Matrix Completion on Graphs

Vassilis Kalofolias ${ }^{1}$, Xavier Bresson², Michael Bronstein³, and Pierre Vandergheynst¹ ${ }^{1}$ EPFL, Switzerland ${ }^{2}$ UNIL, Switzerland ${ }^{3}$ USI, Switzerland

Matrix Completion

Given a sparse set Ω of observations, find matrix M.
Assumption: M is low rank:

$$
\min _{X \in \mathbb{R}^{m \times n}} \operatorname{rank}(X) \quad \text { s.t. } \quad A_{\Omega}(X)=A_{\Omega}(M) \times \text { NP-hard! }
$$

Relax rank with its tightest convex surrogate [1]:

$$
\min _{X \in \mathbb{R}^{m \times n}}\|X\|_{*} \quad \text { s.t. } \quad A_{\Omega}(X)=A_{\Omega}(M) \quad \checkmark \text { Convex }
$$

Observations can be noisy:

$$
\begin{equation*}
\min _{X \in \mathbb{R}^{m \times n}} \gamma_{n}\|X\|_{*}+\frac{1}{2}\left\|A_{\Omega}(X-M)\right\|_{F}^{2} \tag{1}
\end{equation*}
$$

Success guaranteed if [2]: $|\Omega| \geq \mathcal{O}\left(r(m+n) \log ^{2}(n)\right)$ if $m<n$

Adding structure

- How to go beyond standard sparse recovery problem (1)?
\Rightarrow Use "structures" $[4,5]$
- Our structure: use similarity information for rows / columns

Assumption: columns / rows of M are points on manifolds [3].

- Discrete representation: graphs

$$
G_{r}=\left(V_{r}, E_{r}, W_{r}\right), \quad G_{c}=\left(V_{c}, E_{c}, W_{c}\right)
$$

Rows graph
 edges

Well connected nodes have similar values:

$$
\frac{1}{2} \sum_{i, j^{\prime}} w_{j j^{\prime}}^{c}\left\|x_{j}-x_{j^{\prime}}\right\|_{2}^{2}=\operatorname{tr}\left(X L_{c} X^{\top}\right)=\|X\|_{\mathcal{D}, c} \text { is small }
$$

\Rightarrow Final problem to be solved:

$$
\begin{equation*}
\min _{X} \underbrace{\gamma_{n}\|X\|_{*}}_{F(X)}+\underbrace{\frac{1}{2}\left\|A_{\Omega}(X-M)\right\|_{F}^{2}+\frac{\gamma_{r}}{2}\|X\|_{\mathcal{D}, r}+\frac{\gamma_{c}}{2}\|X\|_{\mathcal{D}, c}}_{G(X)} \tag{2}
\end{equation*}
$$

X is sparse in SV domain and structured according to row/column graphs.

Algorithm

$\mathbf{A D M M}=($ split $)+($ Augmented Lagrangian method $)$
Split problem (2):
$\min _{X, Y \in \mathbb{R}^{m \times n}} \underset{\text { non-smooth }}{ } \underset{\sim}{X}(X)+G(Y)$ smooth \quad s.t. $X=Y$.

- Augmented Lagrangian:

$$
\mathcal{L}(X, Y, Z)=F(X)+G(Y)+\langle Z, X-Y\rangle+\frac{\rho}{2}\|X-Y\|_{\mathcal{F}}^{2}
$$

- To find a saddle point of \mathcal{L} alternate between:

$$
\begin{array}{ll}
X^{k+1}=\arg \min _{X} \mathcal{L}\left(X, Y^{k}, Z^{k}\right) & \\
Y^{k+1}=\arg \min _{Y} \mathcal{L}\left(X^{k+1}, Y, Z^{k}\right) & \text { threshold s-values } \\
Z^{k+1}=Z^{k}+\rho\left(X^{k+1}-Y^{k+1}\right) &
\end{array}
$$

Approximate solutions of inner steps suffice !

References

[1] E. Candes and B. Recht. Exact matrix completion via convex optimization. FCM, 2009.
[2] B. Recht. A simpler approach to matrix completion. JMLR, 2011
[3] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 2003.
[4] R.G. Baraniuk, V. Cevher, M.F. Duarte, C. Hedge. Model-based compressive sensing. IEEE Trans. Information Theory, 2010.
[5] R. Jenatton, J.Y. Audibert, F. Bach. Structured variable selection with sparsityinducing norms. JMLR, 2011.
[6] V. Kalofolias, X. Bresson, M. Bronstein, P. Vandergheynst. Matrix completion on graphs. arXiv:1408.1717 [cs.LG].

Experiments (artificial data)

Netflix-like artificial data

- Rank $=10$
- Values from $\{1, \ldots, 5\}$

Structures:

- Communities of users / movies
- Block constant

Add error to:

- Ratings
- Edges ($10 \%, 20 \%, 30 \%$)

Experiments (Movielens)

Dataset: 71k users, 10k movies
x Graphs are not given: \checkmark create them using features!
\cdot Pick 500 users, 500 movies for M.
$\left.\begin{array}{l}\text {-Rest of users' ratings: movie features } F_{m} \\ \text {-Rest of movie ratings: user features } F_{u}\end{array}\right\} \rightarrow$ distances \rightarrow edge weights

Creating the graphs:

Conclusions

- Matrix recovery can benefit by row or column similarity information.
- Similarity can be encoded by graphs.
- Convex non-smooth problem solved efficiently by ADMM.
- Method is robust to graph quality.
- Robust to non-uniform sampling (see full paper [6]).

Contact

Vassilis Kalofolias, PhD student,
LTS2,
vassilis.kalofolias@epfl.ch

Link to
full
Paper [6]

