
Audio Steganography using
Convex Demixing

Master thesis

Yann Schoenenberger
epfl ee lts2 – 2014

yann.schoenenberger@epfl.ch

Supervised by:

Pierre Vandergheynst – EPFL
Signal Processing Lab
http://lts2www.epfl.ch

Johan Paratte – EPFL
Signal Processing Lab
http://lts2www.epfl.ch

mailto:yann.schoenenberger@epfl.ch
http://lts2www.epfl.ch
http://lts2www.epfl.ch

Abstract
In the first part, we first introduce steganography (in chapter 1) not in the usual
context of information security, but as a method to piggyback data on top of some
content. We then focus on audio steganography and propose a new steganographic
scheme in chapter 2 as well as a model for the noisy, analog communication channel
we are considering (in section 3.2). The method we use is based on signal mixing,
the science of constructing vectors in a way that their sum can then be split back
into the original components. This is presented in chapter 4. The data recovery, or
demixing, relies on convex optimization (presented in chapter 5) and some further
signal processing detailed in chapter 6.

In the second part we present our proof of concept implementation and show the
results of simulation runs that have been made in order to study the properties of
the overall system (chapter 7). We study how the different parameters of the system
and the communication channel affect the performance of the steganographic scheme.
Finally, we draw conclusions (chapter 8) about the findings and suggest (in chapter 9)
what next steps could be taken in order to further study this steganographic scheme.

Contents

Contents

Contents v

Acronyms vii

I Problem definition and proposed solution 1

1 Introduction 3
1.1 Steganography . 3

1.1.1 Definition . 3
1.1.2 Security . 3
1.1.3 Augmenting data . 3

1.2 Intended use case . 4
1.3 System setup . 4
1.4 Goals of the project . 4

1.4.1 Proof of concept of a new scheme 5
1.4.2 Check how the scheme handles D/A conversion 5
1.4.3 Study the different parameters of the setup 6

2 Steganographic scheme 7
2.1 Concealing the payload . 7
2.2 Separating payload and cover audio . 7

3 Channel 9
3.1 Intended real life usage . 9
3.2 Model . 9

3.2.1 D/A conversion . 9
3.2.2 Noise . 10

4 Mixing 11
4.1 Problem definition . 11
4.2 Discrete Fourier Transform . 12
4.3 Windowed Modified Discrete Cosine Transform 12

5 Demixing 15
5.1 Problem definition . 15
5.2 Convex optimisation . 15

6 Data extraction 17
6.1 Problem definition . 17
6.2 Assumptions . 18

6.2.1 Known number of bits . 18
6.2.2 Known position of the bits . 18

6.3 Naive approach: Thresholding . 18
6.4 Robust approach: Peak detection . 19
6.5 Insertion-Deletion channel . 21

II Tests and analysis 23

–v–

Contents

7 Experimental data 25
7.1 Simulation run and observations . 25
7.2 Experimental setup . 26
7.3 Changing channel parameters . 27

7.3.1 Altering noise levels . 27
7.3.2 Altering the resampling factor . 28

7.4 Changing system parameters . 29
7.4.1 Altering the chunk size . 29
7.4.2 Altering the throughput . 30
7.4.3 Altering the energy of the payload 30

8 Conclusion 33
8.1 Comparison of DFT and WMDCT . 33

9 Future work 35
9.1 Good algorithms for peak detection . 35
9.2 Source coding . 35
9.3 Human auditory system modelling . 35

Technical details 37

Acknowledgements 39

References 41

–vi–

Acronyms

Acronyms
A/D Analogue to Digital

AWGN Additive White Gaussian Noise

D/A Digital to Analogue

DCT Discrete Cosine Transform

DFT Discrete Fourier Transform

FFT Fast Fourier Transform

HAS Human Auditory System

LTFAT Large Time-Frequency Analysis Toolbox

MDCT Modified Discrete Cosine Transform

RX Receiver

TX Transmitter

WMDCT Windowed Modified Discrete Cosine Transform

WGN White Gaussian Noise

–vii–

Acronyms

–viii–

Part I

Problem definition and proposed
solution

–1–

–2–

1 Introduction

1 Introduction
1.1 Steganography
This project is about using a new steganographic scheme with a somewhat unconventional
aim. We first present what we want to do (in section 1.2 and section 1.4) and how we
intend to do this (in chapter 2). Then, we test the ideas with simulations in chapter 7
and draw conclusions about the convex demixing scheme in chapter 8.

1.1.1 Definition

Steganography etymologically means "concealed writing". It is the science of hiding
messages such that only entities who know that it is there (typically the sender and the
intended recipients) are able to extract the message.

This broad definition covers techniques ranging from using invisible ink on a piece of paper
to encoding data in the delays between the transmission of packets on a computer network.

Modern (digital) steganography typically consists of hiding the payload bits in an unre-
lated underlying data file known as the cover file.

An example would be for the sender to replace the least significant bits describing pixels
in an image (the cover file) by some message. This would alter the original image slightly
as noise would do and may not even be perceptible at all by a human. To recover the
message the recipient would only have to keep the least significant bits and throw out the
rest of the file.

We talk about audio steganography when the cover file is an audio file. In this work,
we are going to deal with sound augmented with additional data added steganographically.

1.1.2 Security

As the definition suggests, the original application of steganography is in information
security. Simply hiding a message was a common way of communicating secret messages.

In recent times however, security through obscurity1, fell into disuse for state of the art
secure communications because of the acceptance of Kerckhoffs’s principle2.

1.1.3 Augmenting data

Nowadays, there remain applications where steganography is still useful.

Digital watermarking, the process of steganographically adding identifying information
to a piece of data (usually media files), is used to verify the integrity, authenticity or
ownership of the cover file.

1Communicating privately through the use of a secret scheme (i.e. steganography)
2Kerckhoffs’s principle states that the security of a communication system should not rely on the

secrecy of its inner workings, but should rely on the secrecy of the cipher key.

–3–

1 Introduction

Another example is the fact that modern printers add dotted patterns to every printed
page. Those dots typically encode timestamps and the printer’s serial number. These
dots are routinely used by law enforcement agencies in investigations.

In this project, we are not concerned with the security applications of steganography
but rather, we want to add metadata to audio recordings in order to make it available
alongside the original audio (c.f. section 1.2).

1.2 Intended use case

Imagine having a smartphone application that could listen to the radio with you (thanks
to the device’s microphone) and display the lyrics of the currently playing song without
needing access to the internet nor using complex speech-to-text software.

Alternatively, picture yourself in an elevator where you cannot get any WiFi signal, but
there is still a way to get information about the weather or the latest headlines thanks to
some data embedded in the cheesy elevator music that plays in the background.

This could be possible if there was a way to extract the relevant data from the audio you
are listening to. One way to do this, through steganography, would be to have software
able to demix the extra data from the cover audio. Of course that data would have to be
mixed in before being played back on speakers.

1.3 System setup

In this project, we consider the system shown in figure 1.3.

There are three basic parts: the transmitter, the channel and the receiver. We make
assumptions about the channel in section 3.2 and we design the TX/RX pair that can
reliably transmit the message (hidden in the cover file3) over the channel.

The receiver simply undoes the steps taken by the transmitter to finally recover the
original message. The message is hidden in the cover audio in the data mixing4 step and
the payload is extracted in the data demixing5 step. The payload encoding/decoding
as well as the error correction encoding/decoding are discussed in chapter 6

1.4 Goals of the project

Basically, this project is about implementing a proof of concept of a new scheme described
in subsection 1.4.1 to study its feasibility and usefulness.

3Not represented in figure 1.3
4Discussed in chapter
5Discussed in chapter

–4–

1 Introduction

message
(e.g. text)

payload encoding error correction encoding data mixing

AWGN
A/D conversion
(microphone)

AWGN
D/A conversion

(speaker)

data demixing error correction decoding payload decoding
message

(e.g. text)

TransmitterSender

Receiver Recipient

Figure 1: Complete chain of (sub-)systems the message goes through from the sender to
the recipient. Dashed (resp. solid) arrows are links in an analog (resp. digital) medium.
The part enclosed in a dashed rectangle is our working model of the channel between the
TX and the RX.

1.4.1 Proof of concept of a new scheme

In this work, we propose and discuss a new method that allows one to steganographically
hide data in a some signal in such a way that the signals can later be demixed using the
solution to a convex optimisation problem. Professor Pierre Vandergheynst deserves all
the credit for the intuition, idea and mathematical formulation of this steganographic
scheme.
There is an extensive literature on various steganographic schemes. One could mention
[7], [4], [1] or [6] to name a few, but our new demixing method seems to be new.

Our approach is different. We present the convex demixing scheme in chapter 2.

1.4.2 Check how the scheme handles D/A conversion

In the proposed application, we would like to be able to recover the hidden data while
listening to the cover audio.6 This implies that there must be a point where the file’s
bits are converted to analog sound waves and then back to digital bits (e.g. using a
smartphone’s microphone) for analysis and data extraction.

Thus, the cover file and the payload should be separable even after D/A and A/D conver-
sion.

This is an important goal, because there is very little literature available on the subject.
A rare example is [15] and even there the achieved bitrate of the steganographic method
that survives D/A conversion is very low.

6Check section 1.2 to see why.

–5–

1 Introduction

1.4.3 Study the different parameters of the setup

Obviously we want to be able to add as much data as possible to the cover audio. However,
we do not want to degrade the audio too much. Ideally, the changes should not be audible.

There are several parameters that can be tweaked.

The ones we are going to test in our simulations are:

• Chunk size7

• Bitrate of the steganographically added audio

• The energy of the payload signal

We discuss the findings in chapter 7.
Moreover, we are going to test how resistant the scheme is to additive noise and resampling,
both of which occur in a realistic setup.

7The captured audio will be split in smaller pieces and processed chunk by chunk.

–6–

2 Steganographic scheme

2 Steganographic scheme
Now that we have a clear context and goals in mind, we need to look at how we want to
piggyback our payload on the cover audio file.

Consider the communication system in figure 1.3. We are now concerned with the data
mixing and data demixing

2.1 Concealing the payload
Consider our cover, an audio file: a vector x8 of size N . The entries of x are real-valued
samples in the interval [0, 1]. We can express x = Φbx

9 for some bx where Φ is the matrix
N ×N corresponding to an orthogonal basis (e.g. DFT basis) and the entries of bx are
the coefficients in that basis (e.g. the Fourier coefficients).

One can consider, analogously the size N vector y = Ψby
10 as the payload we want to

mix in x. Like Φ, Ψ is another orthogonal N ×N base matrix.

We then simply transmit s = x + y instead of x over the channel. This is the data mixing
step and s is called a mixture.

It can be shown that if Φ and Ψ11 are optimally incoherent and thus maximally orthogonal,
we can recover bx and by (and thus separate x and y) given s.

2.2 Separating payload and cover audio
To recover x and y, we can first compute bx and by. Given s, we need to solve

argmin
bx,by

||s− Φbx −Ψby||22 + µ1||bx||1 + µ2||by||1

where µ1 and µ2 are regularisation parameters. Solving this convex optimization problem
is the demixing step. Such techniques are disscussed in [16], [8] and [12].

Note that what comes out of the communication channel is not exactly s but rather As12

an altered version of s as is discussed in chapter 3.

8Note that the notation introduced in sections 2.1 and 2.2 will be used consistently throughout this
report

9bx is also a size N vector.
10by is also a size N vector.
11Note that Φ and Ψ are known parameters.
12A is a matrix that defines some kind of transformation on s. In this way, it is possible to model a lot

of things, such as additive noise, that can happen to s.

–7–

2 Steganographic scheme

–8–

3 Channel

3 Channel
We now take a look at the communication channel between the transmitter and the
receiver in order to make a mathematical model that we can use in our simulations.

3.1 Intended real life usage
The scenarios discussed in section 1.2 describe basically the same situation.

A person listens to some music (the cover) but has the possibility to use software to extract
additional data (that has been steganographically added) from that same audio. The
music is broadcast by some sort of loudspeaker and the device running the software has
to somehow capture that audio (e.g with a microphone) for analysis and payload extraction.

3.2 Model
The medium between the loudspeaker and the microphone (as well as the Human Auditory
System (HAS), which we mention in at the end of this report in chapter 9) is analog and
noisy. In this section, we will justify why we simulate the channel by simply resampling
the signal and adding white gaussian noise.

3.2.1 D/A conversion

The signal is always digital in every system up to the loudspeaker where it is turned into
an analog sound wave. On the other end, the microphone samples it and turns it back to
a digital signal.

In other words, the loudspeaker performs a D/A conversion and the microphone performs
an A/D conversion. Digital music is typically sampled at 44100 Hz and typical micro-
phones sample sound at 8000 Hz (32000 Hz for high-end models).

Because of the properties of interpolation, the whole process of converting to an analog
signal can be approximated for simulation purposes by upsampling the signal. The
sampling rate can be made arbitrarily high and thus the analog signal approximation can
be made as good as needed.

In that framework, the sampling of that analog signal done by the microphone is equivalent
to downsampling the upsampled version of the signal.

The overall chain of events is therefore equivalent to resampling the original signal to the
microphone’s sampling rate which is typically lower than the sampling rate of the original
audio and thus incurs some information loss.

This downsampling and then resampling to the original audio’s sampling rate is all that
is needed for an accurate model and thus what we are going to use in the simulation.

–9–

3 Channel

3.2.2 Noise

The modelling of the channel is not complete without a consideration of the noise.

Noise may degrade the signal in any system handling the analog signal (i.e. at both the
D/A and A/D conversions), so we have to consider AWGN in a few places. Fortunately,
thanks to properties of WGN, we know that we can consider all of the noise to be added
in one place. Thus, in our simulation, we will simply add WGN after the resampling of
the signal. The standard deviation of the noise is one of the parameters that affects the
performance of the scheme and that can be set. We look at it in chapter 7.

–10–

4 Mixing

4 Mixing
In this chapter, we assume that we have two vectors that we want to process in a way
that allows us to add them and still be able to separate them when needed. Demixing is
the process of getting back the two operands of the mixing process and is discussed in
chapter 5. Note that all the variables in this chapter are defined as in section 2.1.

4.1 Problem definition
We assume we are given two vectors bx and by. We want to design two matrices Φ and
Ψ such that

s = Φbx + Ψby

can be demixed.13

In the context of our specific application and in order to have a simple consistent notation,
we can assume that x is always the vector of samples of the cover audio and thus bx is
its coefficients in the domain of which Φ is a basis.

We can also assume that by is a vector initialised with all zeroes to which we add a
few values to hold the payload. The specific way in which we do this is by turning
the message into a bitstring and then replace every occurrence of 0 by −1. Thus, we
end up with a vector which has elements in {−1, 1} instead of {0, 1}. Let’s call this
modified bitstring m. We then change the zero vector by to hold the elements of m in
order. There are many ways to do this. A ans good simple way to do it is to place the
elements of m at regular intervals to form by. For example if the bitstring is 1001 and by
needs to be of length 12 , then m = (1,−1,−1, 1) and by = (0, 0, 1, 0, 0,−1, 0, 0,−1, 0, 01).

Back to the problem definition, the idea is to project bx on one vector space and by on
an orthogonal one. Then, the demixing step would be a matter of projecting s on those
vector spaces.

Demixing can be done using convex optimization (see section 5) if bx and by are sparse
and the basis Φ and Ψ are mutually incoherent. We thus have to construct a system that
will guarantee these hypothesis. The basis Φ is chosen so that the representation of the
audio signal x in it is sparse (i.e. ‖Φ−1x‖1 is small14).

Afterwards, we select an orthogonal basis Ψ optimally incoherent to Φ. This way, thanks
to the signals being sparse, as we will see in chapter 5, we are guaranteed that the
demixing can be done.

We now explore two possibilities. First we look at Φ being the Discrete Fourier Transform
(DFT) basis in section 4.2 and then after discussing some of the shortcomings of choosing
this basis, we look at the basis for the Windowed Modified Discrete Cosine Transform
(WMDCT) in section 4.3. Afterwards, in chapter 7 we will compare and contrast both
approaches.

13In practice, we are given x, we define Φ such that x = Φbx and then we have to design Ψ as a
function of Φ.

14Actually, ‖Φ−1x‖0 should be small, but for our purpose the relaxed condition on ‖Φ−1x‖1 is good
enough.

–11–

4 Mixing

4.2 Discrete Fourier Transform
Consider the N -point DFT. We can define Φ to be the DFT matrix. This matrix de-
fines an orthogonal basis and we can very simply derive a good Ψ. It can be shown
that Ψ = DΦ with D a diagonal matrix with the elements on the diagonal being ran-
domly selected in {−1, 1}, Ψ and Φ are optimally incoherent with a very high probability.
A basis Ψ is optimally incoherent to a basis Φ if the coherence between Φ and Φ is minimal.

Moreover, if we consider the actual implementation of this scheme, this approach is
computationally very efficient. Since Φ and Ψ are never used on their own, but only
in a multiplication with a vector, we do not need to ever define or store them explic-
itly. We can replace every occurrence of Φv for any vector v by v̂ which is the DFT of v 15.

For Ψ, we only need to compute and store the values on the diagonal of D. This is simply
a vector d (of size N) with the entries randomly selected in {−1, 1}. This way, every
occurence of Φv for any vector v can be replaced by d · v̂

One problem of defining Φ this way is that, for sound in general, the Fourier representation
is not really sparse. Indeed sound often covers a wide part of the spectrum. Defining Φ in
this way may still be good enough, but to really ensure the sparsity of the representation
of the audio, we will now take a look at another transform.

4.3 Windowed Modified Discrete Cosine Transform
We now consider the Windowed Modified Discrete Cosine Transform (WMDCT). The
WMDCT is a lapped16 version of the DCT17.

The problem with using the DFT is that typical audio covers, over time, a wide variety
of frequencies and thus the DFT may not really be a sparse representation of it.

To remediate to this situation, we can consider the Gabor transform. The Gabor transform
analyses signals in time and frequency simultaneously by translating and modulating
a window. This transform computes a mathematical score of a sound. Moreover, the
Gabor transform can be sampled in time and in frequency. We do not compute the Gabor
coefficient for every shift and modulation possible but only for M frequencies and a gap
of a time units. The WMDCT is a particular case of the Discrete Gabor transform that
is sampled using a = M and a window with a sufficient overlap. If the window is tight,
this leads to an orthogonal basis which we can use as our Φ.

The expression of c, the WMDCT of f , with window g and M bands (m = 0, . . . ,M − 1
and n = 0, . . . , N − 1) turns out to be:

If m+ n is even:

c (m+ 1, n+ 1) =
√

2
L−1∑
l=0

f(l + 1) cos
(
π

M

(
m+ 1

2

)
l + π

4

)
g(l − nM + 1)

15The Fast Fourier Transform (FFT) is a well known and efficient algorithm to compute the DFT.
16A lapped transform is a block transform where the basis functions of the transform overlap to the

adjacent blocks but still has the same number of coefficients as we would obtain from a non-overlapping
block transform.

17An often used transform in digital signal processing and even watermarking.

–12–

4 Mixing

If m+ n is odd:

c (m+ 1, n+ 1) =
√

2
L−1∑
l=0

f(l + 1) sin
(
π

M

(
m+ 1

2

)
l + π

4

)
g(l − nM + 1)

0 20 40 60 80 100 120 140
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Figure 2: Example LTFAT’s standard itersine window (of length 128) with a = M = 64.

For our purpose, we can select a = M = 64 and the itersine window18 of size 128. Because
itersine is tight, we get a basis.

Like in the case of the DFT, the WMDCT matrix gives us an orthogonal basis in which
to express our vectors and experience shows that for audio signals the Gabor/WMDCT
representation is usually more sparse than the DFT.

Similarly to what we did in the case of the DFT, in order to avoid computationally
expensive multiplications by Φ we could use the actual WMDCT algorithm. However,
the construction of Ψ proves to be more challenging. We can not use a nice trick as we
did with the DFT, we actually have to compute Ψ as a function of Φ. To do this, we use
the iterative algorithm described in [11]. This is done only once and can be done offline
so although there is a significant computational cost19, it can be made so that it does not
hinder the performances of an actual realtime implementation.

However, Ψ still has to be stored and there might be insufficient memory available on the
system performing those computations, typically embedded devices. This problem may
arise in case one wants to process large chunks of audio.20

18Introduced in [14] and shown in figure 2
19Each iteration of the algorithm requires matrix multiplications and inversions.
20The size of Φ and Ψ grows as the square of the size of the signal chunk. This can result in significant

memory requirements.

–13–

4 Mixing

–14–

5 Demixing

5 Demixing
In chapter 4, we have defined two vectors x and y that we added up to form s. The way
x and y were constructed (using Φ and Ψ) makes it possible to recover x and y from
their sum s. Note that all the variables in this chapter are defined as in section 2.1.

5.1 Problem definition
We are now dealing with the problem of undoing the mixing discussed in chapter 4. We
assume we know Φ and Ψ and want to recover x and y21 given s22.

We are going to use convex optimisation to recover bx and by.

5.2 Convex optimisation
We consider the following convex optimization problem:

argmin
bx,by

||s− Φbx −Ψby||22 + µ1||bx||1 + µ2||by||1

The objective function is composed of three terms:

• ||s− Φbx −Ψby||22 is the data fidelity term

• ||bx||1 is the sparsity condition on bx
23.

• ||by||1 is the sparsity condition on by
24.

Solving this will give us bx and by within a very small margin of error. The acceptable
margin of error can be set by tweaking µ1 and µ2 which are the regularisation parameters
of the optimisation problem.

We can formulate this optimization problem in another way:

argmin
bx,by

||bx||1 + ν||by||1

for some weight parameter ν and with constraint:

||s− (Φbx + Ψby)||22 ≤ ε

for some small positive ε which is the energy of the noise25. This is needed because
in the actual practical setup as shown in figure 1.3 and described in section 2.2 how-
ever, we are not getting exactly s as constructed in the mixing stage, but ŝ = x+y+noise.

In order to solve the convex optimisation problem, we use the generalized forward backward
method [9].

21Equivalently, we can recover bx and by (and thus recompute x = Ψbx and y = Ψby) since we know
Φ and Ψ.

22In practice, we are given a slightly altered version of s and we will only be able to get approximate
values for bx and by as we will see. Our model will take this into account.

23We picked a basis in which bx is sparse.
24We constructed by to be sparse.
25No noise means ε = 0 and we recover bx and by exactly.

–15–

5 Demixing

–16–

6 Data extraction

6 Data extraction
Now that we have seen how we can recover approximate versions of x = Ψbx and y = Ψby,
we want to extract our hidden payload. Remember that x is the cover audio, so now
we are only concerned with by which contains the steganographically hidden data. In
figure 1.3, this data extraction step is still considered part of the demixing process26.

6.1 Problem definition
At this stage, the vectors have been demixed, we are given by and we want to recover the
bitstring that constitutes our original message. We are thus concerned with the error
correction decoding and paylod decoding systems of the receiver shown in figure 1.3.
We first need to extract the piggybacked bitstring from by and then decode it (in the
source coding sense) to recover the message.

Given how by is defined. We have to figure out where the data bits are and what their
value is. In other words, given a vector of samples, we want to map each sample to a
value in {−1, 0, 1}. Then we strip all the 0s27 and replace the −1s by 0. At this point,
we are left with an actual bitstring.

This bitstring has now to be decoded, in the source coding sense and we are finally left
with the original message.

0 50 100 150 200 250 300 350 400 450 500
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 50 100 150 200 250 300 350 400 450 500
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Original data

Recovered data

Original cover

Recovered cover

Figure 3: Typical example of absolute value of the cover audio samples (above) and
payload vector by (below). Crosses (blue) are the original values and circles (red) are
the recovered ones at demixing. The x-axis denotes the sample number and the y-axis
denotes the sample value. Unless specifically noted, this arangement, notation and color
scheme is consistent throughout this report.

Looking at the bottom graph in figure 3, what needs to happen is pretty straightforward.
26We point this out, because usually, strictly speaking, the demixing step is only about separating x

and y.
27At this point we are left with a shorter vector with entries in {−1, 1}

–17–

6 Data extraction

We need to recognize that the payload bits are in positions 64, 128, 192, 256, 320, 384, 448
and 512 and that the original vector is (−1, 1,−1, 1, 1,−1,−1, 1) which maps to the
bitstring 01011001 which maps to some message28.

6.2 Assumptions
Having extra knowledge about how the message is embedded in y can help dramatically
in the design of a good extraction algorithm.

6.2.1 Known number of bits

If we know the number of bits that are embedded in by, we can certainly devise an
alogrithm that takes advantage of this information in order to better extract the payload
than any algorithm that has no assumption about the number of bits embedded in by.
Typically, we can imagine an iterative algorithm that somehow find the most likely place
to have a bit, removes it from by and reiterates until the appropriate number of bits has
been processed.

The main shortcoming of this approach is that in the case of an actual deployment of the
method, it would be very difficult to change the bitrate even if an improvement in another
part of the system makes it possible to achieve a higher payload bitrate. Transmitting
ahead of time the number of bits per chunk does not solve or change the problem, but
only moves it in another part of the system. Thus, the update of the expected number of
bits per chunk would have to be made offline which is inelegant to say the least.

That is why, in this project, we consider that we do not know the number of payload bits
present in any given chunk.

6.2.2 Known position of the bits

Notice that, as discussed in chapter 4, we have arbitrarily decided to evenly space out
the payload bits in by. We could have done it differently. For instance, we could select
randomly the indexes where we embed those bits (but still preserve the order of the bits)
or any other way.

Of course, knowing the spacing between two consecutive payload bits gives us a lot of
information about where to expect to find all the bits even if we manage to find only one
on the first try.

Ideally, we would like to have the bits randomly scattered accross by and still be able
to perfectly recover them29. However, for simplicity and visual clarity we still chose to
spread them out evenly and maximally as it does not seem to be too bad of a constraint.

6.3 Naive approach: Thresholding
The first method that we considered to find where the bits are in by is very straightforward.
The intuition comes from the histogram on figure 4. We clearly see that most samples are
very close to 0, but there are two distinct side lobes. Those correspond to where there is
a payload bit equal to 1 (resp. 0) and we can detect the thresholds very easily by starting

28In this case, it is simply the ASCII representation of the letter Y.
29This is not really required, nor important. It is just a more general case.

–18–

6 Data extraction

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06

10
0

10
1

10
2

10
3

10
4

Figure 4: Histogram of the sample values of by. The thresholds are at about 0.03 and
−0.03

at 0 on the x-axis of the histogram and moving right (resp. left). Indeed, looking at every
successive value of the histogram, when we hit 0 samples and then detect an increase,
we can assert that we are at the threshold (at the point right before the increase). This
allows us to split the samples into three categories, those mapped to −1, 0 and 1 and we
can proceed with the extraction as discussed in section 6.1.

In some cases, like the one shown on figure 5, this method works very well.

6.4 Robust approach: Peak detection
In many cases however, the thresholding method proves too naive and does not work at
all (as shown in figure 6).
It is often very easy for a human to tell where the bits are, just by looking at outliers in
an otherwise fairly smooth signal. In this particular instance, our inutition tells us that
an algorithm should be able to do the same.

The first approach we consiedered was to subtract some moving average from every sample
and then run the thresholding algorithm on this smoothed signal. None of the tests were
conclusive.

The second approach was to try an compute for every sample how high (resp. low30) is a
local maximum (resp. minimum) with respect to the adjacent valleys (resp. peaks).

This was done31 by summing the difference between two adjacent samples all the way
from the two neighbouring local minima to the peak. The intuition was that peaks where
payload bits are encoded would get a very high score however this did not give satisfactory
results either. Normalising with respect to the number of samples it took to reach a peak

30In case of peaks at −1
31For simplicity, we only consider peaks. For valleys, the case is symmetrical.

–19–

6 Data extraction

Figure 5: Example were the payload is successfully recovered using thresholding with the
DFT mixing method. The dashed (green) lines denote the computed threshold values. In
this particular case, the recovered bitstring exactly matches the original message without
false positives nor false negatives.

1.95 1.955 1.96 1.965 1.97 1.975 1.98

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.95 1.955 1.96 1.965 1.97 1.975 1.98

x 10
4

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Figure 6: Example were the payload is mixed in with the DFT mixing method. Our
thresholding method unfortunately does not work. There is generally too much deviation
from 0 for the samples that do not hold a payload bit. However, it is quite easy to see
that the signal exhibits a kind of smoothness except where payload bits are encoded. At
those places we can see a peak.

from a valley (i.e. how steep of a climb it was up to the peak) seemed marginally better
but did not yield any promising results.

–20–

6 Data extraction

Unfortunately, none of these ideas proved very effective. Integrating an effective peak
detection mechanism may prove to be the single most effective step one can take in order
to achieve a truly usable convex demixing steganographic scheme as described in this
report. We suggest doing so in section .

6.5 Insertion-Deletion channel
If data extraction works perfectly everytime, the by we recover exactly matches the
by that is constructed in the mixing stage, we do not need any error correction codes.
However, as we have seen, errors can occur.

There are several types of errors that can occur when extracting the bitstring from by.
For every sample:

• With some probability, the data extraction algorithm thinks there is a bit where
actually the sample is just a noisy 0 (false positive).

• With some probability, a payload bit is missed (false negative) because the algorithm
computed a 0 when actually a payload bit (1 or −1) was present.

• With some probability, a bit flip occurs. The data extraction algorithm computes a
1 where actually a −1 is present or vice versa.

In this setup, a false positive is called an insertion, a false negative is a deletion and a
bit flip is a deletion followed by an insertion (or vice-versa, equivalently). We are thus
dealing with an insertion-deletion channel.

This is a fairly unknown and challenging communication channel. There is some literature
such as [5] on the theory, but the exact capacity is still unknown although there are
known bounds [3]. Reliable communication over such a channel can be achieved through
the use of marker codes as discussed in [2] and [10].

–21–

6 Data extraction

–22–

Part II

Tests and analysis

–23–

–24–

7 Experimental data

7 Experimental data

We now have a theoretical understanding of the whole system. The next step is to
empirically look at how the setup behaves under different conditions.

7.1 Simulation run and observations

Here is the detail of a complete run of the proof of concept software. In this instance, Φ
is the DFT matrix.

First of all, it must be noted that the audio is processed iteratively. The whole audio
cover is cut into fixed-length vectors (called chunks). Then every chunk is processed
independently and the results are concatenated. This allows for independent treatment of
short pieces of the audio. Thus, in a real setup, one would not have to wait a long time
to capture the audio before being able to recover the data. It is also more efficient com-
putationally. In this instance we have 4 chunks of 500 samples each and a 32 bit message32.

The first step is to compute s (the payload mixed in with the cover audio) which is shown
in figure 7. Note that when Ψ is optimally incoherent with the DFT matrix, we essentially
have a spread spectrum embedding.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.2

−0.1

0

0.1

0.2

0 500 1000 1500 2000
0

0.02

0.04

0.06

0.08

0.1

0 0.05 0.1 0.15 0.2
0

200

400

600

Time (s)

F
re

q
u
e
n
c
y
 (

H
z
)

0 0.01 0.02 0.03 0.04
0

0.5

1

1.5

2

x 10
4

−80

−70

−60

−50

−40

−30

−20

−10

Figure 7: In the upper left corner we have the cover audio samples x (blue crosses) and s
the altered version of it once the payload has been added (red circles). In the lower left,
we have a graph of |s− x| (green crosses) as well as a histogram of those values (lower
middle). The graph on the right is the spectrogram of the embedded payload.

In this example, for the sake of clarity of the graphs, we assumed the use of a good
microphone that samples sound at 32000 Hz and very little noise. We have AWGN with
standard deviation σ = 0.02.

32At 44100 Hz, this corresponds to more than 2.8 kilobits per second.

–25–

7 Experimental data

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.02

0.04

0.06

0.08

0.1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.4

−0.2

0

0.2

0.4

Figure 8: The graph interpretation is the same as usual with both vectors before and
after demixing. In this case we see that the thresholding (green dashed lines) manages to
recover all the data perfectly.

We can run this setup with different parameters as many times as needed in order to collect
data about how changing the individual parameters affects the whole steganographic
scheme.

7.2 Experimental setup
In our simulation setup, we have defined a baseline configuration and we always alter the
parameters just one at a time.
We test each configuration with both the DFT and WMDCT mixing methods discussed
in chapter 4 on three audio signals, one with very calm music, one with average music
and one with very energetic and loud music. The spectrograms are shown in figure 9.

Time (samples)

F
re

q
u
e
n
c
y
 (

n
o
rm

a
liz

e
d
)

0 1 2 3 4 5 6

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−160

−140

−120

−100

−80

−60

−40

−20

0

Time (samples)

F
re

q
u
e
n
c
y
 (

n
o
rm

a
liz

e
d
)

0 1 2 3 4 5 6

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−140

−120

−100

−80

−60

−40

−20

0

Time (samples)

F
re

q
u
e
n
c
y
 (

n
o
rm

a
liz

e
d
)

0 1 2 3 4 5 6

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−100

−80

−60

−40

−20

0

Figure 9: Spectrograms of our cover files (all sampled at 44100 Hz). On the left, the very
calm beginning of Pink Floyd’s Echoes. In the middle, Pink Floyd’s Echoes 10 seconds
into the song. On the right, Nirvana’s very energetic and loud Anorexorcist 60 seconds
after the beginning.

The baseline configuration for all parameters is as follows.

• We assume an ideal channel with no noise and no resampling of the audio.

• We run the procedure on 128 chunks of 512 samples each for a total of 65536 audio
samples.

–26–

7 Experimental data

• The payload bitrate is 1 payload bit for every 64 audio samples of the cover (i.e. 8
bits or 1 byte per chunk for a total of 1024 bits or 128 bytes).

• The energy of the payload signal is not scaled.

We always alter one of these values, the rest are kept as described here.

7.3 Changing channel parameters

We are now discussing the simulation data gathered over hundreds of runs in as many
different setups with every time only one variable being altered. In this section, we look
at channel parameters, those that model the communication channel. In the next section
we will look at system parameters that can be used to fine tune the performance of the
whole system.

Notes on how to interpret the graphs in this section:

Since all configurations have been tested on three different cover songs, every figure comes
with six graphs: three pairs. The leftmost pair of graphs depicts the data gathered on
the calm audio. The pair in the middle depicts the data gathered on the medium audio.
Finally, the rightmost pair depicts the data gathered on the loud audio.

Now, for each of these pairs, the graph on the right hand side corresponds to a setup
where Φ is the DFT matrix. The left hand side graph corresponds to a setup where Φ is
the WMDCT matrix. Finally, in each graph, the (blue) crosses are the normalised mean
absolute value of the samples during the given run. The (red) stars are the normalised
maximal absolute value of the samples during the given run. The coordinate on the x
axis is the actual value being tested for that data point. These average sample absolute
value and maximal sample absolute value measurements are very relevant to us since
the average sample absolute value tells us something about the payload vector by where
its entries should be 0 and the maximal sample absolute value measurements tells us
something about how prominent the peaks are.

If the difference between the average sample absolute value and the maximal sample
absolute value gets smaller it gets harder to detect peaks and thus recover the payload
bits, making it much more likely to have insertions and deletions (in the insertion-deletion
channel sense).

7.3.1 Altering noise levels

We are interested in looking at the effect of changing the value of the standard deviation
of the AWGN.

–27–

7 Experimental data

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.05 0.1 0.15 0.2 0.25
0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 10: Measurements for different values of σ, the standard deviation of the WGN.

We see in figure 10, that the effect of adding more and more noise has a very predictable
impact on the average sample absolute value (the blue crosses), which is itself some
measure of the noise in the payload vector by. The change is clearly quadratic in σ for
the louder pieces of music and resembles a straight line for the quietest piece.

The maximal sample absolute value (the red stars), although it is harder to see, seems
to follow the same quadratic growth pattern but at a slower pace. This means that the
peaks get harder and harder to detect the noisier it gets, which makes perfect sense.

Generally speaking, the DFT measurements seem themselves noisier than the WMDCT
measurements and this is indeed the case. This trend is consistent across all experiments.
We discuss this apparent difference between the DFT and WMDCT methods in section 8.1.

7.3.2 Altering the resampling factor

We now look at the resampling factor. This is the parameter that basically models how
much the microphone degrades the signal just prior to demixing.

If our audio is originally sampled at 44100 Hz and the microphone samples at 8000 Hz,
then our resampling factor for that particular data point is 8000/44100 ≈ 0.1814 (which
is a unitless ratio).

0 0.2 0.4 0.6 0.8 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1
0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1
0.75

0.8

0.85

0.9

0.95

1

Figure 11: Measurements for different sampling rates of the microphone. The cover audio
is always originally music sampled at 44100 Hz.

Interestingly, the mean absolute value of the samples first grows with with the resampling
factor, which makes sense since a very low resampling factor basically just flattens the
signal. After a point though, faster resampling seems to hurt the performance. This is
the case because subsampling effectively removes some of the high frequency noise.

–28–

7 Experimental data

The presence of those high frequency components might also explain why the maximal
absolute value of the samples decreases as the resampling factor grows.

From this simulation data and assuming the cover audio is sampled at 44100 Hz, the
sweet spot seems to be to resample at about 11000 Hz.

7.4 Changing system parameters
Now we look a three more parameters. These are parameters that we have control over
and that we can fine tune to get the most performance33 out of our implementation.

7.4.1 Altering the chunk size

We do not process an arbitrarily long piece of audio. Imagine having to wait a long time
to capture some audio and then wait some more to process it. As discussed in the first
part of this report, we do the processing chunk by chunk using a sufficiently big chunk
size so that we can actually piggyback some data in each chunk34. On the other hand the
chunk size should be small enough so that one can do the processing as close to real time
as possible. We do not want to have to wait a long time to gather many samples before
being able to extract some data.

Note that here we simply want to see the impact of changing the chunk size and nothing
else. We adapt the length of the payload message in each run such that the payload
bitrate (i.e. the number of payload bits per audio sample) is kept constant. In this
simulation, the payload bitrate is kept at 1/64.

10
0

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10
2

10
3

10
4

0.4

0.5

0.6

0.7

0.8

0.9

1

10
0

10
5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10
2

10
3

10
4

0.4

0.5

0.6

0.7

0.8

0.9

1

10
0

10
5

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10
2

10
3

10
4

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 12: Measurements for different chunk sizes (notice the log scale) with constant
payload bitrate.

We see that both the maximal absolute value and mean absolute value of the samples
decrease as the chunk size grows. This is an interesting observation and we conjecture
that it has something to do with the dimensionality of the vector spaces we are working
with that becomes too large. The high dimensionality of the vector space implies that
vectors are usually very close to the basis vectors and this results in lower values. Read
[13], specifically section 1.3.5 for more on this.

Note that in louder music and thus noisier data, the average value of the samples decreases
more slowly. This is due to the fact that the different chunk sizes are a much less important
factor than the noise in the signal that comes from the louder audio.

33Highest possible payload throughput while staying (mostly) inaudible
34Piggybacking even 1 bit in a very small chunk, necessitates to really significantly alter the signal.

This in turn implies and thus a very high throughput, but also a very degraded cover signal.

–29–

7 Experimental data

7.4.2 Altering the throughput

This simulation is very straight forward. We simply try to increase the number of payload
bits per sample of cover audio.

10
0

10
1

10
2

10
3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10
0

10
1

10
2

10
3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10
0

10
1

10
2

10
3

0.4

0.5

0.6

0.7

0.8

0.9

1

10
0

10
1

10
2

10
3

0.4

0.5

0.6

0.7

0.8

0.9

1

10
0

10
1

10
2

10
3

0.7

0.75

0.8

0.85

0.9

0.95

1

10
0

10
1

10
2

10
3

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 13: Measurements for different payload bitrates. The sample rate of the cover
audio is always 44100 samples per second.

In this case, the maximal absolute value of the samples behaves in a way very similar to
what we observed when we were altering the chunk size.

On the other hand, as the throughput is increased, the changes made to the cover audio
become more substantial and thus and thus the noise increases resulting in higher mean
absolute value of the samples.

Again, we see a big difference between calmer and louder music. This is again due to the
fact that when demixing, we get a noisier signal from the louder music.

7.4.3 Altering the energy of the payload

We finally, take a look at the energy of the signal. Recall that at the mixing step of
the steganographic scheme, we compute s = x + y, however, we can instead compute
s = x + cy. This new parameter c, makes it possible to choose the relative energy between
the signals x and y.

0 0.5 1 1.5 2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2
0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.5 1 1.5 2
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 14: Data set for different values of c. The range is from absolutely no payload
signal (i.e. s = x), to having twice as much energy in the payload signal than in the cover
audio signal.

The results are straightforward but very telling. The more energy we put into the payload
signal, the more noise we get and thus the mean absolute value of the samples gets higher.
Thus, as most of the energy still goes towards the actual payload data, the maximal
value of the samples grows much faster than the mean absolute value of the samples as a

–30–

7 Experimental data

function of the energy of the payload signal. Thus, the peaks become more and more
prominent and thus easier to detect, which is exactly what is expected.

–31–

7 Experimental data

–32–

8 Conclusion

8 Conclusion
We have achieved the main goals of this project. We have discussed a steganographic
scheme that can survive D/A conversion and made a prototype implementation. The
different parameters have then been individually tested in extensive simulations and the
results have been interpreted in chapter 7 where we detail the main findings of this project.

The steganographic scheme works as expected and looks promising for practical use.

Without a robust peak detection algorithm, it is difficult to precisely estimate the achiev-
able throughput. However, it seems likely that we can achieve better throughput than
the 64 bits per 30 second interval mentioned in [15].

We have also looked at two different transforms, the DFT and the WMDCT, that allow
us to perform the mixing step of our steganographic scheme.

8.1 Comparison of DFT and WMDCT
We have gathered all the elements needed to compare the two approaches.

In all the graphs of section 7.4 and section 7.3, the data coming from runs using the DFT
is noisier than the data coming from runs using the WMDCT. This is almost certainly
due to the fact that when using the DFT matrix, Φ and Ψ are not maximally orthogonal.
We have statistical guarantees, but on an individual instantiation we may not end up
with two maximally incoherent matrices35. Thus there is a kind of leakage from one
vector space to the other when doing projections. As we have seen in chapter 7, because
of the spread spectrum quality of the projections, the leakage is effectively additional noise.

Thus, as suspected in chapter 4, using the WMDCT instead of the DFT, leads to better
results in that respect. Also, since the computational cost of generating Φ and Ψ is not
really an issue since it can be done offline beforehand, using the WMDCT seems to be
the better choice in our proposed steganographic scheme.

35Note that it is even possible that the random diagonal of D is all 1 and thus D is the identity matrix
and we end up with Ψ = Φ. Fortunately, the probability that this happens is vanishingly small for any
reasonable size of Φ.

–33–

8 Conclusion

–34–

9 Future work

9 Future work
Several topics related to the concepts discussed in this report are outside the scope of
this project. There is a fair amount of further work that could. Here are a few examples
of things that could make the ideas discussed in this report usable in practice.

9.1 Good algorithms for peak detection
In order to have a better working prototype and especially as a tool for better under-
standing of how changing different parameters affects the throughput of the payload, it is
important to develop and implement a good peak detection algorithm.

One of the main challenges, as pointed out in section 6.5 is the fact that the Insertion-
Deletion channel is a relatively misunderstood and challenging one.

9.2 Source coding
Insertion-deletion channels are, as we have pointed out, very challenging. It would be
interesting to study how channel parameters36 affect the properties of the channel.

Moreover, it would be worthwhile experimenting with various codes for this particular
channel and see how payload throughput is altered.

9.3 Human auditory system modelling
In the case of audio steganography, modifying the cover file to piggyback data alters
the sound that is output by the speakers. There is a trade-off between the amount
of data we want to hide steganographically (which adds noise to the cover audio) and
the fact that we do not want to distort the sound so much that it negatively affects
the listener’s experience. Ideally, the changes in the audio should be inaudible by a human.

In order to study this trade-off more formally, one could use computer models of the
human auditory system and use simulations in order to determine precisely how and
how much data can be piggybacked on the audio without degrading the sound too much37.

36Noise and resampling.
37Note that the acceptable amount of distortion depends on the exact application. HAS modelling is

useful in any case.

–35–

9 Future work

–36–

Technical details

Technical remarks
The proof of concept implementation of the steganographic scheme discussed in this
report has been implemented in MATLAB38. It uses The Large Time-Frequency Analysis
Toolbox (LTFAT)39 for the signal processing aspects of the code such as performing DFTs
and WMDCTs or plotting spectrograms. It also uses UNLocBoX40 for solving the convex
optmisation problem when demixing signals. Both of these dependencies are Open Source.

The code is available upon request and so is the complete data set generated during the
simulation runs.

38http://www.mathworks.com/products/matlab/
39http://ltfat.sourceforge.net/
40http://unlocbox.sourceforge.net/

–37–

http://www.mathworks.com/products/matlab/
http://ltfat.sourceforge.net/
http://unlocbox.sourceforge.net/

Technical details

–38–

Acknowledgements

Acknowledgements
Working on this exciting subject, which is in a field quite different from what I am used
to has been interesting and challenging. The work can be extended quite a bit and may
even lead to interesting applications.

I would like to thank Prof. Pierre Vandergheynst for his great supervision. His insights
have always been very valuable and I very much enjoyed working in his lab.

I would also like to thank Johan Paratte and Nathanaël Perraudin for their input, for
their help and for being great friends.

Finally, I would also like to acknowledge Johan Paratte for providing the LATEXtemplate
for this report.

–39–

Acknowledgements

–40–

References

References
[1] Cvejic, N., and Seppanen, T. Increasing the capacity of lsb-based audio steganog-

raphy. In Multimedia Signal Processing, 2002 IEEE Workshop on (2002), pp. 336–338.

[2] Davey, M., and MacKay, D. J. C. Reliable communication over channels with
insertions, deletions, and substitutions. Information Theory, IEEE Transactions on
47, 2 (2001), 687–698.

[3] Fertonani, D., Duman, T., and Erden, M. Bounds on the capacity of channels
with insertions, deletions and substitutions. Communications, IEEE Transactions
on 59, 1 (2011), 2–6.

[4] Gopalan, K. Audio steganography using bit modification. In Multimedia and
Expo, 2003. ICME ’03. Proceedings. 2003 International Conference on (2003), vol. 1,
pp. I–629–32 vol.1.

[5] Kavcic, A., and Motwani, R. Insertion/deletion channels: reduced-state lower
bounds on channel capacities. In Information Theory, 2004. ISIT 2004. Proceedings.
International Symposium on (2004), pp. 229–.

[6] Kirovski, D., and Malvar, H. Spread-spectrum watermarking of audio signals.
Signal Processing, IEEE Transactions on 51, 4 (2003), 1020–1033.

[7] Matsuoka, H. Spread spectrum audio steganography using sub-band phase shifting.
In Intelligent Information Hiding and Multimedia Signal Processing, 2006. IIH-MSP
’06. International Conference on (2006), pp. 3–6.

[8] McCoy, M. B., and Tropp, J. A. The achievable performance of convex demixing.
arXiv preprint arXiv:1309.7478 (2013).

[9] Raguet, H., Fadili, J., and Peyré, G. Generalized forward-backward splitting.
arXiv preprint arXiv:1108.4404 (2011).

[10] Ratzer, E. Marker codes for channels with insertions and deletions. Annales Des
Télécommunications 60, 1-2 (2005), 29–44.

[11] Schnass, K., and Vandergheynst, P. Dictionary preconditioning for greedy
algorithms. Signal Processing, IEEE Transactions on 56, 5 (2008), 1994–2002.

[12] Tropp, J. Just relax: convex programming methods for identifying sparse signals
in noise. Information Theory, IEEE Transactions on 52, 3 (2006), 1030–1051.

[13] Wang, J. Geometric structure of high-dimensional data and dimensionality reduction.
Springer, 2012.

[14] Wesfreid, E., and Wickerhauser, M. Adapted local trigonometric transforms
and speech processing. Signal Processing, IEEE Transactions on 41, 12 (1993),
3596–3600.

[15] Westfeld, A., Wurzer, J., Fabian, C., and Piller, E. Pit stop for an audio
steganography algorithm. In Communications and Multimedia Security, B. Decker,
J. Dittmann, C. Kraetzer, and C. Vielhauer, Eds., vol. 8099 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2013, pp. 123–134.

–41–

References

[16] Zhang, L., and Wang, J. Adaptive information hiding based on local sparsity.
In Information Management, Innovation Management and Industrial Engineering
(ICIII), 2013 6th International Conference on (2013), vol. 2, IEEE, pp. 273–2777.

–42–

	Contents
	Acronyms
	I Problem definition and proposed solution
	Introduction
	Steganography
	Definition
	Security
	Augmenting data

	Intended use case
	System setup
	Goals of the project
	Proof of concept of a new scheme
	Check how the scheme handles D/A conversion
	Study the different parameters of the setup

	Steganographic scheme
	Concealing the payload
	Separating payload and cover audio

	Channel
	Intended real life usage
	Model
	D/A conversion
	Noise

	Mixing
	Problem definition
	Discrete Fourier Transform
	Windowed Modified Discrete Cosine Transform

	Demixing
	Problem definition
	Convex optimisation

	Data extraction
	Problem definition
	Assumptions
	Known number of bits
	Known position of the bits

	Naive approach: Thresholding
	Robust approach: Peak detection
	Insertion-Deletion channel

	II Tests and analysis
	Experimental data
	Simulation run and observations
	Experimental setup
	Changing channel parameters
	Altering noise levels
	Altering the resampling factor

	Changing system parameters
	Altering the chunk size
	Altering the throughput
	Altering the energy of the payload

	Conclusion
	Comparison of DFT and WMDCT

	Future work
	Good algorithms for peak detection
	Source coding
	Human auditory system modelling

	Technical details
	Acknowledgements
	References

