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Abstract

We consider the model selection consis-
tency or sparsistency of a broad set of `

1

-
regularized M -estimators for linear and non-
linear statistical models in a unified fash-
ion. For this purpose, we propose the lo-
cal structured smoothness condition (LSSC)
on the loss function. We provide a general
result giving deterministic su�cient condi-
tions for sparsistency in terms of the regular-
ization parameter, ambient dimension, spar-
sity level, and number of measurements. We
show that several important statistical mod-
els have M -estimators that indeed satisfy the
LSSC, and as a result, the sparsistency guar-
antees for the corresponding `

1

-regularized
M -estimators can be derived as simple ap-
plications of our main theorem.

1 Introduction

This paper studies the class of `
1

-regularized M -
estimators for sparse high-dimensional estimation
[Bühlmann and van de Geer, 2011]. A key motivation
for adopting such estimators is sparse model selection,
that is, selecting the important subset of entries of a
high-dimensional parameter based on random observa-
tions. We study the conditions for the reliable recovery
of the sparsity pattern, commonly known as model se-
lection consistency or sparsistency.

For the specific case of sparse linear regression,
the `

1

-regularized least squares estimator has re-
ceived considerable attention. With respect to
sparsistency, results have been obtained for both
the noiseless case (e.g., [Candes and Tao, 2005,
Donoho, 2006, Donoho and Tanner, 2005]) and
the noisy case [Meinshausen and Bühlmann, 2006,
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Wainwright, 2009, Zhao and Yu, 2006]. While sparsis-
tency results have been obtained for `

1

-regularized M -
estimators on some specific non-linear models such as
logistic regression and Gaussian Markov random field
models [Bach, 2010, Bunea, 2008, Lam and Fan, 2009,
Meinshausen and Bühlmann, 2006,
Ravikumar et al., 2010, Ravikumar et al., 2011],
general techniques with broad applicability are
largely lacking.

Performing a general sparsistency analysis requires
the identification of general properties of statisti-
cal models, and their corresponding M -estimators,
that can be exploited to obtain strong performance
guarantees. In this paper, we introduce the local
structured smoothness condition (LSSC) condition
(Definition 3.1), which controls the smoothness of
the objective function in a particular structured
set. We illustrate how the LSSC enables us to
address a broad set of sparsistency results in a
unified fashion, including logistic regression, gamma
regression, and graph selection. We explicitly check
the LSSC for these statistical models, and as in pre-
vious works [Fan and Lv, 2011, Fan and Peng, 2004,
Ravikumar et al., 2010, Ravikumar et al., 2011,
Wainwright, 2009, Zhao and Yu, 2006], we derive
sample complexity bounds for the high-dimensional
setting, where the ambient dimension and sparsity
level are allowed to scale with the number of samples.

To the best of our knowledge, the first work to study
the sparsistency of a broad class of models was that
of [Fan and Lv, 2011] for generalized linear models;
however, the technical assumptions therein appear to
be di�cult to check for specific models, thus mak-
ing their application di�cult. Another related work
is [Lee et al., 2014]; in Section 7, we compare the two,
and discuss a key advantage of our approach.

The paper is organized as follows. We specify the prob-
lem setup in Section 2. We introduce the LSSC in Sec-
tion 3, and give several examples of functions satisfying
the LSSC in Section 4. In Section 5, we present the
main theorem of this paper, namely, su�cient condi-
tions for an `

1

-regularized M -estimator to successfully
recover the support. Sparsistency results for four dif-
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ferent statistical models are established in Section 6 as
corollaries of our main result. In Section 7, we present
further discussions of our results, and list some direc-
tions for future research. The proofs of our results can
be found in the supplementary material.

2 Problem Setup

We consider a general statistical modeling setting
where we are given n independent samples {y

i

}n
i=1

drawn from some distribution P with a sparse param-
eter �⇤ := �(P) 2 Rp that has at most s non-zero
entries. We are interested in estimating this sparse pa-
rameter �⇤ given the n samples via an `

1

-regularized
M -estimator of the form

�̂
n

:= arg min
�2Rp

L
n

(�) + ⌧
n

k�k
1

, (1)

where L
n

is some convex function, and ⌧
n

> 0 is a
regularization parameter.

We mention here a special case of this model that
has broad applications in machine learning. For fixed
vectors x

1

, . . . , x
n

in Rp, suppose that we are given
realizations y

1

, . . . , y
n

of independent random vari-
ables Y

1

, . . . , Y
n

in R. We assume that each Y
i

fol-
lows a probability distribution P

✓i parametrized only
by ✓

i

, where ✓
i

:= hx
i

,�⇤i for some sparse parame-
ter �⇤ 2 Rp. Then it is natural to consider the `

1

-
regularized maximum-likelihood estimator

�̂
n

:= arg min
�2Rp

1

n

n

X

i=1

`(y
i

;�, x
i

) + ⌧
n

k�k
1

,

where ` denotes the negative log-likelihood at y
i

given
x
i

and �. Thus, we obtain (1) with L
n

(�) :=
1

n

P

n

i=1

`(y
i

;�, x
i

).

There are of course many other examples; to name
one other, we mention the graphical learning prob-
lem, where we want to learn a sparse concen-
tration matrix of a vector-valued random variable.
In this setting, we also arrive at the formulation
(1), where L

n

is the negative log-likelihood of the
data [Ravikumar et al., 2011].

We focus on the sparsistency of �̂
n

; roughly speaking,
an estimator �̂

n

is sparsistent if it recovers the sup-
port of �⇤ with high probability when the number of
samples n is large enough.

Definition 2.1 (Sparsistency). A sequence of estima-
tors {�̂

n

}1
n=1

is called sparsistent if

lim
n!1

P
n

supp �̂
n

6= supp�⇤
o

= 0.

The main result of this paper is that, if the function
L is convex and satisfies the LSSC, and certain

assumptions analogous to those used for linear
models (see [Wainwright, 2009]) hold true, then the
`
1

-regularized M -estimator �̂
n

in (1) is sparsistent
under suitable conditions on the regularization pa-
rameter ⌧

n

and the triplet (n, p, s). We allow for
the case of diverging dimensions [Fan and Lv, 2011,
Ravikumar et al., 2010, Ravikumar et al., 2011,
Wainwright, 2009, Zhao and Yu, 2006], where p grows
exponentially with n.

Notations and Basic Definitions

Fix v 2 Rp, and let P = {1, . . . , p}. For any S ✓
P, the notation vS denotes the sub-vector of v on S,
and the notation vSc denotes the sub-vector vP\S . For
i 2 P, the notation v

i

denotes v{i}. We denote the
support set of v by supp v, defined as supp v = {i :
v
i

6= 0, i 2 P}. The notation sign v denotes the vector
(sign v

1

, . . . , sign v
p

), where sign v
i

= v
i

|v
i

|�1 if v
i

6= 0,
and sign v

i

= 0 otherwise, for all i 2 P. We denote the
transpose of v by vT , and the `

q

-norm of v by kvk
q

for
q 2 [1,+1]. For u, v 2 Rp, the notation hu, vi denotes
P

p

i=1

u
i

v
i

.

For A 2 Rp⇥p, the notations AS,S , ASc
,S , suppA,

signA, and AT are defined analogously to the vector
case. The notation kAk

q

denotes the operator norm
induced by the vector `

q

-norm; in particular, kAk
2

de-
notes the spectral norm of A.

Let X be a real-valued random variable. We denote
the expectation and variance of X by EX and varX,
respectively. The probability of an event E is denoted
by P E .

Let f be a vector-valued function with domain
dom f ✓ Rp. The notations rf and r2f denote the
gradient and Hessian mapping of f , respectively. The
notation f 2 Ck(dom f) means that f is k-times con-
tinuously di↵erentiable on dom f . For a given function
f 2 Ck(dom f), its k-th order Fréchet derivative at
x 2 dom f is denoted byDkf(x), which is a multilinear
symmetric form [Zeidler, 1995]. The following special
cases summarize how to compute all of the quantities
related to the Fréchet derivative in this paper:

1. The first order Fréchet derivative is simply
the gradient mapping; therefore, Df(x)[u] =
hrf(x), ui for all u 2 Rp.

2. The second order Fréchet derivative is the Hessian
mapping; therefore, D2f(x)[u, v] =

⌦

u,r2f(x)v
↵

for all u, v 2 Rp.

3. The third order Fréchet derivative is defined as
follows. We first define the 2-linear form (matrix)
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D3f(x)[u] := lim
t!0

r2
f(x+tu)�r2

f(x)

t

. Then

D3f(x)[u, v, w] =
�

D3f(x)[u]
�

[v, w]

=
⌦

v, (D3f(x)[u])w
↵

.

We then define the 1-linear form (vector)
D3f(x)[u, v] to be the unique vector such that
hD3f(x)[u, v], wi = D3f(x)[u, v, w] for all vectors
w in Rp.

4. When the arguments are the same, we simply have

Dkf(x)[u, . . . , u] = d

k
�u(t)

dt

k

�

�

�

t=0

, where �
u

(t) :=

f(x+ tu).

3 Local Structured Smoothness

Condition

The following definition provides the key property of
convex functions that will be exploited in the subse-
quent sparsistency analysis.

Definition 3.1 (Local Structured Smoothness Condi-
tion (LSSC)). Consider a function f 2 C3(dom f) with
domain dom f ✓ Rp. Fix x⇤ 2 dom f , and let N

x

⇤ be
an open set in dom f containing x⇤. The function f
satisfies the (x⇤,N

x

⇤)-LSSC with parameter K � 0 if
�

�D3f(x⇤ + �)[u, u]
�

�

1  K kuk2
2

,

for all � 2 Rp such that x⇤ + � 2 N
x

⇤ , and for all
u 2 Rp such that uSc = 0, where S := suppx⇤.

Note that D3f(x⇤+�)[u, u] is a 1-linear form, so k ·k1
in Definition 3.1 is the vector `1-norm. The following
equivalent characterization follows immediately.

Proposition 3.1. The function f satisfies the
(x⇤,N

x

⇤)-LSSC with parameter K � 0 if and only if
�

�D3f(x⇤ + �)[u, u, e
j

]
�

�  K kuk2
2

, (2)

for all � 2 Rp such that x⇤ + � 2 N
x

⇤ , for all u 2 Rp

such that uSc = 0, where S := suppx⇤, and for all
j 2 {1, . . . , p}, where e

j

is the standard basis vector
with 1 in the j-th position and 0s elsewhere.

As we will see in the next section, this equivalent char-
acterization is useful when verifying the LSSC for a
given M -estimator.

Since di↵erentiation is a linear operator, the LSSC is
preserved under linear combinations with positive co-
e�cients, as is stated formally in the following lemma.

Lemma 3.2. Let f
1

satisfy the (x,N
1

)-LSSC with pa-
rameter K

1

, and f
2

satisfy the (x,N
2

)-LSSC with pa-
rameter K

2

. Let ↵ and � be two positive real num-
bers. The function f := ↵f

1

+�f
2

satisfies the (x,N
x

)-
LSSC with parameter K, where N

x

:= N
1

\ N
2

, and
K := ↵K

1

+ �K
2

.

We conclude this section by briefly discussing
the connection of the LSSC with other condi-
tions. The following result, Proposition 9.1.1 of
[Nesterov and Nemirovskii, 1994], will be useful here
and throughout the paper.

Proposition 3.3. Let A be a 3-linear symmetric form
on (Rp)3, and B be a positive-semidefinite 2-linear
symmetric form on (Rp)2. If

|A[u, u, u]|  B[u, u]3/2

for all u 2 Rp, then

|A[u, v, w]|  B[u, u]1/2B[v, v]1/2B[w,w]1/2

for all u, v, w 2 Rp.

This proposition shows that the condition in (2) with-
out structural constraints on u and e

j

is equivalent to
the statement that

�

�D3f(x⇤ + �)[u, v, w]
�

�  K kuk
2

kvk
2

kwk
2

(3)

for all u, v, w 2 Rp. In the supplementary material, we
show that (3) holds for all � 2 Rp such that x⇤ + � 2
N

x

⇤ if and only if
�

�D2f(x⇤ + �)�D2f(x⇤)
�

�

2

 K k�k
2

, (4)

for all � 2 Rp such that x⇤ + � 2 N
x

⇤ . The latter
condition is simply the local Lipschitz continuity of the
Hessian of f . This is why we consider our condition a
local structured smoothness condition, with structural
constraints on the inputs of the D3f(x⇤+ �) operator.

The preceding observations reveal that (3), or the
equivalent formulation (4), is more restrictive than the
LSSC. That is, (3) implies the LSSC, while the reverse
is not true in general.

4 Examples

In this section, we provide some examples of functions
that satisfy the LSSC.

Example 4.1. Suppose that f(�) := ky �X�k2
2

for
some fixed y 2 Rp and X 2 Rn⇥p. Since D3f(�) ⌘ 0
everywhere, the function f satisfies the (�⇤,N

�

⇤)-
LSSC with parameter K = 0 for any �⇤ 2 Rp and
any open set N

�

⇤ ✓ Rp that contains �⇤. This func-
tion appears in the negative-likelihood in the Gaussian
regression model.

Example 4.2. Let f(�) := hx,�i � ln hx,�i for some
fixed x 2 Rp. We show that, for any fixed �⇤ 2 dom f
such that �⇤

Sc = 0, there exists some non-negative
K and some open set N

�

⇤ such that f satisfies the
(�⇤,N

�

⇤)-LSSC with parameter K. This function ap-
pears in the negative log-likelihood in gamma regres-
sion with the canonical link function.



Sparsistency of `1-Regularized M-Estimators

By a direct di↵erentiation, we obtain for all u 2 Rp

that

�

�D3f(�⇤ + �)[u, u, u]
�

�

= 2 |1 + �|�3

�

D2f(�⇤)[u, u]
 

3/2

, (5)

where

� :=
hx, �i
hx,�⇤i ,

Combining this with Proposition 3.3, we have for each
standard basis vector e

j

that

�

�D3f(�⇤ + �)[u, u, e
j

]
�

�

 2 |1 + �|�3

D2f(�⇤)[u, u]
�

D2f(�⇤)[e
j

, e
j

]
 

1/2

 2 (1� |�|)�3

D2f(�⇤)[u, u]
�

D2f(�⇤)[e
j

, e
j

]
 

1/2

,

if |�|  1. Now define S := supp�⇤, and suppose that
uSc = �Sc = 0, and that

k�k
2

 hx,�⇤i
(1 + ) kxSk

2

for some  > 0. By the Cauchy-Schwartz inequality,
it immediately follows that |�|  (1 + )�1 < 1, and
thus �⇤ + � is in dom f . Moreover, using this bound
on |�|, we can further upper bound |D3f | as
�

�D3f(�⇤ + �)[u, u, e
j

]
�

�  2
�

1 + �1

�

3

�
max

d1/2
max

kuk2
2

,

where �
max

is the maximum restricted eigenvalue of
D2f(�⇤) defined as

�
max

:= sup
kuk21
uSc=0

D2f(�⇤)[u, u],

and d
max

denotes the maximum diagonal entry of
r2f(�⇤). Therefore, f satisfies the (�⇤,N

�

⇤)-LSSC

with parameter K := 2(1 + �1)3�
max

d
1/2

max

, where

N
�

⇤ :=

⇢

�⇤ + � : k�k
2

 hx,�⇤i
(1 + ) kxSk

2

, � 2 Rp

�

.

Example 4.3. Consider the function f(⇥) =
Tr (X⇥) � ln det⇥ with a fixed X 2 Rp⇥p, and with
dom f := {⇥ 2 Rp⇥p : ⇥ > 0}. We show that, for
any fixed ⇥⇤ 2 dom f , there exists some non-negative
K and some open set N

⇥

⇤ such that f satisfies the
(⇥⇤,N

⇥

⇤)-LSSC with parameter K. This function ap-
pears as the negative log-likelihood in the Gaussian
graphical learning problem.

Note that the previous definitions (in particular, Def-
inition 3.1), should be interpreted here as being taken
with respect to the vectorizations of the relevant ma-
trices.

It is already known that f is standard self-concordant
[Nesterov, 2004]; that is,

�

�D3f(⇥⇤ +�)[U,U, U ]
�

�  2
�

D2f(⇥⇤ +�)[U,U ]
 

3/2

,

for all U 2 Rp⇥p and all � 2 Rp⇥p such that ⇥⇤+� 2
dom f . This implies, by Proposition 3.3,

�

�D3f(⇥⇤ +�)[U,U, V ]
�

�  2
�

D2f(⇥⇤ +�)[U,U ]
 

�

D2f(⇥⇤ +�)[V, V ]
 

1/2

,

for all U, V 2 Rp⇥p, and all � 2 Rp⇥p such that ⇥⇤ +
� 2 dom f .

Moreover, by a direct di↵erentiation,

�

�D2f(⇥⇤ +�)
�

�

2

=
�

�(⇥⇤ +�)�1 ⌦ (⇥⇤ +�)�1

�

�

2

=
�

�

�

(⇥⇤ +�)�1

�

�

�

2

2

.

Fix a positive constant , and suppose that we choose
� such that k�k

F

 (1+)�1⇢
min

, where ⇢
min

denotes
the smallest eigenvalue of ⇥⇤. Since k�k

2

 k�k
F

, it
follows that k�k

2

 (1 + )�1⇢
min

, and, by Weyl’s
theorem [Horn and Johnson, 1985],

�

�

�

(⇥⇤ +�)�1

�

�

�

2

� 

1 + 
⇢
min

.

Combining the preceding observations, it follows that
f satisfies the (⇥⇤,N

⇥

⇤)-LSSC with parameter K :=
2�3(1 + )3⇢�3

min

, where

N
⇥

⇤ =
n

⇥⇤ +� : k�k
F

<
1

1 + 
⇢
min

,

� = �T ,� 2 Rp⇥p

o

.

Here we have not exploited the special structure of U in
Definition 3.1 (namely, uSc = 0), though conceivably
the constant K could improve by doing so. Note that
N

⇥

⇤ ⇢ dom f and N
⇥

⇤ is convex.

5 Deterministic Su�cient Conditions

We are now in a position to state the main result of this
paper, whose proof can be found in the supplementary
material.

Let �⇤ 2 Rp be the true parameter, and let S =
{i : (�⇤)

i

6= 0} be its support set. Define the “genie-
aided” estimator with exact support information:

�̌
n

2 arg min
�2Rp

:�Sc
=0

L
n

(�) + ⌧
n

k�k
1

. (6)

Theorem 5.1. Suppose that �̌
n

is uniquely defined.
Then the `

1

-regularized estimator �̂
n

defined in (1)



Yen-Huan Li, Jonathan Scarlett, Pradeep Ravikumar, Volkan Cevher

uniquely exists, successfully recovers the sign pattern,
i.e., sign �̂

n

= sign�⇤, and satisfies the error bound

�

�

�

�̂
n

� �⇤
�

�

�

2

 r
n

:=
↵+ 4

�
min

p
s⌧

n

, (7)

if the following conditions hold true.

1. (Local structured smoothness condition) L
n

is
convex, three times continuously di↵erentiable,
and satisfies the (�⇤,N

�

⇤)-LSSC with parameter
K � 0, for some convex N

�

⇤ ✓ domL
n

.

2. (Positive definite restricted Hessian) The re-
stricted Hessian at �⇤ satisfies

⇥

r2L
n

(�⇤)
⇤

S,S �
�
min

I for some �
min

> 0.

3. (Irrepresentablility condition) For some ↵ 2
(0, 1], it holds that
�

�

�

⇥

r2L
n

(�⇤)
⇤

Sc
,S
⇥

r2L
n

(�⇤)
⇤�1

S,S

�

�

�

1
< 1�↵. (8)

4. (Beta-min condition) The smallest non-zero entry
of � satisfies

�
min

:= min {|(�⇤)
k

| : k 2 S} > r
n

, (9)

where r
n

is defined in (7).

5. The regularization parameter ⌧
n

satisfies

⌧
n

<
�2

min

4 (↵+ 4)2
↵

Ks
. (10)

6. The gradient of L
n

at �⇤ satisfies

krL
n

(�⇤)k1  ↵

4
⌧
n

. (11)

7. The relation B
rn ✓ N

�

⇤ holds, where

B
rn := {� 2 Rp : k�

n

� �⇤k
2

 r
n

,�Sc = 0}

and r
n

is defined in (7).

As mentioned previously, the first condition is the
key assumption permitting us to perform a gen-
eral analysis. The second, third, and forth assump-
tions are analogous to those appearing in the lit-
erature for sparse linear regression. We refer to
[Bühlmann and van de Geer, 2011] for a systematic
discussion of these conditions.1

The remaining conditions determine the interplay be-
tween ⌧

n

, n, p, and s. Whether the relation B
rn ✓ N

�

⇤

holds depends on the specific N
�

⇤ that one can derive

1
Equation (8) is sometimes called the incoherence con-

dition [Wainwright, 2009].

for the given loss function L
n

. Whether the upper
bound on krL

n

(�⇤)k1 holds depends on the concen-
tration of measure behavior of rL

n

(�⇤), which usu-
ally concentrates around 0. In the next section, we
will give concrete examples for the high-dimensional
setting, where p and s scale with n.

Of course, sign �̂
n

= sign�⇤ implies that supp �̂
n

=
supp�⇤, i.e. successful support recovery.

6 Applications

In this section, we provide several applications of The-
orem 5.1, presenting concrete bounds on the sample
complexity in each case. We defer the full proofs of the
results in this section to the supplementary material.
However, in each case, we present here the most im-
portant step of the proof, namely, verifying the LSSC.

Note that instead of the classical setting where
only the sample size n increases, we consider the
high-dimensional setting, where the ambient di-
mension p and the sparsity level s are allowed to
grow with n [Fan and Lv, 2011, Fan and Peng, 2004,
Ravikumar et al., 2010, Ravikumar et al., 2011,
Wainwright, 2009, Zhao and Yu, 2006].

6.1 Linear Regression

We first consider the linear regression model with ad-
ditive sub-Gaussian noise. This setting trivially fits
into our theoretical framework.

Definition 6.1 (Sub-Gaussian Random Variables).
A zero-mean real-valued random variable Z is sub-
Gaussian with parameter c > 0 if

E exp(tZ)  exp

✓

c2t2

2

◆

for all t 2 R.

Let X
n

:= {x
1

, . . . , x
n

} ⇢ Rn be given. Define the
matrix X

n

2 Rn⇥p such that the i-th row of X
n

is
x
i

. We assume that the elements in X
n

are normal-
ized such that each column of X has `

2

-norm less than
or equal to

p
n. Let W

1

, . . . ,W
n

be independent sub-
Gaussian random variables with parameter c, and de-
fine Y

i

:= hx
i

,�⇤i+W
i

.

We consider the `
1

-regularized M -estimator of the
form (1), with

L
n

(�) =
1

n

n

X

i=1

1

2
(Y

i

� hx
i

,�i)2 .

As shown in the first example of Section 4, L
n

satis-
fies the LSSC with parameter K = 0 everywhere in
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Rp. Therefore, the condition on ⌧
n

in (10) is trivially
satisfied, as is the final condition listed in the theorem.

By a direct calculation, we have

rL
n

(�⇤) =
1

n

n

X

i=1

(Y
i

� EY
i

)x
i

.

By the union bound and the standard concentra-
tion inequality for sub-Gaussian random variables
[Boucheron et al., 2013],

P
n

krL
n

(�⇤)k1 � ↵⌧
n

4

o


p

X

i=1

P
n

|[rL
n

(�⇤)]
i

| � ↵⌧
n

4

o

 2p exp
�

�cnt2
�

�

�

t=

↵⌧n
4

.

Since [D2L
n

(�)]S,S = [D2L
n

(�⇤)]S,S is positive defi-
nite for all � 2 Rp by the second assumption of Theo-
rem 5.1, �̌

n

uniquely exists, and Theorem 5.1 is appli-
cable. By choosing ⌧

n

su�ciently large that the above
bound decays to zero, we obtain the following.

Corollary 6.1. For the linear regression problem de-
scribed above, suppose that assumptions 2 to 4 of The-
orem 5.1 hold for some �

min

and ↵ bounded away
from zero.2 If s log p ⌧ n, and we choose ⌧

n

�
(n�1 log p)1/2, then the `

1

-regularized maximum like-
lihood estimator is sparsistent.

Observe that this recovers the scaling law given in
[Wainwright, 2009] for the linear regression model.

6.2 Logistic Regression

Let X
n

:= {x
1

, . . . , x
n

} ⇢ Rn be given. As in Sec-
tion 6.1, we assume that

P

n

j=1

(x
i

)2
j

 n for all
i 2 {1, . . . , p}.

Let �⇤ 2 Rp be sparse, and define S := supp�⇤.
We are interested in estimating �⇤ given X

n

and
Y
n

:= {y
1

, . . . , y
n

}, where each y
i

is the realization
of a Bernoulli random variable Y

i

with

P {Y
i

= 1} = 1� P {Y
i

= 0} =
1

1 + exp (�hx
i

,�⇤i) .

The random variables Y
1

, . . . , Y
n

are assumed to be
independent.

We consider the `
1

-regularized maximum-likelihood
estimator of the form (1) with

L
n

(�) :=
1

n

n

X

i=1

ln {1 + exp [�(2Y
i

� 1) hx
i

,�i]} .

2
For all of the examples in this section, these assump-

tions are independent of the data, and we can thus talk

about them being satisfied deterministically.

Define `
i

(�) = ln [1 + exp (�(2y
i

� 1) hx
i

,�i)]. The
cases y

i

= 0 and y
i

= 1 are handled similarly, so we
focus on the latter. A direct di↵erentiation yields the
following (this is most easily verified for u = v):

|D3`
i

(�⇤ + �)[u, u, v]|

=
|1� exp (�hx

i

,�⇤ + �i)|
1 + exp (�hx

i

,�⇤ + �i) |hx
i

, vi|D2`
i

(�⇤ + �)[u, u]

 |hx
i

, vi|D2`
i

(�⇤ + �)[u, u],

and

D2`
i

(�)[u, u] =
exp (�hx

i

,�i) hx
i

, ui2

[1 + exp (�hx
i

,�i)]2

 1

4
hx

i

, ui2

for all � 2 Rp. The last inequality follows since the
function z

(1+z)

2 has a maximum value of 1

4

for z � 0.
It follows that

|D3`
i

(�⇤ + �)[u, u, v]|  1

4
|hx

i

, vi| |hx
i

, ui|2

 1

4
k(x

i

)Sk2
2

kx
i

k1 kuk3
2

,

for any u 2 Rp such that uSc = 0, and for any v equal
to some standard basis vector e

j

. Hence, L
n

satisfies
the (�⇤,N

�

⇤)-LSSC with parameter K = (1/4)⌫2
n

�
n

,
where

⌫
n

:= max
i

k(x
i

)Sk
2

,

�
n

:= max
i

kx
i

k1,

and where N
�

⇤ can be any fixed open convex neigh-
borhood of �⇤ in Rp.

Corollary 6.2. For the logistic regression problem de-
scribed above, suppose that assumptions 2 to 4 of The-
orem 5.1 hold for some �

min

and ↵ bounded away from
zero. If we choose ⌧

n

� (n�1 log p)1/2, and s and p
such that s2 (log p) ⌫4

n

�2

n

⌧ n, then the `
1

-regularized
maximum-likelihood estimator is sparsistent.

In [Bunea, 2008], a scaling law of the form s ⌧
p
n

(logn)

2

is given, but the result is restricted to the case that p
grows polynomially with n. The result in [Bach, 2010]
yields the scaling s2(log p)⌫

n

2 ⌧ n, where ⌫
n

:=
max {kx

i

k
2

}. It should be noted that ⌫
n

is gener-
ally significantly larger than ⌫

n

and �
n

; for example,
for i.i.d. Gaussian vectors, these scale on average as
O(

p
p), O(

p
s) and O(1), respectively. Our result re-

covers the same dependence of n on s and p as that in
[Bach, 2010], but removes the dependence on ⌫

n

. Of
course, we do not restrict p to grow polynomially with
n.
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6.3 Gamma Regression

Let X
n

:= {x
1

, . . . , x
n

} ⇢ Rn be given. We again
assume that

P

n

j=1

(x
i

)2
j

 n for all i 2 {1, . . . , p}.

Let �⇤ 2 Rp be sparse, and define S := supp�⇤.
We are interested in estimating �⇤ given X

n

and
Y
n

:= {y
1

, . . . , y
n

}, where each y
i

is the realization
of a gamma random variable Y

i

with known shape pa-
rameter k > 0 and unknown scale parameter ✓

i

=
k�1 hx

i

,�⇤i�1. The corresponding density function is

of the form 1

�(k)✓

k
i
yk�1

i

e
� yi

✓i .

We assume that

hx
i

,�⇤i � µ
n

8i 2 {1, . . . , n} (12)

for some µ
n

> 0, so ✓
i

is always well-defined. More-
over, the random variables Y

1

, . . . , Y
n

are assumed to
be independent.

We consider the `
1

-regularized maximum-likelihood
estimator of the form (1) with

L
n

(�) :=
1

n

n

X

i=1

[� ln hx
i

,�i+ Y
i

hx
i

,�i] .

Note that ✓
i

only enters the log-likelihood via constant
terms not containing �; these have been omitted, as
they do not a↵ect the estimation.

Defining `
i

(�) = � ln hx
i

,�i+ y
i

hx
i

,�i, we obtain the
following for all u 2 Rp such that uSc = 0, using the
Cauchy-Schwartz inequality and (12):

D2`
i

(�⇤)[u, u] =
hx

i

, ui2

hx
i

,�⇤i2


k(x
i

)Sk2
2

hx
i

,�⇤i2
kuk2

2

 1

µ2

n

kuk2
2

k(x
i

)Sk2
2

.

Thus, the largest restricted eigenvalue of
D2`

i

(�⇤) is upper bounded by µ�2

n

⌫2
n

, where
⌫
n

= max
i

{k(x
i

)Sk
2

}. Similarly, we obtain

D2`
i

(�⇤)[e
j

, e
j

]  1

µ2

n

kx
i

k21 ,

for any standard basis vector e
j

. Thus, the largest
diagonal entry ofD2`

i

(�⇤) is upper bounded by µ�2

n

�2

n

,
where �

n

= max
i

kx
i

k1.

Fix  > 0. By Example 4.2 and Lemma 3.2, L
n

sat-
isfies the (�⇤,N

�

⇤)-LSSC with parameter K = 2(1 +
�1)3µ�3

n

⌫2
n

�
n

, and

N
�

⇤ =

⇢

�⇤ + � : k�k
2

<
µ
n

(1 + )⌫
n

, � 2 Rp

�

.

Corollary 6.3. Consider the gamma regression prob-
lem as described above, and suppose that assumptions

2 to 4 of Theorem 5.1 hold for some �
min

, and ↵
bounded away from zero. If ⌧

n

�
p
n
�1

log p and
s2 (log p)2 µ�6

n

⌫4
n

�2

n

⌧ n, then the `
1

-regularized maxi-
mum likelihood estimator is sparsistent.

To the best of our knowledge, this is the first sparsis-
tency result for gamma regression.

6.4 Graphical Model Learning

Let ⇥⇤ 2 Rp⇥p be a positive-definite matrix. We as-
sume there are at most s non-zero entries in ⇥⇤, and
let S denote its support set. Let X

1

, . . . , X
n

be inde-
pendent p-dimensional random vectors generated ac-
cording to a common distribution with mean zero and
covariance matrix ⌃⇤ := (⇥⇤)�1. We are interested in
recovering the support of ⇥⇤ given X

1

, . . . , X
n

.

We assume that each (⌃
i,i

)�1/2

X
i,i

is sub-Gaussian
with parameter c > 0, and that ⌃

i,i

is bounded above
by a constant 

⌃

⇤ , for all i 2 {1, . . . , p}. Let ⇢
min

denote the smallest eigenvalue of ⇥⇤.

We consider the `
1

-regularized M -estimator of the
form (1), given by

⇥̂
n

:= argmin
⇥

�

L
n

(⇥) + ⌧
n

|⇥|
1

: ⇥ > 0,⇥ 2 Rp⇥p

 

.

Here |⇥|
1

denotes the entry-wise `
1

-norm, i.e., |⇥|
1

=
P

(i,j)2{1,...,p}2 |⇥
i,j

| and

L
n

(⇥) = Tr
⇣

⌃̂
n

⇥
⌘

� log det⇥,

where ⌃̂
n

:= 1

n

P

n

i=1

X
i

XT

i

is the sample covariance
matrix.

Fix  > 0. By Example 4.3, we know that L
n

satisfies
the (⇥⇤,N

⇥

⇤)-LSSC with parameter 2�3(1+)3⇢�3

min

,
where

N
⇥

⇤ :=

⇢

⇥⇤ +� : k�k
F

<
1

1 + 
⇢
min

,

� = �T ,� 2 Rp⇥p

 

,

where ⇢
min

denotes the smallest eigenvalue of ⇥⇤.

The beta-min condition can be written as

min
�

⇥⇤
i,j

: ⇥⇤
i,j

6= 0, (i, j) 2 {1, . . . , p}2
 

> r
n

.

We now have the following.

Corollary 6.4. Consider the graphical model selec-
tion problem described above, and suppose the above
assumptions and assumptions 2 to 4 of Theorem 5.1
hold for some c, 

⌃

⇤ , ⇢
min

, �
min

, and ↵ bounded away
from zero. If ⌧

n

� (n�1 log p)1/2 and s2 log p ⌧ n, the
`
1

-regularized M -estimator ⇥̂
n

is sparsistent.
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Corollary 6.4 is for graphical learning on general sparse
networks, as we only put a constraint on s. Sev-
eral previous works have instead imposed structural
constraints on the maximum degree of each node;
e.g. see [Ravikumar et al., 2011]. Since this model re-
quires additional structural assumptions beyond spar-
sity alone, it is outside the scope of our theoretical
framework.

7 Discussion

Our work bears some resemblance to the independent
work of [Lee et al., 2014]. The smoothness condition
therein is in fact the non-structured condition in (4).
From the discussion in Section 3, we see that our con-
dition is less restrictive. As a consequence, both anal-
yses lead to scaling laws of the form n � K2s2(log p)�

for some � > 0 for generalized linear models, but
the corresponding definitions of K di↵er significantly.
Eliminating the dependence of K on p requires ad-
ditional non-trivial extensions of the framework in
[Lee et al., 2014], whereas in our framework the de-
sired independence is immediate (e.g. see the logistic
and gamma regression examples).

The derivation of estimation error bounds such as (7)
(as opposed to full sparsistency) usually only requires
some kind of local restricted strong convexity (RSC)
condition [Negahban et al., 2012] on L

n

. It is inter-
esting to note that in this paper, it su�ces for sparsis-
tency to assume only the LSSC and the positive defi-
niteness of the restricted Hessian at the true parame-
ter. It would be interesting to derive connections be-
tween the LSSC and such local RSC conditions, which
in turn may shed light on whether the LSSC is neces-
sary to derive sparsistency results, or whether a weaker
condition may su�ce.

The framework presented here considers general sparse
parameters. It is of great theoretical and practical
importance to sharpen this framework for structured
sparse parameters, e.g., group sparsity, and graphical
model learning for networks with bounded degrees.
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1 Auxiliary Result for the

Non-Structured Case

In this section, we prove the following claim made in
Section 3. Note that, in contrast to the main defini-
tion of the LSSC, the vectors here are not necessarily
structured.

Proposition 1.1. Consider a function f 2 C3(dom f)
with domain dom f ✓ Rp. Fix x⇤ 2 dom f , and let
N

x

⇤ be an open set in dom f containing x⇤. Let K � 0.
The following statements are equivalent.

1. D2f(x) is locally Lipschitz continuous with respect
to x⇤; that is,

�

�D2f(x⇤ + �)�D2f(x⇤)
�

�

2
 K k�k2 , (1)

for all � 2 Rp such that x⇤ + � 2 N
x

⇤ .

2. D3f(x) is locally bounded; that is,
�

�D3f(x⇤ + �)[u, v, w]
�

�  K kuk2 kvk2 kwk2 (2)

for all � 2 Rp such that x⇤ + � 2 N
x

⇤ , and for all
u, v, w 2 Rp.

Proof. Suppose that (1) holds. By Proposition 3.3, it
su�ces to prove that

�

�D3f(x⇤ + �)[u, u, u]
�

�  K kuk32
for all u 2 Rp. By definition, we have

�

�D3f(x⇤ + �)[u, u, u]
�

� = |hu,Hui|
 kHk2 kuk

2
,

where

H := lim
t!0

D2f(x⇤ + � + tu)�D2f(x⇤ + �)

t
.

We therefore have (2) since kHk2  K k�k2 by (1).

Conversely, suppose that (2) holds. We have the fol-
lowing Taylor expansion [Zeidler, 1995]:

D2f(x⇤ + �) = D2f(x⇤) +

Z 1

0
D3f(x

t

)[�] dt,

where x
t

:= x⇤+t�. We also have from (2) and the def-
inition of the spectral norm that

�

�D3f(x⇤ + �)[�]
�

�

2


K kuk2, and hence

�

�D2f(x⇤ + �)�D2f(x⇤)
�

�

2

=

�

�

�

�

Z 1

0
D3f(x

t

)[�] dt

�

�

�

�

2

 K k�k2 .

This completes the proof.

2 Proof of Theorem 5.1

The proof is based on the optimality conditions on
�̂ for the original problem, and those on �̌ for the
restricted problem. We first observe that �̌

n

exists,
since the function x 7! kxk1 is coercive. Recall that
�̌
n

is assumed to be uniquely defined.

To achieve sparsistency, it su�ces that �̂
n

= �̌
n

and
supp �̌

n

= supp�⇤. We derive su�cient conditions
for �̂

n

= �̌
n

in Lemma 2.1, and make this su�cient
condition explicitly dependent on the problem param-
eters in Lemma 2.2. This lemma will require that
�

��̌
n

� �⇤
�

�

2
 R

n

for some R
n

> 0. We will derive an

estimation error bound of the form
�

��̌
n

� �⇤
�

�

2
 r

n

in Lemma 2.4. We will then conclude that �̂
n

= �̌
n

if
r
n

 R
n

and the assumptions in Lemma 2.2 are sat-
isfied, from which it will follow that sign �̌ = sign�⇤

provided that �min � r
n

.

The following lemma is proved via an extension of the
techniques of [Wainwright, 2009].

Lemma 2.1. We have �̂
n

= �̌
n

if

�

�

⇥

rL
n

(�̌
n

)
⇤

Sc

�

�

1 < ⌧
n

. (3)

Proof. Recall that L
n

is convex by assumption. Also
recall that �̌

n

is assumed to be uniquely defined, and
hence it is the only vector the satisfies the correspond-
ing optimality condition:

⇥

rL
n

(�̌
n

)
⇤

S + ⌧
n

žS = 0 (4)
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for some žS such that kžSk1  1. Moreover, the fact
that (3) is satisfied means that there exists žSc such
that kžSck1 < 1 and

rL
n

(�̌
n

) + ⌧
n

ž = 0,

where ž := (žS , žSc). Therefore, �̌
n

is a minimizer of
the original optimization problem in Rp.

We now address the uniqueness of �̂. By a similar ar-
gument to Lemma 1 in [Ravikumar et al., 2010] (see
also Lemma 1(b) in [Wainwright, 2009]), any mini-
mizer �̃ of the original optimization problem satisfies
�̃Sc = 0. Thus, since �̌ is the only optimal vector for
the restricted optimization problem, we conclude that
�̂
n

= �̌
n

uniquely.

We now combine Lemma 2.1 with the assumptions of
Theorem 5.1 to obtain the following.

Lemma 2.2. Under assumptions 1, 2, 3 and 6 of The-
orem 5.1, we have �̂

n

= �̌
n

if �̌ 2 N
�

⇤ \ B
Rn , where

B
Rn := {� : k� � �⇤k2  R

n

,�Sc = 0,� 2 Rp} with

R
n

=
1

2

r

↵⌧
n

K
. (5)

Proof. Applying a Taylor expansion at �⇤, and noting
that both �⇤ and �̌

n

are supported on S, we obtain

⇥

rL(�̌
n

)
⇤

Sc = [rL
n

(�⇤)]Sc

+
⇥

r2L
n

(�⇤)
⇤

Sc
,S
�

�̌
n

� �⇤�
S

+ (✏
n

)Sc , (6)

where the remainder term is given by

✏
n

=

Z 1

0
(1� t)D3L

n

(�
t

)[�̌ � �⇤, �̌ � �⇤] dt

with �
t

:= �⇤ + t(�̌ � �⇤) (see Section 4.5 of
[Zeidler, 1995]), and thus satisfies

k✏
n

k1  sup
t2[0,1]

�

�

�D3L
n

(�
t

)[�̌ � �⇤, �̌ � �⇤]
�

�

1
 

.

(7)

Recall the optimality condition for �̌ in (4). Again
using a Taylor expansion, we can write this condition
as

[rL
n

(�⇤)]S +
⇥

r2L
n

(�⇤)
⇤

S,S
�

�̌
n

� �⇤�
S

+(✏
n

)S + ⌧
n

žS = 0. (8)

Recall that
⇥

r2L
n

(�⇤)
⇤

S,S is invertible by the second

assumption of Theorem 5.1. Solving for
�

�̌
n

� �⇤�
S in

(8) and substituting the solution into (6), we obtain

⇥

rL
n

(�̌
n

)
⇤

Sc

= �⌧
n

⇥

r2L
n

(�⇤)
⇤

Sc
,S
⇥

r2L
n

(�⇤)
⇤�1

S,S žS

+ [rL(�⇤)]Sc

�
⇥

r2L
n

(�⇤)
⇤

Sc
,S
⇥

r2L
n

(�⇤)
⇤�1

S,S [rL
n

(�⇤)]S

+ (✏
n

)Sc

�
⇥

r2L
n

(�⇤)
⇤

Sc
,S
⇥

r2L
n

(�⇤)
⇤�1

S,S (✏
n

)S .

Using the irrepresentability condition (assumption 3
of Theorem 5.1) and the triangle inequality, we have
�

�

⇥

rL
n

(�̌
n

)
⇤

Sc

�

�

1 < ⌧
n

provided that

max {krL
n

(�⇤)k1 , k✏
n

k1}  ↵

4
⌧
n

.

The first requirement krL
n

(�⇤)k1  (↵/4)⌧
n

is sim-
ply assumption 6 of Theorem 5.1, so it remains to de-
termine a su�cient condition for k✏

n

k1  (↵/4)⌧
n

.
Since L

n

satisfies the (�⇤,N
�

⇤)-LSSC with parameter
K, we have from (7) that

k✏
n

k1  K
�

��̌ � �⇤�
�

2

2
,

provided that �̌ 2 N
�

⇤ (since N
�

⇤ is convex by as-
sumption, this implies �

t

2 N
�

⇤). Thus, to have
k✏

n

k1  ↵

4 ⌧n, it su�ces that

�

��̌ � �⇤�
�

2
 1

2

r

↵⌧
n

K

and �̌ 2 N
�

⇤ .

To bound the distance
�

��̌ � �⇤
�

�

2
, we adopt

an approach from [Ravikumar et al., 2010,
Rothman et al., 2008]. We begin with an auxil-
iary lemma.

Lemma 2.3. Let g : Rp ! R be a convex function,
and let z 2 Rp be such that g(z)  0. Let B ⇢ Rp be a
closed set, and let @B be its boundary. If g > 0 on @B
and g(b)  0 for some b 2 B \ @B, then x 2 B.

Proof. We use a proof by contradiction. Suppose that
z /2 B. We first note that there exists some t⇤ 2 (0, 1)
such that b+ t⇤(z� b) 2 @B; if such a t⇤ did not exist,
then we would have z

t

:= b + t(z � b) ! z as t ! 1,
which is impossible since z /2 B and B is closed.

We now use the convexity of g to write

g(b+ t⇤(x� b))  (1� t⇤)g(b) + t⇤g(x)  0,

which is a contradiction since g > 0 on @B.
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The following lemma presents the desired bound on
�

��̌
n

� �⇤
�

�

2
; note that this can be interpreted as the

estimation error in the n > p setting, considering �⇤
S

as the parameter to be estimated.

Lemma 2.4. Define the set

B
rn := {� 2 Rp : k� � �⇤k2  r

n

,�Sc = 0} ,

where

r
n

:=
↵+ 4

�min

p
s⌧

n

. (9)

Under assumptions 1, 2, 6 and 7 of Theorem 5.1, if

⌧
n

<
3�2

min

2(↵+ 4)Ks
, (10)

then �̌
n

2 B
rn .

Proof. Set s = |S|, and for � 2 Rs let Z(�) = (�, 0) 2
Rp be the zero-padding mapping, where (�, 0) denotes
the vector that equals to � on S and 0 on Sc. Then
we have

�̌S = arg min
�2Rs

{(L
n

� Z)(�) + ⌧
n

k�k1} .

For � 2 Rs, define

g(�) = (L
n

� Z)(�⇤
S + �)� (L

n

� Z)(�⇤
S)+

⌧
n

(k�⇤
S + �k1 � k�⇤

Sk1) .

We trivially have g(0) = 0, and thus g(�⇤)  g(0) = 0,
where �⇤ := �̌S ��⇤

S . Now our goal is prove that g > 0
on the boundary of (B

rn)S := {� 2 Rs : k�k2  r
n

},
thus permitting the application of Lemma 2.3.

We proceed by deriving a lower bound on g(�). We
define �(t) := (L

n

�Z)(�⇤
S+t�), and write the following

Taylor expansion:

(L
n

� Z)(�⇤
S + �)� (L

n

� Z)(�⇤
S)

= �(1)� �(0)

= �0(0) +
1

2
�00(0) +

1

6
�000(t̃),

for some t̃ 2 [0, 1] (recall that L
n

is three times di↵er-
entiable by assumption). We bound the term �0(0) as
follows:

|�0(0)| = |h[rL
n

(�⇤)]S , �i|


p
s k[rL

n

(�⇤)]Sk1 k�k2
 ↵⌧

n

4

p
s k�k2 ,

where the first step is by Hölder’s inequality and the
identity kzk2 

p
skzk1, and the second step uses as-

sumption 6 of Theorem 5.1. To bound the term �00(0),
we use the second assumption of Theorem 5.1 to write

�00(0) = �T
⇥

r2L
n

(�⇤)
⇤

S,S � � �min k�k22 .

We now turn to the term �000(t̃). Again using the
fact that L

n

satisfies the (�⇤,N
�

⇤)-LSSC with param-
eter K, it immediately follows that (L

n

� Z) satis-
fies the (�⇤

S , (N�

⇤)S)-LSSC with parameter K, where
(N

�

)S = {�S : � 2 N
�

⇤}. Hence, and also making use
of Hölder’s inequality and the fact that kzk1 

p
skzk2

(z 2 Rs), we have

�

��000(t̃)
�

� =
�

�D3(L
n

� Z)(�⇤
S + t̃�)[�, �, �]

�

�

 k�k1
�

�D3(L
n

� Z)(�⇤
S + t̃�)[�, �]

�

�

1

 K
p
s k�k32

provided that �⇤
S + t̃� 2 (N

�

)S . Since B
rn ✓ N

�

⇤

by assumption 7 of Theorem 5.1, the latter condition
holds provided that � 2 (B

rn)S .

Using the triangle inequality, we have

|k�⇤
S + �k1 � k�⇤

Sk1|  k�k1 
p
s k�k2 .

Hence, and combining the preceding bounds, we have
g(�) � f (k�k2), where

f(x) = �↵⌧
n

4

p
sx+

�min

2
x2 � K

p
s

6
x3 �

p
s⌧

n

x.

Observe that if the inequality

0 < x <
3�min

2K
p
s
. (11)

holds, then we can bound the coe�cient to x3 in terms
of that of x2 to obtain

f(x) >
�min

4
x2 �

⇣

1 +
↵

4

⌘p
s⌧

n

x. (12)

By a direct calculation, this lower bound has roots at
0 and r

n

(see (9)), and hence f(r
n

) > 0 provided that
x = r

n

satisfies (11). By a direct substitution, this
condition can be ensured by requiring that

⌧
n

<
3�2

min

2(↵+ 4)Ks
. (13)

Recalling that g(�) � f (k�k2), we have proved that
g satisfies the conditions of Lemma 2.3 with z = �⇤,
b = 0, and B = (B

rn)S , and we thus have �⇤ 2 (B
rn)S ,

or equivalently �̌
n

2 B
rn .

We now combine the preceding lemmas to obtain The-
orem 5.1. We require r

n

 R
n

so the assumption that
�

��̌ � �⇤
�

�

1  R
n

in Lemma 2.2 is satisfied. From the
definitions in (5) and (9), this is equivalent to requiring

⌧
n

 �2
min

4 (↵+ 4)2
↵

Ks
,
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which is true by assumption 5 of the theorem. This
assumption also implies that (10) holds, since ↵

4(↵+4) 
3
2 for any ↵ � 0. Finally, by the conclusion of Lemma
2.4, we have successful sign pattern recovery if �min �
r
n

, thus recovering assumption 4 of the theorem.

3 Proofs of the Results in Section 6

3.1 Proof of Corollary 6.2

By a direct di↵erentiation, we obtain for j 2 {1, . . . , p}
that

[rL
n

(�⇤)]
j

= �
n

X

i=1

"
i

(x
i

)
j

,

where "
i

= n�1 (Y
i

� EY
i

).

Fix j 2 {1, . . . , p}, and let X
i

:= n�1(x
i

)
j

Y
i

. As
X1, . . . , Xn

are bounded, they can be characterized us-
ing Hoe↵ding’s inequality [Boucheron et al., 2013].

Theorem 3.1 (Hoe↵ding’s Inequality). Let
X1, . . . , Xn

be independent random variables such
that X

i

takes its value in [a
i

, b
i

] almost surely for all
i 2 {1, . . . , n}. Then

P

(

�

�

�

�

�

n

X

i=1

(X
i

� EX
i

)

�

�

�

�

�

� t

)

 2 exp



� 2t2
P

n

i=1(bi � a
i

)2

�

.

In our case, we can set (b
i

�a
i

)2 = n�2(x
i

)2
j

, since Y
i

2
{0, 1}. Since

P

n

i=1 |(xi

)
j

|2  n for all k by assumption,
we obtain

n

X

i=1

(b
i

� a
i

)2  1

n
. (14)

Thus, by Hoe↵ding’s inequality and the union bound,
we obtain

P
n

krL
n

(�⇤)k1 � ↵⌧
n

4

o


p

X

j=1

P
n

�

�

�

[rL
n

(�⇤)]
j

�

�

�

� ↵⌧
n

4

o

 2 exp
�

ln p� 2nt2
�

�

�

t=↵⌧n
4

.

This decays to zero provided that ⌧
n

� (n�1 log p)1/2.
Substituting this scaling into the fifth condi-
tion of Theorem 5.1, we obtain the condition
s2 (log p) ⌫4

n

�2
n

⌧ n. The required uniqueness of �̌ can
be proved by showing that the composition L

n

� Z
(with Z being the zero-padding of a vector in Rs) is
strictly convex, given the second condition of Theo-
rem 5.1. One way to prove this is via self-concordant
like inequalities [Tran-Dinh et al., 2013]; we omit the
proof here for brevity.

3.2 Proof of Corollary 6.3

Let Y1, . . . , Yn

be independent gamma random vari-
ables with shape parameter k > 0 and scale parameter
✓
i

respectively. We have, for q 2 N,

E |Y
i

|q =
�(q + k)

�(k)
✓q
i

,

where � denotes the gamma function.

To study the concentration of measure behav-
ior of rL

n

(�⇤), we use the following result
[Boucheron et al., 2013].

Theorem 3.2 (Bernstein’s Inequality). Let
X1, . . . , Xn

be independent real random variables.
Suppose that there exist v > 0 and c > 0 such that
P

n

i=1 EX2
i

 v, and

n

X

i=1

E |X
i

|q  q!

2
vcq�2

for all integers q � 3. Then

P

(

�

�

�

�

�

n

X

i=1

(X
i

� EX
i

)

�

�

�

�

�

� t

)

 2 exp



� t2

2(v + ct)

�

.

We proceed by evaluating the required moments for
our setting. By a direct di↵erentiation, we obtain

[rL
n

(�⇤)]
j

=
n

X

i=1

"
i

(x
i

)
j

for j 2 {1, . . . , p}, where "
i

:= n�1 (Y
i

� EY
i

).

Fix j 2 {1, . . . , p}, and let X
i

:= n�1(x
i

)
j

Y
i

. We have

n

X

i=1

EX2
i

=
n

X

i=1

(x
i

)2
j

n2
EY 2

i

=
n

X

i=1

(x
i

)2
j

n2

�(k + 2)

�(k)
✓2
i

.

Recall that ✓
i

= k�1 hx
i

,�⇤i�1. Using the first dis-
played equation in Section 7.3, we have

✓
i

 (kµ
n

)�1
, (15)

and thus
n

X

i=1

EX2
i

 1

(nµ
n

)2
�(k + 2)

k2�(k)

n

X

i=1

(x
i

)2
j

kx
i

k22

 1

nµ2
n

�(k + 2)

k2�(k)
,

where we have applied the assumption
P

n

i=1(xi

)2
j

 n.
Using the identity �(k+ 2) = k(k+ 1)�(k), we obtain

n

X

i=1

EX2
i

 k + 1

nµ2
n

k
.
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As for the moments of higher orders, we have

n

X

i=1

E |X
i

|q =
n

X

i=1

|(x
i

)
j

|q

nq

E |Y
i

|q

=
n

X

i=1

|(x
i

)
j

|q

nq

�(k + q)

�(k)
✓q
i

.

With the upper bound (15) on ✓
i

, we have

n

X

i=1

E |X
i

|q  �(k + q)

(knµ
n

)q�(k)

n

X

i=1

|(x
i

)
j

|q

=
�(k + q)

(knµ
n

)q�(k)
k((x1)j , . . . , (xn

)
j

)kq
q

.

Using the identity kzk
q

 kzk2 for q � 2, and the

assumption
P

n

i=1(xi

)2
j

 n, we obtain

n

X

i=1

E |X
i

|q  �(k + q)

(k
p
nµ

n

)q�(k)
.

For k 2 (0, 1], we have �(k+q)
�(q)  q!, and hence by a

direct substitution it su�ces to choose

v =
k + 1

nµ2
n

k2
, c =

1

k
p
nµ

n

. (16)

For k 2 (1,1), we have by induction on q that
�(k+q)
�(q)  q!kq. Thus, for k 2 (1,1), it su�ces that

v =
2k

nµ2
n

, c =
1p
nµ

n

. (17)

Thus, applying Bernstein’s inequality and the union
bound, we obtain

P
n

krL
n

(�⇤)k1 � ↵⌧
n

4

o


p

X

i=1

P
n

|[rL
n

(�⇤)]
i

| � ↵⌧
n

4

o

 2 exp



ln p� t2

2(v + ct)

�

�

�

�

�

t=↵⌧n
4

.

Since L
n

is self-concordant and
⇥

D2L
n

(�⇤)
⇤

S,S is pos-

itive definite by assumption, the composition L
n

�
Z with the padding operator Z is strictly convex
[Nesterov, 2004, Nesterov and Nemirovskii, 1994] and
thus �̌

n

uniquely exists. Therefore, we can apply The-
orem 5.1. The scaling laws on ⌧

n

and (p, n, s) follow
via the same argument to that in the proof of Corol-
lary 6.2. Note that the final condition of Theorem 5.1
also imposes conditions on (p, n, s), but for this term
even the weaker condition s2(log p)⌫2

n

⌧ n su�ces.

4 Proof of Corollary 6.4

By a direct di↵erentiation, we obtain

rL
n

(⇥⇤) = ⌃̂
n

� (⇥⇤)�1 = ⌃̂
n

� ⌃.

We apply the following lemma from
[Ravikumar et al., 2011] to study the concentra-
tion behavior of rL

n

(⇥⇤).

Lemma 4.1. Let ⌃ and ⌃̂
n

be defined as in Section
6.4. We have

P

⇢

�

�

�

�

⇣

⌃̂
n

⌘

i,j

� ⌃
i,j

�

�

�

�

> t

�

 4 exp



� nt2

128(1 + 4c2)22
⌃⇤

�

,

for all t 2 (0, 8⌃⇤(1 + c)2).

Using the union bound, we have

P
n

krL
n

(⇥⇤)k1  ↵⌧
n

4

o

 4p2 exp



� nt2

128(1 + 4�2)22
⌃⇤

�

�

�

�

�

t=↵⌧n
4

,

provided that ⌧
n

! 0, and that n is large enough so
that the upper bound on t in the lemma is satisfied.

Define

⇥̌
n

2 argmin
⇥

{L
n

(⇥) + ⌧
n

|⇥|1 :

⇥ > 0,⇥Sc = 0,⇥ 2 Rp⇥p

 

. (18)

Since L
n

is self-concordant and
⇥

D2L
n

(⇥⇤)
⇤

S,S is pos-

itive definite by assumption, the composition L
n

�
Z with the padding operator Z is strictly convex
[Nesterov, 2004, Nesterov and Nemirovskii, 1994] and
thus ⇥̌

n

uniquely exists. Therefore, we can apply The-
orem 5.1. The scaling laws on ⌧

n

and (p, n, s) follow
via the same arguments as the preceding examples.
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