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Abstract

A problem of the polar code construction for multiple access channels (MACs) is that they do not always achieve
the whole capacity region. Although polar codes achieve the sum-capacity of symmetric MACs, polarization may
induce a loss in the capacity region which prevents polar codes from achieving the whole capacity region. This
paper provides a single letter necessary and sufficient condition which characterizes all the MACs that do not lose
any part of their capacity region by polarization.

I. INTRODUCTION

Polar coding is a low complexity coding technique invented by Arıkan which achieves the capacity of
symmetric binary input channels [1]. The probability of error of polar codes was shown to be roughly
o(2−N

1
2−ε) where N is the block length [2]. The polar coding construction of Arıkan transforms a set

of identical and independent channels to a set of “almost perfect” or “almost useless channels”. This
phenomenon is called polarization.

Polarizing transformations can also be constructed for non-binary input channels. Şaşoğlu et al. [3]
generalized Arıkan’s results to channels where the input alphabet size is prime. Park and Barg [4] showed
that if the size of the input alphabet is of the form 2r with r > 1, then using the algebraic structure Z2r in
the polarizing transformation leads to a multilevel polarization phenomenon: while we don’t always have
polarization to “almost perfect” or “almost useless” channels, we always have polarization to channels
which are easy to use for communication. Multilevel polarization can be used to construct capacity
achieving polar codes.

Sahebi and Pradhan [5] showed that multilevel polarization also happens if any Abelian group operation
on the input alphabet is used. This allows the construction of polar codes for arbitrary discrete memoryless
channels (DMC) since any alphabet can be endowed with an Abelian group structure. Polar codes for
arbitrary DMCs were also constructed by Şaşoğlu [6] by using a special quasigroup operation that ensures
two-level polarization. The authors showed in [7] that all quasigroup operations are polarizing (in the
general multilevel sense) and can be used to construct capacity-achieving polar codes for arbitrary DMCs
[8].

In the context of multiple access channels (MAC), Şaşoğlu et al. showed that if W is a 2-user MAC
where the two users have Fq as input alphabet, then using the addition modulo q for the two users lead
to a polarization phenomenon [9]. Abbe and Telatar used Matroid theory to show that for binary input
MACs with m ≥ 2 users, using the XOR operation for each user is MAC-polarizing [10]. A problem of
the MAC polar code construction in [9] and [10] is that they do not always achieve the whole capacity
region. Although polar codes achieve the sum-capacity of symmetric MACs, polarization may induce a
loss in the capacity region which prevents polar codes from achieving the whole capacity region.

A characterization of all the polarizing transformations that are based on binary operations — in both
the single-user and the multiple access settings — can be found in [11] and [12]. Abelian group operations
are a special case of the characterization in [12]. Therefore, using Abelian group operations for all users
is MAC-polarizing.

This paper provides a necessary and sufficient condition which characterizes all the MACs that do not
lose any part of their capacity region by polarization. The characterization that we provide works in the
general setting where we have an arbitrary number of users and each user uses an arbitrary Abelian group
operation on his input alphabet.
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II. PRELIMINARIES

Throughout this paper, G1, . . . , Gm are finite Abelian groups. We will use the addition symbol + to
denote the group operations of G1, . . . , Gm.

A. Polarization

Notation 1. Let W : G1 × . . . × Gm −→ Z be an m-user MAC. Throughout this section, we write
(X1, . . . , Xm)

W−→ Z to denote the following:
• X1, . . . , Xm are independent random variables uniformly distributed in G1, . . . , Gm respectively.
• Z is the output of the MAC W when X1, . . . , Xm are the inputs.

Notation 2. Fix S ⊂ {1, . . . ,m} and let S = {i1, . . . , i|S|}. Define GS as

GS :=
∏
i∈S

Gi = Gi1 × . . .×Gi|S| .

For every (x1, . . . , xm) ∈ G1 × . . .×Gm, we write xS to denote (xi1 , . . . , xi|S|).

Notation 3. Let W : G1 × . . . × Gm −→ Z and (X1, . . . , Xm)
W−→ Z. For every S ⊂ {1, . . . ,m}, we

write IS(W ) to denote I(XS;ZXSc). If S = {i}, we denote I{i}(W ) by Ii(W ).
I(W ) := I{1,...,m}(W ) = I(X1, . . . , Xm;Z) is called the symmetric sum-capacity of W .

Definition 1. The symmetric capacity region of an m-user MAC W : G1 × . . .×Gm −→ Z is given by:

J (W ) =
{

(R1, . . ., Rm) ∈ Rm : ∀S ⊂ {1, . . . ,m},
∑
i∈S

Ri ≤ IS(W )
}
.

Notation 4. {−,+}∗ :=
⋃
n≥0

{−,+}n, where {−,+}0 = {ø}.

Definition 2. Let W : G1 × . . .×Gm −→ Z . We define the m-user MACs W− : G1 × . . .×Gm −→ Z2

and W+ : G1 × . . .×Gm −→ Z2 ×G1 × . . .×Gm as follows:

W−(z1, z2|u11, . . . , u1m) =
∑

u21∈G1

...
u2m∈Gm

1

|G1| · · · |Gm|
W (z1|u11 + u21, . . . , u1m+u2m)

×W (z2|u21, . . . , u2m),

and

W+(z1, z2, u11, . . . , u1m|u21, . . . , u2m) =
1

|G1| · · · |Gm|
W (z1|u11 + u21, . . ., u1m + u2m)

×W (z2|u21, . . . , u2m).

For every s ∈ {−,+}∗, we define the MAC W s as follows:

W s :=

{
W if s = ø,

(. . . ((W s1)s2) . . .)sn if s = (s1, . . . , sn).

Remark 1. Let Um
1 and U ′m1 be two independent random variables uniformly distributed in G1× . . .×Gm.

Let Xm
1 = Um

1 + U ′m1 and X ′m1 = U ′m1 . Let (X1, . . . , Xm)
W−→ Z and (X ′1, . . . , X

′
m)

W−→ Z ′. We have:
• I(W−) = I(Um

1 ;ZZ ′) and I(W+) = I(U ′m1 ;ZZ ′Um
1 ).

• I(W ) = I(Xm
1 ;Z) and I(W+) = I(X ′m1 ;Z ′).
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Hence,

2I(W ) = I(Xm
1 ;Z) + I(X ′m1 ;Z ′) = I(Xm

1 X
′m
1 ;ZZ ′) = I(Um

1 U
′m
1 ;ZZ ′)

= I(Um
1 ;ZZ ′) + I(U ′m1 ;ZZ ′Um

1 ) = I(W−) + I(W+).

Therefore, the symmetric sum-capacity is preserved by polarization. On the other hand, IS might not be
preserved if S ( {1, . . . ,m}.

For example, consider the two-user MAC case. Let W : G1 ×G2 −→ Z . Let (U1, V1) and (U2, V2) be
two independent random pairs uniformly distributed in G1×G2. Let X1 = U1+U2, X2 = U2, Y1 = V1+V2
and Y2 = V2. Let (X1, Y1)

W−→ Z1 and (X2, Y2)
W−→ Z2. We have:

• I1(W
−) = I(U1;Z1Z2V1) and I1(W+) = I(U2;Z1Z2U1V1V2).

• I2(W
−) = I(V1;Z1Z2U1) and I2(W+) = I(V2;Z1Z2U1V1U2).

On the other hand, we have
• I1(W ) = I(X1;Z1Y1) = I(X2;Z2Y2).
• I2(W ) = I(Y1;Z1X1) = I(Y2;Z2X2).
Therefore,

2I1(W ) = I(X1;Z1Y1) + I(X2;Z2Y2) = I(X1X2;Z1Z2Y1Y2) = I(U1U2;Z1Z2V1V2)

= I(U1;Z1Z2V1V2) + I(U2;Z1Z2V1V2U1) ≥ I(U1;Z1Z2V1) + I(U2;Z1Z2V1V2U1) (1)
= I1(W

−) + I1(W
+),

2I2(W ) = I(Y1;Z1X1) + I(Y2;Z2X2) = I(Y1Y2;Z1Z2X1X2) = I(V1V2;Z1Z2U1U2)

= I(V1;Z1Z2U1U2) + I(V2;Z1Z2U1U2V1) ≥ I(V1;Z1Z2U1) + I(V2;Z1Z2U1U2V1)

= I2(W
−) + I2(W

+).

By induction on n ≥ 0, we can show that:

1

2n

∑
s∈{−,+}n

I1(W
s) ≤ I1(W ), (2)

1

2n

∑
s∈{−,+}n

I2(W
s) ≤ I2(W ), (3)

1

2n

∑
s∈{−,+}n

I(W s) = I(W ). (4)

While (4) shows that polarization preserves the symmetric sum-capacity, (2) and (3) show that polarization
may result into a loss in the capacity region.

Similarly, for the m-user case, we have

1

2n

∑
s∈{−,+}n

IS(W s) ≤ IS(W ), ∀S ( {1, . . . ,m}.

Definition 3. Let S ⊂ {1, . . . ,m}. We say that polarization ∗-preserves IS for W if for all n ≥ 0 we
have:

1

2n

∑
s∈{−,+}n

IS(W s) = IS(W ).

If polarization ∗-preserves IS for every S ⊂ {1, . . . ,m}, we say that polarization ∗-preserves the
symmetric capacity region for W .
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Remark 2. If polarization ∗-preserves the symmetric capacity for W , then the whole symmetric capacity
region can be achieved by polar codes.

Section III provides a characterization of two-user MACs whose I1 are ∗-preserved by polarization.
Section IV generalizes the results of section III and provides a characterization of m-user MACs whose
IS are ∗-preserved by polarization, where S ( {1, . . . ,m}. This yields a complete characterization of the
MACs with ∗-preservable symmetric capacity regions.

B. Discrete Fourier Transform on finite Abelian Groups
A tool that we are going to need for the analysis of the polarization process is the discrete Fourier

transform (DFT) on finite Abelian groups. The DFT on finite Abelian groups can be defined based on
the usual multidimensional DFT.

Definition 4. (Multidimensional DFT) The m-dimensional discrete Fourier transform of a mapping f :
ZN1 × . . .× ZNm → C is the mapping f̂ : ZN1 × . . .× ZNm → C defined as:

f̂(x̂1, . . . , x̂m) =
∑

x1∈ZN1
,...,xm∈ZNm

f(x1, . . . , xm)e
−j 2πx̂1x1

N1
...−j 2πx̂mxm

Nm .

Notation 5. For every x = (x1, . . . , xm) ∈ ZN1×. . .×ZNm and every x̂ = (x̂1, . . . , x̂m) ∈ ZN1×. . .×ZNm
define 〈x̂, x〉 ∈ R as:

〈x̂, x〉 :=
x̂1x1
N1

+ . . .+
x̂mxm
Nm

∈ R.

Using this notation, the DFT can have a compact formula:

f̂(x̂) =
∑

x ∈ ZN1
×...×ZNm

f(x)e−j2π〈x̂,x〉.

It is known that every finite Abelian group is isomorphic to the direct product of cyclic groups, i.e., if
(G,+) is a finite Abelian group then there exist m integers N1, . . . , Nm > 0 such that G is isomorphic to
ZN1×. . .×ZNm . This allows us to define a DFT on G using the multidimensional DFT on ZN1×. . .×ZNm:

Definition 5. Let (G,+) be a finite Abelian group which is isomorphic to ZN1 × . . . × ZNm . Fix an
isomorphism between G and ZN1 × . . .× ZNm . The discrete Fourier transform of a mapping f : G→ C
is the mapping f̂ : G→ C defined as:

f̂(x̂) =
∑
x∈G

f(x)e−j2π〈x̂,x〉,

where 〈x̂, x〉 is computed by identifying x̂ and x with their respective images in ZN1 × . . .× ZNm by the
fixed isomorphism.

In the following two propositions, we recall well known properties of DFT.

Proposition 1. The inverse DFT is given by the following formula:

f(x) =
1

|G|
∑
x̂∈G

f̂(x̂)ej2π〈x̂,x〉,

where 〈x̂, x〉 is computed by identifying x̂ and x with their respective images in ZN1 × . . .× ZNm by the
fixed isomorphism.

Remark 3. The DFT on G as defined in this paper depends on the fixed isomorphism between G and
ZN1 × . . .×ZNm . If the DFT is computed using a fixed isomorphism, the inverse DFT must be computed
using the same isomorphism in order to have consistent computations.
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It is possible to define the DFT on finite Abelian groups without the need to fix any isomorphism, but
this requires the character theory of finite Abelian groups.

Definition 6. The convolution of two mappings f : G→ C and g : G→ C is the mapping f ∗ g : G→ C
defined as:

(f ∗ g)(x) =
∑
x′∈G

f(x′)g(x− x′).

We will sometimes write f(x) ∗ g(x) to denote (f ∗ g)(x).

Proposition 2. Let f : G→ C and g : G→ C be two mappings, we have:

• (̂f ∗ g)(x̂) = f̂(x̂)ĝ(x̂).

• (̂f · g)(x̂) =
1

|G|
(f̂ ∗ ĝ)(x̂).

• If fa : G→ C is defined as fa(x) = f(x− a), then f̂a(x̂) = f̂(x̂)ej2π〈x̂,a〉.
• If f̃ : G→ C is defined as f̃(x) = f(−x), then ˆ̃f(x̂) = f̂(x̂)∗.

III. TWO-USER MACS WITH ∗-PRESERVED I1

In this section, we only consider two-user MACs W : G1 × G2 −→ Z , where G1 and G2 are finite
Abelian groups.

A. Preserved and ∗− Preserved

Definition 7. Let W : G1×G2 −→ Z . We say that I1 is preserved for W if and only if I1(W−)+I1(W
+) =

2I1(W ). We say that I1 is ∗− preserved for W if and only if I1 is preserved for W [n]− for every n ≥ 0,
where [n]− ∈ {−,+}n is the sequence containing n minus signs (e.g., [0]− = ø, [2]− = (−,−)).

Lemma 1. Polarization ∗-preserves I1 for W if and only if I1 is preserved for W s for every s ∈ {−,+}∗.
Similarly, polarization preserves I1 for W if and only if I1 is ∗− preserved for W s for every s ∈ {−,+}∗.

Proof: Polarization ∗-preserves I1 for W if and only if

∀n ≥ 0, I1(W ) =
1

2n

∑
s∈{−,+}n

I1(W
s) ⇔ ∀n ≥ 0,

1

2n

∑
s∈{−,+}n

I1(W
s) =

1

2n+1

∑
s′∈{−,+}n+1

I1(W
s′)

⇔ ∀n ≥ 0,
∑

s∈{−,+}n
2I1(W

s) =
∑

s∈{−,+}n
(I1(W

(s,−)) + I1(W
(s,+)))

⇔ ∀n ≥ 0,
∑

s∈{−,+}n

(
2I1(W

s)− I1(W (s,−))− I1(W (s,+))
)

= 0.

But since 2I1(W
s) − I1(W (s,−)) − I1(W (s,+)) ≥ 0, we conclude that polarization ∗-preserves I1 for W

if and only if ∀n ≥ 0,∀s ∈ {−,+}n, I1(W (s,−)) + I1(W
(s,+)) = 2I1(W

s). In other words, polarization
∗-preserves I1 for W if and only if I1 is preserved for W s for every s ∈ {−,+}∗. Moreover, we have

∀s ∈ {−,+}∗, I1 is preserved for W s ⇔ ∀s ∈ {−,+}∗,∀n ≥ 0, I1 is preserved for W (s,[n]−)

⇔ ∀s ∈ {−,+}∗, I1 is ∗− preserved for W s.



5

B. Necessary condition
According to (1), I1 is preserved for W if and only if I(U1;V2|Z1Z2V1) = 0, which means that for every

z1, z2 ∈ Z and every v1, v2 ∈ G2, if PV2,Z1,Z2,V1(v2, z1, z2, v1) > 0 then PU1|V2,Z1,Z2,V1(u1|v2, z1, z2, v1) does
not depend on v2.

In order to study this condition, we should keep track of the values of z1, z2 ∈ Z and v1, v2 ∈ G2 for
which PV2,Z1,Z2,V1(v2, z1, z2, v1) > 0. But PV2,Z1,Z2,V1(v2, z1, z2, v1) = PY1,Z1(v1 + v2, z1)PY2,Z2(v2, z2), so
it is sufficient to keep track of the pairs (y, z) ∈ G2 ×Z satisfying PY,Z(y, z) > 0:

Definition 8. Let W : G1 ×G2 −→ Z and let (X, Y )
W−→ Z. Define the following:

• For every z ∈ Z , let Yz(W ) = {y ∈ G2 : PY,Z(y, z) > 0}.
• YZ(W ) = {(y, z) : z ∈ Z, y ∈ Yz(W )}.
• For every (y, z) ∈ YZ(W ), define py,z,W : G1 → [0, 1] as py,z,W (x) = PX|Y,Z(x|y, z).

In the rest of this section, we consider a fixed two-user MAC W : G1 × G2 −→ Z . For the sake of
simplicity, we write py,z(x) to denote py,z,W (x).

The following lemma gives a characterization of two user MACs with preserved I1 in terms of the
Fourier transform of the distributions py,z.

Lemma 2. I1 is preserved for W if and only if for every y1, y2, y′1, y
′
2 ∈ G2 and every z1, z2 ∈ Z satisfying

• y1 − y2 = y′1 − y′2,
• y1, y

′
1 ∈ Yz1(W ) and y2, y′2 ∈ Yz2(W ),

we have
p̂y1,z1(x̂) · p̂y2,z2(x̂)∗ = p̂y′1,z1(x̂) · p̂y′2,z2(x̂)∗, ∀x̂ ∈ G1.

Proof: Let U1, U2, V1, V2, X1, X2, Y1, Y2, Z1, Z2 be as in Remark 1. We know that I1 is preserved
for W if and only if I(U1;V2|Z1Z2V1) = 0, which is equivalent to say that U1 is independent of V2
conditionally on (Z1, Z2, V1).

In other words, for any fixed (z1, z2, v1) ∈ Z×Z×G2 satisfying PZ1,Z2,V1(z1, z2, v1) > 0, if v2, v′2 ∈ G2

satisfy PV2|Z1,Z2,V1(v2|z1, z2, v1) > 0 and PV2|Z1,Z2,V1(v
′
2|z1, z2, v1) > 0, then we have

∀u1 ∈ G1, PU1|V2,Z1,Z2,V1(u1|v2, z1, z2, v1) = PU1|V2,Z1,Z2,V1(u1|v′2, z1, z2, v1),

This condition is equivalent to say that for every z1, z2 ∈ Z and every v1, v2, v
′
2 ∈ G2 satisfying

PZ1,Z2,Y1,Y2(z1, z2, v1 + v2, v2) > 0 and PZ1,Z2,Y1,Y2(z1, z2, v1 + v′2, v
′
2) > 0 we have

∀u1 ∈ G1, PX1−X2|Z1,Z2,Y1,Y2(u1|z1, z2, v1 + v2, v2) = PX1−X2|Z1,Z2,Y1,Y2(u1|z1, z2, v1 + v′2, v
′
2).

By denoting v1+v2, v2, v1+v′2 and v′2 as y1, y2, y′1 and y′2 respectively (so that y1−y2 = y′1−y′2 = v1), we can
deduce that I1 is preserved for W if and only if for every y1, y2, y′1, y

′
2 ∈ G2 and every z1, z2 ∈ Z satisfying

y1 − y2 = y′1 − y′2, PZ1,Z2,Y1,Y2(z1, z2, y1, y2) > 0 and PZ1,Z2,Y1,Y2(z1, z2, y
′
1, y
′
2) > 0 (i.e., y1, y′1 ∈ Yz1(W )

and y2, y′2 ∈ Yz2(W )), we have

∀u1 ∈ G1, PX1−X2|Z1,Z2,Y1,Y2(u1|z1, z2, y1, y2) = PX1−X2|Z1,Z2,Y1,Y2(u1|z1, z2, y′1, y′2).

On the other hand, we have:

PX1−X2|Z1,Z2,Y1,Y2(u1|z1, z2, y1, y2) =
∑
u2∈G1

PX1|Z1,Y1(u1 + u2|z1, y1)PX2|Z2,Y2(u2|z2, y2)

=
∑
u2∈G1

py1,z1(u1 + u2)py2,z2(u2) = (py1,z1 ∗ p̃y2,z2)(u1),

where p̃y2,z2(x) = py2,z2(−x). Similarly PX1−X2|Z1,Z2,Y1,Y2(u1|z1, z2, y′1, y′2) = (py′1,z1∗p̃y′2,z2)(u1). Therefore,
for every u1 ∈ G1, we have

(py1,z1 ∗ p̃y2,z2)(u1) = (py′1,z1 ∗ p̃y′2,z2)(u1),
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which is equivalent to p̂y1,z1(û1) · p̂y2,z2(û1)∗ = p̂y′1,z1(û1) · p̂y′2,z2(û1)
∗ for every û1 ∈ G1.

Lemma 3. Suppose that I1 is ∗− preserved for W . Fix n > 0 and let (Ui, Vi)0≤i<2n be a sequence of
random pairs which are independent and uniformly distributed in G1 ×G2. Let

F =

[
1 1
0 1

]
.

Define X2n−1
0 = F⊗n ·U2n−1

0 and Y 2n−1
0 = F⊗n · V 2n−1

0 , and for each 0 ≤ i < 2n let (Xi, Yi)
W−→ Zi. We

have the following:
• The MAC (U0, V0) −→ Z2n−1

0 is equivalent to W [n]− .
• I(U0;V

2n−1
1 |Z2n−1

0 V0) = 0.

Proof: We will show the lemma by induction on n > 0. For n = 1, the claim follows from Remark
1 and from the fact that I1 is preserved for W if and only if I(U0;V1|Z0Z1V0) = 0 (see (1)).

Now let n > 1 and suppose that the claim is true for n−1. Let N = 2n−1. We have X2n−1
0 = F⊗n ·U2n−1

0

and Y 2n−1
0 = F⊗n · V 2n−1

0 , i.e., X2N−1
0 = F⊗n · U2N−1

0 and Y 2N−1
0 = F⊗n · V 2N−1

0 . Therefore, we have:

• XN−1
0 = F⊗(n−1) · (UN−1

0 + U2N−1
N ) and X2N−1

N = F⊗(n−1) · U2N−1
N .

• Y N−1
0 = F⊗(n−1) · (V N−1

0 + V 2N−1
N ) and Y 2N−1

N = F⊗(n−1) · V 2N−1
N .

This means that (UN−1
0 +U2N−1

N , V N−1
0 +V 2N−1

N , ZN−1
0 ) and (U2N−1

N , V 2N−1
N , Z2N−1

N ) satisfy the conditions
of the induction hypothesis. Therefore,
• I(U0 + UN ;V N−1

1 + V 2N−1
N+1 |Z

N−1
0 , V0 + VN) = 0.

• I(UN ;V 2N−1
N+1 |Z

2N−1
N , VN) = 0.

Moreover, since (UN−1
0 + U2N−1

N , V N−1
0 + V 2N−1

N , ZN−1
0 ) is independent of (U2N−1

N , V 2N−1
N , Z2N−1

N ), we
can combine the above two equations to get:

I(U0 + UN , UN ;V N−1
1 + V 2N−1

N+1 , V 2N−1
N+1 |Z

2N−1
0 , V0 + VN , VN) = 0,

which can be rewritten as
I(U0UN ;V N−1

1 V 2N−1
N+1 |Z

2N−1
0 V0VN) = 0. (5)

On the other hand, it also follow from the induction hypothesis that:
• The MAC (U0 + UN , V0 + VN) −→ ZN−1

0 is equivalent to W [n−1]− .
• The MAC (UN , VN) −→ Z2N−1

N is equivalent to W [n−1]− .
This implies that the MAC (U0, V0) −→ Z2N−1

0 is equivalent to W [n]−. Now since I1 is ∗− preserved for
W , I1 must be preserved for W [n−1]− . Therefore,

I(U0;VN |Z2N−1
0 V0) = I(U0;VN |ZN−1

0 Z2N−1
N V0)

(a)
= 0, (6)

where (a) follows from (1). We conclude that:

I(U0;V
2N−1
1 |Z2N−1

0 V0) = I(U0;VN |Z2N−1
0 V0) + I(U0;V

N−1
1 V 2N−1

N+1 |Z
2N−1
0 V0VN)

≤ I(U0;VN |Z2N−1
0 V0) + I(U0UN ;V N−1

1 V 2N−1
N+1 |Z

2N−1
0 V0VN)

(b)
= 0,

where (b) follows from (5) and (6).

Lemma 4. For every n > 0, if X2n−1
0 = F⊗nU2n−1

0 , then U0 =
2n−1∑
i=0

(−1)|i|bXi, where |i|b is the number

of ones in the binary expansion of i.

Proof: We will show the lemma by induction on n > 0. For n = 1, the fact that X1
0 = F⊗1·U1

0 = F ·U1
0

implies that X0 = U0 + U1 and X1 = U1. Therefore U0 = X0 −X1 =
1∑
i=0

(−1)|i|bXi.
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Now let n > 1 and suppose that the claim is true for n − 1. Let N = 2n−1. The fact that X2N−1
0 =

F⊗n · U2N−1
0 implies that:

• XN−1
0 = F⊗(n−1) · (UN−1

0 + U2N−1
N ).

• X2N−1
N = F⊗(n−1) · U2N−1

N .
We can apply the induction hypothesis to get:

• U0 + UN =
N−1∑
i=0

(−1)|i|bXi.

• UN =
N−1∑
i=0

(−1)|i|bXi+N .

Therefore,

U0 =
N−1∑
i=0

(−1)|i|bXi −
N−1∑
i=0

(−1)|i|bXi+N =
N−1∑
i=0

(−1)|i|bXi +
N−1∑
i=0

(−1)1+|i|bXi+N

=
N−1∑
i=0

(−1)|i|bXi +
2N−1∑
i=N

(−1)1+|i−N |bXi
(a)
=

N−1∑
i=0

(−1)|i|bXi +
2N−1∑
i=N

(−1)|i|bXi

=
2N−1∑
i=0

(−1)|i|bXi,

where (a) follows from the fact that for 2n = N ≤ i < 2N = 2n+1, we have |i−N |b = |i−2n|b = |i|b−1.

Lemma 5. If I1 is ∗− preserved for W , then for every n > 0, every y1, . . . , y2n , y′1, . . . , y
′
2n ∈ G2 and

every z1, . . . , z2n ∈ Z satisfying

•

2n∑
i=1

yi =
2n∑
i=1

y′i,

• y1 ∈ Yz1(W ), . . . , y2n ∈ Yz2n (W ), and
• y′1 ∈ Yz1(W ), . . . y′2n ∈ Yz2n (W ),

we have
2n∏
i=1

p̂yi,zi(x̂) =
2n∏
i=1

p̂y′i,zi(x̂), ∀x̂ ∈ G1.

Proof: Fix x̂ ∈ G1. If p̂y,z(x̂) = 0 for every (y, z) ∈ YZ(W ), then we clearly have

2n∏
i=1

p̂yi,zi(x̂) =
2n∏
i=1

p̂y′i,zi(x̂).

Therefore, we can assume without loss of generality that there exists (y, z) ∈ YZ(W ) which satisfies
p̂y,z(x̂) 6= 0.

Let U2n+1−1
0 , V 2n+1−1

0 , X2n+1−1
0 , Y 2n+1−1

0 and Z2n+1−1
0 be as in Lemma 3 and let N = 2n+1 so that we

have
I(U0;V

N−1
1 |ZN−1

0 V0) = 0. (7)

Since XN−1
0 = F⊗(n+1) · UN−1

0 and Y N−1
0 = F⊗(n+1) · V N−1

0 , Lemma 4 implies that

U0 =
N−1∑
i=0

(−1)|i|bXi and V0 =
N−1∑
i=0

(−1)|i|bYi. (8)
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Notice that
∣∣{0 ≤ i < N = 2n+1 : |i|b ≡ 0 mod 2

}∣∣ =
∣∣{0 ≤ i < N = 2n+1 : |i|b ≡ 1 mod 2

}∣∣ = 2n.
Let k1, . . . , k2n be the elements of

{
0 ≤ i < N : |i|b ≡ 0 mod 2

}
and let l1, . . . , l2n be the elements of{

0 ≤ i < N : |i|b ≡ 1 mod 2
}

.
Define (ỹi, ỹ

′
i, z̃i)0≤i<N as follows:

• For every 1 ≤ i ≤ 2n, let ỹki = yi, ỹ′ki = y′i and z̃ki = zi.
• For every 1 ≤ i ≤ 2n, let ỹli = ỹ′li = y and z̃li = z.
Now let ṽN−10 = (F⊗(n+1))−1 · ỹN−10 and ṽ′N−10 = (F⊗(n+1))−1 · ỹ′N−10 . We have

ṽ0
(a)
=

N−1∑
i=0

(−1)|i|b ỹi =
2n∑
i=1

(ỹki − ỹli) =
2n∑
i=1

yi − 2ny

(b)
=

2n∑
i=1

y′i − 2ny =
2n∑
i=1

(ỹ′ki − ỹ
′
li
) =

N−1∑
i=0

(−1)|i|b ỹ′i
(c)
= ṽ′0,

where (a) and (c) follow from Lemma 4. (b) follows from the fact that
2n∑
i=1

yi =
2n∑
i=1

y′i. Therefore,

(ṽ0, z̃
N−1
0 ) = (ṽ′0, z̃

N−1
0 ). (9)

On the other hand, since ỹi ∈ Yz̃i(W ) for every 0 ≤ i < N , we have

PV0,V N−1
1 ,ZN−1

0
(ṽ0, ṽ

N−1
1 , z̃N−10 ) = PV N−1

0 ,ZN−1
0

(ṽN−10 , z̃N−10 )

= PY N−1
0 ,ZN−1

0
(ỹN−10 , z̃N−10 ) > 0.

(10)

Similarly, since ỹ′i ∈ Yz̃i(W ) for every 0 ≤ i < N , we have

PV0,V N−1
1 ,ZN−1

0
(ṽ′0, ṽ

′N−1
1 , z̃N−10 ) = PV N−1

0 ,ZN−1
0

(
ṽ′N−10 , z̃N−10

)
= PY N−1

0 ,ZN−1
0

(ỹ′N−10 , z̃N−10 ) > 0.
(11)

(7) implies that conditioned on (V0, Z
N−1
0 ), U0 is independent of V N−1

1 . (9), (10) and (11) now imply
that for every u0 ∈ G1, we have:

PU0|V N−1
1 ,V0,Z

N−1
0

(u0|ṽN−11 , ṽ0, z̃
N−1
0 ) = PU0|V N−1

1 ,V0,Z
N−1
0

(u0|ṽ′N−11 , ṽ′0, z̃
N−1
0 )

⇔ PU0|V N−1
0 ,ZN−1

0
(u0|ṽN−10 , z̃N−10 ) = PU0|V N−1

0 ,ZN−1
0

(u0|ṽ′N−10 , z̃N−10 )

⇔ PU0|Y N−1
0 ,ZN−1

0
(u0|ỹN−10 , z̃N−10 ) = PU0|Y N−1

0 ,ZN−1
0

(u0|ỹ′N−10 , z̃N−10 )

(a)⇔
∑

x̃N−1
0 ∈GN1 :∑N−1

i=0 (−1)|i|b x̃i=u0

N−1∏
i=0

PXi|Yi,Z1(x̃i|ỹi, z̃i) =
∑

x̃N−1
0 ∈GN1 :∑N−1

i=0 (−1)|i|b x̃i=u0

N−1∏
i=0

PXi|Yi,Z1(x̃i|ỹ′i, z̃i)

(b)⇔
∑

xN1 ∈GN1 :∑2n

i=1 xi−
∑N
i=2n+1 xi=u0

2n∏
i=1

pyi,zi(xi)
N∏

i=2n+1

py,z(xi)

=
∑

xN1 ∈GN1 :∑2n

i=1 xi−
∑N
i=2n+1 xi=u0

2n∏
i=1

py′i,zi(xi)
N∏

i=2n+1

py,z(xi), (12)

where (a) follows from (8) and (b) follows from the following change of variables:

xi =

{
x̃ki if 1 ≤ i ≤ 2n,

x̃li−2n
if 2n ≤ i ≤ 2n+1 = N.
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Now notice that the left hand side of (12) is the convolution of (pyi,zi)1≤i≤2n and 2n copies of p̃y,z
(where p̃y,z(x) = py,z(−x)). Likewise, the right hand side of (12) is the convolution of (py′i,zi)1≤i≤2n and
2n copies of p̃y,z. By applying the DFT on (12), we get:

2n∏
i=1

p̂yi,zi(û1)
N∏

i=2n+1

p̂y,z(û1)
∗ =

2n∏
i=1

p̂y′i,zi(û1)
N∏

i=2n+1

p̂y,z(û1)
∗, ∀û1 ∈ G1.

In particular,
2n∏
i=1

p̂yi,zi(x̂)
N∏

i=2n+1

p̂y,z(x̂)∗ =
2n∏
i=1

p̂y′i,zi(x̂)
N∏

i=2n+1

p̂y,z(x̂)∗.

Now since p̂y,z(x̂) 6= 0, we conclude that
2n∏
i=1

p̂yi,zi(x̂) =
2n∏
i=1

p̂y′i,zi(x̂)

Definition 9. For every z ∈ Z define:

X̂
z
(W ) :=

{
x̂ ∈ G1 : ∃y ∈ Yz(W ), p̂y,z(x̂) 6= 0

}
.

Let
X̂Z(W ) :=

{
(x̂, z) : z ∈ Z, x̂ ∈ X̂

z
(W )

}
,

X̂(W ) :=
⋃
z∈Z X̂

z
(W ).

Lemma 6. If I1 is ∗− preserved for W then for every x̂ ∈ X̂
z
(W ), we have:

• p̂y,z(x̂) 6= 0 for all y ∈ Yz(W ).

•
p̂y,z(x̂)

p̂y′,z(x̂)
∈ T for every y, y′ ∈ Yz(W ), where T = {ω ∈ C : |ω| = 1}.

Proof: If x̂ ∈ X̂
z
(W ), there exists y′ ∈ Yz(W ) satisfying p̂y′,z(x̂) 6= 0. Fix y ∈ Yz(W ) and let a > 0

be the order of y − y′ (i.e., a(y − y′) = 0G2 , where 0G2 is the neutral element of G2). Let n > 0 be such
that a < 2n and define the two sequences (yi)1≤i≤2n and (y′i)1≤i≤2n as follows:
• If i ≤ a, yi = y and y′i = y′.
• If i > a, yi = y′i = y′.

Since a(y − y′) = 0G2 , we have ay = ay′ and so
2n∑
i=1

yi = ay + (2n − a)y′ = ay′ + (2n − a)y′ =
2n∑
i=1

y′i.

By applying Lemma 5, we get(
p̂y,z(x̂)

)a(
p̂y′,z(x̂)

)2n−a
=

2n∏
i=1

p̂yi,z(x̂) =
2n∏
i=1

p̂y′i,z(x̂)

=
(
p̂y′,z(x̂)

)2n 6= 0.

Therefore, p̂y,z(x̂) 6= 0. Moreover, ( p̂y,z(x̂)

p̂y′,z(x̂)

)a
= 1,

which means that
p̂y,z(x̂)

p̂y′,z(x̂)
is a root of unity, i.e.,

p̂y,z(x̂)

p̂y′,z(x̂)
∈ T.

Definition 10. Define the following:
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• For every (x̂, z) ∈ X̂Z(W ), let Yx̂,z(W ) :=
{
y ∈ Yz(W ) : p̂y,z(x̂) 6= 0

}
.

• For every (x̂, z) ∈ X̂Z(W ), let ∆Yx̂,z(W ) :=
{
y1 − y2 : y1, y2 ∈ Yx̂,z(W )

}
.

• For every z ∈ Z , let Dz(W ) :=
{

(x̂, y) : x̂ ∈ X̂
z
(W ), y ∈ ∆Yx̂,z(W )

}
.

• D(W ) :=
⋃
z∈Z

Dz(W ).

Lemma 7. If I1 is ∗− preserved for W , there exists a unique mapping f̂W : D(W ) → T such that for
every (x̂, z) ∈ X̂Z(W ) and every y1, y2 ∈ Yz(W ), we have

p̂y1,z(x̂) = f̂W (x̂, y1 − y2) · p̂y2,z(x̂).

Proof: Let (x̂, y) ∈ D(W ). Let z be such that (x̂, y) ∈ Dz(W ), and let y1, y2 ∈ Yx̂,z(W ) be such
that y1 − y2 = y. Suppose there exist z′ ∈ Z and y′1, y

′
2 ∈ Yz′(W ) which satisfy x̂ ∈ X̂

z′

(W ) and
y′1 − y′2 = y = y1 − y2. Lemma 6 implies that py′1,z′(x̂) 6= 0 and py′2,z′(x̂) 6= 0. Lemma 5 shows that

py1,z(x̂) · py′2,z′(x̂) = py2,z(x̂) · py′1,z′(x̂).

Therefore,
py1,z(x̂)

py2,z(x̂)
=

py′1,z′(x̂)

py′2,z′(x̂)

(a)
∈ T, where (a) follows from Lemma 6. This shows that the value of

py1,z(x̂)

py2,z(x̂)
∈ T depends only on (x̂, y) and does not depend on the choice of z, y1, y2. We conclude that there

exists a unique f̂W (x̂, y) ∈ T such that for every z ∈ Z and every y1, y2 ∈ Yz(W ) satisfying x̂ ∈ X̂
z
(W )

and y1 − y2 = y, we have
p̂y1,z(x̂) = f̂W (x̂, y) · p̂y2,z(x̂).

Lemma 8. For every MAC W , we have:

Y(z1,z2)(W−) =
{
y1 − y2 : y1 ∈ Yz1(W ), y2 ∈ Yz2(W )

}
.

Proof: Let U1, U2, V1, V2, X1, X2, Y1, Y2, Z1, Z2 be as in Remark 1. For every v1 ∈ G2 and every
z1, z2 ∈ Z , we have:

PV1,Z1,Z2(v1, z1, z2) =
∑

y1,y2∈G2:
v1=y1−y2

PY1,Y2,Z1,Z2(y1, y2, z1, z2) =
∑

y1,y2∈G2:
v1=y1−y2

PY1,Z1(y1, z1)PY2,Z2(y2, z2).

Therefore, v1 ∈ Y(z1,z2)(W−) if and only if there exist y1, y2 ∈ G2 such that y1 ∈ Yz1(W ), y2 ∈ Yz2(W )
and v1 = y1 − y2. Hence,

Y(z1,z2)(W−) =
{
y1 − y2 : y1 ∈ Yz1(W ), y2 ∈ Yz2(W )

}
.

Lemma 9. For every z1, z2 ∈ Z , every v1 ∈ Y(z1,z2)(W−) and every û1 ∈ G1, we have:

p̂v1,z1,z2,W−(û1) =
∑

v2∈Yz2 (W ):
v1+v2∈Yz1 (W )

PY1|Z1(v1 + v2|z1)PY2|Z2(v2|z2)
PV1|Z1,Z2(v1|z1, z2)

p̂v1+v2,z1(û1) · p̂v2,z2(û1)∗. (13)
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Proof: Let U1, U2, V1, V2, X1, X2, Y1, Y2, Z1, Z2 be as in Remark 1. Fix z1, z2 ∈ Z and v1 ∈
Y(z1,z2)(W−), and let β = PV1|Z1,Z2(v1|z1, z2) > 0. For every u1 ∈ G1, we have:

pv1,z1,z2,W−(u1) = PU1|V1,Z1,Z2(u1|v1, z1, z2) =
1

β
PU1,V1|Z1,Z2(u1, v1|z1, z2)

=
1

β

∑
u2∈G1
v2∈G2

PU1,U2,V1,V2|Z1,Z2(u1, u2, v1, v2|z1, z2)

=
1

β

∑
u2∈G1
v2∈G2

PX1,X2,Y1,Y2|Z1,Z2(u1 + u2, u2, v1 + v2, v2|z1, z2)

=
1

β

∑
u2∈G1
v2∈G2

PX1,Y1|Z1(u1 + u2, v1 + v2|z1)PX2,Y2|Z2(u2, v2|z2)

=
1

β

∑
v2∈Yz2 (W ):

v1+v2∈Yz1 (W )

∑
u2∈G1

PX1,Y1|Z1(u1 + u2, v1 + v2|z1)PX2,Y2|Z2(u2, v2|z2)

=
1

β

∑
v2∈Yz2 (W ):

v1+v2∈Yz1 (W )

PY1|Z1(v1 + v2|z1)PY2|Z2(v2|z2)
∑
u2∈G1

pv1+v2,z1(u1 + u2)pv2,z2(u2)

=
1

β

∑
v2∈Yz2 (W ):

v1+v2∈Yz1 (W )

PY1|Z1(v1 + v2|z1)PY2|Z2(v2|z2)(pv1+v2,z1 ∗ p̃v2,z2)(u1),

where p̃v2,z2(x) = pv2,x2(−x) for every x ∈ G1. Therefore, for every û1 ∈ G1, we have:

p̂v1,z1,z2,W−(û1) =
∑

v2∈Yz2 (W ):
v1+v2∈Yz1 (W )

PY1|Z1(v1 + v2|z1)PY2|Z2(v2|z2)
PV1|Z1,Z2(v1|z1, z2)

p̂v1+v2,z1(û1) · p̂v2,z2(û1)∗.

Lemma 10. D(W−) ⊂ {(x̂, y1 + y2) : (x̂, y1), (x̂, y2) ∈ D(W )}.

Proof: Let U1, U2, V1, V2, X1, X2, Y1, Y2, Z1, Z2 be as in Remark 1. Let (û1, v1) ∈ D(W−). There exists
z− = (z1, z2) ∈ Z− such that (û1, v1) ∈ Dz−(W−). This implies the existence of v′1, v

′′
1 ∈ Yz−(W−) such

that v1 = v′1 − v′′1 , p̂v′1,z−,W−(û1) 6= 0 and p̂v′′1 ,z−,W−(û1) 6= 0. From (13), we have:

p̂v′1,z−,W−(û1) =
∑

v′2∈Y
z2 (W ):

v′1+v
′
2∈Y

z1 (W )

PY1|Z1(v
′
1 + v′2|z1)PY2|Z2(v

′
2|z2)

PV1|Z1,Z2(v
′
1|z1, z2)

p̂v′1+v′2,z1(û1) · p̂v′2,z2(û1)
∗. (14)

Since p̂v′1,z−,W−(û1) 6= 0, the terms in the above sum cannot all be zero. Therefore, there exists v′2 ∈
Yz2(W ) such that v′1+v′2 ∈ Yz1(W ), p̂v′1+v′2,z1(û1) 6= 0 and p̂v′2,z2(û1) 6= 0. Similarly, since p̂v′′1 ,z−,W−(û1) 6=
0, there exists v′′2 ∈ Yz2(W ) such that v′′1 + v′′2 ∈ Yz1(W ), p̂v′′1+v′′2 ,z1(û1) 6= 0 and p̂v′′2 ,z2(û1) 6= 0. We can
now see that (û1, v1 + v′2 − v′′2) =

(
û1, v

′
1 + v′2 − (v′′1 + v′′2)

)
∈ D(W ) and (û1, v

′′
2 − v′2) ∈ XDY (W ). By

noticing that v1 = (v1 + v′2 − v′′2) + (v′′2 − v′2), we conclude that:

D(W−) ⊂
{

(x̂, y1 + y2) : (x̂, y1), (x̂, y2) ∈ D(W )
}
.

Proposition 3. If I1 is ∗− preserved for W , we have:
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1) D(W−) = {(x̂, y1 + y2) : (x̂, y1), (x̂, y2) ∈ D(W )}.
2) For every x̂, y1, y2 satisfying (x̂, y1), (x̂, y2) ∈ D(W ), we have

f̂W−(x̂, y1 + y2) = f̂W (x̂, y1) · f̂W (x̂, y2).

Proof: Let U1, U2, V1, V2, X1, X2, Y1, Y2, Z1, Z2 be as in Remark 1. We have:
1) Let x̂, y1, y2 be such that (x̂, y1), (x̂, y2) ∈ D(W ). There exist z1, z2 ∈ Z , y′1, y

′′
1 ∈ Yz1(W ) and

y′2, y
′′
2 ∈ Yz2(W ) such that y1 = y′1 − y′′1 , y2 = y′2 − y′′2 , p̂y′1,z1(x̂) 6= 0, p̂y′′1 ,z1(x̂) 6= 0, p̂y′2,z2(x̂) 6= 0

and p̂y′′2 ,z2(x̂) 6= 0. Now from Lemma 8 we get y′1− y′′2 ∈ Y(z1,z2)(W−) and y′′1 − y′2 ∈ Y(z1,z2)(W−).
For every v2 ∈ Yz2(W ) satisfying y′1 − y′′2 + v2 ∈ Yz1(W ), we have:

p̂y′1−y′′2+v2,z1(x̂) · p̂v2,z2(x̂)∗ = p̂y′1,z1(x̂)f̂W (x̂, v2 − y′′2) · p̂y′′2 ,z2(x̂)∗f̂W (x̂, v2 − y′′2)∗

(a)
= p̂y′1,z1(x̂)p̂y′′2 ,z2(x̂)∗,

(15)

where (a) follows from the fact that f̂W (x̂, v2 − y′′2) ∈ T, which means that

f̂W (x̂, v2 − y′′2)f̂W (x̂, v2 − y′′2)∗ = |f̂W (x̂, v2 − y′′2)|2 = 1.

Let z− = (z1, z2) ∈ Z−. By using (13), we get:

p̂y′1−y′′2 ,z−,W−(x̂)

=
∑

v2∈Yz2 (W ):
y′1−y′′2+v2∈Y

z1 (W )

PY1|Z1(y
′
1 − y′′2 + v2|z1)PY2|Z2(v2|z2)

PV1|Z1,Z2(y
′
1 − y′′2 |z1, z2)

p̂y′1−y′′2+v2,z1(x̂) · p̂v2,z2(x̂)∗

(a)
=

∑
v2∈Yz2 (W ):

y′1−y′′2+v2∈Y
z1 (W )

PY1|Z1(y
′
1 − y′′2 + v2|z1)PY2|Z2(v2|z2)

PV1|Z1,Z2(y
′
1 − y′′2 |z1, z2)

p̂y′1,z1(x̂)p̂y′′2 ,z2(x̂)∗

= p̂y′1,z1(x̂)p̂y′′2 ,z2(x̂)∗
∑

v2∈Yz2 (W ):
y′1−y′′2+v2∈Y

z1 (W )

PY1|Z1(y
′
1 − y′′2 + v2|z1)PY2|Z2(v2|z2)

PV1|Z1,Z2(y
′
1 − y′′2 |z1, z2)

= p̂y′1,z1(x̂)p̂y′′2 ,z2(x̂)∗ 6= 0,

where (a) follows from (15). Similarly, we can show that p̂y′′1−y′2,z1,z2,W−(x̂) = p̂y′′1 ,z1(x̂)p̂y′2,z2(x̂)∗ 6= 0.
This means that y′1 − y′′2 ∈ Yx̂,z−(W−) and y′′1 − y′2 ∈ Yx̂,z−(W−). Therefore,

(x̂, y1 + y2) = (x̂, y′1 − y′′1 + y′2 − y′′2) =
(
x̂, (y′1 − y′′2)− (y′′1 − y′2)

)
∈ D(W−).

Hence,
{

(x̂, y1 + y2) : (x̂, y1), (x̂, y2) ∈ D(W )
}
⊂ D(W−). We conclude that

D(W−) =
{

(x̂, y1 + y2) : (x̂, y1), (x̂, y2) ∈ D(W )
}

since the other inclusion follows from Lemma 10.
2) Let x̂, y1, y2 be such that (x̂, y1), (x̂, y2) ∈ D(W ). Define y′1, y

′′
1 , y
′
2, y
′′
2 , z1, z2 as in 1). We have shown

that p̂y′1−y′′2 ,z−,W−(x̂) = p̂y′1,z1(x̂)p̂y′′2 ,z2(x̂)∗ and p̂y′′1−y′2,z1,z2,W−(x̂) = p̂y′′1 ,z1(x̂)p̂y′2,z2(x̂)∗. Therefore,

f̂W−(x̂, y1 + y2) =
p̂y′1,z1(x̂)p̂y′′2 ,z2(x̂)∗

p̂y′′1 ,z1(x̂)p̂y′2,z2(x̂)∗
=

f̂W (x̂, y1)

f̂W (x̂, y2)∗
(a)
= f̂W (x̂, y1) · f̂W (x̂, y2),

where (a) follows from the fact that f̂W (x̂, y2) · f̂W (x̂, y2)
∗ = |f̂W (x̂, y2)|2 = 1.

Corollary 1. If polarization ∗-preserves I1 for W , then D(W ) ⊂ D(W−) and f̂W−(x̂, y) = f̂W (x̂, y) for
every (x̂, y) ∈ D(W ), i.e., f̂W− is an extension of f̂W .
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Proof: For every (x̂, y) ∈ D(W ), there exists z ∈ Z and y1, y2 ∈ Yz(W ) such that y = y1 − y2,

p̂y1,z(x̂) 6= 0 and p̂y2,z(x̂) 6= 0. Therefore, we have (x̂, 0) ∈ D(W ) and f̂W (x̂, 0) =
p̂y1,z(x̂)

p̂y1,z(x̂)
= 1.

Since (x̂, y) ∈ D(W ) and (x̂, 0) ∈ D(W ), Proposition 3 implies that (x̂, y) ∈ D(W−) and f̂W−(x̂, y) =
f̂W (x̂, y) · f̂W (x̂, 0) = f̂W (x̂, y).

Lemma 11. For every y1, y2 ∈ G2 and every z1, z2 ∈ Z , we have:
• If y1 /∈ Yz1(W ) or y2 /∈ Yz2(W ), then (y2, z1, z2, u1, y1 − y2) /∈ YZ(W+) for every u1 ∈ G1.
• If (y1, z1) ∈ YZ(W ) and (y2, z2) ∈ YZ(W ), there exists u1 ∈ G1 such that (y2, z1, z2, u1, y1 − y2) ∈

YZ(W+).

Proof: Let U1, U2, V1, V2, X1, X2, Y1, Y2, Z1, Z2 be as in Remark 1. For every u1 ∈ G1, every y1, y2 ∈
G2 and every z1, z2 ∈ Z , we have:

PV2,Z1,Z2,U1,V1(y2, z1, z2, u1, y1 − y2) =
∑
u2∈G1

PU2,V2,Z1,Z2,U1,V1(u2, y2, z1, z2, u1, y1 − y2)

=
∑
u2∈G1

PX1,X2,Y1,Y2,Z1,Z2(u1 + u2, u2, y1, y2, z1, z2)

=
∑
u2∈G1

PX1,Y1,Z1(u1 + u2, y1, z1) · PX2,Y2,Z2(u2, y2, z2).

Therefore, we have:
• If (y1, z1) /∈ YZ(W ) or (y2, z2) /∈ YZ(W ), then for all u1, u2 ∈ G1, we have PX1,Y1,Z1(u1 +
u2, y1, z1) ≤ PY1,Z1(y1, z1) = 0 or PX2,Y2,Z2(u2, y2, z2) ≤ PY2,Z2(y2, z2) = 0, which means that
PV2,Z1,Z2,U1,V1(y2, z1, z2, u1, y1−y2) = 0. Hence (y2, z1, z2, u1, y1−y2) /∈ YZ(W+) for every u1 ∈ G1.

• If (y1, z1) ∈ YZ(W ) and (y2, z2) ∈ YZ(W ), then PY1,Z1(y1, z1) > 0 and PY2,Z2(y2, z2) > 0. This
means that there exist x1, x2 ∈ G1 such that PX1,Y1,Z1(x1, y1, z1) > 0 and PX2,Y2,Z2(x2, y2, z2) > 0.
Let u1 = x1 − x2 and u2 = x2. We have PX1,Y1,Z1(u1 + u2, y1, z1) · PX2,Y2,Z2(u2, y2, z2) > 0, which
implies that PV2,Z1,Z2,U1,V1(y2, z1, z2, u1, y1 − y2) > 0 hence (y2, z1, z2, u1, y1 − y2) ∈ YZ(W+).

Lemma 12. Let U1, U2, V1, V2, X1, X2, Y1, Y2, Z1, Z2 be as in Remark 1. For every (v2, z1, z2, u1, v1) ∈
YZ(W+), we have:

p̂v2,z1,z2,u1,v1,W+(û2) =
∑
û′2∈G1

p̂v1+v2,z1(û
′
2) · p̂v2,z2(û2 − û′2)

|G1|α(u1, z1, z2, v1, v2)
ej2π〈û

′
2,u1〉, (16)

where α(u1, z1, z2, v1, v2) = PU1|Z1,Z2,V1,V2(u1|z1, z2, v1, v2).

Proof: For every (v2, z1, z2, u1, v1) ∈ YZ(W+) and every u2 ∈ G2, we have:

pv2,z1,z2,u1,v1,W+(u2) = PU2|V2,Z1,Z2,U1,V1(u2|v2, z1, z2, u1, v1)

=
PU1,U2|Z1,Z2,V1,V2(u1, u2|z1, z2, v1, v2)

PU1|Z1,Z2,V1,V2(z1, z2, v1, v2)

=
PX1,X2|Z1,Z2,Y1,Y2(u1 + u2, u2|z1, z2, v1 + v2, v2)

α(u1, z1, z2, v1, v2)

=
PX1|Z1,Y1(u1 + u2|z1, v1 + v2)PX2|Z2,Y2(u2|z2, v2)

α(u1, z1, z2, v1, v2)

=
pv1+v2,z1(u1 + u2)pv2,z2(u2)

α(u1, z1, z2, v1, v2)
.
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Therefore,

p̂v2,z1,z2,u1,v1,W+(û2) =

1
|G1|

(
p̂v1+v2,z1(û2)e

j2π〈û2,u1〉
)
∗ p̂v2,z2(û2)

α(u1, z1, z2, v1, v2)

=

∑
û′2∈G1

p̂v1+v2,z1(û
′
2)e

j2π〈û′2,u1〉p̂v2,z2(û2 − û′2)
|G1|α(u1, z1, z2, v1, v2)

=
∑
û′2∈G1

p̂v1+v2,z1(û
′
2) · p̂v2,z2(û2 − û′2)

|G1|α(u1, z1, z2, v1, v2)
ej2π〈û

′
2,u1〉.

Lemma 13. Let (y1, z1), (y2, z2) ∈ YZ(W ) and x̂ ∈ G1. If there exists u1 ∈ G1 such that∑
û∈G1

p̂y1,z1(û) · p̂y2,z2(x̂− û)ej2π〈û,u1〉 6= 0. (17)

then we have:
• (y2, z

+) ∈ YZ(W+), where z+ = (z1, z2, u1, y1 − y2).
• p̂y2,z+,W+(x̂) 6= 0.

Proof: Let U1, U2, V1, V2, X1, X2, Y1, Y2, Z1, Z2 be as in Remark 1. Let v1 = y1 + y2 and v2 = y2.
Notice that the expression in (17) is the DFT of the mapping K : G1 → C defined as

K(x) = py1,z1(u1 + x) · py2,z2(x).

(17) shows that K̂ is not zero everywhere which implies that K is not zero everywhere. Therefore, there
exists x ∈ G1 such that K(x) 6= 0. We have:

PV2,Z1,Z2,U1,V1(v2, z1, z2, u1, v1) ≥ PU1,U2,V1,V2,Z1,Z2(u1, x, y1 − y2, y2, z1, z2)
= PX1,X2,Y1,Y2,Z1,Z2(u1 + x, x, y1, y2, z1, z2)

= PX1,Y1,Z1(u1 + x, y1, z1)PX2,Y2,Z2(x, y2, z2)

= PY1,Z1(y1, z1)py1,z1(u1 + x) · PY2,Z2(y2, z2)py2,z2(x)

= PY1,Z1(y1, z1) · PY2,Z2(y2, z2) ·K(x)
(a)
> 0,

where (a) follows from the fact that y1 ∈ Yz1(W ), y2 ∈ Yz2(W ) and K(x) > 0. We conclude that
(v2, z1, z2, u1, v1) ∈ YZ(W+) and so we can apply (16) to (v2, z1, z2, u1, v1):

p̂v2,z1,z2,u1,v1,W+(x̂)
(a)
=
∑
û∈G1

p̂y1,z1(û) · p̂y2,z2(x̂− û)

|G1|α(u1, z1, z2, v1, v2)
ej2π〈û,u1〉

(b)

6= 0,

where (a) follows from (16) and (b) follows from (17). Therefore, p̂y2,z+,W+(x̂) 6= 0, where z+ =
(z1, z2, u1, y1 − y2).

Proposition 4. Suppose that polarization ∗-preserves I1 for W . We have:
1)
{

(x̂1 + x̂2, y) : (x̂1, y), (x̂2, y) ∈ D(W )
}
⊂ D(W+).

2) For every x̂1, x̂2, y satisfying (x̂1, y), (x̂2, y) ∈ D(W ), we have f̂W+(x̂1 + x̂2, y) = f̂W (x̂1, y) ·
f̂W (x̂2, y).

Proof: Let U1, U2, V1, V2, X1, X2, Y1, Y2, Z1, Z2 be as in Remark 1.
1) Suppose that x̂1, x̂2, y satisfy (x̂1, y), (x̂2, y) ∈ D(W ) and let x̂ = x̂1 + x̂2. There exist z1, z2 ∈ Z ,

y1, y
′
1 ∈ Yz1(W ) and y2, y′2 ∈ Yz2(W ) such that:

• y = y1 − y′1, p̂y1,z1(x̂1) 6= 0 and p̂y′1,z1(x̂1) 6= 0.
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• y = y2 − y′2, p̂y2,z2(x̂2) 6= 0 and p̂y′2,z2(x̂2) 6= 0.

Let v1 = y1 − y2 = y′1 − y′2, v2 = y2 and v′2 = y′2. Define the mapping L̂ : G1 → C as

L̂(û) = p̂y1,z1(û) · p̂y2,z2(x̂− û).

We have: L̂(x̂1) = p̂y1,z1(x̂1) · p̂y2,z2(x̂2) 6= 0. Therefore, the mapping L̂ is not zero everywhere,
which implies that its inverse DFT is not zero everywhere. Hence there exists u1 ∈ G1 such that:∑

û∈G1

p̂y1,z1(û) · p̂y2,z2(x̂− û)ej2π〈û,u1〉 6= 0.

It follows from Lemma 13 that (v2, z
+) ∈ YZ(W+) and p̂v2,z+,W+(x̂) 6= 0, where z+ =

(z1, z2, u1, v1). If we can also show that (v′2, z
+) ∈ YZ(W+) and p̂v′2,z+,W+(x̂) 6= 0 we will be

able to conclude that (x̂, y) ∈ D(W+) since y = v2 − v′2. We have the following:
• PU1,Z1,Z2,V1(u1, z1, z2, v1) ≥ PV2,Z1,Z2,U1,V1(v2, z1, z2, u1, v1) > 0 since (v2, z

+) ∈ YZ(W+).
Hence,

PU1|Z1,Z2,V1(u1|z1, z2, v1) > 0.

• PV2,Z1,Z2,V1(v
′
2, z1, z2, v1) = PY1,Z1,Y2,Z2(y

′
1, z1, y

′
2, z2) > 0 since y′1 ∈ Yz1(W ) and y′2 ∈ Yz2(W ).

Thus,

PV2|Z1,Z2,V1(v
′
2|z1, z2, v1) > 0.

But I1 is preserved for W , so we must have I(U1;V2|Z1Z2V1) = 0. Therefore,

PU1,V2|Z1,Z2,V1(u1, v
′
2|z1, z2, v1) = PU1|Z1,Z2,V1(u1|z1, z2, v1) · PV2|Z1,Z2,V1(v

′
2|z1, z2, v1) > 0. (18)

We conclude that PU2,Z1,Z2,U1,V1(v
′
2, z1, z2, u1, v1) > 0 and so (v′2, z

+) ∈ YZ(W+). Now since we
have showed that p̂v2,z+,W+(x̂) 6= 0 and since I1 is ∗− preserved for W+ (by Lemma 1), it follows
from Lemma 6 that we also have p̂v′2,z+,W+(x̂) 6= 0. We conclude that (x̂1 + x̂2, y) ∈ D(W+) for
every x̂1, x̂2, y satisfying (x̂1, y), (x̂2, y) ∈ D(W ). Therefore,{

(x̂1 + x̂2, y) : (x̂1, y), (x̂2, y) ∈ D(W )
}
⊂ D(W+).

2) Suppose that x̂1, x̂2, y satisfy (x̂1, y), (x̂2, y) ∈ D(W ) and let x̂ = x̂1 + x̂2. Let
y1, y2, y

′
1, y
′
2, v1, v2, v

′
2, z1, z2, z

+ be defined as in 1) so that v2, v′2 ∈ Yz+(W+), y = v2 − v′2,
p̂v2,z+,W+(x̂) 6= 0 and p̂v′2,z+,W+(x̂) 6= 0. Since (x̂, y) = (x̂, v1 − v2) ∈ D(W+), we have:

p̂v2,z1,z2,u1,v1,W+(x̂) = p̂v2,z+,W+(x̂) = f̂W+(x̂, y) · p̂v′2,z+,W+(x̂)

= f̂W+(x̂, y) · p̂v′2,z1,z2,u1,v1,W+(x̂).
(19)

Define F : G1 → C and F ′ : G1 → C as follows:

F (u′1) =
∑
û∈G1

p̂y1,z1(û) · p̂y2,z2(x̂− û)ej2π〈û,u
′
1〉.

F ′(u′1) =
∑
û∈G1

p̂y′1,z1(û) · p̂y′2,z2(x̂− û)ej2π〈û,u
′
1〉.

For every u′1 ∈ G1, we have the following:
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• If F (u′1) 6= 0 then (v2, z1, z2, u
′
1, v1) ∈ YZ(W+) and p̂v2,z1,z2,u′1,v1(x̂) 6= 0 by Lemma 13.

By replacing u1 by u′1 in (18), we can get (v′2, z1, z2, u
′
1, v1) ∈ YZ(W+), which means that

p̂v′2,z1,z2,u′1,v1(x̂) 6= 0 (see Lemma 6). We have:

F (u′1) =
∑
û∈G1

p̂y1,z1(û) · p̂y2,z2(x̂− û)ej2π〈û,u
′
1〉

(a)
= |G1| · α(u′1, z1, z2, v1, v2)p̂v2,z1,z2,u′1,v1(x̂)

(b)
=
α(u′1, z1, z2, v1, v2)

α(u′1, z1, z2, v1, v
′
2)
|G1|α(u′1, z1, z2, v1, v

′
2)p̂v′2,z1,z2,u′1,v1(x̂)f̂W+(x̂, y)

(c)
=
α(u′1, z1, z2, v1, v2)

α(u′1, z1, z2, v1, v
′
2)

∑
û∈G1

p̂y′1,z1(û) · p̂y′2,z2(x̂− û)ej2π〈û,u
′
1〉f̂W+(x̂, y)

=
PU1|Z1,Z2,V1,V2(u

′
1, z1, z2, v1, v2)

PU1|Z1,Z2,V1,V2(u
′
1, z1, z2, v1, v

′
2)
f̂W+(x̂, y)F ′(u′1)

(d)
= f̂W+(x̂, y)F ′(u′1),

where (a) and (c) follow from (16), (b) follows from (19) and (d) follows from the fact that
I(U1;V2|Z1Z2V1) = 0.

• If F (u′1) = 0 then we must have F ′(u′1) = 0 (because F ′(u′1) 6= 0 would yield F (u′1) 6= 0, a
contradiction). Therefore, we have F (u′1) = 0 = f̂W+(x̂, y)F ′(u′1).

We conclude that for every u′1 ∈ G1, we have

F (u′1) = f̂W+(x̂, y)F ′(u′1) =
∑
û∈G1

f̂W+(x̂, y) · p̂y′1,z1(û) · p̂y′2,z2(x̂− û)ej2π〈û,u
′
1〉. (20)

Now define g : G1 ×G2 → C as follows:

g(x̂′, y′) =

{
f̂W (x̂′, y′) if (x̂′, y′) ∈ D(W ),

0 otherwise.
(21)

For every x̂′ ∈ G1, we have:
• If p̂y1,z1(x̂

′) 6= 0 then p̂y′1,z1(x̂
′) 6= 0 (by Lemma 6) and p̂y1,z1(x̂

′) = f̂W (x̂′, y1 − y′1)p̂y′1,z1(x̂
′) =

g(x̂′, y)p̂y′1,z1(x̂
′).

• If p̂y1,z1(x̂
′) = 0 then p̂y′1,z1(x̂

′) = 0 (by Lemma 6) and so p̂y1,z1(x̂
′) = 0 = g(x̂′, y)p̂y′1,z1(x̂

′).
Therefore, for every x̂′ ∈ G1 we have p̂y1,z1(x̂

′) = g(x̂′, y)p̂y′1,z1(x̂
′). Similarly, p̂y2,z2(x̂

′) =
g(x̂′, y)p̂y′2,z2(x̂

′) for all x̂′ ∈ G1. Hence,

F (u′1) =
∑
û∈G1

p̂y1,z1(û) · p̂y2,z2(x̂− û)ej2π〈û,u
′
1〉

=
∑
û∈G1

g(û, y)p̂y′1,z1(û) · g(x̂− û, y)p̂y′2,z2(x̂− û)ej2π〈û,u
′
1〉.

(22)

We conclude that for every u′1 ∈ G1, we have:∑
û∈G1

[
f̂W+(x̂, y)− g(û, y)g(x̂− û, y)

]
p̂y′1,z1(û) · p̂y′2,z2(x̂− û)ej2π〈û,u

′
1〉 (a)

= F (u′1)− F (u′1) = 0, (23)

where (a) follows from (20) and (22). Notice that the sum in (23) is the inverse DFT of the function
K̂ : G1 → C defined as:

K̂(û) =
[
f̂W+(x̂, y)− g(û, y)g(x̂− û, y)

]
p̂y′1,z1(û) · p̂y′2,z2(x̂− û).
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Now (23) implies that the inverse DFT of K̂ is zero everywhere. Therefore, K̂ is also zero
everywhere. In particular,

K̂(x̂1) =
[
f̂W+(x̂, y)− g(x̂1, y)g(x̂2, y)

]
p̂y′1,z1(x̂1) · p̂y′2,z2(x̂2) = 0.

But p̂y′1,z1(x̂1) 6= 0 and p̂y′2,z2(x̂2) 6= 0, so we must have f̂W+(x̂, y)−g(x̂1, y)g(x̂2, y) = 0. Therefore,

f̂W+(x̂, y) = g(x̂1, y)g(x̂2, y) = f̂W (x̂1, y) · f̂W (x̂2, y).

Corollary 2. If polarization ∗-preserves I1 for W , then D(W ) ⊂ D(W+) and f̂W+(x̂, y) = f̂W (x̂, y) for
every (x̂, y) ∈ D(W ), i.e., f̂W+ is an extension of f̂W .

Proof: For every (x̂, y) ∈ D(W ), there exists z ∈ Z and y1, y2 ∈ Yz(W ) such that y = y1 − y2,
p̂y1,z(x̂) 6= 0 and p̂y2,z(x̂) 6= 0. We have:

p̂y1,z(0) =
∑
x∈G1

py1,z(x)e−j2π〈0,x〉 =
∑
x∈G1

py1,z(x) = 1 6= 0.

Similarly, p̂y2,z(0) = 1 6= 0. Therefore, we have (0, y) ∈ D(W ) and f̂W (0, y) =
p̂y1,z(0)

p̂y2,z(0)
= 1.

Since (x̂, y) ∈ D(W ) and (0, y) ∈ D(W ), Proposition 4 implies that (x̂, y) ∈ D(W+) and f̂W+(x̂, y) =
f̂W (x̂, y)f̂W (0, y) = f̂W (x̂, y).

Proposition 3 implies that D(W [n]−) extends D(W ) to the point where all the G2-sections of D(W [n]−)
for fixed x̂ become subgroups of G2. D(W [n]−) cannot grow after this point. Similarly, Proposition 4
implies that D(W [n]+) keeps growing until a point where all its G1-section for fixed y become subgroups
of G1. This motivates us to introduce the following two definitions:

Definition 11. Let D ⊂ G1 ×G2. Define the following sets:
• H1(D) = {x : ∃y, (x, y) ∈ D}.
• For every x ∈ H1(D), let Hx

2 (D) = {y : (x, y) ∈ D}.
• H2(D) = {y : ∃x, (x, y) ∈ D}.
• For every y ∈ H2(D), let Hy

1 (D) = {x : (x, y) ∈ D}.
We say that D is a pseudo quadratic domain if:
• Hy

1 (D) is a subgroup of G1 for every y ∈ H2(D).
• Hx

2 (D) is a subgroup of G2 for every x ∈ H1(D).

Definition 12. Let D ⊂ G1×G2 and let F : D → T be a mapping from D to T. We say that F is pseudo
quadratic if:
• D is a pseudo quadratic domain.
• For every y ∈ H2(D), the mapping x → F (x, y) is a group homomorphism from

(
Hy

1 (D),+
)

to
(T, ·).

• For every x ∈ H1(D), the mapping y → F (x, y) is a group homomorphism from
(
Hx

2 (D),+
)

to
(T, ·).

Proposition 5. If polarization ∗-preserves I1 for W , then f̂W can be extended to a pseudo quadratic
function.

Proof: Define the sequence (Wn)n≥0 of MACs recursively as follows:
• W0 = W .
• Wn = W−

n−1 if n > 0 is odd.
• Wn = W+

n−1 if n > 0 is even.
For example, we have W1 = W−, W2 = W (−,+), W3 = W (−,+,−), W4 = W (−,+,−,+) . . .
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It follows from Corollaries 1 and 2 that:
• The sequence of sets

(
D(Wn)

)
n≥0 is increasing.

• f̂Wn is an extension of f̂W for every n > 0.
Since

(
D(Wn)

)
n≥0 is increasing and since G1 × G2 is finite, there exists n0 > 0 such that for every

n ≥ n0 we have D(Wn) = D(Wn0) for all n ≥ n0. We may assume without loss of generality that n0 is
even. Define the following sets:
• Ĥ1 = {x̂ : ∃y, (x̂, y) ∈ D(Wn)}.
• For every x̂ ∈ Ĥ1, let H x̂

2 = {y : (x̂, y) ∈ D(Wn)}.
• H2 = {y : ∃x̂, (x̂, y) ∈ D(Wn)}.
• For every y ∈ H2, let Ĥy

1 = {x̂ : (x̂, y) ∈ D(Wn)}.
We have the following:
• For every fixed y ∈ H2, let x̂1, x̂2 ∈ Ĥy

1 so (x̂1, y), (x̂2, y) ∈ D(Wn0) ⊂ D(Wn0+1). Therefore, it
follows from Proposition 4 that (x̂1 + x̂2, y) ∈ D(W+

n0+1) = D(Wn0+2) = D(Wn0) which implies that
x̂1 + x̂2 ∈ Ĥy

1 . Hence Ĥy
1 is a subgroup of G1. Moreover, Proposition 4 implies that

f̂Wn0
(x̂1 + x̂2, y) = f̂Wn0+2(x̂1 + x̂2, y) = f̂W+

n0+1
(x̂1 + x̂2, y)

= f̂Wn0+1(x̂1, y) · f̂Wn0+1(x̂2, y) = f̂Wn0
(x̂1, y) · f̂Wn0

(x̂2, y).

Therefore the mapping x̂→ f̂Wn0
(x̂, y) is a group homomorphism from Ĥy

1 to C.
• For every fixed x̂ ∈ Ĥ1, let y1, y2 ∈ H x̂

2 so (x̂, y1), (x̂, y2) ∈ D(Wn0). Therefore, it follows from
Proposition 3 that (x̂, y1 + y2) ∈ D(W−

n0
) = D(Wn0+1) = D(Wn0) which implies that y1 + y2 ∈ H x̂

2 .
Hence H x̂

2 is a subgroup of G2. Moreover, Proposition 3 implies that

f̂Wn0
(x̂, y1 + y2) = f̂Wn0+1(x̂, y1 + y2) = f̂W−n0

(x̂, y1 + y2)

= f̂Wn0
(x̂, y1) · f̂Wn0

(x̂, y2).

Therefore the mapping y → f̂Wn0
(x̂, y) is a group homomorphism from H x̂

2 to C.

We conclude that f̂Wn0
is pseudo quadratic.

The necessary conditions found in Lemma 6 and Proposition 5 motivate us to introduce the following
definition:

Definition 13. We say that W : G1 × G2 −→ Z is polarization compatible with respect to the first user
if there exists a pseudo quadratic function F : D → T such that:
• D(W ) ⊂ D ⊂ G1 ×G2.
• For every (x̂, z) ∈ X̂Z(W ), we have p̂y,z(x̂) 6= 0 for every y ∈ Yz(W ).
• For every (x̂, z) ∈ X̂Z(W ) and every y1, y2 ∈ Yz(W ), we have p̂y1,z(x̂) = F (x̂, y1 − y2) · p̂y2,z(x̂).

For the sake of simplicity and brevity, we will write “polarization compatible” to denote “polarization
compatible with respect to the first user”. Lemma 6 and Proposition 5 show that if polarization ∗-preserves
I1 for W then W must be polarization compatible.

C. Sufficient condition

In this subsection, we show that polarization compatibility is a sufficient condition for the ∗-
preservability of I1.

Lemma 14. If W : G1 ×G2 −→ Z is polarization compatible then I1 is preserved for W .

Proof: Let F : D → T be the pseudo quadratic function of Definition 13. Suppose that y1, y2, y′1, y
′
2 ∈

G2 and z1, z2 ∈ Z satisfy:
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• y1 − y2 = y′1 − y′2.
• y1, y

′
1 ∈ Yz1(W ) and y2, y′2 ∈ Yz2(W ).

For every x̂ ∈ G1, we have:
• If p̂y1,z1(x̂) = 0 then p̂y′1,z1(x̂) = 0 by Definition 13 and so

p̂y1,z1(x̂)p̂y2,z2(x̂)∗ = p̂y′1,z1(x̂)p̂y′2,z2(x̂)∗ = 0.

• If p̂y2,z2(x̂) = 0 then p̂y′2,z2(x̂) = 0 by Definition 13 and so

p̂y1,z1(x̂)p̂y2,z2(x̂)∗ = p̂y′1,z1(x̂)p̂y′2,z2(x̂)∗ = 0.

• If p̂y1,z1(x̂) 6= 0 and p̂y2,z2(x̂) 6= 0 then (x̂, z1) ∈ X̂Z(W ) and (x̂, z2) ∈ X̂Z(W ). By noticing that
y1 − y′1 = y2 − y′2, we get

p̂y1,z1(x̂)p̂y2,z2(x̂)∗ = p̂y′1,z1(x̂)F (x̂, y1 − y′1)p̂y′2,z2(x̂)∗F (x̂, y2 − y′2)∗
(a)
= p̂y′1,z1(x̂)p̂y′2,z2(x̂)∗,

where (a) follows from the fact that F (x̂, y1 − y′1)F (x̂, y2 − y′2)∗ = |F (x̂, y1 − y′1)|2 = 1.
Therefore, we have p̂y1,z1(x̂)p̂y2,z2(x̂)∗ = p̂y′1,z1(x̂)p̂y′2,z2(x̂)∗ for all x̂ ∈ G1. Lemma 2 now implies that I1
is preserved for W .

Lemma 15. If W : G1 ×G2 −→ Z is polarization compatible then W− is also polarization compatible.

Proof: Let U1, U2, V1, V2, X1, X2, Y1, Y2, Z1, Z2 be as in Remark 1. Let F : D → T be the pseudo
quadratic function of Definition 13. By Lemma 10 we have:

D(W−) ⊂
{

(x̂, y1 + y2) : (x̂, y1), (x̂, y2) ∈ D(W )
} (a)
⊂
{

(x̂, y1 + y2) : (x̂, y1), (x̂, y2) ∈ D
} (b)

= D,

where (a) follows from the fact that D(W ) ⊂ D and (b) follows from the fact that D is a pseudo quadratic
domain.

Let (û1, z
−) ∈ X̂Z(W−), where z− = (z1, z2) ∈ Z−. There exists v1 ∈ Yz−(W−) such that

p̂v1,z−,W−(û1) 6= 0. From (13), we have:

p̂v1,z−,W−(û1) =
∑

v2∈Yz2 (W ):
v1+v2∈Yz1 (W )

PY1|Z1(v1 + v2|z1)PY2|Z2(v2|z2)
PV1|Z1,Z2(v1|z1, z2)

p̂v1+v2,z1(û1) · p̂v2,z2(û1)∗.

Since p̂v1,z−,W−(û1) 6= 0, the terms in the above sum cannot all be zero. Therefore, there exists v2 ∈
Yz1(W ) such that v1 + v2 ∈ Yz2(W ), p̂v1+v2,z1(û1) 6= 0 and p̂v2,z2(û1) 6= 0. Let y1 = v1 + v2 and y2 = v2.

For every v′1 ∈ Yz−(W−), we have:

p̂v′1,z−,W−(û1)

=
∑

v′2∈Y
z2 (W ):

v′1+v
′
2∈Y

z1 (W )

PY1|Z1(v
′
1 + v′2|z1)PY2|Z2(v

′
2|z2)

PV1|Z1,Z2(v
′
1|z1, z2)

p̂v′1+v′2,z1(û1) · p̂v′2,z2(û1)
∗

(a)
=

∑
v′2∈Y

z2 (W ):
v′1+v

′
2∈Y

z1 (W )

PY1|Z1(v
′
1 + v′2|z1)PY2|Z2(v

′
2|z2)

PV1|Z1,Z2(v
′
1|z1, z2)

p̂y1,z1(û1) · F (û1, v
′
1 + v′2 − y1) ·

p̂y2,z2(û1)
∗

F (û1, v′2 − y2)

(b)
= p̂y1,z1(û1) · p̂y2,z2(û1)∗

∑
v′2∈Y

z2 (W ):
v′1+v

′
2∈Y

z1 (W )

PY1|Z1(v
′
1 + v′2|z1)PY2|Z2(v

′
2|z2)

PV1|Z1,Z2(v
′
1|z1, z2)

F (û1, v
′
1 + v′2 − y1 − v′2 + y2)

= p̂y1,z1(û1) · p̂y2,z2(û1)∗ · F (û1, v
′
1 − y1 + y2)

∑
v′2∈Y

z2 (W ):
v′1+v

′
2∈Y

z1 (W )

PY1|Z1(v
′
1 + v′2|z1)PY2|Z2(v

′
2|z2)

PV1|Z1,Z2(v
′
1|z1, z2)

= p̂y1,z1(û1) · p̂y2,z2(û1)∗ · F (û1, v
′
1 − y1 + y2) = p̂y1,z1(û1) · p̂y2,z2(û1)∗ · F (û1, v

′
1 − v1) 6= 0,
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where (a) follows from the fact that F (û1, v
′
2−v2) ∈ T which implies that F (û1, v

′
2−v2)∗ =

1

F (û1, v′2 − v2)
.

(b) follows from the fact that the mapping y → F (û1, y) is a group homomorphism from H û1
2 (D) to T.

Therefore, for every v′1 ∈ Yz−(W−) we have p̂v′1,z−,W−(û1) 6= 0. Moreover, for every v′1, v
′′
1 ∈ Yz−(W−),

we have:

p̂v′1,z−,W−(û1)

p̂v′′1 ,z−,W−(û1)
=
p̂y1,z1(û1) · p̂y2,z2(û1)∗ · F (û1, v

′
1 − v1)

p̂y1,z1(û1) · p̂y2,z2(û1)∗ · F (û1, v′′1 − v1)
= F (û1, v

′
1 − v1 − v′′1 + v1) = F (û1, v

′
1 − v′′1).

Hence, p̂v′1,z−,W−(û1) = F (û1, v
′
1 − v′′1) · p̂v′′1 ,z−,W−(û1).

We conclude that W− is polarization compatible.

Lemma 16. If W : G1 ×G2 −→ Z is polarization compatible then W+ is also polarization compatible.

Proof: Let F : D → T be the pseudo quadratic function of Definition 13.
Let (û2, v2) ∈ D(W+). There exist z+ = (z1, z2, u1, v1) ∈ Z+ and v′2, v

′′
2 ∈ Yz+(W+) such that

v2 = v′2 − v′′2 , p̂v′2,z+(û2) 6= 0 and p̂v′′2 ,z+(û2) 6= 0. From (16) we have

p̂v′2,z1,z2,u1,v1,W+(û2) =
∑
û′2∈G1

p̂v1+v′2,z1(û
′
2) · p̂v′2,z2(û2 − û

′
2)

|G1|α(u1, z1, z2, v1, v′2)
ej2π〈û

′
2,u1〉,

Since p̂v′2,z1,z2,u1,v1,W+(û2) 6= 0, there must exist û′2 ∈ G1 such that p̂v1+v′2,z1(û
′
2) 6= 0 and p̂v′2,z2(û2−û

′
2) 6= 0.

Therefore, (û′2, z1), (û2 − û′2, z2) ∈ X̂Z(W+). On the other hand, v′′2 ∈ Yz+(W+) implies that v1 + v′′2 ∈
Yz1(W ) and v′′2 ∈ Yz2(W ) (see Lemma 11). It follows from the polarization compatibility of W that
p̂v1+v′′2 ,z1(û

′
2) 6= 0 and p̂v′′2 ,z2(û2 − û

′
2) 6= 0 (see Definition 13). Therefore

(û′2, v2) =
(
û′2, v1 + v′2 − (v1 + v′′2)

)
∈ D(W ) ⊂ D

and
(û2 − û′2, v2) =

(
û2 − û′2, v′2 − v′′2)

)
∈ D(W ) ⊂ D

Now since D is a pseudo quadratic domain, we have (û2, v2) =
(
û′2 + (û2 − û′2), v2

)
∈ D. We conclude

that D(W+) ⊂ D.
Now let (û2, z

+) ∈ X̂Z(W+), where z+ = (z1, z2, u1, v1) ∈ Z+. There exists v2 ∈ Yz+(W ) such that
p̂v2,z+(û2) 6= 0. For every v′2 ∈ Yz+(W ), we have

p̂v′2,z+,W+(û2) = p̂v′2,z1,z2,u1,v1,W+(û2) =
∑
û′2∈G1

p̂v1+v′2,z1(û
′
2) · p̂v′2,z2(û2 − û

′
2)

|G1|α(u1, z1, z2, v1, v′2)
ej2π〈û

′
2,u1〉

=
∑
û′2∈G1

p̂v1+v2,z1(û
′
2)F (û′2, v

′
2 − v2) · p̂v2,z2(û2 − û′2)F (û2 − û′2, v′2 − v2)

|G1| · PU1|Z1,Z2,V1,V2(u1|z1, z2, v1, v′2)
ej2π〈û

′
2,u1〉

(a)
=
∑
û′2∈G1

p̂v1+v2,z1(û
′
2) · p̂v2,z2(û2 − û′2)

|G1| · PU1|Z1,Z2,V1,V2(u1|z1, z2, v1, v2)
F (û′2 + û2 − û′2, v′2 − v2) · ej2π〈û

′
2,u1〉

= F (û2, v
′
2 − v2)

∑
û′2∈G1

p̂v1+v2,z1(û
′
2) · p̂v2,z2(û2 − û′2)

|G1| · PU1|Z1,Z2,V1,V2(u1|z1, z2, v1, v2)
ej2π〈û

′
2,u1〉

= F (û2, v
′
2 − v2)p̂v2,z1,z2,u1,v1,W+(û2) = F (û2, v

′
2 − v2)p̂v2,z+,W+(û2) 6= 0,

where (a) follows from the fact that F is pseudo quadratic and the fact that U1 is independent of V2
conditioned on (Z1, Z2, V1) (the polarization compatibility of W implies that I1 is preserved for W by
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Lemma 14). Therefore, for every v′2 ∈ Yz+(W+), we have p̂v′2,z+,W+(û2) 6= 0. Moreover, for every
v′2, v

′′
2 ∈ Yz+(W+), we have

p̂v′2,z+,W+(û2)

p̂v′′2 ,z+,W+(û2)
=
F (û2, v

′
2 − v2) · p̂v2,z+,W+(û2)

F (û2, v′′2 − v2) · p̂v2,z+,W+(û2)

= F (û2, v
′
2 − v2 − v′′2 + v2) = F (û2, v

′
2 − v′′2).

Hence, p̂v′2,z+,W+(û2) = F (û2, v
′
2 − v′′2) · p̂v′′2 ,z+,W+(û2).

We conclude that W+ is polarization compatible.

Proposition 6. If W is polarization compatible then polarization ∗-preserves I1 for W .

Proof: Suppose that W is polarization compatible. Using Lemmas 15 and 16, we can show by
induction that W s is polarization compatible for every s ∈ {−,+}∗. Lemma 14 now implies that I1 is
preserved for W s for every s ∈ {−,+}∗. By applying Lemma 1, we deduce that polarization ∗-preserves
I1 for W .

Theorem 1. polarization ∗-preserves I1 for W if and only if W is polarization compatible.

Proof: The theorem follows from Lemma 6 and Propositions 5 and 6.

D. Application: G1 = G2 = Fq
The characterization found in Theorem 1 (i.e., polarization compatibility) takes a simple form in the

special case where G1 = G2 = Fq for a prime q:

Proposition 7. Let W : Fq×Fq −→ Z and (X, Y )
W−→ Z. Polarization ∗-preserves I1 for W if and only

if there exists a ∈ Fq such that I(X + aY ;Y |Z) = 0.

Proof: If polarization ∗-preserves I1 for W then W is polarization compatible. Let F : D → T be
the pseudo quadratic function of Definition 13. We have the following:
• If there exists (x̂, y) ∈ D such that x̂ 6= 0 and y 6= 0 then D = Fq×Fq since D is a pseudo quadratic

domain.
• If for all (x̂, y) ∈ D we have either x̂ = 0 or y = 0, then F (x̂, y) = 1 for every (x̂, y) ∈ D. Hence

the mapping F ′ : Fq × Fq → T defined as F ′(x̂, y) = 1 is an extension of F which preserves the
pseudo quadratic property.

Therefore, we can assume without loss of generality that D = Fq ×Fq, which means that F is quadratic.
Let a ∈ Fq be such that F (1, 1) = e−j2π

a
q .

Fix z ∈ Z and y1, y2 ∈ Yz(W ). For every x̂ ∈ Fq we have p̂y1,z(x̂) = p̂y2,z(x̂) · e−j2πa
(y1−y2)x̂

q , which
implies that for every x ∈ Fq, we have py1,z(x) = py2,z(x+ a(y1 − y2)), i.e.,

PX|Y,Z(x|y1, z) = PX|Y,Z(x+ a(y1 − y2)|y2, z) (24)

Therefore, for every x ∈ G1 we have

PX+aY |Y,Z(x|y1, z) = PX|Y,Z(x− ay1|y1, z)
(b)
= PX|Y,Z(x− ay1 + a(y1 − y2)|y2, z)

= PX|Y,Z(x− ay2|y2, z) = PX+aY |Y,Z(x|y2, z),

where (b) follows from (24). We conclude that X + aY is independent of Y conditioned on Z, i.e.,
I(X + aY ;Y |Z) = 0.

Remark 4. It may look promising to try to generalize Proposition 7 to the case where G1 = Fkq and
G2 = Flq by considering the condition I(X + AY ;Y |Z) = 0 for some matrix A ∈ Fk×lq . It turns out that
this condition is sufficient for ∗-preservability of I1 but it is not necessary.
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IV. GENERALIZATION TO MULTIPLE USER MACS

Definition 14. Let W : G1 × . . . × Gm −→ Z . For every S ⊂ {1, . . . ,m}, we define the two-user MAC
WS : GS ×GSc −→ Z as WS(y|xS, xSc) = W (y|x1, . . . , xm).

Remark 5. It is easy to see that for every s ∈ {−,+}∗ and every S ⊂ {1, . . . ,m}, we have (W s)S =
(WS)s. Therefore, Polarization ∗-preserves IS for W if and only if Polarization ∗-preserves I1 for WS .

Theorem 2. Let W : G1 × . . . × Gm −→ Z . Polarization ∗-preserves IS for W if and only if WS is
polarization compatible.

Proof: Direct corollary of Theorem 1 and Remark 5.

V. DISCUSSION AND CONCLUSION

The necessary and sufficient condition that we provided is a single letter characterization: the mapping
f̂W can be directly computed using the transition probabilities of W . Moreover, since the number of
pseudo quadratic functions is finite, checking whether f̂W is extendable to a pseudo quadratic function
can be accomplished in a finite number of computations.
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