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Abstract

The promise of Bayesian methods for big
data sets has not fully been realized due
to the lack of scalable computational algo-
rithms. For massive data, it is necessary to
store and process subsets on different ma-
chines in a distributed manner. We propose
a simple, general, and highly efficient ap-
proach, which first runs a posterior sampling
algorithm in parallel on different machines for
subsets of a large data set. To combine these
subset posteriors, we calculate the Wasser-
stein barycenter via a highly efficient lin-
ear program. The resulting estimate for the
Wasserstein posterior (WASP) has an atomic
form, facilitating straightforward estimation
of posterior summaries of functionals of in-
terest. The WASP approach allows posterior
sampling algorithms for smaller data sets to
be trivially scaled to huge data. We provide
theoretical justification in terms of posterior
consistency and algorithm efficiency. Exam-
ples are provided in complex settings includ-
ing Gaussian process regression and nonpara-
metric Bayes mixture models.

1 Introduction

Efficient computation for massive data commonly re-
lies on using small subsets of the data in parallel, com-
bining results of local computations to obtain global
results. The usual focus is on obtaining parame-
ter estimates, which minimize a loss function based
on the complete data, by dividing computation into
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subset-specific optimization problems. One widely
used and well understood framework is ADMM [4; 6].
In Bayesian statistics, one is faced with the more chal-
lenging problem of approximating a posterior measure
for the unknown parameters instead of just obtaining
a single point estimate of these parameters. Poste-
rior measures have the major advantage of providing
a characterization of uncertainty in parameter learn-
ing and predictions; such uncertainty quantification
is lacking for many optimization approaches. How-
ever, a fundamental disadvantage is the lack of scalable
computational algorithms for accurately approximat-
ing posterior measures in general Bayesian models.

The main workhorse of Bayesian posterior computa-
tion is Markov chain Monte Carlo (MCMC) sampling,
with variants such as sequential Monte Carlo (SMC)
and adaptive Monte Carlo being also popular. Such
Monte Carlo algorithms obtain samples from the pos-
terior measure, which are used to estimate summaries
of the posterior and predictive distributions of interest.
These algorithms for posterior sampling are applicable
to essentially any Bayesian model, but face computa-
tional bottlenecks in scaling up to large data sets. Such
bottlenecks can potentially be addressed by using data
subsets to define subset posterior measures, which pro-
vide a noisy approximation to the posterior measure
based on the full data. After applying Monte Carlo al-
gorithms to obtain samples from each subset posterior
in parallel, the goal is then to efficiently combine these
samples to obtain samples from an approximation to
the posterior measure for the full data.

This article focuses on fundamentally improving the
combining step, bypassing the need to introduce a
kernel or tuning parameters, while massively speed-
ing up computations. In particular, the proposed ap-
proach combines samples from subset posterior mea-
sures by calculating the barycenter with respect to a
Wasserstein distance between measures. The resulting
Wasserstein posterior (WASP) can be estimated effi-
ciently via a linear program, and has an atomic form,
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making calculation of posterior and predictive sum-
maries trivial. The WASP framework is tuned for dis-
tributed computations. Posterior samples from local
computations are combined in the final step to yield a
posterior distribution that is close to the true posterior
distribution with respect to a Wasserstein distance.

Current scalable Bayes methods belong to three ma-
jor groups. The first group estimates an approximate
posterior distribution that is closest to the true poste-
rior while restricting the search to a parametric family.
While these methods have restrictive distributional as-
sumptions, they can be made computationally efficient
[24; 3; 5; 15; 14; 19]. The second group exploits the
analytic form of posterior and uses computer architec-
ture to improve the sampling time and convergence
[20; 22; 1]. This approach is ideal for large-scale ap-
plications that use simple parametric models. The
third group obtains subset posteriors using some sam-
pling algorithm and combines them by using kernel
density estimation [18], Weierstrass transform [23], or
minimizing a loss defined on the reproducing kernel
Hilbert space (RKHS) embedding of the subset poste-
riors [16]. These methods are flexible in that they are
not restricted to a parametric class of models; how-
ever, the results can vary significantly depending on
the choice of kernels without a principled approach for
kernel choice.

The WASP framework relies on two general assump-
tions that are frequently satisfied in Bayesian applica-
tions. These assumptions relate the parameter space
and the associated space of probability measures:

(a) The parameter space is a metric space.

(b) The atomic approximations of the subset poste-
riors (empirical measures) can be obtained effi-
ciently using a posterior sampler.

Assumption (a) is frequently satisfied in practice us-
ing the Euclidean distance. Assumption (b) can be
typically satisfied if the subset size and the number of
unknown parameters are not too large. Due to the ge-
ometric properties of the Wasserstein metric [21], the
Wasserstein barycenter (WB) of the subset posteri-
ors has highly appealing statistical and computational
properties. We formulate a linear program (LP) to es-
timate the (atomic) WB of atomic approximations of
subset posteriors. Exploiting the sparsity of the LP,
we efficiently estimate the WB using standard soft-
ware, such as Gurobi [13].

The WASP framework is inspired from recent develop-
ments in optimal transport problems [8; 9] and scalable
Bayes methods [16]. Minsker et al. [16] proposed to
use the geometric median of subset posteriors, calcu-
lated using a RKHS embedding that required choice of

a kernel and corresponding bandwidth. The resulting
median posterior provides a robust alternative to the
true posterior. Inspired by this idea, we focus on ap-
proximating the true posterior instead of robustifying
it. This removes the need for the RKHS embedding
and vastly speeds up the computation time. Extend-
ing the Sinkhorn algorithm of Cuturi [8], Cuturi and
Doucet [9] estimate the WB of empirical measures us-
ing entropy-smoothed subgradient methods. We in-
stead estimate the WASP by solving a LP and effi-
ciently obtain its solution by exploiting the sparsity of
LP constraints.

2 Preliminaries

We first describe the Wasserstein space of probabil-
ity distributions, with the Wasserstein distance as
a natural metric. We then recall the relation be-
tween Wasserstein distance and the objective of op-
timal transportation problems. Based on these ideas,
we highlight the role of the WB as a summary of a col-
lection of posterior distributions for scalable Bayesian
inference.

2.1 Notations

The ordered pair (Θ, d) represents a metric space
Θ with metric d. In this work, we are only con-
cerned with complete separable metric space (Pol-
ish space). The space of Borel probability measures
on Θ is represented by P(Θ). The symbol δθ0 de-
notes the Dirac measure concentrated at θ0 ∈ Θ, i.e.,
δθ0

(A) = 1{θ0 ∈ A} for any Borel measurable set A.
If ψ is a Borel map Θ → Θ and ν is a measure on Θ,
then the push-forward of ν through ψ is the measure
ψ#ν defined as

∫
Θ
f(y)d(ψ#ν)(y) =

∫
Θ
f(ψ(x))dν(x)

for every continuous bounded function f on Θ. TheN -
dimensional simplex is ∆N = {a ∈ RN |∀n ≤ N, 0 ≤
an ≤ 1,

∑N
n=1 an = 1} and Θ(n) represents the n-

dimensional Cartesian product Θ× . . .×Θ. We repre-
sent the Frobenius inner product between two matrices
A and B as 〈A,B〉 = tr(AT B) and ‖ · ‖2 denotes the
standard Euclidean distance.

2.2 Wasserstein space and distance

The Wasserstein space of order p ∈ [1,∞) of proba-
bility measures on (Θ, d) for an arbitrary θ0 ∈ Θ is
defined as

Pp(Θ) :=

{
µ ∈ P(Θ) :

∫
Θ

d(θ0,θ)pdµ(θ) <∞
}
,

(1)

and Pp(Θ) is independent of the choice of θ0. The
Wasserstein distance of order p between µ, ν ∈ P(Θ)



Srivastava, Cevher, Tran-Dinh, and Dunson

is defined as

Wp(µ, ν) :=

{
inf

τ∈T (µ,ν)

∫
Θ(2)

d(θ1,θ2)pdτ(θ1,θ2)

}1/p

,

(2)

where T (µ, ν) is the set of all probability measures on
Θ(2) with marginals µ and ν, respectively. Wp is at-
tractive in that it metrizes the weak convergence on Θ
and preserves the geometry of the space. An impor-
tant topological property of Pp(Θ) that will used later
in proving posterior consistency is as follows.

Theorem 2.1 ([21]) If (Θ, d) is a Polish space and
p ∈ [1,∞), then (Pp(Θ), Wp) is a Polish space. More
specifically,

(a) Given ε > 0, an arbitrary θ0 in a dense subset
of Θ, and µ ∈ P2(Θ), there exists a compact set
Θε ⊂ Θ such that

∫
Θ \Θε

d(θ0,θ)pdµ(θ) < εp.

(b) ∃Mε <∞ such that ‖θ ‖ < Mε ∀θ ∈ Θε.

We focus on Θ ⊂ RD, d = ‖ · ‖2, and metric space
(P2(Θ), W2).

2.3 Wasserstein distance as a solution of an
optimal transport problem

If µ and ν are discrete probability measures, then
W2(µ, ν) (2) is the minimum objective function value
of a discrete optimal transport problem [8]. Let µ
and ν be atomic measures supported on Θ1 ∈ RN1×D

and Θ2 ∈ RN2×D so that µ =
∑N1

n=1 anδθT1n
and that

ν =
∑N2

n=1 bnδθT2n
, where a ∈ ∆N1 , b ∈ ∆N2 , and

θTin is the n-th row of Θi. The discrete optimal trans-
port problem is formulated in terms of (a) the matrix
M12 ∈ RN1×N2

+ of pairwise squared distances between
the collection of atoms in Θ1 and Θ2; and (b) the op-
timal transport polytope that is the set of all feasible
solutions called transport plans. The (i, j)-th entry of
M12 is

[M12]ij = ‖θ1i −θ2j ‖22. (3)

The optimal transport polytope is defined as

T (a,b) = {T ∈ RN1×N2
+ : T1N2

= a,TT 1N1
= b};

(4)

therefore, transport plan T ∈ T (a,b) is a N1 × N2

doubly stochastic matrix such that its row sums equal
a and its column sums equal b. Based on (3) and (4),
the objective of discrete optimal transport problem is

dM12(a,b) := min
T∈T (a,b)

〈T,M12〉 = W 2
2 (µ, ν), (5)

where the last equality is implied by the definition of
W2 (2); see [8] for details. The worst case complexity
of solving (5) scales as O((N1N2)3 log(N1N2)). Moti-
vated by this limitation, Cuturi [8] smoothed the ob-
jective in (5) using entropy and derived an efficient al-
gorithm for calculating optimal T based on Sinkhorn
algorithm. This approach, however, has limited appli-
cations since the parameter that controls the amount
of entropy-smoothing needs to be specified apriori, and
the results can be sensitive to its choice.

2.4 Wasserstein barycenter

Figure 1: Barycenter in R2 and P2(Θ). The Euclidean
and Wasserstein barycenters are represented as xK
and νK (in red) when K = 6 and λk = 1/6 in (6) and
(7). The arrows represent constant speed geodesics in
R2 and P2(Θ), respectively. The geodesic in R2 is the
straight line joining two points, where as the geodesic
in P2(Θ) corresponds to the measure preserving map
T1
j such that νj = T1

j #ν1 for j = 2, 6.

WB generalizes the Euclidean barycenter (EB) to
P2(Θ). If x1, . . . ,xK ≡ x1:K ∈ RD, then their EB
xK,λ =

∑K
k=1 λk xk for λ ∈ ∆K is such that

K∑
k=1

λk‖xk −xK,λ‖22 = inf
y∈RD

K∑
k=1

λk‖xk −y ‖22; (6)

see Figure 1. Generalizing (6) to P2(Θ), Agueh and
Carlier [2] showed that if ν1, . . . , νK ≡ ν1:K ∈ P2(Θ),
then their WB νK,λ for λ ∈ ∆K is such that

K∑
k=1

λkW
2
2 (νk, νK,λ) = inf

ν∈P2(Θ)

K∑
k=1

λkW
2
2 (νk, ν); (7)

see Figure 1. Agueh and Carlier [2] also showed that
νK,λ in (7) can be obtained as a solution to a LP prob-
lem posed as a multimarginal optimal transportation
problem [11]. We only present their main result that
relates νK,λ and ν1:K . Recall that if σ is a Borel map
RD → RD, then the push-forward of µ through σ is
the measure σ#µ; see Section 2.1. If T1

k represents
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the measure preserving map from ν1 to νk such that
νk = T1

k #ν1 for k = 1, . . . ,K, then

νK,λ :=

(
K∑
k=1

λkT
1
k

)
#ν1 (8)

generalizes the EB (6) to WB (7) in P2(Θ) [2]. We
use this result later in proving Theorem 3.3; see The-
orem 4.1 and Proposition 4.2 of [2] for greater details.
We also note that there are many formulations of (7)
in literature but have been solved using different tools
or appear under different names [9]. Extending the
Sinkhorn algorithm [8], Cuturi and Doucet [9] propose
two fast algorithms for calculating entropy-smoothed
versions of νK,λ using gradient based methods. The
WASP framework reformulates (7) as a sparse LP
problem that is computationally efficient without re-
quiring any entropy-smoothing.

3 Contributions and main results

This section proposes to combine a collection of sub-
set posteriors using their WB called WASP. We prove
that WASP is strongly consistent at the true value
θ0 ∈ Θ. Specifically, WASP converges weakly to δθ0

in (P2(Θ),W2). We also modify the subset posteriors
appropriately so that the uncertainty quantification of
the WASP is well-calibrated. Finally, we reformulate
(7) as a sparse LP for fast estimation of WASP.

3.1 Wasserstein Barycenter for scalable
Bayesian inference

We first highlight important topological properties of
the metric space (Θ, ‖·‖2) that will be used for proving
theoretical properties of the WASP. Let {Pθ : θ ∈ Θ}
be a family of probability distributions parameterized
by Θ ⊂ RD. The norm topology of (RD, ‖ · ‖2) when
restricted to Θ implies that (Θ, ‖ · ‖2) is also a Polish
space. Using Theorem 2.1, W2 metrizes the topology
of weak convergence in P2(Θ). For all θ ∈ Θ, Pθ is
assumed to be absolutely continuous with respect to
the Lebesgue measure dx on RD so that dP (·|θ) =
p(·|θ)dx. All statements regarding the convergence of
measures in the context of WASP are in the metric
space (P2(Θ),W2).

We now recall some basic concepts from nonparametric
Bayes theory. Most of these concepts and definitions
are based on fundamental results of [12]. Let C be
the Borel σ-field on Θ and Πn be a (prior) probability
measure on (Θ, C). Suppose that we observe random
variables (X1, . . . , Xn) ≡ X(n) that are independent
and identically distributed as Pθ0

for some unknown
θ0 ∈ Θ. Assume that random variables X(n) are de-
fined on the fixed measurable space (Ω,A) and that

P
(n)
θ0

= P∞θ0
(X(n))−1 for all n and θ0 ∈ Θ is unknown.

Given a Bayesian model, we obtain the (random) pos-
terior distribution Πn(·|X(n)). A version of Bayes the-
orem implies that for all Borel measurable U ⊂ Θ

Πn(U |X(n)) =

∫
U
∏n
i=1 p(Xi|θ)dΠn(θ)∫

Θ

∏n
i=1 p(Xi|θ)dΠn(θ)

. (9)

The following is a useful notion of consistency that
characterizes the behavior of random posterior distri-
bution Πn(U |X(n)) as n→∞.

Definition 3.1 (Strong Consistency) A posterior dis-
tribution Πn(·|X(n)) is said to be strongly consistent at
θ0 if Πn(·|X(n))→w δθ0

as n→∞ a.s. [P∞θ0
].

This is a stronger notion of consistency in that strong
consistency of Πn(·|X(n)) implies that there exists a
consistent estimator of θ0. It is well-known that under
fairly general conditions Πn(·|X(n)) is strongly consis-
tent at θ0 [12]. A necessary condition for posterior
consistency to hold states that the prior must assign
positive probabilities to every Kullback-Leibler (KL)
neighborhood of θ0.

Definition 3.2 (KL property) Let θ ∼ Π. Then Π
has KL property at θ0 ∈ Θ, if Π(Kε(θ0)) > 0 ∀ε > 0,
where Kε(θ0) = {θ : KL(pθ0 ||qθ) < ε}, for densities
pθ0 and qθ with respect to the reference measure ν, and
KL(f ||g) =

∫
f log f

g dν. This property is represented
as θ0 ∈ KL(Π).

Intuitively, the KL property requires the prior to as-
sign positive probability to any small neighborhood of
θ0. If this property is not satisfied, then it is well-
known that the posterior Πn(·|X(n)) might fail to con-
centrate around θ0 even when n→∞.

Posterior sampling for massive data is frequently in-
tractable in Bayesian applications. A typical divide-
and-conquer strategy randomly partitions X(n) into K
subsets X[k] and obtains subset posteriors Πkn(·|X[k])
for k = 1, . . . ,K. Without loss of generality, we as-
sume that each subset is of size m so that n = Km.
The following lemma is used to prove strong consis-
tency of subset posteriors. It is similar in spirit to
Theorem 2.1 of Ghosal et al. [12]. All proofs are in-
cluded in the supplementary materials.

Lemma 3.1 Let Θ be a compact subset of RD, let
P2(Θ) be the Wasserstein space of probability mea-
sures parametrized by θ ∈ Θ, and let the true measure
δθ0 ∈ P2(Θ). Given ε > 0, Θε is a compact subset of
Θ that satisfies (a) in Theorem 2.1, Mε is a large num-
ber that satisfies (b) in Theorem 2.1, and Πn satisfies
the KL property ∀n such that liminf

n→∞
Πn(Kε(θ0)) > 0

∀ε > 0. Then, Πn(·|X(n)) is strongly consistent at θ0.
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Intuitively, Lemma 3.1 states that the posterior mea-
sure Πn(·|X(n)) assigns probability 1 to any neigh-
borhood of θ0 as n → ∞ if conditions (a) and (b)
of Theorem 2.1 and the KL property hold. Fur-
thermore, if m → ∞, then the following proposition
proves that Πkn(·|X[k]) are strongly consistent at θ0

for k = 1, . . . ,K as a straightforward application of
Lemma 3.1.

Proposition 3.1 Under the conditions of Lemma
3.1, if m → ∞, then subset posteriors Πkn(·|X[k]) for
k = 1, . . . ,K are strongly consistent at θ0.

It is clear that the subset posteriors use only 1
K frac-

tion of the whole data, so the credible intervals ob-
tained from Πkns will be wider than the credible in-
terval obtained from a posterior distribution that uses
the whole data; that is, subset posteriors over-estimate
the uncertainty in the unknown parameters. Minsker
et al. [16] addressed this issue by using a “stochastic
approximation (SA) trick.” This idea compensates for
the data lost due to partitioning by adding (K − 1)
extra copies of X[k] in each subset for k = 1, . . . ,K.
The resulting subset posteriors are noisy estimates of
the full data posterior, and do not vary systematically
from the overall posterior in mean, variance, or shape.

WASP also uses the SA trick for each of the subset
posteriors, obtaining subset posteriors that are dis-
tributed randomly around the overall posterior. The
subset posteriors using SA trick are defined as

ΠSA
kn (U |X[k], . . . , X[k]︸ ︷︷ ︸

K

) =

∫
U

(∏m
i=1 p(X[k]i |θ)

)K
dΠn(θ)∫

Θ

(∏m
i=1 p(X[k]i |θ)

)K
dΠn(θ)

.

(10)

for k = 1, . . . ,K and Borel measurable U ⊂ Θ. The
next proposition states that SA-corrected subset pos-
teriors are also strongly consistent at θ0.

Proposition 3.2 Under the conditions of Lemma
3.1, the subset posteriors with stochastic approxima-
tion ΠSA

kn (·|X[k]) for k = 1, . . . ,K are strongly consis-
tent at θ0.

This lemma is follows from Lemma 3.1 by noticing that
m→∞ =⇒ Km→∞.

The WASP Πn is the WB Π
SA

K,λ for a given λ ∈ ∆K

and SA-corrected subset posteriors ΠSA
1n:Kn (7). Fol-

lowing (8), Πn has the following analytic form

Πn(·|X(n)) := Π
SA

K,λ =

(
K∑
k=1

λkT
1
k

)
# ΠSA

1n , (11)

where ΠSA
kn = T1

k # ΠSA
1n is the push-forward of SA-

corrected subset posterior ΠSA
1n through the measure

preserving map T1
k for k = 1, . . . ,K. The following

theorem states the main results of this subsection that
Πn (11) is strongly consistent at θ0

Theorem 3.3 If all the conditions of Lemma 3.1
hold, then Πn (11) is strongly consistent at θ0.

Intuitively, this theorem states that the mean of noisy
approximations of the true posterior in P2(Θ) is also
a good approximation of the true posterior.

Theorem 3.3 can be improved substantially to yield
rate of contraction using the construction of sieves in-
troduced by [12]. Given a decreasing sequence (εn)n∈N,
prior sequence (Πn)n∈N ∈ P2(Θ), and universal con-
stants B, b > 0, there exists sequence of increasing
compact parameter spaces Θn ⊂ Θ and polynomially
increasing sequence (Mn)n∈N such that

(A1) Πn(Θc
n) ≤ B exp(−bn) (“tight prior ”);

(A2) M2
n exp(−nb) → 0 as n → ∞ (“polynomially in-

creasing Mns” );

(A3) Θn = {θ ∈ Θ : ‖θ ‖2 ≤ Mn} (“polynomially
bounded parameter space”);

(A4) the packing number satisfies logN(εn,Θn, ‖.‖2) ≤
nε2n.

Then, the following theorem states that under assump-
tions (A1) - (A4), Πn(·|X1:n) is strongly consistent at
θ0 if the prior satisfies the KL property.

Theorem 3.4 Let Θ be compact subset of RD, let
P2(Θ) be the Wasserstein space of probability measures
parametrized by θ ∈ Θ, and let the true measure δθ0

∈
P2(Θ). Assume that the sequences (Θn)n∈N ⊂ Θ and
(Mn)n∈N satisfy Assumptions (A1) – (A3) for univer-
sal constants B, b and sequences (εn)n∈N, (Πn)n∈N ∈
P2(Θ) and that Πn satisfies the KL property ∀n such
that liminf

n→∞
Πn(Kε(θ0)) > 0 ∀ε > 0. Then, Πn(·|X1:n)

is strongly consistent at θ0.

Further, it follows from Theorem 3.4 of [16] and [12,

Section 5] that if we choose εn '
√

K logn
n and we take

K = O(log n) in Theorem 3.4, then we differ from the
optimal rate of n−1/2 by a factor of only log n.

3.2 Wasserstein barycenter of empirical
probability measures based on LP

The analytic form of Πn (11) is tractable but for most
practical problems the maps T1

ks are analytically in-
tractable. One solution is to estimate Πn from pos-
terior samples of ΠSA

kn s. Several simulation-based ap-
proaches, such as MCMC, SMC, and importance sam-
pling, can be used to generate samples from ΠSA

kn s for
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a large class of models. In this work, we focus on the
special case when the reference measure is a uniform
distribution on a finite collection of atoms in Θ.

We assume that the subset posteriors are empirical
measures and their atoms are simulated from the sub-
set posteriors using a sampler. Let Θ̃ ∈ RN×D be
a collection of N such posterior samples ∈ Θ. If θ̃

T

n

represents the n-th row of Θ̃, then the empirical prob-
ability measure corresponding to Θ̃ is defined as

πN =

N∑
n=1

1

N
δ
θ̃
T

n

. (12)

Empirical measures are routinely used to approximate
posterior measures; however, for the approximation of
the joint measure to be accurate, the number of atoms
N must be very large. The WASP combines

(
ΠSA
kn

)K
k=1

,
which are assumed to be empirical probability mea-
sures, by estimating their barycenter Πn. The esti-
mation procedure is such that Πn is estimated as an
empirical probability measure.

We first set up the problem of WASP estimation in
form of (5). Following (12), assume that posterior
samples from the k-th subset posterior ΠSA

kn are sum-
marized as the matrix Θ̃k ∈ RNk×D, where Nk is the
number of posterior samples and D is the dimension
of the parameter space. The empirical measure corre-
sponding to subset posterior ΠSA

kn is defined as

ΠSA
kn =

Nk∑
i=1

1

Nk
δ
θ̃
T

kni

≡
Nk∑
i=1

bkiδθ̃Tkni
, bk =

1Nk
Nk

. (13)

The empirical measures for
(
ΠSA
kn

)K
k=1

are defined sim-
ilarly using Θ̃k ∈ RNk×D and bk =

1Nk
Nk

for k =

1, . . . ,K. Given Θ̃1:K , define the “overall” sample ma-
trix Θ̃ by stacking Θ̃1:K along the rows such that
Θ̃
T

=
[
Θ̃
T

1 . . . Θ̃
T

k . . . Θ̃
T

K

]
. Using Θ̃, define WASP as

the empirical probability measure

Πn =

N∑
n=1

anδθTn , where a ∈ ∆N (14)

is unknown and N :=
∑K
k=1Nk. The idea here is that

the problem of combining subset posteriors to yield a
valid probability measure is equivalent to estimating a
in (14) for all the atoms across all subset posteriors. If
a is known and Mk := MΘ̃Θ̃k

∈ RN×Nk+ is defined as

Mk = diag(Θ̃Θ̃
T

)1TNk +1N diag(Θ̃kΘ̃
T

k )T − 2Θ̃Θ̃
T

k

following (3), then (5) implies that

W 2
2 (Πn,Π

SA
kn ) = min

Tk∈T (a,bk)
〈Tk,Mk〉 , (15)

where T (a,bk) is defined in (4). The optimal trans-
port plan between a and bk, T̂k(a), is obtained as

T̂k(a) = argmin
Tk∈T (a,bk)

〈Tk,Mk〉 (16)

for k = 1, . . . ,K. To account for unknown a, an exten-
sion of (16) based on (5) and (7) under the assumption
that λk = 1/K yields

T̂1, . . . , T̂K , â = argmin
T1,...,TK ,a,

a∈∆N ,
Tk∈T (a,bk) k=1,...,K

K∑
k=1

〈Tk,Mk〉 .

(17)

If we represent

vec(M) = vec([M1 . . . ,Mk, . . . ,MK ]),

vec(T) = vec([T1 . . . ,Tk, . . . ,TK ]),

and bT = (bT1 , . . . ,b
T
k , . . . ,b

T
K), then (17) reduces to

min(
vec(T)

a

)vec(M)Tvec(T) + 0TN×1 a

such that A

(
vec(T)

a

)
= c ,

(
vec(T)

a

)
≥ 0, (18)

where

A =

01×N2 11×N
F −G
H 0N×N

 cT = [1 01×KN bT ]

F = bdiag
(
1TN1
⊗ IN , . . . ,1

T
Nk
⊗ IN , . . . ,1

T
NK ⊗ IN

)
,

G = 1K ⊗ IN ,

H = bdiag
(
IN1
⊗1TN , . . . , INk ⊗1TN , . . . , INK ⊗1TN

)
,

(19)

where bdiag denotes a block-diagonal matrix. The op-
timum [vec(T̂)T âT ]T of (18) corresponds to the op-
timum T̂1, . . . , T̂K , â of (17). The constraints (19) of
the LP (18) are sparse; Gurobi is used to obtain the
solution efficiently.

4 Experiments

In this section we illustrate the computational gains
and generality of the WASP framework using simu-
lated and real data analyses.

4.1 Artificial data

We use the simulation example in the GPML MAT-
LAB toolbox for demonstrating the performance of
WASP for large scale GP regression. Using the func-
tion f(x) = sin(x)+

√
x+ε, we simulated two data sets
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Figure 2: Comparison of GPML and WASP in Gaus-
sian Process (GP) regression. Size of the data set
increases across columns and the number of subsets
increases from bottom to top. WASP results are in
excellent agreement with GPML results while being
substantitally faster.

of size 1000 (case 1) and 10000 (case 2) with Gaussian
noise of mean 0 and variance 0.04. The GPML toolbox
was used to obtain the estimate of f̂(x) across a grid of
1000 xs in both these cases. GPML’s performance in
fitting GP regressions of the size 1000 was fairly rea-
sonable; however, its performance for exact inference
decayed exponentially for data sets of size O(104) and
became impractically slow for data sets of size O(105)
or larger.

We split the data sets in cases 1 and 2 into 10 and 50
subsets to demonstrate the performance of the WASP
framework in massive GP computations. We used sub-
set posteriors ΠSA

kn (·|(xi, fi)s) to obtain 1000 fs across
1000 xs as samples from these atoms with probabili-
ties equal to their WASP weights. The 95% credible
intervals for f̂ are calculated from the 2.5% and 97.5%
quantiles of the 1000 posterior draws of fs across 1000
xs. The results of posterior uncertainty quantified by
the 95% credible intervals of GPML and WASP show an
excellent agreement with each other (Figure 2); how-
ever, WASP’s computations were substantially faster
than those of GPML because matrix inversions for data
subsets of smaller size were stable and fast. On the
contrary, GPML relied on inverting the matrix of di-
mensions of order 104.

The WASP framework offers an attractive approach
for large scale GP regression. Exact inference for GP
regression involves matrix inversion of size equal to the
data set. This becomes infeasible when the size of the
data set reaches O(104). Chalupka et al. [7] compared
several low rank matrix approximations to avoid ma-
trix inversion in massive data GP computation. Such
approximations can be avoided by using WASP for
combining GP regression on data subsets of smaller
size for which matrix inversions are stable. Assume

that data subset of sizem (say < 500) are such that ex-
act inference for GP is feasible due to matrix inversion,
thenK can be chosen such thatO(Km3) < O(n3). For
all such choices of K and m, it is computationally ap-
pealing to use the WASP framework for GP regression
over low rank or other approximations for GP regres-
sion.

4.2 Real data
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Figure 3: Comparison of M-Posterior and WASP for
probabilistic parafac model for marginal probabilities
of Mar and Cap responses in GSS data. The bottom
row represents marginal probability of not favoring
marijuana and the top row represents support for capi-
tal punishment. The subset size varies across columns.

We now compare WASP’s performance with that of
M-Posterior using the General Social Survey (GSS)
data set from 2008 - 2010 for about 4100 responders
that were used by Minsker et al. [17]. Following their
approach, we use a Dirichlet Process mixture of prod-
uct multinomial distributions, probabilistic parafac (p-
parafac), to model multivariate dependence in these
data; see [10] for details about the model. The details
of the generative model and Gibbs sampler are found
in the Appendix D of Minsker et al. [17].

Our interest lies in comparing the final marginals
obtained using M-Posterior and WASP for different
subset sizes. We varied the size of data subsets as
K = 10, 15, and 20. For each of these subsets, we mod-
ified the original Gibbs sampler for p-parafac using
the stochastic approximation trick and obtained 200
posterior draws. These samples were then combined
separately using M-Posterior and WASP. In addition,
application of M-posterior required specification of the
radial basis function kernel for measuring distance be-
tween different subset posteriors. Similar to GP re-
gression results, we observe that the M-Posterior and
WASP marginals agree very closely with each other
across all subset sizes.

The results of the p-parafac model also agrees with our
intuition. Americans who do not favor capital pun-
ishment are more likely to vote in favor of legaliza-
tion of marijuana. Both M-Posterior and WASP agree
across all subsets and both categories. While Minsker
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et al. [17] used M-Posterior arguing for need for ro-
bustness of Bayesian methods in surveys, our results
show that even if WASP is not robust to outliers, it
yields marginals that are close to the M-Posterior.

Discarding the robustness guarantees leads to several
advantages of WASP over M-Posterior. The WASP
framework does not require a kernel for measuring
distances between the subset posteriors. M-Posterior
obtains weights from the Weiszfeld algorithm. Since
none of these weights are zero, one needs to rely on
heuristics such as hard thresholding to truncate small
atomic weights to zero for interpretable posterior ap-
proximation. WASP does not require such heuristics
because the optimum is obtained at extreme points.
Furthermore, WASP is obtained by solving a sparse
LP that is computationally more efficient than the iter-
ative Weiszfeld algorithm for estimating M-Posterior.

5 Discussion

We have presented the Wasserstein Posterior (WASP)
framework as a general approach for scalable Bayesian
computations. The assumptions of WASP frame-
work are fairly general that ensure wide applicability.
Specifically, it requires that computations with data
subsets are feasible so that any existing sampler can
be used to obtain atomic approximations of the sub-
set posteriors. These atomic subset posteriors are then
combined using the Wasserstein barycenter (WB). Be-
ing a natural generalization of the Euclidean barycen-
ter to the space of probability measures, the WB is an
ideal choice for combining subset posteriors that are
noisy approximations of the true posterior. We ex-
ploited the structure of the problem to estimate the
WB by efficiently solving a sparse LP.

The idea of solving LP for efficient Bayesian inference
can be extended in many directions. We used off-
the-shelf solver for our experiments and were able to
solve LPs of the order 106 by exploiting sparsity of the
WASP objective; however, solving LPs of higher di-
mensions becomes problematic. We plan to use recent
developments in primal-dual methods to improve the
computational efficiency of the LP solver. The opti-
mal transport plan, which was not used in the current
approach, could be used for designing samplers when
the number of parameters is large and ordinary sam-
plers fail to converge to their stationary distribution.
While we have illustrated WASP’s applications in the
context of scalable Bayesian computations, its reliance
on the Wasserstein space and metric could be used for
obtaining barycenters in other spaces, such as shape
spaces.
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