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Abstract

The cooperative dynamics of a 1-D collection of Markov jump, interact-
ing stochastic processes is studied via a mean-field (MF) approach. In
the time-asymptotic regime, the resulting nonlinear master equation
is analytically solved. The nonlinearity compensates jumps induced
diffusive behavior giving rise to a soliton-like stationary probability
density. The soliton velocity and its sharpness both intimately depend
on the interaction strength. Below a critical threshold of the strength
of interactions, the cooperative behavior cannot be sustained leading
to the destruction of the soliton-like solution. The bifurcation point
for this behavioral phase transition is explicitly calculated.
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1 Introduction

Interacting stochastic agents are modeled by a collection of nonlinearly
coupled Markovian stochastic processes. Inspired by the dynamics re-
cently exposed in Balézs [1], we focus on pure, right-oriented jump pro-
cesses. For large and homogeneous swarms, the mean-field description
offers a powerful method to characterize the resulting nonlinear global
dynamics. Adopting the MF approach, the swarm behavior is summa-
rized into a field density variable obeying a nonlinear master equation.



Such partial differential integral equations are in general barely com-
pletely solvable. Nevertheless, several explicitly solvable models have
been recently studied Hongler [2], Balazs [1]. Our present goal is to
enrich this yet available collection by proposing an intrinsically non-
linear extension of the recent models introduced by Balazs [1]. Mod-
els involving pure jumps complete the solvable models with dynamics
driven either by Brownian Motion and or by alternating Markov re-
newal processes Hongler [2]. For strong enough mutual interactions,
we explicitly observe the existence of a stationary probability measure
propagating like a soliton. This soliton-like dynamics can be formed
since the underlying nonlinear mechanism due to interactions exactly
compensates the jump induced diffusion. This exhibits a close anal-
ogy with nonlinear wave dynamics where nonlinearity compensates the
velocity dispersion. Since the model is uni-dimensional, long-range in-
teractions between the agents are mandatory for the existence of coop-
erative behaviors here described by soliton-like probability measures.
Decreasing the strength of the mutual interactions, via a barycentric
modulation function similar to the one used in Balazs [1]|, we reach a
critical threshold below which no stable cooperative behavior can be
sustained. The critical threshold where the behavioral phase transition
occurs can here be exactly calculated.

2 Linear pure jump stochastic processes

Let us first describe the dynamics of a single, isolated jump process
which later in section 2, will enter into the composition of our inter-
acting swarm. On R, we consider the right-oriented jump Markovian
process X (t) characterized by the (linear) master equation:

oP(w.t) = —P(a)+ [ Plytote — iy (1)

where P(z,t) with P(x,0) = f(z) stands for the transition probability
density. The function ¢(x) : R — RT defines the probability density
for the (right oriented) lengths of the process jumps.

Taking the z-Laplace transform of Eq.(1) and taking into account of
the convolution structure, we obtain directly:

OP(s,t) = —[L = (s)] P(st). (2)

whose solution reads:

F)(S,t) = e—t—l—@(s)t’ (3)

where in writing Eq.(3), we have already assumed the initial condition:
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P(x,t) |i=0= 6(). (4)

Example. Consider the dynamics obtained when ¢(z) = Ae™* yield-
ing ¢(s) = %_‘_8 and when the initial probability density is f(z) = d(x).
Accordingly Eq.(3) reads:

Pla,t) = et [e!(s)] = {f:o (Ant!)n [Aisr} (5)

The Laplace inversion of Eq.(5) yields:

00 n xn—l
Pz, t)=e" 5(w)+€‘MZ(Anty) (n—1)!

n=1

=J(z,t)

For J(z,t), we can write:

Sy = LI DT =%Hl (2v3zi)
n=1
Io(2vXzt)—-1

where I,,,(z) stands for the m-modified Bessel’s functions.
Hence the final probability density P(x,t) reads:

s e VA
P(z,t)=e {(5(3:)—1—6 A %}Il (2v)\xt)}, reRT  (8)

and one may explicitly verify that one indeed has; fR+ P(z,t)dz =1,
(use the entry 6.643(2) in Gradshteyn [3]).
For time asymptotic regimes, Eq.(8) behaves as:

=

lim P(x,t) ~ (A1) e_[m_ﬁ]z, (9)

oo 2\/?3:%

exhibiting therefore a diffusive propagating wave with vanishing am-

plitude and velocity V := % Due to translation invariance of the

dynamics, we note that P(xz — y,t) fulfills a 6(z — y) initial condition.



Hence, when P(z,0) = f(x), the linearity of the dynamics Eq.(1) en-
ables us to write:

Pf($>0):f($)v ( )
10

Pf($>t) = fR+ P((l’ - y)’t)f(y)dy

3 Non-linear Markovian jump processes

Keeping the jumps probability density as p(z) = Ae™%, let us now
consider a large homogeneous collection of identical processes evolving
like Eq.(1) now subject to mutual long-range interactions. The class of
interactions we consider yields, in the mean-field limit, the nonlinear
master equation:

Qz,t) = f;og (z — (X(t))) 0.G(z,t)dz
OntG(z,t) = —Q(2,1)0,G(2,t) + [ Qy, )9, G(y, t)Ae 2V dy,

(X(0) = fye y0,Gy, 1) dy,

(1)
where G(z,t) stands for the cumulative distribution of the a nonlinear
jump process, (i.e. G(z,t) is monotonically increasing with boundary
conditions G(—o0,t) = 0 and G(o0,t) = 1). Note that while in Eq.(1)
the jumping rate is unity, in Eq.(11) it is replaced by Q(z,t) > 0
which is explicitly state-dependent. This is precisely where the mutual
interaction introduces a strong nonlinearity into the dynamics. In the
sequel, we focus on cases where g(z) = g(—x) > 0.

For asymptotic time, we now postulate that Eq.(11) admits {-functional
dependent solutions with £ = (x — V't) and with the even symmetry:

/R £0:G(€)de = 0, (12)

where V' is a propagating velocity parameter. In terms of &, Eq.(11)
can be rewritten as:

V [0 G (&) + M2 G(€)] = 9 {QUE) G (€)} - (13)

Defining £(§) := log[0:G(§)], after one integration step where the
integration constant is taken to be zero, Eq.(13) can be rewritten as:

VORL(E) = AV + /g " lo(ma,G ()] dn. (14)



Assuming now a functional dependence g(¢) = cosh™(§) with n € R,
by direct substitution, one can immediately see that Eq.(14) is solved
by the (normalized) probability density 0:G(&):

0:G(&) = \1;(;17;)) cosh™"™ (&), m >0,

m=A=2-—n, (15)
V:Ffrrzgl)).

Due to the &-symmetry of the probability density 0:G(€), Eq.(12) is
trivially satisfied.

For n €]2, —o¢], Eq.(15) implies that a stationary propagating density
0,G(x) is sustained by the nonlinear dynamics Eq.(11). However, for
short decaying g(z)-modulation, occurring when n > 2, no stationary
propagating probability density exists, (i.e. for this parameter range,
m < 0in Eq.(15) and the solution cannot be normalized to unity as re-
quired for a probability measure). For this exactly solvable dynamics,
we also observe that the average jump length A~ and the barycentric
modulation strength controlled by the factor n are intimately depen-
dent control parameters. In addition, we note that for large m, the
asymptotic expansion of the I'-function implies that lim,, ., V =~ /m.

Illustration. Along the same lines as in Hongler |2, the nonlinear
dynamics given by Eq.(11) can be viewed as representing the mean-
field evolution associated with a large population of stochastic jumping
agents subject to a mutual imitation process. The swarm dynamics
is described via the probability density function 0,G(x,t) obeying a
nonlinear partial differential equations (PDE). Mutual interactions of
agents are responsible for the state-dependent jumping rate (x,t) in
Eq.(11). The functional form of Q(z,t) simultaneously includes two
distinct nonlinear features, namely:

a) imitation process. To isolate this process, we may consider
the case g(z) =1, (i.e. n =0) implying that

Qz,t) =1 — G(x,1). (16)

The resulting state-dependent jumping rate Eq.(16) induces a
traveling and compacting tendency. As the agents are subject to
pure right-oriented jumps, Eq.(16) effectively describes situations
where the laggard agents jump more frequently than the leaders,
(i.e. laggards try to effectively imitate the leaders’ behavior).
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b) barycentric range modulation of the mutual interac-
tions. The modulation obtained when g(z) # 1 describes the
relative importance attributed to interactions with agents remote
from the barycenter (X (t)) of the swarm. Here, we may separate
two distinct tendencies:

i) when n € [0,2[, far remote agents tend not to influence
the dynamics. In this case, the resulting behavior can be re-
ferred as a weak cooperative identity and the propagat-
ing probability density given by Eq.(15) exhibits the shape of
a table-top soliton with a plateau increasing when the lim-
iting value 2 is approached. One observes a comparatively
low propagating velocity V of these table-top like aggregates.
Again, we emphasize that for n > 2, the cooperative interac-
tions are not strong enough to sustain the propagation of a
cooperative behavior in asymptotic time. This is well known
in general for 1-D stochastic interacting system, (the Ising
model being the paradigmatic example) where no coopera-
tive phase can be formed when the interactions operate on
too limited ranges.

ii) for n < 0, the g(z) modulation effectively gives rise to a
strong cooperative identity. Far remote agents increas-
ingly influence the swarm. This gives rise to sharply peaked
solitons-like probability densities propagating with high ve-
locities.
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