Stochastic Spectral Descent for Restricted Boltzmann Machines: Supplemental Material

David Carlson ${ }^{1} \quad$ Volkan Cevher ${ }^{2} \quad$ Lawrence Carin ${ }^{1}$
${ }^{1}$ Department of Electrical and Computer Engineering, Duke University
${ }^{2}$ Laboratory for Information and Inference Systems (LIONS), EPFL

A Theorem proofs

Proof. Proof of Theorem 1.
The Hessian of the lse function is given by

$$
\begin{aligned}
\nabla^{2} l \operatorname{se}_{\boldsymbol{\omega}}(\boldsymbol{u}) & =\frac{\operatorname{diag}(\boldsymbol{\omega} \odot \exp (\boldsymbol{u}))}{\boldsymbol{\omega}^{T} \exp (\boldsymbol{u})} \\
& -\frac{(\boldsymbol{\omega} \odot \exp (\boldsymbol{u}))(\boldsymbol{\omega} \odot \exp (\boldsymbol{u}))^{T}}{\left(\boldsymbol{\omega}^{T} \exp (\boldsymbol{u})\right)^{2}}(\mathrm{~A} .1)
\end{aligned}
$$

There are two terms in the Hessian matrix. The first term is

$$
\frac{\operatorname{diag}(\boldsymbol{\omega} \odot \exp (\boldsymbol{u}))}{\boldsymbol{\omega}^{T} \exp (\boldsymbol{u})}
$$

This is a diagonal matrix where the diagonal entries are nonnegative and sum to one. The second term is

$$
-\frac{(\boldsymbol{\omega} \odot \exp (\boldsymbol{u}))(\boldsymbol{\omega} \odot \exp (\boldsymbol{u}))^{T}}{\left(\boldsymbol{\omega}^{T} \exp (\boldsymbol{u})\right)^{2}}
$$

This term is a rank-one matrix with a negative eigenvalue.

Writing Taylor's theorem:

$$
\begin{array}{r}
l s e_{\omega}(\boldsymbol{v})=l s e_{\boldsymbol{\omega}}(\boldsymbol{u})+\left\langle\nabla l s e_{\omega}(\boldsymbol{u}), \boldsymbol{v}-\boldsymbol{u}\right\rangle \\
+\int_{0}^{1}(1-t)(\boldsymbol{v}-\boldsymbol{u})^{T} \nabla^{2} l s e_{\omega}(\boldsymbol{u}+t(\boldsymbol{v}-\boldsymbol{u}))(\boldsymbol{v}-\boldsymbol{u}) d t
\end{array}
$$

The terms in the integral can be bound

$$
\begin{array}{rc}
& (\boldsymbol{v}-\boldsymbol{u})^{T} \nabla^{2} l s e_{\boldsymbol{\omega}}(\boldsymbol{u}+t(\boldsymbol{v}-\boldsymbol{u}))(\boldsymbol{v}-\boldsymbol{u}) \\
\leq & (\boldsymbol{v}-\boldsymbol{u}) \frac{\operatorname{diag}(\boldsymbol{\omega} \cdot \exp (\boldsymbol{u}+t(\boldsymbol{v}-\boldsymbol{u})))}{\boldsymbol{\omega}^{T} \exp (\boldsymbol{u}+t(\boldsymbol{v}-\boldsymbol{u}))}(\boldsymbol{v}-\boldsymbol{u}) \\
= & \sum_{j=1}^{J} \frac{\omega_{j} \exp \left(u_{j}+t\left(v_{j}-u_{j}\right)\right)}{\boldsymbol{\omega}^{T} \exp (\boldsymbol{u}+t(\boldsymbol{v}-\boldsymbol{u}))}\left(v_{j}-u_{j}\right)^{2} \\
\leq & \max _{\boldsymbol{c} \geq 0,\|\boldsymbol{c}\|_{1}=1} \sum_{j=1}^{J} c_{j}\left(v_{j}-u_{j}\right)^{2} \\
= & \|\boldsymbol{v}-\boldsymbol{u}\|_{\infty}^{2} \tag{A.4}
\end{array}
$$

Eq. A. 2 follows because the second term in the Hessian will give a nonpositive value and Eq. A. 3 follows because the diagonal entries are nonnegative and sum to 1. The integral has an upper bound of $\frac{1}{2}\|\boldsymbol{v}-\boldsymbol{u}\|_{\infty}^{2}$.

Proof. Proof of Theorem 2.
The log partition function can be written as a sum over only the hidden units to give a similar form to Theorem 1. Define the set $\left\{h_{i}\right\}_{i=1}^{2^{J}}$ as the set of unique binary vectors $\{0,1\}^{J}$, and let $\mathbf{H} \in\{0,1\}^{J \times 2^{J}}$ be the matrix form of this set.

$$
\begin{align*}
f(\boldsymbol{\theta}) & =\log \sum_{i=1}^{2^{J}} \omega_{i} \exp \left(\boldsymbol{h}_{i}^{T} \boldsymbol{b}\right) \tag{A.5}\\
\omega_{i} & =\sum_{m=1}^{M} \log \left(1+\exp \left(\mathbf{W}_{m, \cdot} \boldsymbol{h}_{i}+c_{m}\right)\right) \tag{A.6}
\end{align*}
$$

Equation A. 5 can be equivalently written as

$$
\begin{equation*}
f(\boldsymbol{\theta})=\log \boldsymbol{\omega}^{T} \exp \left(\mathbf{H}^{T} \boldsymbol{b}\right) \tag{A.7}
\end{equation*}
$$

with $\boldsymbol{\omega}$ not dependent on \boldsymbol{b}. Plugging into Equation 17,

$$
\begin{align*}
f\left(\left\{\boldsymbol{b}, \boldsymbol{c}^{k}, \mathbf{W}^{k}\right\}\right) & \leq f\left(\boldsymbol{\theta}^{k}\right) \\
& +\left\langle\nabla_{\mathbf{H}^{T} \boldsymbol{b}} l s e_{\boldsymbol{\omega}}\left(\mathbf{H}^{T} \boldsymbol{b}^{k}\right), \mathbf{H}^{T}\left(\boldsymbol{b}-\boldsymbol{b}^{k}\right)\right\rangle \\
& +\frac{1}{2}\left\|\mathbf{H}^{T}\left(\boldsymbol{b}-\boldsymbol{b}^{k}\right)\right\|_{\infty}^{2} \tag{A.8}
\end{align*}
$$

To rewrite the inner product term, note that

$$
\begin{align*}
\nabla_{\mathbf{H}^{T} \boldsymbol{b}} l s e_{\boldsymbol{\omega}}\left(\mathbf{H}^{T} \boldsymbol{b}^{k}\right) & =\mathbf{H}^{T} \nabla_{\boldsymbol{b}} f\left(\boldsymbol{\theta}^{k}\right) \tag{A.9}\\
\left(\nabla_{\mathbf{H}^{T} \boldsymbol{b}} l s e_{\boldsymbol{\omega}}\left(\mathbf{H}^{T} \boldsymbol{b}^{k}\right)\right)^{T} \mathbf{H}\left(\boldsymbol{b}-\boldsymbol{b}^{k}\right) & =\left(\nabla_{\boldsymbol{b}} f\left(\boldsymbol{\theta}^{k}\right)\right)^{T}\left(\boldsymbol{b}-\boldsymbol{b}^{k}\right)
\end{align*}
$$

The bound is simplified as

$$
\left\|\mathbf{H}^{T}\left(\boldsymbol{b}-\boldsymbol{b}^{k}\right)\right\|_{\infty}=\max _{i}\left|\boldsymbol{h}_{i}^{T}\left(\boldsymbol{b}-\boldsymbol{b}^{k}\right)\right| \leq J\left\|\boldsymbol{b}-\boldsymbol{b}^{k}\right\|_{\infty}
$$

Alternatively, this could be bound as

$$
\begin{align*}
\left\|\mathbf{H}^{T}\left(\boldsymbol{b}-\boldsymbol{b}^{k}\right)\right\|_{\infty} & \leq \sqrt{J}\left\|\boldsymbol{b}-\boldsymbol{b}_{k}\right\|_{2} \tag{A.10}\\
\left\|\mathbf{H}^{T}\left(\boldsymbol{b}-\boldsymbol{b}^{k}\right)\right\|_{\infty} & \leq\left\|\boldsymbol{b}-\boldsymbol{b}_{k}\right\|_{1} \tag{A.11}
\end{align*}
$$

The proof on \boldsymbol{c} follows with the same techniques.
Proof. Proof of Theorem 3.
As in the proof for Theorem 2, let $\mathbf{H} \in\{0,1\}^{J \times 2^{J}}$
and $\mathbf{V} \in\{0,1\}^{M \times 2^{M}}$, where each column is an unique binary vector. Define $\mathbf{U}=\mathbf{V}^{T} \mathbf{W H}$ and $\boldsymbol{\Omega}_{i j}=\boldsymbol{v}_{i}^{T} \boldsymbol{c}+$ $\boldsymbol{h}_{j}^{T} \boldsymbol{b}$. Let $\boldsymbol{u}=\operatorname{vec}(\mathbf{U})$ and $\boldsymbol{\omega}=\operatorname{vec}(\boldsymbol{\Omega})$. The \log partition function is equivalently written

$$
\begin{align*}
f(\boldsymbol{\theta}) & =\log \sum_{i=1}^{2^{M}} \sum_{j=1}^{2^{J}} \boldsymbol{\Omega}_{i j} \exp \mathbf{U}_{i j} \tag{A.12}\\
f(\boldsymbol{\theta}) & =\log \left(\boldsymbol{\omega}^{T} \exp \boldsymbol{u}\right) \tag{A.13}
\end{align*}
$$

Plugging this form into Equation 17:

$$
\begin{align*}
l s e_{\boldsymbol{\omega}}(\boldsymbol{u}) \geq & l s e_{\boldsymbol{\omega}}\left(\boldsymbol{u}^{k}\right)+\left\langle\nabla_{\boldsymbol{u}} l s e_{\boldsymbol{\omega}}\left(\boldsymbol{u}^{k}\right), \boldsymbol{u}-\boldsymbol{u}^{k}\right\rangle \\
& +\frac{1}{2}\left\|\operatorname{vec}\left(\mathbf{U}-\mathbf{U}^{k}\right)\right\|_{\infty}^{2} \tag{A.14}
\end{align*}
$$

Note that

$$
\begin{align*}
\left\langle\nabla_{\boldsymbol{u}} l s e_{\boldsymbol{\omega}}(\boldsymbol{u}), \boldsymbol{u}-\boldsymbol{u}^{k}\right\rangle & =\operatorname{tr}\left(\left(\nabla_{\mathbf{U}} l s e_{\boldsymbol{\Omega}}(\mathbf{U})\right)^{T}\left(\mathbf{U}-\mathbf{U}^{k}\right)\right) \\
\mathbf{V}_{\mathbf{U}} l s e_{\boldsymbol{\Omega}}(\mathbf{U}) \mathbf{H}^{T} & =\nabla_{\mathbf{w}} f(\boldsymbol{\theta}) \tag{A.15}
\end{align*}
$$

Writing the inner product in terms of \mathbf{W} gives

$$
\begin{equation*}
\operatorname{tr}\left(\left(\nabla_{\mathbf{U}} l s e_{\boldsymbol{\Omega}}(\mathbf{U})\right)^{T}\left(\mathbf{U}-\mathbf{U}^{k}\right)\right)=\operatorname{tr}\left(\left(\nabla_{\mathbf{W}}\right)^{T}\left(\mathbf{W}-\mathbf{W}^{k}\right)\right) \tag{A.16}
\end{equation*}
$$

The bound is simplified:

$$
\begin{aligned}
\left\|\operatorname{vec}\left(\mathbf{U}-\mathbf{U}^{k}\right)\right\|_{\infty} & =\max _{i, j}\left|\boldsymbol{v}_{i}^{T}\left(\mathbf{W}-\mathbf{W}^{k}\right) \boldsymbol{h}_{j}\right| \\
& \leq \sqrt{M J}\left\|\mathbf{W}-\mathbf{W}^{k}\right\|_{S^{\infty}}(\mathrm{A} .17)
\end{aligned}
$$

Combining these two elements proves Theorem 3.

B Derivation of optimal steps

Proof. Proof of \boldsymbol{b}^{*} in Equation 25.
We want to find the minimizer of

$$
\min _{\boldsymbol{b}}\left\langle\nabla_{\boldsymbol{b}} F\left(\boldsymbol{\theta}^{k}\right), \boldsymbol{b}-\boldsymbol{b}^{k}\right\rangle+\frac{J}{2}\left\|\boldsymbol{b}-\boldsymbol{b}^{k}\right\|_{\infty}^{2}
$$

First, add an additional variable a such that the minimizer of the expanded problem is the same as the original problem

$$
\begin{equation*}
=\min _{\boldsymbol{b}, a,\left|b_{j}\right| \leq a, a \geq 0}\left\langle\nabla_{\boldsymbol{b}} F\left(\boldsymbol{\theta}^{k}\right), \boldsymbol{b}-\boldsymbol{b}^{k}\right\rangle+\frac{J}{2} a^{2} \tag{B.1}
\end{equation*}
$$

This is straightforward to solve:

$$
\begin{align*}
& =\min _{a, a \geq 0}\left\langle\nabla_{\boldsymbol{b}} F\left(\boldsymbol{\theta}^{k}\right),-a \times \operatorname{sign}\left(\nabla_{\boldsymbol{b}} F\left(\boldsymbol{\theta}^{k}\right)\right)\right\rangle+\frac{J}{2} a^{2} \\
a^{*} & =\frac{1}{J}\left\|\nabla_{\boldsymbol{b}} F\left(\boldsymbol{\theta}^{k}\right)\right\|_{1} \tag{B.2}\\
\boldsymbol{b}^{*} & =\boldsymbol{b}-\frac{1}{J}\left\|\nabla_{\boldsymbol{b}} F\left(\boldsymbol{\theta}^{k}\right)\right\|_{1} \times \operatorname{sign}\left(\nabla_{\boldsymbol{b}} F\left(\boldsymbol{\theta}^{k}\right)\right) \tag{B.3}
\end{align*}
$$

Proof. Proof of \mathbf{W}^{*} in Equation 28.
Let $\mathbf{D}=\mathbf{W}-\mathbf{W}^{k}$, and decompose $\mathbf{D}=\mathbf{A R B}^{T}$, with \mathbf{A} and \mathbf{B} denoting the left and right singular vectors of $\nabla_{\mathbf{W}} F\left(\boldsymbol{\theta}^{k}\right)$. Then we want to minimize the quantity

$$
\min _{\mathbf{D}} \operatorname{tr}\left(\nabla_{\mathbf{W}} F\left(\boldsymbol{\theta}^{k}\right) \mathbf{D}\right)+\frac{M J}{2}\|\mathbf{D}\|_{S^{\infty}}^{2}
$$

As in the proof on the biases, add an additional variable that will give the same minimizer and solve for the solution.

$$
\begin{aligned}
& =\min _{\mathbf{D}, a,\|\mathbf{D}\|_{s_{\infty}}<a} \operatorname{tr}\left(\nabla_{\mathbf{W}} F\left(\boldsymbol{\theta}^{k}\right) \mathbf{D}\right)+\frac{M J}{2} a^{2} \\
& =\min _{\mathbf{D}, a,\|\mathbf{D}\|_{s_{\infty}}<a} \operatorname{tr}\left(\nabla_{\mathbf{W}} F\left(\boldsymbol{\theta}^{k}\right) \mathbf{D}\right)+\frac{M J}{2} a^{2} \\
& =\min _{a, \mathbf{F},\|\mathbf{F}\|_{s_{\infty}}<a} \boldsymbol{\lambda}^{T} \operatorname{diag}(\mathbf{R})+\frac{M J}{2} a^{2}
\end{aligned}
$$

Letting \mathbf{I}_{M} denote the M-dimensional identity matrix, this gives:

$$
\begin{align*}
\mathbf{R}^{*} & =\frac{-a}{M J} \mathbf{I}_{M} \tag{B.4}\\
a & =\|\boldsymbol{\lambda}\|_{1} \tag{B.5}\\
\mathbf{R}^{*} & =\left(\frac{-1}{M J}\|\boldsymbol{\lambda}\|_{1} \times \mathbf{I}_{M}\right) \tag{B.6}
\end{align*}
$$

C Discussion of using ℓ_{2} bound instead of ℓ_{∞} bound on $l s e$ function

[Böhning, 1992] introduces a bound on the lse function

$$
\begin{align*}
l s e_{\mathbf{1}}(\boldsymbol{v}) \leq & l s e_{\mathbf{1}}(\boldsymbol{u})+\left\langle\nabla_{\boldsymbol{u}} l s e_{\mathbf{1}}(\boldsymbol{u}), \boldsymbol{v}-\boldsymbol{u}\right\rangle \\
& +\frac{1}{2}(\boldsymbol{v}-\boldsymbol{u})^{T} \mathbf{B}(\boldsymbol{v}-\boldsymbol{u}) \tag{C.1}\\
\mathbf{B}= & \frac{1}{2}\left[\mathbf{I}_{J}-\frac{1}{J} \mathbf{1}_{J} \mathbf{1}_{J}^{T}\right] \tag{C.2}
\end{align*}
$$

Where \mathbf{I} is the J-dimensional identity matrix and $\mathbf{1}_{J}$ is a J-dimensional ones vector. This is trivially extended to use a nonnegative vector $\boldsymbol{\omega}$ in place of $\mathbf{1}_{J}$. The quadratic term is equivalently written
$\frac{1}{2}(\boldsymbol{v}-\boldsymbol{u})^{T} \mathbf{B}(\boldsymbol{v}-\boldsymbol{u})=\frac{1}{4}\|\boldsymbol{v}-\boldsymbol{u}\|_{2}^{2}-\frac{1}{4} \operatorname{mean}(\boldsymbol{v}-\boldsymbol{u})^{2}$
Because of the differences of logsumexp functions, the mean term drops out and so this bound gives

$$
\begin{align*}
l s e_{\boldsymbol{\omega}}(\boldsymbol{v}) \leq & l s e_{\boldsymbol{\omega}}(\boldsymbol{u})+\left\langle\nabla_{\boldsymbol{u}} l s e_{\boldsymbol{\omega}}(\boldsymbol{u}), \boldsymbol{v}-\boldsymbol{u}\right\rangle \\
& +\frac{1}{2 \times 2}\|\boldsymbol{v}-\boldsymbol{u}\|_{2}^{2} \tag{C.4}
\end{align*}
$$

Using Equation C. 4 instead of Equation 17 in the proofs in Supplemental Section A leads to looser
bounds due to the high-dimensional nature of the observation space. However, it should be noted that it may be possible to bound this more tightly.
First, examining the bound on the matrix \mathbf{W},

$$
\begin{align*}
& \frac{1}{4}\left\|\operatorname{vec}\left(\mathbf{U}-\mathbf{U}^{k}\right)\right\|_{2}^{2} \tag{C.5}\\
= & \frac{1}{4} \sum_{i=1}^{2^{M}} \sum_{j=1}^{2^{J}}\left(\boldsymbol{v}_{i}^{T}\left(\mathbf{W}-\mathbf{W}^{k}\right) \boldsymbol{u}_{j}\right)^{2} \tag{C.6}\\
\leq & \frac{1}{4} \sum_{i=1}^{2^{M}} \sum_{j=1}^{2^{J}} \boldsymbol{v}_{i}^{T}\left(\left(\mathbf{W}-\mathbf{W}^{k}\right) \odot\left(\mathbf{W}-\mathbf{W}^{k}\right)\right) \boldsymbol{u}_{j}(\mathrm{C} .7) \\
= & \frac{1}{4} \operatorname{tr}\left(\left(\left(\mathbf{W}-\mathbf{W}^{k}\right) \odot\left(\mathbf{W}-\mathbf{W}^{k}\right)\right) \sum_{i=1}^{2^{M}} \sum_{j=1}^{2^{J}} \boldsymbol{h}_{j} \boldsymbol{v}_{i}^{T}\right) \\
= & \frac{1}{4} \operatorname{tr}\left(\left(\left(\mathbf{W}-\mathbf{W}^{k}\right) \odot\left(\mathbf{W}-\mathbf{W}^{k}\right)\right)\left(\frac{2^{M+J}}{4} \mathbf{1}_{J \times M}\right)\right) \\
= & \frac{2^{M+J}}{16}\|\mathbf{W}-\mathbf{W}\|_{F}^{2} \tag{C.8}
\end{align*}
$$

For realistic problems sizes of RBMs, the bound that comes out of the logsumexp ∞-norm bound is exponentially tighter than the bound using logsumexp ℓ_{2} norm bound.

Similar analysis on the bias terms reveals a bounding term equations

$$
\begin{array}{r}
f\left(\left\{\boldsymbol{b}, \boldsymbol{c}^{k}, \mathbf{W}^{k}\right\}\right) \leq f\left(\boldsymbol{\theta}^{k}\right)+\left\langle\nabla_{\boldsymbol{b}} f\left(\boldsymbol{\theta}^{k}\right), \boldsymbol{b}-\boldsymbol{b}^{k}\right\rangle \\
+\frac{2^{J}}{8}\left\|\boldsymbol{b}-\boldsymbol{b}^{k}\right\|_{\infty}^{2} \\
f\left(\left\{\boldsymbol{b}^{k}, \boldsymbol{c}, \mathbf{W}^{k}\right\}\right) \leq f\left(\boldsymbol{\theta}^{k}\right)+\left\langle\nabla_{\boldsymbol{c}} f\left(\boldsymbol{\theta}^{k}\right), \boldsymbol{c}-\boldsymbol{c}^{k}\right\rangle \\
+\frac{2^{M}}{8}\left\|\boldsymbol{c}-\boldsymbol{c}^{k}\right\|_{\infty}^{2} \tag{C.10}
\end{array}
$$

