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Abstract—We study the problem of matrix completion when infor-
mation about row or column proximities is available, in the form of
weighted graphs. The problem can be formulated as the optimization
of a convex function that can be solved efficiently using the alternating
direction multipliers method. Experiments show that our model offers
better reconstruction than the standard method that only uses a low rank
assumption, especially when few observations are available.

I. INTRODUCTION

In matrix completion we have a set of signals in matrix form M ∈
Rm×n. They are only sparsely observed, i.e. a small set Ω of the
elements of M are known, and the goal is to recover the rest. In order
for the problem to be solvable, additional assumptions are needed, the
most common one being that the matrix is low rank. The problem of
finding the matrix of minimum rank that agrees to the given observed
values is NP-hard. However, replacing rank(X) with its complex
surrogate nuclear norm ||X||∗ yields the convex problem

min
X∈Rm×n

‖X‖∗ s.t. AΩ(X) = AΩ(M), (1)

where AΩ denotes the operator that keeps only the observed values
of a matrix. Under the assumption that M is sufficiently incoherent,
if the indices Ω are uniformly distributed and |Ω| is sufficiently large,
solving the last problem gives an exact solution [1].

II. MATRIX COMPLETION ON GRAPHS

Low rank implies the linear dependence of rows/columns. How-
ever, this dependence is unstructured. In many situations, the
rows/columns of matrix M possess additional structure that can be
incorporated into the completion problem in the form of regulariza-
tion. In this work, we assume that the row and column signals reside
on manifolds approximated by two given graphs. The weight wc

ij of
an edge of the columns’ graph Gc = (Vc, Ec,Wc) represents how
close are the two adjacent columns xi and xj . Similarly for the rows,
that are nodes of the corresponding graph Gr = (Vr, Er,Wr). More
formally, we want∑

j,j′

wc
jj′‖xj − xj′‖22 = tr(XLcX

>) = ‖X‖D,c (2)

to be small [2], where Lc = Dc − Wc is the Laplacian of the
column graph Gc, Dc = Diag(

∑n
j′=1 w

c
jj′), and ‖ · ‖D,c is the

graph Dirichlet semi-norm for columns. Similarly, for the rows we
get a corresponding expression tr(X>LrX) = ‖X‖D,r with the
Laplacian Lr of the row graph Gr .

These smoothness terms are added to the matrix completion
problem as regularization terms, and the final optimization problem
we solve is [3]

min
X

γn||X||∗ +
1

2
||AΩ(X −M)||2F +

γr
2
‖X‖D,r +

γc
2
‖X‖D,c,

(3)

where γn, γr , γc are parameters that can be chosen with model
selection methods like cross validation.
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Fig. 1. Artificial low rank dataset (left) and matrix recovery error versus
observation level (right). Percentage of erroneous edges in graphs is shown
on top of green and red lines.

III. CONVEX OPTIMIZATION

Problem (3) is a non-smooth convex optimization problem that
can not be solved efficiently with a direct approach. Using a splitting
approach we can write the objective function of (3) as F (X)+G(X),
where F (X) contains the non-smooth part (i.e. the nuclear norm)
and G(X) contains the smooth part (all other terms). Then we can
equivalently solve the problem

min
X,Y

F (X) +G(Y ) s.t. X = Y (4)

using an augmented Lagrangian method. The combination of these
techniques is known as the Alternating Direction Method of Multi-
pliers (ADMM) [4] that is efficient even when the intermediate steps
are only solved approximately.

IV. EXPERIMENTS

We construct a synthetic block constant rank-10 matrix. Its
columns (rows) exhibit a community structure corresponding to an
ideal graph connecting pairs of columns (resp. rows) that are identical.
We add different levels of erroneous edges (10%, 20%, 30%) sampled
from an Erdös Rényi graph. For each of the graphs we perform
reconstruction using different levels of observed values of the matrix.

The reconstruction error (RMSE) is reported in fig 1. The blue line
corresponds to the standard method making use of only the low rank
assumption. The red lines correspond to the results of our method
that incorporates structure information of different fidelity levels,
corresponding to the percentages of erroneous edges of the graphs.
The green lines depict the results for γn = 0, when only graphs and
not the low-rank assumption are used. Evidently, reconstruction can
benefit when structure information is added to the standard low rank
assumption, while the method is robust to the quality of graphs.
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