
What You Need to Know About SDN Flow Tables

Maciej Kuźniar∗, Peter Pereš́ıni∗, and Dejan Kostić‡

EPFL∗ KTH Royal Institute of Technology‡

Abstract. SDN deployments rely on switches that come from various
vendors and differ in terms of performance and available features. Under-
standing these differences and performance characteristics is essential for
ensuring successful deployments. In this paper we measure, report, and
explain the performance characteristics of flow table updates in three
hardware OpenFlow switches. Our results can help controller developers
to make their programs efficient. Further, we also highlight differences
between the OpenFlow specification and its implementations, that if ig-
nored, pose a serious threat to network security and correctness.

1 Introduction

Background In OpenFlow-based Software Defined Networking (SDN) deploy-
ments [2, 5], SDN developers and network administrators (developers for short)
write network programs at a logically centralized controller to control the net-
work. The control plane involves the controller communicating with the switches’
OpenFlow agents to instruct them how to configure the data plane by sending
flow modification commands that place rules in the forwarding tables. Open-
Flow’s transition from research to production means that the new frameworks
are taking reliability and performance [6, 12–15] to new levels that are neces-
sary in the production environment. All of these assume quick rule installation
latency, and rely on the switches to confirm successful rule installations.
Measuring switch performance is a challenging task. The biggest issue is
that each switch under test has many “quirks” which result in unexplained per-
formance changes. Therefore, the thorough evaluation and explanation of these
phenomena takes a substantial effort and cannot be easily automated. For ex-
ample, a switch may have vastly different performance characteristics for similar
experiment setups and finding the responsible parameter and its value requires
many tests. Same applies to trying out combinations of rule modifications.
Our goal. In this paper, we set out to advance the general understanding
of OpenFlow switch performance. Specifically, our focus is on analyzing con-
trol plane processing times and flow table update rate in hardware OpenFlow
switches that support version 1.0 of this protocol. This paper is not about data
plane forwarding performance. Our contributions are as follows: (i) we go a step
further in measuring OpenFlow switch control plane performance and its inter-
action with the data plane (for example, we dissect rule installation latency in
a number of scenarios that bring the switch to the limit), (ii) we devise a more
systematic way of switch testing, i.e., along many different dimensions, than the

existing work, and (iii) we believe we are the first ones to report several new
types of anomalous behavior in OpenFlow switches.
Related work. Curtis et al. [3] identify and explain the reasons for relatively
slow rule installation rate on an HP switch. OFLOPS [16] observed that some
OpenFlow agents did not support the barrier command. OFLOPS also reported
some delay between the control plane’s rule installation and the data plane’s
ability to forward packets according to the new rule. Huang et al. [4] perform
switch measurements while trying to build High-Fidelity Switch models, and
report slow flow setup rates. Relative to these works, we dissect switch perfor-
mance at a finer grain, over a longer period of time, and more systematically
in terms of rule combinations, initial parameters, etc. In addition, we identify
the thresholds that reveal previously unreported anomalous behavior. Jive [11]
proposes to build a proactive OpenFlow switch probing engine, and store switch
behavior in a database. We show that the switch performance depends on so
many factors that such a database would be difficult to create. NOSIX [17]
optimizes commands for a particular switch based on its capabilities and perfor-
mance. However, the authors do not analyze dynamic switch properties as we
do; our work would be useful in improving the NOSIX optimization process.
Key findings and impact. Our key findings are as follows: (i) control plane
performance is widely variable, and it depends on flow table size, priorities,
batching of commands and even rule update patterns; (ii) switches might peri-
odically or randomly stop processing control plane commands for up to 400 ms;
(iii) data plane state might not reflect control plane—it might fall behind by up
to 400 ms and it might also manifest rule installations in a different order; (iv)
seemingly atomic data plane updates might not be atomic at all.

The impact of our findings is multifold and profound. The non-atomicity
of seemingly atomic data plane updates means that there are periods when the
network configuration is incorrect despite looking correct from the control plane
perspective. The existing tools that check the control plane configuration [7–9]
are unable to detect these problems. Moreover, the data plane can fall behind and
unfortunately barriers cannot be trusted. Thus, the approaches for performing
consistent updates need to devise a different way of defining when a rule is
installed; otherwise they are not providing any firm guarantees. Our results
show that interoperability between switches and controllers cannot be taken for
granted. We hope that SDN controller and framework developers will find our
findings useful in trying to ensure consistent performance and reliability from the
variety of switches they may encounter. Also, efforts that are modeling switch
behavior [4] should consult our study.

2 Measurement Methodology

Tools and experimental setup. The main requirements for our tool are (i)
portability, (ii) flexibility, and (iii) sufficient precision. First, since the switches
we test are often in locations with limited physical access, the measuring tool can-
not use customized hardware (e.g., FPGAs). Our previous experience suggests
that switches behave unexpectedly, and thus we need to tailor the experiments to

2

locate and dissect problems. Finally, as the tested switches can modify at most a
couple thousands of rules per second, we assume that a millisecond measurement
precision is sufficient. To achieve the aforementioned goals we built a tool that
consists of three major components that correspond to the three benchmarking
phases: input generation, measurement and data analysis (Fig. 1).

Tested switchMeasurement
host

Control
plane

Data plane

Input
Generator
(Python)

Analysis
(Python)

NOX

tcpreplay,
tcpdump

physical
links

Fig. 1: Overview of our measure-
ment tools and testbed setup.

First, an input generator creates control
plane rule modification lists as well as data
plane packet traces and saves them to text
and pcap files. Unless otherwise specified, the
rules match packets based on IP src/dst and
forward to a single port. Because we noticed
that some switches optimize updates for the
same rule, we use consecutive IPs for matches
(to make sure we modify different rules), but
we also cross-check our results using random matches and update patterns.

We refer to the control plane measurement engine as the controller as it
emulates the behavior of an OpenFlow controller. We implement it as a module
in the NOX controller platform that can issue rule updates at a much higher
rate than what the hardware switches can handle.1 The engine records time of
interactions with the switch (e.g., flow modification sent, barrier reply received).

Our experiments require injecting and recording data plane packets to pre-
cisely measure when the flow table is updated. We rely on tcpreplay and tcpdump
tools to send packets based on a pcap file and record them. To avoid time syn-
chronization issues, the switch is connected to a single host. The host handles
the control plane and generates and receives data plane traffic.2 Network RTT
between the host and the switches is between 0.1 and 0.5ms. Finally, an analysis
tool reads the outputs and computes the metrics of interest. Modularity lets us
easily analyze different aspects of the captured data.

Switches under test. We benchmark three switches with OpenFlow 1.0 sup-
port: HP ProCurve 5406zl with K.15.10.0009 firmware, Pica8 P-3290 with Pi-
cOS 2.0.4, and Dell PowerConnect 8132F with beta3 OpenFlow support (both
P-3290 and 8132F belong to the newest generation of OpenFlow switches). They
use ProVision, Broadcom Firebolt and Broadcom Trident+ ASICs respectively.
Such switches have two types of forwarding tables: software and hardware. While
hardware table sizes (about 1500, 2000, and 750 rules, respectively) and levels
of OpenFlow support vary, we make sure that all test rules ultimately end up
in hardware tables. The point of this study is not to advertise or discredit any
switch but to present interesting characteristics and to highlight potential issues.

General experiment setup. In most experiments in this paper we use the
following generic setup and modify only particular parameters. At the beginning
of each experiment we prepopulate the switch flow table with R default priority,

1 Our benchmark with software OpenVSwitch handles ∼42000 rule updates/s.
2 Note that we do not need to fully saturate the switch data plane, and thus a con-

ventional host is capable of handling all of these tasks at the same time.
3 The software is going to be optimized and productized in a near future.

3

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 20 40 60 80 100

U
pd

at
e

co
nf

irm
at

io
n

tim
e

[s
]

Flow ID

Dataplane
Controlplane

(a) P-3290

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 50 100 150 200 250 300

U
pd

at
e

co
nf

irm
at

io
n

tim
e

[s
]

Flow ID

Dataplane
Controlplane

(b) 8132F

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 20 40 60 80 100

U
pd

at
e

co
nf

irm
at

io
n

tim
e

[s
]

Flow ID

Dataplane
Controlplane

(c) 5406zl

Fig. 2: Control plane confirmations and data plane probes. Data plane updates
may fall behind the control plane acknowledgments and may be even reordered.

non overlapping rules forwarding packets matching flows number 1 − R to 0 to
port A. After the switch applies this update in the hardware flow table, the
measured run starts. We send B batches of rule updates, each batch consisting
of: BD rule deletions, BM rule modifications and BA rule insertions followed by a
barrier request. In the default setup BD = BA = 1 and BM = 0. Batch i deletes
the rule matching flow number i−R and installs a rule that matches flow i and
forwards packets to port A. Note that the total number of rules in the table is
stable during the experiment (in contrast to previous work that measures only
the time needed to fill an empty table). If the experiment requires injecting and
capturing data plane traffic, we send packets that belong to flows Fstart to Fend

at a rate of about 1000 packets/s. For clarity, when describing an experiment
we change only one parameter. In reality we vary different parameters as well to
confirm the observations. Finally, unless an experiment shows variance greater
than 5% across runs, we repeat it three times and report the average.

3 Data Plane

While the only view the controller has of the switch is through the control
plane, the traffic forwarding happens in the data plane. In this section we present
experiments where we monitor rule updates in the control plane and at the same
time send traffic to exercise the updated rules. 4

3.1 Synchronicity of Control and Data Planes

Many solutions essential for correct and reliable OpenFlow deployments (e.g.,
[12, 15]) rely on knowing when the switch applied a given command in the data
plane, and they resort to using the barrier message for the task.5 However, as
authors of [16] already hinted, the state of the data plane may be different than
the one advertised by the control plane. Thus we set out to measure how do
these two views correspond to each other at a fine granularity.

4 While experimenting and digging deep to understand the root causes of various
behaviors we made other, less critical observations described in a tech report [10].

5 As specified, after receiving a barrier request, the switch has to finish processing all
previously-received messages before executing any messages after the barrier request.
When the processing is complete, the switch must send a barrier reply message [1].

4

We use the default setup extended with one match-all low priority rule that
drops all packets6and we inject data plane flows number Fstart to Fend. For each
update batch i we measure the time when the controller receives a barrier reply
for this batch and when the first packet of flow i reaches the destination. To
work around the limited rate at which the testing machine can send and capture
packets (100000 packets/s), we send traffic in 100-flow parts. Since the results
for 5406zl and P-3290 are similar for each part we show plots for only one range.
For 8132F we merge the results for three ranges to show the change in behavior.

Results for R = 300, B = 500, Fstart = 1 with Fend = 100 (5406zl and
P-3290) and Fend = 300 (8132F) are in Fig. 2. Each switch behaves differently.

5406zl: The data plane configuration of 5406zl is slowly falling behind the
control plane acknowledgments – packets start reaching the destination long after
the switch confirms the rule installation with a barrier reply. After about 100
rule updates (we observed that adding or deleting a rule counts as one update,
and modifying an existing rule as two), the switch stops responding with barrier
replies for 300ms, which allows the flow tables to catch up. After this time the
process of diverging starts again. The divergence increases linearly and, in this
experiment, reaches up to 82ms, but can be as high as 250ms depending on
the number of rules in the flow table. The 300ms inactivity time is constant
across all experiments we run, but happens three times more often (every 33
updates) if there are over 760 rules in the flow table. Moreover, the frequency
and the duration of this period do not depend on the rate at which the controller
sends updates, as long as there is at least one update every 300ms. The final
observation is that 5406zl installs rules in the order of their control plane arrival.

P-3290: Similarly to 5406zl, P-3290 stops responding to barriers in regular
intervals. However, unlike 5406zl, it is either processing control plane (handling
update commands, responding to barriers), or installing rules in TCAM and
never does both at the same time. Moreover, despite the barriers, the rules are
not installed in hardware in the order of arrival. The delay between data and
control plane reaches up to 400ms in this experiment. When all remaining rules
get pushed into hardware, the switch starts accepting control plane commands
again. We confirmed with a vendor that because the synchronization between
the software and hardware table is expensive, it is performed in batches and the
order of updates in a batch is not guaranteed. When the switch pushes updates
to hardware, its CPU is busy and it stops dealing with the control plane.7

8132F: Finally, 8132F makes sure that no control plane confirmation is is-
sued before a rule becomes active in hardware. There are also no periods of idle-
ness as the switch pushes rules to hardware all the time and waits for completion
if necessary.8 Interestingly, the switch starts updating rules quickly, but suddenly

6 We need to use such a rule to prevent flooding the control channel with the PacketIn
messages caused by data plane probes or flooding the probes to all ports.

7 The vendor claims that this limitation occurs only in firmware prior to PicOS 2.2.
8 We observe periods when the switch does not install rules or respond to the con-

troller, but these periods are rare, non reproducible and seem unrelated to the exper-
iments. We think they are caused by periodic background processing at the switch.

5

slows down after 210 new rules installed and maintains this slower speed (ver-
ified up to 2000 batches). However, even after the slowdown, the control plane
reliably reflects the state of the data plane configuration.

Summary: To reduce the cost of placing rules in a hardware flow table,
vendors allow for different types (e.g., falling behind or reordering) and amounts
(e.g., up to 400ms) of temporary divergence between the hardware and software
flow tables. Therefore, the barrier command does not guarantee flow installation.
Ignoring this problem leads to an incorrect network state that may
drop packets, or even worse, send them to an undesired destination!

3.2 Rule Modifications Are not Atomic

Previously, we observed unexpected delays for rule insertions and deletions. A
natural next step is to see if modifying existing rules exhibits a similar behavior.
A gap during a FlowMod: As before, we prepopulate the flow table with one
low priority match-all rule dropping all packets and R = 300 flow specific rules
forwarding to port A. Then, we modify these 300 rules to forward to port B. At
the same time, we send data plane packets matching rules 101− 200 at a rate of
1000 packets/s per flow. For each flow, we record a gap between when the last
packet arrives at the interface connected to port A and when the first packet
reaches an interface connected to B. Expected time difference is 1ms because
of our measurement precision, however, we observe gaps lasting up to 7.7, 12.4
and 190ms on P-3290, 8132F and 5406zl respectively. At 5406zl the longest gaps
correspond to the switch inactivity times described earlier (flow 150, 200).
Drops and unexpected actions: To investigate the forwarding gap issue
further we add a unique identifier to each packet to detect if they are being
lost or reordered. Moreover, to get higher precision, we probe only a single rule
(number 151 – a rule with an average gap, and number 150 – a rule with a long
gap on 5406zl) and increase our probing rate to 5000 packets/s.

We observe that P-3290 does not drop any packets. A continuous range of
packets arrive at port A and the remaining packets at B. On the other hand, both
8132F and 5406zl drop packets at the transition period for rule 151 (3 and 17
packets respectively). For rule number 150, 5406zl drops an unacceptable number
of 782 packets. When we replace the drop-all rule with a rule that forwards all
traffic to port C, identifiers of packets captured on port C for both 5406zl and
8132F fit exactly between the series at ports A and B. This suggests that the
update is not atomic—a rule modification deactivates the old version and inserts
the new one, with none of them forwarding packets during the transition.

To further investigate this behavior, we repeat the experiment with no low
priority rule at all. Both switches flood packets to all ports during the transition.
While it follows the no match behavior of 8132F, it is surprising for 5406zl, since
by default non-matching packets cause PacketIn messages. The only imperfection
of P-3290 is that if the output port of the same rule gets updated between ports
A and B frequently, some packets arrive at the destination out of order.

Summary: Two out of three tested switches have a transition period during
a rule modification when the network configuration is neither in the initial nor

6

Switch Observed/inferred behavior

P-3290 May temporarily reorder for overlapping matches (depending on
wildcards). OK for the same match.

8132F OK (Note: May temporarily reorder if not separated by a barrier)

5406zl Ignores priority, last updated rule permanently wins

Table 1: Priority handling of overlapping rules. Only 8132F behaves as defined
in the OpenFlow specification.

the final state. The observed action of forwarding packets to undesired
ports is a security concern. Non-atomic flow modification contradicts the
assumption usually made by controller developers and network update solutions.
Our results suggest that either switches should be redesigned or the assumptions
made by the controllers have to be revisited to guarantee network correctness.

3.3 Priorities and Overlapping Rules

The OpenFlow specification clarifies that, if rules overlap (i.e., two rules match
the same packet), packets should always be processed only by the highest priority
matching rule. Since our default setup with IP src/dst matches prevents rule
overlapping, we run an additional experiment to verify the behavior of switches
when rules overlap. We install rules that can match the same packet: Rhi that
has a higher priority and forwards to port A, and Rlo that forwards to B. Rhi is
always installed before and removed after Rlo to prevent packets from matching
Rlo. Initially, there is one low priority drop-all rule and 150 pairs of Rhi and
Rlo. Then we send 500 update batches, each removing and adding one rule:
(−Rlo,1,+Rhi,151), (−Rhi,1,+Rlo,151), (−Rlo,2,+Rhi,152), . . . We send data plane
traffic for 100 flows. If a switch works correctly, no packets should reach port B.

Table 1 summarizes the results. First, as we already noted, 8132F does not
reorder updates between batches and therefore, there are no packets captured at
port B. The only way to allow some packets on port B is to increase the batch
size – the switch freely reorders updates inside a batch (which is allowed by the
specification) and seems to push them to hardware in order of priorities. On the
other hand, P-3290 applies updates in the correct order only if the high priority
rule has the IP source specified. Otherwise, for a short period of time—210 ms on
average, 410 ms maximum in the described experiment—packets follow the low
priority rule. Our hypothesis is that the software flow table data structure sorts
the rules such that when they are moved to hardware the ones with IP source
specified are pushed first. Finally, in 5406zl, only the first few packets of each
flow (for 80 ms on average, 103 ms max in this experiment) are forwarded to A
and all the rest to B. We conclude that the switch ignores priorities in hardware
(as documented for the older firmware version) and treats rules installed later
as more important. We confirm this hypothesis with additional experiments not
reported here. Further, because the priorities are trimmed in hardware, installing
rules with the same match but different priorities and actions causes an error.

Summary: Results (Table 1) suggest that switches may permanently or tem-
porarily forward according to incorrect, low priority rules.

7

Experiment In-flight batches
Batch size
(del+add)

Initial rules R

In-flight batches 1-20 1+1 300

Flow table size 2 1+1 50 to max for switch

Priorities as in Flow table size + a single low priority rule in the flow table

Access patterns 2 1+1 50 to max for switch +priorities

Working set
as in Flow table size, vary the number of rules that are not

updated during the experiment

Batch size 2 1+1 to 20+20 300

Table 2: Dimensions of experimental parameters we report in this section. Note
that we also run experiments for other combinations to verify the conclusions.

4 Flow Table Update Speed

The goal of the next set of experiments is to pinpoint the most important aspects
that affect rule update speed. From the previous section we know that although
the control plane information is imprecise, in a long run the error becomes neg-
ligible (all switches synchronize the data and control plane views regularly). We
first identify various performance-related parameters: the number of in-flight
commands, current flow table size, size of request batches, used priorities, rule
access patterns. Then we sample the whole space of these parameters and try
to identify the ones that cause some variation. Based on the results, we select a
few experimental configurations which highlight most of our findings in Table 2.

4.1 Two In-flight Batches Keep the Switch Busy

The number of commands a controller should send to the switch before receiv-
ing any acknowledgments is an important design decision [14]. Underutilizing
or overloading the switch with commands is undesired. Here, we quantify the
tradeoff between rule update rate and the servicing delay (time between sending
a command and the switch applying it) to find a performance sweet spot.

We use the default setup with R = 300 and B = 2000 batches of rule updates.
The controller sends batch i + k only when it receives a barrier reply for batch
number i. We vary k and report the average update rate, which we compute as
(1 + 1) ∗B (because each batch contains one add and one delete) divided by the
time between sending the first batch and receiving a barrier reply for the last.

Figure 3 shows the average rate across eight runs. The rule update rate with
one outstanding batch is low as the switch is idle for at least a network RTT.
However, even two in-flight batches are sufficient to saturate all tested switches
given our network latencies. Thus, we use 2 in-flight batches in all experiments.

Looking deeper into the results, we notice that with a changing number of
in-flight batches 5406zl responds in an unexpected way. In Fig. 4 we plot the
barrier reply arrival times normalized to the time when the first batch was sent
for R = 300, B = 50 and a number of in-flight batches varying between 1 and
50. We show the results for only 4 values to improve readability. If there are
requests in the queue, the switch batches the responses and sends them together

8

 0

 200

 400

 600

 800

 1000

1 2 3 4 5 10 20

U
pd

at
e

ra
te

 [r
ul

es
/s

ec
]

In-flight requests

Switch performance with multiple in-flight requests

P-3290
8132F
5406zl

Fig. 3: Update rate improvement for
over 2 in-flight requests is negligible.

 0

 0.05

 0.1

 0.15

 0.2

 0 5 10 15 20 25 30 35 40 45 50

Ti
m

e
ac

kn
ow

le
dg

ed
 [s

]

Batch ID

5406zl - Batching of barrier responses

50 in-fl.
10 in-fl.

5 in-fl.
1 in-fl.

Fig. 4: 5406zl barrier reply arrivals. It
holds replies for up to 29 requests.

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0 250 500 750 1000 1250 1500 1750 2000

U
pd

at
e

ra
te

 [r
ul

es
/s

ec
]

Flow table size [rules]

Switch rule update rate

P-3290
8132F
5406zl

Fig. 5: Update rate decreases when the
number of rules in the flow table grows.

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0 250 500 750 1000 1250 1500 1750 2000

U
pd

at
e

ra
te

 [r
ul

es
/s

ec
]

Flow table size [rules]

Switch rule update rate

P-3290
8132F
5406zl

Fig. 6: Priorities cripple performance.
One low-priority rule significantly de-
creases update rate.

in bigger groups. If a continuous stream of requests is shorter than 30, the switch
waits to process all, otherwise, the first response comes after 29 requests.

Summary: We demonstrated that with LAN latencies two in-flight batches
suffice to achieve full switch performance. Since, many in-flight requests increase
the service time, controllers should send only a handful of requests at a time.

4.2 Current Flow Table Size Matters

The number of rules stored in a flow table is a very important parameter of a
switch. Bigger tables allow for a fine grained traffic control. However, there is a
well known tradeoff—TCAM space is expensive, so tables that allow for complex
matches usually have limited size. We discover another, hidden cost of full flow
tables. We use the default setup fixing B = 2000 and changing the value of R.

In Fig. 5 we report the average rule update rate. There are two distinct
patterns. Both P-3290 and 8132F express similar behavior—the rule update rate
is high with a small number of entries in the flow table but quickly deteriorates
as this number increases. As we confirmed with one of the vendors and deduced
based on statistics of the other switch, there are two reasons why the performance
drops. First, even if a switch installs rules in hardware, it keeps a software flow
table copy as well. The flows are first updated in the software data structure
which takes more time when the structure is bigger. Second, the rules need to
be pushed into hardware (the switch ASIC), which may require rearranging the

9

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 250 500 750 1000 1250 1500 1750 2000

U
pd

at
e

ra
te

 [r
ul

es
/s

]

Flow table size [rules]

Single low prio.
Increasing prio.
Decreasing prio.

(a) P-3290

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 100 200 300 400 500 600 700 800

U
pd

at
e

ra
te

 [r
ul

es
/s

]

Flow table size [rules]

Single low prio.
Increasing prio.
Decreasing prio.

(b) 8132F

Fig. 7: Switch rule update performance for different rule access patterns.

existing entries. On the other hand, 5406zl maintains a lower, but stable rate
following a step function with a breaking point around 760 rules in the flow
table. This stability is caused by periods of inactivity explained in Section 3.

Summary: The performance of all tested switches drops with a number of
installed rules, but the absolute values and the slope of this drop vary. Therefore,
controller developers should not only take into account the total flow table size,
but also what is the performance cost of filling the table with additional rules.

4.3 Priorities Decrease the Update Rate

Next, we conduct an experiment that mimics a situation where a lowest priority
all-matching rule drops all packets that do not match any other rule. The ex-
periment setup is exactly the same as the one described in Section 4.2 with one
additional lowest priority drop-all rule installed before all flow-specific rules.

Figure 6 shows that for a low flow table occupancy, all switches perform
comparably as without the low priority rule. However, P-3290 and 8132F suffer
from a significant drop in performance at about 130 and 255 installed rules
respectively. After this massive drop, the rate gradually decreases until it reaches
12 updates/s for 2000 rules in the flow table for P-3290 and 30 updates/s for 750
rules in the flow table for 8132F where both switches have their tables almost full.
Interestingly, 5406zl’s update rate does not decrease so much, possibly because
it ignores the priorities. We confirm that the results are not affected by the fully
wildcarded match or the drop action in the low priority rule by replacing it with
a specific IP src/dst match and a forwarding action.

Finally, we rerun the experiments from Section 4.1 with a low priority rule.
The absolute rates are lower, but the characteristics and the conclusions hold.

More priorities: Now, we check what is the effect of using different priorities
for each rule. We modify the default set-up such that each rule has a different
priority assigned and install them in an increasing or decreasing order.

Switches react differently: P-3290’s and 8132F’s performance follows a similar
curve as in the previous experiment, but there is no breaking point (Figure 7).
In both cases the rate is higher with one different priority rule until the breaking
point, after which they equalize. Moreover, P-3290 updates rules quicker in the
increasing priority order (consistent with [11], but the difference is smaller as

10

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600 700 800 900 1000

U
pd

at
e

ra
te

 [r
ul

es
/s

]

Working set size [rules]

No priorities With low prio.

(a) P-3290

 0

 50

 100

 150

 200

 250

 300

 50 100 150 200 250 300 350 400 450 500

U
pd

at
e

ra
te

 [r
ul

es
/s

]

Working set size [rules]

No priorities With low prio.

(b) 8132F

Fig. 8: Size of the rule working set affects the performance. For both P-3290 and
8132F with low priority rule, the performance depends mostly on the number of
rules constantly updated and not on the total number of installed rules.

for each addition we also delete a rule). 5406zl is unaffected by the priorities,
but our data plane study shows a serious divergence between the control plane
reports and the reality for this switch in this experiment (see Trivia in [10]).

Working set size: Finally, we check what happens if only a small subset
of rules in the table (later referred as “working set”) is frequently updated. We
modify the default setup such that batch i deletes the rule matching flow i−W
and installs a rule matching flow i. We vary the value of W . In other words, the
first R−W rules never change and we update only the last W rules.

The results show that 5406zl’s performance remains the same as presented in
Figures 5 and 6. Further, for both P-3290 and 8132F a small update working set
makes no difference if there is no low priority rule. For a given R (1000 for P-3290
and 500 for 8132F in Fig. 8), the performance is constant regardless of W . How-
ever, with the low priority rule installed, the update rate characteristic changes
(Figure 8). For both switches, as long as the update working set is smaller than
their breaking point revealed in Section 4.2, the performance stays as if there
was no drop rule. After the breaking point, it degrades and is marginally worse
compared to the results in Section 4.2 for table size W .

Summary: The switch performance is difficult to predict—a single rule can
degrade the update rate of a switch by an order of magnitude. Controller develop-
ers should be aware of such behavior and avoid potential sources of inefficiencies.

4.4 Rule Modifications Are Slower than Additions and Deletions

We run the same experiments as described in previous subsections, but modifying
existing rules instead. Because the results are very similar, we do not report them
here in detail. All plots follow the same curves, but in general the update rate
is between 0.5x and 0.75x of the rate for additions and deletions for P-3290 and
8132F. For 5406zl the difference is much smaller and stays within 12%.

5 Conclusions and Future Work

In this paper we try to shed light on the state of OpenFlow switches – an
essential component of relatively new, but quickly developing Software Defined

11

Networks. The main takeaway is that despite a common interface, the switches
are more diverse than one would expect, and this diversity has to be taken into
account when building controllers. Because of the limited resources, we obtained
sufficiently long access only to three switches. In the future, we plan to keep
extending this study with additional devices to obtain the full picture.
Acknowledgments We thank Marco Canini, Dan Levin and Miguel Peón for
helping us get access to the tested switches. We also thank Pica8 and Dell rep-
resentatives for quick responses and explanations. We thank the reviewers, who
provided excellent feedback. The research leading to these results has received
funding from the European Research Council under the European Union’s Sev-
enth Framework Programme (FP7/2007-2013) / ERC grant agreement 259110.

References

1. OpenFlow Switch Specification.
http://www.openflow.org/documents/openflow-spec-v1.0.0.pdf.

2. Ethernet Switch Market: Who’s Winning?, 2014.
http://www.networkcomputing.com/networking/d/d-id/1234913.

3. A. Curtis, J. Mogul, J. Tourrilhes, and P. Yalagandula. DevoFlow: Scaling Flow
Management for High-Performance Networks. In SIGCOMM, 2011.

4. D. Y. Huang, K. Yocum, and A. C. Snoeren. High-fidelity switch models for
software-defined network emulation. In HotSDN, 2013.

5. S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wan-
derer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat. B4: Expe-
rience with a Globally-Deployed Software Defined WAN. In SIGCOMM, 2013.

6. N. P. Katta, J. Rexford, and D. Walker. Incremental Consistent Updates. In
HotSDN, 2013.

7. P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and S. Whyte. Real
Time Network Policy Checking using Header Space Analysis. In NSDI, 2013.

8. P. Kazemian, G. Varghese, and N. McKeown. Header Space Analysis: Static Check-
ing for Networks. In NSDI, 2012.

9. A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey. VeriFlow: Verifying
Network-Wide Invariants in Real Time. In NSDI, 2013.

10. M. Kuźniar, P. Pereš́ıni, and D. Kostić. What you need to know about SDN control
and data planes. Technical Report EPFL-REPORT-199497, EPFL, 2014.

11. A. Lazaris, D. Tahara, X. Huang, L. E. Li, A. Voellmy, Y. R. Yang, and M. Yu.
Jive: Performance Driven Abstraction and Optimization for SDN. In ONS, 2014.

12. H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and D. A. Maltz. zUpdate:
Updating Data Center Networks with Zero Loss. In SIGCOMM, 2013.

13. R. Mahajan and R. Wattenhofer. On Consistent Updates in Software Defined
Networks. In HotNets, 2013.

14. P. Pereš́ıni, M. Kuźniar, M. Canini, and D. Kostić. ESPRES: Transparent SDN
Update Scheduling. In HotSDN, 2014.

15. M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker. Abstractions
for Network Update. In SIGCOMM, 2012.

16. C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore. Oflops: An open
framework for openflow switch evaluation. In PAM, 2012.

17. M. Yu, A. Wundsam, and M. Raju. NOSIX: A Lightweight Portability Layer for
the SDN OS. ACM SIGCOMM Computer Communication Review, 44(2), 2014.

12

http://www.openflow.org/documents/openflow-spec-v1.0.0.pdf
http://www.networkcomputing.com/networking/d/d-id/1234913

	What You Need to Know About SDN Flow Tables
	Introduction
	Measurement Methodology
	Data Plane
	Synchronicity of Control and Data Planes
	Rule Modifications Are not Atomic
	Priorities and Overlapping Rules

	Flow Table Update Speed
	Two In-flight Batches Keep the Switch Busy
	Current Flow Table Size Matters
	Priorities Decrease the Update Rate
	Rule Modifications Are Slower than Additions and Deletions

	Conclusions and Future Work

