
Experiments	  (Movielens)	  
Dataset: 71k users, 10k movies  
✗  Graphs are not given: ✓ create them using features! 
• Pick 500 users, 500 movies for M. 
• Rest of users’ ratings: movie features Fm 

• Rest of movie ratings: user features Fu 

 

Matrix	  Comple4on	  
Given a sparse set Ω of observations, find matrix M. 
Assumption: M is low rank: 
 
 
Relax rank with its tightest convex surrogate [1]: 
 
 
Observations can be noisy: 
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Experiments	  (ar4ficial	  data)	  
Netflix-like artificial data 
•  Rank = 10 
•  Values from {1,…,5} 
Structures: 
•  Communities of users / movies 
•  Block constant 
Add error to: 
•  Ratings 
•  Edges (10%, 20%, 30%) 

	  

Conclusions	  
•  Matrix recovery can benefit by row or column similarity information. 
•  Similarity can be encoded by graphs. 
•  Convex non-smooth problem solved efficiently by ADMM. 
•  Method is robust to graph quality. 
•  Robust to non-uniform sampling (see full paper [6]). 
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Matrix	  Comple.on	  on	  Graphs	  

✗  NP-hard!"

✓ Convex"

Algorithm	  
ADMM = (split) + (Augmented Lagrangian method) 
•  Split problem (2): 

•  Augmented Lagrangian: 

•  To find a saddle point of L alternate between: 

•  Approximate solutions of inner steps suffice ! 
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Success guaranteed if [2]:  

QR	  code	  here!	  Link	  to	  
full	  
Paper	  [6]	  

edges 

Rows graph 

Adding	  structure	  
Problem (1) implies sparsity (singular values domain): 

  Rows / columns linear dependence, but unstructured 
Similarity information for rows or columns might be available: 

Assumption: columns / rows of M are points on manifolds [3] 
•  Discrete representation: graphs 

•  Well connected nodes have similar values: 
                                                                   is small 

 

Final problem to be solved: 
 
 
Can be seen as a structured sparsity [4, 5] model. 
 

Rows graph nodes = rows edges Edge 
weights 

Adding	  structure	  
•  How to go beyond standard sparse recovery problem (1)? 

    Use “structures” [4, 5] 
•  Our structure: use similarity information for rows / columns 
Assumption: columns / rows of M are points on manifolds [3]. 
•  Discrete representation: graphs 

•  Well connected nodes have similar values: 

                                                                                     is small 
 

   Final problem to be solved: 
 
 

X is sparse in SV domain and structured according to row/column graphs. 
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Gr = (Vr, Er,Wr), Gc = (Vc, Ec,Wc)

Rows graph nodes = rows of M edges Edge 
weights 
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