Online Unsupervised State Recognition in
Sensor Data (Supplementary Materials)

Julien Eberle, Tri Kurniawan Wijaya, and Karl Aberer
School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne (EPFL)
CH-1015 Lausanne, Switzerland
Email: {julien.eberle, tri-kurniawan.wijaya, karl.aberer} @epfl.ch

Abstract—Smart sensors, such as smart meters or smart
phones, are nowadays ubiquitous. To be “smart”, however, they
need to process their input data with limited storage and
computational resources. In this paper, we convert the stream
of sensor data into a stream of symbols, and further, to higher
level symbols in such a way that common analytical tasks such
as anomaly detection, forecasting or state recognition, can still
be carried out on the transformed data with almost no loss
of accuracy, and using far fewer resources. We identify states
of a monitored system and convert them into symbols (thus,
reducing data size), while keeping ‘““interesting” events, such as
anomalies or transition between states, as it is. Our algorithm is
able to find states of various length in an online and unsupervised
way, which is crucial since behavior of the system is not known
beforehand. We show the effectiveness of our approach using
real-world datasets and various application scenarios.

This document contains the supplementary material of our
paper presented at PerCom 2015 [1].

I. REVERTING STATES

One of the goals of Spclust and StateFinder is to produce
a symbolic time series to support higher level applications,
without converting it back to sensor’s original measurement
values. Since symbolic time series is much shorter than its
original version, this property is desirable, especially due to
the limited sensor’s storage and computational power. Thus,
we do not discuess the process of reverting symbols back to
its original valus in the main paper. However, for the sake of
completeness, below we illustrate how one can revert symbolic
time series to its original values.

Converting symbols level 0 generated by Spclust to its
original values In this case, we could simply use the cluster
centroids to approximate the original values of the symbols.
Note that, using Spclust, we have one-to-one mapping between
clusters and symbols.

Converting RLE compressed triples to non-compressed
triples. Each symbol is repeated n times with n = (t.—t)/r,
where 7 is the sampling rate of the original data. As sensors
may have a variable sampling rate or some gaps, this transfor-
mation could produce more/less triples that the original ones.

Converting symbols from level 1 or higher to one level
lower. The main idea, is to use the Segment Transition
Matrix To find the starting symbol in the case this one is not
available, we use an heuristic that aims to find a symbol that
has the lowest incoming transition probability and a positive
outgoing transition probability. Formally, we take the symbol

¢ such as the sum of the elements in the ith row, except the
diagonal is greater than 0 and the sum of the elements on the
ith column, except the diagonal, is minimal. Then according
to the transition probability to the next symbol, we build a
sequence. Even though we might produce a slightly different
sequence from the original one, it eventually has the same
symbol distribution.

II. STATE FORECASTING
A. State Forecasting

The algorithm is inspired by the pattern-based forecasting
in [2], [3], [4]. It consists of three steps: clustering, pattern
similarity search, and prediction. Below we give an overview
of the algorithm. Let us assume that we have a symbolic
time series S = {51,...,5:} available as the training set,
a forecast horizon h, and window length w. Our goal is to
forecast S* = {3}4_1,../\. ,St+n}, 1.€., sensor values up to h
time periods following S.

C/!ustel;ing Divide S iI}\tO a set of symbolic time series, S =
[§1,51], where each SiAE S has length A, and if i < j, then
S; is a series preceding S;. Cluster the symbolic time series
in S, and let c(§2) be the cluster label of :5“\1

Pattern similarity search Find all marching sequences of
length w, {S;,...,Sitw-1}s where 7 <[—w and [e(Si)y- .-

b}
< A

e(Sitw—-1)] = [e(Si—w+1), - -+, c(S1)].

Prediction Let {§i1+w7 el §ik+w} be the predictor set, i.e.,
the set of series following the matching sequences. The pre-

dicted series, 5*, is obtained by aggregating the predictor set.

For the clustering step, we used the KMedoids algorithm.
Note that, any other unsupervised learning techniques can also
be used here. As in other unsupervised learning techniques,
however, given different parameter settings, we are often
uncertain which setting delivers the best cluster configuration.
This holds even if the parameters are very intuitive, such as k
in KMedoids, which is the number of clusters to be created.
To select the best configuration, we use similar techniques
to [3], [5]. We perform the clustering step several times
using different configurations, i.e. different &, and evaluate the
resulting configurations using the Silhouette, Dunn and Davies-
Bouldin indices. The best cluster configuration is chosen by
majority voting over the three indices.

For this experiment, we use GPS traces from the Nokia
Lausanne Data Collection Campaign dataset [6]. The ten users

_ e
o States

Reverted

0 0.1 0.2 03 0.7 0.8 0.9

04 05 06
Forecasting accuracy

Fig. 1: Comparison of the 1-hour forecasting accuracy on top of both,
symbols (level 0) and states.

state RLEJO.018 der: b.026
: ateFinder:
load data: 0.177 m prediction
rle RLE: 0.016
load data: 0.177 Spclust
symbels —_— load data
raw mRLE

W StateFinder

0 5 20 25 30

10 15
Computation time [s]

Fig. 2: Timing for the pattern-based forecasting algorithm, on top of
different data, and the processing steps for generating those data.

having the largest number of location records during the first
6 months of the study were selected to minimize the gaps in
the resulting time series and to avoid the users which were not
carrying the phone with them all the time. In this experiment,
we aim for next-hour forecasting, i.e. i is 1 hour. We compute
the prediction result, S*, as the medoid of the predictor set.

The symbolization is achieved through Spclust and results
in 9 to 34 symbols, depending on the mobility of the users. The
first level symbols mostly represents the places visited by the
user, dividing the regions like a Voronoi diagram. On average,
24% of the symbols level 0 are converted to symbols level 1
(states), which can be seen as the routes taken by the users in
their daily routines. Pattern-based forecasting is evaluated by
taking the first 80% of the dataset as a training set (from O
to t) and testing it on the next hour (£ + 1). Then we repeat
the experiment with forecasting ¢ 4 2 after including ¢ + 1 to
the training set. We run the forecasting algorithm at different
symbolization levels and for each of them, the forecasting
accuracies are averaged over all users and iterations. Figure 1
shows the accuracy of forecasting before and after running
StateFinder. Using the time series of states (symbols level
1) allows making predictions that are similarly good as with
the symbols (level 0). showing that the states are consistently
found and replaced by higher level symbols. As the reverting
of the sates (using the Segment Transition Matrix) introduces
also some error, the third bar illustrates the accuracy when
comparing the reverted predicted values to the original time
series, but this result highly depends on the reverting function
which still has room for improvement.

The running time for the forecasting algorithm, shown on
Figure 2, is strongly related to the data size, thus giving
advantage to more compressed data representation (higher
level symbols). Additionally, the time for computing RLE and
the StateFinder are orders of magnitude lower, making them
good candidates to be run on low power devices.

III. RUNNING TIME

To asses the impact of the time series size and show
that StateFinder can be run on infinite stream. We measured
the time needed to process time series of various lengths
on a server with a CPU @ 2.30GHz. We used the same
datasets as for the forecasting experiment (GPS traces) and
the microwave power from the state identification experiment

Nokia —#—random REDD

£12

Processing time [s]

0 10000 20000 30000 40000 50000 60000
#RLE data points

Fig. 3: Processing time for running StateFinder on different datasets
and dataset sizes.

(in the main paper). The third one is a random time series
where symbols (between 0 and 7) and their duration (between
1 and 1000) where chosen uniformly at random. The Figure
3 shows the processing time of StateFinder with regard to the
size of the time series. Too short time series were repeated
to match the length of the others. It appears clearly that the
processing time grows linearly with the data size, thus having a
constant processing time per element. The different slopes can
be explained by the number of symbols and the randomness
of the data. The more different symbols are present in the
time series, the more time it will take to process, but the more
predictable and repetitive, the faster StateFinder is. In this case,
with only 3 different symbols and a lot of identifiable states
the microwave power time series allows a very fast processing,
below 0.1 seconds for 50’000 values. Whereas a completely
random time series with 8 symbols is even slower than the
GPS trace time series with 64 symbols.

REFERENCES

[1] J. Eberle, T. K. Wijaya, and K. Aberer, “Online unsupervised state
recognition in sensor data,” in 2015 IEEE International Conference on
Pervasive Computing and Communications (PerCom) (PerCom 2015),
St. Louis, USA, Mar. 2015.

[2] B. Motnikar, D. Cepar, P. Zunko, M. Ribari¢, and B. Vovk, “Time
series forecasting by imitation of preceding patterns,” in Operations
Research’91, P. Gritzmann, R. Hettich, R. Horst, and E. Sachs, Eds.
Physica-Verlag HD, 1992, pp. 272-275.

[3] FE. Martinez Alvarez, A. Troncoso, J. Riquelme, and J. Aguilar Ruiz,
“Energy time series forecasting based on pattern sequence similarity,”
IEEE Transactions on Knowledge and Data Engineering, vol. 23, no. 8,
pp- 1230-1243, 2011.

[4] W. Shen, V. Babushkin, Z. Aung, and W. L. Woon, “An ensemble model
for day-ahead electricity demand time series forecasting,” in Proceedings
of the fourth International Conference on Future Energy Systems, ser. e-
Energy '13. New York, USA: ACM, 2013, pp. 51-62.

[5] T. K. Wijaya, T. Ganu, D. Chakraborty, K. Aberer, and D. P. Seetharam,
“Consumer segmentation and knowledge extraction from smart meter
and survey data,” in SIAM International Conference on Data Mining
(SDM14), 2014.

[6] J. K. Laurila, D. Gatica-Perez, 1. Aad, B. J., O. Bornet, T.-M.-T. Do,
O. Dousse, J. Eberle, and M. Miettinen, “The Mobile Data Challenge:

Big Data for Mobile Computing Research,” in Pervasive Computing,
2012.

