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Abstract

A problem of the polar code construction for multiple access channels (MACs) is that they do not always achieve
the whole capacity region. Although polar codes achieve the sum-capacity of symmetric MACs, polarization may
induce a loss in the capacity region which prevents polar codes from achieving the whole capacity region. This
paper provides a single letter necessary and sufficient condition which characterizes all the MACs that do not lose
any part of their capacity region by polarization.

I. INTRODUCTION

Polar coding is a low complexity coding technique invented by Arikan which achieves the capacity of
symmetric binary input channels [1]. The probability of error of polar codes was shown to be roughly

1
0(27V? ") where N is the block length [2]. The polar coding construction of Arikan transforms a set
of identical and independent channels to a set of “almost perfect” or “almost useless channels”. This
phenomenon is called polarization.

Polarizing transformations can also be constructed for non-binary input channels. Sasoglu et al. [3]
generalized Arikan’s results to channels where the input alphabet size is prime. Park and Barg [4] showed
that if the size of the input alphabet is of the form 2" with > 1, then using the algebraic structure Zy- in
the polarizing transformation leads to a multilevel polarization phenomenon: while we don’t always have
polarization to “almost perfect” or “almost useless” channels, we always have polarization to channels
which are easy to use for communication. Multilevel polarization can be used to construct capacity
achieving polar codes.

Sahebi and Pradhan [5] showed that multilevel polarization also happens if any Abelian group operation
on the input alphabet is used. This allows the construction of polar codes for arbitrary discrete memoryless
channels (DMC) since any alphabet can be endowed with an Abelian group structure. Polar codes for
arbitrary DMCs were also constructed by Sasoglu [6] by using a special quasigroup operation that ensures
two-level polarization. The authors showed in [7] that all quasigroup operations are polarizing (in the
general multilevel sense) and can be used to construct capacity-achieving polar codes for arbitrary DMCs
[8].

In the context of multiple access channels (MAC), Sasoglu et al. showed that if W is a 2-user MAC
where the two users have [, as input alphabet, then using the addition modulo ¢ for the two users lead
to a polarization phenomenon [9]. Abbe and Telatar used Matroid theory to show that for binary input
MACs with m > 2 users, using the XOR operation for each user is MAC-polarizing [10]. A problem of
the MAC polar code construction in [9] and [10] is that they do not always achieve the whole capacity
region. Although polar codes achieve the sum-capacity of symmetric MACs, polarization may induce a
loss in the capacity region which prevents polar codes from achieving the whole capacity region.

A characterization of all the polarizing transformations that are based on binary operations — in both
the single-user and the multiple access settings — can be found in [11] and [12]. Abelian group operations
are a special case of the characterization in [12]. Therefore, using Abelian group operations for all users
is MAC-polarizing.

This paper provides a necessary and sufficient condition which characterizes all the MACs that do not
lose any part of their capacity region by polarization. The characterization that we provide works in the
general setting where we have an arbitrary number of users and each user uses an arbitrary Abelian group
operation on his input alphabet.



II. PRELIMINARIES

Throughout this paper, G, ..., G, are finite Abelian groups. We will use the addition symbol + to
denote the group operations of Gy, ..., G,,.

A. Polarization
Notation 1. Let W : Gy x ... X G, — Z be an m-user MAC. Throughout this section, we write
(X1, Xm) s Z to denote the following:

e Xi,...,X,, are independent random variables uniformly distributed in G+, ..., G, respectively.

o Z is the output of the MAC W when X1, ..., X,, are the inputs.

Notation 2. Fix S C {1,...,m} and let S = {iy,... 45 }. Define G as

Gs=[[Gi=Gix...xG

€S

is|-
For every (z1,...,%y) € Gy X ... X G, we write xg to denote (z;,,. .. 7%5\)'

Notation 3. Let W : G, X ... x G, — Z and (Xy,..., X)) s Z. For every S C {1,...,m}, we
write Is(W) to denote 1(Xg; ZXge). If S = {i}, we denote I;;y(W) by I;(W).
IW) :=1In,. (W) =I1(Xy,...,Xyn; Z) is called the symmetric sum-capacity of WW.

Definition 1. The symmetric capacity region of an m-user MAC W : Gy x ... X G,,, — Z is given by:

T(W) = {(Rl,...,Rm) ER™: VS C{l,....m}, Y R, < ]S(W)}.

ieS

.....

Notation 4. {—, +}" := U{—,+}”, where {—, +}" = {o}.

n>0

Definition 2. Let W : G x ... x G,, — Z. We define the m-user MACs W~ : Gy x ... x G, — Z*
and WH: Gy x ... x Gy, — Z2x Gy x ... x Gy, as follows:

- 1
W (217Z2|u117"'7u1m) = Z —W(zl‘ull +U21,..-,u1m+u2m)
\Gﬂ e ]Gm\
u21 €G1
u27n.€G’m
X W(ZQ"LLQl, cee ,U2m)>
and
. 1
W (2:1, ZQ,Ull, L 7u1m|u21’ L 7U2m> — WW(Z1|UII + U/217 ceey Uim + u2m)
1l m
X W(zaluan, . .., Ugm)-

For every s € {—,+}*, we define the MAC W* as follows:

s ._ W if s =0,
W= {(...((W“)”)...)S" ifs=(S1,...,5n).

Remark 1. Let U™ and U™ be two independent random variables uniformly distributed in Gy X ... X Gp,.
Let X™ = U + U™ and X™ = U™, Let (X1,...,Xm) — Z and (X},...,X") -5 Z'. We have:

« IWT)=1(U™ZZ") and I(WT) = (U™, ZZ'UM).

o« I(W)=I(X7"Z) and I(WT) =I(X]™ Z").



Hence,
20(W) = I(X1" Z2) + I(X{™ Z2") = [(X" X" Z2Z') = [(UT" U™ 2 2)
=1U"ZZ)+ LU ZZ'U™) = I(W™) + [(WT).
Therefore, the symmetric sum-capacity is preserved by polarization. On the other hand, [s might not be
preserved if S C {1,...,m}.

For example, consider the two-user MAC case. Let W : Gi x Gy — Z. Let (U1, V1) and (U, Vs) be
two independent random pairs uniformly distributed in G1 X Gy. Let X1 = U1+ Us, Xo = Uy, Y1 = V1 4+V4
and Yy = V. Let (X1,Y)) w, Zy and (X5,Y53) W, Zy. We have:

. [1(W_) = [(Ul, leg‘/l) and [1(W+) = [(UQ, ZlZQUl‘/l‘/Q)

. [Q(W_) = [(‘/1, leZUl) and [2(W+) = [(‘/2, leQUl‘/lUQ).

On the other hand, we have

° ]Q(W) = I(le7 Z1X1) = I(Yé, ZQXQ).

Therefore,

2L(W) = I(X1; Z0)0) + 1(Xo; Z2Y5) = (X1 Xo; Z1 Z:Y1Ys) = I(U Us; Z1Z5V1 Vs)
= [(Ul; 2122‘/1‘/2) + [(Uz; lezvlvﬂfl) > I(Ul; Z122V1) + I(U2; 2122‘/1‘/2(]1) (D
=L(W™)+ L(WT),

2L,(W) = 1(Y1; Z1:.X0) + 1(Ys; ZoXo) = I(Y1Ya; 212, X1 Xs) = I(ViVa; Z12,U,Us)
= [(V1; Z1 ZoU Us) + 1(Va; Z1Z5U,UsVy) > 1(Vi; Z0 25Uy ) + 1(Vay 21 Z5U,Us V)
= L(W™)+ L(WT).

By induction on n > 0, we can show that:

1

o 2 LV <n(w), @
se{—+}m

1

o > LV < L), G)
se{—,+}n

zin S W) = 1w). @)
se{—,+}n

While (4) shows that polarization preserves the symmetric sum-capacity, (2) and (3) show that polarization
may result into a loss in the capacity region.
Similarly, for the m-user case, we have

1 S Ls(W®) < Is(W), VS € {1,...,m}.

2n
Se{_7+}n

Definition 3. Ler S C {1,...,m}. We say that polarization x-preserves Is for W if for all n > 0 we
have:
1

on Z Is(W?) = Is(W).

se{_7+}n

If polarization x-preserves Ig for every S C {1,...,m}, we say that polarization x-preserves the
symmetric capacity region for W.



Remark 2. If polarization x-preserves the symmetric capacity for W, then the whole symmetric capacity
region can be achieved by polar codes.

Section III provides a characterization of two-user MACs whose [ are s-preserved by polarization.
Section IV generalizes the results of section III and provides a characterization of m-user MACs whose
I are x-preserved by polarization, where S C {1,...,m}. This yields a complete characterization of the
MACs with x-preservable symmetric capacity regions.

B. Discrete Fourier Transform on finite Abelian Groups

A tool that we are going to need for the analysis of the polarization process is the discrete Fourier
transform (DFT) on finite Abelian groups. The DFT on finite Abelian groups can be defined based on
the usual multidimensional DFT.

Definition 4. (Multidimensional DFT) The m-dimensional discrete Fourier transform of a mapping f :
Zn, X ... %X Ly, — Cis the mapping [ : Zn, X ... X Zy, — C defined as:

1 m
NN ~ 27ra:111 . 2T Em T,
f(‘rh”'axm) = Z f(Il,...,[Em>€ J Ny )T N, .

Z1 EZNl ----- meGZNm

Notation 5. For every © = (x1,...,2y) € Zn, X... X Zy,, and every & = (Z1,...,Tm) € Ln, X ... XZp,,
define (z,z) € R as: A A
~ X121 TmTm
T,x) = +...+ € R.
(2,2) N, N

Using this notation, the DFT can have a compact formula:

fay= Y e,

T € ZN1><...><ZN,m

It is known that every finite Abelian group is isomorphic to the direct product of cyclic groups, i.e., if
(G,+) is a finite Abelian group then there exist m integers Ny, ..., N,, > 0 such that G is isomorphic to
Zn, X ...XZy, . This allows us to define a DFT on GG using the multidimensional DFT on Zy, X ...xXZy, :

Definition 5. Let (G,+) be a finite Abelian group which is isomorphic to Zy, X ... X Zy,,. Fix an
isomorphism between G and Zy, X ... X Zny,,. The discrete Fourier transform of a mapping f : G — C

is the mapping f : G — C defined as:
Z f —]27r 2,z)

zeG

where (T, x) is computed by identifying & and x with their respective images in Zy, X ... X Zy,, by the
fixed isomorphism.

In the following two propositions, we recall well known properties of DFT.
Proposition 1. The inverse DFT is given by the following formula:
l’ f i’ j2m(z, a:)
“e2

where (T, ) is computed by identifying & and x with their respective images in Ly, X ... X Ly, by the
fixed isomorphism.

Remark 3. The DFT on G as defined in this paper depends on the fixed isomorphism between G and
Ly, X ...X Ln,,. If the DFT is computed using a fixed isomorphism, the inverse DFT must be computed
using the same isomorphism in order to have consistent computations.



It is possible to define the DFT on finite Abelian groups without the need to fix any isomorphism, but
this requires the character theory of finite Abelian groups.

Definition 6. The convolution of two mappings f : G — C and g : G — C is the mapping f*xqg: G — C

defined as:
Z f(x)g(x — ).

z'eG

We will sometimes write f(x)* g(x) to denote (f * g)(x).

Proposition 2. Let f : G — C and g : G — C be two mappings, we have:
+ (Fr9)(@) = [()9(@)
- (f-9)&) = |G|(f*g)( z).
o If fo: G — Cis defined as f.(x) = f(x — a), then fal@) =
e If f: G — C is defined as f(z) = f(—z), then f(&) = f(2)".

f(:%)ej%r z,a)
*

III. TWO-USER MACS WITH *-PRESERVED [;

In this section, we only consider two-user MACs W : G| x Gy — Z, where G| and G5 are finite
Abelian groups.

A. Preserved and =~ Preserved

Definition 7. Let W : G1 xGy — Z. We say that I, is preserved for W if and only if (W ")+ L(WT) =
21, (W). We say that I is x~ preserved for W if and only if I, is preserved for W™~ for every n > 0,
where [n|~ € {—,+}" is the sequence containing n minus signs (e.g., [0]” =0, 2] = (—, —)).

)

Lemma 1. Polarization x-preserves Iy for W if and only if I is preserved for W* for every s € {—, +}*.
Similarly, polarization preserves Iy for W if and only if I, is x~ preserved for W* for every s € {—, +}*.

Proof: Polarization x-preserves [, for W if and only if

1 1 1 ,
Vn >0, L(W) = Yo LW e Vn>0, — Y LW*) = 5o > nw)

s€{—+}" 2 s€{—,+}" sle{—,+}nHt
& Yn>0, Y 2L(W)= > (L(WE)+ L (weh))
se{—+}n se{—+}"
S Vnz0, Y (2LW) - LWED) - L)) =o.
se{—+}"
But since 21, (W*) — I;(W®&)) — I, (W) 2) 0, we conclude that polarization x-preserves [; for W

if and only if Vn > 0,Vs € {—,+}", ]1(W( )+ Li(WEH)) = 21, (W*). In other words, polarization
x-preserves [; for W if and only if I 1 is preserved for W* for every s € {—, +}*. Moreover, we have

Vs € {—,+}*, I is preserved for W* < Vs e {—,+}*,¥n >0, I is preserved for W (™)
& Vs e {—,+}, I is *x preserved for W”.



B. Necessary condition

According to (1), [; is preserved for W if and only if I(Uy; V,|Z; Z5V;) = 0, which means that for every
21,29 € Z and every v, vg € GQ, if PVQ,Z1,22,V1 (?}2, 21, 22, Ul) > 0 then ]P)U1|V2,Zl,Z2,V1 (ullvg, 21, 22, Ul) does
not depend on v,.

In order to study this condition, we should keep track of the values of 2,z € Z and vy, v € G5 for
which ]P)VQ,ZI,ZZ,Vl (’Ug, 21, 29, 1)1) > (. But ]P)szhzzvl (Ug, 21, 29, 1}1) = ]PY1,Z1 (’Ul + Vg, Zl)]P)Yg,Zg (UQ, ZQ), SO
it is sufficient to keep track of the pairs (y, z) € Go x Z satisfying Py »(y, z) > 0:

Definition 8. Ler W : G x Gy — Z and let (X,Y) Wz Define the following:
o Forevery z€ Z, let Y*(W) ={y € Go: Py(y,z) >0}
e YZW)={(y,2): z€ Z,y e Y* (W)}
o For every (y,z) € YL(W), define p,.w : Giv — [0,1] as py.w(x) = Pxyvz(z|y, 2).

In the rest of this section, we consider a fixed two-user MAC W : G; x Gy — Z. For the sake of
simplicity, we write p, .(x) to denote p, . w(x).

The following lemma gives a characterization of two user MACs with preserved /; in terms of the
Fourier transform of the distributions p, ..

Lemma 2. [, is preserved for W if and only if for every yi1, ya, Y1, vy € G2 and every z1, zo € Z satisfying
« Y1 — Y2 =Y — Yo
« y1,y1 € Y (W) and yo,y5 € Y*(W),
we have
ﬁy1721 (‘%) 'ﬁy2722 (i')* = ﬁylpzl (i') 'ﬁyé,zz (j)*7 Vi e G,

Proof: Let Uy, Uy, V1, Vo, X1, X0, Y1,Y5, Z1, Z5 be as in Remark 1. We know that [; is preserved
for W if and only if [(Uy;Va|Z125V1) = 0, which is equivalent to say that U; is independent of V5
conditionally on (7, Z5, V7).

In other words, for any fixed (z1, 22,v1) € Z X Z X G satisfying Pz, z, v; (21, 22, v1) > 0, if vg, v} € Gy
satisfy Pyy,|z, z,,v1 (V2|21, 22,v1) > 0 and Py, z, 2, 11 (V5] 21, 22, v1) > 0, then we have

/
vul c G17 ]IDU1|V27217ZQ7V1 (U1"U2, 215 %2, Ul) == PU1‘V2,Z1,Z2,V1 <U1|'U2, 1, 22, Ul)?
This condition is equivalent to say that for every zj,2o € Z and every vy, uvy,v, € (o satisfying
!/ /
P 2o vivs (21, 22,01 + v2,v2) > 0 and Py, 7, v, v, (21, 22, v1 + V5, v5) > 0 we have
/ /
Vuy € G, PXIfXQ\Zl,ZQ,Yl,YQ (U1|Z1, Z9,V1 + UQ;'UQ) = PXﬁXQ\Zl,ZQ,YI,YQ(M|217 22,01 + UQ,U2)~

By denoting vy 4y, vo, v1 40} and v} as yi, Y2, y; and y5 respectively (so that y; —ys = y]—y5 = v1), We can
deduce that I is preserved for IV if and only if for every v, y2, y], ¥4 € Go and every z1, 2o € Z satisfying

Y1 —Ya2 = yi - yé’ IP)Z1,Z2,Y17Y2 (Zla 227y17y2) > 0 and ]P)Z1,Z27Y1,Y2 (Zh 22, yia yé) >0 (i'e-a yhyi cY” (W)
and yo,y5 € Y*(W)), we have

/ !
Vu; € Gy, PXI—XQ\Zl,ZQ,Yl,YQ(U1|Zl, Z2a91>92) = PXl—Xz\Zl,Zz,Yl,Yz(Ul|Zla732,91792)-
On the other hand, we have:
P, x021, 2071, (U121, 22, Y1, Y2) = E Py 20,3 (U1 + w2l 21, Y1) Py 25,1, (U2] 22, y2)

us€G1

= Z Py ,z1 (ul + UQ)pyz,Zz <u2) = (pyl,zl *ﬁy2,22>(u1)7
u2€G1

where py, ., () = Py, 2, (—2). Similarly Py, _x, |z, 2, v1 5 (U1] 21, 22, Y1, ¥3) = (P 21 %Dy 2, ) (u1). Therefore,
for every u; € (G;, we have

(pyl,zl *ﬁy2,22)<u1) = (pyll,zl *ﬁy§722)(u1)7



which is equivalent to py, -, (1) * Dy, 2, (11)* = Dyr 2, (U1) - Py 2, (U1)* for every 4, € G, u

Lemma 3. Suppose that 1, is = preserved for W. Fix n > 0 and let (U;,V;)o<i<on be a sequence of
random pairs which are independent and uniformly distributed in G; X G,. Let

11
-
2"—1 _ p@n  pr2"-1 2"—1 _ p@n  1/2"-1 : n w

Define X =F®"- U5 and Yy — = F*" -V 7, and for each 0 <i < 2" let (X;,Y;) — Z;. We
have the following:

o The MAC (Uy, V) — Z3 ' is equivalent to W™,

o [(Up;VZHZE V) = 0.

Proof: We will show the lemma by induction on n > 0. For n = 1, the claim follows from Remark

1 and from the fact that [; is preserved for W if and only if I(Uy; V1|Z0Z1 Vo) = 0 (see (1)).

Now let n > 1 and suppose that the claim is true for n—1. Let N = 2", We have X2 ! = Fen.y2" !
and Y7 1 = Fon . VT e, XAV = poen AN and YAV = FEr L V2V L Therefore, we have:

o XY= (N4 U and XV = pee-l) L RN

. Ybel — F®(n—1) . (‘/ONfl + V]\Q[Nfl) and Y]\Z[Nfl — F®(n—1) X VJ\Z/YN*l.
This means that (U3 '+ U1 VP VN1 Z8 1) and (U1, VEN-1 Z3N—1) satisfy the conditions
of the induction hypothesis. Therefore,

« 1(Up+ Un; VNP + VI ZE Vo + Vi) = 0.

o I(UN;VITHZRY 1, Viv) = 0.
Moreover, since (Ug ' + UM VN1 + V2V ZIV=1) is independent of (U1 VIV~ Z3N=1) we
can combine the above two equations to get:

I(Uo + Un, Un; VIV + VT VRETH ZEN 1 Vo + Vv, Vi) = 0,

which can be rewritten as
HUoUn; VIV WVRE TN Z3N Vo Vi) = 0. (3)

On the other hand, it also follow from the induction hypothesis that:
« The MAC (U + Uy, Vo + Vi) — Z ™ is equivalent to W1,
« The MAC (Uy, Vy) — Z3N™! is equivalent to W1~
This implies that the MAC (U, Vo) — ZgN ~! is equivalent to W™~ Now since I; is *~ preserved for
W, I must be preserved for W =1~ Therefore,
I(Uo; V| 22N Wa) = I(U; Vie| 20 22V 1) 2 o, ©6)
where (a) follows from (1). We conclude that:

I(U0; VPN 25N 1Wa) = 1(Uo; Vil Z5™ Vo) + 1 (Ui VNIV 257 Vi)
< I(Uo; VNI Z5Y Vo) + T(UoUn; VIV VRETHZEN Vo Vi) ® 0,

where (b) follows from (5) and (6). [ |
2n—1

Lemma 4. For every n > 0, if X3 ' = FeUZ" ", then Uy = Z(—l)min, where |i|, is the number
=0

of ones in the binary expansion of 1.

Proof: We will show the lemma by induction on n > 0. For n = 1, the fact that X} = F®'.Us = F.U}
1

implies that Xg = Uy + U; and X; = U;. Therefore Uy = Xy — X; = Z(—l)‘ilei.

1=0



Now let n > 1 and suppose that the claim is true for n — 1. Let N = 2"~'. The fact that X3 ' =
Fen . UV~ implies that:
XN 1 F®(n 1) (UOJV71+U]2VN71).
. XQN 1 F®(n 1) . U]QVN—l.
We can apply the induction hypothesis to get:

N-1
e Up+ Uy =) (-1)hX,
N1 O
i=0
Therefore,
N- N-1 N-1
— Z | \bX Z 1)l |in+N — Z(_l)\z\in + Z(_1)1+\z|in+N
=0 =0 i=0
N—1 2N-1 N—1 2N-1
_ | \bX + Z 1+|i*N|le (@) Z | \in + Z (_1)|i|in
2:0 =0 i=N
2N—1
— (_1)\i|in,
i=0
where (a) follows from the fact that for 2" = N < i < 2N = 2", we have |i— N|, = |[i —2"|, = |i], — 1.

Lemma 5. If Iy is %= preserved for W, then for every n > 0, every yi,...,Yan, Yy, .., Yo € Gy and
every zy, .. 22n € Z satisfying
27L

Z yi = Z Y

. yl G Y*t (W), ce,Yon € Yan(W), and
e Yy EYR(W), .. .yhn € Y2 (W),

we have
2m on
Hﬁyi,zi (‘%) - Hﬁy;,zi (i‘); Vi € Gy.
1=1 i=1

Proof: Fix & € Gy. If p, .(2) = 0 for every (y,z) € YZ(W), then we clearly have

2m A
1150 @) =[] bu.e(2)
=1 =1

Therefore, we can assume without loss of generality that there exists (y,z) € YZ(W) which satisfies
ﬁy’Z(:j’;) %719».1 n+1 n+1 n+1 n+1

Let U2 L V2 ~L X L v? ~tand 22" ! be as in Lemma 3 and let N = 2"*! 5o that we
have

I(U; VY25 Vo) = 0. (7
Since X't = e+ .Ml and YV = pe0+D VN Lemma 4 implies that

N-1 N-1

Uo= Y (-1)M"X; and Vo => (=)l (8)

=0 1=0



Notice that [{0 <i < N =2"": [i|, = 0mod 2}| = |{

Let k1, ..., kon be the elements of {O <1< N:
{OSZ’<N i, = 1 mod 2}.
Define (s, ¥}, Zi)o<i<n as follows:
o For every 1 <i < 2", let 4, = yi» ¥y, = ¥; and Z, = 2;.
o Forevery 1 <i<2" lety, =4, =y and 2, = z.
Now let oy ! = (FEC+D)=L. V=1 and V!

N 1 2m

E 1)l g, E Uk, — Ui;)

=0 =1

2™ A N-—1

DSy -2y =S - 1) =

0<i< N=2":
||b—0mod2} and let /4, ...,

lil, = 1 mod 2}| = 2".
lo» be the elements of

= (Fen+))-1 -gjéN’l. We have

Zyz - 2n
S ()i @y,

1= i=1 =0
2n n
where (a) and (c) follow from Lemma 4. (b) follows from the fact that Z Y = Z y;. Therefore,
i=1 i=1
(0, 2% ) = (0, 2 ) ©)
On the other hand, since §; € Y* (W) for every 0 < i < N, we have
PVO VlN 1ZN 1(1}0,1){\[ ! zév 1) PVON 1ZN 1(1)(])\[ ! 5(])\[ 1)
-1 N (10)
= Py~ -1 (4 ) >0.
Similarly, since ¢, € Y (W) for every 0 < i < N, we have
]P)Vo VN 1 ZN 1(170,17/1]\[ 1’5(]]\/ 1) PVN 1ZN 1(U6N 172(])\7 1)
’ ' N1 N (11
= PYNA ZN71(y0 2y ) > 0.

(7) implies that conditioned on (Vj, ZJ¥
that for every uy € G1, we have:

1), Uy is independent of V/

1. (9), (10) and (11) now imply

]P)U0|V1N*1,VO,Z§*1(UO|77{V UOaz(])V D) =Py Uo VN =1 Vo, 28~ 1 (up|o U(/)»Z(J)V D)

= IEDUO‘VON717Z(JJVfl(UO|UO Zév 1) =P Uo| VN1, 2~ 1(UO|U/N ! 2(])\/ 1)
= PUO‘YONﬂ’Z(I)vfl(uOlgO 2(])\/ 1) :P oY N1z~ 1(u0|yN ! 2(])\7 1)
( —1 N-1
a o~ o~ i~ o~
g > 1T Pz (1, ) = > I Bz (il 2)

#y teal: =0 z) teal: =0

SN Db E=ug SN )il =ug
g
Z ley“zZ xz H pyz xz
=2n41

x{v EG{V:
2™ N
izt xi*Zi=2n+1 Ti=Uo

2.

x{VGG{V:

(12)

pr \Zi xz H DPy,2 :Ez

1=2"+1

on N
22:1 T _Zi:2n+1 Ti=uQ

where (a) follows from (8) and (b) follows from the following change of variables:

if1<i<o2n
if 9n < 4 < on+l

Tk,
Ty =9 -

= N.



Now notice that the left hand side of (12) is the convolution of (p,, .,)i1<i<2» and 2" copies of p, .
(where p, .(7) = py.(—)). Likewise, the right hand side of (12) is the convolution of (p,/ ..)i<i<on and
2" copies of p, .. By applying the DFT on (12), we get:

prl () H pyz Uy)" pr - () H pyz W), Vuy € Gy.

1=2"+1 1=2"41

In particular,

2" N 2" N
Hpv-@) I puc@ =]1pw=@ [[ pu-@)
1=1

=241 =1 1=2"41

Now since p, (%) # 0, we conclude that

271, 2’)1
H Dyi (@) = H ﬁyz’-,zz' (@)
=1 =1

Definition 9. For every z € Z define:

z

X (W)= {2 € Gy :3yeYW),p,.(2) #0}.

Let A .
XZ(W) :={(¢,2): z€ Z, 2 €X

X(W) :=U,ez X (W).

N2

Lemma 6. If I, is x~ preserved for W then for every & € X (W), we have:
o Py.(2)#0 forall y € Y*(W).
pyz(( )) € T for every y,y/ € Y*(W), where T = {w e C: |w| = 1}.
Py =
Proof- If & € X (W), there exists y' € Y*(WW) satisfying Py -(T) #0. Fix y € Y*(W) and let a > 0
be the order of y — ¢/ (i.e., a(y —y') = Og,, where O, is the neutral element of G5). Let n > 0 be such
that @ < 2" and define the two sequences (y;)1<;<on and (y})1<i<on as follows:

e Ifi<a,y;=yand y, =y
e lfi>a y=vy. =y.

271

Since a(y — y') = Og,, we have ay = ay’ and so E vi=ay+ (2" —a)y =ay + (2" —a)y' = E Y.
i=1
By applying Lemma 5, we get

(By.2 ()" (B .= ()) o prz prl

Therefore, p, .(z) # 0. Moreover,

<§;’122>“:L
< -

&>

Py, (2)
Dy -(2)
Definition 10. Define the following:

which means that

is a root of umty, i.e.,
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For every (,2) € XZ(W) let Y2* (W) := {y eY*(W): py.(2) # 0}.
For every (&,z) € XZ(W), let AY‘“(W = {y1 — Yo Y1, Y2 € YF(W) ]
. ForeveryzeZ letDZW = {(z,y) : FeX (W), ye A BEW) ).

_UDZ

ZEZ

Lemma 7. If I, is x~ preserved for W, there exists a unique mapping fW : D(W) — T such that for
every (z,z) € XZ(W) and every yy,y2 € Y*(W), we have

ﬁyhz(t%) - .]EW(£7 Y1 — y2) 'ﬁyz,z(i")

Proof: Let (z,y) € D(W). Let z be such that (z,y) € D*(W), and let y,y, € Y”(W) be such

that i, — y» = y. Suppose there exist 2/ € Z and y},y, € Y* (W) which satisfy 7 X (W) and
Yy — Yo =Y = Y1 — y2. Lemma 6 implies that p, ..() # 0 and p,; /(%) # 0. Lemma 5 shows that

Py (%) - Pyt (B) = Py, () - Py 2 (7).

pyl’z(f;> pyl Z/(‘%)

Therefore, - E T, where (a) follows from Lemma 6. This shows that the value of
Pyoz(®) Py (2)

Py, ZE ; € T depends only on (Z,y) and does not depend on the choice of z, y1, yo. We conclude that there

Dy, 2\ T

exists a unique fi (&,y) € T such that for every z € Z and every yy,y, € Y*(W) satisfying 2 € X (W)
and y; — yo = y, we have

ﬁyLZ(j) = fW(‘%v y) 'ﬁyzz(‘%)'
Lemma 8. For every MAC W, we have:
Y (e122) {yl Yo: n €Y (W), € Yz?(W)}-

Proof: Let Uy, Uy, Vi, Vo, X1, X5, Y1,Y5, Z1, Z5 be as in Remark 1. For every v; € G5 and every
z1, 20 € Z, we have:

]P’vl 71,7 (01, 21, 22 E ]PYl Ya,21,%2 (yb Y2, 21, 2'2 E PYI Z (yh Zl)PYQ Zo (yQ; 22)
y1,y2€G2: y1,y2€G2:
V1=Y1—Y2 V1=Y1—Y2

Therefore, v; € Y**) (W) if and only if there exist 41,4, € G5 such that y; € Y (W), yo € Y?2(W)
and v; = y; — y». Hence,

Y 21, 22 {yl fy2 : yl - Yzl (W),yQ S YZQ(W)}

Lemma 9. For every 21,2, € Z, every v, € Y(zl’ZQ)(W_) and every 1, € G1, we have:

. . Pyy 12, (1 + v2]21)Pyy 2, (V2| 22) . o )

Doy 21,20, W (1) = E 1] 1]1) OF 2Z2> Dotz (1) * Pog.z (11)* (13)
v2EY?2(W): Vi|Z1,22\V1|*1, 22

v1+v2€Y*L (W)
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Proof: Let Uy, Us, V1, Vo, X1, X0, Y1, Y5, Z1,Z5 be as in Remark 1. Fix 21,20 € Z and v; €
YE2)(T-), and let 8 = Py, 21,2, (v1|21, 22) > 0. For every u; € G, we have:

1
p’U1721,2’27W7(u1) = PU1|V1,Zl,Zz(U1|Ul> 21, 22) = EPUl,Vl\Zl,ZQ (Ul, Ul\Zl, 2’2)

1
= B Z PU17U27V1,V2|Z17Z2 <u17 U2, V1, ,02|Zla 22)
oo
1
— B Z IEDX1,X2,Y1,Y2|Z1,Z2 (Ul + Ug, U2, V1 + Vo, ’02‘21, 22)
oo
1
= B Z IE1)X1,Y1\Z1 (Ul + Uz, V1 + U2|ZI)PX2,Y2\ZQ (u2’ U2|22)
oo
1
= B Z Z PX1,Y1|Z1(U1 + U2, V1 +1}2‘21)PX2,Y2|Z2<U27U2’Z2>
Y*#2(W): e
v1v42r52€Y£1 (I)/V) e
1
= B Z IEDYllZl (Ul + UQ‘Zl)EDY2‘Z2 (U2’22) Z p’l}l+v27z1 <u1 —|— u2)p1)2722 (u2)
v2EY2(W): B
vitv2€Y?L(W)
1 ~
= 3 Z Pyi 12, (V1 4 v2]21)Pyy 2, (V2] 22) (Do vs,20 * Dug,zo) (U1),
eY?2(W):
v1v-|2-v2 ng1 (I)/V)

where Py, 2, () = Py, ., (—x) for every x € G,. Therefore, for every 4, € Gy, we have:

, . Pyiyz, (01 + v2|21)Pyy 2, (va22) . L
Doy ,z1,20,W— (ul) - Z ]P)V 2.2 (’Ul|21 22) Pvi+va,z1 (Ul) 'pvg,zz(ul) .
121,22 )

v2€Y?2(W):
v1tv2€YAL (W)

Lemma 10. D(W™) C {(2,y1 +y2) : (%,51), (£,2) € D(W)}.

Proof: Let Uy, Uy, Vi, Vo, Xy, X, Y1, Y, Z1, Z5 be as in Remark 1. Let (uy,v;) € D(W ™). There exists
2~ = (z1,22) € Z~ such that (uy,v;) € D* (W™). This implies the existence of v}, v{ € Y* (W ™) such
that vy = v} — vy, Pyt .- w- (@) # 0 and Py .- w- (1) # 0. From (13), we have:

Poj o w- () = >
vl EY 2 (W):
v} 40l €Y1 (W)

Py, 1z (U’ + U’!Z1)PY Z (U,‘Z2) R N ~ NN
14111 2 122 pv’1+v’2,z1(u1) 'pvé,z2(u1) : (14)

]PV1|Z1,Z2 (01’217 Z2)

Since Py .- w- (1) # 0, the terms in the above sum cannot all be zero. Therefore, there exists v €
Y*#2(W) suf:h that vy +v5 € Y (W), Dot 4oy 2, (1) # 0 and ﬁvé@ () ;éA 0. Similarly,Asince PUIII,Z_,W_ (1) #
0, there exists vy € Y**(W) such that v{ + vy € Y*'(W), Pyryary 2, (1) # 0 and pyy ., (1) # 0. We can
now see that (@, vy + vh — v) = (41, v] +vh — (v +v4)) € D(W) and (4, vy — v5) € XDY (W). By
noticing that vy = (v; + vy — vl) + (v§ — v}), we conclude that:

DW™) C {(&,y1 +w2): (&,11),(&,52) € DW)}.

Proposition 3. If I, is x~ preserved for W, we have:



1)
2)

1)

2)
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DW™) ={(@&,y1 +y2) : (Z,11),(Z,92) € D(W)}.
For every &, y,ys satisfying (z,v1), (Z,y2) € D(W), we have
fw- (T,91 +y2) = fw(f,yl) : fW(fU,Z/Q)-

Proof: Let Uy, Us, Vi, Vo, X1, Xo, Y1, Y5, Z1, Z5 be as in Remark 1. We have:
Let Z,11,y2 be such that (z,y1), (Z,y2) € D(W). There exist 21,2, € Z, y},y{ € Y*(W) and
?Jé,yg €Y” (W) such that hn = yi - yi/’ Yo = yé - yg’ ﬁy’l,n (j) ?é 0, ﬁy’{,zl (‘i‘) 7é 0, ﬁyé,ZQ (‘f) 7& 0
and p,y ., (%) # 0. Now from Lemma 8 we get y; —y5 € YE2) (W) and oY — oy € YE22) (W),
For every ve € Y*2(W) satisfying y; — y§ + vo € Y** (W), we have:

~

By on,os () * Py (8)" = ooy (8) fiv (8,02 = ) - By () fiv (202 — 915" as)
= ﬁy’l, ( )py2722(A)*7
where (a) follows from the fact that fW(fc, ve — y4) € T, which means that
fW(i"aUQ - yé’)fw(i“,vz —yy)" = |fW(9AC7U2 - yg)|2 =1
Let 2= = (z1,22) € Z~. By using (13), we get:
Dyj—yg == w (%)

Pyvijz, (Y1 — 45 + v2]21)Pyy 2, (v2]20) | A e
Z PV 7.z (yi — yé/|zl’ 22) Dy, —yl+v2,21 (17) * Pug,zo (17)
121,22

v2EY 72 (W):
—yh+va€Y*1 (W)
(a) Py, 2, (11 — ¥y + v2|21) Py, 2, (v2]22) .
- Z P (W, — |21, 20) py’l,n( )py2 »(2)
UQGYZQ(W) v1|Z17Z2 yl y2 1, ~2

Yy —ys +u2 €Y1 (W)

oA AN A A\
=Pyl = (x)pyg’,m (2) §
v2€Y?2(W):
—yl+va €Y1 (W)

:ﬁyi,zl(z) vy s 22( ) 7é 0,
where (a) follows from (15). Similarly, we can show that pyr_s . -, w—(2) = Dyr 2, (2)Dys 2 (2)* # 0.
This means that o/, — y5 € Y** (W~) and o/ — ¢4, € Y** (W~). Therefore,
(&0 +u2) = (2,00 — v + 95— ) = (&, (1 —v5) — (W] — 1)) € D(W™).
Hence, {(Z,y1+v2) : (Z,11), (&,y2) € D(W)} C D(W ™). We conclude that
DW?™) = {(&,y1 +12) = (&,11), (¥,92) € D(W)}

since the other inclusion follows from Lemma 10.
Let 2, y1, yo be such that (Z,y1), (%, y2) € D(W) Define v/, y1, y5, Y5, 21, 22 as in 1). We have shown

that py —yl 2= W~ (2) = py1 o (2 )pr = (2)" and pyl —yh,21,20,W (7) = ﬁy’{m (i)ﬁyé,@ (2)*. Therefore,

Py, 2, (11 — y3 + v2|21) Py 2, (va]22)
Py 20,2, (Y1 — ¥ |21, 22)

py1,21( )ﬁ Yy 2 (A)* . fW(&?h) (@) 2 PN
f (l’ Z/1+3/2) ~ )ﬁé (A)* - fw([i’,yg) - f (I yl) fW($7Z/2)7

where (a) follows from the fact that fy (2, y2) - fir (2, v2)* = | fw (2, 52)|2 = 1.

1:21(

Corollary 1. If polarization x-preserves I, for W, then D(W) C D(W™) and fw-(&,y) = fw(d,y) for
every (z,y) € D(W), i.e., fyy- is an extension of fy.
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Proof: For every (z,y) € D(W), there exists z € Z and y;,y, € Y*(W) such that y = y; — v,
Py, (2) # 0 and py, .(2) # 0. Therefore, we have (&,0) € D(W) and fy (&,0) = M = 1.

~

(z
Since (Z,y) € D(W) and (z,0) € D(W), Proposition 3 implies that (Z,y) € D(%h)(arzd fw-(&,y) =
fW(fi",y)'fW(f%O) wa(f%,y)~ [ |
Lemma 11. For every yy,ys € Gy and every z1,z5 € Z, we have:
o If y1 ¢ YL (W) or yo & Y2(W), then (ya, 21, 29, u1,y1 — y2) & YZ(W™) for every u; € G.

o If (y1,21) € YZ(W) and (yo, 22) € YZ(W), there exists uy € Gy such that (ys, 21, 22, U1, Y1 — Ya) €
YZ(WH).

Proof: Let Uy, Uy, V1, Vo, X1, X0, Y1, Y5, Zy, Z5 be as in Remark 1. For every u; € Gy, every y;,ys €
G, and every zp, 20 € Z, we have:

PVZ,Zl,ZZ,U1,V1<y2; 21, %2,U1, Y1 — y2) = E PUQ,VQ,Zl,ZQ,Ul,Vl(Uz, Y2,%21,%2,U1,Y1 — yz)
us€G1

= g Px, Xo.v1.¥0.21.2 (U1 + Uz, U2, Y1, Y2, 21, 22)
u2€G1

= Z Px, i,z (1 + u2, 91, 21) - Pxy vz, 2, (U2, 42, 22).

u2€G1

Therefore, we have:

o If (y1,21) & YZ(W) or (ya,22) ¢ YZ(W), then for all uy,us € Gy, we have Px, v, 7 (u1 +
Uz, Y1, 21) < Py, z(y1,21) = 0 or Px, v, 2, (U2, 92, 22) < Py, 2,(y2,22) = 0, which means that
IP)V27Z17Z2,U1,‘/1(y27 21, 29, U1, Y1 — y2) = 0. Hence (ya, 21, 22, u1, Y1 — y2) & YZ(W+) for every u; € Gi.

o If (yl,Zl) € YZ(W) and (yQ,Zz) € YZ(W), then Py17zl(y1,zl) > 0 and PY%ZQ(yQ,ZQ) > 0. This
means that there exist x;, 2z € Gy such that Py, v, 7 (z1,v1,21) > 0 and Px, v, 7, (22, Y2, 22) > 0.
Let u; = x1 — @9 and uy = x9. We have Px, vy, 7, (u1 + ua, Y1, 21) - Px, vp.2 (U2, Y2, 22) > 0, which
implies that PVQ,Zl,Zz,Ul,Vl (yg, 21, 22,U1,Y1 — yz) > () hence (yQ, 21, %2,U1,Y1 — yz) € YZ(W+)

[ |

Lemma 12. Let Uy, Uy, Vi, Vo, X1, X5, Y1, Yo, Z1, Z5 be as in Remark 1. For every (vq, 21, 22, u1,v1) €
YZ(WT), we have:

A~ ~ ) A~ ~ ~/
NN Duvi+vy,21 (UQ) " Pug,zo (u2 — UQ) ej27r(ﬁ’2,u1) (16)

D 21,22,ut,0,WH\U2) =
V2,21,22,U1,V1 ( ) ﬂIQEGl |G1’Oé(u1,2:1,22,1)1,1}2) )

where Oé(Ul, 21y 22,01,712) = PU1|Z1,Z2,V1,V2(U1|ZI, 22,111,112)-

Proof: For every (vq, 21, 29, u1,v1) € YZ(W™) and every uy € G5, we have:

Pug, 21 ,20,u1,01, W+ (u2) = PU2|V27Z17Z27U17V1 (U2|U2, 215 22, U1, Ul)

_ ]P)ULU2|ZLZ%V1:V2 (ula u2|21a 22,01, UQ)

Puy 121,21 v (21, 22, 01, 02)
. IPJX1,X2\Zl,Zz,Y1,Y2 (ul + Ug, u2|217 22, V1 + Vg, U2)

a(uy, 21, 22, V1, Va)
_ Px,1z.va (ug + ug|zy, v1 + U2)PX2\Z2,Y2 (ug|22, v2)
N a(uy, 21, 29, V1, Va)
_ Dui+ve,z (U1 4 U2) Py, (U2)
N a(uy, 21, 22, V1, V2) '
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Therefore,

L (5

D - |G1] (pU1+U272’1 <ﬂ2)6j2ﬂ-<a27u1>) *ﬁvg,w (7:@)
pvg,zl,zg,ul,vLW-&- (Ug) =

a(ula 21, 22, V1, U?)
Z%GCH ﬁv1+v2721 (aé)eﬂﬂué?uﬂﬁw,m (a2 - al2)

|G1|04(U1, 21, 22, U1, Uz)

_ Z Dot o1 (W) * Pog s, (T — al2>€j27r<ﬂ’2,u1>
en |Gl|05 u17217z27vlav2)

Lemma 13. Let (yy1, 21), (Y2, 22) € YZ(W) and & € Gy. If there exists uy € Gy such that
> By es (@) Py (& — )20 £ 0, (7
weG

then we have:
o (Y2,27) € YZ(WT), where 2z = (21, 22, u1, Y1 — Y2)-
° ﬁyz,z+’w+<§f) # O

Proof: Let Uy, Uy, Vi, Vo, X1, X0, Y1,Y5, Z1, Z5 be as in Remark 1. Let v; = y; + yo and vy = yo.
Notice that the expression in (17) is the DFT of the mapping K : G; — C defined as

K(l‘) = Py1,z1 (ul + (E) * Dya,z2 (l’)

(17) shows that K is not zero everywhere which implies that K is not zero everywhere. Therefore, there
exists z € Gy such that K (z) # 0. We have:

PV27217ZQ7U17V1 (,02’ 21, 22, UL, Ul) > PU17U27V17V27217Z2 (ula T, Y1 — Y2, Y2, 21, 22)
= ]P)XLX%YI:YQ,ZI,ZQ (ul +Z,T, Y1, Yo, 21, 22)
=Px, v,z (U1 + 2,41, 20) Py 5,2 (%, 42, 22)

- PYLZl (yh Zl)py1,21 (ul + :L‘) ’ PYz,Zz (y27 Zg)pr,zQ (ZL’)

(a)
= ]P)Yl,Zl (ylv Zl) ’ ]P)Yz,Z2<y27 22) ’ K(I) > 07

where (a) follows from the fact that y; € Y*(W), yo € Y?(W) and K(z) > 0. We conclude that
(v9, 21, 29, u1,v1) € YZ(W™) and so we can apply (16) to (ve, 21, 29, ug, v1):

(a) ﬁy1,21(A) ﬁyzzz('@_ ) j27r(uu1 7&0

~ 7)Y
pv2,21,22,U1,U1,W+( ) |G1|O[(U1,Zl,2’2,@1,7)2)

ten
where (a) follows from (16) and (b) follows from (17). Therefore, p,, .+ w+(2) # 0, where 2t =
(21, 22, U1, Y1 — Y2). u
Proposition 4. Suppose that polarization x-preserves I, for W. We have:
D {(#1 4+ 22,9) : (&1,y), (Z2,y) € D(W)} C D(WT). A A
2) For every Iy,Ts,y satisfying (Z1,y),(Z2,y) € D(W), we have fy+(T1 + T2,y) = fw(Z1,y) -
fW(sz,y)-
Proof: Let Uy, Uy, Vi, Vo, Xq, X5, Y1, Y5, Z1, Z5 be as in Remark 1.

1) Suppose that &1, 2o,y satisfy (Z1,y),(Z2,y) € D(W) and let & = &; + 5. There exist 21, 20 € Z,
y1, vy, € Y (W) and gy, 9, € Y?2(W) such that:

s Y= — yll’ ﬁyl,zl (il) 7£ 0 and ﬁy’le (il) 7£ 0.
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s Y="Y2 — yé7 Pys.2 (iQ) # 0 and ﬁyé,Zz (iQ) # 0.
Let v1 = yy — 4o = ¥/, — b, U2 = yo and v} = 1/},. Define the mapping L : G; — C as

L(ﬂ) = ﬁyhm (ﬂ) 'ﬁy2,22 (‘% - ﬁ)

We have: L(&1) = Pyyzy (£1) - Pypoy (#2) # 0. Therefore, the mapping L is not zero everywhere,
which implies that its inverse DFT is not zero everywhere. Hence there exists u; € (G; such that:

Z ﬁylazl (a) : ﬁy2,22 (i‘ — ﬂ)6]27r<ﬁyu1> # 0
ueG1

It follows from Lemma 13 that (vq,2%) € YZ(W™) and p,, .+ w+(2) # 0, where zt =
(21,22, u1,v1). If we can also show that (vy,2") € YZ(W™) and pyy .+ w+(2) # 0 we will be
able to conclude that (z,y) € D(IWW™) since y = vy — v}. We have the following:

L4 IPU17Z17Z27V1(/U/17217227Ul) 2 PVQ,Zl,ZQ,Ul,Vl(U27Z17227u17vl) > O Since (U272+> S YZ(W+)
Hence,

Py 12,200 (U1 |21, 22,v1) > 0.

® IE])‘/2,21,22,‘/1 (Uéa 215 22, Ul) = PY17Z17Y2,Z2 (y/b 21, yéa 22) > 0 since yi ey (W) and yé € YZQ(W)
Thus,

Py 21,201 (V3] 21, 22, v1) > 0.

But I, is preserved for W, so we must have [(Uy; Va|Z1Z5V;) = 0. Therefore,

PUl,Vg\Zl,ZQ,Vl (U1,U§|Zl,z2,1}1) = IEDU1|Zl,Zg,V1(u1’ZhZ2a'Ul) 'PV2|Zl,Zg,V1(Ué’ZbZ27Ul) > 0. (18)

We conclude that Py, 7, z, v, v, (V) 21, 22, u1,v1) > 0 and so (vh, 2%) € YZ(W™). Now since we
have showed that p,, .+ w+(Z) # 0 and since I is =~ preserved for W™ (by Lemma 1), it follows
from Lemma 6 that we also have p,, .+ w+(2) # 0. We conclude that (&1 + »,y) € D(W™) for
every Iy, 9,y satisfying (Z1,y), (Z2,y) € D(W). Therefore,

{(@1+22,y) 1 (31,9), (F2,y) e DV)} C D(WT).

Suppose that &y,79,y satisfy (Z1,y),(Z2,y) € D(W) and let & = 2; + o Let
Y1, Y2, Yy, Yh, U1, Vo, Uy, 21, 22, 2 be defined as in 1) so that vy, vy, € Y*T(WH), y = vy — vb,
Doyt w+(2) # 0 and pyy o+ w+(2) # 0. Since (Z,y) = (2, v1 — v2) € D(WT), we have:

ﬁvg,zl,zz,ul,m,w*’ (i‘) = ﬁvg,z+,W+ (j) = fW+ <j> y) ’ ﬁvé,z‘*‘,W"’ (i‘) (19)
= fW+ (‘%7 y) ' ﬁvg,z1,22,u1,v1,W+ (‘%)

Define F' : G; — C and F’ : G; — C as follows:

F(uh) = 3" Byyoas (@) - Py (& — )05,

ueGy

Fl(ui) - Z ﬁy’l,zl (ﬁ) : pyé,zz (f% — ﬁ)ej%r(ﬁ’“ﬁ'

wE€G1

For every ) € (G1, we have the following:
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o If F(uy) # 0 then (va,21,22,uj,v1) € YZ(W™) and pu, 2y zput 00 (2) # 0 by Lemma 13.
By replacing u; by u} in (18), we can get (v}, 21, 20, u},v1) € YZ(W™), which means that
ﬁvézhﬁ,ui,vl () # 0 (see Lemma 6). We have:

Z pyl z1 pyz 22 (l’ - u)6]27r<u )
weGh
(a) . N
= |G1| : a(ully 21, %22, U1, UZ)pvg,z1,zz,u’1,v1 (':C)

®) a(ul, 21, 22, v1, U 5 I v

©) ( 15 %15 <2, U1, /;|G1|a(u/1,21,Z27Ul;Ué)pvé,zl,zz,u’l,m<I>fW+(xay)
2
)

a U172’1,Z2,U17

Z i . (@) - Pypona (& — u)eJQﬂ'(u u1>fW+(j;, y)
weGh

(
(c) O[( y 1, 22, U1, U2
Of(up 21, %2, U1, UQ)

- Puy 20,2201, v (uf, 21, 22, V1, 02) ,

B f +(T, Y F'(u
]PDUl‘ZLZQJ/l,VQ(ul,Zl,22,1)1’2]2) w ( ) ( 1)

d) » ~
D foe (&, ) F' (),

where (a) and (c) follow from (16), (b) follows from (19) and (d) follows from the fact that
I(U1; ‘/Q‘ZIZQ‘/I) = 0.
o If F(u}) = 0 then we must have F'(uj) = 0 (because F'(u) # 0 would yield F'(u;) # 0, a
contradiction). Therefore, we have F'(u}) =0 = fy+(Z,y)F'(u)).
We conclude that for every u)| € G, we have

F( ) fw+($ y F/ ul Z fW+ z y py1 21( ) pr 22<I_u)6j27r<u%> (20)
ueGh

Now define g : G; x Gy — C as follows:

£l o (3 D
g(jj/,y/> _ fW(xvy) 1 ($7y) € (W)> (21)
0 otherwise.

For every 2’ € (G1, we have:
o If ﬁyl,zl ('%,) # 0 then ﬁyi,a (jl) # 0 (by Lemma 6) and ﬁyhzl (i/) = fW(£,7 Y1 — yi)ﬁy'pm (il) =
9(E',Y)Dy 0 ().
o If py, -, (') = 0 then py, ., (2') = 0 (by Lemma 6) and so py, ., (¥') = 0= g(2',y)py ., (2').
Therefore, for every @' € G we have py, ., (2') = g(2',y)pDy, - (). Similarly, p,,.,(2") =
9(Z',Y)Dy, 2, () for all 2’ € G. Hence,

§ : A ~N\ g2 (G,u)
py1 21 pr 22 (l’ - u>e et
weGy

= Z g(1, y)ﬁy{,m (@) g(& —a y>py2 (2 — u>€ﬂﬂ<u ),
ueGy

(22)

We conclude that for every u) € G, we have:

A A~ ~ A~ A~ ~ (U, (a) !
S | = 90 9)96 = 9) |y (0) - Prpea (@ = )™ @8 & F(h) = F(uh) = 0, (23)
ueGh
where (a) follows from (20) and (22). Notice that the sum in (23) is the inverse DFT of the function
K : Gy — C defined as:

~
A

R (@) = [ fo(3,9) = 900 9)9(0 — 0 9)] By (8) - B o3 — 0).
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Now (23) implies that the inverse DFT of K is zero everywhere. Therefore, K is also zero
everywhere. In particular,

A

R () = [five (3.9) — 9081, 9)9(0 )]y o (81) - By ) = 0.
But py; ., (#1) # 0 and py; ., (22) # 0, so we must have fw+ (@, y) —g(&1,y)g(d2,y) = 0. Therefore,

fw (&,9) = 9(&1,9)9(E2,9) = fuw (@1,9) - fw (32,).
|
Corollary 2. If polarization x-preserves I, for W, then D(W) C D(W™) and fw+(@,y) = fw(d,y) for
every (z,y) € D(W), i.e., fy+ is an extension of fy.

Proof: For every

(z,y) € D(W), there exists z € Z and y;,y2 € Y*(W) such that y = y; — v,
Py1,2(2) # 0 and Py, - (1)

= (0. We have:

Py:,2(0) = Z py1,z<$)€_j27r<0’x> = Z Py2(x) =1 #0.

rzeGq reGy
R 5, (0
Similarly, p,, ,(0) = 1 # 0. Therefore, we have (0,y) € D(W) and fi (0,y) = ]fyl—EO; = 1.
Dy, .2
_Since (2,y) € D(W) and (0,y) € D(W), Proposition 4 implies that (Z,y) € D(W™) and fw+(@,y) =
fW(i’,y)fW(O,ZD :fW<§:7y> 3 u
Proposition 3 implies that D(W[" ™) extends D(1¥) to the point where all the G5-sections of D(WW/ ™)

for fixed 2 become subgroups of Gs. D(WIM™) cannot grow after this point. Similarly, Proposition 4
implies that D(W[”ﬁ) keeps growing until a point where all its G';-section for fixed y become subgroups
of (G;. This motivates us to introduce the following two definitions:

Definition 11. Let D C Gy X 5. Define the following sets:
® HI(D) = {ZL’Z 3y7 (:E,y) < D}
o For every v € H\(D), let Hy(D) ={y : (x,y) € D}.
. HQ(D) = {y . EliL', (l’,y) € D}
o For every y € Hy(D), let H{ (D) = {x: (z,y) € D}.
We say that D is a pseudo quadratic domain if:
o H{(D) is a subgroup of G, for every y € Hy(D).
e H3(D) is a subgroup of G for every x € H(D).
Definition 12. Let D C Gy X Gy and let F': D — T be a mapping from D to T. We say that F' is pseudo
quadratic if:
e D is a pseudo quadratic domain.
o For every y € Hy(D), the mapping x — F(x,y) is a group homomorphism from (Hf(D),—I—) to
(T, )
e For every x € Hy(D), the mapping y — F(x,y) is a group homomorphism from (H3(D),+) to
(T7 )
Proposition 5. If polarization x-preserves I, for W, then fw can be extended to a pseudo quadratic
function.

Proof: Define the sequence (W,,),>o of MACs recursively as follows:
. Wo wW.
e W, =W__,i1fn>01is odd.
o W, = W;Zl if n > 0 1s even.
For example, we have Wy = W=, W, = WH, Wy = WEH2), W, = WEH=+)
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It follows from Corollaries 1 and 2 that:
« The sequence of sets (D(Wn))n>0
. an is an extension of fW for eV_ery n > 0.
Since (D(Wn))n>0 is increasing and since Gy X (5 is finite, there exists ny > 0 such that for every
n > ng we have D(W,,) = D(W,,,) for all n > ny. We may assume without loss of generality that ng is
even. Define the following sets:
e Hy={i: 3y, (d,y) € D(W,,)}.
o Forevery z € Hy, let HY = {y: (z,y) € D(W,)}.
o Hy={y: 37, (z,y) € D(W,)}.
« For every y € Hy, let H{ = {i&: (Z,y) € D(W,)}.
We have the following:
« For every fixed y € Hy, let @1,49 € HY so (&1,y), (22,y) € D(W,,) C D(Wy,+1). Therefore, it
follows from Proposition 4 that (&1 + 22, y) € D(W," 1) = D(Wpy42) = D(W,,) which implies that
%1+ 29 € H{. Hence H{ is a subgroup of GG;. Moreover, Proposition 4 implies that

is increasing.

anO (i'l + 5%27:1/) = fAWn0+2('%1 + i'Qﬂy) = fAW”:L";)_'_l (jl + '@27y)
= Wog i (T1,9) * fwng i1 (B2,9) = fwy (21,9) - fw,, (22, ).

Therefore the mapping & — anD (,y) is a group homomorphism from HY to C.

« For every fixed & € Hy, let y1,y, € HE so (&,41), (&,92) € D(W,,). Therefore, it follows from
Proposition 3 that (2, y; + y2) € D(W,,) = D(Wyy41) = D(W,,) which implies that y; + y» € Hj.
Hence H{ is a subgroup of (i5. Moreover, Proposition 3 implies that

anO ('%71/1 + y2) = an0+1(:%>y1 + y2) = fW;O (ivyl + y2)
= fwny (& 01) - fwny (,2)-

Therefore the mapping y — anO(fc, y) is a group homomorphism from HZ to C.

We conclude that anO is pseudo quadratic. [ ]
The necessary conditions found in Lemma 6 and Proposition 5 motivate us to introduce the following
definition:

Definition 13. We say that W : G; x GG — Z is polarization compatible with respect to the first user
if there exists a pseudo quadratic function F : D — T such that:

« D(W)C D CGyxGa

o For every (%, z2) € XZ(W), we have p, .(&) # 0 for every y € Y*(W).

o For every (Z,z) € XZ(W) and every yy,y> € Y*(W), we have py, .(Z) = F(Z,y1 — y2) - Dy,,-(2).
For the sake of simplicity and brevity, we will write “polarization compatible” to denote “polarization

compatible with respect to the first user”. Lemma 6 and Proposition 5 show that if polarization *-preserves
I; for W then W must be polarization compatible.

C. Sufficient condition

In this subsection, we show that polarization compatibility is a sufficient condition for the x-
preservability of I;.

Lemma 14. If W : Gy x Gy — Z is polarization compatible then I, is preserved for W.

Proof: Let F' : D — T be the pseudo quadratic function of Definition 13. Suppose that yy, o, ¥;, y5 €
G and zq, 29 € Z satisfy:
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o Y1 — Y2 =Y — VYo
e Y1,y € Y7 (W) and yo, y5 € YZ(W).
For every = € (;, we have:
o If py, -, (%) = 0 then p,, ., (2) = 0 by Definition 13 and so

Dy (£) Dy 2 (2) = pyi o (2 )py’g,@ (z)" = 0.
o If py, ., (%) = 0 then Py, .,(Z) = 0 by Definition 13 and so

pylazl(x)pyLZQ(i)* :pyi,:ﬁ( )pyz,z2( ) =0.
o If py, ., (2) # 0 and p,, ., (&) # 0 then (#,2) € XZ(W) and (&, 2,) € XZ(W). By noticing that
Y1 = Y1 = Y2 — Yo, We get

~ AN A A\ A~ ~ ~ ~ A\ ~ x (@) . AN A A\
pyhzl(x)pr,ZQ(x) = Pyy,z1 ($)F($7y1 - yll)pyé,m(x) F($7y2 - yé) = py’l,z1(x)pyé,z2($) )

where (a) follows from the fact that F(Z,y; — y})F(2,90 — v5)* = |F(Z,y1 — y})|* = 1.
Therefore, we have py, -, (2)Dy, .2 ()" = Py 20 (2)Dyy 2, (2)* for all # € Gy. Lemma 2 now implies that [,
is preserved for W. [ |

~

Lemma 15. If W : G, x Gy — Z is polarization compatible then W~ is also polarization compatible.

Proof: Let Uy, Uy, V1, Vo, X1, X0, Y1,Ys, Z1,Z5 be as in Remark 1. Let F' : D — T be the pseudo
quadratic function of Definition 13. By Lemma 10 we have:

_ . R R (@) (. N ) (b)
DW™) C {(&y +u2): (Z,3), (,52) € DW)} C {(&, 31 +12) : (Z,31),(2,52) € D} =
where (a) follows from the fact that D(1W) C D and (b) follows from the fact that D is a pseudo quadratic

domain. A 7
Let (u1,27) € XZ(W™), where z= = (21,20) € Z~. There exists v; € Y* (W~) such that
Duy..—w— (1) # 0. From (13), we have:

Z Py, 2, (v1 4 va|21) Py, 2, (V2] 22) . . R .

A~ A~ o . *
Puy,z— w- (ul) = PV1|Zl,ZQ (Ul ’21’ 22) Puitvz,21 (ul) Pug,zo (ul) :

v2€Y?2(W):
v1+v2€YA1 (W)

Since p,, .- w- (1) # 0, the terms in the above sum cannot all be zero. Therefore, there exists vy €
Y*' (W) such that v; +ve € Y2 (W), Pyytvs.2 (U1) # 0 and py, ., (41) # 0. Let y; = vy + vy and yo = vs.
For every vj € Y* (W~), we have:

ﬁv'l,z*,W’ (al)

-y PrardlaPunlla), s Gy
IP>V1|Z17Z2 (U/I‘Zla 22) v]+v5,21 1 vl 22 \U1

WLEY?2(W):
v o eYF1L (W)

ﬁy2722<ﬁ1)*
F(alavé - y2)

) PYZ U/+U,21PYZ /U/ZQA . R
e Z A 1](P)1 2‘ ,) 2l 2( 2| )py1,z1(u1)'F(ulavi+vé_yl)'
VEY 72 (W): Vi|Z1,Z2 (Ul |217 22)

v v EYA1L (W)

—
=

s Z Py, 2, (V] + 5] 21)Pyy 2, (V5 22)

=D Z uy) - p 22 \U Fﬁ,v'—i—v/—y _Ul+y
Y1 1( 1) Y2 2( 1) PV1|Z1,Z2<UH21722> ( 1, Y1 2 1 2 2)

vheY?2(W):
V] HvhEYEL(W)
i Py, |z, (v] + v4|21) Py, 2, (v5|22)
pyl’zl( 1) - pya@(ul)* ’ F(ul,vi — U1+ Y2) Z ! llP’l : (V|2 2|22) :
vhEYZ2(W): Vi|Z1,22\V1171, =2
Vi +vhEY L (W)

= ﬁy1721 (al) 'ﬁyz,ZQ (ﬁl)* ' F(abvi — U1+ y2) = ﬁyl,n (al) 'ﬁyz,n(ﬁl)* ’ F(ﬁl, 1)1 - Ul) % 07
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1
F(iy, vy —va)
(b) follows from the fact that the mapping y — F'(t,y) is a group homomorphism from H3' (D) to T.
Therefore, for every v} € Y* (W~) we have p,; .- w- (1) # 0. Moreover, for every vj,v{ € Y* (W~),
we have:

where (a) follows from the fact that F'(4i;, vh—wvy) € T which implies that F'(1iy, vy—vy)*

ﬁv’l,z—,W— <a1) py1721 ( ) py2722 (ul) ( Ul)
ﬁ”i’727’W* (le) pyl Zl( ) pr 22 (u1> F(ﬂh Ulll - Ul)
= F(ly,v] — vy — v +v1) = F(y,v] — vf).

HGHCG, ﬁvi,z*,W* (ﬁl) = F(ﬁ'b vll - Ulll) ' ﬁv’l’,z*,W* <ﬁ,1>
We conclude that W~ is polarization compatible. [ ]

Lemma 16. If W : G| x Gy — Z is polarization compatible then W is also polarization compatible.

Proof: Let F': D — T be the pseudo quadratic function of Definition 13.
Let (ig,v5) € D(WT). There exist 2T = (21,22, us,v1) € Z% and v, v} € Y* (W*) such that
Vg = Uy — Vy, Doy o+ (2) # 0 and Py .+ () # 0. From (16) we have
. NN ﬁv1+v§,Z1 (alz) '73%722 (a2 - ﬁl?) j2m (il ur)
P sz W (62) = Z |G1la(ur, 21, 20, v1,v5) ‘

)

71/2601

SinCe Py 21 2,01 00w+ (U2) 7 0, there must exist s, € Gy such that py, 44, ., (U5) 7 0 and pyy ., (o —1y) # 0.
Therefore, (i}, z1), (iiy — @i}y, 23) € XZ(WT). On the other hand, v} € Y*" (W) implies that v; + vf €
Y (W) and v§ € Y*(W) (see Lemma 11). It follows from the polarization compatibility of 1V that
Doy totl .21 (Uy) # 0 and puy ., (G — 15) # 0 (see Definition 13). Therefore

(@, v2) = (tih, vy + vy — (v1 +0v5)) € D(W) C D

and

~

(Giy — U, v2) = (2 — Uy, vy —v4)) € D(W) C D

Now since D is a pseudo quadratic domain, we have (i, v2) = (@) + (s — @), v2) € D. We conclude
that D(W) C D.

Now let (iig, 27) € XZ(W™), where 2+ = (21, 23, uy,v;) € Z*. There exists vy € Y*' (W) such that
Puy.2+(Ug) # 0. For every v € Y= (W), we have

Z Doy 4oy, () - Dog 2 (U2 — 1) 2 (@ u1)

ﬁvé,z‘*‘,W"' (aQ) = ﬁvé,zl,z%uhvl,W‘* (?)Q) - |G1|OJ(U1 21, 29, U1 ’U/)
) ) ) » Y2

ﬂIQEGl

_ Z ]31)1-1—1;2,,21 (a/Q)FOA/Q’ Ué — UQ) ) ]5”2722(712 — ﬂé)F(aQ — ﬂlQ? Ué — 02)6j27r<ﬁ/2’u1>

iheG: |G1| ']P)U1|Z1,Z2,V1,V2(U1|ZlaZ2avl7vé)

(a) Z Dortva,z1 () - Dua,zo (g — )
|G1

. . . o
F (U 4 g — iy, vy — vy) - /2 (821)
PUI\Z17227V1,V2 (ullzlv 22, U1, UQ)

_ F u2’ U2 Z |G1pv1+v2,21 (u2) ﬁv2,22 (a2 — ﬁé) ej27r<ﬁ’2,u1)

IP)U1|Z17227Vl,v2 (ul |Z17 29, U1, UQ)
= F(u2a U2 - ’U2)pfug,z1,ZQ,u1,v1,W+ (ﬁg) = F(fbg, Ué - U2)ﬁvz,z*,W7L ('EL2) 7& 07

where (a) follows from the fact that /' is pseudo quadratic and the fact that U; is independent of V5
conditioned on (Zy, Z,, V1) (the polarization compatibility of 1 implies that I; is preserved for W by
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Lemma 14). Therefore, for every v), € Y* (W), we have Puy -+ w+(2) # 0. Moreover, for every
o 2t +
vh, v € Y* (W), we have

ﬁvg,z+,w+ (02) . F(qb,v; - Uz) ‘ﬁvg,z+,w+ (712)
Doy ot () F(lg, 05 — V) + Poy o+ w+ (1l2)

= F(y, vy — vy — Uy + v2) = F(ly, v — v5).

Hence, ﬁvé,z+,W+ ('112) = F('&,Q, 'Ué — ’Ug) . pvé/7z+7w+ ('&2).
We conclude that W is polarization compatible. [ ]

Proposition 6. If W is polarization compatible then polarization x-preserves I, for W.

Proof: Suppose that W is polarization compatible. Using Lemmas 15 and 16, we can show by
induction that WW* is polarization compatible for every s € {—,+}*. Lemma 14 now implies that I is
preserved for W* for every s € {—, +}*. By applying Lemma 1, we deduce that polarization x-preserves
I for W. [ |

Theorem 1. polarization x-preserves 1y for W if and only if W is polarization compatible.

Proof: The theorem follows from Lemma 6 and Propositions 5 and 6. [ ]

D. Application: G, = G, =T,

The characterization found in Theorem 1 (i.e., polarization compatibility) takes a simple form in the
special case where Gy = G = F,, for a prime ¢:

Proposition 7. Let W : F, xF, — Z and (X,Y) Wy 7. Polarization x-preserves Iy for W if and only
if there exists a € F such that (X +aY;Y|Z) = 0.

Proof: 1f polarization x-preserves [y for W then W is polarization compatible. Let F': D — T be
the pseudo quadratic function of Definition 13. We have the following:

« If there exists (Z,y) € D such that £ # 0 and y # 0 then D = F, x F, since D is a pseudo quadratic
domain.

o If for all (Z,y) € D we have either £ = 0 or y = 0, then F'(z,y) = 1 for every (#,y) € D. Hence
the mapping F” : F, x F, — T defined as F"(#,y) = 1 is an extension of F which preserves the
pseudo quadratic property.

Therefore, we can assume without loss of generality that D = [F, x [F;, which means that F' is quadratic.
Let a € F, be such that F(1,1) = e 7*"a. _
Y1—-Y2)x

Fix z € Z and y1,y, € Y*(W). For every & € F, we have p,, .(2) = py,.(2) - e 7™« which
implies that for every x € F,, we have p,, .(z) = py, .(x + a(ys — y2)), i.e.,
Pxv.z(x|y1,2) = Pxyz(@ + alyr — y2) |y, 2) (24)

Therefore, for every x € (G; we have

b
]P)X—i-aY\Y,Z(fE’yb Z) = IP>X|Y,Z($ - ayllyl, Z) (Z) PX\Y,Z(x —ay, + a(y1 - y2)|y27 Z)
= PX|Y,Z($ - ayzlyQ, Z) = IED)(Jray\y,z(ﬂyz, Z),
where (b) follows from (24). We conclude that X + aY is independent of Y conditioned on Z, i.e.,
I(X +aY;Y|Z) = 0. u

Remark 4. It may look promising to try to generalize Proposition 7 to the case where G = F’; and
Gy = F. by considering the condition I(X + AY;Y|Z) =0 for some matrix A € F¥*!. It turns out that
this condition is sufficient for x-preservability of I, but it is not necessary.
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IV. GENERALIZATION TO MULTIPLE USER MACS

Definition 14. Let W : G X ... X G,, — Z. For every S C {1,...,m}, we define the two-user MAC
Ws:Gs X Gge — Z as Ws(y|lxs, v5e) = W(y|z1, ..., zm).

Remark 5. It is easy to see that for every s € {—,+}* and every S C {1,...,m}, we have (W®)s =
(Ws)®. Therefore, Polarization x-preserves Is for W if and only if Polarization x-preserves I, for Wi.

Theorem 2. Let W : Gy x ... x G,, — Z. Polarization x-preserves Is for W if and only if Wy is
polarization compatible.

Proof: Direct corollary of Theorem 1 and Remark 5. [ ]

V. DISCUSSION AND CONCLUSION

_ The necessary and sufficient condition that we provided is a single letter characterization: the mapping
Jw can be directly computed using the transition probabilities of 1¥. Moreover, since the number of
pseudo quadratic functions is finite, checking whether fy is extendable to a pseudo quadratic function
can be accomplished in a finite number of computations.
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