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Numbers is hard and real and they never have feelings

But you push too hard, even numbers got limits
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The million other straws underneath it: it’s all mathematics
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Abstract

Genome-wide manipulations and measurements have made huge progress over the last

decades. In Saccharomyces cerevisiae, a well-studied eukaryotic model organism, homologous

recombination allows for systematic deletion or alteration of a majority of its genes. Important

products of these manipulation techniques are two libraries of modified strains: A deletion

library consisting of all viable knockout mutants, and a GFP library in which 4159 proteins

are successfully tagged with GFP. In addition, the development of a method that allows for

the systematic construction of double mutants led to a virtually infinite number of potential

strains of interest.

These advancements in combinatorial biology need to be matched by methods of data mea-

surement and analysis. In order to simultaneously observe the spatio-temporal dynamics of

thousands of strains from the GFP library, Dénervaud et al. developed a microfluidic platform

that allows for parallel imaging of 1152 strains in a single experiment. On this platform, strains

can be grown and monitored in a controllable environment for several days, which results in

the imaging of several millions of cells during one experiment.

To objectively and quantitatively analyze this immense amount of information, we imple-

mented an image analysis pipeline, which can extract experiment-wide information on single-

cell protein abundance and subcellular localization. The construction of a supervised classifier

to quantify localization information on a single cell level is a new approach and was invaluable

to detect dynamic localization changes within the proteome.

Using five different stress conditions, we gained insight into temporal changes of abundance

and localization of multiple proteins. For example, we found that while localization changes

can often be fast and transient, long-term response of a cell is usually enabled by changes in

abundance. This shows a well-orchestrated response of a cell to external stimuli.

To extend knowledge about cellular mechanisms, we used our microfluidic platform for two
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Abstract

separate screens, combining GFP-reporter with additional deletion mutants. The advantage

of our platform in comparison to more common approaches lies in its simultaneous measure-

ment of fluorescence and phenotypic information on cell size and growth. For each deletion,

we can quantify not only its influence onto the respective GFP-reporter under changing condi-

tions, but also its effect on cell growth and size. We showed that it is advantageous to combine

this information, as it allows pointing out possible underlying mechanisms of gene network

regulations.

In a first screen we investigated the behavior of several gene networks upon UV irradia-

tion damage. We were able to show that four gene deletions influenced the localization of

ribonucleotide-diphosphate reductase (Rnr4p).

A second screen was designed to find genes that influence the induction of the galactose

network. This screen uses more than 500 deletions of genes mostly related to chromatin in

combination with two different reporter strains. A main focus of this study was the inheritance

of memory during galactose reinduction. We found several previously unknown genes that

potentially influence either induction or reinduction and were picked as candidates for further

inheritance studies.

Our microfluidic platform allows for unprecedented studies of proteomes in flux. This thesis

shows the potential of the platform and highlights the quantitative analysis, which needs

to be able to cope with the amount and complexity of data in high throughput live cell imaging.

Keywords: Microfluidics, Live-cell arrays, Time-lapse microscopy, Single-cell image anal-

ysis, Saccharomyces cerevisiae, Yeast GFP collection, Protein abundance, Protein localization,

DNA damage response, Environmental stress response (ESR), Ultra-Violet irradiation (UV),

Synthetic genetic array (SGA), Galactose network (GAL).
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Zusammenfassung

Genomweite Manipulationen und Messungen haben in den letzten Jahrzehnten große Fort-

schritte gemacht. In Saccharomyces cerevisiae, einem gut untersuchten eukaryotischen Modell-

organismus, ermöglicht homologe Rekombination systematische Löschung oder Änderung

der Mehrheit seiner Gene. Wichtige Produkte dieser Manipulationstechniken sind zwei Kollek-

tionen modifizierter Stämme: Eine Löschungs-Kollektion, bestehend aus allen lebensfähigen

Knockout-Mutanten, und eine GFP-Kollektion, in der 4159 Proteine erfolgreich mit GFP mar-

kiert wurden. Darüber hinaus führt die Entwicklung eines Verfahrens, das die systematische

Konstruktion von Doppelmutanten erlaubt, zu einer nahezu unendlichen Anzahl potentiell

interessanter Stämme.

Diese Fortschritte in der kombinatorischen Biologie benötigen angepasste Methoden der

Datenerfassung und -analyse. Um gleichzeitig die raum-zeitliche Dynamik tausender von

Stämmen aus der GFP-Kollektion ermöglichen zu können, entwickelten Dénervaud et al.

eine mikrofluidische Plattform mit einer parallelen Bildgebung von 1152 Stämmen in einem

einzigen Experiment. Auf dieser Plattform können Stämme gezüchtet und in einer kontrollier-

baren Umgebung für mehrere Tage überwacht werden, was zu der Aufnahme von mehreren

Millionen Zellen während eines Experiments führt.

Um diese immense Menge an Informationen objektiv und quantitativ zu analysieren, imple-

mentierten wir eine Bildanalyse-Pipeline, die experimentweit Informationen über Protein-

Menge und subzelluläre Lokalisierung extrahieren kann. Der Bau eines überwachten Klassifi-

kators zur quantitativen subzellulären Proteinlokalisierung auf Einzelzellebene ist ein neuer

Ansatz und ist von unschätzbarem Wert, um dynamische Veränderungen innerhalb des Pro-

teoms zu erfassen.

Mit der Beobachtung von fünf verschiedenen Stressbedingungen gewannen wir einen Einblick

in die zeitlichen Änderungen der Menge und subzellulären Lokalisierung von mehreren Prote-
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Zusammenfassung

inen. Zum Beispiel haben wir festgestellt, dass, während die Lokalisierungsveränderungen oft

schnell und vorübergehend sein können, langzeitige Reaktionen einer Zelle in der Regel durch

Veränderungen in Proteinkonzentrationen gesteuert sind. Dies zeigt eine gut organisierte

Reaktion einer Zelle auf äußere Reize.

Um das Wissen über zelluläre Mechanismen zu erweitern, haben wir unsere mikrofluidi-

sche Plattform für zwei separate Screens benutzt, in denen GFP-Reporter mit zusätzlichen

Deletionsmutanten kombiniert wurden. Der Vorteil unserer Plattform im Vergleich zu gewöhn-

licheren Ansätzen liegt in der gleichzeitigen Messung von Fluoreszenz und phänotypischen

Informationen. Für jede Löschung können wir nicht nur ihren Einfluss auf das jeweilige GFP-

Reportergen unter wechselnden Bedingungen messen, sondern auch ihre Wirkung auf das

Zellwachstum und die Größe. Wir haben gezeigt dass es vorteilhaft ist diese Informationen zu

kombinieren, denn sie ermöglichen den Hinweis auf potentiell zugrundeliegende Mechanis-

men der Gen-Netzwerk-Regulierung.

In einem ersten Screen untersuchten wir das Verhalten mehrerer Gen-Netzwerke bei UV-

Bestrahlungsschäden. Wir konnten zeigen, dass vier Gen-Knockouts die Lokalisierung von

Ribonukleotid-Diphosphat-Reduktase (Rnr4p) beeinflussen.

Der zweite Screen wurde entwickelt, um Gene zu finden, die die Induktion des Galaktose-

Netzwerkes beeinflussen. Dieser Screen untersucht mehr als 500 Löschungen von Genen, die

weitestgehend mit dem Chromatin zusammenhängen in Kombination mit zwei unterschiedli-

chen Reporterstämmen. Ein Schwerpunkt der Studie war das Vererben von Informationen

während Galactose-Reinduktion. Wir fanden mehrere bisher unbekannte Gene, die möglicher-

weise Einfluss auf entweder Induktion oder Reinduktion haben. Sie wurden als Kandidaten

für weitere Vererbungsstudien aufgenommen.

Unsere mikrofluidische Plattform ermöglicht beispiellose dynamische Studien des Proteoms.

Diese Arbeit zeigt das Potenzial der Plattform und unterstreicht die quantitative Analyse,

die in der Lage sein muss, die Menge und Komplexität der Lebendzellmikroskopiedaten zu

bewältigen.

Stichwörter: Mikrofluidik, Lebendzellmikroskopie, Einzelzell Bildanalyse, Saccharomyces cere-

visiae, Hefe GFP Kollektion, Proteinvorkommen, Proteinlokalisierung, DNA-Schädigungsreaktion,

Umweltbeeinflusste Schadensreaktion, UV-Strahlung, Galaktose Netzwerk

x



Contents

Acknowledgements v

Abstract (English/Deutsch) vii

Contents xiii

List of figures xvi

List of tables xvii

1 Introduction 1

2 Background: A microfluidic live-cell imaging platform 5

2.1 Introduction to microfluidics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Microfluidic applications in single-cell imaging . . . . . . . . . . . . . . . 6

2.1.2 High-throughput imaging devices and live-cell arrays for device loading 6

2.2 The technical platform fabricated by Dénervaud et al. . . . . . . . . . . . . . . . 7

2.2.1 Chip design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Live cell arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.3 Live cell arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.4 Overview of automated microscopy . . . . . . . . . . . . . . . . . . . . . . 10

3 Image analysis 13

3.1 Background: Image analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 The automated image analysis pipeline . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Image processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.2 Single-cell segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

xi



Contents

3.2.3 Abundance extraction and estimation of protein copy numbers . . . . . 17

3.3 Classification of subcellular localization . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Background: Automated classification of subcellular localization . . . . 19

3.3.2 Feature extraction for protein localization . . . . . . . . . . . . . . . . . . 21

3.3.3 Supervised classification into six spatial patterns . . . . . . . . . . . . . . 22

3.3.4 Validation of the classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.5 Comparison with the original yeast GFP library annotations . . . . . . . 26

3.3.6 Supervised quantification of localization change . . . . . . . . . . . . . . 26

3.4 Results of quantitative localization analysis . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 Screening of the GFP library in MMS . . . . . . . . . . . . . . . . . . . . . 30

3.4.2 Comparison of localization changes for different stress conditions . . . . 31

3.5 Visualization of localization using our six geometrical patterns . . . . . . . . . . 34

3.6 Measurement of cell growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6.1 On-chip cell growth under stable conditions . . . . . . . . . . . . . . . . . 38

3.6.2 Growth estimation using local image correlation . . . . . . . . . . . . . . 39

4 Quantitative analysis of reporter-deletion systems in yeast 43

4.1 Background: Recombinant genetic techniques in yeast . . . . . . . . . . . . . . . 43

4.2 Limitations of the yeast deletion collection . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Gene network regulation upon UV irradiation . . . . . . . . . . . . . . . . . . . . 48

4.3.1 Background: Cell damage and its pathways . . . . . . . . . . . . . . . . . 48

4.3.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 The Galactose network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.1 Background: Galactose and transcriptional memory . . . . . . . . . . . . 57

4.4.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Discussion of the results and outlook 83

5.1 Results overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Limitations and improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

xii



Contents

A List of features for the classification of protein localization 89

Bibliography 103

Curriculum Vitae 105

xiii





List of Figures

2.1 Description of the perfused chamber array . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Cell arraying results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Chip priming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Cell segmentation - Watershed, Ovuscule, E-snake . . . . . . . . . . . . . . . . . 16

3.2 Comparison of protein abundance measurements in our studies with existing

datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Single cell representations of the 6 localization patterns . . . . . . . . . . . . . . 23

3.4 Validation of the classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Comparison of our six spatial patterns with the UCSF annotations . . . . . . . . 27

3.6 Example of a clustergram of localization over time in Java TreeView . . . . . . . 28

3.7 Dynamics of Bmh1p/Bmh2p and Hsp42p/Hsp104p . . . . . . . . . . . . . . . . 31

3.8 Summary of proteome-wide localization changes . . . . . . . . . . . . . . . . . . 33

3.9 Representation of spatial patterns inside a 6D simplex . . . . . . . . . . . . . . . 35

3.10 Visualization of a manually curated complex catalogue . . . . . . . . . . . . . . 37

3.11 Estimation of doubling time on chip . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.12 Local correlation of images for growth rate estimation . . . . . . . . . . . . . . . 41

4.1 Analysis of strain size distribution highlights the influence of deletions on cell size 46

4.2 The General Pathways and Nuclease Complexes for Degradation of Eukaryotic

mRNAs involved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Summary of reporter-deletion UV irradiation screen . . . . . . . . . . . . . . . . 53

4.4 Comparison of foci formation in different P-Body proteins under UV irradiation 54

4.5 Summary of the known GAL network . . . . . . . . . . . . . . . . . . . . . . . . . 58

xv



List of Figures

4.6 Control of flow line quality in galactose experiments . . . . . . . . . . . . . . . . 63

4.7 Summary of all galactose screen experiments . . . . . . . . . . . . . . . . . . . . 65

4.8 Summary of outlier detection for Gal1+ and Gal1- strains . . . . . . . . . . . . . 71

4.9 Normalization of Gal1+ using LOESS . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.10 Overlay of experiments after normalization by LOESS . . . . . . . . . . . . . . . 72

4.11 Comparison of Gal1+ and Gal1- strains under different induction conditions . . 74

4.12 Summary of outlier detection in Gal1+ and Gal1- . . . . . . . . . . . . . . . . . . 79

4.13 Clustergram of Gal1+ abundance changes . . . . . . . . . . . . . . . . . . . . . . 80

4.14 Clustergram of Gal1- abundance changes . . . . . . . . . . . . . . . . . . . . . . . 81

xvi



List of Tables

4.1 Summary of detected outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.1 List of features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

xvii





1 Introduction

Systems biology has emerged as the main approach to study complex interactions, sparked

by the ongoing development of high-throughput technologies. Using a holistic viewpoint, it

generally tries to identify all parts of a complex network instead of focusing on few interactions.

For example, a main part of systems biology is the understanding of gene regulation and pro-

tein activity as complete networks or even on a genome or proteome-wide level, respectively

[1]. It is a common approach to combine high-throughput techniques, to obtain system-wide

information, which is then integrated into a model, aiming to understand the functioning of a

cell or organism as a whole.

Two important aspects of systems biology are genomics and proteomics. Genomics on the one

hand focuses its studies on the gene content of DNA and its transcription. Since first sequenc-

ing techniques have been published 40 years ago, thousands of complete genome sequences

became available and gene analysis techniques have evolved from southern blotting over

DNA microarrays to genome-wide sequencing methods like Chromatin immunoprecipitation

followed by deep sequencing (ChIP-Seq). The advancements of these technologies helped to

identify the role of genes in a genome-wide manner, as they allow for large studies that could

for example highlight gene abundance variation over time [2] or under different conditions

[3].

For the proteome, methods like the yeast two-hybrid system (Y2H) or affinity-purification

coupled with mass spectrometry (AP-MS) are well suited to give us a good overview about

protein interaction [4]. A major impact on protein analysis was the systematic approach to tag
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Chapter 1. Introduction

each open reading frame (ORF) of Saccharomyces cerevisiae with green fluorescent protein

(GFP) undertaken by Huh et al. [5]. This led to a collection of 4159 clones (67% of all ORFs),

which helped in proteome-wide understanding of protein localization and later on abundance

and noise under static conditions [5, 6, 7].

Fluorescent protein markers combined with time-lapse microscopy enabled dynamic ob-

servations like the shuttling of proteins between different subcellular compartments [8] or

molecular processes during the cell cycle [9]. Recently, several large-scale screens used the

GFP library on standard microtiter plates to study static differences. For example, these

screens were able to detect changes in abundance and localization following treatment with

methyl methanesulfonate (MMS) and hydroxyurea (HU) [10] and in response to DTT, H2O2,

and nitrogen starvation [11].

But the underlying dynamic of responses still remained hidden, as none of these approaches

allow for control of culture conditions, as a continuous supply of medium cannot be provided.

Microfluidic devices are capable of overcoming this problem, as continuous flow allows for

static conditions, while being able to control culture size. Furthermore, they allow for dynamic

changes of conditions. For example, first devices with living cell cultures were used on a

low number of strains to measure the gene expression of single strains upon changes in the

environment [12] or to analyze complete pathways [13].

However, these devices were still limited in the amount of strains that could be used, mostly

by relying on manual loading of the device. To overcome this drawback, we developed a

microfluidic device that uses a DNA spotter to spot living cells, instead of loading the device

via the more common approach of flow-in [14]. This device allows for the parallel study of up

to 1152 different strains over several days, with a time resolution of 20 minutes, resulting in

close to 100,000 images for one single experiment.

The importance of the parallel study of thousands of genetically modified strains increased

over the last decade, as genome wide modifications became possible in both bacteria [15] and

simple eukaryotes [16, 17]. For several reasons, we chose S. cerevisiae as the primary model

of our live-cell imaging platform. A technical reason was the robustness of yeast, which was

found to survive the stressful process of cell spotting. The biological reasons are the same

that make budding yeast one of the best-studied model organisms. Being a eukaryote, yeast

possesses a lot of processes that are comparable in more complex organisms. At the same time,

2



yeast is similar to a lot of bacteria in that it provides an efficient background for large-scale

genetic manipulations [18].

We first used the aforementioned GFP library to study the changes in protein abundance and

localization under dynamic conditions. Therefore, a robust automatic image analysis pipeline

was indispensable for data quantification. Combining bright field and fluorescence images,

this pipeline allowed us to extract valuable single-cell information about the proteome in flux.

Independent of the GFP library, a second library in S. cerevisiae was obtained through the

development of a deletion mutant array (DMA) [17], containing every viable knockout ORF

of the yeast genome, resulting in more than 5000 viable strains. This DMA can be used for

Synthetic Genetic Array analysis (SGA), a high-throughput technique that allows to systemati-

cally construct collections of double mutants. A typical use of this method is the large-scale

analysis of double deletion mutants to detect synthetic lethal and synthetic sick genetic inter-

actions (SSL) [18]. Another example is the combination of a GFP-tagged reporter gene with the

deletion set [10]. This can be advantageous over the typical approach of using two deletions,

as it expands the detection of network relations that go beyond lethality.

We took advantage of the SGA method and produced two different reporter deletion sets to

investigate the dynamics of two different important networks. First, we were interested in

different mechanisms of DNA damage repair. Therefore, we crossed a diverse set of reporter

genes that we found to respond strongly to UV irradiation with a set of deletion mutants

known to be affected in DNA damage response and RNA degradation [14].

A second screen used the well-studied galactose (GAL) network to address the mechanics

of transcriptional activation during nutrient induced changes. Previous studies found rein-

duction of GAL network genes to occur faster than during the initial induction, even after an

interim glucose repression of several hours [19, 20]. This is a primary example of epigenetics,

as the effect can even be seen in daughter cells born after the first induction. Yet the underlying

mechanisms remain largely unclear. Therefore, we combined a Gal1p-GFP reporter with an

extensive set of chromatin related deletions, to highlight genes that influence either GAL

network induction in general, or specifically a reinduction due to influences on epigenetic

mechanisms.

For all aforementioned screens, our microfluidic device allowed for an unprecedented holistic

approach. We achieved high temporal resolution on a genome wide level, linking pheno-
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Chapter 1. Introduction

typic information about growth and cell size with cell network information about protein

abundance and localization. As a result, it became essential to develop new methods to

quantitatively analyze and visualize the large spectrum of information.

Chapter 2 will first describe general principles of microfluidics and the development of our

device, mainly carried out by Nicolas Dénervaud. Chapter 3 describes the computational

methods that are fundamental for single cell image analysis, namely image processing, single

cell segmentation and information extraction. For our device, Ricard Delgado-Gonzalo and

Nicolas Dénervaud have primarily conducted the first two of these steps. Nicolas Dénervaud

and Johannes Becker worked together on the information extraction, with Nicolas Dénervaud

focusing more on the question of protein concentration and Johannes Becker investigating

the analysis of protein localization and on-chip cell growth.

The possibilities of genome-wide manipulations in a eukaryote make S. cerevisiae an excellent

model organism for systems biology. Paired with robust growth on chip, it allows for high-

throughput studies of complete gene or protein networks. Chapter 4 describes two large-scale

screens of GFP reporter deletion double mutants. One screen focusing on the mechanisms

of DNA damaging network and the other on transcriptional mechanisms during galactose

induction, the chapter highlights ways of how the dynamic information of our microfluidic

platform can integrate diverse quantitative information in a holistic manner.

This overlying thematic of quantitative analysis of high throughput microscopy experiments

will be summarized in chapter 5. The chapter provides an overview of the advancements and

possibilities of our platform. Chapter 5 also points out limitations, possible improvements

and future applications for system-wide live cell imaging studies on our microfluidic platform.
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2 Background: A microfluidic live-cell

imaging platform

2.1 Introduction to microfluidics

The advantages of microfluidics are manifold. Just like its analogy in microelectronics, its

reduced size allows for massive parallelization [21], while reducing costs due to reduced

need of reagents. Furthermore, the use of small amounts of samples allows for controlled

observations on single molecule level [22].

Several technologies play an important part in the development of a microfluidic device.

Photolitography allows the miniaturization of components such as transistors and has been

used in microelectronics since the early 1960s. First microfluidic devices were made of silicon

or glass, copying their microelectronic counterparts. A further advancement was the use

of elastomers like polydimethylsiloxane (PDMS). PDMS is transparent and gas permeable,

making it well suited for experiments with optical read-outs and the culturing of cells. PDMS

devices are developed by a technique called soft lithography [23].

First, lithography is used to fabricate a mold containing all the microstructures. Second, PDMS

is casted upon this mold. This technique allows manufacturing numerous devices using the

same mold. Multiple layers of PDMS can be used to add layers of control using microfluidic

valves [24]. Using pressure, it becomes possible to deform the elastomeric membrane. This

allows for controlled operations, like opening and closing of flow channels. Therefore, complex

changes to attributes of the flow become possible, like the change of media sources or rapid

mixing of multiple samples [22].
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Chapter 2. Background: A microfluidic live-cell imaging platform

2.1.1 Microfluidic applications in single-cell imaging

It became obvious over the last decades that batch measurements are not sufficient to under-

stand cellular behaviors. Looking at cells on a population level, hides the fact that there can be

an extensive cell-to cell-variability on gene expression levels [25, 7]. Another example is the

transcription of genes with bursting kinetics [26]. Time-lapse microscopy became the leading

method to study single-cells in vivo.

To allow for single cell studies, it is important to keep the cells in monolayers and with the

advancement of cloning techniques and the accompanying increase in strains of interest, it be-

came mandatory to find possibilities of parallelization. Recently, the use of micro-well plates

allowed for the parallelization of imaging, making it possible to image the whole yeast GFP

library under different steady state conditions [10, 11]. This method has the drawback of only

allowing for static images, as continuous perfusion cannot be achieved in a well. Microfluidic

devices on the other hand have shown to be well adapted for the precise control of conditions

[27, 28].

2.1.2 High-throughput imaging devices and live-cell arrays for device loading

The traditional technique for loading cells into a microfluidic device is flow-in, where strains

are flown into the device and then trapped [29]. While these experiments can allow loading

several strains and measuring several conditions simultaneously [13], the architecture of the

approach is still limited to a low number of strains. A DNA spotter can precisely deposit small

sample sizes, individually selecting them from strains that are stored in micro-well plates.

Previous approaches used this parallelization technique to analyze DNA samples on a mi-

crofluidic chip [30] or to spot cells on a coverslip for direct assessment upon nutrient starvation

[31]. Of course, spotting live-cells onto a coverslip and then subsequently integrating this into

a microfluidic chip adds additional challenges, as it requires the cells to regrow in their new

environment. Recently Dénervaud et al. succeeded this challenge and engineered a device

that allows for parallel continuous growth and observation of more than thousand different

microbial strains under changing conditions [14].
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2.2. The technical platform fabricated by Dénervaud et al.

2.2 The technical platform fabricated by Dénervaud et al.

As described in details here [14, 32], Dénervaud et al. set their objective to measure more

than 1000 strains in a way that ‘(i) each micro-culture must grow continuously in a defined

area and in a controlled environment, (ii) cells have to be constrained in a monolayer to

enable single-cell imaging, (iii) the entire chip should be interrogated under a microscope

with adequate spatial and temporal resolution, to enable the analysis of protein dynamics’.

The novelty of this approach lies in two different areas. First, it was necessary to design

a microfluidic chip whose dimensions and geometry allow to grow cells continuously in

monolayer, while at the same time minimizing effects like cross-contamination. Second,

the spotting process of cells in a live cell array needed to be unobtrusive enough to allow

exponential growth of the cells on chip upon perfusion after spotting and aligning to the

microfluidic device

The optimization of chip design and cell spotting and the consequential alignment of the

spotted cells to the PDMS device were iterative. In the following, we will shortly describe the

final setting and highlight those parameters that are essential for the success of experiments.

We will not describe the steps necessary for mold and microfluidic chip fabrication, two

methods that have been described in detail previously [33, 34].

2.2.1 Chip design

A summary of the used chip design can be seen in Figure 2.1. The chip consists of two separate

layers, the upper thick layer containing the control valves and the lower thin layer containing

the medium flow channels, chambers and sieve channels. Flow channels, chambers and sieve

channels have different heights according to their objectives (Figure 2.1d). Chambers are

perfused from both sides. The use of two flow lines for perfusion prevents nutrient limitations

inside the chambers. Sieve channels on one side prevent the cells from being washed out of

the chambers.

Chambers were arranged in pairs, enabling the imaging of two different strains at the same

time (Figure 2.1b). The flow channels are separated into 3 groups of 8 rows, a setup that was

necessary to reduce pressure, whilst keeping a sufficiently high flow rate. Each group of flow
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Chapter 2. Background: A microfluidic live-cell imaging platform

a. Chip overview

b. Chamber with posts

d. Chamber cross-section

c. Chamber with highways

100 µm�ow channels
14 µm high

chamber
outlet

chamber
valve

chambers
5 µm high

sieve channels
1.5 µm high

control layer�ow layer

3 mm

Button

Chamber with postsFlow
channel Sieve
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Flow
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outlet

2
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1

Figure 2.1: Description of the perfused chamber array. a. Schematic of the chemostat array
with flow and control layers in blue and red, respectively. Components of the device are
indicated: (1) three separated medium inlets and their control valves, (2) medium outlets and
control valves, (3) connection of the control lines, and (4) chamber array. b. Scaled drawing
of a unit cell pair, for the principal perfusion design. c. Scaled drawing of a unit cell pair, for
the alternative perfusion design. The eye shows the imaging area. d. Schematic of a chamber
cross-section.
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2.2. The technical platform fabricated by Dénervaud et al.

channels has 3 inlets, allowing for the use of two different media in combination with one

purge. Posts inside the chamber assure a uniform chamber height and prevent its collapse.

Control layers consists of valves that can either close flow layers, push a button on top of the

chamber or close the chamber outlet. Closing of flow layers is either necessary to control the

medium source on the inlet or to facilitate the device perfusion. The button on top of the

chamber is necessary to gently push the cells into a monolayer. Closing the chamber outlet

button can reduce cross-contamination during initial growth.

A second design included channels inside of the chamber, called “highways”. This device

could be used for cell-tracking and allowed us to estimate the growth rate on chip (see section

3.6.1).

2.2.2 Live cell arrays

To successfully dispense an array of yeast strains using a DNA spotter, it is necessary to provide

optimal conditions for the cell from spotting until final chip perfusion. We found it favorable

to spot cells that are grown to stationary phase, as they were found to have a higher chance of

survival. To prevent cell colonies from drying out, humidity levels inside the spotter were kept

high (73%). It was also found that larger colonies increased the likelihood of cell survival, an

effect that could be due to increased probability of a surviving clone. In addition, bigger spots

remain moist for a longer period, something that could keep cells within the spot from drying

out. We selected a pin with a delivery volume of 0.9 nL, a size that led to high cell density

without overloading the chambers.

Essential for cell survival during the spotting process was to keep the time between spotting

and perfusion as short as possible. We used 4 pins for spotting, spaced in a 2x2 square. This

highly reduced the time needed for spotting. To assure cell survival, subsequent alignment

of the PDMS device to the coverslip, followed by priming and installation of the device on

the microscope stage should be conducted in approximately 30 minutes. Figure 2.2 gives an

overview over the different aspects of spotting and alignment.
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20 µm
3 mm

c.  Device aligned to cell spotsa.  24x48 array b.  Single yeast spot

200 µm

Figure 2.2: Cell arraying results. a. Assembly of 7 by 7 images covering the full 24x48 spots of
a yeast cell array. b. High resolution micrograph of a single cell spot containing hundreds of
cells. c. Brightfield micrograph of 8 chambers taken after cell spotting and chip alignment.

2.2.3 Live cell arrays

Several steps are necessary for effective and successful priming. First, it was necessary to

perfuse the chip at a very low pressure level (1.3 psi). When medium reached the chip outlet,

the outlet valve was closed and the remaining air in the device was eliminated by out-gas

priming through the PDMS. To minimize the duration of out-gas priming, a step that can be

very time consuming under low pressure, flow control valves needed to be opened and closed

in a certain order, described in figure 2.3.

After the chip is completely primed, strains were grown for 16 to 20 hours to fully populate

the chamber. During that time the entire device was imaged in 30-minute intervals, using 4x

magnification and the NIS-element software (Nikon Instruments Inc.).

2.2.4 Overview of automated microscopy

To allow for the dynamic observation of subcellular events in more than 1000 strains simulta-

neously, it was necessary to optimize both spatial and temporal resolution. In the following,

we will briefly describe the used microscope technology and setup.

An epi-fluorescence microscope with hardware autofocus system was used to quickly travel

through each imaging position of the device. The chip was immobilized on the stage. Images

were obtained with a 60x oil immersion objective. Besides those experiments that focused on

10
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b.  Chamber outlet

c.  Chamber button

a. Chip priming sequence

Early growth phase
Chamber 
outlet ON

Spotted
cells

Growing
cells

Cross-contamination
prevented

Static growth phase Button ON

Monolayer of 
growing cells

Leaving
cells

1.

2.

3.

V1

V2 V3

V4

4.

5.

Figure 2.3: Chip priming. a. Schematic showing the sequence of valve operations needed to
prime the chip. b. Schematic of the chamber cross-section, showing the action of the chamber
outlet valve on the PDMS membrane. The valve partially closes the chamber outlet to prevent
cross-contamination between chambers. c. Schematic of the chamber cross-section showing
the impact of the button on the topology of the chambers. The button counteracts the pressure
exerted by the growing cells to constrain them to grow in a monolayer.

protein abundance, an intermediate 1.5x lens was used to obtain a final magnification of 90x.

LEDs provided a stable excitation source, which is crucial for imaging over a long period of

time. An Electron Multiplying Charge Coupled Device (EMCCD) camera can obtain maximal

sensitivity with minimal exposure time, therefore reducing the necessary amount of time

while also preventing bleaching and photo toxicity.

A Visual Basic program controlled the microscope and its peripherals, including the control

valves. Using eight reference points that were supplied manually, the position of each double

chamber could be calculated with simple trigonometry. In the end, the software defines an

optimal path that serpentines through each position, acquiring time-lapse movies on two or

more different light channels (e.g. phase contrast and fluorescence).
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3 Image analysis

3.1 Background: Image analysis

In most general terms, the object of image analysis is to automatically extract information

from images. There are several advantages for automation [35]. It can allow for a fast and

complete evaluation of a data set and can quantitatively detect changes that are subtle or

not perceptive for a human observer. Furthermore, it can overcome observer bias, which is

essential for an objective data evaluation.

One application for automated image analysis in biology is single-cell analysis. To extract

information on single-cell level, images need to be first processed and afterwards segmented

into single cells. In information extraction for fluorescent-tagged proteins for example, it is

of main interest to measure the amount and localization of these proteins. There are several

existing open-source image analysis pipelines, for example cell-ID [36] and Cell profiler [37].

Even though these pipelines are versatile and can be adapted to different problems, they were

not suited for our microfluidic device. One reason is the crowded cell population structure,

which is a hindrance for segmentation. Another reason is the high amount of images and cells.

The microfluidic platform is capable of imaging more than 1.000 chambers 72 times per day,

each chamber containing hundreds of cells. Therefore, a fast algorithm was mandatory.

To overcome these difficulties, we build a fast and stable fully integrated pipeline [32]. In the

following, we will describe the different steps in general and how they have been implemented

in our work. Further information can be found in the publication of Denervaud et al. [14].
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Chapter 3. Image analysis

General assembly of different parts of the pipeline, its implementation on a computer cluster,

and the analysis of abundance data was performed by Nicolas Dénervaud. Cell segmentation

has been the main work of Ricard Delgado Gonzalo. The automatic classification of subcellular

localizations was the task of Johannes Becker.

One of the remaining shortcomings of automated image analysis is qualitative assessment,

something a human observer is well capable of [35]. For our microfluidics platform, this

becomes the most noticeable for the automatic classification of subcellular localizations,

especially as an observation that changes over time. Therefore, a main focus during the

following sections will be on protein localization and localization change.

The use of GFP as a reporter is generally found to be not influential on the phenotype [5].

This is not the case for gene deletions, where a change in size or growth can be a known

consequence [9]. Therefore, we showed a great interest in size and growth of our reporter-

deletion strains. While the size of a cell is a directly deductible result of cell segmentation, the

estimation of growth in a densely populated environment is a non-trivial task and is described

in section 3.6.

3.2 The automated image analysis pipeline

3.2.1 Image processing

The task of image processing is not to interpret the image content, but to transform it to

emphasize particular aspects [35]. Processing steps can be contrast or color enhancements, or

noise reducing steps like filtering. As our microfluidic device images two chambers at the same

time, it was necessary to separate these two chambers into independent image sequences. In

addition, small positional or rotational drifts needed to be corrected. As a result, we received

cropped images that separate our chambers and are rotated for positional adjustment. This

would also facilitate cell tracking, as it assures a stable relative position. The sequences were

saved with a 14bit depth. Further step-specific image processing was done for each part of the

image analysis separately.
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3.2. The automated image analysis pipeline

3.2.2 Single-cell segmentation

The general objective of cell segmentation is to find all cells in an image and return their

outlines. Even though this can be a simple (yet daunting) task for a human observer, its

computational implementation is often not straightforward [38, 39]. The reasons for occurring

problems are manifold and often implementation specific.

For example, first segmentation techniques used intensity thresholds, assuming that cells have

a detectable different intensity than the background. However, this assumption often does

not hold true, as both cell and background intensity can change gradually. Another technique,

watershed based segmentation, imagines an image as a contour and fills darker parts of the

image (basins) with water, until neighboring basins start to touch. While watershed based

segmentations can have problems that are as well threshold related, their shortcomings are

usually slightly different, as they are not subject to absolute thresholds. An additional problem

is that cell contours of neighboring cells may not be well defined, something of importance

for our densely packed microfluidic device.

To overcome these limitations, we combined watershed-based segmentation with an ap-

proach of deformable model fitting, summarized in figure 3.1. Deformable model fitting uses

a parametric contour to minimize an energy function. In our case, it was implemented using

an ImageJ plugin [40]. First, pre-processing was performed, using morphological dilation and

a smoothing filter to reduce noise. Then, a watershed algorithm split images into small areas,

each area expected to contain a single cell. Finally, these areas were used as initiation point,

using parametric active contours or snakes. These snakes maximize the intensity difference

between the dark inside of a cell and the usually brighter halo or gray background surrounding

a cell. A first minimalistic snake named the Ovuscule [41] was used for a first estimate. This

snake is parameterized by three control points and has the shape of an ellipse. In a second

step, a snake with a variable number of control points, named the E-snake, refined its result.

While the Ovoscule and the E-snake themselves are robust segmentation tools, they both

converge to a local minima. Therefore, the validity of their results heavily depends on the

quality of the image and subsequently the watershed segmentation. To assure that only well

segmented cells are further analyzed, we used single-cell filtering based on different criteria.

We removed all cells that were close to the boundary, as those cells were generally not well
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Chapter 3. Image analysis

segmented. To remove wrongly segmented objects like chamber posts or small artifacts, a cell

size threshold was implemented.

Cell segmentation quality was classified using a manually annotated set of good and bad

quality cells for training with a support vector machine (SVM). Comparing automated seg-

mentation with manual annotation, we correctly identified 83.7% of the cells, with a specificity

of 92.3%. As a final step, cells that were strong outlier in abundance were discarded as well.

Outliers were defined as cells that were beyond the outer fences (using interquartile outlier

detection criteria), or more than 3 standard deviations away from the mean.

a. Watershed segmentation

b. Ovuscule segmentation

 

c. E-snake segmentation 

original image watersheds overlayed dams

Figure 3.1: Cell segmentation - Watershed, Ovuscule, E-snake. a. Process flow of watershed
segmentation using phase contrast images. b. Example of a cell contour determined by an
ovuscule (a snake with three nodes) and c. by an E-snake (with unlimited number of nodes).
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3.2. The automated image analysis pipeline

3.2.3 Abundance extraction and estimation of protein copy numbers

The estimation of protein copy numbers is of central interest in fluorescence microscopy. As

the abundance of neighboring cells influences the general intensity, it is necessary to estimate

the local background intensity. To estimate this intensity, we used the minimal pixel value

of the watershed region. Even in the absence of GFP, cells have fluorescence values above

background due to auto-fluorescence. To measure the distribution of a cell populations auto-

fluorescence, we imaged the GFP library parental strain (BY4741) under the same conditions

as the GFP strains.

This distribution can be used for deconvolution, a probabilistic approach that assumes that

the abundance of a cell is the sum of the cell auto-fluorescence and the contribution of GFP.

Assuming a log normal distribution for the auto-florescence and a gamma distribution for

GFP in cells, we obtain the following formula

P (s,k,θ) =
∫ s

0
Pg amma(x,k,θ) lnN (s −x,µ,σ))d x (3.1)

The log-likelihood of this probability for the set of measured cells {si } is:

Log L(k,θ) =∑
i

lnP (si ,k,θ) (3.2)

We maximized the log likelihood using a Markov chain Monte Carlo (MCMC) method. The

thereby obtained estimations of actual GFP distributions were then compared with other

techniques. We compared the data from 18 proteins, measured by both TAP-western and mass

spectrometry [6, 7], and found a correspondence with our measurements, which allowed us to

estimate absolute protein counts (Figure 3.2).
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Figure 3.2: Comparison of protein abundance measurements in our studies with existing
datasets. a. Correlation of our measurements with mass-spectrometry (blue) [42] and TAP-
western data (red) [6]. The black line shows the correlation of our measurements with the
mass-spectrometry and TAP-western datasets. This relationship was used to infer absolute
protein abundance from our data. b. Correlation of abundance values from our data with
TAP-western data [6]. c. Correlation of abundance values from our data with flow cytometry
data [7].
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3.3. Classification of subcellular localization

3.3 Classification of subcellular localization

3.3.1 Background: Automated classification of subcellular localization

The principles of automatic localization of subcellular protein patterns remain mostly the

same since their first applications at the end of the Nineties [43]. In general, after a first imag-

ing process to normalize the images and remove background noise, image analysis methods

are used to calculate numerical features, which contain valuable information such as the

morphology of a cell [44]. A classifier to categorize cells into different categories then evaluates

this information.

There are several automated classifiers with a good predictive value recognizing the patterns

of subcellular structures in HeLa cells [44, 45] and on the yeast ORF-GFP fusion library [46, 47].

But in contrast to the image data given by the micro-fluidics platform, these studies had

circumstances that facilitated the classification. In the case of HeLa cells, it is simply the fact

that HeLa cells with a diameter of 25µm are more than five times larger then the diameter of

a typical haploid yeast cell (∼4µm). In the case of the ORF-GFP fusion library, a DAPI image

to determine the position of the nucleus and mitochondria and a differential image contrast

(DIC) image to determine localization at the vacuole and vacuolar membrane where available

[5]. Furthermore, strains were grown in low density, which facilitates a precise segmentation.

Over the last decade, several studies used the original yeast GFP library data to enhance the

detection quality and computational efficiency of subcellular localization [46, 47, 48]. For

example, latest efforts in the lab of Robert Murphy classified 2,655 images from the UCSF

collection with an overall accuracy of 87.8% in less than one hour [47]. But these studies are

accompanied by several caveats that make a direct adaptation to our task impossible.

The main setback is that all studies focus on the classification of populations that were at-

tributed to a unique subcellular localization. As we are mostly interested into strains that

exhibit localization changes, our main interest is on those strains that are steadily or transiently

found in two or more subcellular compartments. The automatic analysis of heterogeneous

localization distributions is still scarcely discussed. Studies that were interested in the dynamic

changes of localization were generally focused on one protein and a well-defined change [25],

which considerably reduces the complexity.
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Recent studies were interested in analyzing these mixed distributions and even extended the

analysis to cases were fluorescence in one cell can be localized to several compartments [49].

But these studies focused on only two subcellular compartments, lysosome and mytochondria,

using osteocarsoma cell lines, which have an approximately 10-fold bigger radius than yeast.

A second difference between previous approaches and our requirements is of a more technical

nature. While accuracies of around 90% can be reached for classification [47], it is at least

partially the result of a bias due to the chosen classifier. Support vector machines (SVM),

the predominantly chosen type of classifier, are constructed in a way that favors groups with

more data points. This helps to achieve a better overall accuracy, but leads to a unidirectional

misclassification between different classes.

A slightly different approach to describe a large amount of different strains is the use of unsu-

pervised clustering. While this approach starts as well with the measurement of features, it

does not need any further information about different classes. Instead, it defines a method

for linking the data and calculates a distance metric. It subsequently sorts the data set into

clusters in regards to the used method and metric. A recent study used this approach for S.

cerevisiae to describe general protein distributions during different parts of the cell cycle [48].

While this method is well suited to give a general overview over the subcellular localization

distribution of the proteome, its drawback is that there is no certainty information for one

specific reporter strain.

Overall, the unique questions that our dynamical data set poses have not been answered

satisfactorily. The most general question that subcellular classification tries to solve is the

localization of a protein inside a single cell at any given time point. As we laid out previously,

this holistic approach is hardly achievable. We therefore posed different questions that we

tried to answer separately.

Our main objective was to quantify subcellular protein localization and especially localiza-

tion changes. Thus, our goal was to build a robust classifier for single cell localization to

answer questions about the general localization of a protein. To achieve this robustness, we

addressed the underlying issue that subcellular localizations are even for a trained observer

often impossible to distinguish. To overcome this obstacle, we focused on geometrical pattern

instead of subcellular localizations. We used the terms Periphery, Structure, Punctate, Disk,

Corona, and Homogeneous to describe pattern that were computationally as well as manually
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separable. We were also able to show that geometrical pattern information can be traced back

to subcellular compartment information.

In the following, we will first describe our localization pattern classifier, which was used in

recent studies [14, 50]. Nicolas Dénervaud and Johannes Becker carried out feature extraction

and Johannes Becker developed and evaluated the classifier. Even though our classifier was

found to be robust, it was not suited to work without human supervision. We will explain the

reasoning of this approach in section 3.3.6. Published material will demonstrate typical results

extracted from our classifier in section 3.4, while section 3.5 will show extended possibilities

of our classifier.

3.3.2 Feature extraction for protein localization

The object of feature extraction in image analysis is to condense the complex information

contained in pixel intensities into a set of information that is comparable between different

images. Feature extraction can be done either for single cells [46] or using complete images

[47]. While the latter is less computationally expensive, it is not suited for single cell analysis.

The selection of meaningful features is arguably the most important step of classification, as

subsequent steps can only be successful if the extracted information is sufficient.

For each cell, we extracted a small rectangular image, surrounding the cell contour. Contrast

was increased by stretching the image in the full 8-bits range (0-255), between a minimal value,

defined as the 5th percentile of the cell pixels, and the maximal pixel value. Starting with a large

set of more than 200 features, we used Analysis of Variance (ANOVA) to test their efficiency.

If features were found to be redundant, we removed those that were computationally more

expensive.

In the end, we calculated a set of 97 features for each cell. This set consists of 17 histogram-

based, 3 geometrical and 7 morphological features [44, 51], 10 granulometry measures [52] and

60 threshold adjacency statistics [53]. The complete list of features can be found in Appendix

A.
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3.3.3 Supervised classification into six spatial patterns

Our experimental design implies a certain compromise between high-throughput temporal

imaging and the level of details of subcellular localization analysis. Thus, we had to distinguish

between very fine localization patterns as usually defined in cell biology and more objective

geometrical shapes. Exploratory analysis indicated that we can robustly distinguish six spatial

patterns, shown in figure 3.3. To train our classifier, we built a training set by manually

annotating cells extracted from 104 images as representatives of one of the following patterns:

• Periphery: Represents a fine outline of the cell contour, generally well distinguishable.

Representatives include cellular membrane proteins, or in some cases protein located

in bright dots distributed on the cell contour.

• Structure: Includes filaments, circles and shape-forming dots that are often a direct

indication for proteins localized in the endoplasmic reticulum (ER), the Golgi apparatus,

or the mitochondrion.

• Punctate: Detects one or more distinct dots, smaller than 1 µm in diameter (< 20% of

the size of a cell). Typical representatives are nulear foci, cytoplasmic aggregates, actin,

lipid particles, endosomes and peroxisomes.

• Disk: Highlights one dominant area of GFP signal contained in the interior of the cell.

The diameter of these objects is at least around 25% of the diameter of a cell. Typical

representatives of this group are proteins localized in the nucleus and nucleolus, but

also proteins in the vacuole or the vacuolar membrane.

• Corona: Includes pattern showing a broad ring around the center that can also be more

sickle-shaped. Typical subcellular compartments that have a corona-like appearance

are the cytoplasm and in some cases the ER.

• Homogeneous: Represents cells where the fluorescence is uniformly distributed. In

many cases homogeneous cells are of low intensity, reflecting background levels.

As the boundaries between these shapes can be fuzzy, we chose to assign to each cell a prob-

ability vector reflecting the likelihood to belong to each of the six patterns. We first used
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3.3. Classification of subcellular localization

Reduced-Rank Linear Discriminant analysis (RRLDA) [54] to compress the dimensionality

of the feature space. This method is similar to Principal Component Analysis (PCA), but

considers the separation into classes as additional information. Instead of considering the

directions in the parameter space with the largest variance in the data, RRLDA maximizes the

between-class variance relative to the within-class variance. We used RRLDA together with

our training set and obtained a matrix that reduces the dimensions of our feature set from 97

dimensions to five.

We verified that increasing the number of features does not improve performance. To assign

probabilities to each cell, we used the MATLAB function ’classify’, specifying a ’quadratic’

discriminant function, which fits multivariate normal densities with a separate covariance

estimate for each shape. In addition to the probability vector, the function ’classify’ gives for

each cell an estimate of the probability density of the feature set of this cell. This is useful for

discarding cells that are atypical (e.g. dead cells) or have ambiguous fluorescence patterns.

For each image, we obtained a distribution of 6-dimensional vectors representing the cell

population. To compare distributions, we modeled each population as a Dirichlet distribution,

which is well-suited to model a population of probability vectors [55]. We used the Bhat-

tacharyya distance to estimate the similarity of two Dirichlet distributions [56, 57]. Using the

Dirichlet probability density function

p(p) ∼D(α1, . . . ,αd ) = Γ(
∑

k αk )∏
k Γ(αk )

∏
k

pαk−1
k , pk > 0,

∑
k

pk = 1 (3.3)
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Figure 3.3: Single cell representations of the six localization pattern. Single-cell micrographs
illustrating the six localization patterns. For each cell, the phase contrast channel is shown on
the left, and the GFP channel is given on the right. Each image has a width of 5.8 µm.
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we obtain for the probabilistic distance function between two parameter sets αa,αb the

Bhattacharyya distance JB

JB (αa,αb) = lnΓ

(
d∑

k=1

1

2
(αak +αbk )

)
+ 1

2

(
d∑

k=1
lnΓ(αak )+

d∑
k=1

lnΓ(αbk )

)

−
d∑

k=1
lnΓ(

1

2
(αak +αbk )− 1

2
(lnΓ(|αa|)+ lnΓ(|αb|))

(3.4)

3.3.4 Validation of the classifier

We first assessed the performance of the classifier using 10-fold cross-validation of our training

set. Each cell was assigned to its most probable pattern. The confusion matrix indicated that,

expectedly, most misclassifications happened between groups with the most fuzzy boundaries

(Figure 3.4.a). For example, a low intensity cytoplasmic signal could be misclassified as being

homogeneous. Or, mitochondrial proteins were classified either as punctate or structure,

depending on the density of the signal. Note that assigning hard classes removed information

and performance was thus expected to be lower in this assessment.

We also compared manual against automatic annotation. For this, we randomly picked 200

images for which more than 60% of the cells were classified to belong to the same group.

Those images were independently and blindly annotated by ND and JB. For the 182 images

where the two manual annotations agreed, there were only two cases of disagreement with

the automatic annotation (Figure 3.4.b).

To assess the repeatability of the classification, we picked 2741 strains, for which we had

duplicate recordings. We selected only those 1034 strains with high intensity to avoid the

problem that two randomly selected strains that contain only background noise are as well

very similar. Those selected strains have an average Bhattacharyya distance of 0.11 (0 means

identical). In comparison, when selecting two of these strains at random, the distances were

significantly higher (Figure 3.4.c), showing that our method is reproducible.

Finally, we wanted to validate the Bhattacharyya distance as a measure of localization change.

We randomly picked a sample of 110 image sequences, from an experiment where a chemical

stimulus was added about half-way through. To quantify potential localization changes due to

the stimulus, we calculated the Bhattacharyya distance between the end and the beginning of
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3.3. Classification of subcellular localization

the experiment. Meanwhile, ND and JB manually annotated if they could perceive a change in

the spatial distribution of fluorescence. For a Bhattacharyya distance of 0.4 or bigger, 75.6% of

the sample was annotated as changing. On the contrary, for a Bhattacharyya distance smaller

than 0.4, only 25% of the sample was annotated as changing (Figure 3.4.d).

Together with the finding that more than 90% of replicate experiments have a Bhattacharyya

distance smaller than 0.2, we can say with high certainty that our method is reliable and that it

can identify changes in the spatial distribution of the signal. However, whether those changes
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Figure 3.4: Validation of the classifier. a. Confusion matrix to compare the manual anno-
tation of single cells with the predicted geometrical shape using 10-fold cross validation.
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found one characteristic group, where manually and independently predicted by ND and JB. c.
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the images.
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are biologically relevant remains to be assessed by a critical viewer. For example, a change

identified for a mitochondrial protein might result from a change of the total number and

spatial distribution of mitochondria within the cell. But, the protein might remain in the

mitochondria, and it is therefore not a localization change.

3.3.5 Comparison with the original yeast GFP library annotations

The yeast GFP collection was initially observed in static conditions and protein localization

was manually assessed and determined using 22 biologically relevant annotations (UCSF

annotations [5]). We wanted to find the correlation between our spatial patterns, determined

by a continuous 6-dimensional space, and theses annotations. To simplify the comparison,

we chose the strains with only one clear annotation in the UCSF dataset. We also concentrated

only on the strains that showed a sufficient intensity in our recordings (above background).

We grouped the strains based on their manual annotations and compared the average cell

population probabilities (Figure 3.5.a) and the correlation of the Bhattacharyya distances

within those groups (Figure 3.5.b).

We found that specific subcellular localizations have a distinct probability profile. For example,

mitochondrial localization is defined by a mix of structure and punctate and nucleolus is a

mix of disk and punctate. Nuclear periphery is well characterized by the structure pattern

and vacuolar membrane is a mix of disk and structure. This shows that our continuous 6-

dimensional space contains more information than six binary classes. A precise comparison

of the population distribution allows to find subtle differences.

3.3.6 Supervised quantification of localization change

There are two main reasons why an automatic classification of localization changes is not

advised, both related to the small number of strains with localization changes that we detected

manually. We manually annotated ∼120 of the over 4000 proteins (∼3%) as localization

changes. Even if we were able to achieve a very low false positive rate (the sum of all false

positives divided by the sum of all negatives), we would still obtain a high false discovery rate.

In addition, the low number of strains that were found to change their localization would

make it even more important to keep the sensitivity of our automatic detection high.
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Figure 3.5: Comparison of our six spatial patterns with the UCSF annotations. Evaluation
of strains with high intensity and well defined localization patterns. The strains are clustered
within their groups, as defined by Huh et al.[5] . a. Average probability of the six geometrical
classes for each strain. White means 0% probability, black 100%. b. Heat map that shows the
Bhattacharyya distances between the strains. The distance goes from zero (white) to one or
above (black).

Therefore, we decided to use our classifier in two ways. Firstly, we used hierarchical clustering

to find strains with changing localization that were overlooked during manual annotation. By

focusing on strains with a short distance to manually selected strains, we were able to detect

eight additional strains showing similar changes. Three of these strains were found to be
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previously missed strains of interest. As these were only 2.6% of all annotated changes, it was

valid to assume that this list is exhaustive. Figure 3.6 is exemplary for the practical application

of this method.

Secondly, we combined our manual annotation with our pattern classification to achieve a

a b c

Figure 3.6: Example of a clustergram of localization over time in Java TreeView. (a) View
of the complete clustergram, which contains only strains with a temporal Bhattacharyya
distance > 0.3. (b) Focus on strains for which the classifier detected a localization change
of proteins away from the cell periphery. Average probabilities indicate that most of these
proteins relocate not directly after MMS treatment, but gradually after around 3 hours. The
last column of the clustergram shows if strains where manually annotated as an interesting
protein localization change (blue) or not (white). After evaluation of those 3 strains that where
not manually annotated as changing, FET3 was added to the list of annotated localization
changes. (c) Standard names of the proteins, providing a link to SGD.
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3.3. Classification of subcellular localization

supervised quantification of localization changes. To further quantify the localization changes

and analyze their rate and timing, we focused on the geometrical pattern, which is the most

relevant to a given transition (i.e. showing the clearest change). We found that these are (i)

disk for transitions between nucleus and cytoplasm, (ii) punctate for proteins that aggregate

and (iii) periphery for everything transiting from or towards the cell membrane.

For each of those cases we fitted a logistic function to approximate the average probability of

the respective relevant pattern, Pt , by minimizing the error between Lt and Pt . Lt is given by:

Lt = α

1+e(−λ(t−δ))
+ P̃Pr e (3.5)

where P̃Pr e is the median value of Pt for the last two hours before the stress stimulus. If the

localization change was transient, we fitted the logistic function only for the time until the

change reached its peak. For pulse experiments, we focused our fit on the first pulse. α, δ and

λ are estimations for the rate, the timing and the slope of a localization change. An example is

shown in figure 3.8a.

To filter strains for which the change was not quantified robustly, we set a minimal threshold

to the score TP , given by the following equation:

TP = Lmax −Lmi n√
P 2
σ+Lmax

(3.6)

TP takes into account the variance of the average probability of the pattern before treatment,

Pσ, and the maximum and minimum values for the logistic fit, Lmax and Lmi n . This way, we

were able to sort out strains for which the automatic analysis could not detect a change with

certainty.

In addition, we required that strains with at least double coverage showed a change in more

than one repeat. For the second screen, we discarded strains with single coverage. The

threshold of 0.12 was determined empirically. The requirement that all 119 strains in the first

experiment show a localization change was used to optimize sensitivity. As a result, 111 of

119 strains (93.3%) passed this filter. Strains that we manually detected as not changing in

the second set of experiments were used to maximize specificity. Of all 97 strains that were

automatically detected during the four additional experiments of the second screen, we had
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to discard only 3 strains (3.1%) as misclassification errors. Thus the choice of our threshold

was adequate.

To make different stresses comparable, we normalized the data of our relevant pattern by a

modified z-score, Zt , that is closely related to TP :

Zt = sgnman
Pt P̃Pr e√

P 2
σ+max(Lmax ,Pt )

(3.7)

sgnman sets the directionality of the function after our annotated localization change (e.g a

protein moving from the nucleus to the cytoplasm has a positive change, although the disk

probability decreases). The observed localization changes in MMShi g h are given in figure 3.8b.

3.4 Results of quantitative localization analysis

3.4.1 Screening of the GFP library in MMS

Studying proteome-wide changes upon MMS treatment, we found 111 proteins that change

their localization. Based on the involved localizations, changes could be assigned to one of

five transition classes: transitions between cytoplasm and nucleus (28 proteins), transitions

from the nucleus to nuclear foci (11 proteins), nuclear periphery aggregations (21 proteins),

formation or dissolution of cytoplasmic foci (33 proteins), and transitions from the cell pe-

riphery into the cell interior (18 proteins) figure 3.8b.

Timing of localization changes was found to differ strongly in timing and intensity. For exam-

ple, the formation of protein foci in two heat shock proteins (Hsp104 and Hsp42) occurred in

less than an hour. Further rapid transitions were the relocation of Bmh1p from the cytoplasm

to the nucleus and Rnr4p from the nucleus to the cytoplasm. Bmh1p and Rnr4p are known to

be involved in DNA binding and DNA damage repair respectively. These fast responses can

stay in stark contrast to the more gradually changes found in abundance. This discrepancy is

exemplified in figure 3.7.

Our results agree with previous studies that showed localization changes to be a fast and

efficient way of a cell to respond to a change [8, 58, 59]. The gradual increase in abundance

on the other hand, where protein levels can increase by more than 100 fold, allows for a wide
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3.4. Results of quantitative localization analysis

Figure 3.7: Dynamics of Bmh1p/Bmh2p and Hsp42p/Hsp104p. Abundance (solid line) and
localization (dashed line) changes of Bmh1p and Bmh2p in response to (a) MMS treatment
and (b) UV pulses. Abundance and localization change of Hsp42p and Hsp104p in response
to (c) MMS treatment and (d) UV pulses.

range of well-adapted responses.

3.4.2 Comparison of localization changes for different stress conditions

We extended our observation of those proteins that showed localization changes in MMS

to five additional conditions (MMS pulses, lower MMS concentration, MMS pulses, HU, UV

pulses and Sorbitol). We found localization changes to be condition and protein function

specific (3.8c-f). MMS, HU and UV, three stresses that lead to severe cell damage, were similar

in that two Heat Shock Proteins (Hsp104p and Hsp42p), the DNA related Bmh1/2p complex

and Rnr4p relocalized during the first hour. The Mcm2-7p proteins changed their localization

in a similar fashion in all 3 of those stresses, showing that cell cycle arrest occurs precisely and

in a stress unrelated manner. Proteins of the nuclear pore complex were found to form foci

after 3 to 5 hours in both HU and MMS. They were not as prevalent during the transient stress

of the first UV pulse.

The most striking differences between different conditions can be found for proteins related to

mRNA processing and membrane transportation. P-Body related proteins, which are known to
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have a function in mRNA degradation [60], were found to change their localization after more

than 4 hours in MMS, between one and four hours in HU, in less than two hours in sorbitol

and after less than 15 minutes in UV irradiation. A previous study that looked at localization

changes after two hours, found P-Body formation in HU, but not in MMS [10]. Another study

tested the P-Body protein Dhh1p in Candida albicans under different conditions, finding

that P-Body formation was the highest for UV irradiation and osmotic stress [61], which can

be induced by sorbitol. These findings confirm our results, while showing the increase of

information that can be achieved by our temporal resolution.

Localization changes of membrane transporter were found to occur between one and 6 hours

in MMS, in less than three hours in HU and practically immediately for sorbitol. As may be

expected, they did not occur in UV irradiation. Under all three conditions, they tend to slightly

precede the formation of P-Bodies. Proteins localized to the cell membrane were additionally

found to localize to the vacuole [5], whose role in autophagy and protein degradation is well

known [62]. We therefore hypothesize that P-Body formation under certain conditions may

precede a first step of degradation inside the vacuole. This possibility of a relation between P-

Bodies and vacuolar degradation is mentioned in the literature [63, 64], but a lack of temporal

and quantitative information made causal assumptions previously impossible.
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Figure 3.8: Summary of proteome-wide localization changes. (a) Average disk probability is
shown over time for four Mcm proteins that translocate from the nucleus to the cytoplasm.
Traces were averaged over multiple repeats. The dashed line represents the average and the
transparent area shows the error (±s.d.). Traces were fitted with a sigmoid (solid line). The
vertical dashed lines show the transition times and their corresponding error bars (±s.d.). (b)
Localization change is shown over time for all proteins that relocated after MMS treatment.
Proteins were grouped into five transition classes. For each heatmap, proteins were ranked
by their timing, as shown by the green bar. Images show examples for each transition class.
(c-f ) Comparison of the set of 111 relocating proteins in MMS with four additional stress
conditions.
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3.5 Visualization of localization using our six geometrical patterns

Compressing the information of hundreds of time-lapse microscopy movies under different

conditions into meaningful figures is a necessary step, both to visualize and to evaluate the

data. Even with our geometrical patterns, the data still contains 10 ‘dimensions’ (Conditions

x Strains x Time x Abundance x 6 geometrical patterns). In the following, we will describe

different techniques to visualize localization in different aspects of our analysis.

Most of the images contain one or two major populations of cells representing heterogeneity

in localization. This is expected for several reasons: (i) some shapes such as Punctate may be

intrinsically 3D and not be well captured in all cells due to limited focal depth; (ii) cellular

responses are stochastic; (iii) cells may be asynchronous in their response to MMS.

Using K-means clustering (looking for two groups) of the probability vectors, we find that

different populations usually show at most three non-vanishing (out of six) probabilities with

non-zero values. Three probabilities can naturally be represented on a 2D equilateral triangle

(or simplex) (figure 3.9a). Cells that are not exclusively part of these three probabilities can

be plotted proportionally smaller and darker, so they appear to be in smaller planes in the

background of the triangle.

This representation of data on a simplex can be either helpful to understand the differences in

distribution of protein localization on single-cell level (figure 3.9b), or allows us to compare

the distribution of proteins on a proteome-wide level (figure 3.9c). The latter was a visual

confirmation that our geometrical pattern classifier was capable to give extended information

about the subcellular localization of a protein, as strains with the same manually annotated

subcellular localization were found to form distinct subspaces in our six dimensional space.

Another powerful way of visualization is to link our proteome-wide experiments with previ-

ously annotated data of protein complexes. S. cerevisiae is a well-studied model organism has

a large number of known complexes [65]. Complexes are collected in catalogues [66], which

can be either curated manually from low throughput experiments or using high throughput

approaches like yeast two-hybrid (Y2H). It is in theory possible to use our information about

localization and abundance to find proteins that form complexes. But it is more robust to

use the existing information as a prior information, as so-called ‘Gold Standards’ of protein-

protein interaction (PPI) sets are extensively validated.
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A:(0.7;0.0;0.0;0.0;0.3;0.0); B:(0.4;0.3;0.0;0.0;0.2;0.1); C:(0.4;0.2;0.1;0.1;0.1;0.1)
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Figure 3.9: Representation of spatial patterns inside a 6D simplex a. Three examples of
single cell representation inside the probability space. For the left simplex, the sum of the
probabilities P1, P2 and P3 decides for the size and brightness of the cell, for the right triangle it
is the sum of the probabilities P4, P5 and P6. As both sums are the same for all three cells, they
have the same size and lie in the same hyperplane. As P1 is identical for cell B and Cell C, they
lie on the same line parallel to P2 and P3. b. Representation of single cells inside the simplex.
Comparison of Hhf1p (annotated: Nucleus) and Utp10p (annotated: Nucleolus). While Hhf1p
is uniformly distributed in disk-like pattern, Utp10p can be found in either Disk or Punctate
pattern. c. Comparison of the 6 geometrical patterns and localization annotations by Huh
et al.. Groups with low number of strains and strains with low intensity were excluded for
clarity.

Using a comprehensive catalogue of 408 manually curated heteromeric protein complexes

denoted as CYC2008 [66], we can use the extracted information from our microfluidic platform

to visualize the behavior of different protein complexes in different conditions (figure 3.10).

This visualization has several advantages. First, it allows direct identification of strains that

behave not as expected. For example, Rps22bp and Rps23ap, two proteins of the cytoplasmic

ribosomal small subunit, were found to be partially or completely localized inside the nucleus.

This is known for Rps22ap and its homolog Rps22bp, but not for Rps23ap [67]. Closer evalua-

tion of Rps23ap raised the assumption that this strain might be contaminated.
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Second, this visualization is an effective way to quickly understand the functioning of cells

under different conditions. Combining our proteome-wide data with curated knowledge, we

can readily see how cell cycle related complexes like the Mcm2-7p or the Exocyst complex

arrest during DNA damaging conditions, or that specifically complexes involved in phosphate

synthesis show an increase in abundance during a nutrient change to sorbitol.
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Figure 3.10: Visualization of a manually curated complex catalogue. Colors for localization
(loc) are merged between Disk (red), Corona (green), Punctate (purple), Structure (magenta)
and Periphery (yellow). Abundance (int) is shown as fold-induction, normalized using the
preinduction abundance of each strain individually.
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3.6 Measurement of cell growth

In addition to the information extracted from GFP as a reporter, a mutation can also influence

the general phenotype of a cell. This is not an eminent concern for strains that are solely

tagged with GFP, as GFP is generally found to not drastically influence the phenotype in most

conditions [5]. Deleterious mutations on the other hand are expected to influence cellular

networks – and therefore the phenotype of a cell.

There are two phenotypical changes that can be detected by brightfield time-lapse microscopy:

cell morphology and cell growth. While there can be drastic changes in cell morphology in

budding yeast, e.g. in regard to α-factor Pheromone [68], we only observed changes in

size, an information that can be directly extracted from cell segmentation. During different

experiments under stress conditions, we observed partial or complete cell cycle arrests. As

dilution is an important factor in protein abundance [14], cell growth needs to be controlled

for in a screen on gene deletions.

The optimal method for estimation of cell growth and doubling time depends highly on the

data available [69]. If the total number of cells is known at any given time, a growth curve can

be directly deducted. When it is possible to robustly track cells and their division, measuring

doubling time is similarly straightforward [70]. Another possibility that works for growth

at steady state, is the measurement of cell size distribution, using the observation that cell

division in yeast is coupled with cell size [71].

All the aforementioned methods are not suitable for our high-throughput microfluidic device.

Therefore, we decided to control cell growth in two separate steps, first assuring that on-chip

cell growth is comparable to batch measurements and then finding a way to estimate the

relative impact of changing conditions.

3.6.1 On-chip cell growth under stable conditions

To estimate the on-chip growth rate, we used a chip design with slightly modified chambers

(see figure 2.1c). These chambers have highways on the part that is imaged, guiding cells along

one axis (in our case the y-axis). Using a higher time resolution with time steps of 30 seconds

allowed us to track cells. We decided against the direct measurement of cell division, as the
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3.6. Measurement of cell growth

high cell density makes this prone to error.

Furthermore, most cells got pushed out of our imaging field in a short time, strongly reducing

our sample size. Instead, we decided to use the cells vertical displacement. As cell movement

is restricted by the chamber walls (in our case ‘upwards’) and depends solely on the doubling

time of the cells below itself, we can estimate the cell displacement. The position y of a cell at

time point t0+∆t can be estimated by the cells position y0 at time t0 and the average doubling

time Td :

y(t0 +∆t ) = y0 ·2
∆t
Td (3.8)

Thus, the displacement ∆y = y(t0 +∆t )− y0 that occurs to a cell during time step ∆t is a linear

function of y0:

∆y = y0 · (2
∆t
Td −1) (3.9)

We estimated the slope a of this function by averaging single-cell displacements. Knowing a,

the doubling time Td was approximated with the following relationship:

Td = ∆t

log2(a +1)
(3.10)

We estimated Td independently for 12 image sequences. The average doubling time was found

to be 129 min (Figure 3.11), with a standard deviation of 17 min. Batch measurements gave an

average of 120 min with a standard deviation of 12 min.

This is comparable to observations made in S. pombe [70]. The reason for a slightly decreased

growth rate could be marginally unfavorable conditions for on-chip cell growth.

3.6.2 Growth estimation using local image correlation

The approach described above is obviously not suitable to measure growth during high-

throughput experiments with imaging intervals of several minutes. If reporter proteins that

include cell cycle markers are at hand (e.g. Mcmp2-7), changes of their population-wide

location distribution can be an indication for an arrest inside the cell cycle. In our previous
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Figure 3.11: Estimation of doubling time on chip. a&b. Phase contrast images showing cells
in a single-highway at two different time points. The colored lines represent the movement
of the cells ∆y , between the previous and the current frames, separated by a time-step ∆t .
c. Single-cell trajectories are given for the first 30 min of acquisition. d. Graph showing the
correlation between the movement of cells between two frames ∆y and the initial position
of the cells y . Gray points represent all the cells at every time points. Green points show a
moving average of the gray points, with a moving window of 2 pixels. The red line is a linear fit
of the data: ∆y = a · y0. The slope a enables the estimation of the doubling time Td .

work this approach proved successful, using a bud neck marker to show the arrest of the cell

cycle after induction with MMS [14]. However, this method is not practical in experiments

with deletion genes where deletions of interest are expected to cause differences in growth.

To overcome these restrictions, we used an inherent property of on-chip cell growth for an

estimation of growth over time for each individual chamber. As cells are densely packed inside

a chamber, they often get displaced in groups. This leads to stable cell formations, something

that is detectable by eye even for a 20 minutes frame rate. We used a local 2-D correlation

coefficient between two frames to estimate the amount of displacement between two images.

The image at the first time point was ‘cut’ into a number of adjacent squares (Figure 3.12d).
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3.6. Measurement of cell growth

For each square we looked for the highest normalized 2D cross-correlation value, using an
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Figure 3.12: Local correlation of images for growth rate estimation. Measurement of a. local
and b. global correlation for 44 chambers and increasing time intervals. c. Comparison of
local and global correlation values with the 20 minutes time interval (p-Value). d. Example of
the local growth correlation estimation method for 5, 10, and 20 minutes time interval. Red
squares mark those local parts with high correlation to the respective blue squares (position
indicated by light red squares in the respective frame).

overlaid but slightly increased rectangle in the second time point to find the square that is

most related to our initial time point. Even though the cell formation itself remains stable, cell

divisions at other parts will lead to a displacement. To keep different chambers as comparable

as possible, we used a 5 (width) x 8 (height) squares grid, starting from inside the visible corner

of the chamber. Square size was 60x60 pixels. We considered that up to 8 chambers could be

influenced by the chamber posts. Furthermore, we never found more than 50% of squares to

be considerably correlated under normal growth. We therefore estimated our growth value
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gchamber as

gchamber = 1−percentile(~g local,0.75) ,with (3.11)

g local = max(normxcorr2(TP1inner,TP2outer)) (3.12)

using the Matlab function ’normxcorr2’ for normalized 2-D cross-correlation.

Imaging 46 chambers in one-minute steps over a time interval of 30 minutes gave us a good

idea about the sensitivity of our measurements (Figure 3.12a). For example, there is a signifi-

cant difference between time intervals of 10 and 20 minutes. The average value at 10 minutes

gives us a lower threshold for a 50% decrease in doubling time. It can be expected to be a

lower threshold, as we would expect the same change in biomass for either a 10 minutes time

frame or a 20 minutes time frame at half the doubling time, under the assumption that cell

size distribution remains similar.

Given that the cells would still have twice as much time to be displaced, the 20 minutes

time frame is still expected to have a lower growth correlation value and therefore a higher

growth estimation value. Computing the growth estimation for the images of two random

chambers showed an only slightly, but significantly greater value(Figure 3.12a). This gave us

an upper limit for the growth estimation value and would allow us to even detect a theoretical

increase in growth. Comparing our local correlation approach with the global correlation of

two images, we found the local approach to be considerably more sensitive (Figure 3.12a-c).

Furthermore, if the local growth correlation estimation is taken on a chip wide level, even

changes of doubling time in the range of minutes can be found with significant precision.

It has to be noted that local growth correlation is computationally expensive compared to

global correlation. Requiring around one second of CPU time for the correlation of two im-

ages, it is more than 50 fold slower than a global correlation approach. However, the gain

in the precision of our estimation neglects these expenses. Furthermore, we found the local

approach to be robust and intuitively understandable. This facilitates adaptation in case of

parameter changes (e.g. magnification or imaging interval).
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4 Quantitative analysis of reporter-

deletion systems in yeast

4.1 Background: Recombinant genetic techniques in yeast

The yeast GFP-library was groundbreaking to describe protein amount and localization on a

proteome-wide scale. Another approach of genome-wide modification of ORFs in S. cerevisiae

was the systematic deletion of all ∼6200 known or suspected genes [17]. This Yeast Knockout

collection (YKO) showed that while ∼1100 genes are essential, 5100 deletions still result in

viable haploid gene-deletion mutants. Viability of these deletions was tested in 1144 different

chemical conditions [72], revealing that 97% of genes influence growth in at least one condi-

tion.

A second method that extensively made use of the YKO was the development of a method for

systematic construction of double mutants, termed systematic genetic array (SGA) analysis

[18]. This technique uses a series of steps that combine the recombinant properties of budding

yeast with a robotic system for manipulation of high-density yeast arrays. Briefly, a query

mutation of interest is crossed to a yeast deletion collection in which each strain contains a

single gene knockout with a kanMX cassette for antibiotic selection. The query mutation itself

is linked to a natMX cassette. The subsequent use of antibiotic resistance markers allows for

automated selection of double mutant haploid strains.

SGA has been predominantly used for genome-wide study of double deletions [73, 74], where

it allows for the detection of genetic interactions due to synthetic lethality. There are two

drawbacks with viability studies. First, they only give information about drastic changes that
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are strongly influential on cell growth. Second, their insight into the underlying mechanisms

of genetic interactions is limited, as their phenotypic information is mostly related to growth.

One system of double mutations that can overcome these limitations is the use of a reporter-

deletion double mutant. Combining the deletion of one gene with another gene whose

transcription or translation leads to a readout can give additional information about systemati-

cal changes. For example, studies using double deletion mutants commonly use a low number

of reporter-deletion mutants to confirm deletion-related functional changes. In a recent study

[10], SGA was used to combine a small number of GFP reporter genes with the genome wide

deletion set, identifying previously unknown response pathways of DNA damage response.

A further advantage of reporter-deletion systems in comparison to deletion double mutants

is their capability to detect changes that are transient or gradual, an information for which

our microfluidic platform is well adapted. The combination of information about phenotypic

response to a deletion on the one hand and information about changes to the behavior of

the reporter gene on the other can be of considerable value. It allows for conclusions about

causality and actual influence of a gene in regard to environmental changes that otherwise

cannot be easily extracted. It has to be mentioned that there are caveats to the use of the yeast

deletion collection, which we will address in section 4.2.

Thereafter, we will describe and investigate two different networks in budding yeast that

are well conserved in higher eukaryotes. The first part focuses on the response of yeast to

UV irradiation. Of special interest is the formation of processing bodies (P-Bodies), distinct

foci within the cytoplasm of eukaryotic cells. The second part focuses on the galactose gene

network (GAL), a model network in the field of transcriptional regulation.

4.2 Limitations of the yeast deletion collection

Both the yeast deletion collection and its use in SGA have been powerful tools for genome-

wide studies in S. cerevisiae and are the foundation of a multitude of discoveries. As expected

in such a large collection, a few cautions and caveats need to be considered [75]. The most

important limitation is that strains in the YKO can undergo unexpected transformations. One

example is a study that found aneuploidy in 22 of 290 (7.6%) deletions of genes [76]. The

study screened for up- or down regulation of transcription that was deletion and chromosome
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specific, which is indicative of chromosomes that are tri- or monosomic.

Using PCR to control for correct gene insertions for the reporter-deletion mutants used in our

UV irradiation study [14], we found several strains carrying both a deletion or GFP tag and the

respective wild type ORF simultaneously, a sign of aneuploidy. An example are all deletions of

XRN1 and several deletions of PAT1. These cases of aneuploidy were often related to significant

changes in cell size. In addition, we found several other strains to be increased in size, while

passing our PCR. For these strains, (e.g. mms1∆, rai∆ and nam7∆), we cannot exclude the

possibility of aneuploidy, as PCR could only detect changes to the respective chromosomes

that include the ORF of reporter or deletion gene. Previous genome-wide deletion strain

studies also found an increased size of xrn1∆ and pat1∆ [71, 77], without considering these

strains to be aneuploid.

For strains generated for the GAL network screen, strain integrity has not been controlled yet.

However, several deletions show an increased cell size, including those of xrn1∆ and pat1∆.

As this screen was based on more than 500 strains, it is possible to make estimations based

on strain cell size distribution. Average cell size for the wild type strain and strains that are

not affected would be expected to show similarity to a lognormal or gamma distribution [78],

which would not account for strains with a size defect or aneuploidy. Figure cellSizeAneua

shows that the distribution of our strain size cannot be fitted by a unimodal distribution. In

comparison, we found a bimodal gamma distribution

f (x|an ,bn , a∆,b∆, p) = (1−p)
1

ban
n Γ(an)

xan−1e
−x
bn +p

1

ba∆
∆ Γ(a∆)

xa∆−1e
−x
b∆ (4.1)

to fit the distributions of strain size exceptionally well (Figure 4.1a). In this distribution, the

parameters an ,bn are the shape and scale parameters of unaffected strains, while a∆,b∆ are

the respective parameters for a deletion-dependent distribution.

The value p, indicating the percentage of cells in the affected cell size distribution, is 12.2%

and 7.9% of strains are more likely to be part of the distribution with increased size. Even

though this number agrees well with 7.6% found in previous screens of of aneuploid strains

[76], it has to be noted that our estimations are vague and presumptuous, as it cannot separate

between deletions that cause actual increases in cell size and deletions for which the change

in size is a consequence of aneuploidy.
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Figure 4.1: Analysis of strain size distribution highlights the influence of deletions on cell
size. a. Distribution of strain size shows bimodality. Fit of a bimodal gamma distribution
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Strain sizes are correlated for strains with same deletions and different reporter proteins.
Strains outside of the blue line had good repeats for only one of the two reporter proteins. Red
dashed line shows 7.9% threshold. Gene names are shown for strains with cell sizes greater
than 12.5µm2.

Nonetheless, we decided to use the threshold of 7.9% (a cell area of 11.36 µm2) as an indicator

of conspicuous size in section 4.4. 70 strains were found to have a cell population larger than

the threshold in one of the two reporters and for 13 deletion strains cells were larger than the

threshold for both reporters (Figure 4.1b). Of the 70 strains, 28.6% were deletions of genes that

are annotated as ‘cell size increased’ and 32.9% as ‘haploidinsufficient’ in the Saccharomyces

Genome Database. The latter is a moderate number, as 2134 genes in the database have the

annotation ‘haploinsufficient’. In comparison, of the strains without perceptible increase in

growth in our experiment 6.8% are annotated as ‘cell size increased’ and 35.0% as ‘haploinsuf-

ficient’.

Under this light, it is interesting to note that the GO annotation of genome wide screens can

become misleading in a self-preserving way. For example, we found 20 of the 70 deletion

strains to be annotated as ‘regulation of cell cycle’ genes, including XRN1. We suspect that at
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least some of these annotations are the result of high-throughput annotations, which linked

an increased cell size with regulatory effects.

To conclude, while YKO and SGA are invaluable tools in genome-wide screens, their results

always need low throughput confirmation. Our microfluidic platform is in this regard advan-

tageous to classic spot arrays, as it returns information on cell sizes and growth, which can be

a good indication for potential pitfalls.
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4.3 Gene network regulation upon UV irradiation

4.3.1 Background: Cell damage and its pathways

The response of regulatory genes or gene networks to damage is a complex question posed

in all organisms. Cells need to rapidly assure that they are not irrevocably damaged and that

their DNA remains intact to avoid error propagation. The elements that are involved in these

processes are manifold. A typical mechanism is damage checkpoint response, leading to cell

cycle arrest and damage repair [79]. Many of the genes involved in DNA damage response are

expected to interact. We constructed a set of reporter-deletion strains for further investigation.

Comparing our GFP library studies in different conditions, UV irradiation was the obvious

candidate, as it triggered by far the fastest response in previous experiments. UVA is linked to

single stranded RNA breaks by oxidatively generated damage [80]. UV induces pre-mutagenic

lesions and is the most important cause for the development of skin cancer [81].

We chose 14 different reporter genes that we previously found to react to different DNA

damging conditions [14]. The largest group consisted of seven proteins that are involved

in P-Body formation (Dcp1p, Edc3p, Lsm1p, Pat1p, Pby1p, Scd6p, Xrn1p). P-Bodies are ac-

cumulations of proteins inside the cytoplasm [82, 83]. Figure 4.2, adapted from Parker and

Sheth [84], summarizes the known relationships between different P-Body proteins. Two

important aspects of mRNA decay are undertaken by proteins known to be components of

P-Bodies. Dcp1p/2p (mRNA DeCaPping) is a decapping enzyme complex that removes the 5’

cap structure from mRNAs prior to their degradation and Xrn1p (eXoRiboNuclease) degrades

RNA by 5’ to 3’ exonuclease activity. Therefore, the formation of P-Bodies is assumed to play a

role in mRNA degradation. Unsurprisingly, P-bodies predominantly occur during conditions

that are stressful for the cell. Nonetheless, their exact role remains unclear, as previous studies

showed that their formation is not a cause, but merely a consequence for RNA-mediated gene

silencing [85].

Other proteins that were used as reporter genes are known to be involved in DNA damage

conditions (Bmh1p, Hsp104p, Lcd1p, Rnr4p) or central cellular functions (Hhf1p, Mcm7p,

Nsp1p). Bmh1p (Brain Modulosignaling Homologue) is a protein of the 14-3-3 family, which

are acidic dimeric molecules that likely play a role in signal transduction [86]. It binds other
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Figure 4.2: The General Pathways and Nuclease Complexes for Degradation of Eukaryotic
mRNAs involved. Adapted from [84].

proteins and DNA and we found that its abundance increases and its localization shifts toward

the nucleus upon DNA stress [14]. Hsp104p (Heat Shock Protein 104) is part of a mechanism

to refold and reactivate previously denatured, aggregated proteins [87]. It was found to be

produced quickly, thereby forming cytoplasmic foci [14]. Lcd1p (Lethal, Checkpoint-defective,

DNA damage sensitive) is an essential protein required for DNA integrity checkpoint pathways

[79]. It interacts physically with Mec1p, which itself plays a main role in regulation of P-Body

formation [10].

Rnr4p (RiboNucleotide Reductase) is part of the RNR complex, which catalyzes the conversion

of nucleotides to deoxynucleotides. This is the rate-limiting step in de novo deoxyribonu-

cleotide biosynthesis, and therefore plays an essential role in DNA replication and repair

[88, 89]. The function of the complex is controlled in two different ways [88]. Under standard

conditions, Rnr2p and Rnr4p are localized to the nucleus during most of the cell cycle, while

Rnr1p and Rnr3p are predominantly found in the cytoplasm. Rnr2p:Rnr4p heterodimer are

found to transfer to the cytoplasm to form an active complex during S-phase or cell damage.

In the case of cell damage, transcription of several RNR proteins is additionally increased, with

an increase of abundance by several orders of magnitude for Rnr3p and Rnr4p.

Hhf1p (Histone H Four) is part of a core histone protein required for chromatin assembly and
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chromosome function [90]. It forms foci inside the nucleus during stress and is one of the few

proteins that were found to reduce its abundance during some stress conditions (UV and HU)

[14]. Mcm7p (MiniChromosome Maintenance) is a component of the Mcm2-7p hexameric

helicase complex. The Mcm2-7p complex localizes to the nucleus during G1, where it is a

part of the prereplicative complex [91]. Nsp1p (NucleoSkeletal-like Protein) is a component of

the nuclear core complex (NPC). The NPC is important for the transport of macromolecules

between nucleus and cytoplasm and studies suggest that Nsp1p plays a key role in this func-

tion [92]. Nsp1p and other proteins of the NPC form foci inside the nuclear periphery under

ongoing stress conditions [14, 10].

We crossed our 14 reporter genes with 40 deletion genes from a diverse range of networks. The

deletion set includes the deletion of four strains that are directly part of the P-Body network,

as well as 7 strains known to be part in general mRNA and rRNA processing. Other deletion

strains are for example part of DNA damage networks.

The response of a deletion-reporter system to damaging stress conditions has different aspects

of interest. Observing the behavior of the reporter itself (as described in previous chapters)

yields information about the conditional response and function of a gene, but is not neces-

sarily an indication for its importance for viability. We can obtain this information from gene

deletions, where we can measure which of them cause significant phenotypic changes.

Finally, reporter-deletion systems allow us to combine the information about which genes

influence viability with the knowledge of which reporter networks get influenced. In the end,

it still remains a challenging task to deduct causality. In the section 4.3.3, we will show in

which regards it is possible to answer these questions for our system and where a conclusive

answer cannot be found. Most of these findings are published [14]. Reporter-deletion mutants

were generated by Pascal Damay. Johannes Becker performed and analyzed UV irradiation

experiments.

4.3.2 Materials and methods

Strains containing C-terminal GFP fusions at 14 genes of interest (genotype: MATa his3∆1

leu2∆0 met15∆0 ura3∆0 goiX-GFP::HIS3MX; obtained from ATTC and confirmed by PCR

of the ORF-GFP junctions) were first crossed to Y9230 (MATα can1∆::STE2pr-URA3 lyp1∆
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ura3∆0 leu2∆0 his3,1 met15∆0). The resulting diploids were then sporulated and haploid

segregants of the following genotype were identified: MATα his3∆1 leu2∆0 met15∆0 ura3∆0

lyp1∆ yfg-GFP::His3MX can1∆::STE2pr-URA3. These 14 GFP fusion strains were then crossed

to a set of 40 different single-gene deletion strains (ORF replacements by kanMX4; generated

by the Saccharomyces Genome Deletion Project ) of the following genotype: MATa his3∆1

leu2∆0 met15∆0 ura3∆0 yfg::KanMX using a liquid-handling robot. The resulting diploids

were sporulated and haploids of the following genotype MATa his3∆1 leu2∆0 met15∆0 ura3∆0

yfg::KanMX lyp1∆ yfg-GFP::His3MX can1∆::STE2pr-URA3 were selected. Robotic mating,

sporulation and haploid selection were done according to Tong et al. [93]. The gene disrup-

tions in strains giving rise to phenotypes in our screen were confirmed by 5 PCR reactions

designed to detect both junctions of the kanMX deletion/insertion, the absence of the corre-

sponding junction fragments of the wild-type allele, and a full-length cassette insertion (lack

of the wild-type allele).

All deletion-GFP strains were imaged in quadruplicate in response to UV-pulses. The experi-

mental setup was identical to previous experiments with UV [14]. The samples were exposed

to three successive UVC doses of increasing duration (10 min - 6.6 J/m2, 30 min - 19.8 J/m2, 1

hour - 39.6 J/m2), separated by 6-hour recovery intervals. For all strains, we extracted tempo-

ral information about cell size, strain growth, abundance and localization. For localization

changes we focused on foci formation and the transition between nucleus and cytoplasm, as

these were the changes we previously found in our 14 reporter genes.
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4.3.3 Results

Cell size and growth

We first evaluated cell size and cell growth, to look for deletion-specific phenotypes (Figure

4.3a). Most deletion strains show similar changes both in size and growth. During the first two

hours after UV irradiation, cell size increases, while cell growth decreases. As two hours are

close to the cell doubling time, we can assume that UV radiation leads to a general cell cycle

arrest in G1. Therefore there is a time window during which cell division is not possible, but

ongoing metabolism is leading to increased cell sizes.

We identified several deletions that influenced size and growth. While these two observations

are clearly related, partial separation between cause and effect can be made. For example,

even before UV irradiation, three deletions (bmh1∆, rai1∆ and mrt4∆) were significantly

smaller and five (tsa1∆, nam7∆, mms1∆, rtt101∆ and rad55∆) significantly larger than wild-

type strains. But for all three strains that were smaller and tsa1∆ and nam7∆, cell growth

estimation was only slightly different from normal, which has to be expected for cells that

already show differences in growth in the first place.

The other three strains (mms1∆, rtt101∆ and rad55∆) were more heavily influenced in their

growth, while their size remained remarkably bigger than for average cells. This indicates that,

while the cells were still capable of metabolism, repair of DNA damage was more hindered

than in average strains.

Two strains (rad9∆ and pat1∆) that were not conspicuous in size and growth under standard

conditions were strongly influenced by irradiation. As observed in previous studies [94, 95],

rad9∆ and rad55∆ exhibited a significant growth defect upon low-dose UV irradiation. Rad9∆

expectedly failed to arrest after the first UV pulse, as it is known to be a vital part of checkpoint

control [96]. By the second UV pulse, rad9∆ strains accumulated too much damage, most

likely to errors in DNA copies, leading to cell death.

Pat1∆, a gene mostly associated with P-Body formation [97], showed a similar behavior. This

finding leads to the suggestion that Pat1p may also play a role in checkpoint control. Rad55∆

on the other hand arrested after the first UV pulse but also failed to repair accumulated

damage, leading to cell death after the second pulse.
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Figure 4.3: Summary of reporter-deletion UV irradiation screen. a. Median of strain size
and cell growth of deletion-GFP strains. b. Punctate formation for six P-body strains in various
deletion backgrounds. c. Changes in abundance and nuclear localization of Rnr4 as a result of
gene deletions.

P-Body regulation

Most gene deletions had no significant effect on P-Body formation (Figure 4.3b). Therefore,

those deletions that had an effect were clearly distinguishable. P-Body amount was increased

in strains with cells that do not recover from UV radiation, most notably rad9∆ and rad55∆.

The raised amount of P-Bodies is presumably due to an increased amount of non-functional

mRNA.

53



Chapter 4. Quantitative analysis of reporter-deletion systems in yeast

We found scd6∆ and pat1∆ to inhibit the formation of foci for several P-Body proteins. This

was previously shown for pat1∆ in different conditions [83], but not for scd6∆. Interestingly,

deletion of SCD6 did not lead to significant changes in growth, which solidifies the hypothesis

that their formation is not a cause, but merely a consequence for RNA-mediated gene silencing

[85]. Even though different proteins involved in P-Body formation (e.g. Xrn1p, Dcp1/2p, Pat1p)

play important roles for cell survival, their accumulation into foci is seemingly not decisive.

We also compared the averages of foci formation dynamics of our 6 P-Body related GFP

reporter genes 4.4. We found striking similarities and differences between different proteins.

Some of these similarities can be explained functionally. For example, Pat1p and Lsm1-7p

are known to form a complex [98]. A similar relation could be the case for Edc3p and Xrn1p,

respectively for Scd6p and Dcp1.
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Figure 4.4: Comparison of foci formation in different P-Body proteins under UV irradiation.
All probabilities for the localization Punctate are normalized to the same maximum value.

Rnr4p regulation

Rnr4p was found to be one of the fastest and strongest responders in all our previous ex-

periments focusing on cell damage. Upon DNA damage, it relocates to the cytoplasm and
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its abundance increases, leading to an overall increase in dNTP levels [99]. We measured

the influence of deletions on both abundance and localization of Rnr4p. One deletion that

influenced localization was wtm1∆, for which we found no effect in growth or size. In wtm1∆

mutants, Rnr4p would not relocate to the nucleus during recovery phases, something that is

well in accordance with the previously identified function of Wtm1p as a nuclear anchor of

Rnr4p [100].

Two other strains where Rnr4p showed increased localization to the cytoplasm, rtt101∆ and

tsa1∆, showed this behavior even before the first induction and throughout the experiment.

Tsa1∆ mutation was previously shown to lead to induction of RNR1 and RNR3, accompanied

by increased dNTP levels and genomic instability [101]. Rtt101p was shown to form a complex

with Mms1p and Crt10p. Crt10p is a transcriptional regulator of RNR2 and RNR3 [102]. Unlike

wtm1∆, both rtt101∆ and tsa1∆ showed either an influence in size or in growth. This indicates

that while delayed relocation after an initial response to DNA damage might not be disad-

vantageous, it is of high importance for cells to regulate their dNTP levels during standard

conditions.

Three deletions were found to have increased nuclear localization. Rai1∆ and nam7∆, two

genes involved in mRNA processing, showed increased size as well as nuclear localization in

standard medium. Rad9∆ was found to have a decreased localization change up UV irradia-

tion. This result once again shows the role of RAD9 as part of DNA damage checkpoint control.

Along with the information that deletion of RAD9 does not decrease the formation of P-Bodies,

it is a further indication that P-Body formation is not part of the DNA damage pathway, but

instead triggered differently. A similar argument can be made for network signaling of the

Bmh1p and Hsp104 related pathways.

Regulation of other reporter proteins

We detected no further indications for direct relationships between our deletion and reporter

genes. The deletion of RAD9 led to no relocation of Mcm4p, a cell cycle related protein. This is

a further indication for the role of RAD9 in the control of cell cycle arrest during cell damage. It

is interesting to note that rad9∆ knockout had also no effect on abundance and foci formation

in Hsp104p and abundance and relocation to the nucleus of Bmh1p. Both proteins were
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shown to change their subcellular localization upon stress earlier than Rnr4p for all DNA

damaging conditions [14]. This is so far not surprising, as Hsp104p and Bmh1p are known

to be regulated by different pathways[103, 104], but it additionally indicates that there is no

cross-talk between the respective pathways.
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4.4 The Galactose network

4.4.1 Background: Galactose and transcriptional memory

The use of glucose as an energy source is highly conserved throughout evolution, starting

with glucose being the main product of photosynthesis [105]. A possible reason is that it is

more stable than other sugars, which is an advantage for cellular storage . In addition, it is less

likely than other hexose sugars to react non-specifically with the amino groups of proteins.

Yet many organisms, S. cerevisiae as well as mammals included, have conserved several gene

networks that allow for the use of alternative energy sources. One example is the metabolism

of galactose, a monosaccharide sugar found in dairy products, natural gums, and mucilages.

The Leloir pathway converts galactose to glucose and is the main pathway for metabolism of

galactose in humans and other species [106].

The central genes involved in this galactose network (GAL) are well studied in yeast. Figure

4.5, adapted from Stockwell et al. [107], summarizes these general components of the GAL

network. To describe the GAL network shortly, in the absence of galactose, Gal80p inhibits

Gal4p, which is a transcription factor for several GAL network proteins. The presence of

glucose on the other hand leads to several mechanisms that repress GAL genes. For example,

there is a glucose-dependent decrease in Gal4p levels due to transcriptional repression and

active degradation of Gal4p [108]. Another example would be sequences upstream of GAL

genes, where glucose-dependent proteins can bind and subsequently inhibit Gal4p binding.

An example protein would be Mig1p, which binds upstream from GAL1. Overall, the amount of

GAL genes is tightly controlled by a number of feedback loops, leading to a 1000-fold increase

in mRNA copy numbers when galactose is present and glucose absent. This control highly

increases the efficiency of the cell, as it allows the cell to only invest energy into the production

of specific proteins if those are actually needed.

Another biological process has to occur after Gal4p binds to the upstream-activating se-

quence (UAS) and before GAL network genes can be transcribed. As DNA is tightly packed

by histones, a high percentage of ORFs are not accessible. Thus, in the event of a change of

nutrient sources, chromatin remodeling usually needs to precede transcription [109]. The

most fundamental level of chromatin organization is the nucleosome, where DNA is wrapped
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Figure 4.5: Summary of the known GAL network. The GAL network is controlled by inter-
locking positive and negative feedback loops. Asterisks indicate activation by intracellular
galactose. Red indicates repressive effects; green represents inducers. Positive and negative
feedback loops are marked with circled + and - signs, respectively. Adapted from [107].

around a histone. Histones are subject to post-translational modifications, which are linked to

events in chromatin synthesis and assembly. For example, post-transcriptional modifications

like histone acetylation can increase the accessibility to transcription factors [110].

The concentration of GAL network proteins and the reorganization of chromatin are both

examples of possible epigenetic influences inside a cell, changes that may be heritable, but

are not caused by changes in the DNA sequence. Main questions of epigenetics are the conser-

vation of epigenetic information and its inheritance after cell division. There are two general

ways to conserve information epigenetically.

One way is related to mRNA and protein concentrations. In the case of the GAL network, the

principles of this state conservation are easily fathomable. Studies in yeast have identified

many proteins with half-lives that are longer than the cell cycle [111], making dilution due

to cell division the main source for decreasing protein concentrations. Most cytoplasmic

proteins are expected to be evenly divided between mother and daughter cells.

Therefore, proteins involved in feedback loops can remain significantly increased over several

generations. In the case of the GAL network for example, Zacharioudakis et al. showed that

reinduction with galactose after 12 hours of glucose (6-7 generations) resulted in a rapid and

uniform increase in galactose genes [19]. In the case of the same experimental setup and a
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gal1∆ mutation, reinduction kinetics were found to be the same as for cells without galactose

memory, giving rise to the claim that Gal1p concentration is an important part of epigenetic

inheritance. In the following, we will call this phenomenon “cytoplasmic memory”.

The other possibility for epigenetic inheritance is the propagation of mechanisms like DNA

methylation and histone modification from mother to daughter cell. For this kind of “nu-

clear memory” explanations are not as easily at hand. Previous studies indicate that such

chromatin-related mechanisms could occur in budding yeast. For example, a decrease in

reinduction-rates was found in a swi2∆ strain [20], which is a part of the SWI/SNF chromatin

remodeling complex. Another study done in a bistable state of the GAL network shows that

cells that are more closely related to each other transit state formations in a related manner

[112].

But both studies have limitations to their explanatory power. For example, the first induction

in a swi2∆ deletion strain shows already strong delay in Gal1p abundance. And as most fluo-

rescence studies can only show the protein amount of one or two selected proteins, it is in

many experimental setups not possible to exclude cytoplasmic memory produced by proteins

for which no reporter is at hand.

To further investigate this question of cytoplasmic and nuclear memory, we used our microflu-

idic device for a chromatin-wide screen that tries to highlight various genes with an influence

on transcriptional regulation in general and transcriptional memory in particular. Therefore,

Manolis Stavrou combined more than 500 deletion strains with two GFP reporter systems by

SGA methodology. Conducting reinduction experiments using more than 500 deletions in two

different backgrounds (using reporter strains with either functional or non-functional Gal1p),

we were particularly interested in those strains that show altered behavior during the second

induction. These strains of interest will be further studied in a second round of experiments.

Poonam Bheda and Johannes Becker designed the experimental setup. Johannes Becker

performed and analyzed high-throughput experiments using our microfluidic platform, while

Ponaam Bheda analyzed strains of interest in more details, using cell tracking for pedigree

information.

The high number of strains gives us the possibility to detect strains that are already influenced

during the first induction, something that to our knowledge has not been done on a larger

scale. This information is crucial, as it gives us a relative benchmark, as the behavior during
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the first induction influences the second induction. Therefore, we have now the possibility to

compare a specific strain not only with the wild type, but also with other strains that showed

similar changes during the first induction.

4.4.2 Materials and methods

In the following, we will first explain the experimental design (construction of a library and

experimental setup of the microfluidic device). Afterwards, we will describe the different steps

of our data analysis. Several steps are necessary to allow for robust quantitative analysis of

these data. Stringent quality control is especially necessary to control the influence of extrinsic

noise. Furthermore, it is important to condense the data in an understandable manner. This

condensation is necessary to assure the comparison between experimental repeats. In a last

step, we describe a coherent way to detect outliers and to represent our findings.

Experimental design

Yeast library construction. Gal1-GFP reporter strains were made in parent strain Y7092 (SGA

query strain) by either replacing the Gal1 ORF with GFP (RSY16) or as a C-terminal fusion

with GFP (RSY17) by homologous recombination of a PCR product containing GFP with a

natMX cassette for selection. The GFP is a fast maturing (“superfolder GFP”) and destabilized

variant knocked-in at the endogenous Gal1 locus for expression under the control of the native

promoter. Gal1-GFP fusions have previously been used successfully, with no obvious effects

on Gal1 expression or activity [19].

Experiments were conducted with two different sets of strains, both being produced using the

aforementioned approach. Initially, a library containing 169 strains was used, both as a proof

of concept and for parameter optimization. Afterwards, we used the SGA approach to create a

comprehensive chromatin-associated factor Gal1p-reporter-deletion library. Approximately

500 mutants of factors associated with chromatin were crossed in both the RSY16 and RSY17

backgrounds to create ∼1,000 total strains containing both a Gal1 fluorescent reporter and a

single gene knockout.Selected strains were verified by junction PCRs to detect the presence of

kanMX and natMX cassettes and absence of wild-type alleles

Experimental setups. A very important consideration in galactose reinduction experiments
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is to find a good duration for the different media pulses. The general setup is the use of SD

medium with

2% raffinose stationary growth
2% glucose 4h start of imaging

1.5% galactose, 1.5% raffinose Xh first galactose induction
2% glucose 4h

1.5% galactose, 1.5% raffinose Yh second galactose induction

Two steps of four hours for glucose pulses were chosen as a previous study showed that wild-

type strains maintained reinduction memory for at least four hours (around two doublings)

[20].

The variable of most interest was the duration of the first galactose pulse. To facilitate com-

parison between the inductions, it is of importance that as many strains as possible are

considerably induced after the first induction. But at the same time induction should not be

too long, so that GFP intensity of most cells reduces to background levels during repression.

This is important for two reasons. First, it facilitates comparison of the two inductions, because

the influence of ongoing degradation of GFP proteins due to the first induction is reduced.

Second, as mentioned previously, Gal1p was found to be a main factor in reinduction rates.

While we are aware that the amount of GFP inside a cell is not a direct measurement for the

amount of mature Gal1p, it is at least a good indicator.

We found induction times around two hours the most promising. As expected, strains without

GAL1 ORF (Gal1-) induced much slower in comparison to strains with GAL1 ORF (Gal1+). To

account for this difference, we decided to split the second Gal1p library into two sub-libraries,

one consisting of the Gal1+ and the other of the Gal1- strains. This allowed us to adjust the

galactose times for each subset individually, using 1.5 hours for Gal1+, and 2.5 hours for Gal1-

strains.

We used 60x magnification for the experiments on the comprehensive data set, which allows

us to image a high number of cells in each chamber with a reasonable resolution. Each

experiment contained duplicates for each strain, which were spotted in separate rows to

avoid experimental biases. It has to be noted that the continuous flow of media was shortly

interrupted between the overnight growth with raffinose and the first glucose repression. This

was necessary as the design of the microfluidic device allowed only for two different medium
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sources.

Data measurements

For each chamber, we monitored a number of values over time. These values are:

• Abundance: mean, median, standard deviation (std), noise (std2/mean2). All values

are collected using the standard background subtraction method and are in arbitrary

units.

• Cell active percentage. We estimated for each time point the percentage of cells that are

in an ‘ON’ or ‘OFF’ state respectively. This percentage allows us to make an estimation

of the time delay to start induction in different strains. Using an abundance threshold

of 150 (a.u.), we found that all strains are close to or completely inactive in glucose and

completely active in steady-state galactose.

• Gradient measurements: gradient, Pearson’s correlation coefficient, adjusted stan-

dard deviation (adjStd), adjusted noise (adjNoise: adjStd2/mean2). As cells inside the

chambers are provided with new medium by diffusion, a gradient in nutrients has to be

expected and was found in previous studies [50]. We used linear regression to adjust

standard deviation and noise measurements for this gradient.

• Cell information: growth, mean cell size. We monitored values related to the general

state of cells to gain information about the phenotypical behavior of different deletion

strains. Growth values are estimated as described in section3.6.2. Cell size is in µm2.

To facilitate the display, we added interpolated data for mean and median abundance, cell

active percentage, adjusted noise, correlation coefficient and growth. This way, one time

vector with steps of 10 minutes can be used for all chambers and experiments.

Quality control

Quality control was done in several steps. Imaging the whole device at 4x magnification during

overnight growth in raffinose, we picked only those chambers that were completely filled
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with cells by the start of the experiment as a stringent quality filter. Chambers that were

not filled at this point, but whose 60x magnification images were completely filled with cells

passed a less stringent filter. The reason for this late growth could be either phenotype or cell

spotting related. These strains were not used in the general analysis, but could be of interest

to investigate the relationship between growth deficits and Gal1p expression.

A second quality filter was added to control for possible perturbations inside the device. Air

inside the flow lines or flow lines that are clogged with cells can disturb the media flow, which

is not possible to observe during the experiment. Therefore, we compare the median values

between good quality strains of growth and mean intensity for each row. This makes it easy to

discard either single rows or complete subsets that use the same inlet. An example of both

cases is shown in 4.6.
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Figure 4.6: Control of flow line quality in galactose experiments. Two example experiments:
Plot of median of all strains that were manually annotated as ‘good quality’. Dashed grey
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Comparison of independent experimental repeats

Having three independent experiments for both Gal1+ and Gal1- strains, we compared abun-

dance and growth, to determine experiment reproducibility. We have two different possibilities

to evaluate the experiment-to-experiment and intra-experiment variance. The first is to look at

the behavior of the wild-type strain, which we spotted in eight repeats for each experiment. It

has to be noted that ‘wild-type’ refers to the Gal1 reporter strain with no other deletions and is

not a consensus wild-type strain, as it has besides the GFP reporter an inserted kanMX cassette

due to the SGA procedure. The second possibility is to assume that most deletions have little

to no influence on the GAL network, therefore making the median and inner quartiles of

strains comparable to the wild type. We focused on the second approach, as numbers of good

wild-type repeats for each experiment was found to alter between three and eight.

Figure 4.7 summarizes median and inner quartiles of our experiments. The most important

information of this figure is that experiment-to-experiment variance is high in comparison to

intra-experiment variability. This is indicated by several experiments for which there is little

to no overlap for the inner quartile range. A possible reason for this high variability could be

the high complexity of the GAL network and all the involved mechanisms, so that even slight

changes in pressure, timing or nutrient concentrations can strongly influence the cellular

response.

For example, the time window of interrupted media flow, which was needed to change the

nutrient sources, was prone to vary between 20 and 40 minutes. This could be prevented

in future experiments with a slightly altered chip design that allows for the simultaneous

connection of three media sources. Furthermore, a recent low-throughput study that focused

on growth rate changes in E. coli shows similar variance between experiments [113].

Especially for the Gal1- experiments we see remarkable differences between the slopes for

both abundance and growth. The reason could be that Gal1- strains are more likely in a region

of bistability during our experiments than Gal1+ strains. Bistability was found in a recent

study for galactose concentrations of 0.1% or less [114]. Our medium has a galactose concen-

tration of 1.5%, which is expected to be gradually reduced inside the chambers. Therefore, it

is possible that this critical concentration is reached. Growth can also be influenced by the

inability of cells to effectively use the Leloir pathway for galactose processing.
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Figure 4.7: Summary of all galactose screen experiments. Median and 25 and 75 percentile
of abundance and growth measurements for all experimental repeats in Gal1- and Gal1+.

An additional general observation for Gal1+ strains is that we find the temporary growth

decrease during the second induction to be more severe than during the first induction. This

is contradictory to the general assumption of memory also confirmed by previous findings

[114]. But it could very well be that slight changes inside the chip over time influence this

growth adaptation negatively.

Disregarding the aforementioned variance between experimental repeats, we were still able to

extract valid results, as will be shown in the following sections. One reason therefore is that

similar to other high-throughput experiments, we are mainly interested in relative differences

between strains, which are expected to be conserved even under slightly varying conditions.

Data condensation

To further condense some of the information, we reduced the time traces of mean abundance

and active percentage to single data points for each galactose induction. For mean abundance,

we estimated the abundance of each chamber 30 minutes before the first galactose induction
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ends and after the same duration during the second induction Thus, we estimated abundance

after 1 hour of induction for Gal1+ and 2 hours for Gal1-. The estimation used a weighted

linear fit. The weight wTP was necessary to avoid fitting out-of-focus images and used the

number of good cells NbCTP at the respective time point TP

wTP = NbC 2
TP

502 +NbC 2
TP

(4.2)

The fit uses the data acquired between 0.5 hours before and after the estimated time point,

a period of time that usually includes 3 acquired images for each chamber. Manual quality

control showed satisfying results for all chambers.

The information contained in mean abundance is convoluted. Changes both in induction rate

as well as the influence of transcription delay can have similar effects on the intensity. And in

cases where some of the cells do not return to background levels, separating the abundance of

cells before and during the second induction is non-trivial. Although in no way perfect, the use

of cell activation percentage can at least partially account for these problems. Estimating the

time at which a certain percentage of cells becomes active gives us an idea for the delay time

of a strain. And using the information that a certain percentage of cells remained active at the

start of the second induction allows us to focus on the percentage of cells that became inactive.

This estimation is possible because we observed during single cell tracking experiments that

active cells do not turn inactive during induction.

There are two general thresholds that play a role in estimating the time of cell activation during

induction. One of them is the aforementioned abundance threshold, the value that decides if a

cell is assumed to be active or not. The other one is a percentage threshold, taking the time as

estimation that a certain percentage of cells need to become activated. To estimate this time,

while adjusting for potential outliers, we fit a smoothed cubic spline to our data values, using

the Matlab function ’csaps’ with weight wT P as in formula 4.2. To fit the smoothed spline,

we used only time points after the respective inductions. We estimated a minimum value

of active cell percentage a0, using the minimum percentage of active cells one hour before

the first induction (a value that was usually close to zero percent) for the first induction, or

the minimum percentage of active cells +-20 minutes around the second induction for the

second induction. The threshold actT1 for activation time was composed of the fixed active
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percentage threshold parameter actT0 and the estimated value of active cell percentage during

the beginning of induction a0

actT1 = a0 + (1−a0) ·actT0 (4.3)

As an example, if 50% of cells were already estimated as active at the beginning of the second

induction the cubic spline needed to pass 50%+0.5*actT0 for the estimation of the second time.

The spline was evaluated every 0.01 hours and the time point it passed actT1 was taken as time

estimation. Manual quality control showed satisfying results for all chambers. If the spline

did not pass the threshold, something that only happened for a few chambers during the first

induction, it was stored as a late inducing outlier, storing the maximum active percentage

in addition. Gal3∆ and gal4∆ strains did not induce, in agreement with the literature [107].

Varying the abundance and percentage thresholds in a certain range, we could not observe

any unexpected outliers, validating our approach as stable. An activation threshold actT 0 of

50% was chosen for two reasons. First, 50% is as well the time point were the median crosses

the activation threshold, symbolizing the time were an ‘average’ cell would be estimated as

being activated. Second, the medium shape of the active cell percentage over time can be

approximated by a logistic function. This function is the steepest for 50%, making it the

threshold with the smallest theoretical estimation error.

Detection of outliers/ strains of interest

In a first step, we were interested in all strains that are outliers. For this, we looked for outliers

inside the two-dimensional distributions of our condensed abundance and timing values. A

non-linear correlation between both inductions and the previously mentioned experiment

to experiment differences in induction behavior made it impractical to find a conventional

distribution.

In addition, most strains were not available as sextuplicates, due to aforementioned reasons.

Therefore, conventional statistical tests like the Z-test were not appropriate. Instead, we used

a cutoff-based approach to detect strains that are repeatedly different from the norm. First,

outlier cutoffs focused on the first induction. We combined a percentage-based cutoff with an

interquartile range approach. The latter is used to avoid missing potential strains of interest
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due to a fixed percentage cutoff. In the following, the percentage is set as the 2% and 98%

quartile and r for the interquartile range is set as 1, which would be as well around 2% for a

normal distribution. This 1D approach highlights those strains that show a phenotype during

a single induction.

To include the second induction, we sorted the data points after their first induction values.

We used a moving window of 11 data points combined with the interquartile range, to obtain

moving thresholds for upper and lower outliers. We once again used ’csaps’ and r of 1 to get

smooth curves for these values.

Combining these two approaches, we can find 8 different potential types of outlier. For

abundance, we can find strains with high or low abundance in the first induction, as well as

strains with a reinduction that is higher or lower than expected. For the response time, we can

identify fast or slow inducers, as well as strains for which the reinduction is faster or slower

than expected. These outlier types are obviously pair wise related, as for example a faster

response is expected to lead to a higher abundance.

To reduce outliers that are simply due to extrinsic or intrinsic noise, strains had to reproducibly

identify as outliers. As a threshold for this repeatability filter, we chose the requirement to

be the same kind of outlier in at least two different experiments and for more than 50% of

repeats. Strains that are outliers in more than 50% of repeats, but only in one experiment are

labeled as ‘inconclusive outliers’. Figure 4.8 summarizes this method for all experiments for

both abundance and cell activation.

We estimated the number of outliers we would expect in a random population of strains,

simulating 10.000 random draws of our experiment. A p-value indicates the number of times

that a random draw showed at least the same amount of ‘reliable’ outliers. While this does

not indicate a p-value for each specific strain, it is at least a good indicator about the general

reliability of outliers of a specific type. A summary of the detected strains and the estimated

p-values for each type can be found in table 4.1.

Further condensation and visualization

To allow the merged representation of all three experimental repeats, we applied locally

weighted scatterplot smoothing (LOESS). We used the mean of repeats that existed in all three
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Out-
lier
Type

high Gal1 1st
induction

low Gal1 1st
induction

high
Gal1
2nd

low
Gal1
2nd

fast Respon-
der

slow Respon-
der

fast
2nd
ind

slow
2nd ind

no Re-
sponse

Gal1+ EAF7, IKI3,
MIG1, UBC4
(4/0.0024)

CHD1, CTI6,
GAL3, GAL4,
ITC1, PRE9 (6/
<1E-4)

(0/ 1) CIT1,
GAL83,
ITC1,
RTT103
(4/0.0001)

AIM4, MIG1,
UBC4
(3/0.0003)

ADE1, CHD1,
CHZ1, CTI6,
GAL83, ITC1,
NHP10, PRE9,
THP2 (9/
<1E-4)

(0/ 1) BRE5,
EAF7,
MLH1,
RRD1,
RTT103,
SAP30,
SET3,
SWC3
(8/
<1E-4)

GAL3,
GAL4
(2/<1E-
4)

Gal1- ACH1, CLA4,
CRC1, CTF18,
EST1, HDA3,
HEL2, MIG1,
MPP6, NEW1,
RAD5, RAD51,
RTT101,
UBC4, UGA3,
YBP2 (16/
<1E-4)

CHZ1, CTI6,
DST1, GAL3,
GAL4, GAL83,
ITC1, NHP10,
PRE9, SOH1
(10/ <1E-4)

DPH5
(1/0.6)

(0/ 1) BCK2, BRE5,
CLA4, CTF18,
EST1, HDA3,
HXT17,
MIG1, RAD5,
RAD51,
RTT101,
UBC4, UBR2,
UGA3, YBP2
(15/<1E-4)

ADE1, CHZ1,
CTI6, DST1,
GAL83, ITC1,
NHP10, PRE9,
RPN4, SDS3,
SEM1, SOH1
(12/ <1E-4)

(0/ 1) (0/ 1) GAL3,
GAL4
(2/
<1E-4)

TOP3
en-
riched
GO

ribosome
(0.014)

protein com-
plex biogene-
sis (0.00044),
histone bind-
ing (0.0065),
transcription
termina-
tion, DNA-
dependent
(0.0072)

protein
modification
by small
protein
conjugation
or removal
(0.037)

protein
complex
biogenesis
(7.8e-05), nu-
cleus (0.0027),
transcription
termina-
tion, DNA-
dependent
(0.012)

chro-
mo-
some
(0.023)

Table 4.1: Summary of detected outliers. Numbers in bracket indicate the number of detected
strains and an estimated probability that this number could have occurred by chance. ’TOP3
enriched GO’ mentions the 3 GO annotations (GO slim) with the lowest p-Value (p<0.05) and
the respective p-Value

experiments to compute a local regression curve for each of the four data points (abundance

and response time during first and second induction) in each experiment. These curves were

then used to standardize all individual chambers towards one average experiment. Figures 4.9

and 4.10 illustrate this procedure for Gal1+.

The advantage of LOESS is that it reduces the noise, as averages are now taken from up to

six repeats. Strains with no or little influence on galactose expression tend to regress further

towards the mean. This allowed us to highlight further strains that did not pass the more

stringent threshold, but are nonetheless repeatedly found at a specific position inside an

experiment. Just like previously mentioned outliers with a low number of repeats, these strains

were labeled as ‘inconclusive outliers’.

To summarize, the further data condensation using LOESS allowed us to represent the data in

a more condensed manner, while adding a continuous aspect to the previously very discrete
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architecture of our outsider detection. One caveat of LOESS is that it can lead to non-trivial

distortions of the data space, making the use of standard deviations for further going statistical

estimations impractical.
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Figure 4.8: Summary of outlier detection for (a) Gal1+ and (b) Gal1- strains. Abundance
and induction time outlier for all repeats. Numbers in brackets show number of repeats
detected as outliers and number of repeats annotated ‘good quality’ strains. Lighter colors
show inconclusive outliers.
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Figure 4.9: Normalization of Gal1+ using LOESS. y-axis shows average values of strains in
abundance and induction time for both first and second induction. x-Axis shows the respective
values in the experimental repeats. Red lines show the result of LOESS, green lines show the
final local regression lines used for data normalization.
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Figure 4.10: Overlay of Gal1+ experiments after normalization by LOESS. Upper panels
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values. x-Axis shows the first induction, y-Axis the second.
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4.4.3 Results

The main goal of a biological screen is to identify candidates, in our case genes that are likely

to influence nuclear memory. The number of potential candidates is hereby often subjective.

Depending on subsequent experiments and resources, outlier detection thresholds can be

more or less stringent. A less stringent outlier threshold increases the number of detected

strains of interest while at the same time increasing the likelihood of detecting a false outlier.

In the following if not noted differently, we will use a list of our most stringent outliers to

highlight several findings. This information is mainly to give a general overview of what

seems to be influential on GAL1 induction and would of course need further investigation.

General gene information was taken from the Saccharomyces Genome Database unless stated

otherwise. It has to be noted that these strains are not yet controlled for genetic integrity, a

problem of deletion mutants mentioned in section 4.2. Before focusing on specific strains, it

is important to note several general aspects of GAL network induction dynamics.

Observation of general induction dynamics

Preliminary data acquired in a previous experiment that compared induction after overnight

growth in raffinose and overnight growth in glucose gives a good estimation for upper and

lower limits of response time for both Gal1+ and Gal1- strains (Figure 4.11a). Discarding 1% of

all repeats that were found to be strong outliers (like gal3∆ and gal4∆), the response time in

raffinose is estimated to be around 25 minutes for all Gal1+ and Gal1- strains, with a standard

deviation of less than five minutes. Response time in glucose on the other hand differs vastly

between Gal1+ and Gal1- strains. This is a strong indication that Gal1p plays a yet unknown

role in induction of GAL network genes, as its known role of binding the inhibitor Gal80p is

most likely glucose independent.

The Gal80p-related role becomes visible if we compare the mechanisms of Gal1+ and Gal1-

strains during the first induction. We plotted the first induction data point for response time

against an estimation of abundance after one hour for all 6 experiments (Figure 4.11b). For

all deletion genes in both Gal1+ and Gal1-, induction times were consistently slower than 25

minutes. This indicates that growth in raffinose is a lower threshold for induction response,

which most likely cannot be overcome by a single deletion. The interesting finding is that Gal1+
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and Gal1- strains are found on different curves, each curve itself being extremely correlated

(Figure 4.11b). This shows the important role of Gal1p as part of a positive feedback loop in

the GAL network [19].
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Figure 4.11: Comparison of Gal1+ and Gal1- strains under different induction conditions.
a. Comparison of induction time in glactose after different medium histories. Gal1+ strains
(blue) Gal1- (red) strains show little difference in induction timing if induced after growth in
raffinose (light colors). The induction time and variance increases from ’growth in raffinose
– 4h glucose’ repression to ’growth in glucose’ repression (dark colors). b. Induction timing
and rate comparison between experimental repeats. Gal1+ strains (4) are found to induce
on a different curve than Gal1- strains (5). Wild-type repeats symbolized by bold triangles.
Both Gal1+ and Gal1- wild-type are spotted in octuplicates in each experiment.

To summarize, Gal1+ and Gal1- strains are on separated curves, each curve highly correlated

with no strain showing a remarkable deviation. This information indicates that no previously

unknown gene plays a crucial role in the GAL network itself, as this would have led to a strong

deviation from the curve, similar to the deletion of GAL1. Instead, we can assume that the

predominant roles of all strains influencing the first induction (either by measurement of

abundance or response time) are during the early stage of galactose induction.
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Comparing the first induction time of our standard experimental setup (overnight raffinose

to four hours glucose) to that of strains that were grown in glucose overnight we see a longer

delay for the latter. This indicates that some mechanisms of glucose repression need several

cell cycles to be completely effective. A possible reason could be a slightly raised Gal4p

concentration. GAL4 expression in glycerol shows 5-fold higher expression as in glucose [115].

Gal4p is found to be a stable protein with a half-life comparable to the cell cycle [116], thus

making a still slightly increased concentration likely. This once again indicates the sensitivity

of the GAL network induction.

Screen for strains of interest

Using the aforementioned methods and thresholds, we identified numerous strains as outliers

(see Table 4.1). Many of these strains have known relations to the GAL network control, vali-

dating our experiments and process. For example, deletion of MIG1 leads to faster induction,

something that is expected due to its function as transcriptional repressor of GAL1. Interest-

ingly, we found gal83∆ deletion, a gene that is part of GAL repression in glucose conditions

[108], to be one of the slowest inducing genes. This behavior is completely diametric to its

expected behavior and will need further in-depth observation.

Looking at table 4.1 and figures 4.12,4.13,4.14, we can observe several general trends. First, we

find decisively more strains that show remarkably high abundance during first induction for

Gal1- strains. One explanation could be the predominant role of Gal1p in induction, which

conceals minor effects of other genes. Furthermore, the response times for Gal1+ strains is

close to those of strains grown in raffinose. A possibility to adjust for this might be to lengthen

the first repression period in glucose for Gal1+ strains.

Furthermore, we found a large percentage of strains with increased size to be fast inducer.

This was the case for 27% of strains in Gal1+ and 52% of strains in Gal1-. One explanation

therefore could be that at least some of the strains with increased cell size are aneuploid, even

though a previous study did not find indications for galactose induction related changes in

aneuploid strains [76].

Including those strains that are inconclusive outliers, five deletions were found to have a

fast first induction in both backgrounds (eaf7∆, hda3∆, mig1∆, rtt101∆, ubc4∆). Hda3p is a
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subunit of the HDA1 histone deacetylase complex, making it likely that its deletion results in a

more accessible chromatin formation. Eaf7p is a subunit of the NuA4 histone acetyltransferase

complex and both RTT101 and UBC4 are involved in ubiquitin-conjugation, a reaction that

targets a protein for degradation via the proteasome.

For rtt101∆ and eaf7∆, but not for ubc4∆, we can see an increased GFP abundance during

the first glucose repression (Figures 4.13,4.14) and the deletion of RTT101 is found to have an

increased size in both backgrounds. As we see a general correlation between GFP abundance

during repression and the first induction (data not shown), it is reasonable to assume that

there are strains with a slightly increased Gal1p concentration during glucose repression, con-

sequently allowing these strains to induce faster. Interestingly, mig1∆ mutation is not found

to have increased Gal1p concentration during the first glucose repression. This indicates that

Mig1p repression is only of primary importance if glucose and galactose are available at the

same time.

Numerous strains show a strong delay for both Gal1 backgrounds. Including only those strains

that pass the stringent outlier filter for slow responder, 7 strains are slow for both backgrounds

(ade1∆, chz1∆, cti6∆, gal83∆, itc1∆, nhp10∆, pre9∆). Ade1∆ is of interest, as it is the only strain

which repeatedly and for both backgrounds shows a stress pattern during glucose growth.

ADE1 is required for ’de novo’ purine nucleotide biosynthesis and its deletion shows decreased

growth rates in both backgrounds.

CHZ1, CTI6, ITC1, NHP10 (and several other genes that were found under less strict restric-

tions, e.g. CHD1 and ISW2) are all related to the SWI/SNF complex, for which a deletion of

SWI2 was previously found to decrease memory [20]. This gives a case to the argument, that

the deletion of SWI/SNF related genes decreases already GAL network protein genes during

the first induction, therefore additionally influencing cytoplasmic memory.

Pre9p forms the only non-essential part of the 20S proteasome, α3 subunit. Deletion of PRE9

leads to replacement by the α4 subunit (Pre6p) [117]. It is assumed that this creates a more

active proteasome isoform. Thus, it is very well possible that a pre9∆ mutant has the effect of

increased protein degradation. Interestingly, no strain detected as potential slow inducer was

found to have increased cell size.

In comparison to the vast number of strains detected during the first induction, few strains

were found to change their response for the second induction. Only one of the deletions
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(dph5∆) was found reliably at a place inside the distribution that would indicate memory gain

in comparison to the background, an outcome that is estimated to have an 85% probability of

being randomly generated. Changing the thresholds to look for more outliers with potential

memory gain yielded only a low number of additional hits, while the probability of being the

result of a random event always remained above 20%. The distribution of wild-type strains for

our measurements was a further indication that for our experiments , outliers in this direction

were likely a result of extrinsic noise (see figure 4.12).

Looking at the induction time during the second induction, it seems that many strains reach a

plateau that is close to the response time of ∼25 minutes in raffinose. Previous studies found

that translation in galactose reinduction after four hours of glucose is faster than translation

response after raffinose [20], a result that could be conceived as being contradictory to our

observation. But these studies do not adjust their second induction for potential cytoplasmic

memory and furthermore use a different technique. A study that uses similar reporter genes

as our studies also note ‘when pregrown in no glucose media, such as in raffinose media, yeast

cells respond to galactose for the first time with a graded and very rapid kinetics, masking

the accelerated second response after consequent growth in glucose (data not shown)’ [19],

indicating a similar finding. In this case, lengthening the second repression period in glucose

might lead to an increase in outliers of interest.

While we are not able to detect deletion strains that indicate a gain in memory, several strains

can be found for which the amount of memory is potentially reduced. For Gal1+, we found 8

deletion strains (bre5∆, eaf7∆, mlh1∆, rrd1∆, rtt103∆, sap30∆, set3∆, swc3∆) that repeatedly

were detected as outliers for the slow responder threshold, a number that we estimated to

have less than 0.01% probability of occurring by chance. As changes in reinduction analyzed

relative to the first induction, these changes can be of very different character.

The mutations bre5∆, a ubiquitin protease factor, and the aforementioned eaf7∆ both show

increased GFP-levels during glucose repression, a fast response time during the first induction

and an unexpected slow response time during the second induction (Figure 4.13). Interest-

ingly, a similar tendency is found in Gal1- strains (Figure 4.12). A possible explanation for

this behavior could be that the effect the deletion had onto the Gal1p concentration was

advantageous for a fast first induction. But at the same time, the same mechanism could be

either neutral or even disadvantageous during the second induction. In addition, bre5∆ was
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found to be increased in size for both experiments.

Four mutations, mlh1∆, rrd1∆, sap30∆ and swc3∆, show no increased abundance in glucose

repression, a relatively normal response time for first induction and a slower response time

during the second induction. Taking a closer look at the relative abundance traces (Figure

4.13), we can see that the underlying dynamics are vastly different. While the deletion strain

mlh1∆ induces relative fast during the first induction, the level of GFP decreases more than

expected during the second glucose repression, similar to bre5∆. Interestingly, both Bre5p and

Mlh1p are proteins that are linked to DNA damage [118, 119].

Two deletions of genes with seemingly similar trajectories, rrd1∆ and sap30∆, are involved

in very different processes. While Rrd1p is found to be involved in DNA repair and G1 phase,

Sap30p is a component of Rpd3L histone deacetylase complex.

The deletion of SWC3, a component of the SWR1 chromatin-remodeling complex, is found to

respond normal, albeit slightly slow during the first induction and repeatedly slower in second

induction. The function of the SWR1 complex, exchanging histone variant H2AZ (Htz1p) for

chromatin-bound histone H2A, could very well be a possible candidate for loss in inherited

nuclear memory [120].

The last two deletions, set3∆ and rtt103∆, are both examples for strains that show already a

slow response during the first induction.
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Figure 4.12: Summary of outlier detection in (a.) Gal1+ (left) and (b.) Gal1- (right). Light
strain names indicate ‘inconclusive outliers’. Strain names in italic indicate strains with
increased cell size. Strain names can be slightly moved for readability. Wild type repeats are
shown with black circles.
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Figure 4.13: Clustergram of Gal1+ abundance changes. a. Traces of all strains. Fold abun-
dance change is normalized for each experiment individually, using the medium value at each
time point. Blue indicates decreased and red increased abundance. Outlier changes indicate
those strains that are conclusive slow/low (blue) or fast/high outliers during the first or second
induction. The last colum points out strains with increased cell size. Dotted lines show the
borders of different clusters. b. Focus on strains in Clusters of interest. Bigger clusters were
removed for clarity.
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Figure 4.14: Clustergram of Gal1- abundance changes. a. Traces of all strains. Fold abun-
dance change is normalized for each experiment individually, using the medium value at each
time point. Blue indicates decreased and red increased abundance. Outlier changes indicate
those strains that are conclusive slow/low (blue) or fast/high outliers during the first or second
induction. The last colum points out strains with increased cell size. Dotted lines show the
borders of different clusters. b. Focus on strains in Clusters of interest. Bigger clusters were
removed for clarity.

81





5 Discussion of the results and outlook

5.1 Results overview

Our microfluidic live-cell imaging platform opens new possibilities for the study of large

collections of yeast mutant strains. The aim of this thesis was to explore several of these

possibilities, while focusing on approaches of quantitative analysis.

Chapter 3 describes our approach to determine protein localization. We showed that our ap-

proach of a supervised classification of six spatial patterns could be used to quantify changes

in protein localization. This quantification helped to identify 111 proteins changing their

localization upon MMS treatment. Furthermore, it allowed us to draw comparisons for local-

ization changes under different conditions. For example, we could show that the formation of

P-Bodies has significantly different temporal dynamics in MMS, HU and UV. Proteins involved

in the MCM complex on the other hand showed very similar timing under all cell damaging

conditions, indicating that mechanisms of cell cycle arrest are more context-independent.

Using two different sets of reporter-deletion mutants, we show in chapter 4 that the possi-

bilities of our microfluidic platform can transcend those of a typical screen, adding valuable

dynamic information.

Section 4.3 describes the evaluation of a set of different reporters and deletions in response to

a stress condition. In this case, our analysis was used to merge information on localization and

abundance for each reporter with information on phenotype for each deletion. We highlight

the likely relationship between the localization of Rnr4p and the respective phenotype of a
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strain, as we found that all strains for which Rnr4p does not re-localize under UV irradiation

are lethal. The relationship between the formation of P-Bodies and a growth related phenotype

on the other hand was found to be indirect, as strains with defective P-Body formation were

still found to be viable. This illustrates the value of our capability to simultaneously measure

protein- and phenotype-related information.

Section 4.4 underlines the possibilities of our microfluidic device for new approaches in

high-throughput screening. For this study, the adequate temporal resolution provided by our

platform, as well as the temporal continuity was of importance. While not genome-wide, this

screen is still broad enough to outline a general map of genes that are involved in galactose in-

duction. Furthermore, it provides a distinct number of strains that show a reinduction-specific

delay and could play an important role in epigenetics.

We can argue that our microfluidic device is in some regards better suited for the evaluation

of complex mechanisms like transcriptional reinitiation than conventional low-throughput

approaches. For example, the high number of strains gave us a comprehensive distribution of

responses during the first induction, which allowed us to get relative fix points for all strains

during the second induction. This is not possible for low throughput experiments, were it

can be convoluted or impossible to estimate the effects that small changes during the first

induction are expected to have on the second induction.

These results show the diverse aspects of systems biology for which our platform and analysis

can obtain valuable results. Nonetheless, both the experimental and analytical parts of our

work are still facing limitations.

5.2 Limitations and improvements

Both data analysis and setup of our microfluidic device are still subject to limitations. The

limitations of device robustness, robustness of cell recovery, sensitivity and single-cell tracking

have been mentioned previously [32]. Especially the robustness of the setup and strain

recovery after spotting requires a well-trained operator. Therefore, quality of results can differ

between investigators.

Differences in growth and protein expression between flow lines was perceived to be an

increased problem during the experiments with galactose, which may be due to the complete
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arrest of cell growth. Furthermore, a change in medium and cell cycle arrest can change

background intensity, something for which an adjustment can be non-trivial.

The novelty of our platform is not readily approachable with existing statistics. Together with

the vast amount of data extracted during an experiment, it can become time consuming to

extract informative values with adequate statistical significance. Our approach to find a good

combination of extracted data and its analysis was highly iterative. Further investigation will

be necessary to assure that all steps of the analysis are as robust and sensitive as possible.

However, this work will significantly reduce the effort for future applications.

A caveat that holds true for high throughput technologies in general is the question of genetic

integrity of a library of modified strains. However, our device is well capable of highlighting

potential candidates and can even indicate further biological causation. This causation can

be of great value in comparison to other screening techniques. For example, the integrated

information about cell growth allows us to directly evaluate if an increase in protein abundance

is a direct or indirect result of a deletion. Nonetheless, it is not capable of replacing traditional

biological techniques to confirm these results.

5.3 Outlook

As mentioned in the previous section, further investigations will need to be done to achieve a

more universal deployable tool for data analysis. Data handling, analysis, and visualization,

which are currently applied independently, need to be further evaluated and combined.

There is no limit of potentially interesting experiments for our microfluidic device. But their

generation and analysis is time-consuming and it is therefore advantageous to focus the effort

on those experiments that make an exhaustive use of the capabilities of our device. Our device

was found to operate optimally for the observation of around 50 to 576 strains, a range that

makes it necessary to use high-throughput technologies, but still allows for duplicates during

the same experiment.

Furthermore, it is important to consider the time interval of 20 minutes and potential small

differences between flow lines. Therefore, a condition change should not cause a too strong

reaction to allow for the detection of more subtle deletion specific differences. At the same

time it should not be too subtle to avoid uncertainties due to extrinsic noise. For example, the
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use of UV irradiation had the disadvantage that P-Body formation occurred so rapidly that it

was impossible to detect more elaborate strain-to-strain differences.

One interesting application for a more detailed observation of P-Body formation could be

the use of a pulse width flow gradient generator, which was developed by Sylvain Bernard in

the Maerkl lab. Using this gradient generator to form a stepwise gradient between standard

medium and nutrient-starvation would allow for a good temporal control of P-Body network

response. It would also be advantageous to include reporter-deletion constructs of genes

known to be degraded during starvation. This could lead to a deeper insight into the influence

of P-Body related gene deletions.

The response dynamics of the GAL network are well suited for our microfluidic device. Impor-

tant for the further investigation of the GAL network is the decoupling of different aspects of

induction response time. For example, histone modifications precede the increase in Gal1p

and cytoplasmic memory, making it likely that nuclear memory forms before cytoplasmic

memory. In addition, cytoplasmic memory and nuclear memory are expected to behave

differently. Cytoplasmic memory relies on measurable increase of protein concentrations,

something that can be well described in differential equations. Nuclear memory on the other

hand is expected to be inherently stochastic.

Therefore, an optimal experimental setup would be to compare the following two induction

responses:

Setup 1:
2% raffinose stationary growth

1.5% galactose, 1.5% raffinose <20min
2% glucose Xh

1.5% galactose, 1.5% raffinose until galactose steady state is reached

Setup 2:
2% raffinose stationary growth

2% glucose Xh
1.5% galactose, 1.5% raffinose until galactose steady state is reached

This setup is advantageous, as galactose induction is found to respond very homogeneous.

This would allow us to achieve a uniform induction of all cells and most deletions, simultane-

ously decreasing the amount of cytoplasmic memory. Preliminary results suggest that this
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holds true for Gal1+ and Gal1- strains, which are known to differ in cytoplasmic memory, but

not expected to differ in nuclear memory. Varying the time intervals for first induction and

repression time in a setup where the cytoplasmic memory is not predominant can help to

separate the aforementioned differences in memory characteristics.
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A List of features for the classification

of protein localization

Table A.1: List of features.

# FEATURE TAG DESCRIPTION

Histogram-based features

1 top5vs20 mean(highest 5 pixels) / mean(highest 20 pixels)

2 top5vs50 mean(highest 5 pixels) / mean(highest 50 pixels)

3 top20vs50 mean(highest 20 pixels) / mean(highest 50 pixels)

4 top5vsMed mean(highest 5 pixels) / median

5 top20vsMed mean(highest 20 pixels) / median

6 top50vsMed mean(highest 50 pixels) / median

7 histo1ratio frequency of highest pixel bin (pixel values 240-255) /

frequency of bottom half (pixel values 0-127)

8 histo2ratio frequency of 2nd highest pixel bin (pixel values 224-239) /

frequency of bottom half (pixel values 0-127)

9 histo3ratio frequency of 3rd highest pixel bin (pixel values 208-223) /

frequency of bottom half (pixel values 0-127)

10 histoHLratio frequency of top half (pixel values 128-255) / frequency of

bottom half (pixel values 0-127)

11 bin1vs2 93.75th percentile / 87.5th percentile

12 bin1vs3 93.75th percentile / 81.25th percentile
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13 bin2vs3 87.5th percentile / 81.25th percentile

14 bin1vsMed 93.75th percentile / median

15 bin2vsMed 87.5th percentile / median

16 bin3vsMed 81.25th percentile / median

17 binHLratio Upper quartile / lower quartile

Spatial distribution features

18 central_signal mean(P (x ≤ xi , y ≤ yi )) / total mean, (xi = cos(t)·3·cell

width/12, yi = sin(t)·3·cell height/12)

19 middle signal mean(P (xi < x ≤ xm , yi < y ≤ ym)) / total mean, (xm =

cos(t)·5·cell width/12, ym = sin(t)·3·cell height/12)

20 boundary_signal mean(P (xm < x ≤ xb , ym < y ≤ yb)) / total mean, (xb =

cos(t)·7·cell width/12, yb = sin(t)·7·cell height/12)

Morphological features [44, 51]

21 convex_hull _over-

lap

SLF 1.14, Convex hull area / cell area (with binary thresh-

old at 0.5·Pmax )

22 convex_hull

_roundness

SLF 1.15, The roundness of the convex hull (with binary

threshold at 0.5·Pmax )

23 edges_fraction SLF 1.9, The fraction of the nonzero pixels that are along

an edge (with binary threshold at 0.5·Pmax )

24 edges_homogeneity SLF1.10, Measure of edge gradient intensity homogeneity

25 edges_direction

_homogeneity1

SLF1.11, Measure of edge direction homogeneity 1

26 edges_direction

_homogeneity2

SLF1.12, Measure of edge direction homogeneity 2

27 edges_direction

_difference

SLF1.13, Measure of edge direction difference

Granulometries [52]

28 gray_open_1 mean intensity of (I − IOd1), IOdr = grayscale opening of

image I with disk of radius r
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29 gray_open_2 mean intensity of (IOd1 − IOd2)

30 gray_open_4 mean intensity of (IOd2 − IOd4)

31 gray_open_7 mean intensity of (IOd4 − IOd7)

32 gray_open_12 mean intensity of (IOd7 − IOd12)

33 gray_close_1 mean intensity of (I − IC d1), IC dr = grayscale closing of

image I with disk of radius r

34 gray_close_2 mean intensity of (IC d1 − IC d2)

35 gray_close_4 mean intensity of (IC d2 − IC d4)

36 gray_close_7 mean intensity of (IC d4 − IC d7)

37 gray_close_12 mean intensity of (IC d7 − IC d12)

Threashold adjacencies statistics (TAS) [53]

38-46 tas_T35_pk Threshold at 0.35·Pmax , pixel count with k neighbor

above threshold / pixel count above threshold

47 tas_T35_binRatio Threshold at 0.35·Pmax , pixel count above threshold / to-

tal pixel count

48-56 tas_T50_pk Threshold at 0.5·Pmax , pixel count with k neighbor above

threshold / pixel count above threshold

57 tas_T50_binRatio Threshold at 0.5·Pmax , pixel count above threshold / total

pixel count

58-67 tas_T65_pk Threshold at 0.65·Pmax , pixel count with k neighbor

above threshold / pixel count above threshold

67 tas_T65_binRatio Threshold at 0.65·Pmax , pixel count above threshold / to-

tal pixel count

Threashold adjacencies statistics (TAS) - inverted image

68-97 tas_inv_Txx_pk Same as 38-67with inverted image, Pi nv (x, y) = Pmax -

P (x, y)
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