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Preface
Reinforced concrete (RC) flat slabs used for buildings are sensitive to punching shear failure.

Recent years have shown that many RC flat slabs, particularly of those built between the 1960s

and 1980s, exhibit insufficient punching shear resistance and thus need to be strengthened.

Several strengthening systems exist on the market; however, their efficiency is generally

limited since they do not allow significant prestressing and thus effective unloading of the

punching region of the slab. Furthermore, already at small rotations, slabs may fail before

really activating non-prestressed strengthening systems.

In this work, a prestressed carbon fiber-reinforced polymer (CFRP) strap strengthening system

was experimentally investigated and further developed. Sixteen full-scale punching shear

experiments were performed, from which analytical models were derived to predict the load–

rotation behavior and rotation-dependent punching shear resistance of prestressed punching

shear-strengthened RC flat slabs. The positive effect of significant prestressing could be clearly

demonstrated.

Particular aspects related to the strengthening of RC flat slabs against punching shear failure

were further investigated, such as the effect of the prestressing level, the deformation history

caused by unloading/reloading cycles (the former may be required to install the strengthening

system) or shear on the deformation behavior and thus punching shear resistance.

I would like to acknowledge the support for this research project provided by the Commis-

sion for Technology and Innovation CTI (Project-No. 11569.2 PFIW-IW) and industry partner

F.J. Aschwanden AG, Lyss, Switzerland. The support of Carbo-Link AG in Fehraltorf, Switzer-

land (supplier of the CFRP straps), and Sika AG in Zurich, Switzerland (supplier of the CFRP

plates and adhesives), is also gratefully acknowledged.
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Abstract
Deformation-dependent punching shear resistance often constitutes the decisive design

criterion for reinforced concrete slabs supported by columns. The increasing number of

aging structures exhibiting insufficient punching resistance and detailing deficiencies, and

undergoing changes of usage has resulted in a growing demand for strengthening against

brittle punching failure. Hence, the research presented in this thesis aims at gaining a better

understanding of the identified problems occurring especially in existing structures, such

as pre-deformation. A further objective is the experimental and theoretical validation of the

performance of a new strengthening concept. A detailed analysis is carried out of the structural

behavior of centrically supported rotation-symmetric slabs subjected to punching.

In the first part of this research project a literature review is conducted to characterize the

available punching models for new slabs and discuss to what extent they are able to consider

the problems linked with existing slabs. Benefits and limitations of current strengthening

solutions are illustrated, suggesting local prestressing as a promising concept.

In the second part such a concept is analyzed that has been developed to improve the sys-

tem efficiency and punching resistance by immediately activating the post-installed shear

reinforcement composed of carbon fiber-reinforced polymer (CFRP) composites, thus par-

tially unloading the slab. An experimental campaign comprising sixteen slabs verifies that

the installation of this strengthening concept leads to a more ductile system behavior and

significant increase of punching resistance compared to a non-strengthened slab.

In the third part the load–deformation behavior of slabs is analyzed and a modification of

an analytical model applied to a slab sector is developed, considering the influence of shear

on flexural behavior. An overestimation of the flexural capacity and consequently of the

punching resistance is thus avoided. The agreement of the modified sector model results

with experimental results is confirmed for a large number of experiments from literature. The

model is also capable of predicting the load–rotation responses and punching resistances of

slabs strengthened with prestressed CFRP straps.

The fourth part of the research concerns the effect of pre-deformation, or load history, on the

structural behavior of uniaxial members and biaxial slabs. Single unloading and reloading

cycles, which reduce tension stiffening and result in additional deformations, leading to

decreased concrete punching resistance, are investigated. In slabs prestressed CFRP straps

can compensate the additional deformations caused by load history.

Keywords: reinforced concrete, CFRP, flat slabs, punching shear, load–deformation behavior,

strengthening, prestressing, bonding, load history
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Kurzfassung
Der verformungsabhängige Durchstanzwiderstand ist oftmals das massgebende Bemessungs-

oder Überprüfungskriterium für punktförmig gestützte Stahlbetonflachdecken. Die zuneh-

mende Anzahl alter Tragstrukturen mit unzureichendem Durchstanzwiderstand, infolge Nut-

zungsänderungen oder mangelhafter konstruktiver Durchbildung, führen zu einer wachsen-

den Nachfrage an Verstärkungslösungen. Mit der vorliegenden Arbeit soll ein Beitrag zum

besseren Verständnis von insbesondere bei bestehenden Tragstrukturen auftretenden Frage-

stellungen, wie beispielsweise Vorverformungen, geleistet werden. Weiter soll das Potential

eines neuen Verstärkungskonzepts experimentell und theoretisch bestätigt werden. Dazu wird

das Tragverhalten zentrisch gestützter, rotationssymmetrischer Platten detailliert analysiert.

Der erste Teil dieser Arbeit charakterisiert bereits vorhandene Durchstanzmodelle für Neu-

bauten und diskutiert, inwieweit sie bei bestehenden Bauten auftretende Problemstellungen

berücksichtigen können. Vor- und Nachteile von vorhandenen Verstärkungslösungen werden

aufgezeigt, mit dem Vorschlag einer lokalen Vorspannung als vielversprechendes Konzept.

Der zweite Teil analysiert ein solches Konzept, welches zur Erhöhung der Systemeffizienz und

des -widerstands entwickelt wurde, mittels einer unmittelbaren Aktivierung der nachträglich

eingebauten Schubbewehrung aus kohlenstofffaserverstärktem Kunststoff (CFK) und somit

teilweisen Entlastung der Flachdecke. Eine Versuchskampagne mit sechzehn Versuchen bestä-

tigt, dass der Einbau dieser Verstärkungslösung zu einem duktileren Tragverhalten und zur

signifikanten Erhöhung des Durchstanzwiderstands gegenüber der unverstärkten Platte führt.

Im dritten Teil der Arbeit wird das Last–Verformungsverhalten von Flachdecken analysiert. Die

daraus abgeleitete Modifikation eines analytischen Modells am Plattensektor berücksichtigt

den Einfluss der Querkraft auf das Biegetragverhalten und verhindert somit eine rechnerische

Überschätzung der Biegetraglast und des Durchstanzwiderstands. Eine Vielzahl von Versu-

chen aus der Literatur bestätigt die Übereinstimmung des modifizierten Sektormodells mit

experimentellen Resultaten. Das vorgeschlagene Modell dient ebenfalls zur Bestimmung des

Durchstanzwiderstands von mittels vorgespannten CFK-Strangschlaufen verstärkten Platten.

Der vierte Teil behandelt den Effekt von Vorverformungen, d.h. einer Belastungsgeschichte,

auf das Tragverhalten von einachsigen Zuggliedern und von Platten. Entlastungs- und Wie-

derbelastungszyklen reduzieren die Zugversteifung und führen zu Zusatzverformungen, was

bei Flachdecken den Durchstanzwiderstand des Betons reduziert. Die vorgespannten Strang-

schlaufen können diese Zusatzverformung aus der Belastungsgeschichte kompensieren.

Stichworte: Stahlbeton, CFK, Flachdecken, Durchstanzen, Last–Verformungsverhalten, Ver-

stärkungen, Vorspannung, Verbund, Belastungsgeschichte
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Résumé
La résistance au poinçonnement, dépendante de la déformation, est fréquemment un critère

de rupture décisif pour des planchers-dalles en béton armé appuyés sur colonnes. Il existe un

nombre croissant de structures âgées avec des résistances au poinçonnement insuffisantes.

Liés à des changements d’utilisation ou à des défauts de construction, ces problèmes en-

gendrent une demande grandissante pour le renforcement au poinçonnement des structures

existantes. L’objectif des recherches présentées dans cette thèse est une meilleure compré-

hension des problèmes se développant en particulier dans des structures existantes, comme

par exemple avec l’impact d’une déformation initiale. Le travail effectué durant cette thèse

a aussi permis la validation expérimentale et théorétique d’un nouveau concept de renfor-

cement. Une analyse détaillée a été effectuée sur le comportement des dalles soumises à un

poinçonnement symétrique.

Dans la première partie, des modèles existants sur les phénomènes de poinçonnement pour

les nouvelles dalles sont caractérisés. Une discussion au sujet de leur utilité dans le cas des

problèmes liés aux dalles existantes est présentée. Les avantages et désavantages des solutions

existantes de renforcements sont évaluées, suggérant la précontrainte locale comme un

concept prometteur.

Ce concept, qui est analysé dans la seconde partie, a été développé pour augmenter la per-

formance et la résistance systémique en renforçant simplement la dalle existante par une

armature d’effort tranchant basée sur un système en polymères renforcé de fibres de carbone

(PRFC). Ce système, installé sur des dalles existantes, permet par conséquent de décharger en

partie la dalle. L’investigation expérimentale de seize échantillons de planchers-dalles montre

que l’installation de ce concept de renforcement crée un comportement plus ductile et une

augmentation significative de la résistance au poinçonnement en comparaison avec une dalle

non-renforcée.

Dans la troisième partie, le lien charge–déformation des dalles est analysé. Une modification

du modèle analytique par secteur de dalle a été développé en considérant l’influence d’efforts

tranchants sur le comportement à la flexion. Cela permet ainsi d’éviter la surestimation de

la charge maximale en flexion et de la résistance au poinçonnement. La conformité de ce

modèle aux résultats expérimentaux est validée par de nombreux essais dans la littérature. Ce

modèle permet aussi de prédire la courbe charge–rotation et la résistance au poinçonnement

des dalles renforcées avec des boucles en PRFC précontraintes.

La quatrième partie considère l’effet de la déformation initiale, ou de l’historique des solli-

citations, sur le comportement des structures axiales et des dalles planaires. Des cycles de

ix
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Résumé

décharge-recharge sont examinés, réduisant le tension stiffening et entraînant des déforma-

tions supplémentaires. Ceci mène à une réduction de la résistance du béton au poinçonne-

ment. Dans le cas des plancher-dalles, les boucles en PRFC précontraintes peuvent cependant

compenser ces déformations supplémentaires.

Mots-clés : béton armé, PRFC, planchers-dalles, poinçonnement, comportement à la charge–

déformation, renforcements, précontrainte, adhérence, histoire des sollicitations
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1 Introduction

1.1 General background

Buildings are often constructed using reinforced concrete (RC) flat slabs combined with

punctual supports such as columns of varying cross section and slenderness. The advantages

of this method are easier construction compared to joists, greater flexibility in the disposition

of rooms that can be enclosed by easily removable non-structural walls, and therefore a

high cost efficiency. The disadvantage, however, is the combination of locally high bending

moments and shear forces around the columns (see illustrated internal forces of the slab strip

in Figure 1.1), which increases the sensitivity of this zone to sudden brittle punching failure

in cases without shear reinforcement, unlike a ductile flexural failure. In a typical punching

failure, the exceeding of the shear-bearing concrete tensile strength leads to a collapse around

a truncated cone above the column, as shown for example in Figure 1.2. This abrupt failure is

followed by a drop in the load-bearing capacity of the slab, which may eventually lead to a

progressive collapse of the entire structure. Thus the ultimate limit state has to be ensured by

an adequate amount of longitudinal reinforcement providing flexural capacity, and also by

sufficient punching resistance to bear the local concentration of shear loads in the vicinity of

the column.

The flexural load-bearing capacity of reinforced concrete structures can be calculated using

the plasticity theory by assuming rigid–perfectly plastic material properties and is therefore

deformation-independent (Gvozdev 1938; Hill 1951, 1952; Drucker et al. 1951, 1952). In con-

trast the punching shear resistance of flat slabs depends on the slab rotation, ψ, among other

parameters like the concrete compressive strength, fc ; the effective depth, d , (representative

for the slab thickness h); the geometrical ratio of the longitudinal reinforcement, ρ, and an

increasing brittleness with increasing thickness, a so-called size effect (Talbot 1913; Kinnunen

and Nylander 1960; Moe 1961; Bažant and Cao 1987; Muttoni and Schwartz 1991, see sum-

maries by Sherif 1996; Birkle 2004; Häusler 2009). The complexity of this topic is reflected by

a large number of punching models that have been established in the last fifty to sixty years.

However, these models were primarily developed for new structures.

1
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Chapter 1. Introduction
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1.1. General background

An increasing number of existing flat slabs have required strengthening against punching

shear failure in the recent past, for instance to compensate for insufficient properties with

regard to durability and detailing deficiencies, or to increase the load-bearing capacity owing

to changes of usage. Today around one third (BFS 2013) of building costs in Europe are

related to the strengthening and upgrading of existing structures. To meet this new demand

various post-installed systems exist for strengthening against punching, such as a widening

of the slab support [Figure 1.3(a)], increase of bending resistance [Figure 1.3(b)], or a post-

installation of additional shear reinforcement [Figure 1.3(c)]. The first two systems maintain

the brittle behavior of the slab and still rely on the concrete tensile strength. In the third

system, non-prestressed shear reinforcement first has to be activated by additional rotations

and is therefore able to bear only additional loads. A low deformation capacity of the slab thus

leads to a low utilization level i.e. efficiency of the strengthening system.

(a) (b) (c)

additional concrete layer 
with reinforcement

post-installed vertical 
shear reinforcement

enlargement of the 
support (e.g. steel head)

Figure 1.3: Existing flat slab strengthening systems: (a) increase of the support area, (b) in-
crease of bending resistance, and (c) post-installed shear reinforcement

An efficient strengthening system is required that significantly increases punching resistance

and enhances slab deformability. The installation of shear reinforcement around the column

is a successful concept in new slabs, as shown by Lips (2012) for instance. Thanks to an

optimization of the shear reinforcement’s activation phase, its efficiency is also expected

to be improved for existing slabs, resulting in the development of a strengthening concept

(Keller 2010, 2013) which is presented in Section 1.2. This concept involves post-installed and

prestressed shear reinforcement composed of carbon fiber-reinforced polymers (CFRP) and

serves as a basis for the present thesis. On the one hand the performance of this system has to

be verified experimentally, and on the other hand a calculation model is needed to provide

reliable predictions of the punching resistance of slabs strengthened using this system.

Existing punching models for new slabs, as for instance models based on the rotation-

dependent sector model by Kinnunen and Nylander (1960), serve as a starting point for

the development of a new model – or modification of an existing model – for new and existing

slabs. However, first an investigation is necessary to identify problems that may occur particu-

larly in existing slabs, e.g. relating to reduced durability or caused by detailing deficiencies.

Subsequently it has to be determined to what extent punching models, originally developed

for new slabs, are capable of taking these problems into account.

3
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Chapter 1. Introduction

During the investigation of slabs with high amounts of shear reinforcement Lips (2012) ob-

served large shear deformations in the column vicinity. He concluded that the consideration

of shear influencing the flexural behavior was necessary to avoid overestimating the flexural

capacity, and consequently the punching resistance. Although this supports earlier findings by

Pralong (1982) and Brändli (1985), slabs without shear reinforcement and only minimum lon-

gitudinal reinforcement did not exhibit any reduction of flexural capacity (Guandalini 2005). A

detailed analysis of load–deformation behavior is therefore necessary for quantification of the

shear effect on the punching resistance of new and existing slabs.

In addition to compliance with the ultimate limit state, an adequate slab design has to en-

sure the serviceability of a structure by defining admissible deformations, or crack width

limitations for instance. Investigations of cracked structures have shown (Rehm and Martin

1968; Rostásy et al. 1976; Shima et al. 1987; Sigrist 1995; Alvarez 1998; Fürst 2001; Kenel 2002)

that the contribution of concrete in tension – although its tensile strength, fct , is relatively

low compared to its compressive strength, fc , and exhibits considerable scatter – needs to

be taken into account to achieve a good agreement between theoretical load–deformation

behaviors and experimental observations. After cracking the contribution of the surrounding

concrete between the cracks can be considered via bond stresses along the steel rebar surface,

the so-called tension stiffening effect, as for instance discussed in the Tension Chord Model

(TCM) by Marti et al. (1998). The behavior of concrete in the crack itself can also be taken

into account : the concrete tensile stresses do not abruptly drop to zero after reaching their

tensile strength, but still provide a fractional amount up to a critical crack width at which their

contribution is exhausted. This was considered for example in the Fictitious Crack Model

(FCM) by Hillerborg et al. (1976) and Hillerborg (1983), where a certain hindrance of crack

growth by interlocking fibers growing out from the cement grains was analyzed, see Figure 1.4.

μ1   m

Figure 1.4: Scanning electron micrograph of hardened cement paste with interlocking cement
fibers inside a crack (adapted from Higgins and Bailey 1976)

An adequate prediction of the load–deformation behavior of slabs is, however, not only im-

portant in the serviceability limit state, but also for the determination of punching resistance.

Experiments on reinforcing bars embedded into concrete (Rehm 1961; Leonhardt 1978) and

4
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on beams (Pfyl and Marti 2001; Kenel and Marti 2002) demonstrated higher deformations

after the completion of unloading and reloading (URL) cycles. Thus, additional deforma-

tions caused by the load history may also be of importance for flat slabs, when a decrease of

punching resistance with increasing rotation is assumed according to Muttoni (2003, 2008).

Such URL paths occur for instance when a slab has to be strengthened, see Figure 1.5. This

figure illustrates a URL cycle of a (a) non-strengthened and (b) strengthened slab. Here, an

increase of the support area is considered, which increases the flexural capacity, V f lex , and

control perimeter, u0. The non-strengthened flat slab [Figure 1.5(a)] is loaded up to a service

load, Vser (point A). Before the strengthening system is installed, the slab is unloaded to

improve the strengthening system efficiency. Even when the slab is completely unloaded, a

residual slab rotation ψres remains (Marti et al. 1977; Pralong et al. 1979). If the slab remains

non-strengthened and is reloaded back to Vser – as observed for beams – the load path will

pass point B instead of A, adding an irreversible rotation, ∆ψURL , and resulting in a decrease

of punching shear resistance from VR0 to VR0,B. If on the other hand the slab is strengthened

and then reloaded [Figure 1.5(b)], the punching shear resistance can be increased. However, it

may also be affected by ψres : the intersection of the solid load path with the failure criterion at

VR1,B is higher than VR0, but lower than VR1, which would be reached by a strengthened slab

monotonically loaded from origin O (dashed curve).

ψ

∆ψ

ψ ψ ψ

ψ

V

V

flex

URL

res

Vser

Vcr

A
B

V

V

URL

V

(a) V

flex

URL

res

Vser

V

V

V

(b)
+Vflex

V

OO

Load path 
monotonically 
increasing

Load path with 
unloading and 
reloading

Failure 
criterion

R 0

R 0,B

R 0

R 1

R 1,B

Figure 1.5: Effect of URL cycle on shear force–rotation (V –ψ) relationship: (a) non-strength-
ened, (b) strengthened by enlargement of support area

On the basis of the TCM the behavior of uniaxial members during unloading and reloading

has only been analyzed for the limit cases of no bond damage (Alvarez 1998; Fürst 2001)

and complete damage (Burns 2012) during unloading. A more detailed investigation of the

degradation of bond attributed to the load history of elastic and also elasto-plastic tension

members is required for the TCM to become applicable for URL cycles. An extension to flat

slabs is necessary to allow the analysis of the effect of load history and pre-deformation on

their load–rotation behavior and punching resistance.
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Chapter 1. Introduction

1.2 Prestressed carbon shear reinforcement strengthening concept

The limited efficiency of existing strengthening systems against punching shear has resulted in

the development of a system reflecting technological advances. This system presents a novel

application for carbon fiber-reinforced polymer (CFRP) composites in structural engineering

in the form of post-installed and prestressed shear reinforcements, see Figure 1.6. Prestressing

significantly improves system efficiency due to a partial unloading of the slab. No additional

live loads are necessary to activate the strengthening system. CFRP offers certain advantages

compared to steel: reduced specific weight, high tensile strength to stiffness ratio, insensitivity

to a corrosive environment and fatigue (Keller 2003b).

ββ

β

(b)(a)

(c)

pp

p

(e)(d)

plan view

turnbuckle

compression framesteel anchor

4 crossed CFRP straps deviator

steel anchor

grooved 
pin

prestressing bolts

anchor 
plate

compression 
frame

strap 
force P

strap inclination

Figure 1.6: Strengthening concept: (a): open strap configuration with adhesively-bonded an-
chors, (b) with steel compression frame, (c) closed strap configuration, (d) anchor
detail, (e) bottom view with adhesively-bonded anchors

The strengthening concept consists of non-laminated and prestressed CFRP straps (Meier and

Winistörfer 1998; Winistörfer 1999; Lees and Winistörfer 2011) which are installed crosswise

around the column in pre-drilled and pre-cut openings and can be anchored and prestressed

from the lower side of the slab. Strap anchoring can be assured by three different systems: in

an open strap configuration by steel anchors adhesively bonded to the concrete surface using

an epoxy resin [Figure 1.6(a), Keller (2010)], or by fixing the anchors to a steel compression

6
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frame mounted underneath the slab around the column [Figure 1.6(b)], and in a closed strap

configuration by self-anchoring the straps using a turnbuckle [Figure 1.6(c), Keller (2013)].

The use of lightweight and flexible CFRP straps constitutes a considerable improvement for

on-site installation, especially when only limited space is available. Minimum deviation radii

are significantly lower than for heavy steel strands.

The designated prestressing force, P0, is either applied at the end-anchor or at the turnbuckle.

Figure 1.6(d) illustrates the necessary components for the first case: the CFRP strap end is

fitted into a grooved steel pin. The pin itself is placed into the slotted holes of the anchor

flanges and connected to two steel bolts via threaded holes. By tightening the bolts using a

torque wrench or a hydraulic jack, the pin is pulled back and the forced elongation prestresses

the strap up to P0.

Each anchor transmits the compressive and shear components of the prestressing force to the

concrete slab; the depth of the compression zone is increased in the case of the adhesively-

bonded anchors. Due to the inclination angle, βp , of about 35° to the horizontal, the strap

forces act approximately perpendicularly to potential shear cracks. This is more efficient than

a vertical arrangement where only a component of the bolt force acts against the opening of a

shear crack. The CFRP straps [illustration in Figure 1.6(e)] are much longer than the short steel

bolts of the vertical shear reinforcement [Figure 1.3(c)] and thus less sensitive to long-term

losses of prestressing forces P .

1.3 Objectives

The aim of this research project is to gain a better understanding of the structural performance

of flat slabs subjected to punching shear, with an emphasis on the problems occurring in

existing structures. This comprises the following objectives:

• Identify specific problems that may occur in existing slabs, and discuss whether they

can be simulated by available models

• Investigate the efficiency of available strengthening systems and of the above-presented

prestressed system

• Analyze the effect of shear on the structural behavior and punching resistance of slabs,

develop and validate a model to predict the increase of punching resistance resulting

from this prestressed system

• Analyze the effect of load history on the structural behavior of uniaxial members and

extend the results to slabs

This research project focuses on the investigation of the punching of flat slabs supported by

interior columns. Therefore, based on the sector model by Kinnunen and Nylander (1960), a

7
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Chapter 1. Introduction

rotation-symmetric slab layout according to Figure 1.1 is assumed for the calculation, obviating

the need for finite element calculations. In the analysis of load history, time-dependent effects

like the shrinkage or creep of concrete are excluded. Summaries of code provisions can be

found elsewhere (fib 2001; Lips 2012).

1.4 Methodology

The objectives are achieved in the following way:

A literature review is conducted to characterize the analytical models available to predict

the punching shear resistance of new slabs, and on which main parameters they depend.

Problems that may occur in existing slabs, like detailing deficiencies or pre-deformation, are

investigated. The frequent absence of their consideration in existing models is discussed. The

performance and limits of available strengthening systems are investigated and compared to

the prestressed concept presented in Section 1.2.

The successful applicability of this strengthening concept is proved with an experimental

campaign in which the following parameters are investigated: CFRP strap size and prestressing

level, benefits and deficiencies of the different strap anchoring systems, influence of slab

thickness, concrete grade and pre-deformation before the slab is strengthened.

The sector model by Kinnunen and Nylander (1960) enables the load–deformation behavior

of rotation-symmetric slabs to be calculated. The transformation of other slab, column,

loading geometries and support conditions into a rotation-symmetric layout is analyzed. An

investigation regarding shear, which affects the bending resistance in the column vicinity,

is carried out. This serves as basis for the development of a simplified analytical model to

improve the prediction of the load–rotation curves of slabs. The increased resistance of flat

slabs strengthened by prestressed CFRP straps is implemented into the developed model for

validation with the experimental results.

The load history resulting from a single unloading and reloading (URL) cycle of an existing slab

is investigated. First a uniaxial tension chord is examined, considering a concrete contribution

in tension on the basis of the TCM. The outcome is implemented in the developed analytical

model for flat slabs. The effect of a URL cycle on the load–rotation behavior and punching

resistance is analyzed using experimental curves and an analytical parametric study.

1.5 Thesis organization

This thesis comprises technical and research papers that have either been published or are

currently under review. The structure is based on the layout in Figure 1.7, associated with the

list of publications in Section 1.6 below.

Based on the question as to whether the punching models suggested for new slabs are able

to consider problems occurring in existing slabs like detailing deficiencies and load history,

8
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Overview punching shear models

Experimental campaign

Strengthening system references

Chapter 2 Paper 1

Chapter 3

First experimental series

Effect of shear on
load–deformation behavior

Second experimental series

Paper 3Paper 2

Effect of load history on 
punching resistance

Summary experimental campaign

Uniaxial tension chord

Flat slabs

Appendix C Flexural capacity of slabs

Appendix D Reduction factor of 
flexural stiffness

Paper 4Chapter 4 Chapter 5

Paper 5

Paper 6

Appendix F Effect of crack spacing on 
tension stiffening loss

Appendix E Modified Sector Model:
Validation

Conclusions and future researchChapter 6

Introduction

Effect of Deformation History on Punching 
Resistance of Reinforced Concrete Slabs

Appendix A

Appendix B

Chapter 1

Figure 1.7: Thesis organization

Chapter 2 gives a short review of the research conducted on punching and presents a three-

level classification of the wide range of calculation approaches. In addition to the discussion

about the applicability of existing models for new slabs to specific aspects linked to existing

slabs, the benefits and limitations of current strengthening solutions are evaluated, suggesting

local prestressing as a promising concept. The performance of the latter has to be verified

experimentally, which is done in Chapter 3. Appendix A tabulates the current strengthening

solutions and classifies them in four categories.

Chapter 3 and Appendix B summarize the experimental campaign carried out within this

research project. Sixteen full-scale concrete slabs of the same dimensions and longitudinal

reinforcement ratios were tested. Figure 1.8 provides a graphical overview of the campaign. In

Section 3.1 CFRP elements were installed to 1) reinforce new RC slabs with non-prestressed

flexible plates as shear reinforcement (slabs P1–2), or 2) strengthen existing slabs against

punching shear failure using non-laminated and prestressed straps. The straps were either

anchored underneath the slab by adhesively-bonded steel anchors (So1–4), or self-anchored

in a closed configuration using a turnbuckle (Sc1–2).
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Figure 1.8: Overview of experimental campaign with varied parameters

Section 3.2 examines a second series of slabs with different thicknesses (Sr1–3) where an

alternative strap anchoring system – a steel compression frame – was investigated. All three

investigated strap anchoring systems resulted in similar punching resistances, which were

significantly higher than in the non-strengthened case. Section B.1 briefly describes the addi-

tional experiments carried out. The main parameters of all sixteen specimens are summarized

in Table B.1. In addition to the selected results presented in Chapter 3, Section B.2 recapitulates

the punching resistances, load–rotation curves, and strap force activation of all experiments

at a glance. These curves are necessary for the analysis in Chapter 4.

The load–rotation behavior of flat slabs is investigated in Chapter 4 on the basis of the sector

model by Kinnunen and Nylander (1960). A modification of that model – the Modified Sector

Model (MSM) – is developed here which is capable of considering a shear influence on the flex-

ural behavior of the slab. A strength reduction factor for the shear crack-crossing longitudinal

reinforcement is introduced, which depends on the mechanical longitudinal reinforcement

ratio, to take into account the fact that the longitudinal bending reinforcement also has to

transmit forces resulting from shear. The developed model is validated by a series of flat slabs

from literature and can also be applied to predict the load–rotation responses and punching

shear resistances of flat slabs strengthened with prestressed CFRP straps.

The sector model requires a rotation-symmetric slab, column and loading geometry and

assumes a yield-line mechanism (YLM) of a truncated cone when reaching flexural capacity.

10
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Appendix C explains how other geometries can be transformed into an equivalent circular

slab, and summarizes the common double-symmetric YLMs for square and circular columns.

An orthogonal layout of the longitudinal reinforcement can be considered by flexural stiffness

reduction factors that are analytically investigated in Chapter 4. In general, compression rein-

forcement is neglected in the analysis. The effect of an orthotropic compression reinforcement

on the stiffness reduction is however shown in Appendix D. In Appendix E the developed

analytical MSM is compared to seventy-two experimental slab responses from literature, and

also validated by the experimental results conducted in Chapter 3.

Chapter 5 focuses on the effect of single unloading and reloading (URL) cycles on the bond

properties and load–deformation behavior of RC members. Different topics such as high-cycle

fatigue or reversed loading have been presented and summarized elsewhere (Kobarg 1986;

Mainz 1993; Alvarez 1998; fib 2000). In Section 5.1 a uniaxial case is analyzed on basis of the

TCM. Bond degradation caused by a URL cycle results in a reduction of tension stiffening. By

irreversibly reducing the admissible bond shear stress in the bond stress–slip relationship,

this effect can be considered here. The residual tension stiffening depends particularly on

the stress level before and after unloading, and its dependence on different crack spacings is

shown in Appendix F. In Section 5.2 the results obtained are extended to rotation-symmetric

slabs. As well as the tensile contribution of concrete between the cracks (TCM), a contribution

in the fracture process zone (FCM) is also taken into account by the use of a newly developed

quintilinear instead of quadrilinear moment–curvature relationship. Finally, residual slab

rotations after unloading and irreversible rotation increases after reloading of slabs are investi-

gated. A parametric study is carried out to quantify punching resistance decreases caused by

load history.

Chapter 6 summarizes the results obtained within this research project and is followed by

recommendations for future research.

The references and notation are summarized at the end of this document.
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Reference detail

Robert Koppitz, Albin Kenel and Thomas Keller. “Punching shear of RC flat slabs — Review of

analytical models for new and strengthening of existing slabs”. Engineering Structures, 2013,

Vol. 52, pp. 123–130. DOI: 10.1016/j.engstruct.2013.02.014

Abstract

The conversion of existing buildings, development of standards, material deterioration and

detailing deficiencies have led to a need for strengthening an increasing number of concrete

flat slabs against brittle punching shear failure. However, existing analytical and design models

do not yet take into account the specific aspects of strengthening slabs against punching

shear. More than 40 models exist for predicting the punching shear resistance of new slabs.

A three-level classification is proposed to provide a consistent overview of the wide range

of approaches adopted for resistance calculation. Based on this classification, models are

evaluated with regard to their applicability for problems specific to the strengthening of

existing slabs, such as pre-deformation of existing slabs, insufficient anchorage lengths of

tensile reinforcement outside the punching zone, new openings in slabs within the punching

zone, and the prestressing of post-installed shear reinforcement. The efficiency of current

strengthening solutions is evaluated, suggesting local prestressing as a promising method.

2.1 Introduction

The structural concepts of buildings often comprise concrete flat slabs locally supported by

columns. One advantage of this concept is easier construction compared to joist constructions.

Additionally, it generates greater flexibility in the disposition of rooms that are simply enclosed

by easily removable non-structural walls. The disadvantage, however, is the combination of

locally high negative bending moments and shear forces around the columns, which increases
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Chapter 2. Overview punching shear models

the sensitivity of this zone to brittle punching failure. In this failure mode, the slab collapses

around a truncated cone above the column and this abrupt failure is followed by a drop in the

load-bearing capacity of the slab which may eventually lead to a progressive collapse of the

entire structure.

In the recent past, tragic examples of this hazardous failure mode have raised public awareness

in this respect (Gardner et al. 2000; Wood 2003; Fernández Ruiz et al. 2010). Not only because

of these failures but also generally due to the increasing number of aging structures, the need

for the strengthening of existing concrete flat slabs against punching shear is significantly

increasing. In Europe, already around one third (BFS 2013) of construction costs involve

the strengthening and upgrading of existing structures. This includes the reorganization of

buildings after a certain service life and a change in the purpose of the building often leads to

higher permitted live loads. Poor detailing and pre-deformation in slabs, as well as durability

problems like deterioration or rebar corrosion, are additional reasons for strengthening.

Although various systems to strengthen flat slabs exist (see Section 2.2.3), corresponding

analytical and design models have not yet been developed which can take into account effects

such as poor detailing or local prestressing as used in some strengthening solutions. The

question arises whether the models developed for new slabs are also suitable for strengthening

applications. This chapter reviews over 40 models concerning the punching shear of interior,

edge and corner columns that have been published in the last decades and evaluates their

applicability for the punching shear-strengthening of existing flat slabs. Suggestions are given

for adjusting the available formulae accordingly.

2.2 Strengthening against punching

2.2.1 Detailing deficiencies of existing slabs

Based on the knowledge developed in recent years regarding the punching shear problem, nu-

merous existing flat slabs no longer meet detailing requirements for sufficient punching shear

resistance. Thin slabs are common and are often built without shear reinforcement around the

columns. When shear reinforcement was installed, bent-up bars were often used, as shown

in Figure 2.1(a), where the top longitudinal reinforcement in the support area continued as

bottom reinforcement at midspan or was anchored at the lower side of the plate. This proce-

dure minimized the amount of steel rebars necessary; at midspan the upper reinforcement

was often omitted (discontinuous upper longitudinal reinforcement). One critical point is the

location of the inclined part relative to the punching cone: if the latter is not crossed by the re-

bar [left case in Figure 2.1(a)], the rebar is ineffective as punching reinforcement. Figure 2.1(b)

shows another typical problem: to effectively contribute to punching shear resistance, the

top reinforcement has to be fully anchored outside the punching cone (Lbd ,net denotes the

required length for full anchorage), which is often not the case. This problem either dates

back to when the structure was built (too short rebars) or results from strengthening systems

14
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anchorage:
fsy

(a)

bad good
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Figure 2.1: Detailing deficiencies: (a) shear reinforcement outside the truncated cone; (b)
insufficient anchorage length of top reinforcement; (c) cut rebars for openings

that enlarge the punching cone (e.g. by widening of the column or adding mushrooms), as

will be discussed in Section 2.2.3. The Pipers Row Car Park collapse is one example where

deterioration of the concrete and rebar corrosion together with insufficient repair work re-

sulted in an insufficient anchorage of the top reinforcement around the two columns where

punching shear failure was probably initiated (Wood 2003). Note that sufficient anchorage is

also needed for the bent-up bars on the right side of Figure 2.1(a). Large openings next to the

column disturb the distribution of forces and therefore have a negative effect on punching

resistance, especially when correct detailing around the holes is lacking, i.e. rebars are cut for

subsequently drilled holes, as shown in Figure 2.1(c). The dashed lines denote the anchorage

length of the rebars and fsy denotes their yield strength.

2.2.2 Pre-deformation in existing slabs

Figure 2.2 illustrates how the shear force V increases with increasing slab rotation ψ (angle

between deformed slab and horizontal axis, as shown in Figure 2.2), until (theoretically)

reaching the ultimate (flexural) capacity, V f lex , of the slab. When a failure criterion according

to Muttoni (2008) is assumed, where the punching shear resistance decreases with increasing

slab rotation (also shown in Figure 2.2), the intersection between the curves denotes the (real)

ultimate (punching) resistance, VR0. The service loads, Vser , of properly designed slabs are

normally about 70% of VR0, while the first cracks around the supported area already appear at

around one third (Kinnunen and Nylander 1960; Moe 1961; Hassanzadeh 1996; Hassanzadeh

and Sundquist 1998) of the ultimate load at Vcr (with considerable scatter).
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Figure 2.2: Shear force–rotation relationship during loading, unloading and reloading and
rotation-dependent failure criterion according to Muttoni (2008)

When a flat slab is to be strengthened, pre-deformation of the slab due to cracking has to be

assumed in most cases: during strengthening an unloading and reloading (URL) stress path is

followed (see Figure 2.2): starting from point A, at load level Vser , temporary supports such as

bracings are normally installed which reduce the slab shear forces to zero. Due to the cracks

that can no longer close, a residual rotation, ψres , of the slab remains. Without strengthening,

the reloading path would either pass through point A or B. Case A assumes that the bond

between concrete and reinforcing steel is not influenced by the URL path. Otherwise the path

has to cross point B adding irreversible rotation and resulting in a decrease of punching shear

resistance from VR0 to VR0,B, see Figure 2.2. When partial plasticizing of the reinforcing steel

bars has occurred (which is often the case), additional rotations are caused. The decreased

resistance results from pre-deformation and has to be taken into account when designing the

strengthening concept. Furthermore, many strengthening systems start by firstly damaging

the structure, e.g. by drilling holes for additional shear reinforcement, which may reduce the

critical section and cut some rebars.

2.2.3 Evaluation of existing post-installed strengthening systems

Punching shear resistance is calculated for a specific set of boundary conditions, such as

reinforcement ratio or column size for example. The strengthening solutions discussed below

either modify this set by enlarging the column for instance, or add shear resistance (e.g. via

applied shear reinforcement), which is added to the initial resistance (Fernández Ruiz et al.

2010). In this regard, however, the upper limits of the concrete contribution to the shear

resistance must be kept in mind, cf. ACI 318 (2011); EN 1992-1-1 (2004).

The available strengthening solutions can be summarized in four concepts according to

Figure 2.3(a)–(d) [SIA Dokumentation D0226 (2008); F.J. Aschwanden AG (2014)]: first an en-
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largement of the supported area by adding steel or concrete mushrooms or widening the whole

column; second, a strengthening of the bending reinforcement by either casting an upper

concrete layer or bonding externally reinforcement made of steel or carbon fiber-reinforced

polymers (CFRP); third, post-installed shear reinforcement, either bonded or anchored (Fer-

nández Ruiz et al. 2010; Menétrey and Brühwiler 1997); and fourth, prestressed solutions [F.J.

Aschwanden AG (2014)].1

The widening of the supported area primarily leads to an increase of the critical section,

which is equivalent to a vertical shift of the failure criterion line, as indicated by the arrows

in Figure 2.3(a) on the right. Additionally, the geometrical modification raises the flexural

capacity, V f lex , of the slab. However, the behavior of the structure becomes much more brittle

(i.e. exhibits smaller rotations at equal load stages), as confirmed by a comparison between

the load–rotation behavior of Hassanzadeh’s (Hassanzadeh 1996; Hassanzadeh and Sundquist

1998) circular slab NS (non-strengthened) and slab series “k” (column enlargement with

reinforced shotcrete) in Figure 2.4. This solution presumes a sufficient anchoring length of the

top reinforcement outside of the widened punching cone, as discussed in Section 2.2.1 [see

Figure 2.1(b)].

Strengthening of the bending reinforcement increases the effective depth, d , and the flexu-

ral capacity, V f lex , of the slab, as shown in Figure 2.3(b) on the right for externally-bonded

reinforcement. The brittle behavior of the structure is amplified by this solution (reduced

slab rotation at new ultimate load VR1). Esfahani et al. (2009) confirmed the stiffer behav-

ior of slabs strengthened with CFRP sheets, especially for low reinforcement ratios of the

non-strengthened slabs, see Figure 2.5.

Post-installed shear reinforcement moves the failure criterion line up vertically, as indicated

by the arrows in Figure 2.3(c). The shift corresponds to the shear resistance of the new shear

reinforcement which is superposed to the concrete resistance. Shear reinforcement generally

provides significant ductility increase, as shown by two of Hassanzadeh’s (Hassanzadeh 1996;

Hassanzadeh and Sundquist 1998) slabs (Series “s”) with inclined post-installed anchors

similar to those in Figure 2.3(c) on the left (curves are also plotted in Figure 2.4). However, non-

prestressed shear reinforcement is activated by additional rotations only [see activation phase

in Figure 2.3(c)] and is therefore only able to bear additional loads but not efficiently unload

the slab. A low rotation capacity of the slab may lead to a low utilization level and therefore

low efficiency of this strengthening system as the slab fails before the shear reinforcement is

fully activated.

Prestressing solutions are much more efficient in this respect because the activation phase

is skipped, as displayed in Figure 2.3(d), on the right. As shown in Figure 2.3(d), on the left,

mushrooms may be prestressed or prestressed CFRP straps may be installed [F.J. Aschwanden

AG (2014)]. Both systems efficiently unload the slab and also shift the failure criterion and

loading lines upwards, thereby significantly increasing the new ultimate load VR1.

1A brief tabular overview of strengthening systems is given in Appendix A
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Adapted from SIA Dokumentation D0226 (2008); F.J. Aschwanden AG (2014)
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2.3 Punching shear models for new flat slabs

2.3.1 Punching shear resistance parameters

Various parameters affect the punching shear resistance of flat slabs (Sherif 1996; Birkle 2004;

Häusler 2009). One of the most important is the concrete compressive strength, fc , considered

either directly or indirectly when using the concrete tensile strength fct . The geometrical

ratio of the longitudinal reinforcement, ρ, is in most cases considered by a similar square

or cubic root assumption as for fc . Higher reinforcement ratios, however, lead to a more

brittle structural behavior. Hence ACI 318 (2011) neglects the influence of ρ on the punching

resistance (Birkle 2004). A minimum reinforcement has to be provided in any case to ensure

sufficiently small crack widths during service. A third major parameter is the effective depth d

(used instead of the total slab thickness h): a higher depth not only increases the punching

shear resistance but also the flexural capacity of the slab. The increase of the former, however,

is limited by a size effect (Bažant and Cao 1987). Furthermore, modern structural codes define

so-called critical sections at a predefined distance to the supported area, where the loads that

have to be borne by the column are compared with the resistance of the slab. This concept,

which was already introduced in 1913 by Talbot, has no physical meaning however.

The punching shear resistance of a slab is, however, not a constant value, but depends on

the slab deformation, i.e. more specifically on the slab rotation, ψ, as already demonstrated

by Kinnunen and Nylander in 1960. Additional rotations at the same load level decrease the

punching shear resistance of the slab. In 2008, Muttoni proposed the Critical Shear Crack

Theory (CSCT) for a rotation-symmetric case. He adopted the proportionality between the

internal forces and the rotation angleψ and replaced Kinnunen and Nylander’s failure criterion

by an empirical criterion validated by a large series of test results under the assumption of a

relationship between the punching shear resistance and the width of a critical shear crack,

described as proportional to ψ ·d (Muttoni and Schwartz 1991). The CSCT was extended

to non-symmetrical cases by Tassinari (2011), also using this failure criterion, and further

refined by Lips (2012) to be applicable for high shear reinforcement ratios (again for a rotation-

symmetric case).

2.3.2 Model classification

A review of existing models for predicting the punching shear resistance of new concrete

flat slabs is carried out in the following in order to subsequently identify potential model

categories, which either directly allow strengthening-specific aspects to be considered or may

be revised to fulfill this purpose.

The first experimental investigation regarding punching shear was undertaken in the United

States by Talbot (1913). He conducted load-bearing capacity tests on almost 200 footings of

walls and columns of which about twenty failed in punching shear and proposed a simple

formula to calculate the critical shear stress around a fictitious circumference. After an analysis
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of mainly the flexural behavior of slabs (Graf 1938; Richart and Kluge 1939), extensive research

concerning the punching resistance began during the 1950s with significant contributions

from Elstner and Hognestad (1956) and Moe (1961) in the U.S. and Kinnunen and Nylander

(1960) in Sweden. Since then various proposals have been published and several authors (e.g.

Sherif 1996; Regan and Bræstrup 1985; Staller 2001; fib 2001) summarized and discussed the

previously published models. Beutel (2003) discussed proposals concerning interior columns

whereas Vocke (2002) analyzed mainly models concerning edge and corner columns and both

proposed corresponding classifications or “model families”. In the following, these classifica-

tions will be merged, revised accordingly and updated with more recent models, as shown

in Figure 2.6. The model families are unified, structured and categorized thematically. The

solid and dashed lines illustrate the various connections between the models. The solid lines

describe a general relationship while relationships which are considered by a few proposals

only are indicated with dashed lines. Some models, like the one by Moe (1961), can be assigned

to more than one category. Publications that just fit model parameters of existing models

based on extensive statistical evaluations of real (from literature) or virtual punching tests

(using numerical calculations) are not displayed.

All the models are essentially based either on the elasticity or plasticity theory (first level in

Figure 2.6). In the former case, failure occurs for instance after the longitudinal reinforcement

has reached its yield strength or the concrete tensile strength is exceeded. In the latter case,

upper-bound and/or lower-bound solutions are used to predict the ultimate load. When an

upper-bound solution is applied, a modified Mohr–Coulomb failure criterion for concrete is

usually assumed.

On the second level, three categories are differentiated. Most models are developed using

“plate analysis” to formulate equilibrium conditions. Corner and edge columns, in particular,

are usually split into bending and torsion beams and summarized in the category “beam

analogies”. A third approach is the formulation of spatial “strut-and-tie models” which allow

the clear distribution of forces for rotation-symmetric cases. As an example for interior slabs

without shear reinforcement, Andrä (1982) proposed a model with concrete compression

and tension struts inclined at an angle of 45° which are overlaid with a compression fan at

the column edge. An extension of this model to take headed shear studs as vertical shear

reinforcement into account is widely used (in new constructions). Alexander and Simmonds

(1992) used the “beam analogy” approach for their Bond Model, calculating the punching

shear resistance for internal columns based on the bond stress between steel and concrete.

The bond strength is reached when the splitting tensile strength of a so-called “V-notch” wedge

around a single rebar up to the concrete surface is exceeded (spalling of the concrete cover).

The “plate analysis” category is split into eight sub-categories (third level). One major sub-

category concerns “sector models” for internal columns based on Kinnunen and Nylander

(1960). Assuming a rotation-symmetric case, rigid slab segments rotate around the edge of the

column. The segments are delimited by the (critical) tangential shear crack and radial cracks.

By formulating the equilibrium equation and assuming an ultimate tangential compressive
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Figure 2.6: Proposed classification of existing punching shear models for new constructions
(LBT: lower-bound theorem of plasticity; UBT: upper-bound theorem of plasticity)
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strain of the concrete inside the compression ring around the column, an upper-bound

solution can be derived iteratively. Bræstrup et al. (1976) proposed a “failure surface model”

where they combined a straight line with a catenary curve and calculated an upper-bound

solution, assuming a rigid ideal plastic behavior with a modified Mohr–Coulomb failure

criterion for a rotation-symmetric case. Other models with alternative failure surfaces could

not further optimize the upper and lower bound solutions of the ultimate load. In the sub-

category “sandwich model” Pralong (1982) proposed the “rond-point” model which is based

on modeling the flat slab like a sandwich: normal forces and the bending moments, replaced

by couples, are assigned to the top and bottom covers while the core bears the shear forces.

Brändli (1985) extended the model to edge and corner columns.

The remaining models can be attributed to the following sub-categories, some suggesting

the “concrete tensile strength” instead of the compressive strength as determining parameter.

For corner and edge columns, in particular, “moment–shear” (M–V ) or “moment–shear–

torsion interaction” (M–V –T ) formulae are a common approach. Similarly, others consider

the “bending resistance” of the slab for calculating the punching resistance. Again for edge

and corner columns, some models and subsequently ACI 318 (2011) assume a “linear shear

stress distribution” around the critical section. “Membrane action” of the slab can increase

the ultimate punching resistance significantly. Empirical investigations showed an ultimate

load increase of 30 to 50% (Rankin and Long 1987). However, the effective consideration in

the models remains unclear, as the additional resistance is taken into account by a simple

enlargement factor.

2.4 Discussion

2.4.1 Model evaluation

The following discussion evaluates to what extent the existing models developed for new

constructions, according to the classification in Figure 2.6, are able to take into account the

specific aspects linked to the strengthening of existing slabs. As discussed above, the effects of

pre-deformation, insufficient anchorage length of the top reinforcement, supplementary cut

openings and local prestressing on the punching shear resistance are specific to strengthening

and it will be evaluated whether and how they can be considered by specific model families or

if new models have to be developed.

2.4.2 Effect of pre-deformation

A potential residual rotation, ψres , can only be adequately taken into account by some of

the models of the sub-category “sector models” like Kinnunen and Nylander (1960), Shehata

and Regan (1989) or Muttoni (2008), which explicitly include the rotation parameter, ψ. The

models dependent on the concrete compressive strength, fc , (directly or indirectly via the

tensile strength) could be modified using a reduction factor, kc , to obtain an effective value of
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Figure 2.7: Reduction of admissible steel stresses to take into account insufficient anchorage
length of top reinforcement

the compressive strength, fc,eff , according to Eq. 2.1:

fc,eff = kc fc ≤ fc (2.1)

A reduction factor like this is dependent on the actual state of strains in the slab or on the

crack width [cf. the Cracked Membrane Model by Kaufmann (1998) for shear walls]. However,

the validation of this factor requires a significant amount of testing.

2.4.3 Effect of anchorage length

An insufficient anchorage length of the top reinforcement cannot directly be taken into ac-

count by the existing models. Alexander and Simmonds’ (1992) Bond Model with (radial)

spalling of the concrete cover around a reinforcement bar is not applicable for bond failure

in the axial direction of the rebar. Indirectly, however, the effect can be taken into account in

models based on the yield strength of the rebars. The design value, fsd , of the yield strength,

fsy , could be reduced to an admissible stress,σadm ≤ fsd , depending on the effective anchorage

length, Lb,eff ≤ Lbd ,net , according to Figure 2.7 and Eqs. 2.2 and 2.3:

Lbd ,net =
Ø

4

fsd

fbd
(2.2)

σadm = Lb,eff

Lbd ,net
fsd ≤ fsd (2.3)

where Ø denotes the rebar diameter, fbd the design value of the bond stress and Lbd ,net the

full anchorage length [see SIA 262 (2013)]. Eq. 2.2 assumes a linear increase of the stress limit

per rebar length according to the Tension Chord Model (TCM) proposed by Marti et al. (1998).

However, this approach also requires experimental validation.
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2.4.4 Effect of openings

Openings near columns are normally taken into account by reducing the critical circumference

[e.g. El-Salakawy et al. (1999); Teng et al. (2004)]. The effect of new openings in existing slabs on

the punching shear resistance can basically be taken into account accordingly. However, the

cutting of the top reinforcement reduces the contribution of this component of the punching

shear resistance. The top reinforcement may no longer be sufficiently anchored outside of

the punching cone, see Section 2.4.3. Special cases of openings are small boreholes for the

post-installation of shear reinforcement.

2.4.5 Effect of prestressing

Local prestressing, as shown in Figure 2.3(d) on the left, has three positive effects:

1. the shear resistance is increased by the vertical component of the prestressing force,

2. the bending resistance of the slab is increased, and

3. crack widths and slab rotations are reduced.

Models of the sub-categories “sandwich model” (Pralong 1982; Brändli 1985), “membrane

stresses” (Rankin and Long 1987) and “concrete tensile strength” (Menétrey 1996) allow the

consideration of global prestressing forces, which generate a uniform stress state across the

whole concrete cross section of the slab around the column. The bending resistance is in-

creased by introducing a fictitious reinforcement ratio, ρeff , which includes the reinforcement

ratio of the reinforcing steel, ρs , and the reinforcement ratio of the prestressing steel, ρp ,

weighted by the yield strength of the tendons (for bonded tendons). The vertical components

of the prestressing forces are added to the punching shear resistance. The positive effect of the

prestressing force on the crack width and slab rotation is disregarded.

Local prestressing, however, generates stress concentrations in the punching cone area, which

are not uniformly distributed across the cross section. Fictitious reinforcement ratios for

unbonded tendons are not suitable. Normally just the vertical component of the prestressing

force is added. The significant advantages of local prestressing, as shown in Figure 2.3(d) on

the right, cannot be sufficiently explored by the existing models and therefore the development

of a new specific model is required.

2.5 Conclusions

Due to the conversion of existing buildings, development of standards and deficiencies in

detailing the strengthening of existing concrete flat slabs against punching shear is becoming

increasingly necessary. Critical aspects concerning strengthening against punching shear

were identified and the following conclusions were drawn:

25



i
i

“PhD*Thesis*Koppitz” — 2015/1/15 — 17:11 — page 26 — #42 i
i

i
i

i
i

Chapter 2. Overview punching shear models

• More than 40 punching shear models for new slabs were classified and evaluated regard-

ing their applicability for the strengthening of existing structures.

• Existing slabs may exhibit pre-deformation, expressed as an additional slab rotation.

Models based on rotation-dependent punching shear resistance are able to take this

effect into account in the design of the strengthening solution by adding this extra

rotation.

• The top reinforcement is in many cases not sufficiently anchored outside the punching

cone (the latter may have been enlarged by the strengthening procedure). The cor-

responding reduction of the punching shear resistance cannot be quantified by the

existing models. Consequently, to remain on the safe side until adequate knowledge has

been generated, the contribution of insufficiently anchored rebars has to be reduced

by the ratio of the effective to the full anchorage length for calculating the bending

resistance of the slab.

• Supplementary cut openings within the punching zone of existing slabs reduce the

critical circumference and cut the top reinforcement. The first effect only can be taken

into account with existing models. The partial contribution of the top reinforcement

cut within the punching zone to the slab bending resistance cannot yet be reliably

quantified and should therefore be neglected for calculation.

• Prestressing is an efficient and reliable way to activate post-installed strengthening

components. Due to often limited slab rotation capacity, non-prestressed components

may not be stiff enough to effectively increase the punching shear resistance. The

performance of local prestressing around the punching cone, however, cannot yet

be fully taken into account with existing models as compared to global prestressing.

Adequate modeling of the effect of the non-uniform local stress fields needs further

research.
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3.1 First experimental series

Reference detail

Thomas Keller, Albin Kenel and Robert Koppitz. “Carbon Fiber-Reinforced Polymer Punching

Reinforcement and Strengthening of Concrete Flat Slabs”. ACI Structural Journal, 2013, Vol.

110, No. 6, pp. 919–927. DOI: 10.14359/51686148

Abstract

Three different CFRP systems were used to reinforce new or strengthen existing concrete slabs

against punching. Untensioned CFRP plates or only very low prestressed CFRP straps could

not prevent brittle punching failure. Strap prestressing of at least 15% of the tensile strength

led to a ductile two-peak slab response although the CFRP material systems were brittle. The

ultimate load of the unreinforced slabs could be increased by 73–114% via a redistribution

of forces from the concrete to the strap system. An empirical model was established, which

is able to estimate the first peak load of all the applied CFRP systems. It takes into account

the parameters CFRP plate or strap resistance, CFRP geometry and prestressing level, and

punching load of the unreinforced slab. A cantilever strut-and-tie model was established to

estimate the second peak load. Both models provide acceptable accuracy.

3.1.1 Introduction

Flat concrete slabs without shear reinforcement are susceptible to brittle punching failure

(Kinnunen and Nylander 1960). Various punching shear reinforcement systems have therefore

been developed to increase punching shear resistance and improve ductility (Fernández Ruiz

and Muttoni 2009). Shear reinforcement systems consist mainly of studs, stirrups, or shear

heads – all made of steel – and codes of practice are available for the designing of these

reinforcements [ACI 318 (2011); SIA 262 (2013); EN 1992-1-1 (2004)].
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Chapter 3. Experimental campaign

In recent years, however, it has become evident that many flat slabs, particularly those built

from the 1960s to the 1980s, have insufficient punching shear reinforcement and therefore

require strengthening [SIA Dokumentation D0226 (2008)]. To fulfill this new demand, existing

punching shear systems, originally conceived for new constructions, were modified to make

them applicable for the strengthening of existing slabs.

Likewise in recent years, new materials have appeared on the construction market: fiber-

reinforced polymer (FRP) composites (Keller 2003b). These are lightweight and high-strength

and do not corrode as steel does. They are used in new constructions – in most cases hybrid

applications (Schaumann et al. 2009) – and for the strengthening of existing structures (Lees

et al. 2002; Keller 2003a; Lees and Winistörfer 2011). In the former case, glass fibers are mostly

used, whereas in the latter case, due to stiffness requirements, carbon fibers are used (which

are much more expensive than glass fibers). Until now, carbon fiber-reinforced polymer

(CFRP) composites have been used as adhesively-bonded plates and laminated fabrics, mostly

for bending-strengthening of concrete beams and slabs. Less frequent applications involve

the shear-strengthening of beams and wrapping of columns to improve strength and ductility.

(a) new slabs existing slabs(b)

3.
4.

rd th3    and 4    layer of  
steel bending 
reinforcement

crossed flexible
CFRP straps, 
threaded from the top

anchoring 
zone

concrete 
slab

Figure 3.1: Arrangement of CFRP punching shear reinforcement: (a) in new slabs; (b) pre-
stressed in existing slabs

In the following, a new application for CFRP composites is presented: their use as punching

shear reinforcement for new concrete flat slabs and as a prestressed strengthening system for

existing slabs. Linear and flexible lightweight CFRP plates and straps are used to crosswise

shear reinforce or strengthen slabs in column or wall regions. In new constructions, thin, and

therefore easily bendable, plates are threaded from the top into the already-completed four

layers of steel bar reinforcement, as shown in Figure 3.1(a). The inclined plate segments cross

the punching cone and thus suspend the shear load. The load introduction into the cone

occurs at the upper deviation points and is therefore clearly defined and at the correct location.

The plate ends, which are turned around the bottom steel bars, serve as anchoring zone. The

thin plates can easily be inserted crosswise above the column within the concrete cover, just
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3.1. First experimental series

above the third and fourth steel bar layers. To strengthen existing slabs, the system is slightly

modified: in pre-drilled and pre-cut openings, unbonded CFRP straps are installed, which

can easily be anchored and prestressed from the lower side; see Figure 3.1(b). Prestressing

significantly improves the system efficiency due to the partial unloading of the slab. Described

are the setup and results of full-scale punching shear experiments using a CFRP plate system

as internal reinforcement and prestressed CFRP straps as a strengthening system.

3.1.2 Research significance

The strengthening of existing concrete flat slabs is becoming increasingly necessary. For this

to be really efficient, prestressing of the strengthening system must be possible. The proposed

CFRP punching shear reinforcing and strengthening system is an original and material-tailored

application of innovative flexible CFRP materials. Compared to existing systems, three aspects,

which not yet covered by existing design models, need research:

1. the effect of CFRP material brittleness on system ductility;

2. the effect of local prestressing (around the columns) on punching shear resistance; and

3. the effect of unbonded systems on punching shear resistance.

3.1.3 CFRP materials and devices

Pultruded CFRP plates were used as internal punching shear reinforcement. A pultruded CFRP

laminate designed for strengthening concrete, timber, and masonry structures was selected to

obtain maximum bending flexibility during installation. Plate dimensions (thickness tp , width

bp , and cross-sectional area Ap ) and mechanical properties (tensile strengths fpk and fpu , and

Young’s modulus Ep ) are listed in Table 3.1. The plates were used in two ways: with sanded

surfaces in the anchoring zone only or with completely sanded surface (over the entire length,

as shown in Figure 3.2). In the first case, the plates were assumed to be almost unbonded

in the inclined crossing segment of the punching cone, while they were assumed to be fully

bonded in the second case and, therefore, more efficient than in the first case due to their

ability to limit the shear crack width.

Table 3.1: CFRP plate and strap properties

CFRP tp bp Ap fpk / fpu
a Ep

a

[mm] [mm] [mm2] [MPa] [GPa]

Plate 1.2 50 60 3000 / 3100 162 / 165
Strap (tape) 0.125 30 3.75 2100 / 2460 132 / 132
Strap (systemb) 6.25 / 8.25 / 12.5 30 188 / 248 / 375 1660 / 1820 132 / 132

a 5% fractile values / mean values
b 2 × 25 / 33 / 50 loops
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Chapter 3. Experimental campaign

Non-laminated CFRP straps (Keller 2010; Lees and Winistörfer 2011) were used for the pre-

stressed strengthening application. The dimensions and mechanical properties of one tape

layer (consisting of unidirectional carbon fibers and a thermoplastic polyamide matrix) and of

the multi-layer strap system are summarized in Table 3.1. Three strap configurations were

used: straps of 25, 33, and 50 loops, the latter presenting the maximum available size. The resis-

tance of the plates and straps, Pu , as well as the prestressing levels, α, and applied prestressing

forces, P0, of the straps are summarized in Table 3.2.

The CFRP straps were arranged and anchored in two different ways: in an open configuration,

as shown in Figure 3.3, using two steel end-anchors, or in a closed configuration, as shown in

Figure 3.4, using steel end-pins and a turnbuckle to prestress the strap. Both systems exhibit

advantages and disadvantages: the open system requires a precise strap length while the

closed systems allow for compensation in the turnbuckle. In the latter case, however, the

system is less stiff due to the longer strap length. Steel deviators were used on the top in

the open configuration, and on the top and bottom in the closed configuration. In the latter

case, therefore, adhesive bonding of anchoring devices was not necessary. The diameter of all

steel pins and deviators was between 22.5 and 40 mm. Table 3.2 summarizes the parameter

combinations of the CFRP plates and straps.

Table 3.2: Overview of denominations and experimental matrix

Slab CFRP Anchors Ap Pu
a α P0 βp fc VR0

b

[mm2] [kN] [%] [kN] [°] [MPa] [kN]

P1 plates end-sanded 60 186 – – 34 30.3 827
P2 plates fully-sanded 60 186 – – 31 31.3 865
So1 straps open 375 683 47 318 30 39.9 908
So2 straps open 248 450 49 220 30 40.7 946
So3 straps open 188 341 66 225 30 40.3 974
So4 straps open 375 683 15 102 30 40.9 947
Sc1 straps closed 375 683 5 32 34 51.5 1063
Sc2 straps closed 375 683 41 278 34 56.6 1061

a nominal
b see Section 3.1.6

3.1.4 Experimental set-up

Specimen description and installation

Eight square full-scale flat slabs with dimensions of 3.2 × 3.2 m2 and a thickness h = 0.26 m

were fabricated (Figure 3.5). These dimensions were selected to exclude any scale effects

and to not affect the punching region by the loading system. Two slabs (P1 and P2) were

internally reinforced (before pouring the concrete) with two non-prestressed CFRP plates

in each direction, as shown in Figure 3.2. Four slabs (So1 to So4) were poured with eight

inclined tubes previously inserted into the steel reinforcement, in which the open strap system
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Chapter 3. Experimental campaign

was installed and subsequently prestressed (again, two CFRP elements in each direction, see

Figure 3.3). In the last two slabs (Sc1 and Sc2), prepared for the closed system (Figure 3.4), the

inclined openings for the straps were drilled from the upper side. The angle of the inclined

CFRP segments, βp , was planned to be 34°. In Slabs So1 to So4, however, βp was reduced to

30° due to the weight of the concrete on the tubes during pouring, which was why the openings

were drilled in the last two slabs (which also corresponds to the actual application procedure).

w1 w6

w1 w6

3200 mm

250 mm

15°

32
00

 m
m

25
0 

m
m

26
0 

m
m

r  = 1500 mm

q

Figure 3.5: Experimental set-up

Slabs P1–2, So1–4, and Sc1–2 were each poured together (three series); the resulting compres-

sive cylinder strengths fc are listed in Table 3.2 (average of six cylinders per slab, diameter

150 mm, height 300 mm, and maximum aggregate size dg = 32 mm). A lower-strength concrete

was selected for the CFRP reinforcement slabs, whereas higher-strength concrete was used in

the strengthening cases to simulate new and old concrete. An identical steel-bar reinforcement

was used for all slabs and arranged in four layers: diameter Ø = 20 mm at s = 100 mm spacing,

crosswise top and Ø = 12 mm at s = 100 mm crosswise bottom reinforcement (nominal1 yield

tensile strength fsy = 500 MPa, Young’s modulus Es = 205 GPa, and concrete cover: 35 mm top,

20 mm bottom).

The geometry of the CFRP elements in the stronger slab direction (parallel to the first and

fourth steel bar layers; axis A) is shown in Figs. 3.2, 3.3 and 3.4. To exclude anchoring failure,

the CFRP plate end segments (which were sanded in both slabs) were horizontally extended

up to the slab edges. The plates were not threaded from the top in this case to avoid damaging

the strain gages (see next section, p. 33), but inserted from the sides and then lifted and fixed at

1measured average yield strengths for Ø20: fsy = 514 MPa and for Ø12: fsy = 535 MPa; refer to Table B.1
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the upper steel bars (thus wasting 12 to 20 mm of effective depth). In the strengthening slabs,

before installation of the straps, horizontal grooves and openings for the steel deviators were

cut into the top concrete cover in such a way that the straps were inserted flush to the top edge

of the concrete; refer to Figure 3.6. For the closed system, openings for the bottom deviators

were also cut. The anchors of the open system and all the deviators were then adhesively

bonded into the openings, using a filled epoxy adhesive.

Figure 3.6: Top view of installed straps

The slabs were placed on a center column, on a steel supporting plate of 0.25 × 0.25 m2. The

loading system was installed, which consisted of 20 hydraulic cylinders of 150 kN capacity

each, arranged in a circle of 3.00 m diameter around the slab center; refer to Figure 3.5. All

cylinders were connected to the same hydraulic circuit to provide uniform and symmetric

loading. The strap systems were then installed and prestressed to levels of 5 to 66% of the strap

resistance (applied prestressing forces P0, prestressing level α= P0
/

Pu , see Table 3.2) – that

is, from very low prestressing to almost maximum allowable prestressing of the strap system

(70% according to the manufacturer). Prestressing of the open system was applied stepwise

from both strap sides to eliminate friction losses. The measurements of the strap forces (see

next section), however, showed that friction losses were small (6% on average over the two

upper deviators, which corresponds to a friction coefficient of approximately 6%).

Instrumentation

Load cells were placed below the steel supporting plate and integrated into four of the 20

loading cylinders. Furthermore, small load cells were placed below the anchor nuts to measure

the strap forces; see Figure 3.3. Strain gages were applied on the CFRP plates at the beginning

of the anchorage zones, in the middle of the inclined segments, and in the middle of the top

horizontal segments; see Figure 3.7.

Deflections (marked by circles in Figure 3.7) were measured along the weak axis B at 180- /

780- / 1380-mm distances on both sides from the center point and along the strong axis A at a

180- / 1380-mm distance on both sides from the center point. On the bottom side, on one side
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Figure 3.7: Principal elements of instrumentation of slabs P, So and Sc

along the weak axis, axial and tangential in-plane displacements were measured across 100-

and 200-mm gage lengths, respectively, at 100-mm distances, starting at a 200-mm distance

from the slab center point (marked by diamonds). Similarly, on the corresponding top side,

along the weak axis again, axial and tangential displacements were measured across 100-mm

gage lengths at 100-mm distances, starting at the center point. Furthermore, along the weak

axis on the same side as the in-plane displacements, the through-thickness extension of the

slab was measured at 100-mm distances (by transducers installed in small tubes through the

slab thickness, marked by triangles), starting at 250 mm from the center point. On the top

surface, a number of cracks were selected and their width was monitored.

Experimental program

Reference measurements were made before and after prestressing. Prestressing forces were ad-

justed based on the load cell measurements below the anchoring nuts. Loading was then man-

ually applied at 100-kN intervals in load-control mode at a rate of approximately 50 kN/min. A

spring manometer allowed the simulation of displacement control and enabled the post-peak

response to be captured. A full set of measurements was executed after each loading interval.

The intervals were shortened when approaching the peak load and during the post-peak

phase. One slab, So2, which exhibited a clear peak plateau, was unloaded from this plateau

and a second load cycle was applied to investigate the system ductility (see Figure 3.8). After

demounting, the plates were cut along the strong and weak axes to analyze the failure modes.
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3.1.5 Experimental results and discussion

Load–deflection responses and failure modes

The typical load–deflection responses of one slab of each configuration – P2, So1, and Sc1 –

are shown in Figure 3.8, together with the two-cycle response of So2. The weaker axis average

deflections of both sides of the center point, wB, at 1380-mm distances, are shown (average of

deflections w1 and w6 in Figure 3.5). The deflections of the stronger axis were 85% at the first

and 87% at the second peak load (on average) of those of the weaker axis.

The nonlinear responses up to approximately 800 kN depended on the prestressing force. The

higher the prestressing force, the later concrete cracking and corresponding stiffness loss were

observed. Subsequent to cracking, the slope of all slabs developed similarly. Without any

warning, sudden punching failure occurred in Slab P2 at 1017 kN; the load dropped and could

no longer be increased. Slab P1 behaved similarly to P2, the ultimate load being slightly lower.

A similar unannounced punching failure occurred in Slab Sc1 at 1180 kN. Subsequent to a

significant drop of the load of approximately 20%, however, the slab could be slowly reloaded

up to a second, slightly higher peak of 1200 kN. Slabs So1 and So2 behaved differently. Failure

did not occur suddenly, a plateau was approached, and a ductile failure through concrete

crushing and yielding of the upper steel reinforcement developed slowly up to the ultimate

load of 1990 kN in the case of So1. So2 was unloaded from the plateau at 1801 kN, exhibiting a

residual deflection of 13 mm, and was then reloaded. Again a plateau was reached; however,

the resulting ultimate load of 1573 kN, when the load dropped definitively, was only 87% of

the first cycle maximum load. The remaining slabs – So3, So4, and Sc2 – behaved similarly.

So1 and Sc2, in particular, which were strengthened with the same straps and prestressing

levels, showed similar results, although the open system was applied in the former case and

the closed system in the latter case. From the structural point of view, the closed system

therefore did not show any beneficial effect. However, as previously mentioned, relying on

adhesively-bonded anchorage plates is not necessary, which is preferred from case to case.

500
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1500

2000

0
0 50
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So1

So2

Sc1

40302010
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V
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     2

Figure 3.8: Load–deflection response of slabs P2, So1, So2, Sc1
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All ultimate loads, VR,exp , are given in Table 3.3; two values are shown in the plateau cases,

the first and second peak values (whereby the second peak in So3 was 11% below the first

peak). The first peak loads mainly depended on the applied prestressing force P0: the highest

ultimate load was obtained for Slab So1, which had the highest prestressing force, while the

lowest values were obtained for Slabs P1–2 and Sc1 without any or the lowest prestressing

forces.

Details of the failure modes are shown in Figure 3.9. In Slabs P1 and P2, where classic punching

occurred, a comparatively shallow punching cone formed through cracks at angles of approxi-

mately 20° (measured from the horizontal bottom line). The concrete thereby debonded in

the lower curvature part from the lower side of the CFRP plate, at the CFRP sanding / concrete

interface (in P2), or CFRP / concrete interface (in P1). The debonding did not stop behind the

lower plate deviation but propagated into the anchorage zone.

CFRP slot

punching cone

CFRP plate 
(set in concrete)

So1

P2

P2

So1

Figure 3.9: Failure modes of slabs P2 and So1 (top: overall view, bottom: detail above column)
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Chapter 3. Experimental campaign

In slabs showing ductile failure, cracks delimiting the punching cone were much steeper. One

series of cracks always went from the top slot of the CFRP strap down to the support edge (at

angles of around 60°) and a second series of cracks developed at 30–48°, almost perpendicular

to the CFRP strap that crossed the crack. Concrete crushing during the ductile failure was

always observed on the bottom side around the support; refer to Figure 3.10. In one slab only –

So3 – failure of the two straps of the stronger axis occurred at the second, slightly lower, peak;

refer to Figure 3.11.

Figure 3.10: Bottom side concrete crushing
around support steel plate (So2)

Figure 3.11: Strap failure in So3 at second
(lower) peak (top view)

Load–displacement and load–strain responses

The normalized through-thickness extensions, ∆h
/

h, of Slabs P2, So1, So2, and Sc1 on the

weaker axis at 250 mm from the center point (125 mm from the support edge) are shown

in Figure 3.12. These elongations resulted from the formation of the inclined cracks. The

curves followed the trends of the deflection curves shown in Figure 3.8. The values remained

small – less than 2.5 mm (9.6‰) before the first peak load – but then strongly increased during

propagating on the plateau, up to 11.7 mm (45‰) in Slab So2 at the second peak load.

The bottom radial and tangential in-plane concrete compressive strains, the former in the

weak and the latter in the strong axis direction, of Slab So3 at ultimate load (first peak) are

shown in Figure 3.13. The axial strains were small, while the tangential strains εc,inf,tang , also

given in Table 3.3 at a 200-mm distance from the center point, were in the order of the concrete
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3.1. First experimental series

ultimate strain (negative signs mark compressive strains). All open strap slabs showed similar

results, while the tangential strains of the plate and closed strap slabs were significantly

smaller.

∆
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Figure 3.12: Through-thickness elongation
∆h

/
h of slabs P2, So1, So2, Sc1
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Figure 3.13: Bottom radial and tangential
concrete compressive strains of
slab So3 at ultimate load

CFRP plate and strap forces

The increase of the CFRP forces, ∆P , of the same slabs as above (P2, So1, So2, Sc1) is shown

in Figure 3.14. The values are averages of all four CFRP plates or straps of each slab and

normalized by the CFRP strap resistances, Pu . The corresponding values and CFRP forces at

the peak loads, PVR,exp , are given in Table 3.3 (again for both Peaks 1 and 2, if applicable).

∆
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Figure 3.14: Increase of average normalized CFRP force ∆P
/

Pu of slabs P2, So1, So2, Sc1

Subsequent to concrete cracking, normalized CFRP forces increased at different slopes: for

a certain load increment, the largest increase occurred in the CFRP plate slabs, while the
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Chapter 3. Experimental campaign

smallest was seen in the closed strap slabs; the slope of the open strap slabs was situated

in between. This more “efficient” behavior of the plate system could be attributed to the

bond between plates and concrete, whereby the sanded plate P2 slab exhibited slightly higher

plate forces and ultimate loads than the unsanded plate P1 slab, as shown in Table 3.3. The

closed strap system of Slab Sc1, which had the longest unbonded length and was almost not

prestressed, was significantly activated after the first peak punching only. Table 3.3 shows that

the first peak load was reached in all cases at a similar normalized CFRP force increase of 18%

on average (varying from 10 to 23%), with the exception of Sc1, where this value was reached

at the second peak only due to the aforementioned late strap activation. This 18% value was

increased by propagating on the plateau to the second peak up to 54% maximum in the case

of Slab So2 (refer to Table 3.3). The CFRP strap forces of the stronger axis were 18% higher on

average at the first peak and 38% at the second peak than those of the weaker axis. During

propagation on the plateau, a redistribution of forces from the weaker to the stronger axis

therefore occurred.

Slab Sc2, which reached almost the same high ultimate load as Slab So1, did not exhibit

any increase of the strap forces (during loading subsequent to prestressing) in the lower

segment where the forces were measured (at the turnbuckle). This result could be explained

by significant friction forces, which occurred at the lower deviators, where the straps were

deviated at an angle of 146° (in contrast to the upper deviations of 30 / 34°). Based on the

previous experiences (So1 in particular), a CFRP force increase in the inclined segment of

∆P = 0.18Pu was assumed in the following calculations (average of all other slabs, refer to

paragraph above and Table 3.3).

Shear transmission in concrete

The shear forces transmitted in the concrete to the support, Vc , can be estimated as follows

Vc =V −Vp =V −8P sinβp (3.1)

where Vp is the vertical component of the CFRP force, P , which is taken as the average force

of the four CFRP elements; and βp is the inclination angle of the CFRP elements. Dowel

effects from the bending reinforcement thereby were neglected as yielding occurred. The

corresponding curves for Slabs P2, So1, So2 and Sc1 are shown in Figure 3.15, while the values

at the two peak loads, Vc,VR,exp,1/2 , of all slabs are given in Table 3.3. The negative Vc -values on

the abscissa of Figure 3.15 represent the prestressing forces, which turned to positive values

with increasing load. Maximum concrete shear force values were reached at the first peak load

and then decreased during propagation on the plateau toward the second peak (except in the

P1–2 cases without second peak). Table 3.3 also shows this force redistribution between the

two peaks, particularly for the open strap system: at the first peak, 13 to 43% of the load was

transferred via the concrete while these values decreased to 0 to 23% at the second peak. The

remaining forces were transferred by the CFRP suspension.
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Figure 3.15: Shear force Vc transferred by concrete of slabs P2, So1, So2, Sc1

3.1.6 Modeling and discussion

Empirical relationship to predict first peak load

As deduced previously, the concrete shear loading was reduced with increasing CFRP forces.

Based on these results, at the peak load, VR,exp , the CFRP vertical component, Vp,VR,exp , was

compared to the concrete shear force, Vc,VR,exp , in Figure 3.16 (corresponding values are given

in Table 3.4). To correctly compare the different parameter combinations, the former values

were normalized by Vpu (sum of vertical components of strap resistances, Pu) and the latter

by VR0 [theoretical punching resistance of unreinforced concrete slab, calculated using the

simplified design method according to Muttoni (2008) as the intersection between the load–

rotation curve – approximated with his Eq. 82 taking the flexural capacity of the slab, V f lex , into

account – and the failure criterion calculated according to his Eq. 53]. The estimated values

are given in Table 3.2.

Figure 3.16 shows that the resulting values are distributed around a straight line:

Vp,VR,exp

Vpu
= 1−

Vc,VR,exp

VR0
(3.2)

Taking furthermore the first peak relationship into account

PVR,exp = P0 +0.18Pu = (α+0.18)Pu (3.3)

2power function ψ= 1.5
rs

d

fsy

Es

(
V

V f lex

)1.5

3see Eq. 4.3

41



i
i

“PhD*Thesis*Koppitz” — 2015/1/15 — 17:11 — page 42 — #58 i
i

i
i

i
i
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and

VR,exp =Vc,VR,exp +Vp,VR,exp (3.4)

results in an empirical relationship to predict the first peak load VR,exp,1 as follows

VR,pred ,1 =VR0 +
(
Vpu −VR0

)
(α+0.18) (3.5)

or

VR,pred ,1 =VR0 +
(
8Pu sinβp −VR0

)
(α+0.18) (3.6)

The resulting predicted first peak loads VR,pred ,1 are compared to the experimental values,

VR,exp,1, in Table 3.3 and the deviations ∆ (in percent) are shown. Considering the three

different CFRP systems and the multitude of other parameters, the agreement is fair (average

deviation of 17%). The effects of the main parameters (CFRP resistance, prestressing level,

and concrete shear resistance contribution) on the ultimate load and their interaction are

combined into a coherent formulation and the resulting trends are appropriately simulated.

Additional experimental results, however, are required to improve the relationships and reduce

the scatter.
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Figure 3.16: Maximum normalized CFRP vertical component, Vp,VR,exp,1/2

/
Vpu , vs. max. nor-

malized concrete shear force, Vc,VR,exp,1/2

/
VR0 (‘/1’: first peak, ‘/2’: second peak)

Cantilever model to predict second peak load

The aforementioned analysis has shown that slabs clearly exhibiting ductile failure mode (So1

to So4, and Sc2) transferred, at the second peak, almost the entire ultimate load via the CFRP

straps, only 0 to 23% being transferred by the concrete (see Table 3.3). Failure occurred though
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concrete crushing at the lower edge during yielding of the upper tensile steel reinforcement.

From these observations, the formation of a cantilever mechanism at the second peak could

be derived, as shown in Figure 3.17. The majority of the load (77 to 100%) was transferred via a

compression strut, at an angle of approximately 16°, to the anchoring point of the CFRP strap.

Only the small concrete contribution was directly transferred, across the crack of the punching

cone, at an angle of approximately 8°, toward the column. The upper steel reinforcement bore

the necessary deviation force. At the lower anchoring point the compression strut was hung

up by the strap. This deviation produced a compressive force parallel to the lower slab edge.

From the high tangential compressive strains around the column and the low axial strains it

could further be derived that this compressive force was not directly supported by the column

but that a compression ring formed around the column.

The model is conceived as a cantilever beam, which is loaded by one-fourth of the total load at

a 1.3-m distance from the center point (which represents the distance of the center of gravity

of a 90° circle segment). The strut-and-tie model is isostatic and the member forces can be

calculated from the geometry shown in Figure 3.17, the second peak load, VR,exp,2
/

4, and the

shear fractions transferred by the CFRP system and concrete. The application of this model to

predict the ultimate load is preferable because it is based on clear equilibrium conditions and

not only on fitting of the experimental results (as the first-peak model does).

Section A-A

A A

~16° 34°

~
40

 m
m

1300 mm

~500 mm

compression 
ring

V

     4
R,exp,2 VR,exp,2

2 P

VR,exp,2
C

     2
VR,exp,2

C

Figure 3.17: Cantilever model at second peak
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The resulting compressive forces in the bottom compression ring, CVR,exp,2 , are given in Table 3.5.

Assuming a width of the compression ring of 2 × 500 mm (the distance from the anchoring

point to the column edge on each column side) and taking into account moment equilibrium

results in a thickness of the compression ring of 40 mm, which seems reasonable. Calculating

further the stress in the compression ring, fc,VR,exp,2 = CVR,exp,2

/(
2×500×40mm2

)
, led to the

values for the open system given in Table 3.5, which represent 1.1 to 1.5 times the uniaxial

concrete strength (values fc,VR,exp,2

/
fc ). This result also is reasonable – a compressive strength

of 1.2 to 1.4 times the uniaxial strength can be assumed at the lower edge due to a multiaxial

stress state according to SIA 262 (2013). A similar analysis showed that the compression

diagonal from the strap deviation point to the support was not critical.

Table 3.5: Cantilever model at second peak

So1 So2 So3 So4 Sc1

VR,exp,2

4 [kN] 498 450 394 435 300

CVR,exp,2 [kN] 2397 2386 1898 1792 867

fc,VR,exp,2 [MPa] 60 60 47 45 22

fc,VR,exp,2

fc
[–] 1.5 1.5 1.2 1.1 0.4

3.1.7 Conclusions

Three different CFRP systems were used to reinforce new or strengthen existing concrete slabs

against punching. CFRP plates were applied as partially or fully bonded internal slab reinforce-

ment while CFRP straps were used in an open and closed configuration for strengthening. The

plates were untensioned whereas the straps were prestressed to different levels. The following

conclusions were drawn:

• Untensioned plates or only very low prestressed straps (<5% of their resistance) could

not prevent a brittle punching failure. Strap prestressing of at least 15% and more led

to a ductile behavior exhibiting a first peak load, a subsequent plateau, and a second

peak load, although the CFRP material systems were brittle. The punching resistance of

the unreinforced slabs could be increased by 8 to 18% only in the brittle cases, whereas

increases of 73 to 114% could be achieved in the ductile cases via a redistribution of

forces from the concrete to the strap systems.

• Sanding of the plate systems could not prevent debonding in the lower curved part of

the plates, which prevented a significant stress increase in the cracks of the punching

cone. Strengthening of the bond between concrete and sanded surface may improve the

behavior. In the strap cases, prestressing of at least 15% of the strap resistance prevented

negative effects of the unbonded system (which became evident at lower prestressing

levels).
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• An empirical model was established that is able to estimate the first peak load and is

applicable to all three CFRP systems (internal plates, open or closed strap system). It

takes the following parameters into account: CFRP plate or strap resistance, CFRP angle,

CFRP prestressing level, and punching load of the unreinforced slab. Considering the

large parameter ranges and the limited number of tests, the model provides accept-

able accuracy. It demonstrates and takes into account the interaction of the different

parameters in a coherent way and can be refined further.

• A cantilever strut-and-tie model was established to estimate the second peak load of

the ductile cases (which exhibit sufficient prestressing). The model provides acceptable

accuracy.

Further research is required, in particular, to take the following additional parameters into

account: plate thickness (which may change the 18% constant of CFRP force increase) and

pre-deformation (cracked state) of existing slabs. Furthermore, the experimental database

needs to be extended to further refine the models.
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3.2 Second experimental series

Reference detail

Robert Koppitz, Albin Kenel and Thomas Keller. “Punching shear strengthening of flat slabs

using prestressed carbon fiber-reinforced polymer straps”. Engineering Structures, 2014, Vol.

76, pp. 283–294. DOI: 10.1016/j.engstruct.2014.07.017

Abstract

An experimental study of full-scale reinforced concrete flat slabs crosswise strengthened

with prestressed carbon fiber-reinforced polymer (CFRP) straps against punching shear was

performed. The effects of two strap anchoring systems and of slab thickness on punching

behavior were compared. In one system the anchors were adhesively bonded to the concrete

surface, while an external steel frame balanced the horizontal strap force components in

the second system. Strap activation and thus strap force increments were higher in cases

with either lower prestressing or higher strap stiffness. The deformability of the steel frame

allowed a balancing of the strap forces. In the cases with steel frame, the friction bond between

the steel anchors and the concrete surface reduced the concrete compression zone. The

system stiffness was thus increased and the rotation capacity reduced compared to the cases

with bonded anchors. The thickest slab exhibited a reduced rotation capacity and thus strap

activation. The slab therefore failed at the lowest load increase, which however was still 67%

above the theoretical resistance of the non-strengthened slab.

3.2.1 Introduction

In the recent past an increasing number of load-bearing structures in the structural engi-

neering field have required increased maintenance or even strengthening for reasons such

as insufficient durability or structural resistance due to, for instance, changes of usage, see

Chapter 2. Many building structures comprise reinforced concrete (RC) flat slabs supported by

columns. In this case, one design criterion concerns the sudden and brittle punching failure

that causes a significant loss of load-bearing capacity and may eventually lead to progressive

collapse resulting from a limited redistribution capacity of internal forces inside the slab. By

providing sufficient shear reinforcement around the column, the punching resistance as well

as the deformation capacity of the slab can be enhanced (Lips et al. 2012). The punching

resistance is not a constant value but depends on the slab rotation ψ and decreases with

increasing rotation (Muttoni and Schwartz 1991).

However, many existing flat slabs were constructed without any or only insufficient shear

reinforcement in the column zone and need to be strengthened against punching shear

failure. Several concepts4 exist for the strengthening of flat slabs against punching shear

4see also Section 2.2.3 and tabular summary in Appendix A
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such as a widening of the slab support with concrete mushrooms or steel heads (Martinez-

Cruzado et al. 1994; Hassanzadeh 1996). In addition, the bending resistance of the slab can be

increased with an external reinforcement made of steel or new materials like fiber-reinforced

polymer (FRP) composites (Harajli and Soudki 2003; Ebead and Marzouk 2004; Chen and Li

2005; Esfahani et al. 2009; El-Enein et al. 2014). For both concepts the behavior of the slab

remains brittle however. A third possibility is the installation of additional shear reinforcement,

which normally increases ductility; examples are shear studs (Menétrey and Brühwiler 1997;

El-Salakawy et al. 2003; Adetifa and Polak 2005; Fernández Ruiz et al. 2010; El-Shafiey and

Atta 2011; Feix et al. 2012; Polak and Bu 2013), drop panels (Martinez-Cruzado et al. 1994;

Ebead and Marzouk 2002), FRP shear bolts (Lawler and Polak 2011; Meisami et al. 2013) or

stirrup solutions with FRP laminates (Binici and Bayrak 2005a; Sissakis and Sheikh 2007). In

some cases, the elements are prestressed for immediate unloading of the slab (Menétrey and

Brühwiler 1997; El-Shafiey and Atta 2011). However, in the case of prestressed bolts, due to

their short length, even small deformations caused by creep for example can substantially

decrease the designated prestressing force. Faria et al. (2009, 2011) strengthened square

concrete slabs with a side length of 2.3 m and 100- or 120-mm thickness with prestressed steel

strands. These were placed above the column on the upper concrete surface and anchored on

both sides in the bottom part of the slab, in holes drilled at an inclination of ca. 11°, using an

epoxy adhesive. The punching resistance was increased by 34–48% for slabs with two strands

in one direction only and by 61% for one slab with strands in both directions. The prestressing

method also improved the serviceability limit state and the post-collapse behavior where a

second peak load at 78% of the first peak load was reached on average (Faria et al. 2012).

A similar solution for improving punching shear resistance was presented in Section 3.1. In this

case, four non-laminated prestressed CFRP straps (Meier and Winistörfer 1998; Lees and Win-

istörfer 2011) were installed crosswise around the column (Keller 2010); see Figure 3.18(a)–(b).

The thin, flexible straps allowed small radii of curvature and thus an optimum strap inclination

of between 30° and 60° (perpendicular to the shear crack), avoiding a glancing intersection

between the borehole (diameter 55 mm) and the upper concrete surface. Furthermore, the

straps were anchored below the slab using steel anchors adhesively bonded to the concrete

surface. Laboratory experiments on eight full-scale flat slabs showed that, although CFRP is a

brittle material, a strap prestressing of at least 15% assured a ductile system behavior with a

first peak load, a subsequent plateau with redistribution of forces from the concrete to the

strap system and a second peak load at 89 to 103% of the first peak load. A punching shear

resistance increase of up to 114% was observed in the ductile case.

The prestressed CFRP strap strengthening system presented in Section 3.1 was further de-

veloped. The adhesively-bonded anchors, which allow direct transmission of the horizontal

component of the strap forces to the concrete, also present some drawbacks. The limited

shear transfer capacity of the adhesive leads to relatively large contact plates and thus heavy

constructions, and the adhesive joint, which is sensitive to elevated temperatures, has to be

thermally insulated. A purely mechanical (unbonded) anchor system was thus developed and

again examined in full-scale punching shear experiments.
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In the following the effects of the modified anchoring system on the overall system behavior are

analyzed. The effect of different slab thicknesses on punching behavior is investigated, which

was not done in Section 3.1. Furthermore, preloading up to the serviceability load was applied

before strengthening to simulate the effect of concrete cracking during the preceding service

life, which may lead to residual slab rotations and thus lowered punching shear resistance.

β
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Figure 3.18: Adhesively-bonded anchors: (a) sectional and (b) bottom view (So1). Anchors
connected by steel frame: (c) sectional and (d) bottom view (Sr1), (e) top view with
crossed CFRP straps above central column (Sr2), and (f) detail view of end-anchor
with force washer between anchor plate and bolt head (Sr1)
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3.2.2 New mechanical anchoring system

The new anchoring solution includes a steel frame, which is mounted underneath the slab

around the column and serves as support for the CFRP strap anchors, see Figure 3.18(c)–(f).

The presence of the steel compression frame alters the flow of forces. The horizontal compo-

nents of the strap forces no longer have to be transmitted to the concrete by shear stresses but

can be directly carried by the steel frame, which unloads the concrete compression zone. Three

full-scale slabs, Sr1 to Sr3, of nominal heights of 260, 180, and 320 mm were experimentally

investigated using the new anchoring system. The results were compared to those obtained for

the four slabs So1 to So4, all of 260-mm height and comprising the adhesively-bonded anchors.

The dimensions of the compression steel frame had to be adapted to the slab thickness and

thus varied slightly, see Figure 3.19(a)–(b). The frame was fixed to the slab by vertical bolts

with sufficient bolt clearance to assure buckling stability but not influence the horizontal flow

of forces.
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Figure 3.19: Plan view of steel frame with (a) dimensions and bolt holes, (b) frame thickness,
applied strain gages on upper (S10 / S12) and lower (S2 / S8) steel surfaces, and
acting forces

3.2.3 Experimental set-up

Specimen description and installation

The dimensions of the three investigated slabs were 3.2 × 3.2 m2. Effective slab thicknesses, h,

and average effective depths (distance from the bottom slab edge to the average level of the

centroids of the two upper reinforcement layers), dm , are listed in Table 3.6. Also listed are the

corresponding values of the previous slabs So1 to So4 with adhesively-bonded anchors. All

slabs were supported by a center column, represented by a square steel plate of 0.25 × 0.25 m2.

Strap installation was identical for all slabs. Subsequent to the drilling of the required eight
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holes at angles of βp = 34°, the steel frame and the anchors were fixed below the slab. The

CFRP straps were then pushed through the holes and steel pins were fitted into the strap ends

in order to apply the prestressing forces by pulling the pins back, see Figure 3.18(f).

Slabs Sr1 and Sr2 were uniformly loaded by 20 hydraulic cylinders of a capacity of 150 kN each,

which were arranged around the slab center in a circle with a radius of 1.50 m, see Figure 3.20.

For slab Sr3 of 325-mm thickness, four additional cylinders along the principal axes A and B

were installed.

Table 3.6: Specimen overview with relevant parameters and results

Slab h dm βp fc Ec Ap Pu P0 α VR0 VR,exp

[mm] [mm] [°] [MPa] [GPa] [mm2] [kN] [kN] [%] [kN] [kN]

So1 260 194 30 39.9 33.9 375 683 318 47 908 1939a

So2 260 199 30 40.7 33.7 248 450 220 49 946 1779a

So3 260 204 30 40.3 33.0 188 341 225 66 974 1778a

So4 260 199 30 40.9 34.9 375 683 102 15 947 1771a

Sr1 257 200 34 48.1 41.0 375 683 203 30 1010 1981
Sr2 187 138 34 43.1 35.8 375 683 199 29 524 1073
Sr3 325 264 34 44.2 35.1 375 683 208 31 1510 2515

a First peak load. In Sr1–3 no reloading to second peak carried out

Material properties

To simulate a 30- to 40-year-old RC slab, concrete with compressive cylinder strengths, fc ,

of between 40 and 50 MPa was used (maximum aggregate size dg = 32mm). Table 3.6 lists

the cylinder strengths for all slabs at the time of slab testing. These values were determined

from six standard cylinders (diameter 150 mm, height 300 mm) per slab, which were tested

both at the time of slab testing and at other ages. The values were adjusted according to the

strength-in-time-relationship in the fib Model Code 2010 (2013). The Young’s modulus, Ec ,

was derived from two standard cylinders at the time of slab testing.

All slabs were reinforced with an identical reinforcement layout. The spacing of all layers was

s = 100mm and the bottom reinforcement always consisted of rebars Ø = 12mm, arranged

crosswise. The diameter of the top reinforcement was altered from Ø = 16mm to 20 mm and

22 mm according to slab thicknesses to keep the average geometrical reinforcement ratio,

ρm , constant at approximately 1.5%. Axes A and B refer to the 1st / 4th layer (strong axis)

and 2nd / 3rd layer (weak axis) of the reinforcement. For every rebar diameter five tensile

tests were carried out on 1-m pieces. Average yield strength, fsy , for the top reinforcement

was 521, 515 and 525 MPa (Ø16, Ø20 and Ø22), and 534 MPa for the bottom reinforcement

(Ø12), respectively; the Young’s modulus was Es = 205 GPa. The steel compression frame and

anchors were made of steel grade S355 [EN 1993-1-1 (2005)]. The pins were composed of a

high-strength 42CrMo4 [EN 10083-3 (2006)].
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The non-laminated CFRP straps were produced by Carbo-Link AG, Fehraltorf, Switzerland.

The straps of Sr1–3 consisted of thermoplastic PES (polyethersulfone) tapes containing unidi-

rectional Toray T700SC fibers with a fiber content of 55%. The matrix was thus different from

the thermoplastic Nylon PA12 matrix used in slabs So1–4 and the fiber content was slightly

lower (60% in So1–4). The tape layers were continuously wrapped around two circular steel

pins during fabrication. The two outer layers were fusion-bonded along a length of about

100 mm; the inner end was anchored by a friction bond (Lees and Winistörfer 2011). The

30-mm-wide straps were protected with a glass braided sleeve and a plastic foil [Figure 3.18(e)].

The dimensions (thickness, tp , cross sectional area, Ap ) and mechanical properties (mean

and 5% fractile tensile strength, fpu and fpk , Young’s modulus, Ep ) of one tape layer and of the

multilayer strap system are summarized in Table 3.7. The strap resistance, Pu , was identical

for slabs Sr1–3. The applied prestressing force of each strap, P0, thus the prestressing level

α= P0
/

Pu , was kept constant at around 30%. The values and those obtained for slabs So1–4

are summarized in Table 3.6. The prestressing force P is always the average of the four straps.

Table 3.7: CFRP tape and strap properties (width bp = 30mm)

CFRP Matrix Loops tp Ap fpu fpk Ep

[mm] [mm2] [MPa] [MPa] [GPa]

Tape (1 Layer) PA12 – 0.125 3.75 2460 2100 132
PES – 0.125 3.75 2460 2100 120

Strap system PA12 2×25 6.25 188 1820 1660 132
PA12 2×33 8.25 248 1820 1660 132
PA12 2×50 12.5 375 1820 1660 132
PES 2×50 12.5 375 1820 1660 120

Instrumentation

Four of the hydraulic cylinders were equipped with load cells. The dead loads of the slabs

(including the equipment) of G = 60/80/98kN had to be added to the applied cylinder loads

for nominal slab thicknesses of h = 180/260/320mm. The forces in the CFRP straps were

monitored by small force washers, which were placed below the anchor nuts at the deviation

pins, see Figure 3.18(f).

An Image Correlation System (ICS), refer to Herwig and Motavalli (2012), was used for measur-

ing the full field displacements of the entire upper slab surface of slabs Sr1–3, see Figure 3.20(c).

The surface was prepared with white paint on which a stochastic pattern of black dots at ca.

18- to 20-mm intervals was applied. Two digital 4-megapixel cameras were installed at a fixed

position 4.9 m above the measuring field. At every load stage, the cameras simultaneously pho-

tographed the whole patterned slab surface. Numerical analysis of the photographs allowed

the deflections of a predefined measuring grid (with 15-mm spacing, i.e. from around 45 000

measuring points) to be obtained in all three directions relative to a reference measurement

at zero loads. However, coarser meshes were interpolated for analysis of the slab deflections
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(mesh grid size of 100 mm) and crack patterns (25 mm grid size). To validate the ICS deflection

data, the deflections, w , were also measured by 5 LVDT sensors at four points next to the col-

umn [w3,4,9,10 in Figure 3.20(b)] and at one slab edge (w8) on the strong axis A. In slabs So1–4,

the deflections were only measured by 10 LVDT sensors (w1–w6 along the weak, w7–w10 along

the strong axis), see Figure 3.20(b). For all the main experiments, the average slab rotation

about the two axes A and B, ψm , was obtained, derived by using the LVDTs near to the slab

edge and next to the column or by equivalent points in ICS. In the preloading experiments the

slab rotation was derived as ψA = (w8 −w9)
/

1120mm, as the ICS data was not recorded.

Tangential in-plane displacements were obtained from nine strain gages, B1–B9 (gage length

150 mm), on the bottom slab surface along axes A and B and one diagonal [Figure 3.21(a)]. In

slabs So1–4, two LVDTs, U5–U6, with 200-mm gage lengths measured displacements perpen-

dicular to the weak axis B, starting at a distance of 200 mm from the slab center [Figure 3.21(b)].

Additional strain gages S2 / S10 and S8 / S12 (gage length 6 mm) were applied on the top and

bottom surfaces of the steel frame, to determine the compressive frame forces [Figure 3.19(b)].
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Experimental program

Six load stages (LS) were defined, see Figure 3.22. LS1 denotes the maximum load during

preloading (before final installation and prestressing of the CFRP straps) and is equal to a

service load, Vser , of the non-strengthened slab, assumed as being ca. 65% of its theoretical

(punching) failure load, VR0. LS2 and LS3 mark the no-load stage prior and subsequent to

prestressing up to the strap force P0. LS4 is at the same applied load as LS1, but after preloading
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and prestressing, while LS5 and LS6 denote the failure loads of the non-strengthened slab,

VR0, and strengthened slab, VR,exp , respectively. On the abscissa, the product of slab rotation,

ψ, average effective depth, dm , and a factor, kg , which takes into account the aggregate size, is

shown according to Muttoni (2003). Muttoni and Schwartz (1991) assumed the product ψdm

to be proportional to the width of the critical shear crack. VR0 was calculated according to

Muttoni (2008) using the simplified method (see Section 3.1.6, p. 41); the results are given in

Table 3.6.

Reference measurements were taken before preloading and prior to and after prestressing

of the CFRP straps. The further loading program for slabs Sr1–3 was similar to that for slabs

So1–4, see Section 3.1.4, p. 34. Loading intervals, initially 100 kN, were shortened when ap-

proaching the failure load. After each interval a full set of measurements was recorded. During

experiment Sr3, a sudden fracture of one of the 24 tension rods occurred at V ≈ 1750kN. The

slab was completely unloaded and reloaded at this stage (not shown in the following diagrams)

and further loaded up to failure.

3.2.4 Experimental results and discussion

Preloading

Slabs Sr1–3 were preloaded to LS1 before the CFRP straps were installed and prestressed. To

take into account different concrete compressive strengths, fc , and the slab geometry, the

load–rotation curves, shown in Figure 3.23, were normalized according to Muttoni (2008): on

the ordinate an equivalent shear stress, V
/

(u0 ·dv ), along a control section, u0, located at dv
/

2

(here: shear-resisting effective depth dv = effective depth dm) from the supported area [see

Figure 3.20(a)], was calculated and divided by
√

fc , which is assumed as being proportional

to the concrete shear strength. The influence of the slab thickness was not fully eliminated

because the plate stiffness is proportional to the third power of the effective depth; see also

Guandalini (2005). On the abscissa the same product as described above (in Figure 3.22) was

applied.

All curves in Figure 3.23 exhibited a steep slope at the beginning until cracking of the concrete

occurred and stiffness losses were observed for additional loading. The incomplete normal-

ization of the slab thickness is illustrated by the steeper slope of Sr3 (thick) compared to Sr2

(thin) in the cracked elastic state. A residual crack width (or slab rotation) after the complete

unloading to LS2 was observed for all slabs. By subsequent prestressing of the CFRP straps

up to P0 (LS2→LS3) the residual cracks were fully overpressured, which led to a stiffer system

behavior during reloading that continued parallel to the initial slope of the uncracked slab.

Load–deflection responses and strap activation

The vertical deflections obtained from ICS are shown in Figure 3.24 at the three load stages

LS4–6. At LS6 (failure load), the location of the measuring points w1 and w6 are indicated;
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by strap prestressing and reloading

their average deflection is denominated as wB. The influence of slab thickness on deformation

behavior is clearly shown: the thinnest slab, Sr2, exhibited the highest deflections and failed at

1073 kN at wB = 37.0mm. In contrast, the thickest slab, Sr3, failed at 2515 kN but exhibited

very stiff behavior (wB = 11.6mm). Slab Sr1 lay in between, exhibiting a punching resistance

of 1981 kN at 19.8 mm deflection. The shape of the contour lines is always elliptic due to the

different effective depths of the 3rd and 4th reinforcement layers. This effect of the orthotropy

is accentuated for the thin slab due to the largest difference in the effective depths of the two

main axes compared to dm . Between LS4 and LS5 the slab deflections approximately doubled

and subsequently significantly increased up to failure. Note that parts of the contour lines are

masked because of interference caused by measuring devices on the slab surface.

The normalized load–rotation and normalized strap force increase–rotation of all slabs are

shown in Figure 3.25. The CFRP strap force increments, ∆P , were normalized by the ultimate

strap resistance of the largest strap, Pu,max = 683kN. The applied prestressing force P0 influ-

enced the load–rotation behavior and strap activation, which is demonstrated by comparing

slabs So1 and So4 with the same strap size. So1 with P0 = 318kN behaved stiffer than So4

(P0 = 102kN), which may be attributed to the fact that the vertical components of the higher

strap forces unloaded the slab and further compressed it via their horizontal components.

On the other hand slab So4 was less unloaded and reached the cracked elastic state earlier.

To fulfill the equilibrium conditions, its straps thus had to bear additional loads already at

a lower external load, resulting in the steeper slope of the strap–force activation curve of

So4 compared to So1. Contrary to P0, the influence of the axial strap stiffness Ep Ap on the

load–rotation behavior was small, as the curves of So2 and So3 (with the same P0) were almost

identical despite the different strap sizes with cross sections of 248 and 188 mm2 (see Table 3.6).

However, the axial stiffness directly influenced the strap force activation. Slab So3 exhibited

a significantly smaller slope than So2 and was thus less activated. Although a higher P0 is

generally preferred to permanently unload the concrete slab, it is possible — at least to some
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extent — to compensate a lower initial prestressing force (limited by the dead load, G , of the

slab for example) with a steeper strap activation gradient by installing a larger strap. Thus the

interplay of P0, ∆P and Ep Ap can be optimized from case to case, depending also on the ratio

of live to dead loads.
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Slab Sr1 was initially prestressed to P0 = 203kN, approximately equal to So2–3 and had the

same strap cross sections as So1 and So4 (375 mm2). The smaller gradient of Sr1 compared to

So1–4 in the load–rotation response, at the beginning up to around 0.25
p

MPa, resulted from

preceding concrete cracking during preloading (Figure 3.23). The load–rotation curve of Sr1 lay

in between those of So1 and So4, corresponding to the order of P0 (203, 318, 102 kN). However,

although the P0 of Sr1 was about the same as that of So2–3, the slab eventually behaved stiffer
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and approached the curve of So1. This can be attributed to the steel frame, which caused a

deformation reduction due to its additional stiffness and bearing of the compressive forces

(see next section, pp. 58–61). The strap activation curves of Sr1, So2 and So3 were directly

related to the axial stiffness, and the steepest slope of Sr1 corresponded to the largest strap

size. The slabs Sr1, So1 and So4 had the same strap size, and despite the different P0 the

curve slopes of Sr1 and So4 were almost identical. Because of the steel frame the straps in Sr1

were more strongly activated than they would have been without it (also discussed in the next

section).

Slabs Sr1–3 had the same initial prestressing force and strap size. Sr1 and Sr3 exhibited almost

identical load–rotation and strap activation–rotation responses and behaved stiffer than Sr2

although the latter was more strongly prestressed relating to its smaller slab thickness. For the

thin slab the increased orthotropy disproportionately influenced the slab stiffness leading to a

softer response in both diagrams in Figure 3.25(b).

Slabs So2–4 failed at normalized loads of ca. 0.85
p

MPa; the punching resistance of slab So1

was 0.98
p

MPa at approximately the same rotation as the other three slabs with adhesively-

bonded anchors. The normalized punching shear resistance of the three slabs with a steel

frame was also similar, ranging between 0.78 and 0.88
p

MPa, the lowest value was observed

for the thick slab Sr3. A summary of the experimental results is shown in Figure 3.26, where

the ultimate loads are normalized by the punching shear resistance of the non-strengthened

slabs [calculated using the simplified method of Muttoni (2008); values in Table 3.6]. Both

end-anchor fixation systems significantly strengthened the slabs and raised the resistance by

67–114% compared to the theoretical value VR0. The high initial prestressing force of 318 kN

in So1 caused an above-average increase, with the thickest slab Sr3 exhibiting the lowest

punching resistance increase of 67%.

Interaction between steel frame and concrete slab

In addition to the above-described effects of the steel frame on the load–rotation responses and

strap activation, a balance of the strap forces was observed during the stepwise prestressing

and subsequent loading up to failure due to the crosswise arrangement of the straps around

the rectangular steel frame, as shown in Figure 3.27(a), which shows the development of the

horizontal components of the strap forces, P cosβp . The final prestressing forces were the

same along both axes. Subsequently, both strap forces increased almost linearly and only

started to diverge slightly in the last phase. The prestressing of two parallel straps compressed

the frame in one direction but pushed it apart in the perpendicular direction, which led to

an activation of the straps in that direction and thus a balance of the forces. The slabs with

the rigidly supported (bonded) anchors did not exhibit any noticeable interaction between

the CFRP straps during prestressing and the final prestressing forces along the two axes were

thus different, see Figure 3.27(b). During further loading, the straps along the strong axis were

more strongly activated than those in the weak direction.
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rotation of So1–4, (c) friction bond between anchor and slab
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Chapter 3. Experimental campaign

The horizontal strap force components of Sr1–3 were further compared to the tangential forces

in the steel frame, Ntang , which were derived from the strain gage measurements on the steel

surface. The ratio of the tangential forces in the steel frame along the two axes depended on

the aspect ratio of the steel frame and thus its different stiffness in the two directions. The

tangential forces in the steel frame were different from the horizontal components of the

strap forces; close to failure Ntang in the steel frame was 40–50% higher than P cosβp . This

difference resulted from slipping friction between the steel anchors and concrete surface

caused by the frame, which hindered the movement of the anchors towards the column, see

Figure 3.27(c). The compression zone of the slab was thus unloaded by a friction-induced

force acting on the bottom surface of the slab.

The development of the bottom tangential in-plane concrete strains, εc,inf,tang , in the direction

of axis A is shown in Figure 3.28(a) for the load stages LS1–6 (where applicable) of slabs So1,

So2 and Sr1. At LS3 the strains were almost zero or minor tensile strains of max. 0.2‰ were

measured, and they increased up to LS6 proportionally to the load–rotation response. The

beneficial effect of the strengthening measure is shown for Sr1, where the tangential strains

of LS5 were almost identical as for LS1 but at a 44% higher applied load (980 vs. 681 kN). As

the ultimate load was approached (LS6) the strains progressively increased and slabs So1–4

reached an almost identical peak compressive strain value of 3.2‰ at a 200-mm distance from

the column center (Table 3.3). A smaller strain peak of −2.5‰ was however measured for

slab Sr1, confirming a reduction of the slabs’ concrete compressive forces by the steel frame

contribution. The corresponding tangential in-plane concrete strains for slabs Sr1–3, but in

all directions and at ultimate loads, are shown in Figure 3.28(b). In the direction of the weak

axis B higher compressive strains than along the strong axis A were measured, the difference

between them being reduced with increasing slab thickness (affine to the vertical deflection

measurements). At 45° only low values were recorded.

The installed steel frame caused an unloading of the concrete slab and thus led to the gain

in slab stiffness, shown in Figure 3.25. Furthermore, the rigid frame support and associated

slipping friction between anchors and concrete caused an additional elongation of the carbon

straps, which resulted in the observed stronger strap activation.
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Crack pattern in tensile zone

Since ICS allows the monitoring of the displacements of the upper concrete surface in all three

directions it was possible to calculate principal strains ε1 in the horizontal plane by applying

Mohr’s circle for the axial strains in A- and B-direction, as shown in Figure 3.29 for load stages

LS4 to LS6 of slabs Sr1–3. The ICS images represent crack patterns as large strains represent the

propagation of a crack between two grid points. Large tangential strains representing radial

cracks were measured in all slabs, while large radial strains indicating clear crack rings around

the column appeared only in Sr1 and Sr2. Again for the thin slab Sr2 the largest strain peaks

were reached (due to the large rotation), whereas for the thick slab Sr3 they were significantly

lower. Despite the presence of only two CFRP straps in each of the two main axes, a uniform

crack pattern was observed for all three slabs, which was influenced only by the orthotropy.
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The crack pattern of slab Sr2 at LS5 is shown in Figure 3.30, together with two saw-cuts running

along the weak axis B and through the strap boreholes parallel to axis A; also shown are the

ICS deflections along these sections at LS5 and LS6. The ring of radial strain peaks was more

or less located above the strap anchoring points where the strap forces acted on the concrete

surface. With a weaker strap activation, i.e. at LS5, these points acted as almost rigid supports

for the slab and the outer part of the slab was thus fully fixed along this ring of maximum

radial stress peaks. This is confirmed by the maximum curvatures (and horizontal tangents) in

the deflection curves at these locations (see LS5). At the same load, the truncated punching

cone started developing whose edge, on the level of the upper longitudinal reinforcement,

almost corresponded to the location of the ring of radial strain peaks. The location of the strap

anchoring points thus seemed to define the edge location and thus the angle of the punching

cone. With a stronger strap activation, i.e. LS6, the supports at the anchoring points started

lowering and the points of maximum curvature moved towards the column.
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Influence of slab thickness

The interaction between the presented punching shear-strengthening system and the con-

crete slab was investigated for three different slab thicknesses in a range of 187 to 325 mm.

The summary of the failure loads in Figure 3.26 confirms a significant increase of punching

resistance for all slabs. Nevertheless an influence of the slab thickness is visible, as the increase

was lowest for the thickest slab Sr3 and highest for the thinnest slab Sr2. Thicker slabs tend

toward a relatively earlier punching failure due to a reduced deformability with increasing

slab thickness, which limits the possibility of increasing the strap forces during loading since

they require slab deformations to become further activated before failure. At LS6, the strap

forces of Sr1 and Sr2 increased by 16%, while those of the thick slab Sr3 increased by only 11%,

as indicated by the black circles plotted in Figure 3.25. Another effect influencing resistance

is the variation of strap prestressing relative to slab thickness; the thin slab Sr2 had a higher

strengthening level in relation to slab thickness than the thick slab Sr3 for identical initial

prestressing forces of ca. 200 kN.

The square symbols in Figure 3.25 denote the theoretical punching resistance of the non-

strengthened slabs. Different slab thicknesses were not fully compensated by the normaliza-

tion of the ordinate, contrary to the concrete cylinder strength and the equivalent shear stress

for the slabs with 260-mm thickness. The squares were thus not located at the same ordinate

value because of the disproportionate influence of the effective depth on plate stiffness and

bending resistance.

3.2.5 Conclusions

An experimental study of full-scale reinforced concrete slabs strengthened against punching

shear with non-laminated prestressed carbon fiber-reinforced polymer (CFRP) straps was

carried out. The adhesive connections of the earlier system were replaced by an external steel

compression frame between the strap anchors underneath the slab. The effects of different

slab thicknesses, preloading of the non-strengthened slabs, varying prestressing forces and

strap sizes on the punching shear behavior were investigated. The following conclusions were

drawn:

• Preloading of the non-strengthened slabs caused residual slab rotations after full un-

loading which reduced the punching shear resistance. The prestressing eliminated the

residual slab rotations however and closed the residual cracks and thus increased the

punching shear resistance compared to the preloaded slab.

• The applied prestressing force influenced the load–rotation behavior and strap activa-

tion. The strap force increments were lower in the cases with higher slab prestressing.

• The effect of axial strap stiffness on the load–rotation behavior of the slabs was marginal.

However, the strap force increments were higher in cases with higher strap stiffness. The
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strap activation was further increased by the steel frame, which hindered the movement

of the anchors towards the column.

• The deformability of the steel frame allowed a balancing of the strap forces in both

directions compared to the system with adhesively-bonded anchors.

• The friction bond between the steel anchors and the concrete surface unloaded the

concrete compression zone but additionally loaded the steel frame in compression. The

system stiffness was thus increased and the rotation capacity was reduced compared to

the case with bonded anchors and without steel frame.

• The thickest slab exhibited a reduced rotation capacity, and thus strap activation. There-

fore the slab failed at the lowest load, which however was still 67% above the theoretical

resistance of the non-strengthened slab.

• The location of the strap anchoring points seemed to determine the angle of the punch-

ing shear cone.

• The punching shear resistance of both strengthening systems – the former with adhe-

sively-bonded anchors and the new system with steel frame – was similar.
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4 Effect of shear on load–deformation
behavior

Reference detail

Robert Koppitz, Albin Kenel and Thomas Keller. “Effect of punching shear on load–defor-

mation behavior of flat slabs”. Engineering Structures, 2014, Vol. 80, pp. 444–457. DOI:

10.1016/j.engstruct.2014.09.023

Abstract

Punching shear resistance usually constitutes the decisive design criterion for reinforced

concrete flat slabs supported by columns. Modeling approaches based on Kinnunen and

Nylander’s rotation-symmetric sector model, such as the Quadrilinear Sector Model (QSM),

allow the prediction of the slab’s load–rotation behavior. To take into account an orthogonal

reinforcement layout, the steel Young’s Modulus is usually reduced. A mechanically better

justified flexural stiffness reduction factor is derived here which depends on the longitudinal

reinforcement and modular ratio. The QSM also neglects shear deformations, which may

reduce the flexural capacity. A Modified Sector Model (MSM) is derived which considers

the influence of shear on the flexural behavior. A strength reduction factor for the shear

crack-crossing longitudinal reinforcement is introduced which depends on the mechanical

longitudinal reinforcement ratio. The factor takes into account that the longitudinal reinforce-

ment also has to transmit forces resulting from shear. The MSM can also be applied to predict

the load–rotation responses and punching shear resistances of flat slabs strengthened with

prestressed carbon fiber-reinforced polymer (CFRP) straps.

4.1 Introduction

Reinforced concrete (RC) flat slabs supported by columns are widely used in structural engi-

neering as they are easy to build, therefore cost-efficient, and provide greater architectonic

flexibility compared to joist constructions. Effective slab design has to ensure flexural capacity
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Chapter 4. Effect of shear on load–deformation behavior

by providing adequate longitudinal reinforcement and sufficient punching resistance to bear

the local concentration of shear loads in the column vicinity, e.g. via the placing of shear

reinforcement. Additionally, the serviceability has to be ensured by e.g. limiting deformations

or crack widths. In many cases the punching resistance is the decisive design criterion, in

particular for elevated bending reinforcement ratios. However, mutual interaction between

both failure mechanisms has been observed. The punching shear resistance is therefore

described as a function of the bending resistance (Reimann 1963; Gesund and Kaushik 1970;

Ingvarsson 1977; Nölting 1984) or as a moment–shear interaction relationship (Moe 1961;

Hanson and Hanson 1968; Stamenković and Chapman 1972; Siao 1994).

The sector model, first introduced by Kinnunen and Nylander (1960) and later adopted e.g. by

Shehata (Shehata 1985, 1990; Shehata and Regan 1989), Gomes (Gomes 1991; Gomes and Re-

gan 1999a,b), or Muttoni (2008) [when deriving his Critical Shear Crack Theory, CSCT], applies

the plasticity theory to rotation-symmetric rigid slab segments rotating around the edge of a

central column, see Figure 4.1(a). The model assumes rotation-symmetric reinforcement and

establishes moment equilibrium on the slab segment. In the case of orthogonal reinforcement,

the flexural stiffness is reduced since the directions of the principal moments may deviate

from the rebar directions and a reduction of the torsional to the flexural stiffness ratio of the

slab occurs due to concrete cracking (Muttoni 2008; Lips 2012). This stiffness reduction is

taken into account by limiting the reinforcing steel’s Young’s modulus, Es , by a reduction

factor, βE , for which numerous values are suggested (Muttoni 2003, 2008; Guandalini 2005;

Villiger 2009; Lips 2012).
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Figure 4.1: (a): Sector model with rigid outer slab segment and acting forces (Muttoni 2008),
(b) with additional wedge in shear-critical region (Lips 2012)

Recently, Lips’ (2012) experiments on square slabs with high shear reinforcement ratios showed

a less stiff slab behavior and reduced flexural capacity compared to predictions by the CSCT.
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On the other hand, Guandalini’s (2005) slabs, without shear reinforcement, did not exhibit

any reduction of flexural capacity for cases with minimum longitudinal reinforcement. Slabs

with higher longitudinal reinforcement ratios, however, failed in punching at loads and defor-

mations much lower than at flexural failure. According to Lips (2012), the reduced flexural

stiffness and capacity were a consequence of large shear deformations in the column vicinity.

Since the influence of shear forces on deformation behavior is neglected in the original sector

model, he proposed an iterative model for slabs with shear reinforcement considering a shear-

critical region next to the column by adding a wedge [Figure 4.1(b)] and limiting the radial

curvatures inside the latter. The reducing effect of shear on the flexural capacity, however,

had already been recognized before (Pralong 1982; Brändli 1985). Based on the plasticity

theory, a limitation of the bending moments was suggested to take the effect into account, but

information on the deformation behavior was not provided since elastic deformations were

neglected.

In the following, the rotation-symmetric Quadrilinear Sector Model (Muttoni 2008) is firstly

summarized and both effects are discussed: orthogonal reinforcement leading to reduced slab

stiffness, and shear effect causing reduced flexural capacity. To take into account the first effect,

a reduction factor of the flexural stiffness, βE I , is then derived (instead of a reduction factor of

the reinforcement’s Young’s Modulus as by Muttoni 2008) based on the Linear Compression

Field Theory (LCFT) developed by Kupfer (1964). A Modified Sector Model (MSM) is subse-

quently proposed, in which a strength reduction factor, κV , for the longitudinal reinforcement,

which crosses the shear crack, is introduced. This factor takes the shear effect into account

and depends on the mechanical reinforcement ratio of the longitudinal reinforcement, ω. The

MSM is validated using a set of experiments from literature, which was selected to cover an

adequate variation of slab geometry, reinforcement ratio and material properties. The new

model can also be applied to existing flat slabs that are strengthened against punching failure.

4.2 Existing stiffness reduction approaches

4.2.1 The sector model

In Kinnunen and Nylander’s (1960) sector model, the rigid slab segments rotate around the

column edges with a rotation angle, ψ. The segments are formed by one tangential shear

crack and radial cracks. The assumption of a conical slab shape of the segment outside the

shear crack geometrically defines the tangential curvature, thus χt =ψ
/

r (r = radius from slab

center). Subsequently equilibrium conditions can be applied to the segment, depending on

the constitutive relationship. Kinnunen and Nylander (1960) assumed a bilinear moment–cur-

vature (m–χ) relationship, as shown in Figure 4.2. According to their sector model, punching

failure occurs when the tangential compressive strain of the concrete inside the compression

ring around the column reaches an empirically derived ultimate value. The depth of the

concrete compression zone at the column edge specifies the root of the tangential shear crack

propagating up to the upper slab surface, defining the radius r0, see Figure 4.1(a), for which

an empirical formula exists for orthogonal reinforcement.
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Figure 4.2: Quadrilinear and bilinear moment–curvature relationship (see Section 4.6 and
Muttoni 2008)

Muttoni (2008) adopted Kinnunen and Nylander’s sector model and developed the Critical

Shear Crack Theory (CSCT) for slabs without shear reinforcement. He assumed a steeper

inclination of the critical tangential shear crack by proposing r0 = rc +dm , see Figure 4.1(a)

(dm = average effective depth). By further assuming a quadrilinear moment–curvature rela-

tionship for the RC section, see Figure 4.2, he derived Eq. 4.1 for the RC slab (operator 〈x〉 is x

for x ≥ 0 and 0 for x < 0).

Vskt
(
ψ

)= 2π

rq − rc
·
[

mr
(
ψ

) · r0 +mR
〈

ry − r0
〉+E I IIψ

〈
ln(rcrs)− ln

(
ry

)〉+
+E I II∆χTS

〈
rcrs − ry

〉+mcr 〈rcr − rcrs〉+E I Iψ〈ln(rs)− ln(rcr )〉

]
(4.1)

where Vskt
(
ψ

)= shear force as a function of the slab rotation, mR = bending resistance, E I I

and E I II = uncracked and cracked flexural stiffness,∆χTS = tension stiffening curvature offset,

mcr = cracking moment, refer to Figure 4.2. The first term in the square bracket defines the

contribution of the radial moment mr at r = r0 in Figure 4.1(a) with the quadrilinear mo-

ment–curvature relationship where the radial curvature is given by χr =ψ
/

r0. The remaining

terms result from the integration of the tangential moments, mt , along the slab segment using

the same moment–curvature relationship. Eq. 4.1 contains three rotation-dependent radii:

the radius of the cracked zone, rcr , of the zone in which cracking is stabilized, rcrs , and of

the yielded zone, ry . They indicate where points P, A and C in Figure 4.2 are reached, see

Section 4.6. When ry equals the slab radius, rs , the flexural capacity, V f lex , and corresponding

bending resistance, mR , of the total radial and tangential reinforcement are reached:

V f lex = 2π · [mR r0 +mR (rs − r0)]

rq − rc
= 2π ·mR rs

rq − rc
(4.2)

Muttoni (2003) replaced Kinnunen and Nylander’s failure criterion by one where the punching

resistance depends on the width of the critical shear crack, which is proportional to ψ ·dm

(Muttoni and Schwartz 1991):

VRc
(
ψ

)= 0.3u0dv
√

fc

0.4+0.125ψdmkg
(4.3)
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where u0 = control perimeter at dv
/

2 distance to the support area, dv = shear-resisting ef-

fective depth1, and kg = 48
/

(dg +16mm) with dg = maximum aggregate size. The effective

punching resistance of the flat slab is defined as the intersection of the load–rotation curve,

Eq. 4.1, with the failure criterion of the concrete, Eq. 4.3, and is denoted VR0. Basically, slab

rotations of the weak axis have to be considered (Tassinari 2011) to calculate the intersection.

Although the rotation-symmetric Quadrilinear Sector Model is based on the average geometri-

cal properties of the two axes, it agrees satisfactorily with experimental results (Fernández Ruiz

and Muttoni 2009). For slabs with low reinforcement ratios, the flexural capacity of the slab,

according to Eq. 4.2, may be lower than the punching resistance, VR0.
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Figure 4.3: Yield-line mechanisms: (a) truncated cone; (b) fan mechanism for round column;
(c) centrally loaded edge-supported square column with lifting corners; four-point
star mechanisms for (d) eight, (e) 20, (f) 24 load points

The flexural capacity is usually calculated based on the yield-line theory (YLT) developed by

Johansen (1943, 1962). According to the upper-bound theorem of plasticity (Gvozdev 1938;

Hill 1951, 1952; Drucker et al. 1951, 1952) the yield-line mechanism (YLM) with the smallest

applied load has to be found. The YLMs for the different slab, column and loading geometries

used in the following sections are summarized in Figure 4.32 and assigned to the slabs in

1taking into account a possible penetration of the supported area in the slab, see SIA 262 (2013); for the
laboratory experiments: dv = dm

2further yield-line mechanisms are summarized in Appendix C
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Tables 4.1 and 4.2, respectively [mechanism Figure 4.3(a) see Guandalini (2005) and earlier

Nielsen (1999) for rq = rs , (b) see Sawczuk and Jaeger (1963) for a single load instead of a

column with radius rc , (c) see Elstner and Hognestad (1956) for the special case bq = B
/

2,

(d) see Guidotti (2010), Figure 4.3(e)–(f) are based on (d) and consider different numbers of

loading points].

The resistance of slabs with shear reinforcement is determined either by flexural failure or

punching failure. The latter can occur either within the shear-reinforced zone, by crushing

of the concrete strut near the column, or outside the shear-reinforced area (Beutel 2003;

Fernández Ruiz and Muttoni 2009; Lips 2012). The punching resistance within the shear-

reinforced zone, VR,in , is obtained by superposing the contribution of the concrete and of the

shear reinforcement, which are both rotation-dependent (Fernández Ruiz and Muttoni 2009).

The crushing resistance of the concrete strut near the column, VR,crush , can be estimated as

follows (Fernández Ruiz and Muttoni 2009):

VR,crush
(
ψ

)= ksysVRc
(
ψ

)
(4.4)

where VRc from Eq. 4.3 is multiplied by an empirical system factor, ksys (Fernández Ruiz and

Muttoni 2009). By default ksys is equal to 2.0 (SIA 262 2013; fib 2013) and is increased to

2.5 for stirrups or shear links (Lips 2012), and to 3.0 (Fernández Ruiz and Muttoni 2009) for

double-headed studs. Punching failure outside the shear-reinforced area, VR,out , is obtained

in the same way as for slabs without shear reinforcement, but with the outermost perimeter of

shear reinforcement, instead of the column cross section, as support area.

4.2.2 Stiffness reduction by orthogonal reinforcement layout

A difference between orthogonally placed reinforcement and a radial and tangential layout in

terms of the flexural stiffness had been experimentally observed by Kinnunen and Nylander

(1960). Kinnunen (1963) thus limited the flexural stiffness in his model by introducing a

reduction coefficient for the tangential reinforcement. In the Quadrilinear Sector Model βE

reduces the steel Young’s modulus and therefore also the flexural stiffness in the cracked elastic

state. Muttoni (2003) proposed an empirical value of βE = 0.4, and increased it to 0.6 in 2008.

Guandalini (Guandalini 2005; Guidotti 2010) developed an analytical formula based on the

axial stiffness of a beam with reinforcement placed parallel or at an angle of 45° to the applied

axial tensile force and obtained βE as being approximately 0.7.

Villiger (2009) used an alternate approach to quantify βE by investigating an RC panel of

unit length that was axially loaded in tension by σ1 = 1 in the principal direction 1 only,

see Figure 4.4(a). For this purpose he applied the linear compression field theory (LCFT)

developed by Kupfer (1964) (see also summary by Kaufmann 1998). Villiger calculated the

principal strain, ε1, using the virtual work principle by applying the equilibrium conditions and

Baumann’s (1972) solution for the compatibility condition that connects the crack inclination,

θr (= direction of compression field), with the principal direction 1. The result was Eq. 4.5
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which denotes the directional axial stiffness reduction factor, βEϕ, depending on the direction

of the applied force, ϕ:

βEϕ = σ1

ρEsε1
=

[
3
√

cos4ϕ+ 3

√
ρx

ρy
sin4ϕ

]−3

(4.5)

where ρx ,ρy = geometrical reinforcement ratios in x-, y-direction. Eq. 4.5 is plotted in Fig-

ure 4.4(b) for different reinforcement ratios. In the perpendicular direction (ϕ = π
/

2) a

reduction factor of ρy
/
ρx results, in between the stiffness decreases. The reduction factor βE is

defined as the average of the directional axial reduction factor, βEϕ, integrated over ϕ between

0 ≤ϕ≤π/
2. For isotropic reinforcement (ρx = ρy ) βE is equal to 0.66.
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Figure 4.4: (a) Notation of uniaxially loaded panel according to Kupfer (1964), (b) directional
axial reduction factor βEϕ for different reinforcement ratios (adapted from Villiger
2009)

Lips (2012) adjusted βE to the results of numerical calculations regarding flexural stiffness. He

investigated square and circular slabs with orthogonal reinforcement using a nonlinear finite

element analysis (NLFEA) and stated that the stiffness distribution in the slab depends mainly

on the type of YLM. The comparisons between the Quadrilinear Sector Model and the NLFEA

resulted in a fitted value of βE = 0.75 for the square slabs and 0.65 for the circular case. The

latter value corresponds well to that given by Villiger (2009).

4.2.3 Effect of shear on flexural capacity

Lips (Lips 2012; Lips et al. 2012) investigated RC flat slabs with double-headed shear studs

or vertical stirrups around the column. He experimentally observed a less stiff slab behavior

and reduced flexural capacity compared to the theoretical calculations using the Quadrilinear

Sector Model, Eq. 4.1. He attributed the observations to large shear deformations in the

column vicinity which he determined from measured vertical displacements at the bottom

side of the slab next to the column face. Thus, he concluded that calculation models neglecting

the influence of the shear forces on the flexural behavior inevitably produce predictions that

may overestimate the slab stiffness and flexural capacity. In the back calculation with a NLFEA
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Chapter 4. Effect of shear on load–deformation behavior

he reduced the longitudinal reinforcement ratio by the measured ultimate load divided by

the calculated flexural capacity and obtained good agreement with the test results. In order

to develop an analytical model, Lips readopted the former suggestion by Shehata (Shehata

1985, 1990; Shehata and Regan 1989) and Gomes (Gomes 1991; Gomes and Regan 1999a,b)

of inserting a wedge between the existing column and the outer segment, separated by a

circumferential crack at the column edge and by the inclined shear crack, see Figure 4.1(b).

Inside the wedge the transverse force of the shear reinforcement at r1 required a radially

decreasing moment to fulfill equilibrium. Thus, he limited the admissible radial curvature

at r2, to prevent an exceeding of the yielding curvature at r1 for the same applied load. With

his analytical model he obtained a similar reduction of stiffness and flexural capacity as that

obtained from the NLFEA back calculation.

Another investigation of the shear-induced reduction of the flexural capacity resulted in the

proposal of the “rond-point” model by Pralong (1982) for interior columns [Figure 4.5(a)], and

its extension by Brändli (1985) for edge and corner columns. Normal forces and tangential

bending moments, replaced by a force couple, are assigned to top and bottom plates acting

in tension (steel) and compression (concrete). A group of radially arranged and equally dis-

tributed beams (shear wall elements, see also Marti 1990) bear the radial bending moments

and the shear forces which are assigned to a uniform diagonal compression field in the core,

Figure 4.5(b). In the estimation of the punching resistance the radial bending resistance is

restricted, since the radial forces resulting from shear have to be borne by the same reinforce-

ment. Between rc and r0 = rc + z cotθr a full plasticization of the tangential reinforcement is

assumed. The crack inclination θr depends on the quotient of the longitudinal and transver-

sal reinforcement ratio. A straightforward solution for the punching resistance including a

limitation of the flexural capacity due to shear was thus found.

4.3 Consideration of shear in sector model

4.3.1 Flexural stiffness reduction factor

Based on Villiger’s (2009) approach, a reduction factor for the flexural stiffness, βE I , is directly

determined. With the assumption that ρm = ρx = ρy and d = dx = dy , the parameters ρm , d ,

n, and βEϕ from Eq. 4.5 can be inserted in Eqs. 4.22 and 4.23, resulting in a flexural stiffness

E I II = f
(
ϕ

)
. By expressing the ratio of the flexural stiffness in principal direction 1 to that in

x-direction, a directional flexural stiffness reduction factor, βE Iϕ, results which is plotted in

Figure 4.6(a). Unlike βEϕ in Figure 4.4(b), βE Iϕ depends on the reinforcement and the modular

ratio. For isotropic reinforcement with identical effective depths the solid and dotted curves

exhibit a lower stiffness reduction for higher reinforcement ratios (ρm = 1.5% vs. 0.25%), as

well as for higher modular ratios (n = 18 vs. 6), which is even more pronounced for higher ρ.
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Chapter 4. Effect of shear on load–deformation behavior

Likewise for βE an average value of the flexural stiffness reduction factor, βE I , is calculated

via integration over ϕ and shown in Figure 4.6(b)3 for isotropic reinforcement. The curves

increase slightly for increasing ρ and n. For ordinary reinforcement ratios around columns of

flat slabs, ρ = 0.5%−2%, the factor can be approximated to βE I = 0.75 (horizontal line). The

two βE I -curves according to the LCFT are compared to curves with rotation-independent

properties based on Eqs. 4.22–4.23 and plotting βE I = E I II
(
βE

)/
E I II

(
βE = 1

)
. By selecting

βE = 0.68 almost identical curves result. Thus, aβE -factor of approximately 0.7 (as suggested by

Guandalini 2005 for instance) corresponds to a βE I -factor of ca. 0.75. The direct determination

of the reduction factor βE I on the basis of the LCFT provides a mechanical justification of

the approach used in the sector model. Hitherto factor βE has been – except by Guandalini

– calibrated to experimental or numerical results to indirectly reduce the cracked flexural

stiffness, E I II , by limiting Es . However, for other slab and load geometries both values βE and

βE I may differ and have to be verified again using the experimental load–rotation curves, see

Lips (2012).

4.3.2 Modified Sector Model

The load transfer in Pralong’s (1982) “rond-point” model assumes a plastic redistribution

of the stresses without restricting deformations. With regard to punching the deformation

capacity of the slab is limited however. The punching resistance of concrete slabs decreases

with increasing deformations, which is not taken into account in Pralong’s model. The sector

model concentrates the rotation in one tangential shear crack in the column vicinity and allows

prediction of load–deformation behavior from zero up to the ultimate resistance. Lips’ (2012)

extension of the sector model with the consideration of the shear influence by adding a wedge

and limiting radial curvatures at the crack radius resulted in a rather complex calculation

method which included several geometrically fixed factors and fitting coefficients.

An alternative approach – a Modified Sector Model (MSM) – is proposed here which imple-

ments the core element of the “rond-point” model into the Quadrilinear Sector Model (QSM),

i.e. the fact that the longitudinal reinforcement also has to bear the radial forces resulting from

shear.

According to the truss model approach for beams (refer to Pralong 1982; Brändli 1985; Marti

1990), the tensile force of the radial longitudinal reinforcement, Tsup, is composed of the upper

component of the bending couple, mr
/

z, and the shear induced tensile force of vr cotθr
/

2,

which is half of the horizontal component of the diagonal concrete compression force, see

Figure 4.5(b). Tsup is limited by the tensile resistance of the reinforcement (per unit width):

Tsup
(
ψ

)= mr
(
ψ

)
z

+ vr
(
ψ

) ·cotθr

2
≤ fsyρd (4.6)

where z = lever arm of internal forces, fsy = yield strength of reinforcing steel.

3Appendix D provides an additional diagram displaying βE I evaluated considering compressive reinforcement
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4.3. Consideration of shear in sector model

The normalized bending resistance has thus to be reduced by the shear component, e.g. as

proposed in Eq. 4.7, in which this reduction comprises a strength reduction factor, κV , and a

linear function proportional to the ratio of the applied load to the flexural capacity, as follows:

mr
(
ψ

)/
z

fsyρd
= 1−κV

V
(
ψ

)
V f lex

(4.7)

The strength reduction factor, κV , depends on the inclination of the compression field (or

shear crack) in the slab core: e.g. a steeper inclination reduces the horizontal component of

the shear force that has to be borne by the reinforcement and the concrete. However, the load

is transferred from the slab to the column by developing a fan in the column region, which

makes it difficult to determine one specific inclination angle, θr , see Figure 4.5(c). A trend of

decreased crack inclination with increasing reinforcement ratio was observed by Guandalini

et al. (2009). Georgopoulos (1987) proposed a hyperbolical formula for tanθr depending on the

mechanical reinforcement ratio,ω. However, in comparing measured crack inclinations, as e.g.

reported by Lips (2012); Guandalini (2005); Guidotti (2010), with Georgopoulos’ prediction a

considerable scatter is observed. The read-out of the crack inclination from saw-cuts provides

a margin of discretion and the punching cone varies along the entire column perimeter.

As the determination and verification of crack inclinations remain uncertain, a direct depen-

dence of κV on ω is therefore assumed as follows:

0 ≤ κV = ω−ωmin

ωmax
≤ 1 (4.8)

The minimum reinforcement ratio, ωmin, is derived from the bending resistance, Eq. 4.25,

which is set equal to the cracking moment, Eq. 4.21 and thus results in

ωmin = 1−
√

1−
(

h

dm

)2

· fct

3 fc
(4.9)

Typical values vary from 0.015 to 0.03, e.g. ωmin = 0.02 results for dm
/

h = 0.9 and fct
/

fc = 0.1.

The second boundary for κV , the maximum value, ωmax, is obtained at the maximum bending

resistance, according Eq. 4.10, which results from Eq. 4.25 by assuming a rectangular stress

block for concrete with a depth xc =ωdm = 0.85x according to SIA 262 (2013), where x is the

depth of the compression zone which is exactly half of the effective depth at the maximum

bending resistance.

ωmax = 0.85 ·0.5dm

dm
= 0.425 (4.10)

The right-hand side of Eq. 4.7 can be applied to the radial moment acting at r = r0 and after a
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Chapter 4. Effect of shear on load–deformation behavior

few transformations (refer to Section 4.7) Eq. 4.20 is modified to Eq. 4.11:

Vmod
(
ψ

)= 1

1+κV
mr (ψ)

mR

r0
rs

·Vskt
(
ψ

)
(4.11)

The MSM shear force, Vmod , is thus equal to Vskt (according to Eq. 4.1) multiplied by a rotation-

dependent reduction factor (which includes the κV reduction factor, with mr calculated at

r = r0), which is valid for any moment–curvature relationship, such as a quadrilinear or

bilinear one (see Figure 4.2).

4.3.3 Experimental validation

The Modified Sector Model, Eq. 4.11, was validated through comparisons with experimentally

obtained load–rotation curves from literature. In the selection, an adequate variation of slab

geometry, reinforcement ratio and material properties was considered; the properties of eight

selected specimens are summarized in Table 4.14. To verify the dependence of the strength

reduction factor, κV , on the mechanical longitudinal reinforcement ratio, ω, the ratio was

varied from 0.07 (minimum reinforcement) to 0.29 (high ratio). Figure 4.7 compares the

experimental load–rotation responses (solid curves) with the Quadrilinear Sector Model (QSM,

dotted curves), Eq. 4.1, and the Modified Sector Model (MSM) using Eq. 4.11 (dashed curve).

The curves were normalized according to Muttoni (2008). On the ordinate the equivalent

shear stress, V
/

(u0dv ), was divided by
√

fc , which was assumed as being proportional to the

concrete shear strength. On the abscissa, the product ψdmkg was plotted. The transition

points where plasticizing of the slab segment begins (ry = r0) are marked by triangles. Solid

circles denote the rotation at which the flexural capacity is reached (ry = rs). Guandalini

(curves PG7 and PG10, refer to Guandalini 2005; Guandalini et al. 2009) and Lips (curves PL3,

PL7 and PF4, refer to Lips 2012; Lips et al. 2012) measured the slab rotation of the weak axis

directly using inclinometers, which were installed near the applied load and these values were

directly used. The slab rotation in the specimen of Heinzmann et al. (2012) (curve SP2, refer

also to Etter et al. 2009) was obtained by calculating the secant rotation from four (near the

weak axis) deflection measuring points, located at 1.7 m from the slab center, and from another

two inductive transducers measuring the support deformation. In Elstner and Hognestad

(1956) (curves A7b and B12) the deflections were recorded at the square column that centrally

loaded the edge-supported slabs. Hence, a secant rotation was also calculated by assuming

zero deflection of the edges.

For all specimens a better agreement between the MSM and the experimental results is ob-

tained than between the QSM and the experiments. In the uncracked state both model curves

are identical, immediately after cracking of the slab the rotations are slightly overestimated by

the models. Only in PG7 was the behavior in the uncracked state already much softer than

calculated. The MSM curve slope in the cracked elastic state is steeper than the measurements,

4in Appendix E, Section E.1, further experimental results (total 72) are compared to the MSM prediction
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Chapter 4. Effect of shear on load–deformation behavior

except for A7b where it is approximately the same because the crack inclination is fixed to

one specific value of ca. 45° (Muttoni 2008) by the radius of the critical shear crack, which

is generally steeper than actual values from slabs without shear reinforcement (Kinnunen

and Nylander 1960; Hallgren 1996; Guandalini et al. 2009). A higher r0 results in a softer slab

response below the transition point where plasticizing begins. The QSM overestimates the

flexural capacity of the slab and the curves are too stiff compared to the experiments, except

for PG7 and PG10 where they reproduce the load–rotation behavior well. In fact, these two

specimens have low mechanical reinforcement ratios and thus small reduction factors, κV ,

see Table 4.1. The rotation-dependent reduction factor in Eq. 4.11 reaches its maximum as

soon as the radial moment at r0 equals the bending resistance, mR (triangles in Figure 4.7).

From that point onwards, applying the reduction factor shifts the QSM curves vertically down

to the MSM curves, and thus the rotation at which the flexural capacity is reached is identical.

Consequently the stiffness overestimation of the QSM curves is a result of the overestimation

of the flexural capacity. The concrete failure criterion of Eq. 4.3 is also drawn in Figure 4.7 and

its intersection with the MSM (squares) denotes the theoretical punching resistance of the

four slabs A7b, PL3, PG7 and PG10. All squares are close to the experimental values (circles).

The other four slabs contain shear reinforcement whose additional resistance is not shown. A

further validation of the MSM in cases of strengthening of existing flat slabs is presented in

the next section.

4.4 Slab strengthening using prestressed CFRP straps

4.4.1 Strengthening concept

A strengthening method for existing flat slabs consisting of non-laminated and prestressed

carbon fiber-reinforced polymer (CFRP) straps (Meier and Winistörfer 1998; Lees and Win-

istörfer 2011) installed crosswise around the column was presented in Chapter 3. The four

straps are installed in pre-drilled and pre-cut openings and are anchored and prestressed

from the bottom side of the slab. Two different anchor systems are available: the first system

(slabs So1–4) consists of eight steel anchors adhesively bonded to the concrete surface using

an epoxy resin [Figure 4.8(a)], while in the second system (slabs Sr1–3) the anchors are fixed to

a steel compression frame mounted underneath the slab around the column, thus unloading

the concrete compression zone, see Figure 4.8(b) and (c). The method was experimentally

validated in Chapter 3, the experimental set-up is given in Figure 4.8(d), and the slab and strap

properties are summarized in Table 4.2 and Table 4.3, respectively. The prestressing forces

were measured using small force washers placed below the anchor nuts at the deviation pins

located at the strap ends [as displayed in Figure 3.18(f)].

4.4.2 Application of Modified Sector Model

The prestressed straps increase the bending resistance, m+
R , and thus also the flexural capacity,

V +
f lex , of the strengthened slab. As the YLMs in Figure 4.3(e) and (f) for 20 and 24 loading
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Chapter 4. Effect of shear on load–deformation behavior
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4.4. Slab strengthening using prestressed CFRP straps

Table 4.3: Properties of CFRP straps, steel frame (steel grade S355)

Reference Slab Ep Ap lp βp P0 Pu ba ta

[GPa] [mm2] [mm] [°] [kN] [kN] [mm] [mm]

Section 3.1

So1 132 375 1756 30 318 683 – –
So2 132 248 1881 30 220 451 – –
So3 132 188 1862 30 225 342 – –
So4 132 375 1888 30 102 683 – –

Section 3.2
Sr1 120 375 1971 34 203 683 160 20
Sr2 120 375 1656 34 199 683 120 25
Sr3 120 375 2191 34 208 683 160 20

cylinders, respectively, lead to the lowest flexural capacity, yield-lines along the main axes

propagate and intersect with the installed four straps at the upper slab surface. The bending

resistance of the slab’s plastic hinges is provided by the longitudinal reinforcement with a

tensile force per unit width, Ts , and the two strap forces per direction. The deviations across

the deviators in Figure 4.8(a) are assumed as being frictionless, since friction losses were small,

less than 6% (see Section 3.1.4, p. 33). Plasticity theory allows the effect of the strap forces to be

smeared over the entire slab width, B , thus the strap force per unit width, Tp , is given by 2P
/

B ,

see Figure 4.9(a)–(b). For the slabs without steel frame the two tensile forces are balanced

by concrete compressive stresses, assumed as an equivalent rectangular stress block with

compressive strength, fc . The steel frame is taken into account by assuming full plasticizing

when developing the YLM. Thus the compression zone of the concrete is considerably reduced

because only the remaining compressive force has to be borne by the concrete. Hence, the

lever arm of the internal forces, z, is increased. The resistance of the steel frame [twice the

width ba ; thickness ta , see Figure 4.8(c)] is also smeared over the entire slab width, B .

The slab rotation leads to an elongation of the strap, ∆lp , which activates it further by a value

∆P , superposing the applied prestressing load P0. As the behavior of the strap is linear elastic

up to its failure the strap force is

P
(
ψ

)= P0 +∆P
(
ψ

)= P0 +
Ep Ap∆lp

(
ψ

)
lp

/
ξp

≤ Pu (4.12)

where Ep Ap = axial strap stiffness, lp = strap length, ξp takes into account the compliance of

the applied parts (e.g. the steel anchors and pins, prestressing bolts, mortar bed below the

deviation points, etc.) and is estimated as 0.9 by comparative calculations using elastic springs.

Supposing that the entire strap elongation concentrated in a single crack on the left and right

column sides, a consideration of similar triangles [see Figure 4.9(c): deformed slab part with

single crack right to the column] leads to the following relationship:

wp
(
ψ

)
r2 − rc

≈ ∆lp
(
ψ

)
2h

≈ψ ·κp (4.13)
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Chapter 4. Effect of shear on load–deformation behavior

An empirical reduction factor, κp , is introduced to take several effects into account. One

effect is the depth of the concrete compression zone that was neglected in Eq. 4.13 and is e.g.

x = h
/

5 for ω= 0.2, d
/

h = 0.85 and xc
/

x = 0.85. The main effect however is that the yield-line

mechanism is not fully developed for applied loading below the flexural capacity. Combining

Eqs. 4.12 and 4.13 results in a linear dependence of the strap force on the slab rotation:

P
(
ψ

)= P0 +
Ep Ap

lp
/
ξp

2hκpψ≤ Pu (4.14)

The contribution of the strap to the bending resistance is calculated for the slab rotation at

which the reduced flexural capacity of the non-strengthened slab is reached (cf. solid circles

in Figure 4.7 where ry = rs). This particular point in the load–rotation curve is determined

by rs multiplied by χy from Figure 4.2, giving Eq. 4.15 for a quadrilinear moment–curvature

relationship:

ψf lex = rs ·χy =
V f lex

mR

rq − rc

2π

(
mR

E I II
(
βE

) −∆χTS

)
(4.15)

The resulting modification of the load–rotation curve is shown in Figure 4.10. The marginal

increase of flexural stiffness resulting from the CFRP straps is neglected as their benefit is

mainly based on the higher ultimate strength compared to steel by a factor of ca. 3.5 and

their Young’s modulus is only ca. 60% of the steel modulus (Table 3.7). Therefore both the

non-strengthened and strengthened curve slopes are modeled as being identical up to the

applied load at which the former reaches plasticization of the slab segment. Because of the

strap activation, the bending resistance is increased, which likewise increases the flexural

capacity from V f lex to V +
f lex , thus shifting the load–rotation curve upwards. The increased

bending resistance, m+
R , is determined according to Eq. 4.16, incorporating a value P f lex , which

is calculated using Eq. 4.14 in which ψf lex from Eq. 4.15 is inserted.

m+
R = ρd fsy︸ ︷︷ ︸

Ts

(
d − xc

2

)
+ 2P f lex

B︸ ︷︷ ︸
Tp

(
dp − xc

2

)
+ 2ba ta fay

B︸ ︷︷ ︸
Ca

(
ta +xc

2

)
(4.16)

where xc = (
Ts +Tp −Ca

)/
fc and dp ≈ h. For slabs without steel compression frame (So1–

4) Ca ≡ 0. The rotation-dependent shear force of the strengthened slab can be derived by

inserting the increased bending resistance, m+
R , instead of mR into Eq. 4.1 and multiplying it

by a reduction factor similar to that in Eq. 4.11, finally resulting in the following expression:

V +
mod

(
ψ

)= 1

1+κV
mr (ψ)

m+
R

r0
rs

·Vskt
(
ψ,m+

R

)
(4.17)

where the CFRP straps are not considered in the reinforcement ratio since their percentage of

the cross-sectional area is negligible compared to the longitudinal reinforcement. Therefore

all other factors (ω, κV , rs) remain exactly as in the non-strengthened case.
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Figure 4.10: Effect of strap activation on flexural capacity and punching resistance

4.4.3 Punching shear resistance

The four CFRP straps shift the failure criterion, Eq. 4.3, upwards by their vertical strap force

component VRp
(
ψ

)= 8P
(
ψ

)
sinβp . The failure criterion for punching within the shear-rein-

forced area, VR,in , is thus

VR,in
(
ψ

)=VRc
(
ψ

)+8P
(
ψ

)
sinβp (4.18)

The criterion for the crushing of the compression strut, VR,crush , was obtained by adjusting

Eq. 4.4 to the experimental punching resistances, from which a system factor of ksys = 2.5 was

derived. The intersection point of the load–rotation curve, Eq. 4.17, with the lower of the failure

criterions, Eqs. 4.4 or 4.18, denotes the punching shear resistance of the strengthened slab,

VR1, see Figure 4.10, whereby strap failure would cause an immediate drop of VR,in down to

VRc . Failure outside the shear-reinforced area was not observed in the experimental campaign.

4.4.4 Comparison with experiments

The analytical modeling and experimental load–rotation curves (of the specimens according

to Tables 4.2 and 4.3) are compared in Figure 4.115. Also shown are the strap forces (on

the lower ordinates), normalized by the ultimate resistance of the largest strap (Pu,max =
683kN). Generally the linear increase of strap force with increasing slab rotation reproduces

the measured results well by selecting κp = 0.6. Slabs So1 and Sr2 had the highest prestressing

levels with regard to the slab thickness. Therefore the strap activation was smaller than

predicted until the slab exceeded decompression. The agreement could be improved by

splitting κp into sub-factors in order to take into account more precisely the effects described

5in Appendix E, Section E.2, all slabs of the experimental campaign are compared to the MSM
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Chapter 4. Effect of shear on load–deformation behavior

above and, in this case, the dependence on the decompression moment. Nevertheless one

constant value for κp was maintained since the load–rotation curves of these two and the

other slabs still fit well to the experimental results, see below.

The normalized load–rotation curves are drawn on the upper ordinates. The solid experi-

mental curves (maximum rotation of weak axis) are compared to the MSM (dashed curves)

with increased average bending resistance, m+
R , and to the QSM, also with m+

R but without

considering the effect of shear on the resistance (dotted curves acc. to Eq. 4.1). The increase of

bending resistance (m+
R

/
mR ) is also summarized in Table 4.4. Both modeling curves predict

a softer behavior for small and medium loads (uncracked and cracked-elastic state up to ca.

0.3
p

MPa on the y-axis), since no stiffness increase caused by the strengthening system was

considered. For instance, local prestressing of the slab around the column was neglected in

the analysis. For higher loads, approaching failure, the MSM model and experimental curves

correspond well in contrast to the QSM curves, which overestimate the loads significantly

(with the exception of slab Sr1).

Figure 4.11 also shows the failure criteria (Eqs. 4.3, 4.4 and 4.18) and the intersection points

with the MSM curves (Eq. 4.17), which denote the punching shear resistance predictions, VR1

(five-point star symbols). In slabs So1 and Sr2, VR,in is above the diagram frame, its minimum

value on the abscissa is 1.28 and 1.40
p

MPa, respectively. In slabs with high strap contribution

to VR,in (So1–3, Sr1–2), crushing of the strut near the column limited the punching shear

resistance. In slabs So4 and Sr3 with lower prestressing and thus lower strap forces, however,

punching shear failure occurred through failure in the shear-reinforced zone.

Table 4.4: Experimental punching resistances and slab rotations at failure, increase of bending
resistance and comparison of predicted and experimental results

Reference Slab
VR,exp

u0dv

p
fc

ψdmkg
m+

R
mR

VR1
VR,exp

ψR1

ψR,exp

[
p

MPa] [–] [–] [–] [–]

Section 3.1

So1 0.98 4.10 1.31 0.91 0.85
So2 0.86 4.01 1.20 1.01 0.92
So3 0.84 3.99 1.16 1.03 0.94
So4 0.86 4.27 1.19 0.94 0.73

Section 3.2
Sr1 0.88 3.45 1.31 0.99 1.07
Sr2 0.83 4.94 1.57 0.97 0.87
Sr3 0.78 2.57 1.23 1.02 1.04

Average 0.98 0.92
COV 0.05 0.13

Table 4.4 compares the predicted punching resistances, VR1, and slab rotations at failure, ψR1,

to the experimental results. On average, the punching resistance was underestimated by only

2% with a coefficient of variation (COV) of 5%. The underestimation of the slab rotations was
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Figure 4.11: Comparison of own experiments with model curves (properties in Tables 4.2–4.3,
results in Table 4.4)
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Chapter 4. Effect of shear on load–deformation behavior

slightly higher (8±13%). The strengthening systems were able to significantly increase the

punching resistances and the slab rotations at failure, i.e. the intersection points of Eqs. 4.3

and 4.17, square symbols in Figure 4.11, are at much lower loads and rotations than at failure

of the strengthened slabs (circle symbols).

4.5 Conclusions

The Quadrilinear Sector Model (QSM) allows the modeling of the load–rotation responses of

reinforced concrete flat slabs. To take into account an orthogonal reinforcement layout and

the associated increased slab deformations, the steel Young’s Modulus is normally reduced

by a factor, βE . The QSM also neglects shear deformations, which may reduce the flexural

capacity. The work presented here introduces the following improvements of the QSM:

• Instead of the mechanically not well-justified Young’s Modulus reduction factor, βE , a

flexural stiffness reduction factor, βE I , is derived based on the linear compression field

theory (LCFT). βE I depends on the longitudinal reinforcement and modular ratio and

provides equivalent slab stiffness reduction to the current βE -factor.

• A Modified Sector Model (MSM) is derived which considers the influence of shear on

the flexural behavior. A strength reduction factor, κV , for the longitudinal reinforcement

that crosses the shear crack is introduced. This factor depends on the mechanical

longitudinal reinforcement ratio and takes into account the fact that the longitudinal

reinforcement also has to transmit forces resulting from shear and that the flexural ca-

pacity of the slab is thus reduced. Based on experimental results the increased accuracy

of the MSM compared to the QSM was demonstrated, particularly for cases with higher

longitudinal reinforcement ratios.

• Furthermore, it was demonstrated that the MSM could also be applied to predict the

load–rotation responses of flat slabs strengthened with prestressed CFRP straps.

• For these slabs very good agreement between the predicted punching shear resistances

and rotations and the experimental data was obtained. The strengthening systems

increased the punching shear resistance by 74% on average.
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4.6 Appendix A: Quadrilinear Sector Model

This appendix summarizes the equations of the Quadrilinear Sector Model by Muttoni (2008)

used in this Chapter. Eq. 4.19 describes the equilibrium of moments between the inner and

outer forces acting on the slab segment in Figure 4.1(a).

V
∆ϕ

2π

(
rq − rc

)= mr r0∆ϕ+
rs∫

ro

mt dr ·∆ϕ (4.19)

The tangential moments are integrated along the segment with opening angle ∆ϕ and mr is

the moment in the radial direction at r = r0. Transforming Eq. 4.19 results in the load–rotation

relationship of the sector model as follows:

Vskt
(
ψ

)= 2π

rq − rc
·
mr

(
ψ

) · r0 +
rs∫

ro

mt
(
ψ

)
dr

 (4.20)

The linear elastic uncracked segment in the quadrilinear m–χ-relationship of Figure 4.2 has a

flexural stiffness E I I = Ec h3
/

12 per unit width up to the cracking moment, mcr , at which the

tensile strength of the concrete, fct , is reached (h = slab thickness):

mcr = fct h2

6
(4.21)

By assuming a linear elastic behavior of both concrete in compression and reinforcement in

tension after cracking, a constant depth of the compression zone is derived as:

x II = ρβE nd

(√
1+ 2

ρβE n
−1

)
(4.22)

where ρ = geometrical longitudinal reinforcement ratio, modular ratio n = Es
/

Ec , d = effective

depth. The cracked flexural stiffness is given by

E I II = ρd 3βE Es

(
1− x II

d

)(
1− x II

3d

)
(4.23)

The reduction factor βE is discussed in Section 4.2.2. The contribution of the concrete in

tension between the cracks, known as tension stiffening effect, is considered by a shift of the

curvature by the load-independent value of

∆χTS = fct

6ρhβE Es
(4.24)
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Chapter 4. Effect of shear on load–deformation behavior

Eq. 4.24 is based on the Tension Chord Model (Marti et al. 1998) and was suggested by Muttoni

(2008), adapting Marti’s (1999) proposal for beams6. The tension stiffening effect depends on

the crack spacing. Maximum crack spacing is assumed in Eq. 4.24, which seems reasonable

for the calculation of the punching resistance of slabs with elevated reinforcement ratios.

Assuming a perfectly plastic behavior of the reinforcement after yielding and an equivalent

rectangular stress block for concrete in the compression zone, the bending resistance of the

section is given by:

mR = ρd 2 fsy

(
1− ρ fsy

2 fc

)
=ωd 2 fc

(
1− ω

2

)
(4.25)

By applying the quadrilinear moment–curvature relationship of Figure 4.2 to the equilibrium

of moments, Eq. 4.19, Eq. 4.1 is obtained. The radii rcr , rcrs , ry , corresponding to the tangential

curvatures χcr , χcrs , χy in Figure 4.2 (points P, A, C), are given by r =ψ/
χt ≤ rs .

4.7 Appendix B: Modified Sector Model

The derivation of Eq. 4.11 is shown in this appendix. The rotation-dependent shear force

according to the sector model, Eq. 4.20, is modified to the following equation by applying the

right-hand side of Eq. 4.7 to the radial moment acting at r = r0:

Vmod
(
ψ

)= 2π

rq − rc
·
mr

(
ψ

) · r0 ·
(
1−κV

Vmod
(
ψ

)
V f lex

)
+

rs∫
ro

mt
(
ψ

)
dr

 (4.26)

which is transformed to:

Vmod
(
ψ

) ·(1+ 2πr0 ·mr
(
ψ

)
rq − rc

κV

V f lex

)
= 2π

rq − rc
·
mr

(
ψ

) · r0 +
rs∫

ro

mt
(
ψ

)
dr

 (4.27)

The right-hand side is equal to Eq. 4.20 and inserting Eq. 4.2 results in

Vmod
(
ψ

) ·(1+κV
mr

(
ψ

) · r0

mR · rs

)
=Vskt

(
ψ

)
(4.28)

from which Eq. 4.11 is deduced.

6see Section 5.2.2, p. 115
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5 Effect of load history on punching
resistance

5.1 Load history of uniaxial tension chord

Reference detail

Robert Koppitz, Albin Kenel and Thomas Keller. “Tension Chord Model Modification for

Uniaxial Unloading and Reloading in Elastic and Plastic States”. ASCE Journal of Structural

Engineering, 2014, Vol. 140, No. 10, 04014077. DOI: 10.1061/(ASCE)ST.1943-541X.0000999

Abstract

The bond properties between concrete and steel reinforcement influence structural stiffness

and deformation behavior due to tension stiffening. In specific cases, the load-bearing capacity

of engineering structures depends on the deformation behavior and may be affected by load

history due to unloading and reloading (URL) cycles. The bond stress–slip relationship of

the original Tension Chord Model (TCM) was modified to make it applicable for general URL

cycles in the elastic and plastic states of the reinforcing steel by reducing the admissible bond

shear stress, thus taking into account the progressive and irreversible damage to the concrete

around the ribbed bar not only due to yielding but also due to the load history. The residual

tension stiffening in the elastic state is influenced by the degree of slip reversal for which an

analytical function was found that is dependent on the stress level prior to and after unloading,

crack spacing and bond stress. The proposed analytical model was successfully validated with

experimental results.

5.1.1 Introduction

The load-bearing capacity of engineering structures may depend, in specific cases, on the

deformation behavior. A typical example is the punching shear resistance of flat concrete slabs,

which depends on the slab rotation (Muttoni 2008). For cases in which post-installed strength-

ening of such structures is required, they often have to be unloaded before the strengthening
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Chapter 5. Effect of load history on punching resistance

measures can be applied and the structure is reloaded. However, unloading and reloading

(URL) cycles may influence the deformation behavior, particularly the tension stiffening effect.

In contrast to “naked” reinforcing steel, embedded rebars exhibit smaller elongations for the

same tensile load because of the contribution of the encasing concrete between the cracks, an

effect that is known as tension stiffening. Although the tensile strength of concrete represents

a small, fractional amount of its compressive strength, it is necessary for a load transfer from

steel to concrete via bond stresses along the rebar surface.

The bond between concrete and reinforcement and the progressive and irreversible damage

of the concrete around the ribbed rebar attributable to cyclic loading or plasticization of the

reinforcing steel has been intensively investigated during the last decades (Marti et al. 1998;

Alvarez 1998; fib 2000; Borosnyói and Balázs 2005; Shima et al. 2011). For uniaxial stress states,

bond stress–slip relationships have been proposed on the basis of Rehm’s (1961) differential

equation of slipping bond. One of these approaches is the tension chord model (TCM)

presented by Marti et al. (1998). The TCM assumes Sigrist’s (1995) stepped rigid–perfectly

plastic bond shear stress–slip relationship for monotonic loading, shown in Figure 5.1(a).

Alvarez (1998) extended the model for cracked untensioned and prestressed concrete tension

members until (plastic) failure for determining the necessary minimal reinforcement ratios.

The applications and developments of the TCM have been proposed for, among others, plane

stress problems [cracked membrane model by Kaufmann (1998)], loading cycles and fatigue

of prestressed tension ties (Fürst 2001), fracture mechanics based investigations for bending

(Kenel 2002), and bending members under sustained loads (Burns 2012). The applicability of

the model using Sigrist’s bond stress–slip relationship was confirmed by these studies.

Rehm’s (1961) equation can be solved analytically for linear or power functions. To take other

bond stress–slip relationships into account, iterative numerical calculations are necessary.

Thus, for investigations into high-cycle fatigue, slip versus number of load cycle (S–N ) curves

have been proposed to reduce the computational efforts (Balázs 1991; Zanuy et al. 2010).

In these cases, the steel reinforcement remains in the elastic state, whereas for problems in

earthquake engineering, plasticizing of the reinforcement may occur, but under a reversed

cyclic loading. For reinforcement in the elasto-plastic state that is unloaded and reloaded

without alternating the sign of the load, no experimental results have been found. For the

analytical TCM, contrary to monotonic loading, the behavior of tension members during

unloading and reloading has not yet been successfully reproduced: Alvarez (1998) investigated

the load–deformation curve for one specific loading cycle, assuming full bond for unloading

and reloading and linear elastic behavior for reinforcing steel and concrete. Fürst (2001)

adopted these assumptions for calculating general URL cycles of elastic prestressed ties. On

the other hand, Burns (2012) investigated a neglect of bond stresses between concrete and

steel for the unloading of an elastic tension chord. Both approaches defined limit cases

of no damage and full bond damage during unloading. The former assumption led to the

conclusion that loading cycles would not affect the deformation behavior and the ultimate

load of the tension member; the latter eliminated the hysteretic behavior of the chord’s load–
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5.1. Load history of uniaxial tension chord

deformation path during unloading and reloading. By contrast, experimental beams exhibited

hysteresis loops and higher deformations after the completion of loading cycles (Pfyl and

Marti 2001; Kenel and Marti 2002), thus confirming earlier findings and results of tensile tests

on reinforcing bars embedded into concrete (Rehm 1961; Leonhardt 1978). However, the

original TCM was not applied for URL cycles in the case of elasto-plastic reinforcement.

Thus, a detailed investigation is necessary to quantify the degradation of bond attributable to

the load history for elastic and elasto-plastic tension members, to eventually adapt the TCM for

URL cycles. This study is intended to provide an easily understandable and straightforward, yet

accurate, analytical solution to discuss this influence on the deformation behavior of a tension

chord; additionally, it is validated by experimental results. The investigation is restricted to the

following assumptions: symmetrical short-term tensile loading of non-prestressed members

with bar-shaped steel reinforcement; no reversed cyclic loading (alternating sign); damage

of the chord considered by reducing bond stress between steel and concrete; no long-term

effects or fatigue.
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5.1.2 Tension Chord Model

Properties of the tension chord element

According to Marti et al. (1998), a linear elastic behavior is assumed for concrete [Figure 5.1(b)];

once tensile strength, fct , is reached, it irreversibly drops to zero. Unless stated otherwise, the

stress–strain relationship for reinforcing steel is assumed to be bilinear, with yield strength,

fsy , and hardening modulus, Esh > 0 [Figure 5.1(c)]. The quotient of the Young’s modulus of

the materials is defined as modular ratio n = Es
/

Ec . Figure 5.1(d) shows a cold-formed steel

response: because cold-formed rebars do not exhibit pronounced yield strength, steel stress

fs0.2 with residual 0.2% strain is adopted for fsy .

The tension chord in Figure 5.2(a) with gross cross-sectional area, Ac , is loaded by a constant

axial force, N . It is reinforced by a single steel rebar with diameter Ø (thus As = π
4 Ø2), which

corresponds to a geometrical reinforcement ratio ρ = As
/

Ac and a remaining net cross-

sectional area of (1−ρ)Ac for the surrounding concrete.

The upper bond shear stress, τb0 = 2 fct , of the assumed bond shear stress–slip relationship in

Figure 5.1(a) is valid for slips, δ (relative displacement between steel and concrete), smaller

than δy , where the rebar has reached fsy . For higher steel stresses, the bond is τb1 = fct to

account for the irreversible bond reduction after yielding. These values were suggested by

Sigrist (1995) for ordinary ribbed steel rebars, after having studied the experiments by Shima

et al. (1987). Although the relationship is a considerable simplification of the complex bond

behavior, it provides reasonably accurate results for monotonic loading (Marti et al. 1998).

Monotonic loading for chord element between two cracks

Load is applied on the initially stress-free tension chord in Figure 5.2 (Marti et al. 1998; Alvarez

1998). A linear elastic uncracked behavior under rigid bond is observed (State 1) until the

concrete’s tensile deformation capacity, fct
/

Ec , is reached and cracks open: at the crack edge,

rebar stresses have to increase abruptly from n fct to crack stress σsr 0 to take over the tensile

contribution of the concrete, to fulfill the equilibrium of forces. This crack stress is calculated

according to Eq. 5.1 and its limitation by the yield strength leads to a minimum required

reinforcement ratio, ρmin, to prevent a sudden collapse at cracking (assuming fct = 3N
/

mm2,

n = 6, fsy = 500N
/

mm2 gives ρmin ≈ 0.6%).

σsr 0 = fct

ρ

[
1+ρ(n −1)

]≤ fsy (5.1)

Because stresses are load induced, a fully developed crack pattern is reached immediately: all

cracks open with a constant average crack spacing, srm , according to Eqs. 5.2 and 5.3:

srm =λsr 0 =λØ fct (1−ρ)

2τb0ρ
=λØ

4

1−ρ
ρ

(5.2)
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and

0.5 ≤λ≤ 1.0 (5.3)

where sr 0 = maximum crack spacing. The constant λ can theoretically freely vary between the

two boundaries 0.5 and 1.0. In fact, λ is often determined by the spacing of the transverse

reinforcement, which disturbs the tension zone. On the other hand, if stresses are induced by

restraints (e.g. imposed deformation or shrinkage), cracks open one after another, producing

a saw-toothed curve until the crack formation phase is completed (Alvarez 1998).

Figure 5.2(b) and (c) display the two boundary crack elements after they reach σsr 0: Fig-

ure 5.2(b) illustrates an element with maximum crack spacing (λ = 1). Steel stress, σsr 0, at

each crack edge is linearly reduced as a result of integrated constant bond shear stresses, τb0,

along the rebar surface. Accordingly, concrete stresses increase linearly until fct is reached at

the center (zero point of slip) of the element, which allows the sr 0 of Eq. 5.2 to be calculated.

However, another crack may open at this location, constituting the lower bound of crack

spacing (λ= 0.5), as shown by the element in Figure 5.2(c).

The entire global stress–strain path is illustrated in Figure 5.3(a) for monotonic loading: on the

abscissa, steel strains, εsm , are displayed, which are averaged over the crack element, whereas

maximum steel stresses at the crack edge, σsr , are plotted on the ordinate. At crack stress σsr 0,

these εsm are reduced by a constant factor ∆ε0, as shown in Eqs. 5.4 and 5.5, compared to

naked steel.

∆ε= 1

4

(
σsr 0

Es
− fct

Ec

)
= fct

4Es

1−ρ
ρ

(5.4)

∆ε0 = 2λ ·∆ε (5.5)

During further load increases, the stress path follows a parallel line to the steel characteristic at

distance ∆ε0 (State 2) until it arrives at yield strength fsy . In State 3, parts of the crack element

are in the elasto-plastic phase. Because of the lower tangent stiffness, Esh , and the reduction of

bond shear stresses to τb1 along the yielded portions, steel strains are concentrated in the area

near the crack. Eventually, the whole crack element is fully plasticized (State 4) and follows the

steel characteristic again until ultimate strength, fsu , at the crack location eventually causes

the rupture of the rebar. For the assumed properties, the rebar of the crack element with λ= 1

in the right-hand diagram of Figure 5.3(a) fails before achieving State 4. The typical steel stress

and strain distributions inside the crack element are shown in Figure 5.3(b) for all four states.

Because of the tension stiffening effect, which is present until rupture, the full plastic deforma-

tion capacity of the reinforcing bar cannot be utilized for the tension member. The decrease

depends on the bond shear stress, the diameter of the rebar (bond radius), the effective rein-
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forcement ratio of the tension chord, the hardening branch of the steel stress–strain curve,

the reinforcement ductility characteristics, and particularly, the size of crack spacing (Alvarez

1998; Kenel 2002).

Parameter:
Ø = 16 mm,  ρ = 1%
Ec = 30 GPa, fct = 3 MPa
Es = 200 GPa, fsy = 500 MPa, 
 εsu = 100‰, fsu = 600 MPa

sr0 = 396 mm,  σsr0 = 317 MPa
 ∆ε = 0.371‰
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Figure 5.3: Monotonic loading of tension chord: (a) crack edge stress vs. average steel strain
relationship, (b) stress distributions inside crack element for states 1 to 4 (adapted
from Alvarez 1998)

5.1.3 Unloading and reloading of uniaxially stressed elements

Bond–slip relationship for unloading and reloading

Sigrist’s bond shear–slip relationship forms the basis for Figure 5.4. Bond stress path OABCDEF

is followed for monotonic loading, according to Figure 5.3: Path OAB corresponds to reaching

crack stress σsr 0. After loading is continued within State 2 (BC), bond shear stress immediately

drops to half its value when yield strength at the crack is reached (CD). DEF is followed for

stresses above fsy .

For both unloading and reloading, a bond shear stress proportional to fct is given in Eq. 5.6,

introducing bond stress factor, kτ, as a proportionality constant. It is presumed in this work
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kτ

 δ  δ  δ  δ  δ  δ

kτ(a)
2

1

2

O

A B C

D E F

B'G

G'=

(b)
2

1

1

A B C

D E F

B"=E"H

H"

I
O

J

y uyu

Figure 5.4: Bond–slip relationship for URL cycles with (a) kτ = 2 and (b) kτ = 1

that bond shear stress is identical for unloading and reloading:

τbU = τbR = kτ fct ≤ τb0 (5.6)

Alvarez’ elastic URL cycle for kτ = 2 (full bond) is amended in Figure 5.4(a): when Point B is

reached, unloading causes a slip reversal, immediately jumping from Point B to B’. Unloading

takes place between Points B’ and G, reloading is accomplished by G’B, arriving at the same

point as before unloading. For a small load reduction, this is reasonable. However, when the

chord element is significantly unloaded, the strength may decrease: relative displacements

during initial loading constitute secondary cracks attributable to spalling, which damages the

concrete microstructure around the bar [Goto (1971) provided a schematic diagram of concrete

deformations around the rebar after the formation of internal cracks], causing an irreversible

loss of bond strength. It is hypothesized that the bond shear stress, once reduced, cannot be

increased again. Thus, the bond stress for reloading cannot exceed the value for unloading

and the same load level is resumed at additional deformations. On the other hand, assuming

no bond for unloading (kτ = 0) leads to safe upper bounds of deformations, but overestimates

deformation capacity and neglects the development of a hysteresis curve during unloading

and reloading. Kenel evaluated the unloading path of a four-point bending experiment,

assuming kτ = 1, and obtained very good agreement with measurements obtained by using

Bragg grating sensors (Kenel and Marti 2002; Kenel 2002). Thus, Kenel’s kτ, as an average

value between the two boundary cases, is adopted in the following and a corresponding elastic

URL stress path is displayed in Figure 5.4(b): unloading starts by jumping from B to B”, finally

arriving at H, and reloading represents Path H”I. Damaged sections of the tension chord

directly follow Path IDEF for higher loads. When the chord is unloaded after yielding has

occurred for some of its parts, stress path EE”HH”JF is followed, which will be discussed in the

section after the next, pp. 101–102.

Unloading and reloading in the elastic state

The stress distributions inside the crack element for both assumptions kτ = 2 and kτ = 1

are compared in Figure 5.5(a)–(d). Again, initial loading up to σsr 0 and full unloading are
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investigated [the stress diagrams for kτ = 2 were represented by Alvarez (1998)]. Initial loading

is identical for both kτ-values. At cracking, the steel stresses jump abruptly from 1 to A.

Unloading follows BG or BH, where at Points G and H, a positive average strain remains

[indicated by the light gray areas, Ares , in the central stress diagrams of Figure 5.5(c)–(d) and

causing a residual crack opening], although stresses are zero at the crack edge. For λ = 1,

slip reversal has taken place up to a distance xsU < srm
/

2 from the crack edge, whereas for

λ= 0.5, a full slip reversal for the whole element has occurred
(
xsU = srm

/
2
)
. Further inside the

element, the rigid bond leads to a reduction of transformed section stresses for compatibility

reasons (analogous to State 1 in Figure 5.3). Along GB or HI, the tension chord is reloaded.

The slope of the slip reversal zone remains 4τbR
/

Ø, even if stresses are higher than they were

before (irreversible damage). The zone with transformed section properties (srm −2xs) was

not effectively unloaded; therefore, the initial value of 4τb0
/

Ø is still valid, and thus, the length

of slip reversal is limited to xsU . For kτ = 1, the stress distribution changes after reloading to

I: an additional area, Aadd [dark gray in the bottom diagrams of Figure 5.5(d)] causes higher

average steel strains. Therefore, Point I is located to the right of the initial Point B, as shown in

Figure 5.4(b), and the distance to the naked steel characteristic is reduced. In the following,

the tension chord under consideration and its load history are parameterized to quantify the

tension stiffening losses under general load cycles for any bond shear factor. A parameter

study was conducted to discuss the influence of the individual factors.

Several k-factors are defined in Figure 5.6(a). They describe the whole stress–strain path in

the elastic state: the crack element is loaded from O to Point B, which lies between crack

stress at Point A and yield strength, and its stress at the crack edge is defined in relation to σsr 0

by a maximum stress factor, kσ, according to Eq. 5.7. This factor denotes the ratio between

the applied load and the cracking load. The element is unloaded to Point H, introducing a

minimum stress factor, kU , in Eq. 5.8, specified by the ratio of crack edge steel stresses at B to

the same value at H. Full unloading is equivalent to kU = 0.

1 ≤ kσ = σ(B)
sr

σsr 0
≤ kσ,adm = fsy

σsr 0
(5.7)

0 ≤ kU = σ(H)
sr

σ(B)
sr

≤ 1 (5.8)

As soon as full slip reversal is reached along stress path BH, the curve runs parallel to the

naked steel characteristic (and to stress path AB). Because of the bond stress modification

from τb0 to τbU , the distance of the parallels is altered to
(
τbU

/
τb0

) ·∆ε0 =
(
kτ

/
2
) ·∆ε0. Thus,

the maximum horizontal distance between the parallels to the naked steel curve through

Points B and H [=∆εBH in Figure 5.6(b)] is

∆ε0

(
1+ τbU

τb0

)
=∆ε0

(
1+ kτ

2

)
(5.9)
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and corresponds to ηδ = 1, where ηδ is introduced to represent the degree of slip reversal:

ηδ =
∆εBH

∆ε0

(
1+ kτ

2

) (5.10)

Full slip reversal means that all shear stresses along the steel bar have reversed their direction

as a result of the unloading. This factor is calculated according to Section 5.1.6, resulting in

the following simple quadratic function

0 ≤ ηδ = 2ξ−ξ2 ≤ 1 (5.11)

where

0 ≤ ξ= (1−kU )kσ
λ

2

2+kτ
≤ 1 (5.12)

For three different kτ(= 2, 1, and 0.5), a set of curves of several kU -values is plotted in Fig-

ure 5.7(a)–(c)1 [ηδ on the ordinate, kσ on the abscissa]. Curves for the same kU are located

at higher ηδ-levels for lower bond factors kτ: full slip reversal is reached earlier, therefore,

tension stiffening loss is higher, which is caused by the assumption of a low bond factor. As

soon as it equals one, ηδ remains constant. The influence of the reinforcement ratio, ρ, is

restricted to crack stress σsr 0 and to kσ,adm (the vertical boundary lines where σsr 0 is equal to

fsy ). The results do not depend on the rebar diameter Ø.
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Figure 5.7: Parameter study of degree of slip reversal ηδ and residual tension stiffening factor
ηTS for different bond stress factors: (a) kτ = 2, (b) kτ = 1 and (c) kτ = 0.5

1Figure 5.7 is illustrated for λ= 1. Appendix F presents a transformation for λ= 0.5 to λ= 1
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5.1. Load history of uniaxial tension chord

The initial strain reduction, ∆ε0, is multiplied by a residual tension stiffening factor, ηTS ≤ 1,

and results in a residual tension stiffening ηTS ·∆ε0 after unloading and reloading because

of progressive damage in the interface along the ribbed bar, caused by slip reversal (Goto

1971). The value of ηTS can be calculated analogously to ηδ by determining the (normalized)

distance between Points I and B [Figure 5.6(b) and Section 5.1.6] and is linearly dependent on

the degree of slip reversal of Eq. 5.11:

1 ≥ ηTS = 1−ηδ
(
1− kτ

2

)
≥ kτ

2
(5.13)

Full slip reversal causes a maximum tension stiffening loss that linearly depends on the

bond factor, kτ, as shown in the bottom diagrams in Figure 5.7. Assuming full bond leads

to ηTS = 1 (no tension stiffening loss), regardless of which degree of slip reversal is obtained.

For kτ = 1, there is a residual tension stiffening of 50%; for kτ = 0.5, the lower boundary is

25%. Corresponding values of the example in Figure 5.5 (with parameters: kσ = 1, kU = 0,

ρ = 1%) are plotted in Figure 5.7(a) and (b) for kτ = 2 and kτ = 1. For maximum crack spacing,

ηδ = 0.75 and 0.89, respectively, are derived (circles in Figure 5.7). For kτ = 2, full slip reversal

is impossible to achieve because the intersection between the curve and the vertical line at

kσ,adm = 1.58 (ρ = 1%) is at ηδ = 0.96. The remaining tension stiffening lies between 0.56

and 0.50 for kτ = 1, depending on the effective average crack spacing. The nomograms in

Figure 5.7, based on Eqs. 5.11–5.13, clearly demonstrate the influence of individual factors on

tension stiffening losses, and particular mention must be made of the minimum stress factor,

kU . Rapid graphical estimates of tension stiffening losses attributable to any URL cycle can be

derived; conservative lower bounds of the remaining tension stiffness always directly depend

on the assumed bond shear stress factor, kτ.

Unloading and reloading in the elasto-plastic state

Another tension chord (using the parameters in Figure 5.3 and kτ = 1) is monotonically loaded

up to 525 MPa (OE) at the crack edge and afterward unloaded to fsy
/

2 = 250MPa before

being reloaded, as shown in Figure 5.8(a). Therefore, the total stress path in Figure 5.4(b)

is OABCDEE”HH”JF. For the elastic case, the stress distribution inside the crack element is

plotted in Figure 5.8(b). After steel stresses have reached fsy , the slope is divided by two

because of bond reduction at yielding (τb1 instead of τb0).

During unloading (EH), slip reversal occurs up to a distance of xsU , which remains the upper

limit for the length of slip reversal during reloading (HJ). As soon as xsU exceeds the length

of the plasticized zone between σsr and fsy , an irreversible bond shear stress reduction at-

tributable to the URL cycle causes higher average steel strains after reloading [additional dark

gray area, Aadd , in Figure 5.8(b)] when parts of the crack element are still elastic; thus, Point J is

located to the right of Point E. Particularly for maximum crack spacing, the distance between J

and E is significant.
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Figure 5.8: (a) Crack edge stress–average steel strain relationship for elasto-plastic URL, kτ = 1,
(b) corresponding steel stresses inside boundary crack elements. All parameters
are identical to those in Figure 5.3

5.1.4 Validation of proposed model

Based on the assumption of half the initial bond stress for unloading and reloading (kτ = 1),

analytical curves are compared to experimental results derived from flexural and tensile tests

on full-scale RC members. First, local stress and strain distributions inside crack elements of a

beam under flexural loads are investigated. Subsequently, global elongation measurements of

a tension member are compared to the modified TCM.

Bending experiments by Kenel

Kenel performed five four-point bending tests on 4-m-long RC beams (Kenel and Marti 2002;

Kenel et al. 2005); the longitudinal and cross sections of Specimen B3 are shown in Figure 5.9(a).

Beam B3 was reinforced with eight cold-formed bars of Ø10 mm in the longitudinal direction,

providing an overall reinforcement ratio ρ = 0.31%. The material properties are summarized

in Figure 5.9. An idealized stress–strain relationship according to Figure 5.1(d) was assumed

for the reinforcing steel (with corresponding coefficients cs = 22.9, κs = 721MPa for Eq. 5.14

based on Ramberg and Osgood 1943):

εs = σs

Es
+

(
σs

κs

)cs

(5.14)
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5.1. Load history of uniaxial tension chord

Although it is not possible to directly measure bond shear stresses, they can be back-calculated

from steel strain measurements along the reinforcing bar: between two load stages, strain

differences at every measured location, x, are calculated and transformed to stress differences

via a constitutive law, e.g., based on Eq. 5.14. Stress differences along the x-axis refer to bond

stresses between concrete and steel (for constant bending moments). To obtain these steel

strains, one of the eight longitudinal bars was equipped with 146 5-mm-long Bragg grating

sensors (spaced at 10.4 mm) in an optical fiber that was epoxy glued into a 1.0× 1.0mm2

planed groove [Figure 5.9(b)]. Local reinforcing steel strains were analyzed in the undisturbed

region of (approximately) constant bending moments between x = 1.8m (midspan between

the supports) and x = 2.4m (right support). Figure 5.9(c) illustrates the measured strains for

Load Stage (LS) 5 and LS10.

Qy ≈ 45 kN
Qmax = 53.7 kN
wm,u = 210 mm

1.0 ·1.0 mm2

for optical
fiber

Parameter:
8×Ø = 10 mm,  ρ = 0.31%, ρs,ef = 1.1%
Ec = 40 GPa, fct = 4.7 MPa, fc = 81 MPa
Es = 208 GPa, fsy = 550 MPa, 
εsu = 80‰, fsu = 645 MPa
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Figure 5.9: (a) Longitudinal and cross section of Kenel’s beam B3 (dimensions in mm), (b)
planed groove for optical fiber, (c) Bragg grating sensor results at LS5 and LS10, (d)
load–mid-span deflection curve (adapted from Kenel and Marti 2002)

Beam B3 was loaded under displacement control by two hydraulic jacks at each end of the

specimen (distance 3.6 m); load–deflection response within Load Stages 1–13 is shown in

Figure 5.9(d). At LS1, the first bending cracks formed between the two supports. The crack

pattern was fully developed at LS10, where the yield strength of the rebars was exceeded

(Qy ≈ 45kN). Average crack spacing was observed between 140 and 150 mm, which is equal to

half of the rebar spacing of the transverse reinforcement [Ø8 rebars at 300-mm spacing, as
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Chapter 5. Effect of load history on punching resistance

shown in Figure 5.9(a)]. A maximum load of Qmax = 53.7kN could be applied, and at failure, a

midspan deflection was measured relative to the beam ends of wm,u = 210mm. Collapse was

induced by failure of the concrete compression zone next to the left support.

Specimen B3 was loaded to Q = 32kN at LS5. Bragg grating measurements are shown by solid

lines in Figure 5.10(a). Five clear peak strains developed, each at a distance of 146 mm (equal

to the distance between 15 Bragg grating sensors); each peak represents a flexural crack. Based

on the resulting steel stress at each crack edge, a modeling curve (dashed line) was calculated

for each crack element [parameters: Ø = 10mm, ρs,ef = 1.1%, according to fib Model Code

2010 (2013), n = 5.2, τb0 = 2 fct = 9.4MPa, srm = 146mm, thus λ = 0.65]. Experimental and

modeling slopes correspond well, especially for the two left crack elements between x = 1.8

and 2.1 m; experimental minimum steel stresses were slightly higher than predicted.
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Figure 5.10: Experimental (solid) and modeled (dashed and dotted) steel stress and strain
distribution for (a) unloading LS5 to LS6, (b) comparison of different bond stress
factors after unloading, (c) reloading LS6 to LS7, (d) comparison of different bond
stress factors after reloading

Subsequently, the beam was unloaded to Q = 3kN [solid line in Figure 5.10(a), LS6]. Analogue

to LS5, modified TCM steel stresses were calculated by subtracting stress increments between

LS5 and LS6. Slip reversal occurred along length xsU ≈ 50mm; full slip reversal was not

achieved. The area under the steel strain curve (neglecting concrete deformation) is equal to

the crack width. The residual crack width at LS6 is overestimated by 5% if applying the modified

TCM (dashed line, kτ = 1), which is much less than the 20% overestimation resulting from the
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5.1. Load history of uniaxial tension chord

original model, whose stress curve (dotted line, kτ = 2) is compared to the measurements and

modified TCM in Figure 5.10(b). The gradient of the steel stresses of the original TCM is too

steep with regard to the measurements; the bond stresses of concrete to steel are overestimated.

The agreement of the modified TCM to the experimental results is much better. To quantify

this agreement, a coefficient of variation (COV) of the differences between experimental and

calculated strains of each sensor was derived because strains and not stresses were measured.

The COV of the modified TCM is 13%, which is 90% lower than for the original model.

LS7 denotes the load stage after reloading to Q = 31kN [Figure 5.10(c)]. Along xsU , only τbR

could be activated, as suggested by the hypothesis of irreversible bond stress reduction. Again,

original and modified TCMs are compared [Figure 5.10(d)]. The dotted line in Figure 5.10(d) is

equal for LS5 and LS7 because a URL cycle did not affect the curve distribution. The modified

TCM overestimates the crack width at LS7 by only 7%; on the contrary, the original TCM

underestimates it by 11%. Again, the modified model corresponds better to the measurements

than the original TCM. In particular, a good agreement is achieved for the stress minimums at

the center of the three crack elements and for the stress distribution in the right element. The

COV of the modified model is equal to 9.7% and 77% lower than that of the latter. The modified

TCM confirms the measured increase of deformation (or crack width) after reloading.

Between LS7 and LS8, additional unloading and reloading cycles were conducted. It was

assumed that xsU remained constant during these load cycles. Subsequently, the beam was

further loaded to Q = 44kN (LS10). Figure 5.11(a) illustrates partial yielding of the steel rein-

forcement near to the crack edges (horizontal lines at fsy and εsy ). Within xsU (from LS6), the

gradient of the stress curve remained reduced, although plasticizing had not yet occurred. Both

the strain and stress distribution according to the modified TCM (dashed line) correspond

very well to the Bragg grating sensor results. The modified TCM underestimates the crack

width at LS10 by 5%, in contrast to a 17% underestimation resulting from the original TCM.

The steel stress curves of both models are shown in Figure 5.11(b). The stress gradients of the

former model correspond well to the measurements, whereas the original TCM overestimates

the bond stresses of concrete to steel, as shown by overly steep gradients near the stress

maximums. COVs of 17% for the modified and 27% for the original model, respectively,

confirm this observation. However, the scatter of the strain differences between the two TCMs

and the measurements is affected by the results of two Bragg sensors in the left crack element

at x ≈ 1.96m, as shown by the solid strain curve in Figure 5.11(a). It is probable that a crack

may have opened exactly between the two grating sensors. Thus, the measurements do not

correspond to the actual (higher) maximum values at the crack. By excluding these two data

points, the COVs are reduced to 10% for the modified TCM and 23% for the original TCM.

Unloading to LS11 (Q = 3kN) caused an elastic reduction of strains and stresses. Almost the

whole crack element experienced a slip reversal [the already damaged zone along xsU (LS6)

was extended to xsU ≈ 68mm; srm
/

2 = 73mm]. Again, the shape of predicted and measured

values is very similar. Figure 5.11(c) shows the predicted and measured curves after reloading

to LS12, Q = 44kN. For the comparison in Figure 5.11(d), it must be considered that the
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Chapter 5. Effect of load history on punching resistance

original TCM was not intended to be applicable for URL cycles in the elasto-plastic state. The

dotted curve depicted in the diagram shows the distribution for a monotonic loading between

LS10 and LS12. The previous observation in Figure 5.11(b) is confirmed. The modified TCM

reproduces the experimental curve much better; the crack widths (thus, beam deformations)

of both the modified TCM and the experiment are approximately 4% higher than for LS10.
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Figure 5.11: Experimental (solid) and modeled (dashed and dotted) steel stress and strain
distribution for (a) unloading LS10 to LS11, (b) comparison of different bond
stress factors before unloading, (c) reloading LS11 to LS12, (d) comparison of
different bond stress factors after reloading to LS12

Tensile experiments by Pfyl

Pfyl conducted experimental and theoretical investigations concerning the application of

steel fibers in reinforced and prestressed concrete structures with low reinforcement ratios

(Pfyl and Marti 2001; Pfyl 2003). Tensile and flexural beams with varying reinforcement ratio

and fiber contents and a reference beam without any fibers were investigated. Specimen

T100.0 [longitudinal and cross sections in Figure 5.12(a) and (b)] was reinforced with four

Ø8 mm bars in the longitudinal direction [ρ = As
/

Ac = 0.67%, corresponding to the minimum

reinforcement requirements according to SIA 262 (2013)]. Their ends were welded to steel

anchor plates. Two additional Ø8 mm bars and stirrups in the transverse direction were placed

in the anchoring zone. At the beam center, two Ø4 mm cross-rods fixed the target position

of the longitudinal reinforcement and served to induce the crack position. Relevant material
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5.1. Load history of uniaxial tension chord

s r
m

 ≈1
40

 m
m

Parameter:
4×Ø = 8 mm, ρ = 0.67%
Ec = 35 GPa, fct = 2.2 MPa, fc = 48 MPa
Es = 211 GPa, fsy = 531 MPa, 
εsu = 78‰, fsu = 588 MPa

(a)

N

N

A-A

B-B

(c)(b)

A A

B B

20
00

10
0020

0

250

250

12
0

l s

l m

ll

an
ch

or
in

g

zo
ne

4 Ø8

6 Ø8

St. Ø4

anchor 
plate

sA  :

Figure 5.12: (a) Longitudinal section of Pfyl’s beam T100.0 with placed reinforcement (dimen-
sions in mm), (b) cross sections A–A and B–B, (c) crack pattern and installed LVDT
sensors (adapted from Pfyl and Marti 2001)

properties are summarized in Figure 5.12; a bilinear stress–strain relationship according to

Figure 5.1(c) was assumed for reinforcing steel.

Elongation of the beam was measured by seven inductive LVDTs, labeled ll , lm , and ls in

Figure 5.12(c). Three displacement transducers measured the overall extension of the beam

between the anchor plates (2 m base length; ll 1, ll 2, ll 3), two LVDTs were installed to measure

the elongation between the load application zones (1 m base length; lm1, lm2), and two further

transducers had a base length of 200 mm (ls1, ls2).

The load was applied under displacement control at each beam end. Specimen T100.0 cracked

at N = 68kN at midspan (location of the two Ø4 cross-rods). A tensile strength for the structural

member of fct = 2.2MPa was derived, according to the TCM (considering net cross sections,

n = 6.1 and ρ = 0.67%). At LS8 [Figure 5.13(a)], the crack pattern was fully developed with seven

primary cracks. The average crack spacing, srm , was 140 mm, approximately corresponding to

the lower limit value of λ= 0.5. Because of the low effective concrete tensile strength, crack

stress, σsr 0, was only 340 MPa. Maximum load was N = 123kN; the beam failed as a result

of rupture of two of the four longitudinal rebars at N = 119kN and the average elongation

measured between the load application zones at failure was 34 mm.

Figure 5.13(a) and (b) show stress–elongation diagrams: on the abscissa in Figure 5.13(a),

∆lm was obtained from the average of the two medium LVDTs lm1 and lm2; the average

values, ∆ls , of the two short LVDTs ls1 and ls2 are shown in Figure 5.13(b). At cracking, cracks

formed progressively, as illustrated by the saw-toothed curves. In Figure 5.13(a), the trace is

quite regular (results from the long base length), because almost all cracks formed between

the two sensors, and is located between the two analytical limit curves for λ = 0.5 and 1.0
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Chapter 5. Effect of load history on punching resistance

Nmax = 123 kN (σsr,max = 614 MPa)
∆lm,u = 34 mm, ∆ls,u = 5.2 mm
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Figure 5.13: (a) Crack edge stress–elongation relationship for (a) LVDTs with base length
1000 mm, (b) short LVDTs with base length 200 mm

according to the TCM. The short base length of the transducers in Figure 5.13(b) shows the

large deformation increase at each of the two cracks formed within this length.

After initially loading the beam up to the elasto-plastic state, a complete URL cycle was

performed between LS9 and LS11. A comparison of the measurements in Figure 5.13(a) with

the predicted curve (for λ= 0.5) shows that:

1. the loading cycle causes additional extensions after LS11,

2. almost the same residual deformation results as at LS10, but

3. the hysteresis is overestimated by the modified TCM and the slope of the measurements

(proportional to the Young’s modulus, Es) is higher.

This apparently higher Young’s modulus is most likely attributable to the additional rebars

of the anchoring zone, which, by ending close to the measuring section of the LVDTs [Fig-

ure 5.12(a) and (c)], influence the flow of forces and decrease the hysteretic response. Also,

not all cracks occur between the two transducers. In Figure 5.13(b), the agreement between

the unloading and reloading predictions and the measurements is much better with respect

to the corresponding hysteresis and slope (stiffness).

5.1.5 Conclusions

The bond of concrete to steel reinforcement is essential for the appropriate functioning of RC

members. The bond properties determine crack widths and spacing and influence structural

stiffness and deformation behavior as a result of the concrete contribution in tension (tension

stiffening). In this contribution, the original TCM is modified to make it applicable for general

URL cycles in the elastic and plastic states of the reinforcing steel. The conclusions described

in the following can be drawn:
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5.1. Load history of uniaxial tension chord

• Unloading and reloading reduces tension stiffening, which results in additional defor-

mations. Thus, the admissible bond shear stresses in bond stress–slip relationships have

to be irreversibly reduced, not only because of yielding of the reinforcement, but also

before this, because of load cycles in the cracked elastic state.

• For a low number of URL stress cycles, an irreversible reduction of bond stress to 50% of

its initial value (kτ= 1) is proposed. A significant increase of cycles may lead to further

irreversible reductions.

• The residual tension stiffening effect is influenced by the degree of slip reversal, ηδ . A

simple quadratic function for ηδ was found, in which the latter depends on the stress

level before and after unloading, crack spacing, bond stress, and reinforcement ratio

(via the crack stress, σsr 0). A parameter study shows a strong influence of the ratio of

unloading stress level to initial loading stress on the residual tension stiffening. This

effect is intensified for low bond stresses.

• For members with reinforcement in the elasto-plastic state, additional deformations

after unloading and full reloading were observed, as for the load cycles in the elastic

state.

• The modified TCM allows the sufficiently accurate description of the local bond stress

development between steel and concrete in the case of two RC beams, which were

unloaded and reloaded with the reinforcement in the elastic and elasto-plastic states.

• Load history can significantly influence the deformation behavior and has to be consid-

ered, especially for cases with deformation-dependent load-bearing capacities.
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Chapter 5. Effect of load history on punching resistance

5.1.6 Appendix: Degree of slip reversal

This section provides detailed calculation steps for deriving the degree of slip reversal, ηδ, and

the residual tension stiffening factor, ηTS . Average steel strains are calculated by integrating

steel strains (via the stress–strain relationship) along the tension chord. To take unloading

and reloading into account, the stress path has to be split into segments: for each segment,

∆εsm has to be calculated, and finally, all segmental results are superposed. In Figure 5.6, ηδ is

derived by segmentally calculating the average steel strains for Point H:

εsm
[
σ(H)

sr

]=∆εsm
(
σ(B)

sr −0
)+∆εsm

(
σ(H)

sr −σ(B)
sr

)
(5.15)

then subtracting the average steel strains for B (previously shifted parallel to the naked steel

characteristic down to the stress level of H), giving the distance BH according to Figure 5.6(b):

∆εBH = εsm
(
σ(H)

sr

)−[
εsm

(
σ(B)

sr

)− σ(B)
sr −σ(H)

sr

Es

]
(5.16)

and normalizing by the right side of Eq. 5.9, giving the following term identical to Eq. 5.10

ηδ =
∆εBH

∆ε0

(
1+ kτ

2

) (5.17)

The steel stress difference at the crack edge between B and H is denoted as ∆σsr . For a bilinear

steel stress–strain relationship according to Figure 5.1(c), the average steel strain difference,

∆εsm (as function of ∆σsr ), is given by

∆εsm (∆σsr ) = ∆σsr

Es
− 4τb

Ø

xs (srm −xs)

Es srm
(5.18)

with

xs (∆σsr ) = Ø

4τb

1−ρ
1+ρ (n −1)

∆σsr (5.19)

where τb = sum of the initial and unloading bond shear stress and xs = length along which

slip reversal has already occurred for a certain stress difference (Figure 5.14). The value

corresponding to the stress path arrival at Point H is denoted xsU (also shown in Figure 5.5),

and subsequently, specifies the upper limit of xs during crack element reloading (stress path

HI). Substituting Eqs. 5.18 and 5.19 into 5.17, together with Eqs. 5.1–5.8, ηδ can be rewritten

as Eq. 5.11 by introducing the coefficient ξ [Eq. 5.12].

The calculation steps for the residual tension stiffening factor, ηTS , are analogous to the

previous procedure. Here, the (normalized) horizontal distance between Points I and B is

calculated instead [Figure 5.6(a) and (b)]:

ηTS = 1− ∆εBI

∆ε0
(5.20)
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5.1. Load history of uniaxial tension chord

srm / 2 srm / 2
σ σ

σ

∆
 σ

∆
 σ

4τ

4τ 4τ

4τ

H

unloading B      H

(a) (b)

Ireloading H 

B

H

I

ø

ø ø

ø

xx

sUxxsU

xs

sr sr

sr sr

s

b0

bU bU

bR

Figure 5.14: Steel stress distribution along crack element for (a) unloading and (b) reloading

When segmenting stress path OABHI, the absolute value,∆σsr , for HI is equal to BH, but not the

average steel strain difference. Eq. 5.18 has to be derived by inserting xsU as upper limit for xs

(Figure 5.14). For the same ∆σsr , Eq. 5.19 would exceed xsU because τb = τbU +τbR ≤ τb0 +τbU .

Eq. 5.20 is finally rewritten as Eq. 5.13, which is linearly dependent on ηδ [Eq. 5.11].
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Chapter 5. Effect of load history on punching resistance

5.2 Load history of flat slabs

Reference detail

Robert Koppitz, Albin Kenel and Thomas Keller. “Effect of load history on punching shear

resistance of flat slabs”. Engineering Structures, submitted in October 2014, revised in January

2015.

Abstract

The unloading of reinforced concrete slabs results in residual slab rotations and reloading

to the same load results in irreversible rotation increases. Unloading and reloading (URL)

cycles applied to non-strengthened and strengthened flat slabs may thus affect the punching

resistance, which is rotation-dependent. A quintilinear moment–curvature relationship,

which takes concrete softening and tension stiffening into account, combined with URL

cycles, modeled as bilinear envelopes, is developed to predict residual slab rotations and

irreversible rotation increases. A parametric study shows that the effect of URL cycles on the

punching resistance of concrete is normally small, however, it may be significant if the slab is

strengthened after unloading, particularly for thin and low-reinforced slabs, which exhibited

plastic slab rotations before unloading. Prestressing of the strengthening system may reduce

the residual slab rotations and thus limit or compensate the loss of punching resistance.

5.2.1 Introduction

In contrast to the bending resistance, the punching shear resistance of flat slabs depends on

the slab rotation (Kinnunen and Nylander 1960). For slabs with interior columns, the punching

resistance can be estimated with analytical formulas, which are based on the assumption of a

rotation-symmetric slab cutout. Load–rotation curves can be derived for different, e.g. bilinear

or quadrilinear, moment–curvature relationships (Muttoni 2008). Based on the Tension Chord

Model (TCM) by Marti et al. (1998), the quadrilinear relationship takes a contribution of the

concrete tensile stresses between the cracks into account. This leads to a decrease of the

average steel stresses in the cracked zone and thus to the so-called “tension stiffening effect”,

which may influence the punching resistance of slabs with low reinforcement ratios of the

longitudinal reinforcement (Muttoni 2008).

In addition to the consideration of concrete tensile stresses between cracks, the behavior of

concrete in the crack itself was also investigated. Studies on cement pastes (Higgins and Bailey

1976; Grudemo 1979) showed that their crystalline structure can hinder or even arrest the

growth of micro-cracks by means of interlocking fibers growing out from the cement grains.

Thus the concrete tensile stresses do not abruptly drop to zero after tensile strength is reached,

but still provide a fractional contribution up to a critical (fictitious) crack width, wcr . This

behavior is considered by the Fictitious Crack Model (FCM) by Hillerborg et al. (1976) and

Hillerborg (1983) for instance, where one sharp crack of zero initial length is assumed, or by

the blunt Crack Band Model (CBM) by Bažant and Oh (1983) and Bažant et al. (1994), which

smears the crack over a fracture process zone of a certain width.
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5.2. Load history of flat slabs

A Modified Sector Model (MSM) has been proposed in Chapter 4, which takes into account

the fact that the punching resistance also depends on the level of transverse shear loading.

This model considers a quadrilinear moment–curvature relationship including the tension

stiffening effect. Comparisons with experimental results indicated that slab rotations generally

agree very well, but are slightly overestimated immediately after the cracking of the slab, see

Figure 4.7. This overestimation was attributed to the tensile contribution in the fracture

process zone, which had not been taken into account.

The unloading and reloading of slabs may further influence the deformation behavior and

thus the punching resistance. Prior unloading of slabs may be required (e.g. by bracings) if

existing slabs have to be strengthened against punching shear in order to activate the post-

installed strengthening systems. For the uniaxial tension chord it was shown in Section 5.1

that unloading and reloading (URL) cycles influence the deformation behavior by affecting

the bond properties between the reinforcing steel and surrounding concrete. A residual slab

rotation,ψres , was noticed after unloading of the slab, see Figure 3.23. After reloading up to the

same load as previously applied, an irreversible increase of rotation, ∆ψURL , was observed by

Marti et al. (1977) and Pralong et al. (1979). Some experiments even failed in punching before

reaching the same load as previously applied (Pralong et al. 1979). Additional deformations

resulting from such load histories may thus reduce the punching resistance and their accurate

modeling or prediction is important.

In the following, the modeling of the effects of URL cycles on the deformation behavior of the

uniaxial tension chord is therefore extended to bidirectional slabs, focusing on single URL

cycles required for slab strengthening. On the basis of the MSM, the residual slab rotations

after unloading and irreversible rotation increases after reloading of slabs are described.

Furthermore, the tensile contribution of the fracture process zone is taken into account

by a softening branch in the concrete stress–strain relationship in order to eliminate the

above-mentioned overestimation of deformations during cracking. A parametric study is

carried out to quantify the effects of these parameters on the punching shear resistance of

non-strengthened and strengthened flat slabs.

5.2.2 Concrete contribution in tension

Tension Chord Model

The contribution of the concrete between the cracks in tension can be considered using the

TCM (Marti et al. 1998), which assumes Sigrist’s (1995) stepped rigid–perfectly plastic bond

shear stress–slip relationship for monotonic loading, see Figure 5.1(a). As long as the rebar

stress is below the yield strength, fsy , an upper bond shear stress of τb0 = 2 fct is assumed. After

yielding, the bond shear stress is reduced to a lower value of τb1 = fct to take an irreversible

bond reduction into account. A linear elastic behavior is assumed for concrete up to the tensile

strength, fct ; no softening behavior is subsequently considered [Figure 5.1(b)].
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Chapter 5. Effect of load history on punching resistance

In a tension chord with applied axial force, N , bond stresses between the cracks reduce the

average steel stresses and thus the average steel strains, εsm , inside the crack element with

constant average crack spacing srm , compared to the case where fct is neglected (equal to

naked steel characteristic). Applying the TCM results in a horizontal shift of the average steel

strains by a constant factor ∆ε0, see Figure 5.15(a) and Eq. 5.21:

∆ε0 = λ fct

2Es

1−ρ
ρ

(5.21)

where ρ = As
/

Ac with As = πØ2/4 (centrally arranged rebar with diameter Ø), Ac = gross

cross-sectional area of tension chord; and 0.5 ≤ λ≤ 1.0. The two boundaries of λ represent

minimum and maximum values for crack spacing. The actual value is determined by the

spacing of the transverse reinforcement.

≈ 
(d

 −
 x

) /
 3

∆  χ
∆  χ

 χ ε

∆  ε
∆  ε

 χ

 ε
−

(a) M

M

N (c)

(b)
MM crack element

II

+

-

Mcr

EI /hI

EI  /dII

/h1

1/d
Ncr

1

1

sm

x
z
y

y
z
x

A t,ef A s

II

cr

h

b
x

m

m

cr

0

m

sm

E  Ac     c

E  As     s

s     = Lrm

s     = Lrm

d
   

  x

Figure 5.15: (a) Tension chord with applied load–average steel strain diagram in uncracked
and cracked elastic state, (b) denomination of beam and (c) transformation to
applied moment–average curvature diagram in uncracked and cracked elastic
state according to Marti (1999)

The behavior of the uniaxial tension chord was investigated for URL cycles in Section 5.1.

Based on Kenel (Kenel and Marti 2002; Kenel et al. 2005), an irreversible reduction of bond

shear stress τb = kτ fct between rebar and surrounding concrete from the initial value of kτ = 2

to kτ = 1 was suggested for unloading and reloading cycles (see Section 5.1.3, p. 97). The bond

stress–slip path is therefore altered during the URL cycle, see Figure 5.16(a), resulting in the

load–average steel strain curve of Figure 5.16(b) (abscissa normalized by ∆ε0). The path is

represented by BHI, whereby the deformation at I is higher than at B due to the irreversibly

reduced bond properties. Small circles between B and H, and H and I, respectively, denote full

slip reversal in the tension chord, where all shear stresses along the rebar have reversed their

direction. Further unloading (or reloading) results in a slope equal to the steel axial stiffness at

a distance of kτ
/

2 ·∆ε0 to the curve where fct is neglected.
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5.2. Load history of flat slabs

In beams subjected to bending moments, M , the contribution of concrete in tension can

be assumed as being analogous to the uniaxial case in Section 5.1. The zone around the

rebars in Figure 5.15(b) is considered as tension chord with crack spacing srm and effective

reinforcement ratio ρs,ef = As
/

At ,ef . Marti (1999) approximated the effective tension area,

At ,ef , as one third of the area below the neutral axis according to Martin et al. (1980) and

Schießl (1989), and for beams he derived a constant curvature offset, ∆χm , due to tension

stiffening, see Eq. 5.22 and Figure 5.15(c).

∆χm = ∆ε0

d −x II
≈ λ fct

6asEs
(5.22)

where x II = depth of concrete compression zone in cracked elastic state, as = cross-sectional

area of tensile reinforcement per unit width. Burns (2012) proposed a solution for ∆χm using

an effective reinforcement ratio compatible with the Bernoulli bending theory. To take into

account a loss of bond stress due to creep under sustained loads she reduced ∆χm . As a

limit case she investigated an unloading of a tension chord for a complete loss of bond stress

(equivalent to setting kτ = 0); a reloading case, however, was not investigated.

In the rotation-symmetric Quadrilinear Sector Model (QSM) for slabs Muttoni (2008) further

revised Eq. 5.22 by setting λ= 1, ρ ≈ as
/

h, and reducing Es by a factor βE to take an orthogonal

instead of radial and tangential reinforcement layout into account, see Section 4.2.2:

∆χTS = fct

6ρhβE Es
(5.23)
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Figure 5.16: (a) Rigid–perfectly plastic bond–slip relationship for URL cycles, (b) elastic URL
load path for tension chord [refer to Figs. 5.4 and 5.6]
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Chapter 5. Effect of load history on punching resistance

Fictitious Crack Model

In displacement-controlled tensile tests on short concrete specimens a softening behavior

instead of a sudden brittle failure was observed after tensile strength was reached at the

weakest point inside the specimen (Weibull 1939; Hughes and Chapman 1966; Evans and

Marathe 1968; Heilmann et al. 1969). The softening at this point accompanied deformation

localization in a single fracture process zone because of progressive micro-cracking between

the cement matrix and aggregates (Sigrist 1995; Kaufmann 1998; Kenel 2002).

The Fictitious Crack Model (FCM) was proposed by Hillerborg (Hillerborg et al. 1976; Hillerborg

1983) in which the total elongation of a concrete beam [with initial length L, see Figure 5.17(a)]

after cracking, ∆L, is composed of the elastic unloading deformation of the intact beam part

[Figure 5.17(b)] and a local deformation due to the softening inside the fracture process zone.

A corresponding stress–crack opening relationship [Figure 5.17(c)] assumes that the fracture

process zone has an initial length of zero, i.e. is a fictitious crack. The tensile strength decreases

with increasing crack opening, w , until it drops to zero at a critical value, wcr , and the fictitious

crack becomes a real crack.

∆L

L +   ∆L

∆L =  εel L + w

σ

 ε

σσ

(a) (b)

1

(c)

NN

w

el

cE

ctf

ctf

w

ctf

crw

FG  

w

fracture 
process 
zone

elastic 
part

c

cc

Figure 5.17: Fictitious Crack Model by Hillerborg (1983): (a) behavior of concrete beam loaded
in tension; (b) stress–strain relationship of elastic beam parts; (c) stress–crack
opening relationship inside fracture process zone (adapted from Sigrist 1995)

The softening behavior of concrete in the fracture process zone was described by various

analytical functions. Common relationships are either constant (Dugdale 1960) or linear

(Hillerborg 1983; Zhu 1991), bilinear (Petersson 1981), power functions (Foote et al. 1987), or

e.g. balances of elastic and plastic energy (Barenblatt 1962); see summary by Kenel (2002). The

area below the stress–crack opening curve represents the specific fracture energy in tension,

GF , which is dissipated per unit area of the fracture process zone until complete separation

of the two specimen parts occurs. Wittmann et al. (1988), Hordijk (1992) and Trunk (1999)

experimentally confirmed a primary dependence of GF on the concrete tensile strength and
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5.2. Load history of flat slabs

the aggregate size. Following CEB-FIP Model Code 90 (CEB 1993), Marti (Marti 1999; Marti

et al. 1999) proposed an empirical formula for the specific fracture energy, depending on

concrete tensile strength, fct (in MPa), and maximum aggregate size, dg (in mm):

GF =
fct

4
√

dg

80mm−3/4

(
in N

/
mm

)
(5.24)

5.2.3 Modified Sector Model

In the rotation-symmetric sector model based on Kinnunen and Nylander (1960) isolated

rigid slab segments are considered, which rotate around the edge of a central column with

a rotation angle, ψ, see Figure 5.18. Equilibrium of moments results in a shear force as a

function of the slab rotation, Vskt
(
ψ

)
, according to Muttoni (2008):

Vskt
(
ψ

)= 2π

rq − rc
·
mr

(
ψ

) · r0 +
rs∫

ro

mt
(
ψ

)
dr

 (5.25)

A quadrilinear moment–curvature relationship is suggested and the radial curvature χr of the

radial moment mr at r = r0 is assumed as χr =ψ
/

r0 and the tangential curvature as χt =ψ
/

r

along the segment. The maximum slab resistance is limited by the flexural capacity, V f lex

(Eq. 4.2), which is reached as soon as the bending resistance, mR , of the entire radial and

tangential reinforcement is fully activated.

In Chapter 4 the Modified Sector Model (MSM) introduces a strength reduction factor, κV

(Eq. 4.8), for the shear crack-crossing longitudinal reinforcement, thus taking the influence

of shear on the flexural behavior into account. κV depends on the mechanical longitudinal

reinforcement ratio, ω= ρ fsy
/

fc , see Eqs. 4.9–4.10. Eq. 5.26 follows from Eq. 5.25, multiplied

by a reduction factor with mr calculated at r = r0 and corresponds to Eq. 4.11.

Vmod
(
ψ

)= 1

1+κV
mr (ψ)

mR

r0
rs

·Vskt
(
ψ

)
(5.26)

In the Critical Shear Crack Theory (CSCT) Muttoni (2008) proposed a concrete failure criterion

as function of ψ, VRc
(
ψ

)
, as follows:

VRc
(
ψ

)= 0.3u0dv
√

fc

0.4+0.125ψdmkg
(5.27)

where u0 = control perimeter at dv
/

2 distance to support area, dv = shear-resisting effective

depth, dm = average effective depth, kg = 48
/(

dg +16mm
)
, dg = maximum aggregate size,

and fc = cylinder compressive strength of concrete. For slabs without shear reinforcement the

intersection of Eqs. 5.26 and 5.27 determines the (theoretical) punching resistance of the slab,

VR0, see also Section 4.2.1, p. 71.
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Chapter 5. Effect of load history on punching resistance

The punching resistance of slabs with shear reinforcement cannot exceed the crushing resis-

tance of the concrete strut near the column (Beutel 2003), VR,crush , which can be estimated as

follows (Fernández Ruiz and Muttoni 2009):

VR,crush
(
ψ

)= ksysVRc
(
ψ

)
(5.28)

where VRc
(
ψ

)
from Eq. 5.27 is multiplied by an empirical system factor, ksys .
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Figure 5.18: Sector model with rigid outer
slab segment and acting forces
(Muttoni 2008)
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5.2.4 Effect of URL cycles on slab behavior

Extension of Modified Sector Model by concrete softening

The consideration of the softening behavior of concrete after cracking, which was neglected in

the MSM in Chapter 4, results in a further deformation reduction, in addition to the tension

stiffening effect. The Dugdale model (Dugdale 1960) provides the simplest approach to take the

effect of interlocking cement fibers into account, as the tensile strength is maintained constant

until it drops to zero at wcr [Figure 5.19(a)] where all fibers are pulled out. This model has the

advantage of omitting a crack-opening dependence of the transferrable stress in the fracture

zone below wcr . Here, the fracture zone developing in each crack element is smeared along its

length srm . Upper and lower boundaries for srm are given according to the TCM, see Eq. 5.2.

In fact srm is often determined by the spacing of the transverse reinforcement. The area QRST

below the stress–strain curve in Figure 5.19(b) thus represents the specific fracture energy

GF divided by srm . Accordingly, the load–average strain and moment–curvature diagrams in

Figure 5.20(a) and (b) are modified by this additional area QRST, which is now GF At ,ef
/

srm .

After the cracking load Ncr (or the cracking moment per unit width mcr ) is reached, the curves
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5.2. Load history of flat slabs

ascend reflecting the cracked axial (flexural) stiffness until the critical crack opening is reached.

Subsequently, the curves are horizontally shifted back to the original quadrilinear curve by

∆εcr (∆χcr , respectively), as already shown in Figure 5.15.

Applying Eq. 5.26 using the quintilinear moment–curvature relationship of Figure 5.20(b)

(OQRSCDF) results in:

Vmod
(
ψ

)= 1

1+κV
mr (ψ)

mR

r0
rs

· 2π

rq − rc
·


mr

(
ψ

) · r0 +mR
〈

ry − r0
〉+

+E I IIψ
〈

ln r̃crs
ry

〉
+E I II∆χTS

〈
r̃crs − ry

〉+
+ (mcr +∆mcr )〈r̃cr − r̃crs〉+E I Iψ

〈
ln rs

rcr

〉
+

+E I IIψ
〈

ln rcr
r̃cr

〉
+E I II

(
∆χTS +∆χcr

)〈rcr − r̃cr 〉

 (5.29)

where mcr = cracking moment, mR = bending resistance [∆mcr and ∆χcr according to Fig-

ure 5.20(b)], E I I and E I II = uncracked and cracked flexural stiffness (∆χTS according to

Eq. 5.23), r0 ≤ ri =ψ
/
χi ≤ rs with subscript i = cr , crs or y . Tilde symbols denote curvatures

and corresponding radii at points R, S instead of P, A (e.g. χ̃cr =χcr +∆mcr
/

E I II , r̃cr =ψ
/
χ̃cr ).

Operator 〈x〉 is x for x ≥ 0 and 0 for x < 0.

Omitting GF [corresponding to the quadrilinear relationship in Figure 5.20(b), path OPTCDF]

results in ∆mcr and ∆χcr equal to zero, and r̃cr and r̃crs are identical to rcr and rcrs . The last

line of Eq. 5.29 is dropped and the remaining terms in the squared brackets are equivalent to

Eq. 6 in Muttoni (2008). Additionally neglecting fct [= bilinear relationship in Figure 5.20(b)]

leads to ∆χTS = 0. Only the first three terms in the squared brackets of Eq. 5.29 remain, where

rcr and rcrs derive to rs . For κV = 0 Eq. 5.29 corresponds to Eq. 7 in Muttoni (2008).
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Chapter 5. Effect of load history on punching resistance

Unloading and reloading of slabs

Every point in the slab segment is unloaded and reloaded from a different stress level, because

the slab moments are radius-dependent, see Figure 5.21(a). To avoid having different URL

paths for every slab point, a simplification is made which is explained for the elastic uniaxial

tension chord in Figure 5.21(b). By assuming that full slip reversal is always reached, i.e. a suf-

ficiently large load difference Nsup −Ninf is ensured, the curve progression can be approached

by a rigid–fully cracked envelope. Unloading from B to H is modeled by an immediate load

drop to the parallel line at kτ
/

2 ·∆ε0 distance to the naked steel characteristic (BY), and a

further curve progression along that parallel line down to Ninf (= YH). Reloading is modeled

likewise by path HZI.
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5.2. Load history of flat slabs

Figure 5.21(c) illustrates the modified loading path OPRB1 where point B1 is at Ncr +∆Ncr .

Accordingly, the unloading path is now shifted downwards by a constant value Es As∆εunl (=

distance UV) where ∆εunl is determined by equalizing the two grey areas (QRST and UVWX),

thus assuming that the fracture energy during loading is the same as the energy required to

push the fibers back during unloading. Now unloading takes place along path B1UVH2 (at

full unloading). H1 = X is actually shifted horizontally to H2 and not vertically to W, giving a

small error indicated by the extra triangle XWH2 below the abscissa that is considered in the

calculation of ∆εunl .

Unloading starting at B2 > B1 does not provide any supplemental vertical shift. Thus the

unloading path B2Y2H2 runs along the parallel line at a total horizontal distance of∆εunl+kτ
/

2·
∆ε0 to the naked steel characteristic down to Ninf (point H2) where a residual elongation of the

rebar remains (distance OH2). The reloading path back to Nsup, H2Z2I2, runs along a parallel

line at kτ
/

2 ·∆ε0 distance to the naked steel characteristic, and thus no softening is taken into

account in reloading. For reloading the same value of kτ was assumed as for unloading (see

Eq. 5.6). Therefore back at Nsup a horizontal gap between I2 and B2 of
(
1−kτ

/
2
)
∆ε0 remains

after completion of the URL cycle.

The moment–curvature relationship [Figure 5.21(d)] is modified in the same way. Unloading

from msup to minf (path B2Y2H2) is accomplished by an immediate vertical drop of ∆munl ,

Eq. 5.30, and a subsequent linear decrease with slope E I II . Reloading (path H2Z2I2) exhibits

a vertical rise of ∆mrel , Eq. 5.31, and the same linear increase back to msup (point I2), where

there also remains a horizontal gap in relation to the initial load path,∆ψURL = (
1−kτ

/
2
)
∆χTS .

∆munl = E I II
[(

1+ kτ
2

)
∆χT S+∆χunl

]
(5.30)

∆mrel = E I II [
kτ∆χTS +∆χunl

]
(5.31)

where

∆χunl =
∆mcr∆χcr

E I II
(
χ̃crs − kτ

2 ∆χTS

) (5.32)

Based on the moment–curvature relationships for the URL cycle B2Y2H2Z2I2 load–rotation

curves can be calculated, see Figure 5.21(e). It is assumed that the entire prefactor in Eq. 5.29,

which takes transverse shear into account, remains constant at its msup-value. Thus the URL

load–rotation curves are also linear. The increase of rotation resulting after the URL cycle of

a slab in the cracked elastic state, ∆ψURL =ψI2 −ψB2 , can be determined for a known load

difference Vsup−Vinf, resulting in a constant value due to the rigid–fully cracked approximation:

∆ψURL =
(
1− kτ

2

)
∆χTSrs

1+ ln
(

rs
r0

) (5.33)
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Chapter 5. Effect of load history on punching resistance

Validation with experiments

a) Experimental database

In the literature only a small number of experiments was found with single unloading and

reloading cycles before the load was increased up to failure. At ETH Zurich four slabs (P2–3,

P5–6) without post-tensioning were tested in the 1970s (Marti et al. 1977; Pralong et al. 1979).

All slabs had an octagonal shape, a central column with diameter 300 mm and were loaded

by eight cylinders, see Figure 5.22(a). Slabs P2, P3 and P5 had an orthogonal reinforcement

layout, P6 included only tangential ring reinforcement, but radially arranged stirrups around

the column. Here, a secant rotation was calculated from the average deflection at the slab edge,

assuming zero deflection at the column edge. Two of the slabs used in Lips’ (2012) investigation

on the punching resistance of square slabs with large amounts of shear reinforcement, PF3

and PF5, were also unloaded and reloaded. The layout of the two slabs with orthogonal

reinforcement is given in Figure 5.22(b). The slab rotations of the weak axis were measured

directly using inclinometers that were installed near the applied load.
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Figure 5.22: Slab dimensions and YLMs: (a) fan mechanism for round column (slabs P2/3/5/6);
four-point star mechanisms for (b) eight (PF3/5), (c) 20 (Sd1–2,Sh2–4,Sr1–2) and
24 load points (Sr3); (d) truncated cone mechanism of equivalent circular slab

An experimental campaign on several strengthening systems for existing RC flat slabs was

carried out in Chapter 3 and Appendix B. Three slabs, Sh2–4, were strengthened against

punching shear by an externally prestressed steel head placed underneath the slab. Another

three slabs, Sr1–3, contained non-laminated and prestressed CFRP straps installed crosswise

around the column in pre-drilled and pre-cut openings, and anchored on the bottom side
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5.2. Load history of flat slabs

Table 5.1: Slab properties for model validation

Reference Slab unla rela h dm ρm fc fct Ec fsy Es
V f lex

mR
ωm κV

[mm] [mm] [%] [MPa] [MPa] [GPa] [MPa] [GPa] [–] [–] [–]

Marti et al.
(1977)

P2 yes yes 180 143 1.48 37.3 3.4b 37.2 558 206 7.71 0.22 0.46
P3 yes yes 180 152 1.40 35.8 3.3b 36.6 558 206 7.71 0.22 0.46

Pralong et al.
(1979)

P5 yes yes 180 154 1.31 27.1 2.7b 37.3 515 204 7.71 0.25 0.53
P6 yes yes 180 154 1.31 30.0 2.5b 38.1 515 204 7.71 0.22 0.48

Lips (2012)
PF3 yes yes 250 209 1.50 37.1 3.3c 33.4c 583 200 8.14 0.24 0.50
PF5 yes yes 400 354 1.50 33.4 3.1c 32.2c 580 200 7.74 0.26 0.57

Appendix B
Sd1 yes yes 256 199 1.58 51.0 3.9b 38.5 517 205 7.39 0.16 0.33
Sd2 yes yes 257 202 1.56 52.2 3.9b 39.5 517 205 7.39 0.15 0.31

Lips et al.
(2014)

Sh2 yes no 260 199 1.58 59.1 4.0b 37.4 514 205 7.39 0.14 0.28
Sh3 yes no 260 203 1.55 47.6 3.9b 40.0 569 205 7.39 0.19 0.38
Sh4 yes no 255 207 1.52 45.3 3.4b 40.3 569 205 7.39 0.19 0.40

Section 3.2
Sr1 yes no 257 200 1.57 48.1 3.6b 41.0 517 205 7.39 0.17 0.35
Sr2 yes no 187 138 1.46 43.1 3.4b 35.8 521 205 7.39 0.18 0.36
Sr3 yes no 325 264 1.44 44.2 3.4b 35.1 525 205 7.24 0.17 0.36

a unl = unloading path, rel = reloading path of non-strengthened slabs
b values from double-punch tests on cylinders (h = Ø = 150mm) acc. to Chen (1970); Marti (1989)
c values calculated using relationships acc. to SIA 262 (2013): Ec = 10000MPa2/3 · 3

√
fc , fct = 0.3MPa1/3 · f 2/3

c (both in MPa)

of the slab by a steel compression frame. The slabs [for properties see Figure 5.22(c)] were

preloaded and unloaded before the strengthening systems were installed and applied. Two

further slabs, Sd1–2, were investigated without subsequent strengthening, but to quantify

the effect of boreholes (required for the strap system) on the punching resistance of the non-

strengthened slabs. The slab properties and yield-line mechanisms (YLMs) of all specimens are

summarized in Figure 5.22(a)–(c) and Table 5.1. For the MSM the slab and column geometries

were transformed to an equivalent circular slab with the same flexural capacity, Figure 5.22(d).

For actual circular slabs and columns βE ≈ 0.6 was used (Muttoni 2008), for square ones

βE ≈ 0.7, see Section 4.3.1. Slab rotations were calculated from deflections measured near the

column and the slab edge. The maximum rotation of the weak axis was selected, except for

Sr1–3 where only deflections along the strong axis were recorded during preloading.

The zero measurements in the experiments prior to loading define the origin Ô of the load–ro-

tation curves, see Figure 5.23. Thus the dead weight G of the slab and the equipment, and the

resulting slab rotation ψG had to be added and the coordinate system was shifted from Ô to O.

ψG was estimated using elasticity theory. Assuming an uncracked behavior of an equivalent

circular slab, which is ring-supported at rc , and ring-loaded along the slab edge with rs ≈ rq ,

maximum slab rotation at the slab edge is calculated according to Beyer (1956):

ψG = 3G

π

1−ν
Ec h3

r 2
q − r 2

c

rq
(5.34)

where ν = Poisson’s ratio ≈ 0.2.

123



i
i

“PhD*Thesis*Koppitz” — 2015/1/15 — 17:11 — page 124 — #140 i
i

i
i

i
i

Chapter 5. Effect of load history on punching resistance

In the following modeled and measured load–rotation curves of non-strengthened slabs are

compared in normalized diagrams (see Figs. 5.24 and 5.25) according to Muttoni (2008).

On the ordinate the equivalent shear stress, V
/

(u0dv ) is divided by
√

fc , assumed as being

proportional to the concrete shear strength. On the abscissa, the product ψdmkg is plotted.

ψ

−
ψ

ψ ψ

V

G

Q

G

zero measurement

O

VR,exp

R,exp

O

Figure 5.23: Shift of origin for experimental curves

b) Monotonic loading considering concrete softening

In Figure 5.24, the observed monotonic load paths (solid lines) of five slabs are compared to

calculated load paths, Eqs. 5.26 and 5.29, without (dotted) and with (dashed) consideration of

concrete softening by using the estimation of GF in Eq. 5.24. The shapes of the dashed curves

show a better agreement with the measurements than the dotted curves. For higher applied

loads both calculations gradually result in the same rotations, since the stiffening effect due to

the bridging fibers is exhausted as soon as all crack widths exceed wcr .
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results
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5.2. Load history of flat slabs

c) Residual rotation after unloading and rotation increase after reloading

Fourteen slabs were completely unloaded to V =G , eight of them were reloaded, see Table 5.1.

Slab PF3 failed before the URL cycle could be completed. The experimentally obtained paths

are displayed in Figure 5.25, together with modeled unloading and reloading paths according

to Figure 5.21(e) (dashed curves). In the model the maximum load before unloading, Vsup,

resulted from adjusting the computational slab rotation to the measured one before unloading

the slab. The slopes of the measured URL paths are steeper than the modeled ones because

of the rigid–fully cracked approach of the moment–curvature relationship. The residual slab

rotations after unloading are underestimated by the model by 15% on average, see Table 5.2.

The Coefficient of Variation (COV) of 38%, however, is quite high; it is much lower for the

complete data sets of the author’s experiments (13%). The predicted rotation increases after

completion of the full URL cycle, according to Eq. 5.33, overestimate the experimental values

by 16% on average, the COV is 51%, see Table 5.2. By excluding the URL cycle of P5, the average

value decreases to 0.94 with a COV of 15%. In the observed experiments the rotation increases

are only 23% (on average) of the residual rotations, see also Table 5.2.
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Chapter 5. Effect of load history on punching resistance

Table 5.2: Residual slab rotation ψres and rotation increase after reloading (∆ψURL,mod accord-
ing to Eq. 5.33)

Slab ψres,exp ψres,mod
ψres,mod
ψres,exp

avg. COV ∆ψURL,exp ∆ψURL,mod
∆ψURL,mod
∆ψURL,exp

avg. COV
∆ψURL,exp

ψres,exp

[mrad] [mrad] [–] [–] [–] [mrad] [mrad] [–] [–] [–]

P2 2.61 1.77 0.68

0.92 0.54

0.57 0.48 0.84

1.21 0.58

0.22
P3 1.83 1.49 0.82 0.43 0.50 1.14 0.23
P5 0.47 0.88 1.84 0.17 0.43 2.45 0.36
P6 2.21 1.32 0.60 0.50 0.40 0.79 0.23
PF3 22.0 24.4 1.11 – 0.40 – –
PF5 1.62 0.78 0.48 0.30 0.25 0.84 0.19

Sd1 1.72 1.19 0.69

0.80 0.13

0.33 0.35 1.08

1.02 –

0.19
Sd2 1.74 1.22 0.70 0.38 0.36 0.96 0.22
Sh2 1.99 1.35 0.68 – 0.36 – –
Sh3 1.65 1.24 0.75 – 0.36 – –
Sh4 1.12 1.02 0.92 – 0.33 – –
Sr1 1.18 1.04 0.88 – 0.35 – –
Sr2 2.31 2.00 0.86 – 0.46 – –
Sr3 0.82 0.73 0.89 – 0.30 – –

Total (14 slabs) 0.85 0.38 Total (7 slabs) 1.16 0.51 0.23

Parametric study

Based on the validated models for the residual rotation and the rotation increase after one URL

cycle, a parametric study for non-strengthened and strengthened slabs was performed in order

to evaluate the sensitivity of the results to some assumptions that were made in the models. In

the non-strengthened case, the following three parameters were investigated: the influence

of GF on the deformation behavior, the influence of Vsup on the residual rotation, and the

influence of the rotation increase due to an URL cycle, ∆ψURL , on the punching resistance.

Two slabs with the same geometry and material properties (rc = 159 mm, rq = 1500 mm, rs =

1575 mm, h = 250 mm, dm = 200 mm, G = 75 kN, fc = 30 MPa, Ec = 35 GPa, fct = 2.9 MPa, dg =

32 mm, fsy = 500 MPa, Es = 205 GPa, βE = 0.7), but different reinforcement ratios (ρhigh = 2.1%,

ρlow = 0.5%) were selected for the first two parameters. For the third parameter ρ (0.5% and

2.1%), dm (100, 200 and 400 mm, d
/

h = 0.8) and fc (30 and 60 MPa), and thus also fct (2.9 and

4.6 MPa) and GF (86 and 137 N/m), were varied, see Table 5.3.

These parameters were also used for the strengthened case in which slabs were strengthened

after a preloading up to VR0 and a full unloading down to zero to investigate the maximum

possible effect of an URL cycle on the punching resistance of concrete. Because of modified

slab properties after strengthening and / or different failure criteria the residual rotation ψres

(= origin of new V –ψ-curve) is the critical parameter instead of ∆ψURL . Four strengthening

cases were investigated: The first one was a duplication and triplication of the support area

(increase of the control perimeter, u0, and of the flexural capacity, V f lex ), the second case was

a duplication of V f lex by neglecting a stiffness increase (i.e. in the case of the application of

very thin CFRP sheets, Harajli and Soudki 2003), the third one assumed a duplication of V f lex
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5.2. Load history of flat slabs

and a stiffness increase of 50% (e.g. by applying an additional upper concrete layer, Amsler

et al. 2014, or an external steelhead placed between column and slab, Lips et al. 2014). In the

last case, the effect of a prestressed shear-strengthening system was investigated, which is

able to compensate the residual slab rotation, see Figure 3.23. The URL cycle curves of the

strengthened slabs were calculated as if they were monotonically loaded and then horizontally

shifted by ψres . In the first three cases, the effect of residual slab rotations on the concrete

contribution to the punching resistance, according to Eq. 5.27, was quantified. In the fourth

case, the punching resistances, VR1, of the prestressed and non-prestressed systems were

compared, both assumed to be reached at VR,crush , according to Eq. 5.28, with ksys = 2.5, see

Section 4.4.3.

The load–rotation curves for different specific fracture energies GF are compared in Figure 5.26

(GF = 86 N/m according to Eq. 5.24 and GF = 0, 50, 100, 150 N/m were selected, whereas GF = 0

is equivalent to a quadrilinear moment–curvature relationship). The effect of GF on the defor-

mations is only visible immediately after cracking and gradually disappears as flexural capacity

is approached. In the serviceability limit state, it is therefore sufficient to refer to a simple

estimation of GF as in Eq. 5.24. GF can be neglected in the moment–curvature relationship for

the determination of the punching shear capacity.
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In the experimental validation of the model, Vsup was calibrated to start unloading at the same

rotation as in the measurements. In some slabs the difference between the calculated Vsup

and the actual value was more than 15%. The curves in Figure 5.27 illustrate that, as long as no

part of the slab’s longitudinal reinforcement yields (below the marked triangle), the variation

of residual rotation is low. In the case of the slab with ρlow , a decrease of Vsup from 429 kN to

127



i
i

“PhD*Thesis*Koppitz” — 2015/1/15 — 17:11 — page 128 — #144 i
i

i
i

i
i

Chapter 5. Effect of load history on punching resistance

350 kN (−18%) reduces ψres by 11%. For the slab with ρhigh a decrease from 1241 kN to 900 kN

(−28%) results in almost no reduction of ψres (−2%).

The effect of a URL cycle on punching resistance is shown in Figure 5.28(a) and (b) for two non-

strengthened slabs with different reinforcement ratios (ρhigh = 2.1%, ρlow = 0.5%), effective

depths (dm = 100 and 400 mm) and concrete compressive strengths ( fc = 60 and 30 MPa).

The intersection of the load–rotation curve with the failure criterion, Eq. 5.27, denotes the

punching resistance, VR0. If the slabs are unloaded and reloaded, rotation ψR0 increases by

∆ψURL and, accordingly, VR0 decreases. The limit case of a complete loss of bond between

concrete and rebar, i.e. setting kτ = 0 instead of kτ = 1, doubles ∆ψURL . Nevertheless, the slab

rotations at failure increase by only 4% [Figure 5.28(a)] and 12% [Figure 5.28(b)], and by 7% on

average (total) and maximum 14% if considering all parameter combinations, see Table 5.3.

The resulting decreases of VR0 remain small: 2% and 5% for Figure 5.28(a) and (b), 3% on

average (total) and 7% maximum.

In the first strengthening case [see Figure 5.28(c) and (d)] the increase of the column radius, rc ,

increases the control perimeter, u0, and simultaneously the flexural capacity of the slab by a

reduction of the denominator (rq − rc ), see Figure 5.22. ψres causes practically no resistance

decrease (smaller than 5%), see Table 5.3.

Table 5.3: Parametric study: increase of slab rotation and decrease of punching resistance
resulting from UR cycle (calculations 5 and 13 correspond to Figure 5.28)

Parameters kτ = 1 kτ = 0 2rc 3rc 2V f lex , E I 2V f lex , 1.5E I

# ρ fc dm ∆ψR0 ∆VR0 ∆ψR0 ∆VR0 ∆ψR1 ∆VR1 ∆ψR1 ∆VR1 ∆ψR0 ∆VR0 ∆ψR0 ∆VR0

[%] [MPa] [mm] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]

1 2.1 30 200 +3 −1 +5 −1 +4 −1 +3 −1 +7 −2 +11 −2
2a 2.1 30 100 +1 −1 +3 −1 +6 −3 +3 −2 +17 −5 +25 −6
3 2.1 30 400 +4 −1 +8 −2 +7 −2 +5 −2 +10 −2 +16 −3
4 2.1 60 200 +3 −1 +6 −2 +5 −2 +3 −2 +8 −2 +12 −3
5a 2.1 60 100 +2 −1 +4 −2 +7 −4 +4 −3 +22 −8 +32 −9
6 2.1 60 400 +5 −1 +9 −3 +7 −3 +6 −2 +11 −3 +17 −4

Average
(
ρ = 2.1%

) +3 −1 +6 −2 +6 −2 +4 −2 +13 −4 +19 −4
Max. ∆ψR ; min. ∆VR +5 −1 +9 −3 +7 −4 +6 −3 +22 −8 +32 −9

11a 0.5 30 200 +3 −2 +7 −4 +6 −3 0 0 +46 −17 +66 −20
12a 0.5 30 100 +1 −2 +4 −3 +1 0 0 0 +78 −30 +100 −33
13a 0.5 30 400 +6 −2 +12 −5 +7 −3 +5 −3 +15 −6 +23 −7
14a 0.5 60 200 +4 −2 +8 −5 0 0 0 0 +69 −26 +88 −28
15a 0.5 60 100 +2 −2 +4 −3 0 0 0 0 +104 −39 +128 −43
16a 0.5 60 400 +7 −3 +14 −7 +8 −5 +4 −2 +32 −13 +46 −15

Average
(
ρ = 0.5%

) +4 −2 +8 −4 +4 −2 +2 −1 +57 −22 +75 −24
Max. ∆ψR ; min. ∆VR +7 −3 +14 −7 +8 −5 +5 −3 +104 −39 +128 −43

Average (total) +3 −2 +7 −3 +5 −2 +3 −1 +35 −13 +47 −14
Max. ∆ψR ; min. ∆VR +7 −3 +14 −7 +8 −5 +6 −3 +104 −39 +128 −43

a including plastic rotations before unloading (Vsup above transition point)
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5.2. Load history of flat slabs
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Figure 5.28: Effect of URL cycle on: (a) and (b) VR0 of non-strengthened slab, (c) and (d) VR1

of strengthened slab (increase of support area), (e) and (f) VR0 of strengthened
slab (increase of flexural capacity and/or stiffness) and ∆VR1 due to prestressed
system. The diagrams were evaluated for the parameters indicated in the boxes in
(e) and (f), respectively

In the second case with doubled V f lex and no flexural stiffness increase, a horizontal shift of

the load–rotation curves byψres caused by the URL cycle increasesψR0 and thus decreases VR0

[see Figure 5.28(e) and (f)]. The amount of increase and decrease, respectively, is influenced

by irreversible plastic slab rotations that have occurred before unloading and strengthening

in some of the slabs (indicated in Figure 5.28 by triangles, and in Table 5.3). In the case

of highly reinforced slabs (ρhigh = 2.1%) the reinforcements of the two thin slabs were only

plasticized around the column. Thus the rotation increase is 13% on average [22% for the slab

in Figure 5.28(e)] and the decrease of the concrete contribution to the punching resistance is

less than 8% when compared to ψres = 0 (4% on average). This decrease is much higher for

low reinforced slabs (ρlow = 0.5%) with much larger plastic deformations before unloading,

especially for the thin slabs. An average decrease of concrete resistance of 22% results [only 6%

for the slab in Figure 5.28(f)], with a maximum loss of 39%. If additionally the flexural stiffness
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Chapter 5. Effect of load history on punching resistance

is increased by 50% (third case), the obtained increases of ψR0 are approximately 30% higher;

the corresponding reductions of VR0 are 10% higher on average compared to those without

stiffness increase.

In the fourth case, the applied prestressing force is adjusted in such a manner as to fully

compensate ψres in cases 2 and 3 and thus does not result in a reduced contribution of the

concrete to punching resistance. The prestressed system (with ψres = 0) is compared to the

non-prestressed one (with ψres > 0). If only V f lex is doubled (as in case 2, e.g. using the

prestressed CFRP straps of Chapter 3), strap prestressing leads to an average increase of

punching resistance, ∆VR1, of 5%, see Figure 5.28(e) and (f). If the prestressed shear-strength-

ening system further increases slab stiffness by 50% (as in case 3, e.g. by a prestressed external

steelhead, Lips et al. 2014), a ∆VR1 of 14% results on average.

5.2.5 Conclusions

Using the Modified Sector Model (MSM) load–rotation curves were derived to discuss the effect

of unloading and reloading (URL) cycles on the deformation behavior and punching shear

resistance of non-strengthened and strengthened flat slabs. A comparison of the model results

to the author’s and literature experiments, and a parametric study, result in the following

conclusions:

• A quintilinear moment–curvature relationship – which takes into account a softening

branch in the concrete stress–strain relationship and the tension stiffening effect –

together with a URL cycle, modeled as a bilinear envelope assuming full slip reversal,

are able to predict residual slab rotations and irreversible rotation increases after a full

URL cycle.

• URL cycles increase the slab rotation and thus reduce the punching shear resistance part

of the concrete compared to a monotonically loaded slab; the effect however is small.

The effect may increase significantly if the slab is strengthened after unloading or for

slabs with low reinforcement ratios due to irreversible plastic slab rotations. Prestressing

of the strengthening system, however, may compensate the residual slab rotation and

thus prevent the loss of punching resistance.

• In the serviceability limit state, slab rotations are more accurately predicted if the

concrete softening branch is considered. Approaching the ultimate limit state – for

estimation of the punching shear resistance – the effect of concrete softening disappears

and may thus be neglected.

Further research is required to take into account time-dependent effects like shrinkage or

creep of concrete. These effects may lead to additional deformations and may also result

in a decreased punching resistance. In the proposed model this may be considered by the

superposition of an additional time-dependent slab rotation, and by a reduction of material

properties of concrete.

130



i
i

“PhD*Thesis*Koppitz” — 2015/1/15 — 17:11 — page 131 — #147 i
i

i
i

i
i

6 Conclusions and future research

6.1 Conclusions

The load–deformation behavior of flat slabs was analyzed on the basis of the analytical rotation-

symmetric sector model by Kinnunen and Nylander (1960) and the assumption of a quadrilin-

ear moment–curvature relationship according to Muttoni (2008), i.e. on a Quadrilinear Sector

Model (QSM). A Modified Sector Model (MSM) was developed which considers the influence

of shear on flexural behavior. The following main conclusions are drawn:

• The developed model suggests a strength reduction factor for the longitudinal rein-

forcement crossing the shear crack. This reinforcement has to transmit forces resulting

from shear, in addition to forces resulting from bending. The strength reduction factor

depends on the mechanical longitudinal reinforcement ratio.

• The consideration of this strength reduction factor in the calculation of the load–rotation

curve of slabs according to the MSM leads to a reduction of flexural stiffness, flexural

capacity and punching resistance. Compared to the QSM curves a better agreement

with experimental curves is achieved, particularly for cases with higher longitudinal

reinforcement ratios.

In the last twenty to thirty years an increasing number of reinforced concrete slabs have had

to be strengthened against brittle punching shear failure for such reasons as bad detailing,

durability deficiencies, or changes of usage leading to a need for increased load-bearing ca-

pacity. The efficiency of the available non-prestressed punching strengthening methods is

limited; for instance, post-installed shear reinforcement often cannot be sufficiently activated

by additional slab deformations before punching failure occurs. On the other hand the pre-

stressing of post-installed shear reinforcement activates the shear-strengthening components

immediately after their installation and unloads the slab. The present work analyzed such a

strengthening concept in an experimental campaign. This campaign involved a strengthening

concept with prestressed carbon fiber-reinforced polymer (CFRP) straps as shear reinforce-

ment:
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Chapter 6. Conclusions and future research

• Although CFRP is a brittle material, strap prestressing of at least 15% of the tensile

strength leads to a significant increase of punching resistance by 67–114% and to an

increase of slab deformability: the rotations at failure were 40–110% higher than in the

non-strengthened cases.

• The increase of punching shear resistance is similar for all three investigated CFRP

strap-anchoring systems – an open system with 1) adhesively-bonded anchors or 2)

a steel compression frame mounted underneath the slab around the column, and a

closed system with 3) self-anchored straps using a turnbuckle.

• The installed CFRP straps increase the bending resistance of the slab. In accordance

with the experimental results a linear dependence of the strap activation on the slab

rotation is assumed. The strap activation also depends on the applied prestressing force

and on strap stiffness.

• The developed MSM is able to predict the load–rotation responses of flat slabs strength-

ened with prestressed CFRP straps by considering this increased bending resistance.

The agreement of the MSM with the results of the experimental campaign is especially

good for the punching resistance (underestimation by 1% with a COV of 5%). The slab

rotations at failure are underestimated by 11% (COV: 14%) when considering all slabs

(strengthened and non-strengthened), and 7%±12% for the strengthened cases.

The unloading of an existing flat slab, to activate the subsequently installed strengthening

solution during reloading, leads to residual rotations. Punching models based on a rotation-

dependent punching shear resistance are able to consider these slab rotations. Thus the

load history resulting from a single unloading and reloading (URL) cycle was analytically

investigated to quantify its effect on the rotation-dependent punching resistance according

to Muttoni (2003, 2008). First the load–deformation behavior of a uniaxial tension chord was

analyzed on the basis of the Tension Chord Model (TCM) by Marti et al. (1998). The results were

implemented in the MSM, where a quintilinear instead of a quadrilinear moment–curvature

relationship was proposed, to take into account an additional contribution of concrete in

tension in the fracture process zone according to the Fictitious Crack Model (Hillerborg et al.

1976) via a concrete softening branch after cracking according to Dugdale (1960). Comparisons

with experimental results and parametric studies led to the following main conclusions:

• In the serviceability limit state, slab rotations can be more accurately predicted if the

concrete softening branch in the crack is considered. This effect gradually disappears

when the ultimate limit state is approached.

• URL cycles reduce tension stiffening, which results in additional deformations. Here

this is taken into account by an irreversible reduction of the admissible bond shear

stress by 50% in the bond stress–slip relationship according to Sigrist (1995).

• The agreement of the quintilinear MSM – including simplified bilinear URL cycle en-

velopes – with the few available experimental load–rotation curves is acceptable, with
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residual slab rotations being underestimated and irreversible rotation increases overes-

timated by ca. 15%.

• A parametric study shows that the effect of a URL cycle, increasing the slab rotation and

thus reducing the portion of the punching shear resistance borne by the concrete, may

become significant if the slab is strengthened after unloading. However, the decreased

resistance can be compensated by installing a shear-strengthening system using a

prestressing method. This was confirmed in the experimental campaign where the

residual slab rotations after preloading and unloading of a non-strengthened slab were

eliminated during prestressing of the CFRP straps that were installed after unloading.

An investigation of the available punching models, primarily developed for new structures,

was carried out, evaluating their applicability to problems specific to the strengthening of

existing slabs, as for instance insufficient anchorage of the longitudinal reinforcement or

supplementary cut openings or cut reinforcement. The conclusions relating to these problems

are as follows:

• Longitudinal tensile reinforcement insufficiently anchored outside the punching zone

reduces the flexural stiffness, bending resistance and thus punching resistance. This may

be particularly observed for strengthening solutions that increase the control perimeter.

Supplementary strengthening measures are necessary to ensure full anchorage of the

tensile reinforcement.

• Some strengthening solutions require supplementary cut openings within the punching

zone that damage the existing structure before they strengthen it. Existing punching

models can consider openings by a reduction of the control section which thus reduces

the punching resistance. However, experiments on slabs Sd1–2 did not exhibit a mea-

surable decrease of punching resistance, only a softer slab response compared to the

reference slabs without cut openings or cut reinforcement. The location of the boreholes

at the column corners seemed to only marginally divert the load transfer toward the

column.

The Modified Sector Model developed here successfully reproduces the load–deformation

behavior of new and existing reinforced concrete flat slabs by taking into account the contribu-

tion of concrete in tension between and inside the cracks. The consideration of a shear effect

on flexural behavior eliminates an overestimation of the flexural capacity and consequently

punching resistance. A strengthening solution consisting of prestressed CFRP straps used as

post-installed shear reinforcement is able to significantly increase the punching resistance of

slabs. Furthermore, prestressing of the CFRP straps compensates residual slab rotations due

to the load history. The portion of the punching resistance borne by the concrete is thus not

reduced.
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6.2 Original contributions

A three-level classification was developed, providing a consistent overview of the wide range

of analytical models for calculating punching shear resistance.

Partial contributions were made to the development of the previously launched experimental

campaign. The measurement data from all experiments was reprocessed for the analysis.

The load–rotation behavior of rotation-symmetric slabs was analyzed in detail. Flexural

stiffness reduction factors that take an orthogonal reinforcement layout in rotation-symmetric

slabs into account were analytically investigated. A survey was conducted of the common

double-symmetric yield-line mechanisms (YLMs) of slabs. Two YLMs were developed: for

concentrated column strip reinforcement and for reinforcement with insufficient anchorage

outside the punching zone.

An analytical modification of the sector model – the MSM – was developed, taking into account

the fact that shear reduces the bending resistance in the column vicinity. The proposed model

was validated by seventy-two slab responses obtained from literature.

The structural behavior of the prestressed punching shear-strengthening concept was in-

vestigated and implemented into the MSM via an increased bending resistance of the slab,

depending on the strap activation. This model was successfully validated by the results of the

experimental campaign.

The TCM was analyzed and applied to a uniaxial tension chord under single URL cycles. Such

cycles damage the concrete around the ribbed rebar, which was considered by an irreversible

reduction of the admissible bond shear stress. Hence, the reduced tension stiffening leads to

additional deformations after reloading up to the same load as previously applied. Experimen-

tal results validated the proposed bond stress reduction of 50% compared to initial loading in

the elastic state.

The findings concerning the uniaxial case were extended to flat slabs. There, an analytical

consideration of URL cycles was implemented in the MSM by simplifying a cycle using a

bilinear envelope, providing acceptable agreement with experimental results.

A better agreement of the MSM prediction with experimental results in the serviceability limit

state was obtained by introducing a quintilinear instead of quadrilinear moment–curvature

relationship, considering a concrete softening branch after cracking.

6.3 Recommendations for future research

In the following several recommendations for future developments are given to further en-

hance the understanding of the punching of new and existing slabs and validate the models

presented here for additional applications.
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In this research membrane forces were neither considered in the MSM nor in the experimental

research in which isolated slab cutouts were analyzed. For the examination of actual slabs,

however, membrane action may become significant. More research is required to determine

the influence of compressive membrane action around the column that may increase the

flexural stiffness, bending and punching resistance. An investigation of the effect of the

lateral restraining stiffness of neighboring slab supports on the load–deformation behavior is

necessary.

The MSM is valid for internal columns and a rotation-symmetric column, slab and load

geometry. The model must be extended for the prediction of the punching resistance of rigidly

connected edge or corner columns, wall ends or walls with re-entrant angles.

The load–rotation curves calculated by the MSM were validated by experimental slab re-

sponses. Slab rotations at failure and punching resistances were determined for the CFRP

strap strengthening system presented in Section 1.2, and compared to experimental results.

A validation of the MSM for new slabs with ordinary shear reinforcement is recommended,

which requires a model for the activation of shear reinforcement with increasing rotation.

The experimental campaign verified the applicability and efficiency of the CFRP strap-strength-

ening system. The experimental database should be further extended by additional exper-

iments. It is recommended that the applied prestressing force be varied for different slab

thicknesses, and that the influence of different thicknesses of the steel compression frame on

the structural behavior be examined. The performance of the strengthening system has to be

proven for other slab and column sizes and column geometries.

Insufficient anchorage of the tensile reinforcement around the column is a common problem

in existing slabs, and is amplified when strengthening systems are installed to increase the

support area. More research is required to better quantify the decrease of punching resistance

and analyze the effect of additional post-installed bending reinforcement, for instance by

applying externally-bonded reinforcement made of steel or FRP on the slab surface.

A more detailed analysis is required to investigate the effect of supplementary cut openings

and / or cut reinforcement within the punching zone of existing slabs on their load–deforma-

tion behavior and punching resistance. The most important parameters have to be identified,

for instance: the number of holes and / or rebar cuts, their size and distribution around the

column, the column geometry, and a potential contribution of the cut reinforcement between

the holes.

Long-term effects were excluded in the analysis of the load history of slabs. Effects like creep

and shrinkage lead to additional deformations that may also result in decreased punching

resistance. These effects can for instance occur with strengthening systems comprising addi-

tional upper concrete layers. Few experimental investigations are available and a theoretical

and experimental study is therefore recommended to develop accurate estimates of the defor-

mation increases resulting from sustained effects.
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Notation

Abbreviations

Avg. Average

CBM Crack Band Model

CFRP Carbon Fiber-Reinforced Polymer

COV Coefficient of Variation

CSCT Critical Shear Crack Theory

FCM Fictitious Crack Model

FRP Fiber-Reinforced Polymer

GFRP Glass Fiber-Reinforced Polymer

ICS Image Correlation System

LBT Lower-Bound Theorem of Plasticity

LCFT Linear Compression Field Theory by Kupfer

LS Load Stage

LVDT Linear Variable Differential Transformer

MSM Modified Sector Model

NLFEA Nonlinear Finite Element Analysis

PA12 Thermoplastic Polyamide 12

PES Thermoplastic Polyethersulfone

QSM Quadrilinear Sector Model

RC Reinforced Concrete

St. Stirrup

TCM Tension Chord Model

TS Tension Stiffening

UBT Upper-Bound Theorem of Plasticity

URL Unloading and Reloading

YLM Yield-Line Mechanism

YLT Yield-Line Theory

Roman capital letters

A main axis in direction of 4th reinforcement layer = strong axis

A area

Aadd area prop. to higher deformations after reloading (modified TCM, Section 5.1.3)

153



i
i

“PhD*Thesis*Koppitz” — 2015/1/15 — 17:11 — page 154 — #170 i
i

i
i

i
i

Notation

Ac concrete cross-sectional area

Ap CFRP cross-sectional area = bp · tp

Ares area proportional to residual crack opening (modified TCM, Section 5.1.3)

As reinforcing steel cross-sectional area

At ,ef effective tension area (tension chord)

B main axis in direction of 3rd reinforcement layer = weak axis

B side length of slab

Ca compressive force of steel frame (per unit width)

CVR,exp,2 compressive force in bottom compression ring at second peak load (cantilever

model, Section 3.1.6)

Ec concrete Young’s modulus

Ep CFRP Young’s modulus

Ep Ap axial CFRP strap stiffness

Es reinforcing steel Young’s modulus

Esh reinforcing steel hardening modulus

E I I uncracked flexural slab stiffness per unit width = Ec h3
/

12

E I II cracked flexural slab stiffness per unit width

G dead weight

GF specific fracture energy

L length, span width, initial length of beam element

Lb,eff effective anchorage length of reinforcement

Lbd ,net required length for full anchorage of reinforcement

M bending moment

N axial force

Ncr cracking load

Nmax maximum axial force

NR axial resistance

Nsup, Ninf upper and lower bounds of axial force (URL cycle)

Ntang tangential force in steel frame

P average prestressing force (CFRP plates and straps)

P0 applied (initial) prestressing force

P f lex strap force at which ψ=ψf lex

Pu CFRP plate or strap resistance

Pu,max resistance of largest strap with 2 × 50 loops

PVR,exp prestressing force at peak load

PVR,exp,1/2 prestressing force at first/second peak load (Section 3.1)

Q single load

Qmax maximum load

Qy load at which yield strength of reinforcing steel is exceeded

T torsion, tensile force

Ts , Tp tensile forces of reinforcement and strap (per unit width)

Tsup tensile force of radial longitudinal reinforcement, Eq. 4.6
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Notation

V shear force

Vc shear force transmitted in concrete to support (Eq. 3.1) =V −Vp

Vc,VR,exp shear force transmitted in concrete to support at peak load

Vc,VR,exp,1/2 shear force transmitted in concrete to support at first/second peak load (Sec-

tion 3.1)

Vcr cracking load

V f lex flexural capacity of non-strengthened slab

V +
f lex flexural capacity of strengthened slab

Vmod shear force (MSM), = f
(
ψ

)
V +

mod shear force (strengthened slab, MSM), = f
(
ψ

)
Vp vertical component of prestressing forces (Eq. 3.1) = 8P sinβp

Vp,VR,exp vertical component of prestressing forces at peak load

Vp,VR,exp,1/2 vertical component of prestressing forces at first/second peak load (Section 3.1)

Vpu vertical component of strap resistances = 8Pu sinβp

VR,crush crushing resistance of concrete, = f
(
ψ

)
VR,exp experimental punching shear resistance of strengthened slab =VR,exp,1 in Sec-

tion 3.1

VR,in punching failure inside shear-reinforced area, = f
(
ψ

)
VR,out punching failure outside shear-reinforced area, = f

(
ψ

)
VR,pred ,1 empirical prediction of first peak load (Eq. 3.6)

VR0 predicted punching shear resistance of concrete (non-strengthened slab) or

portion of punching shear resistance borne by concrete

VR1 predicted punching shear resistance (strengthened slab)

VRc failure criterion (CSCT), = f
(
ψ

)
VRp shear resistance of CFRP straps, = f

(
ψ

)
Vser service load

Vskt shear force (CSCT), = f
(
ψ

)
Vsup, Vinf upper and lower bounds of shear force (URL cycle)

Roman lowercase letters

as reinforcing steel cross-sectional area (per unit width)

b side length of square column

ba width of steel compression frame

bp width of CFRP plate, sheet or strap

cs coefficient for cold-formed steel stress–strain relationship (Eq. 5.14)

d effective depth

dg maximum aggregate size

dm average effective depth of both orthogonal directions = dx+dy

2

dp effective depth of CFRP strap ≈ h

dv shear-resisting effective depth

dx , dy effective depths in x- and y-direction

fay yield strength of structural steel
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Notation

fbd design value of bond stress

fc cylinder concrete compressive strength (h = 300mm, Ø = 150mm)

fc,eff effective value of concrete compressive strength (Chapter 2) = kc fc

fc,VR,exp,2 stress in concrete compression ring at second peak load (cantilever model, Sec-

tion 3.1.6)

fct concrete tensile strength

fpk tensile strength of CFRP, 5% fractile

fpu tensile strength of CFRP, mean value

fs0.2 yield strength of cold-formed reinforcing steel (0.2% plastic strain)

fsd design value of yield strength = fsy
/
γs

fsu ultimate (rupture) strength of reinforcing steel

fsy yield strength of reinforcing steel

h beam or slab thickness

kσ maximum stress factor (modified TCM, Eq. 5.7)

kσ,adm admissible stress factor

kτ bond stress factor

kc reduction factor of concrete compressive strength

kg factor to take crack roughness into account (CSCT) = 48
16mm+dg

ksys empirical factor to take performance of shear reinforcement system into account

kU minimum stress factor (modified TCM, Eq. 5.8)

ll base length of long LVDTs, Pfyl’s tests (Pfyl and Marti 2001) = 2 000 mm

lm base length of medium LVDTs, Pfyl’s tests (Pfyl and Marti 2001) = 1 000 mm

lp CFRP strap length

ls base length of short LVDTs, Pfyl’s tests (Pfyl and Marti 2001) = 200 mm

m bending moment (per unit width)

mcr cracking moment (per unit width)

mR bending resistance (average of both rebar directions =p
mRx mR y )

m+
R bending resistance of strengthened slab

mRx , mR y bending resistances in x- and y-direction

mr , mt radial and tangential moments (per unit width)

msup, minf upper and lower bounds of bending moment (URL cycle)

n modular ratio = Es
/

Ec

r radius (from slab center)

r0 radius of critical shear crack (CSCT) = rc +dm

r1 radius of resultant shear force crossing the crack (Lips 2012)

r2 radius of critical shear crack (Lips 2012)

rc radius of (equivalent) circular column

rcr radius of cracked zone

r̃cr radius of cracked zone at critical crack width wcr

rcrs radius of zone in which cracking is stabilized (at mcr )

r̃crs radius of zone in which cracking is stabilized (at mcr +∆mcr )

rq radius of load introduction at perimeter
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Notation

rs (equivalent) radius of circular isolated slab element = slab radius

ry radius of yielded zone

s spacing of reinforcing bars

sr 0 maximum crack spacing

srm average crack spacing

t direction of parallel cracks (LCFT)

ta thickness of steel compression frame

tp total thickness of CFRP plate, sheet or strap

u0 control perimeter for punching shear resistance at distance dv
/

2 to area of

support =π (2rc +dv )

vr (radial) shear force per unit width

w vertical deflection, crack width

wB vertical deflection in direction B

wcr critical crack width where concrete tensile strength is exhausted (Section 5.2)

wm vertical deflection at midspan

wm,u vertical deflection at midspan at ultimate load

wp vertical deflection at penetration point of strap at lower slab surface

x horizontal coordinate (axial direction), depth of compression zone

x II depth of compression zone in cracked state

xc depth of equivalent concrete stress block = 0.85x

xs length of slip reversal

xsU length of slip reversal after unloading

y horizontal coordinate (transverse direction)

z vertical coordinate, lever arm of internal forces

Greek capital letters

∆ deviation

∆.. increment

∆L elongation of beam element

∆Ncr axial force increase resulting from specific fracture energy

∆P increase of prestressing force during loading = P −P0

∆PVR,exp,1/2 increase of prestressing force at first/second peak load (Section 3.1)

∆VR0 predicted difference of punching shear resistance or portion of punching shear

resistance borne by concrete

∆VR1 predicted difference of punching shear resistance (strengthened slab)

∆lp strap elongation

∆mcr moment increase resulting from specific fracture energy

∆mrel moment offset of reloading path

∆munl moment offset of unloading path

∆ε strain increment (TCM, Eq. 5.4)

∆ε0 characteristic tension stiffening effect (TCM) = 2λ ·∆ε
∆εcr strain offset
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Notation

∆εunl additional tension stiffening for unloading (tension chord)

∆ϕ opening angle of slab segment in sector model

∆χcr curvature offset

∆χm tension stiffening curvature offset (Marti 1999; Burns 2012)

∆χTS tension stiffening curvature offset (CSCT)

∆χunl additional tension stiffening for unloading (slab)

∆ψR0 predicted slab rotation increase at failure (non-strengthened slab)

∆ψR1 predicted slab rotation increase at failure (strengthened slab)

∆ψURL increase of slab rotation after complete URL cycle

∆ψURL,exp experimental increase of slab rotation after complete URL cycle (Section 5.2)

∆ψURL,mod predicted increase of slab rotation after complete URL cycle (Section 5.2)

Greek lowercase letters

α angle, prestressing level = P0
/

Pu

αcyl angle of loading cylinder to main axis

αY L angle of yield-line to main axis

βE reduction factor of steel Young’s modulus

βEϕ directional axial stiffness reduction factor

βE I reduction factor of flexural stiffness

βE Iϕ directional flexural stiffness reduction factor

βp borehole or CFRP plate / strap inclination

γc partial resistance factor for concrete

γs partial resistance factor for reinforcing and prestressing steel

δ bond slip = relative displacement between steel and concrete

δu slip at which at which ultimate (rupture) strength of rebar is exceeded

δy slip at which at which yield strength of rebar is exceeded

ε1, ε2 maximum and minimum principal strains

εc concrete strain

εc,el concrete strain in elastic part of beam

εc,inf,tang tangential in-plane concrete (compressive) strain

εc,inf,tang ,1/2 tangential concrete (compressive) strain at first/second peak load (Section 3.1)

εs steel strain

εsm averaged steel strain over crack element

εsu steel strain at ultimate stress

εsy steel strain at yielding stress

ζ coefficient, YLMs (d) and (e) in Appendix C

ηδ degree of slip reversal (modified TCM, Eq. 5.11)

ηTS residual tension stiffening factor (modified TCM, Eq. 5.13)

θr crack inclination

κp reduction factor

κs coefficient for cold-formed steel stress–strain relationship (Eq. 5.14)

κV strength reduction factor for reinforcement inside shear crack (MSM, Eq. 4.8)
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Notation

λ coefficient for crack spacing = srm
/

srm0

ν Poisson’s ratio

ξ coefficient (modified TCM, Eq. 5.12)

ξp compliance factor of CFRP strap strengthening system

ρ, ρs geometrical reinforcement ratio (of reinforcing steel)

ρeff fictitious reinforcement ratio weighting reinforcing and prestressing steel (Chap-

ter 2)

ρm average reinforcement ratio of both orthogonal directions =p
ρxρy

ρp reinforcement ratio of prestressing steel

ρs,ef reinforcement ratio relating to effective tension area according to fib Model Code

2010 (fib 2013), Figure 7.6-4

ρx , ρy reinforcement ratios in x- and y-direction

σ normal stress

σ1, σ2 maximum and minimum principal stresses

σadm admissible stress (Chapter 2)

σc concrete stress

σs steel stress

σsr steel stress at crack edge

σsr 0 steel crack stress

τ shear stress

τb bond shear stress between steel and concrete

τb0 initial bond stress for elastic reinforcement (TCM) = 2 fct

τb1 initial bond stress after onset of yielding (TCM) = fct

τbR bond shear stress for reloading

τbU bond shear stress for unloading

ϕ direction of applied stress (LCFT)

χ curvature

χcr curvature at cracking

χ̃cr curvature at critical crack width wcr

χcrs curvature at stabilized crack phase (at mcr )

χ̃crs curvature at stabilized crack phase (at mcr +∆mcr )

χr , χt radial and tangential curvatures

χy curvature at yielding of reinforcing steel

ψ slab rotation outside column region

ψA slab rotation in direction A

ψB slab rotation in direction B

ψf lex slab rotation at which V f lex is reached = rs ·χy

ψG elastic rotation under dead weight

ψm average slab rotation

ψR,exp experimental slab rotation at punching shear resistance

ψR0 predicted slab rotation at punching shear resistance (non-strengthened slab)

ψR1 predicted slab rotation at punching shear resistance (strengthened slab)
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Notation

ψres residual slab rotation after unloading

ψres,exp experimental residual slab rotation after unloading (Section 5.2)

ψres,mod predicted residual slab rotation after unloading (Section 5.2)

ω mechanical reinforcement ratio = ρ fsy
/

fc

ωm average reinforcement ratio of both orthogonal directions = ρm fsy
/

fc

ωmin, ωmax minimum and maximum mechanical reinforcement ratios

Other symbols

1, 2 principal directions

Ø diameter
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A Strengthening system references

The following tables give a brief summary of the presented strengthening solutions for existing

flat slabs, classified in four categories:

Table A.1: Overview: Column enlargement

Reference Description

Martinez-Cruzado et al. (1994) Concrete column capital

Hassanzadeh (1996); Hassan-
zadeh and Sundquist (1998)

Shotcrete column capital

Hassanzadeh (1996); Hassan-
zadeh and Sundquist (1998)

Steel collar

Table A.2: Overview: Increase of bending resistance

Reference Description Bond

Harajli and Soudki (2003) CFRP sheets Epoxy

Ebead and Marzouk (2004) CFRP plates Epoxy

Ebead and Marzouk (2004) GFRP plates Epoxy

Chen and Li (2005) GFRP plates (entire surface) Epoxy

Esfahani et al. (2009) CFRP sheets ?

El-Enein et al. (2014) CFRP sheets Epoxy

Table A.3: Overview: Local slab prestressing by prestressed shear reinforcement

Reference Description Bond

Faria et al. (2009, 2011) Steel strands, inclined borehole (11°) Epoxy

Chapter 3 CFRP straps, inclined borehole (34°)
End-
anchorage
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Appendix A. Strengthening system references

Table A.4: Overview: Post-installed shear reinforcement

Reference Description Bond

Martinez-Cruzado et al. (1994)
Top and bottom steel drop panels around column with steel
bolts

Epoxy

Ebead and Marzouk (2002)
Top and bottom steel drop panels around column with steel
bolts

Epoxy

Ebead and Marzouk (2004)
Top and bottom CFRP sheets (drop panels) around column
with steel bolts

?

Hassanzadeh (1996); Hassan-
zadeh and Sundquist (1998)

Inclined boreholes (45°) with steel bolts up to level of tensile
reinforcement only

Grout

Menétrey and Brühwiler (1997) Vertical boreholes with steel bolts (some are prestressed)
Epoxy or un-
bounded

El-Salakawy et al. (2003) Vertical boreholes with steel bolts ?

Binici and Bayrak (2005a,b) Vertical boreholes with closed CFRP stirrups Epoxy

Adetifa and Polak (2005) Vertical boreholes with steel bolts ?

Sissakis and Sheikh (2007) Vertical boreholes with CFRP stirrups Epoxy

Muttoni et al. (2008); Fernán-
dez Ruiz et al. (2010)

Inclined boreholes (45°) with steel bolts up to level of tensile
reinforcement only

Epoxy

Lawler and Polak (2011) Vertical boreholes with GFRP bolts ?

El-Shafiey and Atta (2011) Vertical boreholes (PVC ducts) with prestressed steel bolts
Cementi-
tious grout

Feix et al. (2012)
Vertical boreholes with “concrete screws” made of steel up
to level of tensile reinforcement only

Form closure
of hole

Meisami et al. (2013) Vertical boreholes with bolts made of CFRP or steel Epoxy
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B Summary experimental campaign

B.1 Overview

Sixteen full-scale concrete slabs were tested within this research project. All slabs had the

same plan dimensions (3.2 m × 3.2 m), the same bending reinforcement ratio (ρm ≈ 1.5%)

and were supported by a central column (0.25 m × 0.25 m). The reinforcement layout was

orthogonal and parallel to the slab edges. A graphical overview of the campaign is presented

in Figure B.1.
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Figure B.1: Overview of experimental campaign with varied parameters
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Appendix B. Summary experimental campaign

In a first series (Section 3.1), CFRP elements were installed to reinforce new or strengthen

existing RC slabs against punching shear failure. Two slabs (P1–2) included non-prestressed

flexible plates as shear reinforcement for new slabs, another six slabs (So1–4 and Sc1–2)

contained non-laminated and prestressed straps installed crosswise around the column in pre-

drilled and pre-cut openings. The straps of the first four slabs were anchored underneath the

slab by adhesively-bonded steel anchors, the ones of the latter two slabs were self-anchored in

a closed configuration using a turnbuckle. The efficiency of the strap systems was investigated

for different applied strap prestressing forces. The slab thickness was constant (h = 260 mm).

A second series (Section 3.2) was used to investigate another strap anchoring system: a steel

compression frame instead of adhesively-bonded anchors. The efficiency of the two anchoring

systems was compared. Before the strengthening system was installed and the straps were

prestressed, the slabs were preloaded up to service loads and completely unloaded afterwards.

The slab thickness was varied from 180 to 320 mm (Sr1–3).

Two additional slabs (Sd1–2) were cast to investigate the effect of cut longitudinal reinforce-

ment and boreholes (required for the CFRP strap systems) on the punching resistance of the

non-strengthened slab [Figure B.2(a)–(b)]. An alternative strengthening system was inves-

tigated with slabs Sh2–4 by means of a prestressed external steel head placed between the

central column and the slab [Figure B.2(c)–(d)]. The steel head system itself is not part of

this research project, but provides additional preloading and unloading curves prior to the

installation of the strengthening system. In Section 5.2 these curves are compared to the

analytical prediction and the main parameters of Sh2–4 are thus also included in the summary

in Table B.1.

β

Ø55 mm

p

(a)

(c)

borehole for 
CFRP strap

enforced 
distortion

shifting 
plates of 
different 

height

(d)

(b)

Figure B.2: Boreholes for CFRP strap systems: (a) section and (b) plan views. Steel head
strengthening system: (c) section and (d) plan views of cut column head
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B.1. Overview

Various measurements were taken, such as the applied load, vertical displacements along

both main axes, surface deformations, change in slab thickness, and forces acting in the CFRP

reinforcement. In Section B.2 a brief summary of the experimental results is given.
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Appendix B. Summary experimental campaign

B.2 Summary of results

Sd1–2 and all slabs of the two experimental series failed in punching. Table B.2 presents the

experimentally obtained punching resistances (first peak) and the slab rotations along the

weak axis B at failure. The results are normalized according to Muttoni (2008), as described

in detail in Section 3.2.4. The normalized failure points are graphically displayed in Figure

B.3, together with the concrete failure criterion of a non-strengthened slab without shear

reinforcement, VRc
(
ψ

)
, according to Eq. 4.3.

Slab Symbol
VR,exp

u0dv

p
fc

ψBdmkg

[
p

MPa] [–]

P1 • 0.52 1.46
P2 • 0.56 1.75

So1 4 0.98 4.10
So2 4 0.86 4.01
So3 4 0.84 3.99
So4 4 0.86 4.27

Sc1 0.49 2.15
Sc2 0.76 3.92

Sr1 ¦ 0.88 3.45
Sr2 ¦ 0.83 4.94
Sr3 ¦ 0.78 2.57

Sd1 • 0.51 2.30
Sd2 • 0.49 2.34

Table B.2: Overview of experimental results

ψB · dm · kg [-]

ψRc

Legend

20 4 6
0

0.4

0.8

1.2

 Failure criterion: concrete

 V   (   ), Eq. 4.3

Figure B.3: Normalized punching resistance
vs. normalized slab rotation for
the investigated specimens

Figure B.4 summarizes the normalized load–rotation and strap force–rotation curves of all

slabs loaded up to failure (Pu,max = 683kN is the resistance of the largest CFRP strap). Further

to the discussion in Chapter 3 it can be stated that, compared to P1–2, Sd1–2 exhibited a

higher increase of slab rotation before failure, but the punching resistance was approximately

equal. The diversion of the load transfer toward the column seemed to be small due to the

concentration of the boreholes at the column corners, at approximately 45° to the main axes.

The slightly prestressed CFRP straps in Sc1 were significantly activated after the first peak

only [Figure 3.14]. Thus the first peak punching resistance corresponds to the resistance of a

non-strengthened slab. As stated in Section 3.1.5, p. 40, the decrease of measured strap forces

during loading of Sc2 can be explained by significant friction forces at the deviators on the

lower slab surface. The effective strap force in the inclined borehole probably increased with

additional slab rotations.
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B.2. Summary of results
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Figure B.4: Normalized load–rotation and strap force activation–rotation curves of tested slabs
in Table B.2
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C Flexural capacity of slabs

The sector model proposals, see Chapter 4 and Figure 2.6, are primarily valid for rotation-

symmetric slabs in which a yield-line mechanism (YLM) in the form of a truncated cone

develops when flexural capacity is reached. Thus other slab, column and loading geometries,

as well as the support conditions, have to be adapted to an equivalent circular slab with

slab radius rs , column radius rc and load application at radius rq . Square columns with side

lengths b are replaced by circular ones with the same perimeter, as suggested by Kinnunen

and Nylander (1960). Various ways of determining the slab radius of the equivalent circular

slab were proposed. A reasonable suggestion is setting the flexural capacity of the actual

slab shape (considering double-symmetric mechanisms) equal to the equivalent circular one

(Guandalini 2005; Lips 2012), thus the same amount of virtual work has to be done by the

internal and external forces. A YLM – kinematically compatible to the actual slab, column and

load geometry – resulting in the smallest flexural capacity (= equivalent slab radius) has to be

found. Table C.1 summarizes the common double-symmetric yield-line mechanisms. The

YLMs of subfigures (a)–(c) and (g)–(j) were reported elsewhere; (d) and (e) were developed

here, (f) follows from (c), and (k)–(n) are based on (j), considering different numbers of loading

points.

Table C.1: Yield-line mechanisms for: (a)–(e) circular column, (f)–(n) square column

Yield-line mechanism Formula
References and

comments

(a)

rq

rc rs

V
i

i = # loading points

V f lex

mR
= 2πrs

rq − rc

= 2πrq

rq − rc
for rq = rs

= 2π for single load

Guandalini (2005);

Nielsen (1999) for

rq = rs ;

Sawczuk and

Jaeger (1963) for

single load
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Appendix C. Flexural capacity of slabs

Table C.1: (continued)

Yield-line mechanism Formula Ref. and comm.

π

π

(b)

rq

rc B/ 2

V
8

 
8

 
4 V f lex

mR
= 8B

rq − rc
ln

(
tan

5π

16

) Sawczuk and

Jaeger (1963) for

single load

(c)

rq

rc B/ 2

V
i

i = # loading points

V f lex

mR
= 8

rq − rc

B

2
ln

(p
2+1

)
= 4B

rq
ln

(p
2+1

)
for single load

Sawczuk and

Jaeger (1963) for

single load

ζ
(d)

rq

rc B/ 2

m
m m

m

m
m

x

y

m
m

B/ 2 B/ 2

V
i

i = # loading points

Rx1

Ry1

rebar 
layout

Rx1

Ry2

Rx2

Ry1

Rx2

Ry2

V f lex = 2B

rq − rc
(A1 · A2 + A3)

A1 = mRx1 −mRx2 +mR y1 −mR y2

A2 = ζ · ln

(
1

ζ
+

√
1

ζ2
+1

)
A3 = ln

(p
2+1

)
· (mRx2 +mR y2

)

For concentrated

column strip

reinforcement

ζ
(e)

rq

rc B/ 2

m
m m

m

m
m

x

y

m
m

B/ 2 B/ 2

V
i

i = # loading points

Rx1

Ry1

rebar 
layout

Rx2

Ry1

Rx1

Ry2

Rx2

Ry2

V f lex = 2B

rq − rc
(A1 · A4 + A3)

A1 = mRx1 −mRx2 +mR y1 −mR y2

A4 = ln

(
ζ+

√
ζ2 +1

)
A3 = ln

(p
2+1

)
· (mRx2 +mR y2

)

For too short

anchorage; or for

FRP laminates

between 0 and

ζ · B
2

α

(f) B/ 2

r'q

b/ 2

cyl

qr V
8

V
8

V f lex

mR
= 8

r ′q

[
b

2
+ B −b

2

(p
2+1

)]

r ′q =

√√√√√√
[

rq cos
(
αcyl

)
− b

2

]2+
+

[
rq sin

(
αcyl

)
− b

2

]2

8 loading cylin-

ders
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Table C.1: (continued)

Yield-line mechanism Formula Ref. and comm.

α

α

(g)

s

b/ 2 B/ 2

bq f
YL

YL
detail
steel plate

yield-lineV
16

V
16

V f lex

mR
= 16

2bq −b

[
b

2
+ (B −b)2

2(B −b − s)
− s

]

s = B −b

2
(1− tanαY L)

bq = B

2
− f

If load geometry

requires

αY L >π/
8;

Elstner and

Hognestad (1956)

for bq = B
2

π

π

π

π

lifting

co
rn

er
(h) B/ 2b/ 2B/ 2

bq

b/ 2

qr

bq

f

V
4

V
8

V
8

 
8

 
8

 
8

 
8

V f lex

mR
= 16

2bq −b

[
b

2
+ B −b

2
2
(p

2−1
)]

= 8

[
B

B −b
+2

p
2−3

]
for bq = B

2

bq = B

2
− f

Minimum at

αY L =π/
8;

Guandalini (2005);

Sawczuk and

Jaeger (1963) for

single load

(i)

fixed

co
rn

er

B/ 2b/ 2

bq

V
4 V f lex

mR
= 8B

2bq −b

= 8B

B −b
for bq = B

2

Elstner and

Hognestad (1956)

for bq = B
2

α

(j)

/2e

B/ 2b/ 2 b/
4

rq f

cyl

V
8

V f lex

mR
= 8

B −b

B2 −Bb − b2

4

B +e −2
(
b + f

)
= 4

B −b

B2 −Bb − b2

4

rq

(
cosαcyl + sinαcyl

)
−b

αcyl = arctan

(
e

B −2 f

)
rq = 1

2

√
e2 + (

B −2 f
)2

8 loading cylin-

ders; Guidotti

(2010)

π

π

(k) B/ 2b/
4

rq
V
16

V
16

V
8

 
4

 
4

V f lex

mR
= 8

B −b

B2 −Bb − b2

4

A8

A8 =p
2rq − 2+p

2

4
b

8 loading cylin-

ders
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Appendix C. Flexural capacity of slabs

Table C.1: (continued)

Yield-line mechanism Formula Ref. and comm.

π

π

π

(l) b/ 2 B/ 2b/
4

rq

V
12

 
6

 
6

 
12

V f lex

mR
= 12

B −b

B2 −Bb − b2

4

A12

A12 = rq

(p
2+p

6
)
−3b

12 loading cylin-

ders

π
π

(m) b/ 2 B/ 2b/
4

rq

V
20

 
12

 
12

V f lex

mR
= 20

B −b

B2 −Bb − b2

4

A20

A20 = rq

(
1+p

2+p
3+p

6
)
−5b

20 loading cylin-

ders

π
π

(n) B/ 2b/
4

rq

V
24

V
48

 
12

 
12

V f lex

mR
= 24

B −b

B2 −Bb − b2

4

A24

A24 = rq

(
1+p

3+p
6+p

8
)
−

(
5+

p
2

2

)
b

24 loading cylin-

ders
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D Reduction factor of flexural stiffness

In Figure 4.6(b) βE I is displayed neglecting compression reinforcement. If on the other hand,

an orthotropic compression reinforcement is considered in the m–χ-relationship, the flexural

stiffness reduction will be intensified. Figure D.1 illustrates this effect for a constant βE and

evaluating the following two equations:

x II = (
ρ+ρ′)βE nd


√√√√1+ 2

βE n

ρ+ρ′ d ′
d(

ρ+ρ′)2 −1

 (D.1)

where ρ′ = a′
s

/
d geometrical longitudinal compression reinforcement ratio with effective

depth d ′, and:

E I II =βE Es

[(
x II

)3

2βE n

(
h

2x II
− 1

3

)
+ρd 3

(
1− x II

d

)(
1− h

2d

)
+ρ′d 3

(
x II

d
− d ′

d

)(
h

2d
− d ′

d

)]
(D.2)

instead of Eqs. 4.22 and 4.23 to consider ρ′. It is shown that compression reinforcement results

in a smaller increase of βE I with increasing reinforcement ratio, ρ.

ρ'
ρ 

β
EI

 [-
]

ρ   

β  
β  

0 3%1% 2%
0.7

0.9

E

En = 18,       = 0.75
n =   6,       = 0.7

= 0
= 1/3
= 2/3
= 1

  [-]

Figure D.1: βE I = E I II (βE )
E I II (βE=1) acc. to Eq. D.2 with d

h = 0.8, d ′
h = 0.2
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E Modified Sector Model: Validation

In addition to Figure 4.7 the predicted load–rotation curves according to the MSM (Eq. 5.29,

GF according to Eq. 5.24) and QSM (Eq. 4.1) are compared to other experimental results

documented in literature in Section E.1. These specimens include non-strengthened flat

slabs with and without shear reinforcement. Slabs with a constant reinforcement ratio and an

orthogonal layout are considered, with emphasis on high mechanical reinforcement ratios.

For each experimental series the minimum YLM used according to Appendix C is denoted.

For circular columns and load application βE = 0.6, for square columns βE = 0.7 was applied.

The strength reduction factor, κV , was calculated according to Eq. 4.8.

In Section E.2 the MSM is compared to the measured results for all slabs of this experimental

campaign, in addition to the comparison of series So and Sr in Figure 4.11.

E.1 Experiments from literature

Seventy-two specimens of the following experimental series were selected for a graphical

validation of the Modified Sector Model:

• Sixteen experiments by Lips (2012); Lips et al. (2012)

• Four experiments by Guidotti (2010)

• Three experiments at ETH Zurich by Etter et al. (2009); Heinzmann et al. (2012)

• Ten experiments by Guandalini (2005); Guandalini et al. (2009)

• Six experiments by Hallgren (1996)

• Twelve experiments by Gomes (1991); Gomes and Regan (1999a,b)

• Six experiments by Kinnunen and Nylander (1960)

• Fifteen experiments by Elstner and Hognestad (1956)
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Appendix E. Modified Sector Model: Validation

Experiments by Lips (2012)

Sixteen experiments were carried out on square slabs, four (PL1, PL3–5) without and all

others with punching shear reinforcement, either corrugated double-headed studs (PL6–12)

or cages of continuous stirrups (PF1–5), see properties in Table E.1 and comparison with the

calculations in Figure E.1. Different column sizes, slab thicknesses, and the extent of the two

shear reinforcement systems were investigated. The slab rotation of the weak axis was directly

measured using inclinometers, installed near the applied load.

Table E.1: Properties of specimens by Lips (2012), βE = 0.7, dv = dm , YLM acc. to Table C.1(j)

Slab B b h dm ρm rq dg fc fct
a Ec

a fsy Es
c V f lex

mR
κV

[mm] [mm] [mm] [mm] [%] [mm] [mm] [MPa] [MPa] [GPa] [MPa] [GPa] [–] [–]

PL1 3000 130 250 193 1.63 1505 16 36.2 3.3 33.1 583 200 6.48 0.56
PL3 3000 520 250 197 1.60 1505 16 36.5 3.3 33.2 583 200 8.14 0.54
PL4 3000 340 320 267 1.58 1505 16 30.5 2.9 31.2 562b 200 7.29 0.63
PL5 3000 440 400 353 1.51 1505 16 31.9 3.0 31.7 580 200 7.74 0.60
PL6 3000 130 250 198 1.59 1505 16 36.6 3.3 33.2 583 200 6.48 0.54
PL7 3000 260 250 197 1.60 1505 16 35.8 3.3 33.0 583 200 6.96 0.55
PL8 3000 520 250 200 1.57 1505 16 36.0 3.3 33.0 583 200 8.14 0.54
PL9 3000 340 320 266 1.59 1505 16 32.1 3.0 31.8 562b 200 7.29 0.60
PL10 3000 440 400 343 1.55 1505 16 33.0 3.1 32.1 580 200 7.74 0.59
PL11 3000 260 250 201 1.56 1505 16 34.2 3.2 32.5 554 200 6.96 0.54
PL12 3000 260 250 201 1.56 1505 16 34.6 3.2 32.6 554 200 6.96 0.53
PF1 3000 130 250 209 1.50 1505 16 31.1 3.0 31.4 583 200 6.48 0.61
PF2 3000 260 250 208 1.51 1505 16 30.4 2.9 31.2 583 200 6.96 0.63
PF3 3000 520 250 209 1.50 1505 16 37.1 3.3 33.4 583 200 8.14 0.51
PF4 3000 340 320 274 1.54 1505 16 32.5 3.1 31.9 562b 200 7.29 0.58
PF5 3000 440 400 354 1.50 1505 16 33.4 3.1 32.2 580 200 7.74 0.57

a values calculated using relationships acc. to SIA 262 (2013): Ec = 10000MPa2/3 · 3
√

fc , fct = 0.3MPa1/3 · f 2/3
c (both in MPa)

b 531 MPa (Ø20), 580 MPa (Ø26), weighted by as
c value fixed by Lips (2012)
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Figure E.1: Specimens by Lips (2012): MSM, QSM and experimental results
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Appendix E. Modified Sector Model: Validation

Experiments by Guidotti (2010)

Guidotti carried out four experimental series on square slabs. He focused on the slab–column

joint in the flat slab between an upper and lower column (to simulate multi-story buildings),

which has to bear the upper column load in addition to shear and bending moments caused

by loads applied on the slab. Series II was tested without column loads, but varying the

type of concrete used (ordinary vibrated concrete and self-compacting concrete, SCC), the

maximum aggregate size, and the bending reinforcement ratio. The slab rotation of the weak

axis was directly measured using inclinometers, installed near the applied load. Here, only the

experiments with vibrated concrete are displayed in Table E.2 and Figure E.2.

Table E.2: Properties of specimens by Guidotti (2010), βE = 0.7, dv = dm ,
YLM acc. to Table C.1(j)

Slab B b h dm ρm rq dg fc fct
a Ec fsy Es

b V f lex

mR
κV

[mm] [mm] [mm] [mm] [%] [mm] [mm] [MPa] [MPa] [GPa] [MPa] [GPa] [–] [–]

PG19 3000 260 247 206 0.78 1505 16 46.2 3.2 32.7 510 205 6.96 0.16
PG20 3000 260 245 201 1.56 1505 16 51.7 3.4 33.9 551 205 6.96 0.35
PG23 3000 260 250 199 0.81 1505 32 41.0 3.0 32.2 510 205 6.96 0.18
PG24 3000 260 249 194 1.62 1505 32 39.8 2.9 31.9 551 205 6.96 0.47

a values from direct tension tests
b value fixed by Guidotti (2010)
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Figure E.2: Specimens by Guidotti (2010): MSM, QSM and experimental results
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E.1. Experiments from literature

Experiments at ETH Zurich in 2009

Three experiments on square slabs were carried out by Etter et al. (2009) and Heinzmann et al.

(2012), see Table E.3. Slab SP1 was a reference slab without shear reinforcement. SP2 and

SP3 were reinforced with corrugated double-headed shear studs, which were placed locally

around the column (SP2) or over the entire slab (SP3). Here, the slab rotation was determined

by calculating the secant rotation from four (near the weak axis) deflection measuring points,

located at 1.7 m from the slab center, and from another two inductive transducers measuring

the support deformation. The comparison to the model is illustrated in Figure E.3.

Table E.3: Properties of specimens by Etter et al. (2009), βE = 0.6, dv = dm ,
YLM acc. to Table C.1(c)

Slab B rc h dm ρm rq dg fc fct
a Ec fsy Es

V f lex

mR
κV

[mm] [mm] [mm] [mm] [%] [mm] [mm] [MPa] [MPa] [GPa] [MPa] [GPa] [–] [–]

SP1 4100 200 350 294 1.21 1962 32 35.5 3.0 33.1 577 209 8.20 0.41
SP2 4100 200 350 294 1.21 1962 32 34.5 3.3 35.2 577 209 8.20 0.42
SP3 4100 200 350 294 1.21 1962 32 33.4 3.3 33.8 577 209 8.20 0.43

a values from double-punch tests on cylinders (h = Ø = 150mm) acc. to Chen (1970); Marti (1989)
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Figure E.3: Specimens by Etter et al. (2009): MSM, QSM and experimental results
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Appendix E. Modified Sector Model: Validation

Experiments by Guandalini (2005)

An experimental series on square slabs (default side length B = 3m) with varying bending

reinforcement ratio was carried out. Additionally the scale of the slabs was varied from 2:1

(B = 6m) to 1:2 (B = 1.5m). The slabs contained no shear reinforcement. The slab rotation

of the weak axis was directly measured using inclinometers, installed near the applied load.

The parameters are summarized in Table E.4 and the experimental results are displayed in

Figure E.4.

Table E.4: Properties of specimens by Guandalini (2005), βE = 0.7, dv = dm ,
YLM acc. to Table C.1(j)

Slab B b h dm ρm rq dg fc fct
a Ec fsy Es

b V f lex

mR
κV

[mm] [mm] [mm] [mm] [%] [mm] [mm] [MPa] [MPa] [GPa] [MPa] [GPa] [–] [–]

PG1 3000 260 250 210 1.50 1505 16 27.7 2.0 25.7 573 205 6.96 0.69
PG2b 3000 260 250 210 0.25 1505 16 40.5 3.0 34.7 552 205 6.96 0.04
PG3 6000 520 500 464 0.32 2845 16 32.4 2.1 31.8 520 205 7.35 0.09
PG4 3000 260 250 210 0.25 1505 4 32.2 2.0 27.3 541 205 6.96 0.06
PG5 3000 260 255 210 0.33 1505 16 29.3 2.3 26.8 555 205 6.96 0.10
PG6 1500 130 125 96 1.46 752 16 34.7 2.4 33.7 526 205 6.96 0.47
PG7 1500 130 125 100 0.75 752 16 34.7 2.4 33.7 550 205 6.96 0.24
PG8 1500 130 140 102 0.32 752 16 34.7 2.4 33.7 525 205 6.96 0.06
PG9 1500 130 140 102 0.25 752 16 34.7 2.4 33.7 525 205 6.96 0.04
PG10 3000 260 255 210 0.33 1505 16 28.5 2.2 29.5 577 205 6.96 0.11

a values from direct tension tests on cylinders (h = 320mm, Ø = 160mm)
b value fixed by Guandalini

182



i
i

“PhD*Thesis*Koppitz” — 2015/1/15 — 17:11 — page 183 — #199 i
i

i
i

i
i

E.1. Experiments from literature

ψ · dm · kg [-]

ψ · dm · kg [-]

ψ

ψ

ψ

ψ · dm · kg [-]

0 63 129 15

0 42 86 10 0 42 86 10 0 42 86 10

100 42 86 100 42 86 0 42 86 10

20 1 43 5 0 21 43 5 0 21 43 5
0

1.2

0.8

0.4

0.4

0

0.6

0.2

0.6

0.2

0

0.4

0.6

0.2

0

0.4

mod

Rc

skt

Legend

R,exp

Special points:

 Failure in experiment  (V        )

  Eq. 4.3 = Eq. 5.29

Load-rotation:

 Experiment

 QSM: V     (   ), Eq. 4.1

 MSM: V       (   ), Eq. 5.29

 Failure criterion of concrete:
 V    (   ), Eq. 4.3

PG1 PG6 PG7

PG5PG3PG2b

PG8 PG9 PG10

PG4

Figure E.4: Specimens by Guandalini (2005): MSM, QSM and experimental results
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Appendix E. Modified Sector Model: Validation

Experiments by Hallgren (1996)

Hallgren carried out an experimental series on circular flat slabs with high-strength concrete

and varying bending reinforcement with an orthogonal layout, see Table E.5. Excluded from

the analysis here are three slabs containing bent-up bars as shear reinforcement that locally

increase the longitudinal reinforcement ratio in the column vicinity, and slab HSC6 for which

the measurement data was lost during the test (Hallgren 1996). The angle of rotation was

determined by Hallgren from the inclination of the rigid slab sector outside the shear crack

(observed rotations on opposite column sides) and directly displayed in his Figure 4-7 (Hall-

gren 1996; all experiments) and in his Fig. 2 (Hallgren and Kinnunen 1991; HSC0 and HSC1).

The experimental curves are compared to the model in Figure E.5.

Table E.5: Properties of specimens by Hallgren (1996), βE = 0.6, dv = dm ,
YLM acc. to Table C.1(a)

Slab rs rc h dm ρm rq dg
b fc fct

d Ec fsy Es
V f lex

mR
κV

[mm] [mm] [mm] [mm] [%] [mm] [mm] [MPa] [MPa] [GPa] [MPa] [GPa] [–] [–]

HSC0 1270 125 240 200 0.81 1200 18 93.7c 4.5 51.0 643 215e 7.42 0.09
HSC1 1270 125 245 200 0.81 1200 18 91.3 6.9 42.9 627 215e 7.42 0.09
HSC2 1270 125 240 194 0.83 1200 18 85.7 5.7 37.2 620 215e 7.42 0.10
HSC4 1270 125 240 200 1.19 1200 18 91.6 6.6 41.3 596 195 7.42 0.14
N/HSC8a 1270 125 242 198 0.81 1200 18 29.9/94.9 3.2/6.9 29.2/43.5 631 213 7.42 0.09
HSC9 1270 125 239 202 0.33 1200 18 84.1 6.7 39.0 634 231 7.42 0.02

a high-strength concrete in column vicinity only
b dg = 18mm used in calculation despite provisions for high-strength concrete according to SIA 262 (2013)
c fc,cube = 112.9MPa (side length 150 mm), fc ≈ 0.83 fc,cube
d splitting tests on cubes (side length 150 mm)
e values not measured, average taken from measured Es of HSC3s,6,7s,8,9 (Ø16)
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Figure E.5: Specimens by Hallgren (1996): MSM, QSM and experimental results
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Experiments by Gomes (1991)

Twelve square flat slabs were tested to investigate the influence of shear reinforcement on the

punching resistance. Short off-cuts of steel I-beams were used as shear reinforcement in all

slabs except slabs S1 and S1A, which were reference slabs without shear reinforcement. The

slab rotation of the weak axis was determined here by calculating the secant rotation from

deflection measuring points given in Gomes (1991), located at 1.2 m and 0.9 m, respectively,

from the slab center. The experimental campaign is summarized in Table E.6 and displayed in

Figure E.6.

Table E.6: Properties of specimens by Gomes (1991), βE = 0.7, dv = dm ,
YLM acc. to Table C.1(g)

Slab B b h dm ρm rq dg fc
a fct

b Ec
c fsy Es

d V f lex

mR
κV

[mm] [mm] [mm] [mm] [%] [mm] [mm] [MPa] [MPa] [GPa] [MPa] [GPa] [–] [–]

S1 3000 200 200 159 1.27 1425 20 41.7 3.4 34.7 680 195 7.64 0.43
S1A 3000 200 200 159 1.27 1425 20 42.7 3.3 34.9 680 195 7.64 0.43
S2 3000 200 200 153 1.32 1425 20 35.8 3.0 32.9 680 195 7.64 0.53
S3 3000 200 200 158 1.27 1425 20 40.7 3.4 34.4 670 195 7.64 0.44
S4 3000 200 200 159 1.27 1425 20 33.3 3.1 32.2 670 195 7.64 0.54
S5 3000 200 200 159 1.27 1425 20 36.0 3.5 33.0 670 195 7.64 0.49
S6 3000 200 200 159 1.27 1425 20 38.8 3.5 33.8 670 195 7.64 0.46
S7 3000 200 200 159 1.27 1425 20 35.1 3.0 32.7 670 195 7.64 0.51
S8 3000 200 200 159 1.27 1425 20 35.4 3.4 32.8 670 195 7.64 0.50
S9 3000 200 200 159 1.27 1425 20 41.5 3.0 34.6 670 195 7.64 0.44
S10 3000 200 200 154 1.31 1425 20 36.6 3.0 33.2 670 195 7.64 0.51
S11 3000 200 200 154 1.31 1425 20 35.9 3.1 33.0 670 195 7.64 0.52

a compressive tests on cubes (side length 150 mm), fc ≈ 0.83 fc,cube
b splitting tests on cylinders (h = 300 mm, Ø = 150 mm)
c values calculated using relationships acc. to SIA 262 (2013): Ec = 10000MPa2/3 · 3

√
fc (in MPa)

d graphically determined by author from Figure 3.3 in Gomes (1991)
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Figure E.6: Specimens by Gomes (1991): MSM, QSM and experimental results
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Experiments by Kinnunen and Nylander (1960)

Kinnunen and Nylander carried out an experimental series on 43 circular slab cutouts. They

varied the column size, ratio, and layout of the longitudinal reinforcement (ring, tangential

and radial, orthogonal, concentrated around column). The angle of rotation of the slab portion

outside the shear crack was determined by Kinnunen and Nylander as secant rotation from the

observed deflections of the slab and was directly displayed in the figures. Six experiments were

selected for the comparison (constant reinforcement ratio, orthogonal layout), see Table E.7

and Figure E.7.

Table E.7: Properties of specimens by Kinnunen and Nylander (1960), βE = 0.6, dv = dm ,
YLM acc. to Table C.1(a)

Slab rs rc h dm ρm rq dg fc
a fct

b Ec
b fsy Es

V f lex

mR
κV

[mm] [mm] [mm] [mm] [%] [mm] [mm] [MPa] [MPa] [GPa] [MPa] [GPa] [–] [–]

IA15a-5 920 75 149 117 0.79 855 32 27.3 2.7 30.1 441 206 7.41 0.24
IA15a-6 920 75 151 118 0.78 855 32 26.7 2.7 29.9 454 206 7.41 0.25
IA30a-24 920 150 158 128 1.01 855 32 26.9 2.7 29.9 456 206 8.20 0.34
IA30a-25 920 150 154 124 1.04 855 32 25.6 2.6 29.5 451 206 8.20 0.37
IA30d-32 920 150 155 123 0.48 855 32 26.8 2.7 29.9 448 206 8.20 0.13
IA30d-33 920 150 156 125 0.47 855 32 27.1 2.7 30.0 461 206 8.20 0.13

a compressive tests on cubes (side length 150 mm), fc ≈ 0.83 fc,cube
b values calculated using relationships acc. to SIA 262 (2013): Ec = 10000MPa2/3 · 3

√
fc , fct = 0.3MPa1/3 · f 2/3

c (both in MPa)
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Figure E.7: Specimens by Kinnunen and Nylander (1960): MSM, QSM and experimental results
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Experiments by Elstner and Hognestad (1956)

A total of 39 experiments on 1.83-m (6-ft) square slabs were carried out to investigate the effect

of different concrete compressive strengths, bending reinforcement ratios, reinforcement

concentration around the column, column size and conditions of slab support. Nine slabs

included shear reinforcement. The slabs were supported by “2 × 1-in. maple strips” on a steel

frame. For lack of more detailed information Staller (2001) assumed a clear span of 1.78 m

(5 ft 10 in.), following Base’s (1959) procedure in similar experiments. A secant rotation was

calculated here from the recorded deflections at the central square column assuming zero

deflection of the supported edges. Fifteen experiments were selected for the comparison, see

Table E.8 and Figure E.81.

Table E.8: Properties of specimens by Elstner and Hognestad (1956), βE = 0.7, dv = dm ,
YLM acc. to Table C.1(h)

Slab B b h dm ρm rq dg fc fct
a Ec

a fsy Es
b V f lex

mR
κV

[mm] [mm] [mm] [mm] [%] [mm] [mm] [MPa] [MPa] [GPa] [MPa] [GPa] [–] [–]

A1a 1829 254 152 118 1.17 890 25 14.1 1.7 24.1 332 200 8.17 0.56
A2c 1829 254 152 114 2.48 890 25 37.4 3.4 33.5 321 200 8.17 0.44
A7b 1829 254 152 114 2.48 890 25 27.9 2.8 30.3 321 200 8.17 0.60
A3a 1829 254 152 114 3.72 890 25 12.8 1.6 23.4 321 200 8.17 1.00
A3d 1829 254 152 114 3.72 890 25 34.5 3.2 32.6 321 200 8.17 0.75
A4 1829 356 152 118 1.17 890 25 26.1 2.6 29.7 332 200 8.85 0.28
A13 1829 356 152 121 0.54 890 25 26.2 2.6 29.7 294 200 8.85 0.08
B1 1829 254 152 114 0.49 890 38 14.2 1.8 24.2 324 200 8.17 0.18
B2 1829 254 152 114 0.49 890 38 47.6 3.9 36.2 321 200 8.17 0.02
B4 1829 254 152 114 1.00 890 38 47.7 3.9 36.3 303 200 8.17 0.09
B9 1829 254 152 114 2.02 890 38 43.9 3.7 35.3 341 200 8.17 0.31
B11 1829 254 152 114 3.02 890 38 13.5 1.7 23.8 409 200 8.17 1.00
B14 1829 254 152 114 3.02 890 38 50.5 4.1 37.0 325 200 8.17 0.40
B10 1829 254 152 114 2.02 890 38 46.4 3.9 35.9 335 200 8.17 0.28
B12 1829 254 152 114 3.02 890 38 45.8 3.8 35.8 332 200 8.17 0.45

a values calculated using relationships acc. to SIA 262 (2013): Ec = 10000MPa2/3 · 3
√

fc , fct = 0.3MPa1/3 · f 2/3
c (both in MPa)

b assumption

1Elstner and Hognestad (1956) reported that slabs failing in flexure (A13, B1, B2 and B4) had ca. 10–20% larger
failure loads than those calculated by the YLT. They attributed the increased flexural capacity to membrane action
and hardening of the tensile reinforcement.
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Figure E.8: Specimens by Elstner and Hognestad (1956): MSM, QSM and experimental results
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E.2 Experimental campaign

The Modified Sector Model was validated with the two slab series So and Sr in Section 4.4.4. In

the following the experimental load–rotation curves of the series P, Sd and Sc are also compared

to the predicted MSM curves, see Table E.9 and Figure E.9. The MSM curves are calculated

according to Eq. 5.29 with the bending resistance according to Eqs. 4.16 or 4.25, respectively,

and considering GF according to Eq. 5.24. The CFRP plates in slabs P1–2 were ineffective,

and thus their resistance, VRp
(
ψ

)
, is neglected in the calculation. Since the boreholes did

not reduce the punching resistance, the critical section in the slabs Sd1–2 is not reduced.

However, the greater increase of slab rotation compared to P1–2 is not covered by the model

(underestimation of ψR0 by ca. 25%). Slab Sc2 is also modeled as non-strengthened because

the CFRP straps were significantly activated after the first peak load. The agreement between

modeled and measured punching resistance is good for both cases, the non-strengthened

(VR0
/

VR,exp ) and strengthened (VR1
/

VR,exp ), with a total average value of 0.99. The MSM

underestimates slab rotations at failure by 11% (total) with a COV of 14%. The underestimation

is smaller for the strengthened slabs, 7%±12%.

Table E.9: Experimental punching resistances and slab rotations at failure (see Table B.2),
increase of bending resistance and comparison of predicted and experimental
results

Slab
VR,exp

u0dv

p
fc

ψdmkg
VR0

VR,exp

ψR0

ψR,exp

m+
R

mR

VR1
VR,exp

ψR1

ψR,exp

[
p

MPa] [–] [–] [–] [–] [–] [–]

P1 0.52 1.46 0.99 1.02 – – –
P2 0.56 1.75 0.91 0.86 – – –

So1 0.98 4.10 – – 1.31 0.91 0.85
So2 0.86 4.01 – – 1.20 1.01 0.92
So3 0.84 3.99 – – 1.16 1.03 0.94
So4 0.86 4.27 – – 1.19 0.94 0.73

Sc1 0.49 2.15 1.00 0.78 – – –
Sc2 0.76 3.92 – – 1.25 1.10 1.02

Sr1 0.88 3.45 – – 1.31 0.99 1.07
Sr2 0.83 4.94 – – 1.57 0.97 0.87
Sr3 0.78 2.57 – – 1.23 1.02 1.05

Sd1 0.51 2.30 0.96 0.75 – – –
Sd2 0.49 2.34 0.98 0.74 – – –

Average 0.97 0.83 1.00 0.93
COV 0.04 0.14 0.06 0.12

Average (VR0 and VR1) 0.99 0.89
COV 0.05 0.14
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E.2. Experimental campaign
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Figure E.9: Comparison of experiments with model curves, βE = 0.7
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Appendix E. Modified Sector Model: Validation

In Figure 4.11 the modeled and experimental strap activation curves were graphically com-

pared. Figure E.10 provides a quantification (average ± standard deviation) of calculated strap

force, Pmod , according to Eq. 4.14 vs. the measured one, Pexp , at several load stages V
/

VR,exp .

The linear approximation generally overestimates the strap activation (modeled slab behavior

is softer than in experiment) by ca. 10%; towards failure the overestimation decreases to 1.04.

The standard deviation increases from 5% to 8% at failure.

−

0.5 0.6 0.7 0.8 0.9 1
0.9

1

1.1

1.2
Legend

average

+  standard deviation

standard deviation

R,exp

ex
p

m
od

V / V

P
   

   
 /

 P

Figure E.10: Pmod vs. Pexp (average ± standard deviation) at several load stages V
/

VR,exp
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F Effect of crack spacing on
tension stiffening loss

The effect of different bond stress factors, kτ, on the degree of slip reversal, ηδ, and the residual

tension stiffening factor, ηTS , is illustrated in Figure 5.7 for different minimum stress factors,kU ,

and maximum crack spacing (λ = 1). Smaller crack spacings result in an earlier reaching of a

full slip reversal (ηδ = 1), and thus in a lower ηTS . However, cases for λ< 1 can be transformed

to cases where λ = 1 by adjusting kU :

kU (λ) = 1+λ · [kU (λ= 1)−1] (F.1)

Thus, for example a minimum crack spacing (λ = 0.5) induces the same tension stiffening loss

for half the amount of unloading, compared to λ = 1. In Figure F.1 the parameter setting λ = 1,

kU = 0.5 is equivalent to λ = 0.5 and kU = 0.75, for instance.
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Figure F.1: Effect of λ on degree of slip reversal ηδ and residual tension stiffening factor ηTS

for: (a) kτ = 2, (b) kτ = 1 and (c) kτ = 0.5
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Appendix F. Effect of crack spacing on tension stiffening loss

The parameters of the example in Figure 5.5 are again used: kσ = 1, kU = 0, ρ = 1. The

resulting values for ηδ and ηTS are indicated in Figure F.1(a)–(b) for kτ = 2 and 1, respectively

(amendment to Figure 5.7). λ = 0.5 leads to a full slip reversal in both cases (plotted triangles in

Figure F.1) where for maximal crack spacing (λ = 1) ηδ = 0.75 and 0.89 is derived, respectively

(circles in the diagram). For kτ = 2 full slip reversal is impossible to achieve (see intersection

between curve and vertical line for kσ,adm = 1.58 at ηδ = 0.96). Remaining tension stiffening

lies between 0.56 and 0.50 for kτ = 1, depending on λ as a function of the effective average

crack spacing.
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