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1 Proof of Lemma 3.1

Proof Given € > 0, let Ue = {0 : || —0¢| < €} be a neighborhood of 6. Since P2(@®) includes
probability measures that are parameterized by finite dimensional ® € @ C RP, there exists a test function

@, = O (X)) for testing Hy : © = 0 against H : © € US and universal constants B and b such that

Po, (@) < Bexp(—bn)and sup Pg(l — @y ) < Bexp(—bn); (D
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see|Le Cam|(1986); Ghosal et al.| (2000) for details. The definition of W5 and U imply that
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The first €2 term in (i) follows from the definition of U. Theorem 2.1 (b) implies that || @ — 8¢ ||* < 4M2
for © € O¢ in (ii).
We show that the second term in goes to zero a.s. [P‘éoo].
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Using and Markov’s inequality, @, — 0 a.s. [P%"O]. To prove that TT,, (6 € US [X1.,) — O ass. [Pgoo],
it is sufficient to show that

(a) Po, { — fuc e o >><<‘|990 dTT1,.(0)| < Bexp(—nf) for some f3;
(b) exp(nB) [g [Tiz: ‘p(;(”eeo dTT,,(8) — oo as. [Pg] for every f.

To show (a), note that
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Fubini’s theorem implies (i) and (ii) follows from (13). To show (b), given any 3 > 0, choose € < 3 so that
if KL(p(-[©o)llp(+©)) < €, then

n
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a.s. [Pgoo]. The null set N involved in lll may depend on 0. To show that 1i is true for all © € O, we
define a product space E = {(w, 0) : exp(np) [ [, % — o0}, then 1| shows that P%(:)(Eg) =1
for all © € @. Another application of Fubini’s theorem shows that there exists N in the probability space
on which X;;s are defined such that P%"O(N) = 0 and if w ¢ N, then TT;(E®) = 1 for all j; therefore,



exp(nB) [Ti, p((;(( ‘IBOO)) — oo for all w ¢ E®, which in turn implies that
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a.s. [P%"O] by Fatou’s lemma, since liminf TT,, (X (0¢)) > 0 Ve > 0.
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We now follow a strategy similar to to prove that the third term in (16 . goes to zero as. [PF].
Using and , it is enough to show that Py, [(1 — fec 10—00 %111, %dnn(e)} <
B exp(—np) for some B. Following (18),
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a.s. [P‘é"o]. The last inequality in follows from Assumption 2.1 (a).
Finally, Assumption (A2) implies that 3ng such that ¥n > ng M2 exp(—bn) < €2, Then combining

(18], (20), and 1) with (16} yields

Pay (W3 (800, T (X1m)) > €}] < €® +8Be” +Be? = (9B + 1)e* = 0 ®)
as n — oo; therefore, TT,, (-|X1.1,) is strongly consistent at 0. [ |

2 Proof of Proposition 3.1

The proof of this lemma follows from that of Lemma 3.1. Without loss of generality assume that all the
subsets are of equal size and that n = Km. If m — oo, then the number of data in any subset X, goes
to oo; therefore, this proposition is proved by replacing n with m and TTy, (+[X1.n,) with Ty (-[X[y) in the

proof of Lemma 3.1.



3 Proof of Proposition 3.2

The proof of this proposition also follows from that of Lemma 3.1. Notice that ﬂiﬁ‘(-le) is equivalent

to Ty, ([ Xk, - .., X[k]), the posterior distribution that has n data points; therefore, if m — oo, then

N

Ktimes

n = Km — oo and the proof of strong consistency of niﬁux[k]) at 0 follows from the proof of Lemma

3.1.

4 Proof of Theorem 3.3

For any set U C @, the posterior probability TT,, (U [X1.1,)

T (U X1 ) = A T2 (U X)) +Zw (U Xpiy),

where Z};l Ax = 1. Because {T%(}E:l are continuous measure preserving Borel maps RP —

definition of push-forward measures implies that
~SA
M, (WX ) = T2 (U X))

fork =1,..., K. Substituting in (9) yields

K
T (U X 1) = A TIA(UIX ) + ) A T2 (U X)),
k=2

Using Proposition 3.2, if € > 0 is given, then there exists ny such that
& [W3(8e,, TN (X)) < €] > 1—¢?
for all n > n;. Using (T1) and (12),
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a.s. [P‘é"o]. This proves that TT,, (-|X1.,) is strongly consistent at 6.
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5 Proof of Theorem 3.4

Let U ={0 :||®—0¢ || < en} be a neighborhood of ©y. Using Assumptions (A1) — (A4) and noticing
that P, (@) includes probability measures that are parameterized by finite dimensional ® € @ C RP, there

exists a test function @y, = @, (X;.,) for testing Hy : © = 0 against H : © € US, and universal constants
B and b such that

Po,(®Prn) < Bexp(—bn)and sup Pg(l — ®Py) < Bexp(—bn); (15)
ocusy

see|Le Cam| (1986, Chapter 16) for details. The definition of W5 and U,, imply that
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The first €2 term in (i) follows from the definition of U;,. Assumption (A3) implies that || © — 0¢ ||? < 4M?
for © € O in (ii).
We show that the second term in goes to zero a.s. [P%OO].
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Using and Markov’s inequality, @, — 0 a.s. [P . To prove that TT, (8 € U}, [X1:n) — O as. [Pg],
it is sufficient to show that

(a) Pg, [ — fuc Ty, ol ;(‘lgo dTT. (6 )} < Bexp(—nf) for some B;

(b) exp(nP) [o [ Tis p()?”@eo dTT,(0) — co as. [PF ] for every f.



To show (a), note that
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Fubini’s theorem implies (i) and (ii) follows from (I5]). To show (b), given any 3 > 0, choose € < {3 so that
if KL(p(109)lIp(-10)) < e, then
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a.s. [P%"O]. The null set N involved in ( b may depend on 0. To show that |i is true for all © € O, we
define a product space E = {(w, 0) : exp(np) [T, o ;(I':o)) i shows that Pg‘;(Ee) =1
for all 8 € @. Another application of Fubini’s theorem shows that there exists N in the probability space
on which X, s are defined such that PgOO(N) = O and if w ¢ N, then TT;(E®) = 1 for all j; therefore,

exp(np) [[i, p((;(( ‘IGBO)) — oo for all w ¢ E<, which in turn implies that
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[P°°] by Fatou’s lemma, since hmlnf I"ln( c(0p)) > 0Ve > 0.
We now follow a strategy similar - to to prove that the third term in (I6) goes to zero a.s. [P ].

Using (|18) and 1i it is enough to show that Po, [( f®c 10—00]° 1Y, b ;I‘Beo d]‘ln(e)} <




B exp(—np) for some B. Following (18)),
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a.s. [P%"O]. The last inequality in follows from Theorem 2.1 and Prohorov’s theorem.
Finally, Assumption (A2) implies that Ing such that ¥n > ng M2 exp(—bn) < €%. Then combining

(18), (20), and with (T6) yields

& [W3(80,, T (X1:n)) > €3] < €2 +8Be?, 4+ Bey, = (9B +1)e, — 0 (22)

as n — oo; therefore, TT,, (-|X1.1,) is strongly consistent at 0.

6 Optimization algorithms

Problem (17) — (18) is a linear program (LP) with a special structure. We reformulate this problem in a
standard setting. Since ZEZI Ny = N, the LP consists of n, ;= N (ZE:I Ny +1) = N(N + 1) variables
and m := KN + Z]}le Ny +1 = KN+ (N +1) linear equality constraints, where the N + 1 last constraints
come from N + 1 simplex constraints.

First, let colj (Z) be the column-wise operator that takes the j-th column of matrix Z, and [z, - - - , z]
be the column-wise concatenation of s vectors z;. We introduce the new variable ’Ek]- := Nycolj(Ty) and
define

x c=la, 11, tiNg, stk TN 23)
= X Xan XN XN XN
Here, vector x|g) = a and each vector x1 is a sub-vector in RN and is generated from the columns of matrix

Ty forl=1,...,N.

Now, to reformulate the objective function, we introduce my; := N 1colj (M) and a new vector c as

follows:
c = [ON’ﬁllla"'7Iﬁ1N17m215"',ﬁ12N27
MK, -, MRN (24)
=101, €[1] 7 » €[Ny ] €[Ny +1]> " 5 C[N]I-



Next, let Iy be the identity matrix in RN and we introduce a matrix A as:

—In En, ON2 o 0Nk
A —In O™ En, - oNk
(25)

—In oN:t N2

= [A07A17 T aAN]7

E
Nk KNxN (NH1)

where E; := [N7'In, Ny Iy, -+ N HIN] fori=1,...,Nyandk =1,...,K.
Finally, using the definitions above, we can simply reformulate the LP problem (17) — (18) into the

following compact form:

N
gy {100 =eTx =3 el }
= 1=0 (26)
s.t. Ax = 0KN,

X[uEAN, 1=0,...,N,

where Ay is the standard simplex in RN, i.e., Ay :={u € ]RE 1Tu=1).

From the reconstruction of A, we can easily show that the sparsity of A is s := % Hence, if we

also count for the simplex constraints, then the overall sparsity of (20)) is sp.p := %, which is very
sparse when N is large. Due to the simplex constraints, problem (26) always admits an optimal solution.
Although (26)) is a linear program, but it is large-scale when N is large. By exploiting the sparsity of
this problem, one can solve it efficiently by using off-the-shelf centralized LP solvers such as CPLEX or
Gurobi. Alternatively, we can also exploit specific structure of (26) to develop appropriate decomposition
methods that can be scaled naturally to sufficiently large dimension and can be implemented in a parallel or

distribution fashion.
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