
Stochastic Spectral Descent for Restricted Boltzmann Machines:
Supplemental Material

David Carlson1 Volkan Cevher2 Lawrence Carin1

1 Department of Electrical and Computer Engineering, Duke University
2Laboratory for Information and Inference Systems (LIONS), EPFL

A Theorem proofs

Proof. Proof of Theorem 1.
The Hessian of the lse function is given by

∇2lseω(u) =
diag(ω � exp(u))

ωT exp(u)

− (ω � exp(u))(ω � exp(u))T

(ωT exp(u))2
(A.1)

There are two terms in the Hessian matrix. The first
term is

diag(ω � exp(u))

ωT exp(u)

This is a diagonal matrix where the diagonal entries
are nonnegative and sum to one. The second term is

− (ω � exp(u))(ω � exp(u))T

(ωT exp(u))2

This term is a rank-one matrix with a negative eigen-
value.

Writing Taylor’s theorem:

lseω(v) = lseω(u) + 〈∇lseω(u),v − u〉

+

∫ 1

0

(1− t)(v − u)T∇2lseω(u+ t(v − u))(v − u)dt

The terms in the integral can be bound

(v − u)T∇2lseω(u+ t(v − u))(v − u)

≤ (v − u)diag(ω�exp(u+t(v−u)))
ωT exp(u+t(v−u))

(v − u) (A.2)

=
∑J

j=1
ωj exp(uj+t(vj−uj))
ωT exp(u+t(v−u))

(vj − uj)
2

≤ maxc≥0,||c||1=1

∑J
j=1 cj(vj − uj)

2 (A.3)

= ||v − u||2∞ (A.4)

Eq. A.2 follows because the second term in the Hessian
will give a nonpositive value and Eq. A.3 follows be-
cause the diagonal entries are nonnegative and sum to
1. The integral has an upper bound of 1

2 ||v−u||
2
∞.

Proof. Proof of Theorem 2.
The log partition function can be written as a sum
over only the hidden units to give a similar form to

Theorem 1. Define the set {hi}2
J

i=1 as the set of unique

binary vectors {0, 1}J , and let H ∈ {0, 1}J×2J be the
matrix form of this set.

f(θ) = log

2J∑
i=1

ωi exp(hT
i b) (A.5)

ωi =

M∑
m=1

log(1 + exp(Wm,·hi + cm)) (A.6)

Equation A.5 can be equivalently written as

f(θ) = logωT exp(HT b) (A.7)

with ω not dependent on b. Plugging into Equation
17,

f({b, ck,Wk}) ≤ f(θk)

+ 〈∇HT blseω(HT bk),HT (b− bk)〉

+
1

2
||HT (b− bk)||2∞ (A.8)

To rewrite the inner product term, note that

∇HT blseω(HT bk) = HT∇bf(θk) (A.9)

(∇HT blseω(HT bk))TH(b− bk) = (∇bf(θk))T (b− bk)

The bound is simplified as

||HT (b− bk)||∞ = max
i
|hT

i (b− bk)| ≤ J ||b− bk||∞

Alternatively, this could be bound as

||HT (b− bk)||∞ ≤
√
J ||b− bk||2 (A.10)

||HT (b− bk)||∞ ≤ ||b− bk||1 (A.11)

The proof on c follows with the same techniques.

Proof. Proof of Theorem 3.

As in the proof for Theorem 2, let H ∈ {0, 1}J×2J
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and V ∈ {0, 1}M×2M , where each column is an unique
binary vector. Define U = VTWH and Ωij = vTi c+
hT
j b. Let u = vec(U) and ω = vec(Ω). The log

partition function is equivalently written

f(θ) = log

2M∑
i=1

2J∑
j=1

Ωij exp Uij (A.12)

f(θ) = log
(
ωT expu

)
(A.13)

Plugging this form into Equation 17:

lseω(u) ≥ lseω(uk) + 〈∇ulseω(uk),u− uk〉

+
1

2
||vec(U−Uk)||2∞ (A.14)

Note that

〈∇ulseω(u),u− uk〉 = tr((∇UlseΩ(U))T (U−Uk))

V∇UlseΩ(U)HT = ∇Wf(θ) (A.15)

Writing the inner product in terms of W gives

tr((∇UlseΩ(U))T (U−Uk)) = tr((∇W)T (W −Wk))
(A.16)

The bound is simplified:

||vec(U−Uk)||∞ = maxi,j |vTi (W −Wk)hj |
≤

√
MJ ||W −Wk||S∞ (A.17)

Combining these two elements proves Theorem 3.

B Derivation of optimal steps

Proof. Proof of b∗ in Equation 25.
We want to find the minimizer of

min
b
〈∇bF (θk), b− bk〉+

J

2
||b− bk||2∞

First, add an additional variable a such that the min-
imizer of the expanded problem is the same as the
original problem

= min
b,a,|bj |≤a,a≥0

〈∇bF (θk), b− bk〉+
J

2
a2

(B.1)

This is straightforward to solve:

= min
a,a≥0

〈∇bF (θk),−a× sign(∇bF (θk))〉+
J

2
a2

a∗ =
1

J
||∇bF (θk)||1 (B.2)

b∗ = b− 1

J
||∇bF (θk)||1 × sign(∇bF (θk)) (B.3)

Proof. Proof of W∗ in Equation 28.
Let D = W−Wk, and decompose D = ARBT , with
A and B denoting the left and right singular vectors
of ∇WF (θk). Then we want to minimize the quantity

min
D

tr(∇WF (θk)D) +
MJ

2
||D||2S∞

As in the proof on the biases, add an additional vari-
able that will give the same minimizer and solve for
the solution.

= min
D,a,||D||S∞<a

tr(∇WF (θk)D) +
MJ

2
a2

= min
D,a,||D||S∞<a

tr(∇WF (θk)D) +
MJ

2
a2

= min
a,F,||F||S∞<a

λT diag(R) +
MJ

2
a2

Letting IM denote the M -dimensional identity matrix,
this gives:

R∗ =
−a
MJ

IM (B.4)

a = ||λ||1 (B.5)

R∗ = (
−1

MJ
||λ||1 × IM ) (B.6)

C Discussion of using `2 bound
instead of `∞ bound on lse function

[Böhning, 1992] introduces a bound on the lse function

lse1(v) ≤ lse1(u) + 〈∇ulse1(u),v − u〉

+
1

2
(v − u)TB(v − u) (C.1)

B =
1

2

[
IJ −

1

J
1J1T

J

]
(C.2)

Where I is the J-dimensional identity matrix and 1J is
a J-dimensional ones vector. This is trivially extended
to use a nonnegative vector ω in place of 1J . The
quadratic term is equivalently written

1

2
(v − u)TB(v − u) =

1

4
||v − u||22 −

1

4
mean(v − u)2

(C.3)
Because of the differences of logsumexp functions, the
mean term drops out and so this bound gives

lseω(v) ≤ lseω(u) + 〈∇ulseω(u),v − u〉

+
1

2× 2
||v − u||22 (C.4)

Using Equation C.4 instead of Equation 17 in the
proofs in Supplemental Section A leads to looser
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bounds due to the high-dimensional nature of the ob-
servation space. However, it should be noted that it
may be possible to bound this more tightly.

First, examining the bound on the matrix W,

1

4
||vec(U−Uk)||22 (C.5)

=
1

4

2M∑
i=1

2J∑
j=1

(vTi (W −Wk)uj)
2 (C.6)

≤ 1

4

2M∑
i=1

2J∑
j=1

vTi ((W −Wk)� (W −Wk))uj(C.7)

=
1

4
tr(((W −Wk)� (W −Wk))

2M∑
i=1

2J∑
j=1

hjv
T
i )

=
1

4
tr(((W −Wk)� (W −Wk))(

2M+J

4
1J×M ))

=
2M+J

16
||W −W||2F (C.8)

For realistic problems sizes of RBMs, the bound that
comes out of the logsumexp ∞-norm bound is expo-
nentially tighter than the bound using logsumexp `2
norm bound.

Similar analysis on the bias terms reveals a bounding
term equations

f({b, ck,Wk}) ≤ f(θk) + 〈∇bf(θk), b− bk〉

+
2J

8
||b− bk||2∞ (C.9)

f({bk, c,Wk}) ≤ f(θk) + 〈∇cf(θk), c− ck〉

+
2M

8
||c− ck||2∞ (C.10)


