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a b s t r a c t

Recent regulations on biofuels require reporting of greenhouse gas (GHG) emission reductions related to
feedstock-specific biofuels. However, the inclusion of GHG emissions from land-use change (LUC) into
law and policy remains a subject of active discussion, with LUC–GHG emissions an issue of intense
research. This article identifies key modelling choices for assessing the impact of biofuel production on
LUC–GHG emissions. The identification of these modelling choices derives from evaluation and critical
comparison of models from commonly accepted biofuels–LUC–GHG modelling approaches. The selection
and comparison of models were intended to cover factors related to production of agricultural-based
biofuel, provision of land for feedstock, and GHG emissions from land-use conversion. However, some
fundamental modelling issues are common to all stages of assessment and require resolution, including
choice of scale and spatial coverage, approach to accounting for time, and level of aggregation. It is
argued here that significant improvements have been made to address LUC–GHG emissions from
biofuels. Several models have been created, adapted, coupled, and integrated, but room for improvement
remains in representing LUC–GHG emissions from specific biofuel production pathways, as follows:
more detailed and integrated modelling of biofuel supply chains; more complete modelling of policy
frameworks, accounting for forest dynamics and other drivers of LUC; more heterogeneous modelling of
spatial patterns of LUC and associated GHG emissions; and clearer procedures for accounting
for the time-dependency of variables. It is concluded that coupling the results of different models is a
convenient strategy for addressing effects with different time and space scales. In contrast, model
integration requires unified scales and time approaches to provide generalised representations of the
system. Guidelines for estimating and reporting LUC–GHG emissions are required to help modellers to
define the most suitable approaches and policy makers to better understand the complex impacts of
agricultural-based biofuel production.

& 2014 Elsevier Ltd. All rights reserved.
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1. Introduction

Concerns about biofuel sustainability have pushed governments
and international agencies to develop sustainability criteria for
biofuels that producers must respect [1]. Special attention has been
given to reporting the greenhouse gas (GHG) emission savings (GES)
of biofuels [2]. Several countries have issued regulations that require
reporting the GHG emission performance of biofuels. These regula-
tory schemes include the Renewable Transport Fuel Obligation in the
United Kingdom (UK), the Renewable Energy Directive (RED) in the
European Union (EU), the Low-carbon Fuel Standard in the State of
California, and the Environmental Protection Agency’s (EPA) Renew-
able Fuel Standard (RFS) in the United States of America (USA) [3–5].

A major point of discussion in the assessment of biofuel GES is
the impact of feedstock production on land-use change (LUC) [6,7].
In the case of agricultural-based feedstock for biofuels, recent
studies point to the significance of LUC–GHG emissions for the
overall GHG emission balance of biofuels [2,8–14]. When LUC
occurs, the GES of biofuels may be offset by the direct or indirect
contribution to carbon stock changes in land [15]. Consequently, in
recent years, the number of studies dealing with biofuels, LUC, and
GHG emissions has grown sharply [16].

Quantitative estimates of LUC–GHG emissions vary significantly
because of the variety of biofuel production pathways being con-
sidered and the complexity of the system being addressed [17].
The current lack of reliable and unified methodologies and consistent
data to perform the estimate has caused governments to become
cautious when considering inclusion in biofuel standards and policy
[18]. This combination of factors may have contributed to the
considerable variation in regulatory schemes that address LUC–
GHG emissions. Possibly as a response to this uncertainty, estimation
of LUC–GHG emissions from the production of feedstock for biofuels
has become a significant focus of research while debate on policy
inclusion continues [19–21].

The literature on these issues is vast and not well cross-
referenced, opening the possibility that modellers will be unaware

of related work in complementary fields. Indeed, reviews of LUC–
GHG emissions from biofuel production have focused mainly on
the comparison of global economic approaches and their simula-
tion results [17].

This paper provides a broader assessment of commonly used
modelling approaches. Through comparison of models, two key
features are identified: (1) important modelling parameters for
assessing LUC–GHG emissions from biofuels, and (2) the adequacy
of each modelling approach in the assessment of nexus issues in
the fields of biofuels, LUC, and GHG emissions. Also provided is
comment on the limitations of common modelling approaches,
with exploration and discussion of possibilities for improvement.

2. Methodological approach

2.1. Selection of modelling approaches

This review of modelling approaches highlights conceptual
aspects of the different modelling procedures; results of simula-
tion approaches are not reported or discussed. Other authors have
acknowledged the diversity of model-based results and the uncer-
tainty linked to the estimation [7,17,19,22], and the current review
is not needed as a contribution to that work. For this paper, the
main factors influencing the measurement of LUC–GHG emissions
from biofuel production have been studied, and previous reviews
on the subject have been analysed, leading to the conclusion that a
broader assessment of modelling approaches is needed to over-
come current limitations.

Measuring LUC–GHG emissions from biofuel production is a
major issue for two specific needs: the inclusion of the estimation
in government regulations, and the certification of sustainable
biofuels at the producer level. Three methodologies have been
applied to measure LUC–GHG emissions caused by feedstock
production of biofuels: empirical observations, causal–descriptive
assessments, and modelling and simulation (Fig. 1).
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The modeller should consider the type of LUC being addressed
when selecting modelling approaches. These types include direct LUC
(dLUC), defined as the direct expansion of biofuel feedstock into other
types of land-uses, and indirect LUC (iLUC), defined as the first-grade
expansion of the displaced land-uses into other types of land-uses.

Although empirical methods have been used mainly to trace
historical dLUC and assign emissions to particular biofuel produ-
cers, modelling and simulation have focused more on projecting
LUC from biofuel policies [23]. Producers have targeted measuring
local dLUC induced by each batch of biofuel produced; however,
governments generally support the inclusion of dLUC estimations
in policy while suggesting the monitoring of iLUC at the country
and international levels.

Empirical observations are applied by the biofuels industry
primarily for certification purposes. Implementation and monitor-
ing occur using historical time-series and satellite images to
identify historical LUCs where biofuels are being produced [24].
In contrast, modelling and simulation have been the primary tools
used at the government level in support of policy analysis. As
noted, the uncertainty associated with the modelling estimates of
LUC–GHG emissions has caused a shift towards a more determi-
nistic approach and away from the difficult task of estimating

values based upon uncertain modelling. However, the problem of
data quality and availability persists.

Causal–descriptive methods rely on simple analyses of historical
data and expert opinions about system composition and dynamics.
Although they are useful for understanding the macro-picture of
LUC induced by biofuel production and to identify urgent areas for
further analyses, they do not provide a basis for narrowly tailored
policy-making or contribute to policy makers’ efforts to include
dLUC in biofuel GHG emission balance.

The discussion in this paper targets technical approaches
to supporting policy-making. Accordingly, empirical and causal–
descriptive methods are excluded, allowing a focus on the specifi-
cities of modelling approaches used to tackle different aspects of
the links among biofuel production, LUC, and GHG emissions.

Following the modelling assessment, a web-based literature
review was conducted to identify and select publications addres-
sing these issues. Each chosen publication contains a modelling
framework that can include one or several models. A general
assessment of the overall collection of models was then used to
evaluate the current state of the art in the model-based estimation
of LUC–GHG emissions from biofuel production. Furthermore,
several models were included as relevant primarily because they
provide insight into unexplored issues and help to overcome
current limitations.

2.2. Overview of selected modelling choices

From a modelling perspective, the conventional estimation of
LUC–GHG emissions induced by the provision of land for feedstock
for biofuels requires the measurement of the following four main
factors (Fig. 2):

(1) Effective quantity of agricultural-based biofuels supplied to
which LUC–GHG emissions need to be assigned.

Fig. 2. Modelling process for the estimation of LUC–GHG emissions from biofuels: main variables and influencing factors.

Fig. 1. Selection of modeling approaches by scope and objective.
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(2) Quantity of land provision for feedstock for agricultural-based
biofuels.

(3) Types of converted land-uses and the rates of conversion into each
previous land-use inducing the production of the feedstock.

(4) The GHG emission factor of each converted land-use.

Estimating LUC–GHG emissions from specific feedstocks for
biofuels requires linking economic, biophysical, environmental,
and social systems that evolve in space and time. Addressing this
complex system leads to a variety of modelling approaches to
account for the links among biofuels, LUC, and GHG emissions.

The estimation of the quantity of biofuel produced requires
assessment of the specific context in which biofuels are produced.
For example, agricultural-based biofuel production links agricultural
products and energy markets. This interaction can generate environ-
mental and economic impacts at the national and international levels.
Accordingly, two questions were explored here: how specific biofuel
pathways are represented, and how the biofuels sector is linked with
other markets. A subject of further discussion is how policies are being
introduced in reliance upon current models.

In this context, an analysis was performed with respect to
(1) market dynamics, defined as the type of link between the
biofuels sector and the domestic and international agricultural
and energy markets; and (2) policy variables, defined as the policy
instruments that directly or indirectly affect the supply of agri-
cultural-based feedstock for biofuels.

Estimating the quantity of land provided for feedstock of biofuels
involves accounting for other relevant factors. A large part of the
impact from the production of biofuels on LUC will depend on the
type and origin of the feedstock used to produce biofuels. Currently,
most biofuels are produced from agricultural-based feedstocks, often
cash crops that require land as the main production factor.

In the case of agricultural-based biofuels, two categories of
feedstock are explored: energy crops, defined as crops cultivated
directly for energy purposes; and multi-product crops, defined as
crops produced for a variety of purposes (food, feed, fibre, fuel),
including as feedstock for biofuel production. This review includes
models that have been applied to study both types of feedstock.
Energy crops may include lignocellulosic feedstock such as switch-
grass, directly cultivated for processing into second-generation
biofuel. Multi-product crops may include sugar cane, corn, colza,
palm oil, and soybean. Most biofuel feedstocks are currently multi-
product crops that serve domestic and international feed product
demands.

Apart from the demand for feedstock for biofuels, other
economic and natural drivers are responsible for LUCs. Different
approaches have been tried to isolate the effect of agricultural land
expansion because such effects should be considered in the
contexts of other relevant drivers of LUC. In this respect, previous
assessments have already shown the limitation of current
approaches for isolating the effects of the agricultural sector as a
whole [22]. Assigning GHG emissions to biofuels requires the
resolution of two fundamental problems: how to isolate the effect
of crop-specific biofuels from other drivers of LUC, and how to deal
with multi-product agricultural-based biofuels.

Leaving aside the problem of land allocation, other important
factors are worth mentioning. In relation to land area, the supply
of land for crops is affected by the possibility of using current
available agricultural land and of expanding the agricultural
frontier. The competition for agricultural lands is affected by the
market dynamics of the agricultural sector and the policy frame-
work regulating land management decisions. These factors in turn
affect costs that influence land profitability. The provision of land
for feedstock for biofuel then depends on the effect that biofuel
demand has on feedstock price and how this price change
translates into a change in land area.

At this point, the link between economic and location drivers
needs to be addressed. Linking economic and location drivers of
LUC is a major requirement for the integration of economic and
spatial approaches. How will the provision of land for feedstock
affect the distribution of land for other uses? If land expansion
occurs, answering this question requires defining land conversion
rates to the provision of land for feedstock.

The definition of the structure of the land-use system, the way
to define the type of land conversion, and the rates of conversion
become critical. Important questions to consider are

� Will the feedstock for biofuels expand into new land, generate
changes inside current agricultural land, or induce intensifica-
tion processes?

� Which types of natural and managed lands are converted?
� What are the conversion rates of land provision for feedstock

for biofuels?

Concerning LUC modelling, this review then evaluates the
methods for estimating LUC induced by biofuel production based
on (1) land allocation and land supply structure, and (2) the links
between economic and location drivers in current modelling
approaches. Including GHG emissions from LUC into biofuels
emission balance involves two operations: defining the use of
marginal or average value for land conversions and assigning GHG
emission factors to each type of converted land-use. This review
explores the main approaches to dealing with LUC–GHG emissions
and the available databases for defining LUC–GHG emission factors
for biofuels.

The ideal modelling approach should account for LUC–GHG
emissions of specific biofuel production pathways at different
scales in space and time. Common issues across all stages of the
estimation of LUC–GHG emissions are then further explored. These
issues include: (1) geographical coverage, defined as the validity of
the estimation in space; (2) time-dependence, defined as the
validity of the estimation in time; and (3) level of aggregation,
defined as the heterogeneity in the representation of actors and
land characteristics. In this review, how these common issues are
being addressed is analysed, as is how current models are being
adapted, integrated, and coupled to account for different dimen-
sions of these problems.

2.3. Overview of modelling approaches

Table 1 gives a general overview of selected modelling
approaches considered in this paper, classified based on their
purpose. Representative models of each modelling approach are
indicated with their main characteristics for addressing one or
several stages of modelling LUC–GHG emissions from biofuels.

Modelling each stage involves making several choices that
influence the type of modelling approach applied. Fig. 3 indicates
for each stage the modelling choices and the type of modelling
approach used to address each influencing factor.

Computable general equilibrium (GE) models are a type of top-
down economic model characterised by the integration of theory
on GE with real (historical) data of a given economy in a computer-
based simulation model. The theory of GE or partial equilibrium
(PE) explains the relation among supply, demand, and prices
through the satisfaction of a set of simultaneous equilibrium
equations [25].

These two types of equilibrium models have been applied to
study impacts of biofuels in LUC–GHG emissions. GE models repre-
sent the whole economy and the interactions among different
sectors, and PE models provide a detailed estimate of a specific
sector (or sectors) of the economy and determine hypothetical
equilibrium prices for a specific market (or a limited set of markets).
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Most PE models dealing with biofuels and LUC are agricultural and
energy sector models. Consistent reviews of agricultural sector
models applied to the assessment of LUC induced by energy crops
demand have also been performed [7,26–29].

Optimisation models are mainly applied to perform economic
efficiency analyses on the impact of biofuel production [9,30–32].
They are also used to assess optimal strategies for biofuel feedstock
production in terms of GHG emissions reduction [2].
Spatially explicit models focus on the spatial allocation of land
resources. Concerning LUC, several authors have provided
comprehensive reviews of land-use modelling approaches
[33–35]. Spatially explicit models have mainly been used to
account for spatial patterns in land allocation for biofuel crop
production [36–39].
Biophysical models target describing ecological and environ-
mental processes. They assess, for example, the impact of
climate change on crop yields and land productivity. In the
context of this review, biophysical models were applied mainly
to calibrate parameters in economic models [40] or provide
data on yields and land productivity [41,42].
Agent-based (AB) models focus on simulating individual actors’
decisions. They account for local/regional actors’ behaviour,
preferences, and heterogeneity to simulate the emerging beha-
viour of the system. Parker et al. [43] and Mathews and
Goldsztein [44] give extensive reviews of AB models applied
to LUC modelling, but little work has been done to analyse the
impact of biofuels production [45,46].
System dynamics (SD) models assess the time-dependent beha-
viour of complex social systems, focusing on the identification
of feedback structures to generate endogenous explanations of
system behaviour over time. Several SD models are being used
to simulate biofuel diffusion processes [47–51], the impact of
biofuels production on commodity markets [52–55], LUCs
[50,56–59], and GHG emissions [60–63].
Life cycle assessment (LCA) models evaluate the environmental
impact of a product through the quantification of input and
output flows. Although attributional LCA assesses the average

environmental properties of a particular product, consequential
LCA assesses the consequence of a decision [64]. GHG emission
balances of biofuel pathways are treated in the literature, which
addresses the main methodological challenges and how LUC can
be integrated into LCA [65–68]. Larson [69], Cherubini [70], and
Malça and Freire [71] provide consistent reviews of GHG emission
balances of biofuels. LUC–GHG emissions from biofuel production
have been addressed based on the consequential approach to
estimate marginal changes in the supply of land for biofuels and
their associated GHG emissions from LUC [72].

3. Modelling biofuel supply

3.1. Accounting for market dynamics and interactions

Measuring the quantity of biofuels supplied is required to
assign LUC–GHG emissions to them. GE/PE, optimisation, and SD
models have been used to determine land provision for biofuels
based on quantity of biofuel supplied.

GE models calculate biofuel supply based on the market
equilibrium assumption, i.e., when supply equals demand for each
region and sector. Given an exogenous shock in feedstock demand for
biofuels and all other factors being equal (ceteris paribus assump-
tions), prices are adjusted to clear the market. The demand level is
then set to represent biofuel mandates at the national level.

SD models can extrapolate from the equilibrium and ceteris
paribus assumptions because they can represent the adjustment
process in time to reach equilibrium. Consequently, SD models
were used to study the conditions needed to achieve the required
biofuel mandate levels. In these models, the quantity of biofuel
supplied depends on the effect of biofuel and accompanying
policies for a given market context.

Equilibrium and optimisation can be merged when optimisation
is used to maximise a welfare function, subjected to the market
equilibrium assumption. REAP, LUCEA, and FASOM are optimisa-
tion models used to assess the interactions between biofuels and
land provision for feedstock [9,73,74]. This model predefines the

Table 1
Overview of representative modelling approaches applied to the estimation of LUC–GHG emissions from biofuels production.

Focus on biofuels–LUC–GHG analysis Type of
modelling
approach

Selected models applied to
biofuels–LUC–GHG analysis

Characteristics of applied models

Global economic impacts of biofuels
production

General
equilibrium

GTAP, MAGNET, EPPA, DART,
FARM

Global, static or recursive dynamic, non-spatial, economic, focused in all
economic sectors, aggregated actors and regions, policy oriented

Estimate supply-demand-trade balance
Policy analysis
Global and national economic impacts of
biofuels production

Partial
equilibrium

AgLink-COSIMO, ESIM, FAPRI,
CAPRI, GCAM, IMPACT, PEM,
POLE, PRIMES

Global or national, recursive dynamic, non-spatial, economic, sector-
specific focused in agriculture and energy sectors, aggregated actors and
regions, policy orientedSupply-demand-trade balance and policy

analysis for the agricultural and energy
sectors

National economic efficiency analysis Optimisation FASOM, LUCEA, P&G, POLYSIS Global or national, recursive dynamic, spatial or non-spatial, linear
programming, focused in forestry and agricultural sectors, aggregated
actors and regions, policy oriented

Policy analysis

Land allocation based in spatial patterns Spatial CLUE, LANDShift, KLUM, GIS-
LTM

Global, national and regional/local scales, static, spatial, location patterns
estimated by cellular automata, remote sensing or empirical-statistical
analysis, disaggregated actors and regions, non-policy oriented

Integration of biophysical variables in
economic models

Calibration of bio-physical parameters Biophysical EPIC, IMAGE Global, static or dynamic, spatial, focused in bio-physical and
environmental sectors, aggregated actors and regions, non-policy
oriented

Estimation of bio-physical variables in
economic and spatial models

Individual heterogeneous actors decision Agent-based C&S, B&S, G4M Local/Regional, dynamic, spatial, disaggregated actors, focus on the land-
use system, non-policy oriented

Biofuels diffusion and policy analysis System
dynamics

S&G, GLUE, TIMER, BDM, BSM,
BioLUC

Global, national, or regional/local, non-spatial, fully-dynamic, non-spatial,
focused in systemic approach, aggregated actors, policy orientedTime delays and feedback interactions

LUC–GHG emissions Life cycle
analysis

Consequential LCA National or local, static, non-spatial, focused in feedstock specific
pathways, aggregated actors, policy or non-policy orientedGREET, Ecoinvent, GHGenius
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type of analysis that can be performed. Similar to equilibrium
models, the main limitation of optimisation models is the assumed
optimality conditions. Complex dynamic systems normally do not
behave in an optimal way (e.g., supply does not equal demand).
This dis-equilibrium behaviour can be addressed in dynamic
models, such as SD models.

3.2. Modelling crop-specific biofuel production pathways

Most equilibrium and optimisation models have been used
mainly to analyse climate change and agricultural policies. Conse-
quently, significant adaptations have been required to include the
biofuels sector and the link to global agriculture and energy markets.

In the case of GE models, the biofuels sector is generally
modelled by linking the energy and the agricultural sectors.
The Global Trade Analysis Project (GTAP) model was designed to
analyse trade interaction in the global economy [25]. The GTAP-E
version [75] added an explicit representation of the energy sector,

improving the possibility of substitution among different sources
of energy. In the Emissions Prediction and Policy Analysis (EPPA)
model, biomass as fuel was introduced as a perfect substitute for
fossil fuels in the refined oil sector [76]. This adaptation allowed a
better representation of the link of biofuels to energy markets, an
issue that was left apart to focus on the LUC–GHG discussion. The
GTAP-BIO database finally includes an explicit representation of
the biofuels sector [77], linking, for instance, biodiesel to the
vegetable oil and fats sector. Birur et al. [78] further disaggregated
the biofuels sector in the GTAP-E model. At this level of aggrega-
tion, specificities in the biofuels sector are scarcely represented,
given the global scope of the assessment. Results produced from
global models should be understood and analysed in the context of
their global scope.

SD models better represent the specificities in biofuel produc-
tion pathways. Bantz and Deaton [47], for instance, studied
the evolution of the biodiesel industry in the USA, modelling the
biodiesel supply chain based on four modules representing the

Fig. 3. Assessment of main variables and influencing factors in selected modeling approaches.
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diesel, biodiesel, glycerol, and biomass oil sectors. Their model is
used to assess the effect of governmental regulations and incen-
tives on the availability of feedstock and biodiesel/diesel and
glycerol prices.

The case of multi-purpose crops used as feedstock for biofuels
should be distinguished from the case of dedicated energy crops.
Modelling multi-product crops involves additional complexity
because additional methods must be applied to isolate the effect
of biofuels and assign LUC–GHG emissions among the different
drivers of the land supplied to cultivate the multi-product crop.
In this case, competition arises not only at the land-use/farmer
level but also at the industrial level. In the case of energy crops,
there is only one economic driver of land supply for the crop.
Assigning LUC–GHG emissions to biofuels is reduced to a land
allocation problem between alternative uses of the agricultural
land. In the case of multi-product crops, crops are already
cultivated and used for other purposes.

The effect of the new demand for feedstock for biofuels should
then be assessed in the context of the marginal (additional) land
required to produce a certain level of biofuel. The link to agricul-
tural markets and land-use systems then takes a more complex
dimension. The estimation of the provision of land for feedstock
for biofuels needs an allocation procedure to isolate the effect from
other drivers of land provision. This approach should account for
the diversity of crop uses and the level of pressure on land supply
that each driver induces. From this perspective, the contribution of
economic, social, and biophysical drivers may be understood, and
criteria for allocation of emissions should be specified.

3.3. Modelling biofuel and accompanying policies

In equilibrium models, simulations were mainly focused on
the LUC impacts of biofuel mandates, accounting primarily for the
impact of USA and EU policies [10,32,79–85]. The EPPA model, for
example, was used to estimate the impact of the demand for
second-generation biofuels on land conversion [76,86]. The link to
biofuel policy can be introduced as an exogenous shock in demand
for biomass.

GLOBIOM is a spatial PE model of the global forest and
agricultural sectors used to analyse the interaction between
biofuel production and deforestation [87]. In this case, biofuel
policies are indirectly accounted for by defining different scenarios
of biofuel production levels by 2030.

A key feature of biofuel policies is the combination of instru-
ments supporting the supply and demand side of the biofuels
sector. Because of the combined characteristics of biofuels as a
substitute for fossil fuel and an agricultural-based product, biofuel
supply is subjected to energy, environmental, land-use, and
agricultural policies.

Most studies have focused on assessing the impact of biofuel
mandates on global agricultural markets and particularly the
impact of EU and USA mandates on global LUC. The Policy Analysis
System (POLYSIS) [88], for example, was used to assess the impact
of USA biofuel mandates on GHG emissions from national LUC
[74]. The Modular Applied GeNeral Equilibrium Tool (MAGNET,
ex LEITAP) is a modified version of GTAP model [89]. MAGNET was
applied to analyse the impact of EU biofuel mandates on global
LUC [8,83,90,91].

The common procedure for analysing mandate impact on LUC
is based on model-run comparisons between a baseline without
biofuels and an alternative scenario with biofuels. The baseline
projection is shocked with the required feedstock demand (or land
quantity) to produce biofuel target demand given assumed tech-
nologies. A higher demand for crop-based biofuels may increase
crop prices. Farmers consequently may allocate more lands to
this crop to respond to the possible supply–demand imbalance,

displacing other land-uses. This choice, in turn, may reduce land
supply for the production of other agricultural products, increasing
prices for these displaced products. Displaced production is then
shifted elsewhere in response to supply and demand of goods
across all markets.

The main problem with this approach is that the mandate
achievement depends, among other factors, on the policy frame-
work regulating the biofuel supply chain. Subsidies, taxes, and
supply constraints, for instance, can limit the ability of biodiesel
producers to supply the required biodiesel quantity to achieve
mandate levels [92]. Some economic analyses have been per-
formed to assess, for instance, the effect of tax credits in the USA
[93] and the effect of the subsidies for biofuel production in
selected countries of the Organisation for Economic Co-operation
and Development (OECD) [94]. In equilibrium models, with the
exception of biofuel mandates, little work has been done to assess
how different combinations of policy instruments affect LUC
induced by biofuel production.

In these cases, the effect of policy instruments is mainly tested
at the national scale, as Ignaciuk et al. [95] did when assessing the
impact of biomass subsidies and conventional electricity taxes
using a national PE model. The model was used to determine the
impact of these policies on GHG emissions, land allocation, and
food and electricity prices in Poland. This type of assessment
seems appropriate for linking to regional or national scale models
given that more detailed data are needed to account for the
specificities of the country and the national biofuel industry.

The effect of policy instruments on the biofuel supply side has
been more extensively treated in SD models specifically developed
for this purpose. In the context of LUC and GHG assessments,
the main limitation of current SD models is, however, that their
application was limited to biofuel diffusion processes. Even though
they account for the effect of different policy instruments on
biofuel production levels, their link to LUC and GHG emissions is
hardly reflected.

Accompanying policies may significantly change biofuel pro-
duction and consumption patterns, supporting or constraining the
development of the biofuels industry. Some authors have explored
the effect of accompanying policies, such as Johansson et al. [9],
who used the LUCEA model to assess the effect of carbon taxes on
land-use competition for food and bioenergy in the USA [9].

Including biofuel-accompanying policies in such models can
lead to significantly different results, as may be the case, for
instance, of GHG emission-saving thresholds imposed on biofuel
suppliers. None of the studies reviewed account for GHG emission
constraints in biofuel trade and supply.

4. Modelling of LUC

The possibility of expansion of feedstock for biofuels into other
managed or natural land depends on the characteristics of the
region where feedstock is produced. In regions where agricultural
land is scarce or currently used for other purposes, the possibility
of expanding agricultural land into new (natural) land is limited.
Land productivity in new land in this context becomes a central
issue for land conversion decisions.

Efficient cultivation methods and technological improvements
can overcome lower land productivities, but at the expense of higher
production costs. Regions in this condition should expect higher rates
of land conversion inside the agricultural system and higher impacts
on intensification processes. In the case of regions with a large
availability of agricultural land, changes should be expected in the
limit of the agricultural frontier, either from direct expansion of
crops for biofuels or the indirect conversion of displaced agricultural
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land-uses. Expected land profits in this case should then be suffi-
ciently higher to justify converting un-managed lands.

Three main issues were considered to be addressed when
assessing LUC from biofuel production. A large part of the impact
of land provision will depend on how the feedstock interacts with
other land-uses. This interaction can be described based on (1) the
land allocation procedure to assign productive land among com-
peting land-uses; (2) the land supply mechanism to assess
managed land expansion into unmanaged lands; and (3) the type
of converted land-uses.

4.1. Modelling land allocation

In economic models, the traditional approach to allocating land
among competing land-uses is based on the constant elasticity of
transformation (CET) function [96]. Darwin et al. [97] proposed an
approach relying on CET functions to represent substitution
among crop sectors. Most LUC models, such as the Future
Agricultural Resource Model [98] and Kleines Land-Use Model
(KLUM) [99] rely on this approach.

The CET function postulates that landowners maximise total
land profits by allocating their land among selected uses, subjected
to the possibility of transformation among them and the avail-
ability of land. The land supply elasticity varies as a function of the
CET and the relative importance of a given activity, measured as
land value [81].

A characteristic of the CET function is that it allocates land based
on land value; thus, it is difficult to track LUCs in physical units. This
problem can be solved by assuming that 1 ha of land of one type is
converted to 1 ha of another type and through conversion takes on
the productivity level of the new land-use [86].

The impact of biofuel production on LUC has also been studied
through SD simulation models. However, their treatment under this
approach is significantly simplified. Yamamoto [58,59,63] used SD
to link the land-use and the energy sectors in a global scale model
(called GLUE). The model evaluates the biomass resource potential
for bioenergy production, including land competition among various
uses of the biomass. Several SD models are being used to simulate
the biofuel supply chain in the USA, including land as the main input
factor in feedstock production [51,61,100,101]. These models’ focus
on the supply chain simplifies interactions with other contextual
factors. In consequence, land for feedstock for biofuels is not linked to
other land-uses, linking the capacity of these models to address LUC.

4.2. Modelling land supply

From an economic perspective, the problem with the representa-
tion of managed land supply is challenging. Because native lands are
generally not under economic use, it is difficult to estimate their
economic value; therefore, the estimation of land transformation
based on the conventional CET function is problematic. Likely for this
reason, most economic models have assumed land as a fixed input
factor and allocate land only among economic uses [102]. Never-
theless, for the purpose of assessing LUC impacts of biofuel produc-
tion, this approach is not sufficient because land needs to be
considered as a variable to represent land expansion possibilities.
To this end, some improvements have been introduced into eco-
nomic models to assess the impact of the demand for agricultural
commodities on the expansion of the agricultural frontier.

GTAP improved the representation of land supply by explicitly
modelling land substitution between different zones within each
country using data on the agro-ecological characteristics of land
[103]. This adaptation allowed a more precise representation of
land heterogeneity and the potential reallocation of land-uses.
A specific treatment is given to land mobility across different land-
uses. Different models of land supply are proposed, ranging from

perfectly mobile and undifferentiated to imperfectly mobile (con-
strained) and differentiated (nested CET function). The LINKAGE
model incorporates some possible land expansions based on the
variation of an aggregated land price [104].

4.3. Defining types and rates of converted land-uses

The third issue to be considered in representing LUCs is the
definition of the type and rates of converted land-uses [22]. This
feature is especially important because the share of each unma-
naged land-use on agricultural land expansion largely determines
the impact of biofuel production on LUC–GHG emissions [105].
The conventional approach to estimating these shares is to assume
that agricultural land expansion will follow the same patterns as
historical LUC trends. Particular attention must be paid to the
historical influence of other drivers of LUC when using historical
patterns of LUC to derive the future impact of biofuel production.
Studies by Al-Riffai et al. [106] and Searchinger et al. [14] applied
this approach by assuming historical shares of agricultural land
expansion into native ecosystems to allocate agricultural activities
displaced by feedstock production for biofuels. However, different
land conversion dynamics can arise, for example, though the
introduction of new policy, and scenario analysis can be used to
test alternative land-conversion rates.

4.4. Accounting for spatial patterns

Spatial representation is a key feature in modelling LUC
because of the need to address interactions between different
land-uses that affect land allocation decisions. Spatial or geo-
referenced models typically address the spatial correlation of land-
uses [107]. Land allocation is mainly estimated through regression
models of location variables [108,109], Markov models of transi-
tion probabilities, cellular automata [110], or neural network [111]
techniques. Regression equations are mainly estimated through
time series data of land-uses, obtained generally from satellite
image classification or census data [34]. Transition probabilities
can be estimated mainly through satellite image classification
[112,113] or statistical analysis [107,114]. Remote sensing can be
used for the acquisition of spatial data [115,116].

SD models, on the other hand, can easily integrate other non-
economic drivers of LUC, which is an advantage in modelling more
complex decision processes. Thus, these models can also give a
more realistic description of the patterns governing LUC from
biofuel production.

5. Modelling GHG emission from LUC

5.1. Marginal or average values

The conventional approach to estimating GHG balances of
biofuels has relied on the so-called attributional LCA. Under this
approach, average values of inputs are used in the biofuel life cycle
inventory, and average emission factors are applied in the impact
assessment. Average values are typically employed at the producer
level to estimate GHG emissions of specific biofuel pathways.
Considerable work is being done to include land-use impacts on
LCA [117,118]. Mean values are used to allocate GHG emissions
across the total production of feedstock while marginal values
serve to allocate GHG emissions across the increase in output [22].

LUCs induced by increased feedstock demand for biofuels are
a typically dynamic and policy-driven process. Focusing on the
policy perspectives, marginal values have been used to estimate
the additional quantity of land required to produce feedstock for
biofuels. Consequential LCA evaluates the changes produced in a
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system as a consequence of a decision. Thus, several authors have
applied this approach to assess global –marginal – LUC induced by
biofuel mandates and its effect on biofuel GHG emission balance
[14,84,119].

5.2. Selecting emission factors for LUC

Emission factors need to be estimated to calculate GHG emissions
from LUC. LCI databases provide emission factors for the processes
and inputs included in biofuel LCI. Some commonly used LCI
databases include GREET, Ecoinvents, and GHGenius.

The GREET model comprises an extensive database of USA
transportation options, including different fuel and vehicle types.
It has been mainly used to perform LCA of biofuel pathways that
are considered in USA biofuel regulation. Ecoinvent is mainly a
database of European LCI data [120] and has been widely applied
to perform LCA of biofuel pathways [121]. GHGenius is a LCA
model for the transportation sector, maintained by Natural
Resources Canada.

Currently, none of these databases explicitly incorporates
emission factors for LUC. Because the estimation of LUC emission
factors is more uncertain and variable than others, modellers are
finding ways to integrate these emission factors into policy-
oriented models. In the meantime, some LCA models have linked
LUC–GHG emission factors from other sources.

The estimation of LUC–GHG emission factors, however, is still
controversial. LUC–GHG emission factors are derived from the
change in carbon stocks in land, below and aboveground biomass,
and additional processes capturing or emitting GHG. Different
GHG and LUC processes can then be included in the estimation.

Emission factors are also highly dependent on the type of land
cover and activity of each previous and current land-use. Different
types of land-uses are then associated with different GHG emis-
sion factors. There is still no consensus about which type of land-
uses should be included or how land should be classified. The
classification of land-uses should be in line with the possibility of
estimating emission factors for each specific LUC.

6. Adaptation, coupling, and integration of models

LCA models include LUC–GHG emissions induced by biofuel
production but require coupling with other modelling approaches,
development of more simple but integrated models, or the
expansion of existing models.

6.1. Coupled models

Coupled models are more complex than integrated ones.
Because outputs remain independent from each of the models
that have been coupled, the models can be adapted to address
problems at different scales. Moreover, complex descriptions of
the economic and biophysical drivers of biofuel production and
their impact on LUC–GHG emissions can be created by linking
models that treat each specific issue.

Here, model coupling used in different approaches is reported
to show the types of models and logical sequence to link
independent models that allow estimation of LUC–GHG emissions
induced by biofuel mandates. Searchinger et al. [14] coupled
the FAPRI global PE model [122] with the GREET LCA model to
estimate dLUC and iLUC GHG emissions induced by corn-based
ethanol production required to achieve the USA ethanol mandate.
The FAPRI economic model estimates two types of iLUC: the
quantity of land required to relocate displaced corn production
for other purposes and soybean displaced from rotation in the
same land. Shares of converted land types are assigned based on

the proportion of lands that has been transformed into cropland in
the past. These data are used as input for GREET to calculate the
GHG emission reduction potential of USA corn-based ethanol.

The USA EPA implemented a more sophisticated modelling
framework, coupling PE and GE models, optimisation, and LCA
models [84]. The impact of USA biofuel mandates on global and
national LUC is estimated by linking GTAP with FAPRI, a GE and PE
model, respectively. LUCs at the country level are estimated
through the FASOM spatial explicit optimisation model of the
USA agricultural sector. LUC–GHG emissions from biofuel produc-
tion are estimated based on the historical share of converted land-
uses and emissions factors estimated by Winrock [123] based on
carbon stock changes between land-use types. Similarly, these
data are used as input into the GREET model to estimate biofuel
GHG emission balance.

In the case of the EU, the spatial patterns of biofuel crop
distribution were studied linking economic, biophysical, and
spatially explicit models. The coupled model links MAGNET,
the IMPAGE, and the Dyna-CLUE models [36,85], respectively.
The dynamic version of the CLUE model is a spatially explicit
model for the analysis of spatial patterns of LUC [124,125]. CLUE
mainly uses regression analysis to estimate land-use transitions
based on a set of location variables that are assumed to guide land-
management decisions on land allocation.

The coupled MAGNET-IMAGE-CLUE model constructs a
spatially explicit, multi-scale, quantitative description of LUCs
through the determination and quantification of location factors
of land-uses based on the actual land-use structure. The approach
determines the location of crop expansion and consequently the
direct LUC induced by biofuel feedstock production.

A coupled approach has also been proposed by Popp et al. [126]
to address biofuel and LUC interactions, linking a global vegetation
and hydrology model (LPJmL), a global land-use optimisation
model (MAgPIE), and the global energy–economy–climate model
(ReMIND). LPJmL is a spatially explicit model that simulates
biophysical, biogeochemical, and hydrological processes in the
global land surface. MAgPIE is a mathematical programming
model covering the most important agricultural crop and livestock
production types in 10 economic regions worldwide. The non-
linear objective function minimises the total cost of production for
a given amount of regional food and bioenergy demand. Finally,
ReMIND is an integrated modelling framework that links an
energy system model with a macro-economic inter-temporal
growth model and a climate change model that simulated the
effect of GHG emissions on global mean temperature.

Modellers have made great improvements in model coupling. It
is also true, however, that more detailed analysis is required. Golub
et al. [127], for example, introduced the possibility of conversion of
unmanaged forest land to land under economic use by coupling
GTAP with an inter-temporal forestry model for better representa-
tion of the forestry sector. In each region, the supply of new land
depends on the net present value of land returns, i.e., benefits are
high enough to cover the costs of accessing new land. Thus, model
coupling allows treating in more detail complex issues that can
then be linked to a bigger model. Couple models dealing with
biofuels and LUC need to be extended to cover other dimensions
that are still roughly represented. The case of forest dynamics is
one example.

6.2. Integrated models

Endogenous estimation of LUC–GHG emissions has also been
improved in economic models [128]. Ahammad and Mi [129]
extended the GTEM model to allow modelling LUC and associated
GHG emissions. However, although integrated models can be
useful for a cohesive and holistic representation of the system,
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coupled models tend to give a more detailed representation of the
interactions governing the system.

The main advantage of integrated models is that because the
model is developed in the same modelling environment, consis-
tency is increased and adapting and transforming outputs beyond
the original intent of the model is avoided. Integrated models are
more robust in terms of linking different independent modules,
but this consistency is gained at the expense of simpler represen-
tations of the system components.

Most integrated approaches were implemented in SD models.
Although it is true that simple models cannot account for the
complexity of the system being analysed, it is also true that very
complex models are also difficult to understand, construct, and
use. Thus, some simplifications are appropriate in the quest to
understand complex systems.

The reviewed SD models, however, rely on simple structures
that mimic the overall behaviour of the system. Although this
reliance can be an advantage to avoid model coupling, when data
are limited or when exploratory assessments are performed, it can
be a simplistic approach for quantitatively analysing complex
interactions. To this end, SD models can be used as exploratory
tools to further perform more detailed assessments.

On the other hand, integrated models that link different
modelling approaches can elucidate the complex dimension of
time and space dynamics. Scheffran and Ben Dor [39], for instance,
focused on integrating SD and AB modelling in a spatially explicit
model to account for the space–time dependency of LUC in biofuel
production. They assessed land competition for bioenergy crops in
Illinois, including corn, soybean, miscanthus, and switch-grass
biofuel feedstock. The integrated model maximises the profit of
individual farmers based on crop selection and cost minimisation.
Thus, an additional effort needs to be directed to develop inte-
grated approaches that are capable of addressing time–space
interactions.

6.3. Linking economic variables with location factors

Modelling approaches have applied two strategies to account
for economic–spatial interactions, namely inclusion of economic
features in spatially explicit models and inclusion of spatial
features in economic models. The main limitation of spatially
explicit models is that because they focus on location patterns,
their representation of economic drivers of LUC is limited. This
limitation motivated the link of spatially explicit models with
economic approaches. The KLUM was linked to a modified version
of the GTAP model to account for macro-economic variables
driving land allocation decisions [37]. Replacing the land allocation
mechanism of GTAP with KLUM links the models. In the coupled
model, land allocation in KLUM depends on the profit maximisa-
tion decision of the landowner in response to GTAP equilibrium
prices. The biophysical characteristics of land that define crop yield
are exogenously introduced by linking KLUM to the Lund–Pots-
dam–Jena dynamic global vegetation model. Although no applica-
tion to biofuel LUC–GHG emissions has been performed with this
coupled model, it is clear that the need to link economic and
location variables is not specific to the biofuel context but is an
issue that needs to be addressed in any LUC model. In this respect,
addressing biofuel impact has helped with exploration of the
challenging issues of LUC modelling.

Biophysical data can be used to calibrate land supply functions
based on marginal productivity information [40]. The advantage of
this approach is that asymptotic limits to land expansion and
decreasing returns to scale can be modelled explicitly [82]. The
transformation elasticity can be estimated, for instance, using
land-use transition probabilities [130]. A conventional approach
for this estimation is to use time series data or satellite images

[131,132]. Thus, there are good perspectives on the linkage of
economic and location factors; however, using transition prob-
abilities would require detailed geo-referenced data and addi-
tional computational efforts.

7. Definition of aggregation issues

7.1. Selecting the level of aggregation

The level of aggregation of region and sectors is linked to the
model scale. Most economic models aggregate regions and sectors.
In the case of GE models, because they focus on the whole
economy, their representation of sectors and regions is highly
aggregated. The GTAP model, for instance, is a multi-regional
model of 16 regions and 21 sectors. This GTAP 6 database accounts
for 87 countries/regions and 57 products/sectors. The level of
sector aggregation does not allow modelling decisions on biofuel
feedstock type, especially for the case of biodiesel where oilseeds
and oleaginous fruits are treated as a single aggregate. Further-
more, the type of region aggregation makes some models less
suitable for assessing effects in specific countries. In the EPPA
model, for example, because of its focus on climate change
policies, regions were aggregated into Annex B and Non-Annex B
countries of the Kyoto Protocol. This approach may bias the
assessment of LUC impacts of biofuels because large players on
the biofuels and agricultural market are also aggregated. Conse-
quently, detailed information of the national biofuel and agricul-
tural sectors may be missing in models where the type of country/
region aggregation responds to other criteria.

Current GE models account only for a few biofuel production
pathways, namely sugar cane, sugar beet, and coarse-grain ethanol
(GTAP, MAGNET), wheat ethanol (MAGNET), and average lingo-
cellulosic ethanol (EPPA). This type of aggregation can be suitable
for assessing global impacts of biofuel production but is less
suitable for specific biofuel production pathways. This reduced
suitability exists because it is impossible to track a specific biofuel
supply chain. Feedstock selection by a biofuel producer within the
country is not possible, and regional specificities are not accounted
for, constraining the ability of global models to assess specific
biofuel supply chains. Therefore, complementary models are
needed that focus on specific biofuel production pathways.

7.2. Accounting for the heterogeneity of actors

Most models have an aggregated representation of actors
independently of the model scale, which may occur because
large-scale models required large sets of global data, data are
missing, or the scope of the assessment does not require the
disaggregation of actors. Equilibrium models are typically aggre-
gated models. GE models represent the whole economy through
aggregated economic actors at the national level. The GTAP model,
for example, represents the global economy as a multi-region
economy. Each regional economy is modelled by a representative
household, which maximises utility, and a set of producers of
specific goods and services, which maximise profit. In each region,
the model assumes a single representative producer of each good.
Although this aggregation level is necessary to handle global
models, actor homogeneity makes the model less suitable for
assessing actor-oriented biofuel policies.

The Brazilian Biodiesel Program, for instance, explicitly sup-
ports small agricultural producers [133], and the Argentinean
biodiesel policy [134] explicitly supports small and medium
biodiesel producers. Accounting for these national policies may
require disaggregation of actors at least at the country level.
Moreover, beyond the national biofuel policy, several regions have
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implemented additional policies to support their local biofuel
industry. At this stage, if the model aims to assess the effect of
local biofuel policies, further disaggregation of actors is required.
Accounting for these policies may significantly influence the
location patterns of feedstock production.

Actor heterogeneity is better represented in AB models. Parker
et al. [72] provide several examples of multi-agent LUC models
that focus on individual heterogeneous agents. Because AB models
focus on simulating actor decisions, they overcome some limita-
tions of equilibrium and SD models mainly by including different
actor types and individual decision-making processes.

For instance, Rossetti et al. [135] assessed the market diffusion of
second-generation biofuels in Austria. Products are differentiated
based on multiple attributes such as price, quality, or environmental
performance. The level of detail required to account for actor
heterogeneity, however, makes these models most suitable for
regional or local applications.

Another example is offered by the Stanford-Carnegie Biofuels
Project. The Stanford-Carnegie Project uses AB modelling to assess
the effects of sugar cane-based ethanol production on land-use
distribution in northern Brazil. The model simulates farmer
response to increased demand for sugar cane and the displace-
ment effects on competing land-cover classes [136]. Unfortunately
this type of model is not commonly found in the biofuels–LUC–
GHG literature. Most modelling approaches focused on assessing
global impact of biofuels production on LUC.

SD approaches, on the other hand, have relied on relatively
simple models with an aggregated representation of actors. In
Stamboulis and Papachristos [51], for instance, the simple SD
diffusion model is divided in three sectors: feedstock production,
biofuel production, and biofuel use. Feedstock production is
centred on the provision of land. Biofuels production is repre-
sented by the investment in production capacity, and biofuels use
is based on the availability of retailing sites and consumer
demand. Each process is represented by an aggregated actor
(i.e., farmer, biofuel producer, consumer), which determines the
dynamics of the transition to biofuels.

Then, with the exception of AB models, the level of aggregation
of actors in existing models needs to be refined to account for
the effect that different types of actors have on biofuel supply.
Accordingly, if there are different types of producers, modellers
need to define the level of disaggregation. This disaggregation
level should be in line with the type of policies and market
structure affecting the biofuel supply chain.

7.3. Land heterogeneity and aggregation

LUC modelling requires accounting for land heterogeneity.
Disaggregation is then required to account for different types of
land, mainly in terms of productivity, carbon stocks to assess LUC,
and related GHG emissions from biofuel production. Moreover, the
use of certain types of land for biofuel production has been
regulated in biofuel policies. Consequently, disaggregation is also
required to assess the eligibility of biofuel production locations.

Considerable work has been done to account for different land
productivity levels. In the reviewed economic models, land is
mainly disaggregated based on geo-referenced classification of
agricultural and forest land-use data. For instance, Monfreda et al.
[137] provided geo-referenced average harvested area and yield
values for 175 individual crops at the global scale. Lee et al. [138]
disaggregated land-use by AEZ based on global land-cover data-
bases. Each AEZ defines a parcel of land with similar agro-
ecological characteristics, such as precipitation, temperature, soil
type, and terrain conditions, and with a similar combination of
constraints and potential for land use. This extension of the
standard GTAP database allows a more refined description of

feedstock location patterns and a better modelling of LUC impacts
of biofuel production.

Much effort has been also made to improve the disaggregation
of national land-use data in global models. In the FAPRI model, for
example, land heterogeneity is specifically detailed for the USA
and Brazil [139]. Nonetheless, the representation of land hetero-
geneity at the national and global scales is still rough. Most
developments at the national level rely on global land-use data-
bases. Because their resolution is rough, classification of land-uses
sometimes does not match the real landscape, which is a problem
for estimating the impact of biofuel policies on LUC because of
biased induced by the misclassification of land-use data [140].

Disaggregation of carbon stocks in land is necessary for the
estimation of LUC–GHG emissions. Consistent work has been put
into representing carbon stock heterogeneity in land and the
estimation of carbon stock changes. For example, Houghton and
Hackler [141] provided annual estimates of the net change in
carbon from deliberate changes in land-cover and land-use.
Emission factors are especially estimated for forest clearing for
agriculture and the harvest of wood for wood products or energy.

In the context of the assessment of biofuel LUC–GHG emissions,
Winrock International [123] estimated the extent of recent land-
cover change at national and sub-national scales for all countries
using data derived from satellite imagery. GHG emission factors for
various land-cover conversions are estimated using guidelines of
the Intergovernmental Panel on Climate Change (IPCC) [142].
Results from Winrock’s analysis were incorporated into the EPA’s
RFS program [84]. Specific land-use classes important for LUC–
GHG emissions, such as wetlands, have been defined. However, in
terms of disaggregation, more efforts are required in, for example,
the disaggregation of carbon stocks by crop types.

Land disaggregation is also required to study the eligibility
of regions as feedstock production areas. In the EU–RED [5], for
example, command and control instruments are used to regulate
feedstock location. This criterion implies that feedstock cannot be
cultivated in forestland with more than 30% canopy cover.
Accounting for this criterion will imply disaggregating forestland
in different types.

Some work is being done to overcome this limitation by
adapting existing land-use databases [143,144]. However, this
adaption and integration into models and policy analysis is still
under development.

Finally, in some cases, biofuel policy aims to promote cultiva-
tion in certain land-use types. In the EU–RED, a credit is given for
energy crop cultivation in set-aside land. In that case, further
disaggregation of land-use types is required. These constraints and
incentives for selected land-uses can significantly change land-use
allocation patterns. Then, modelling approaches need further
development for the integration of specific land-uses critical in
the assessment of LUC–GHG emissions.

8. Geographical coverage and scale issues

8.1. Definition of geographical coverage

Scale choices are sometimes limited by the underlying struc-
ture of models. Geographical coverage has been addressed in two
ways: the model scale defines the type of assessment, or the type
of assessment defines the model scale.

In the first case, GE models have been mainly applied to assess
the worldwide implications of biofuel production. In the context of
this assessment, the typical scale of these models is the whole world.

The AGLINK-COSIMO model, for example, is a dynamic multi-
region model of the world agricultural sector. The model is used to
estimate the impact of biofuel production on land requirements to
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cover biofuel demand [145,146]. Global equilibrium models repre-
sent the whole world and then focus on assessing international
iLUC [17]. Although it is pertinent to use a worldwide scale model
for this purpose, national specificities are very simplified. Thus,
this type of model should be chosen to assess global integrations,
but it should be kept in mind that important simplifications are
being made inside these global models.

The use of equilibrium models at the national scale to assess
bioenergy impacts on LUC is less common, however. Ignaciuk and
Dellink [147], for instance, proposed a national equilibrium model
to estimate the role of multi-product crops for bioelectricity
generation in Poland. They focus on the competition between
agriculture and bioenergy for limited land resources and changes
in land allocation. The main advantage of their application is the
acquisition of a detailed description of the sector under study and
its implications for the national economy. On the other hand, in
national scale models, several simplifications, such as the link to
global markets, need to be made because physical system bound-
aries are fixed at the nation’s border. Thus, there is room for
improvement in the linkage of global and national economic
models.

With respect to scale and geographical coverage, therefore, two
main issues need to be solved in economic models: the represen-
tation of market forces at different scales and the linkage of these
forces between scales and with other modelling approaches.

Spatially explicit models provide the flexibility to assess the
impacts of biofuel production on LUC at different space scales.
Although scale choice is critical, the literature provides examples
of global, national, and regional scales in spatially explicit models.
Multi-scale analysis of land-use driving factors and their applica-
tion in spatially explicit modelling are crucial in assessing local
and global impacts of biofuel production on LUC [148].

Li et al. [149] proposed a spatial modelling framework to
simulate long-term, regional changes in croplands and short-term,
local fluctuations (such as rotations). The approach integrates a
spatially explicit model and a land transformation model. A short-
term non-consecutive layer of past land-cover data is used to
calibrate the neural network of the land transformation model and
produce a forecast for 2020 of biofuel cropland spatial distribution
in North Dakota.

Wu et al. [42], on the other hand, proposed an integrated
modelling framework to simulate individual agricultural producer
decisions on sown areas of major crops in a global scale. The
integrated modelling framework focused on inter-cropland LUC
links a crop yield model (Geographic Information Systems-based
Environmental Policy Integrated Climate, or EPIC), used to esti-
mate yields of different crop types under a given biophysical and
management environment; a crop price model (International Food
Policy and Agricultural Simulation, or IFPSIM), employed to assess
the price of crops on the international market; and a crop decision
model to assess crop allocation by individual farmers. This attempt
is the first to account for local drivers in global models.

Provided that AB models focus on individual decision-making
processes, aggregations may not be desired. Detailed data are
required to develop models of heterogeneous actor behaviour, and
scale in AB models is generally limited to local/regional applica-
tions. For instance, an integrated SD–AB model was used at the
county level to assess land-use competition for bioenergy crops in
Illinois [39]. Data requirements may reduce AB model applicability
for estimating the impact of national biofuel policies and their
impact on global markets.

SD models have been applied mainly at the national scale to assess
the evolution of the biofuel industry. Several SDmodels are being used
to simulate the biofuel supply chain in the USA [47,48,100,101].
Alternatively, studies by Sheehan [60,150] addressed the global LUC
induced by cellulosic bioethanol production in the USA. The model

does not, however, account for economics and focuses mainly on
estimating the GHG emission balance of USA ethanol.

Models at the regional scale have been developed in SD. Szarka
et al. [62] proposed a model to assess the impact of bioenergy
production on GHG emissions at the Austrian–Hungarian cross-
border area. An advantage of SD models is that implementation of
scale issues is more flexible and scale can be set to fit the research
purposes. This adjustment is possible because data requirements
are less strictly needed, as the modelling technique focuses on
describing the time behavioural patterns of the system.

8.2. Relation of model scale to system boundaries

The choice of scale is associated with the selection of the
system boundaries. The system boundaries are fixed based on the
processes included in the estimation of biofuel GES. In the case of
LUCs, these processes may include direct LUC from the supply of
land for the feedstock production, indirect LUC from the displace-
ment of other land-uses or uses of the biomass, and the “credit”
for co-products supply. The system boundary of the model can
derive from biofuels policy. In the EU–RED, for example, only GHG
emissions from direct LUC are included. On the other hand, in the
USA EPA-RFS, both direct and indirect LUCs are included.

Concerning biofuel impact on LUC, several GE models have been
used to assess global iLUC [17]. They account for land-use displace-
ments in other countries resulting from increased demand for biofuel
feedstock in countries/regions with a biofuel mandate. Global agri-
cultural commodity markets make it possible for iLUC to occur in
other countries, which justifies the choice of a global model. On the
other hand, if only dLUC GHG emissions are included (as in the EU–
RED case), a more detailed national scale model may be preferable.
Indeed, in the EPA approach, a global GE model is linked to a national
PE model of the USA agricultural sector. Model linkage is helpful in
expanding system boundaries while preserving the level of detail
required to asses LUC impacts at different scales. National scale
models can be adapted to deal with biofuel policies that focus on a
particular biofuel pathway. Thus, the challenge is how to couple
models at different space scales.

Accounting for the impact of co-product production also
requires a global approach. Co-products from biofuel production,
such as meals and dried distilled grains with solubles, can be used
in the animal feed industry as substitutes for grains. Global GE
models can be used to estimate the international consequences of
increased co-product availability, as Taheripour et al. [77] did in
using the GTAP model to analyse the impact of co-products from
biofuel production on LUC at the global level.

In SD models, on the other hand, the linkage to international
markets has been treated in a simplified way, mainly focused on
selected biofuel supply chains at the country level. Indeed, the
expansion of the model boundaries to account for global issues in
SD models led to a simplified representation of the national biofuel
industry.

Three approaches were considered to account for global eco-
nomic markets in SD models, namely exogenous introduction of
reference price scenarios, endogenous simulation of price, and
price linkage to global economic variables. Exogenous prices can
be modelled based on different scenarios for biofuel feedstock and
fuel prices [47–49]. On the other hand, several recent studies
applied Sterman’s generic commodity market model [151] to give
an endogenous explanation for changes in prices at the country
level, as when Jahara et al. and Shri Dewi et al. [52,55] studied the
impact of biofuel demand on the Malaysian palm oil industry.
Endogenous simulations are useful for understanding business
cycle dynamics, but in these applications, they disregard other
exogenous variables affecting price.
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9. Accounting for time-dependence

9.1. Modelling time dynamics

A distinction should be made regarding the short- and long-
term effects of biofuel production. The approach to accounting for
time in models influences its prediction capacity and its adequacy
for evaluating different effects in time. Although some models
are more suited for assessing long-term impacts, others may be
preferable for short- to medium-term analyses. Actors may pro-
duce a short-term effect that generates conjectural market
changes that then disappear. Structural changes, on the contrary,
are typically observed in the medium or long term. For instance,
biofuel production may significantly increase commodity prices in
the short run that may be also associated with stock availability
and the influence of meteorological conditions.

In the long term, high commodity prices may encourage new
producers to come into business, increasing supply and reducing
prices. Although producers need time to adapt their market
expectations and take production actions, policies also need time
to be designed and implemented. Land conversions between
managed lands, for instance, are typically short- to medium-
term conversions because it is relatively easy to convert land
among economic land-uses. Expansion into natural land requires a
longer period because conversion costs are higher and legislation
sometimes constrains expansion possibilities.

Three approaches were applied to account for time dynamics:
comparative-static, recursive–dynamic, and fully inter-temporal.

Static models assess the reaction of the economy at a given time
independent of the reaction at any other time but the reference
year. For instance, the GTAP model version used to address the
impact of biofuel policies on LUC is a comparative–static model
that solves equations for the year 2020, with a base year in the
2007 economy.

Recursive-dynamic models solve for two successive years, taking as
reference the previous period. For instance, the EPPA model solves in
a recursive 5-year interval, modelling the 1997 world economy from
2000 to 2100, and is more suited for long-term analyses. FAPRI is a
recursive–dynamic model that solves simultaneous equations each
year, more suitable for short- to medium-term analysis.

The FASOM model has been extended to include simulation of
GHG emissions from LUC [152]. FASOM-GHG yields a recursive–
dynamic simulation of prices, production, and consumption and
GHG emissions under the chosen policy scenario. It is a recursive–
dynamic, multi-period, inter-temporal, price-endogenous, mathe-
matical programming model depicting land transfers between and
within the agricultural and forest sectors in the USA. The model is
medium- to long-term oriented with simulations typically extend-
ing from 40 to 100 years on a 5-year time-step basis.

The POLYSYS [88] modelling framework is a set of coupled
modules that form a modified type of Equilibrium Displacement
Model of the USA agricultural sector. Endogenous variables are
measured as proportionate change, responding to exogenous
changes. The advantage of POLYSIS is that it can be calibrated to
any exogenous database. Crop demand and prices are estimated
through the simultaneous solution of a set of equations using an
iterative optimisation algorithm. The model forecasts prices,
demand, and production recursively for the next year, based on
average values of the previous 2 years of data.

Wong and Alavalapati [153] proposed the Global Change
Assessment Model, a global, recursive–dynamic, economic PE
model that solves in 5-year time steps to the year 2095. The
model was applied to assess the expected reduction in the carbon
intensity of the upstream stages of advanced biofuel production
due to shifting global agricultural productivities and land-use
patterns [154].

Inter-temporal or fully dynamic models solve for two succes-
sive periods, but the time step can be set significantly small to
capture the dynamics of the change. Inter-temporal models can
provide insights on both the short- and long-term effects of
biofuel production. Based on the FASOM-GHG model, Latta et al.
[155] developed an inter-temporal PE model of the forest and
agricultural sectors to assess the effect of biomass electricity
expansion on LUC and GHG emissions in the USA. At different
points in time, inter-temporal optimisation procedures yielded
different biomass feedstock portfolios and GHG performances.
They analysed the implications of restricting feedstock eligibility,
LUC, and commodity substitution, highlighting the importance of
dynamic considerations.

GE models used to assess biofuel impact on LUC are static or
recursive–dynamic models. Static and recursive–dynamic models
share in common the use of a baseline year to which outputs are
referred. However, in the static model, we have only two points in
time (the initial and final year) while recursive–dynamic models
divide this time period into finite intervals (e.g., 5 years), providing
a clearer representation of the evolution of the system over time.
These models have proved useful for assessing structural changes
in the medium to long term. The MAGNET model, for example,
focused on the analysis of long-term land-use dynamics due to
biofuel introduction [156,157].

On the other hand, the static approach implies some limitations
in representing time-dependent processes. For instance, the study
of transitional economies and the fast-growing biofuel industry
requires a dynamic systems approach. In these cases, the static
assumption for the representative economy may bias the simula-
tion and forecasting accuracy of the model. Transitional econo-
mies, such as Brazil, Argentina, and Malaysia, are expected to play
a significant role in biofuel production because of the availability
of feedstock. In contrast, developed countries are investing in
biofuels research, leading to the emergence of new biofuel
technologies that, for instance, can reduce competition for land.
These aspects are essentially treated in fully dynamic or inter-
temporal models.

Although economic and optimisation models can be dynamic,
time dynamics are mainly addressed in SD models [54,60,61,100,101].
SD applies an integration (and differentiation) approach to capture
the rate of change of time-dependent variables. The time-step of the
simulation can be set quite small to simulate near-continuous time
behaviour. Because time is considered a variable, the approach allows
exploring short- and long-term effects of biofuel production over any
projected period.

The BioLUC model [23,158] is a SD simulation model for global
LUC that focuses on the evolution of LUC based on the change and
interaction over time of crucial socio-economic factors. The model
was used to explore different scenarios of biofuel demand and
their implications for LUC. Simulations allow assessing the sus-
tainability of biofuel production in the context of other relevant
factors, including population growth, crop agricultural yields, and
supply and demand of land-based agricultural products [23].

9.2. Discounting GHG emissions

GHG emissions from LUC differ not only in amount but also in
their discharge patterns over time, which implies discounting
emissions to make policy decisions about the impact of biofuel
production [159]. The conventional method to account for time
in the assessment of LUC–GHG emissions is based on a “straight-
line amortisation” approach. GHG emissions from carbon stock
changes in land due to feedstock expansion are equally divided
over time, assuming a fixed period during which the feedstock is
assumed to be cultivated in a certain type of land. In the EU–RED,
for instance, this time period is set at 20 years.
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De Gorter and Tsur [160] supported this view by proposing a
GHG reduction standard that accounts for a range of discount rates
and an upper bound on the GHG payback period. In the EU–RFS,
GHG emissions from LUC are discounted to account for the present
consequences on LUC of biofuel production. Moreover, the time
dependency of GHG emissions from biomass production was also
addressed in work by Szarka et al. [62]. Their model simulated the
change in CO2 emissions from regional biomass alternatives
for energetic purposes, which allowed for a good representation
of the evolution of GHG emissions over time. However, although
several approaches are available to discount LUC GHG emissions,
there seems to be no consensus on the approach or approaches
that should be included in policy.

10. Concluding remarks

The assessment of the impact of biofuel production (and policy)
on LUC and its effect on GHG emissions involves understanding
the complex and multiple interactions that need to be considered
at different time and space scales. Model integration and coupling
seems to be the way to address this complex system. It is
concluded that coupled models are more suitable for addressing
global LUC–GHG emissions while integrated models should be
reserved for evaluating effects at national/regional scales. The
estimation of LUC–GHG emissions from biofuel production needs
both complementary approaches. However, a problem still persists
regarding linking approaches between models that focus on
different aspects of the LUC–GHG issues, as well as addressing
different time and space scales. Although this review focused on
the modelling aspects, these issues remain quite important for
future analysis in the case of data generation and the development
of consistent databases.

Considerable progress has been made in coupling economic,
biophysical, LCA, and spatial models, but several areas have been
identified for improvement, including the representation of spe-
cific biofuel production pathways; the inclusion of more complete
policy frameworks; the accounting for forest dynamics and local
drivers of LUC; the modelling of spatial heterogeneity of LUC
patterns and associated GHG emissions; and the time-dependency
of effects. Examples of these applications exist, but they have yet
to be linked to the assessment of LUC–GHG emissions induced by
the provision of land for feedstock production for biofuels.
Modellers need to take advantage of the available examples and
the capabilities of computer-based simulation and more advanced
modelling techniques.

On the other hand, integrated models provide a more consis-
tent representation of the interactions among biofuels, LUC, and
GHG emissions, avoiding problems of different time and space
scaling. Indeed, the reviewed models have a unique time horizon
and modelling approach for time and a unique spatial coverage
and land disaggregation approach. A compromise then needs to be
found between consistency and complexity that captures simulta-
neously the holistic and complex dependence of LUC–GHG emis-
sions from agricultural-based biofuels on global market forces and
the specificities of local conditions.

How to isolate the effect of biofuels remains a subject of discus-
sion. Independently of the case of biofuels, the isolation of LUC from
the agricultural sector and the assessment of crop-specific biofuel
pathways have already been reported as an unsolved problem. Thus,
more robust estimates cannot be expected in the case of biofuels,
where additional complexity is involved. The marginal approach to
iLUC is considered valid for the case of dedicated energy crops.
Regarding multi-purpose feedstocks, additional steps are required to
isolate the effect of biofuels. LUC from multi-purpose feedstocks
needs to be assigned among the different uses of the feedstock that

respond to market-driven forces. At least in the case of economic-
based approaches, it is proposed that this allocation be made using
the market value of products. In the case of other non-market LUC
drivers, allocation procedures still need to be developed to isolate the
effect of biofuels on LUC.

Inclusion of LUC–GHG emissions from biofuels in policy then
needs to account for the current state of the art in the estimation.
Although it is true that high uncertainty is linked to the estimation
of LUC–GHG emissions from biofuels and that part of this
uncertainty comes from the limitations of current methodologies,
models have also been largely improved and linked to account for
local and global drivers and capture the specificities of biofuel
production, LUC, and GHG emissions.

There is also room for further developing current approaches
with more consistent data and methodologies. The inclusion of
iLUC into regulation or the monitoring of its effects remains an
issue to be solved. Governments have adopted different
approaches that also influence the type of models being used to
address LUC–GHG emissions from biofuels.

Clear procedures and common guidelines, however, are
required to harmonise reporting. In this paper, key modelling
issues that influence the estimation of LUC–GHG emissions from
biofuels are identified and discussed. Consideration of these
aspects can help in the development of guidelines for reporting
LUC–GHG emissions from biofuels. Using this guideline can help
modellers to define the most suitable modelling approaches and
policy makers to understand the underlying assumptions of the
estimation of LUC–GHG emissions from biofuels and the implica-
tions for inclusion of LUC–GHG emissions in policy.
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