

If one needs an energy-scan, a TOF imaging beamline is the most efficient: all energy bins can

be recorded in parallel. At a continuous source, one has to select a particular energy band with

a monochromator, discarding the others in the process, record one image and move on to the

next bin.

As its name suggests, a pulsed source produces neutrons in pulses, the time-averaged flux

significantly lower than the peak one1. If one only needs a single wavelength or a white beam,

a continuous source is more efficient, the desired neutrons continuously being provided for.

A summary of the requirements and features of transmission and diffraction contrast imaging

of crystals is given in table 7.2. The method applicability in terms of the sample is illustrated

by figure 7.2.

Transmission Diffraction

Energy resolution high moderate

Spectrum cold thermal or cold

Number of Crystallites low moderate

Mosaicity low-high low

Spatial resolution high moderate

Field of view small large

Pulsed Continous/Pulsed

Table 7.2: Features of transmission and diffraction contrast neutron imaging.

Figure 7.2: Method preference as a function of the sample’s number of crystallites and their mosaicity.

1Though ESS will still have a time-averaged flux on par with the currently strongest (continuous) neutron source
at ILL [125].

134



7.3. Outlook

7.3 Outlook
Critical in retrieving maps of crystal orientation and mosaicity at high spatial resolution from

energy-selective transmission imaging is the indexation step. It is performed for each pixel

by template matching to simulated single crystal transmission patterns. Currently, only the

simple case of cubic systems can be treated and only the Bragg peak position is taken into

account. Simulation options can still be extended to include any crystal structure and also

yield ideal peak height information. Moreover, simulation and indexation routines should also

be able to cope with the possibility of multiphase material to extend the number of samples

and problems that can be treated.

To cope with low image statistics - at the required high energy resolution and small pixel sizes,

one has a very low neutron count in each pixel - the quality of the experimental data can be

improved by preprocessing prior to indexation. Advanced image processing methods such

as the inverse scale space method [175] are able to filter out noise while preserving sharp

gradients (the crystallite edge in the spatial dimension and the Bragg peaks in the temporal

dimension). Wavelet-based methods [176] look promising for better identifying the Bragg

peaks and their parameters (position, peak width) in experimental cross-section patterns

obscured by noise.

Thus, the range of materials that can be treated would greatly be expanded and correlation

between experimental and simulated patterns improved. In the presence of multiple crystal-

lites in the beam direction and subsequent pattern overlap, robustness of the indexation and

separation of the crystallites will thus be increased.

In transmission radiography, only the projection along the beam direction of the crystal prop-

erties (absorption, orientation, mosaicity) is mapped. The question on their 3D distribution

naturally arises. However, tomographic reconstruction from energy-selective radiography at

different projection angles is far from straightforward as the manifestation of these properties

is also dependent on the orientation of the crystal in the beam. Appropriate reconstruction

strategies such as normalization to angular-independent equivalent parameters are to be

investigated. In case of multiple segmented crystallites, their respective projections must first

be grouped for the different projection angles.

Also neutron diffraction imaging routines can still be improved on similar fronts such as the

ability to analyze multiphase materials and arbitrary crystal structure. The virtual source

approximation used to reconstruct the crystallites’ shapes based on the diffraction projec-

tions breaks down in the case of large samples as beam attenuation is incorrectly taken into

account. Two solution strategies can already be envisaged as worth pursuing: (1) an iterative

scheme where diffraction projections are corrected based on the reconstructed macroscopic

cross-section from the transmission tomography and beam path from prior diffraction recon-

struction or (2) modification of the forward projector of the algebraic reconstructor used to

the true beam path.

Key to the use and spreading of a new technique is the ease with which acquired data can

be analyzed by the potential user, who usually has a different background than the method
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developer. Therefore, a clear need exists for user-friendly evaluation and analysis software.

It should moreover be flexible enough to allow for different experimental configurations

that would promote the usage of the method and software at any existing neutron imaging

beamline, such as at Paul Scherrer Institut.

Such a platform already exists for diffraction imaging with synchrotron radiation: FABLE

[177], initiated at the Danish Technical University, which also features indexation and forward

simulation routines. It should be investigated to which extent this software tool - which has

the added advantage of being open source and freely available – can be expanded to deal with

neutron diffraction imaging data.

The two initiated crystal analysis methods, neutron transmission and diffraction imaging, have

initially been developed separately. However, they show a clear common ground: neutrons

diffracted out of the direct beam causing a peak in the transmission cross-section spectrum,

form the crystallite projection in diffraction imaging. It should therefore be investigated to

which extent simulation of the single crystal transmission pattern and forward simulation of

crystal diffraction projection positions can be merged.

If scalable to many crystallites, simulations of the diffracted neutrons can also be used to

remove their contribution to the transmission images for better quantification of the recon-

structed cross-section in tomography. An iterative procedure can be envisaged with a first

tomographic reconstruction serving as a basis for simulating the scattering contributions,

removing them from the transmission projections and reconstructing anew. The option of

including it in algebraic reconstruction routines, which allows to incorporate much more a

priori physics knowledge in the forward projector such as beam hardening [178], should also

be explored.
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A Total macroscopic cross sections

Figure A.1: Macroscopic cross section [cm−1] for thermal neutrons.
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Figure A.2: Attenuation coefficient [cm−1] for 100 keV X-rays.
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B Matrix elements in simulating the
Laue pattern
The relation between the Euler angles (φ1,φ,φ2) and the elements of the equivalent orientation

matrix Ei j is given by [50]:

E11 = cosφ1 cosφ2 − sinφ1 sinφ2 cosφ

E12 = −cosφ1 sinφ2 − sinφ1 cosφ2 cosφ

E13 = sinφ1 sinφ

E21 = sinφ1 cosφ2 +cosφ1 sinφ2 cosφ

E22 = −sinφ1 sinφ2 +cosφ1 cosφ2 cosφ

E23 = −cosφ1 sinφ

E31 = sinφ2 sinφ

E32 = cosφ2 sinφ

E33 = cosφ

(B.1)

To bring a random vector n of elements (a,b,c) onto the x-axis, one can split up the total

rotation into one over an angle α around the z-axis to bring it into the xz-plane, followed by

one over β around the y-axis [158].

Illustrating the problem geometry in figure B.1, the angles are found as

α=
−atan(b/a) b ≥ 0

−atan(b/a)−π b < 0
(B.2)

and

β=−atan

(
cp

a2 +b2

)
(B.3)

so the total transform Anx is given by the two subsequent rotations

Anx =

cosα −sinα 0

sinα cosα 0

0 1

 ·

cosβ 0 −sinβ

0 1 0

sinβ 0 cosβ

 (B.4)
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Figure B.1: Geometry for transforming a random vector onto the x-axis
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