Matrix Completion on Graphs

Vassilis Kalofolias¹, Xavier Bresson², Michael Bronstein³, and Pierre Vandergheynst¹ ¹EPFL, Switzerland ²UNIL, Switzerland ³USI, Switzerland

Matrix Completion

Given a sparse set Ω of observations, find matrix M. **Assumption**: **M** is low rank:

min rank(X) s.t. $A_{\Omega}(X) = A_{\Omega}(M)$ × NP-hard! $X \in \mathbb{R}^{m \times n}$ Relax rank with its tightest convex surrogate [1]:

 $\min_{X \in \mathbb{R}^{m \times n}} ||X||_* \quad \text{s.t.} \quad A_{\Omega}(X) = A_{\Omega}(M) \quad \checkmark \text{ Convex}$

Observations can be noisy: $\min_{X \in \mathbb{R}^{m \times n}} \gamma_n ||X||_* + \frac{1}{2} ||A_{\Omega}(X - M)||_F^2$ (1)Success guaranteed if [2]: $|\Omega| \ge \mathcal{O}(r(m+n)\log^2(n))$ if m < n

Adding structure

• How to go beyond standard sparse recovery problem (1)?

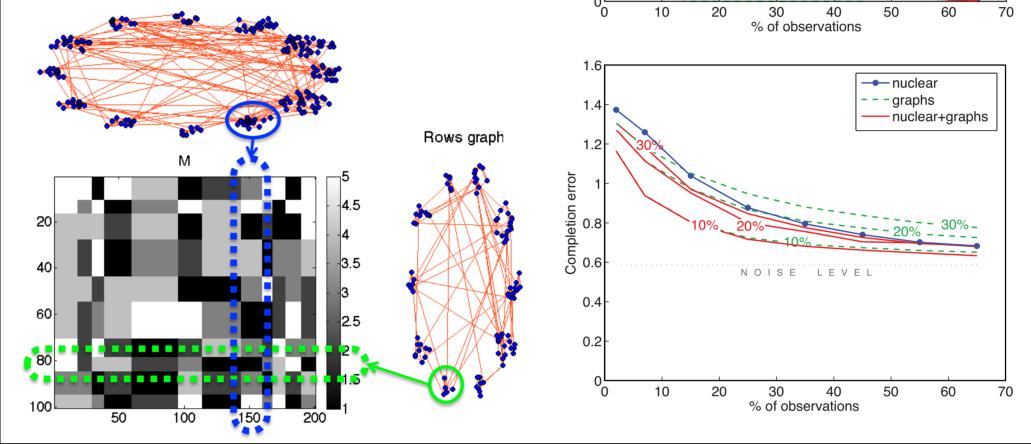
Experiments (artificial data)

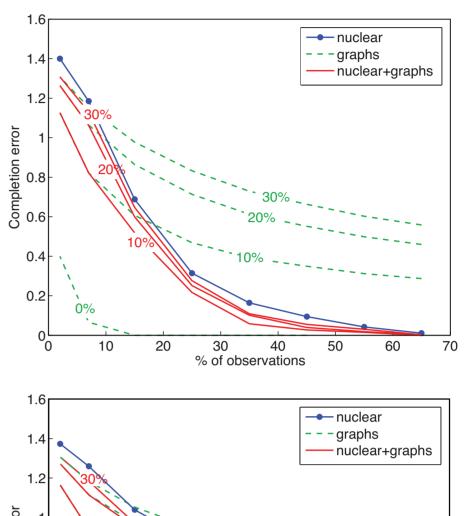
Netflix-like artificial data

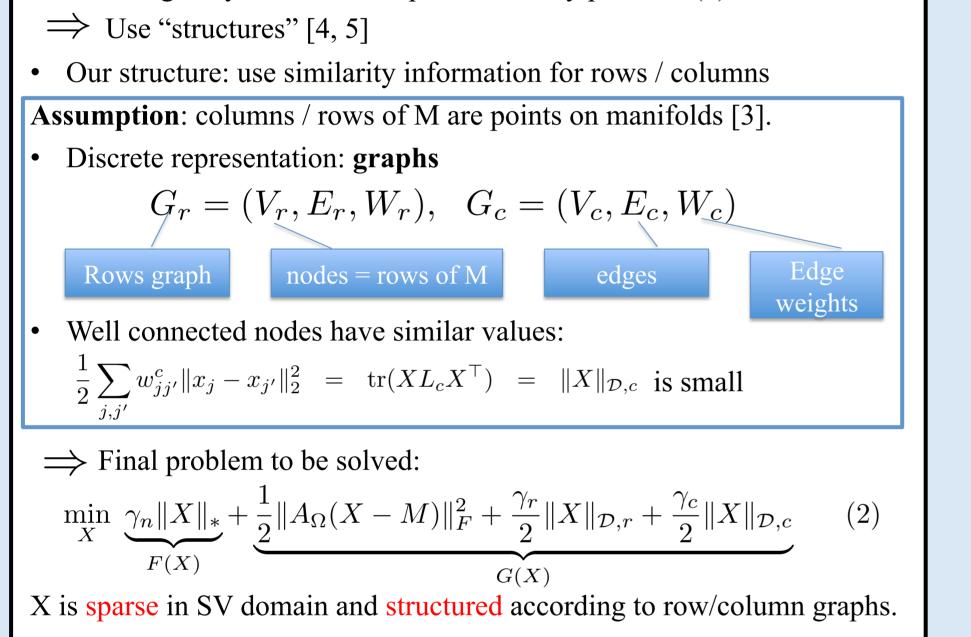
- Rank = 10
- Values from {1,...,5}

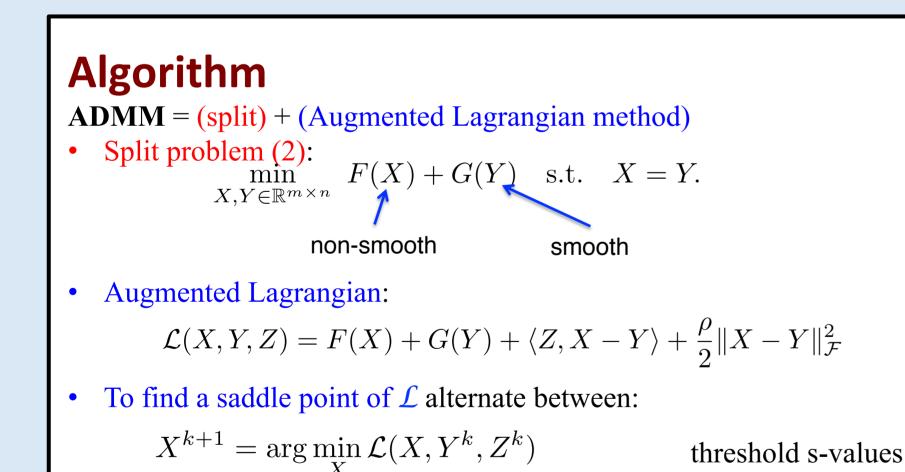
Structures:

- Communities of users / movies
- Block constant
- Add error to:
- Ratings
- Edges (10%, 20%, 30%)







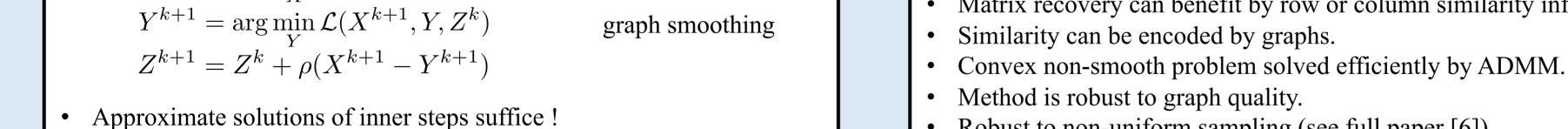


Experiments (Movielens)

Dataset: 71k users, 10k movies X Graphs are not given: ✓ create them using features! •Pick 500 users, 500 movies for M. •Rest of users' ratings: movie features F_m \rightarrow distances \rightarrow edge weights •Rest of movie ratings: user features F_u Part of Movielens 10M dataset Creating the graphs: 1.05 (HWSE) (10,000 (10,000 (10,000) (10,000 Movies graph R0.9 Users 0.85 Users graph 0.8 R $R [F_m]$ 0.75 0.7 32 4 8 16 Movies percentage of observations

Conclusions

- Matrix recovery can benefit by row or column similarity information.
- Similarity can be encoded by graphs.



Robust to non-uniform sampling (see full paper [6]).

References

[1] E. Candes and B. Recht. Exact matrix completion via convex optimization. FCM, 2009.

[2] B. Recht. A simpler approach to matrix completion. JMLR, 2011.

[3] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 2003.

[4] R.G. Baraniuk, V. Cevher, M.F. Duarte, C. Hedge. Model-based compressive sensing. IEEE Trans. Information Theory, 2010.

[5] R. Jenatton, J.Y. Audibert, F. Bach. Structured variable selection with sparsityinducing norms. JMLR, 2011.

[6] V. Kalofolias, X. Bresson, M. Bronstein, P. Vandergheynst. Matrix completion on graphs. arXiv:1408.1717 [cs.LG].

Contact

Vassilis Kalofolias, PhD student, LTS2, vassilis.kalofolias@epfl.ch

Università della Svizzera italiana

UNIL | Université de Lausanne