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Abstract
The prediction of hydraulic machines performances is of high interest to manufacturers in

today’s highly competitive market for new development or refurbishment of hydraulic power

plant. An accurate prediction of the machines performances by numerical simulation allows

to reduce the time required for the design phase. In order to predict the resulting torque of a

Pelton turbine, the physics of the free jet has to be modeled accurately. Indeed, the deviation

of the high-speed water jet is the key phenomenon, which produces the wall pressure field

on the buckets and defines the trajectories of the water sheets in the casing. The purpose of

this Doctoral Thesis is to develop and define the methodology for new numerical simulations,

which capture accurately the deviation of high-speed jet flows.

The use of particle-based methods is investigated instead of using conventional grid-based

methods. The advantage of particle-based methods is their Lagrangian formulation, which

avoids the well-known difficulties of the mesh generation for complex geometries with moving

interfaces. Finite Particle Method (FPM) and Finite Volume Particle Method (FVPM) are

used to improve the overall accuracy of the simulations compared to standard Smoothed

Particle Hydrodynamics (SPH). The drawback of particle-based methods is their significant

increase of computational costs compared to conventional grid-based methods. To mitigate

this drawback, the simulations are performed with the FPM/FVPM solver SPHEROS developed

at EPFL for massively parallel simulations on the Lemanicus BG/Q supercomputer. A new

adaptive domain decomposition strategy is proposed to perform efficient highly parallelized

simulations.

The development of the FPM/FVPM solver is validated by comparing its results with ex-

perimental data and conventional grid-based simulations for different test cases. First, the

impinging jet on a flat plate validates that FPM and FVPM are able to capture accurately the

free surface location as well as the pressure profile on the flat plate at different impinging

angles. Second, the steady bucket analysis highlights the convergence of the FVPM results

according to the spatial discretization. Finally, the rotating buckets analysis shows that the

pressure field in the buckets inner wall is in good agreement with the experimental and

numerical data and the evolution of the relative flow pattern matches the flow high-speed

visualization. Moreover, the FVPM simulation is able to capture the pressure peak during the

impingement first stage, which is also highlighted in the measurements.

Keywords: numerical simulation, particle-based method, free surface flow, free jet, Pelton

turbine, bucket
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Résumé
La prédiction de la performance des machines hydrauliques présente un grand intérêt pour

les constructeurs afin qu’ils puissent s’adapter à la demande dans un marché hautement

concurrentiel que ce soit pour un nouveau projet ou pour la rénovation de centrale hydroélec-

trique. Une prédiction précise des performances par simulation numérique permet de réduire

le temps requis pour la phase de design. Afin de prédire le couple résultant d’une turbine

Pelton, la physique du jet libre doit être modélisée avec précision. En effet, la déviation du

jet d’eau à grande vitesse est le phénomène qui génère le champ de pression sur les augets et

définit la trajectoire des nappes d’eau. Le but de cette thèse de doctorat est de développer de

nouvelles simulations numériques qui capturent précisément la déviation d’un jet libre.

L’utilisation de méthodes particulaires est privilégiée par rapport aux méthodes convention-

nelles à base de maillage. La formulation lagrangienne des méthodes particulaires évite les

difficultés de la génération de maillage pour des géométries complexes avec interfaces mobiles.

Afin d’améliorer la précision des simulations, par rapport à la méthode standard Smoothed

Particle Hydrodynamics (SPH), les méthodes des particules finies (FPM) et des particules

à volume fini (FVPM) sont utilisées malgré leur coût de calcul élevé. Pour remédier à cet

inconvénient, les simulations sont effectuées avec le solveur FPM/FVPM SPHEROS développé

à l’EPFL pour les simulations massivement parallèles sur le supercalculateur Lemanicus BG/Q.

Une nouvelle stratégie de décomposition automatique du domaine de calcul est proposée

afin d’effectuer efficacement ces simulations massivement parallèles.

Le développement du solveur FPM/FVPM est validé par différents cas d’étude, en comparant

les résultats obtenus avec des données expérimentales et des simulations numériques à base

de maillage. Premièrement, le jet impactant sur une plaque plane valide que les méthodes

FPM et FVPM sont capables de capturer avec précision l’emplacement de la surface libre, ainsi

que le profil de pression sur la plaque plane pour différents angles d’impact. Deuxièmement,

l’analyse de l’auget fixe met en évidence la convergence des résultats FVPM selon la discrétisa-

tion spatiale. Finalement, l’analyse des augets tournant montre que le champ de pression sur

la paroi intérieure de l’auget concorde avec les données expérimentales et numériques et que

l’évolution de la surface libre correspond à la visualisation à grande vitesse de l’écoulement.

De plus, la simulation FVPM est capable de capturer le pic de pression au début de l’impact

entre le jet et l’auget, ce qui est également mis en évidence par les mesures.

Mots-clés : simulation numérique, méthode particulaire, écoulement à surface libre, jet libre,

turbine Pelton, auget
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1 Introduction

1.1 Pelton turbine

Over the past few decades, the electricity consumption has significantly increased, which raises

many concerns about the productions methods and locations. Furthermore, environmental

issues tend to limit or replace the use of non-renewable energy such as fossil or nuclear fuels.

In this context, hydropower has become an essential component of the electricity generation

and grid stabilization. Hydropower features many different technologies: run-of-the-river,

storage, pumped-storage, tidal or wave power plants. According to the available water head

and discharge, a different type of turbine is selected. The appropriate operating range of

different runners is presented in Figure 1.1 based on statistics for many large hydro power

plants. Moreover, each runner geometry is adapted according to the operating conditions in

order to maximize the efficiency of the power generation. The present study is focussed on

the Pelton turbine, which is mainly used for high head and low discharge power plant.

Lester Pelton developed in 1879 a water wheel featuring several double half-cylindrical buckets

and patented it in 1889. These buckets split and reverse a high-speed water jet, which generates

a mechanical torque applied on the water wheel. Around 1895, William Doble improves the

shape of the Pelton buckets introducing an elliptical shape and a cutout. The cutout provides

to the water jet a cleaner bucket entry and gives to the Pelton runner the appearance it still

has today. An outline of the Pelton turbine is given in Figure 1.2. The Pelton turbine is an

impulse rotating machine where one or several injectors convert the available water head

into high-speed water jets. The deviation of the high-speed jets by the buckets converts the

kinetic energy of the flow into tangential forces. These forces applied on the buckets produces

a torque on the shaft. To produce the electrical power, an electrical generator is linked to the

Pelton runner shaft. The intensity of the torque is highly dependent on the shape of the bucket,

and especially, on its outlet angle and cutout. Indeed, the outlet angle of the flow has to be as

close as possible to 180 degrees to maximize the jets deviation but the tail water should also

not hit the backside of the next bucket. Moreover, the location of the cutout, which defines

the leading edge of a bucket, should maximize the averaged force on the rotating bucket.
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Figure 1.1 – Appropriate operating range for different runner types: available water head in
function of the specific speed [8].

Consequently, the design of the Pelton buckets has to be adapted to the available water head

and discharge to improve the overall efficiency of the power generation. The thickness of the

buckets root is designed according to the material fatigue caused by the frequent passage

of the buckets through the high-speed water jets. The design of the buckets geometry also

includes further considerations to increase the operating hours of the runner e.g. avoiding the

appearance of cavitation and diminishing the effect of the erosion due to silt particles loaded

in the flow.
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Figure 1.2 – Outline of an injector and a Pelton runner.
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1.1. Pelton turbine

The design process of Pelton turbines unit, is difficult compared to reaction turbines. It

is usually conducted from know-how and extensive experimental testing on reduced-scale

physical models. The transposition from scaled-down models to prototype has to be fine

tuned because the flow in a Pelton unit is composed of four different regimes: confined steady-

state flows in the upstream pipes and distributor, free-jet flows past the injectors, transient

free-surface flows in the buckets, and two-phase dispersed flows in the casing. Each regime

features a different characteristic length, a different velocity scale, and is therefore dominated

by different forces [65]. These different flows configurations are highlighted in Figure 1.3.

An external flow visualization presents the impingement of the high-speed water jet on the

buckets cutout and splitter. The water is deviated by the buckets inner surface and escape

the bucket forming several water sheets. The test rig casing with plexiglas window shows that

these water sheets saturate the air in the casing. Besides this harsh environment, the lack of

space between the buckets makes flow visualization difficult to perform [69, 67].

Figure 1.3 – External flow visualization (left) and test rig casing with plexiglas window (right).
Figures obtained from [65].

The prediction of the hydraulic machine performance is of high interest to manufacturers in to-

day highly competitive market for new development or refurbishment. An accurate prediction

of the machines performance by numerical simulation allows to reduce the time required for

the design phase. Therefore, the physics of the free jet has to be modeled accurately. Indeed,

the deviation of the high-speed water jet is the key phenomenon, which produces the wall

pressure field on the buckets inner surfaces and defines the trajectories of the water sheets.
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1.2 State of the art

1.2.1 Numerical simulations of free jet flows and Pelton buckets

The physics of free jet at high Reynolds number is important for many industrial applications

and, in particular, for hydropower. The first numerical simulations of this type of flow ap-

peared in the 1990s thanks to the improvement of the computational resources and to the

development of the Volume Of Fluid (VOF) method by Hirt and Nichols [27] in 1981. VOF is a

grid-based Eulerian method, which tracks the location of the interface between two fluids. A

volume fraction function is used to determine if the grid cells are empty, partially-field or full of

the traced fluid. The physical properties in the cells are computed separately using the Navier-

Stokes equations. The formulation of the VOF method is mass conservative. Consequently,

VOF can handle simulations of break apart or joined interfaces.

Numerical simulations of the flow in the Pelton distributor and injectors were performed

using VOF by Parkinson et al. [64] to analyzed the effect of the distributor on the velocity

profile inside the water jets. Mack and Moser [49] showed the importance of grid refinement

to capture accurately the flow at the outlet of a Pelton injector nozzle, and so, to obtain the

correct water jet diameter. This effect was also highlighted by Jost et al. [36] in the simulation

of a Pelton distributor and two injectors using the two-phase homogeneous model. This

model is a simplification of VOF where the mixture is considered as a whole and is resolved in

a macroscopic point of view. This assumption is applied because the system does not include

phase changes, i.e. negligible drift or diffusion of mass [65]. The deviation of a high-speed

water jet by a flat plate at different impinging angles was investigated by Kvicinsky et al. [41, 39]

to validate that VOF is able to capture the deviation of the jet. In this study the numerical

simulations are validated with pressure measurements on the plate and a water layer thickness

comparison. The importance to impose the proper velocity profile at the inlet is highlighted.

Kvicinsky [38] measured the velocity profile in the water jet using a Pitot tube. The impinging

jet test case was also used for the validation of the particle-based numerical methods from

Marongiu et al. [52, 50], Antuono et al. [5] and Molteni et al. [56].

The simulations of steady Pelton buckets at different impinging angles were first computed

using VOF [9, 25]. Janetzky et al. [35] and Chaudhari et al. [13] discretized the simulation

of a rotating Pelton runner into several steady simulations. These studies have highlighted

the importance to simulate accurately the wall pressure field in the buckets inner surfaces.

Moreover, Guilbaud et al. [24] showed that a 2-D steady bucket simulation cannot be used to

simplify the flow simulation in the Pelton buckets. Kvicinsky et al. [39] and Zoppe et al. [86]

compared VOF results to pressure sensors located on the bucket inner surface. These compar-

isons show that the force on the steady bucket is well captured. However, the experimental

flow visualizations of Zoppe et al. [86] highlight that VOF underestimates the leakage through

the cutout. Marongiu et al. [53] used the same case study as Kvicinsky et al. [39] to validate

their particle-based solver.
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1.2. State of the art

The deviation of a high-speed water jet by the rotating Pelton buckets is a challenging fluid

mechanics problem, which involves complex geometries, moving boundaries, free surface

flows and high-pressure variations. The ability to simulate accurately the instantaneous wall

pressure field in the Pelton buckets is a key issue for the design of Pelton runners [49]. Kvicinsky

et al. [40] and Perrig et al. [68] simulated the flow in the rotating buckets using the two-phase

homogenous model. Perrig et al. [66] compared the two-phase homogenous model to mea-

surements and flow visualization. This study highlights different zones in the Pelton bucket,

which contribute differently to the torque generation. Santolin et al. [72] used the two-phase

homogenous model to compute the time history of the torque and analyzed the influence of

the water jet profile. Jost et al. [36] highlighted the grid influence on the efficiency prediction

as well as the needs of significant computing resources to compute accurately a Pelton runner

using the two-phase homogenous model. Xiao et al.[81] performed a VOF simulation of a

rotating Pelton runner. The computed efficiency is a bit lower than the experiments and the

dependance on the grid resolution is also highlighted. Marongiu et al. [51, 54] demonstrated

that particle-based methods are well suited to compute the flow in a Pelton runner. However,

particle-based methods require significant computational ressources. Anagnostopoulos and

Papantonis [3] and Xiao et al. [82] proposed a fast Lagrangian computation to design Pelton

buckets. However, this method is only based on the inlet and outlet velocity vectors of the

particles, which provides an estimation of the integrated pressure. Neither the whole pressure

field nor the exact water sheet location can be accurately computed.

1.2.2 Particle-based methods

Nowadays, the significant increase of the computational power allows the development of

new numerical methods to perform more complex and realistic simulations. Particles-based

methods, or meshless methods, have been investigated following the needs of various fields of

research e.g. astrophysics, engineering or film industry. In opposition to grid-based methods

i.e. Finite Difference Method (FDM), Finite Volume Method (FVM) or Finite Element Method

(FEM), particle-based methods do not require to know the connectivity between the com-

puting nodes, which is provided by the mesh. Particle-based methods use a set of arbitrarily

distributed nodes, so called particles, to solve the motion equations. The material velocity is

usually applied to the particles, which allows the use of a Lagrangian formulation. The motion

of nodes enables these methods to simulate moving interfaces problems without issues due to

mesh deformation or tangling e.g. free-surface, deformable boundary, moving interface or

extremely large deformation [44].

Particle-based methods may be categorized in two types of discretization: strong and weak

forms. In the strong form methods, the partial differential equations are discretized at the

particles center using shape functions to obtain a set of discretized equations. Example of

these methods include: the general finite difference method [15], the hp-meshless cloud

method [43], the meshless collocation method [84], the Vortex Method (VM) [37] and the

Smoothed Particle Hydrodynamics (SPH) [58]. In VM and SPH methods, the approximation
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is performed using a weak form but the equations are discretized at the particles positions.

The common property of the weak form methods is that the shape functions are constructed

entirely using a set of nodes in a locally supported domain, and so, no element is needed for the

shape functions [30]. Example of these methods include: the diffuse element method [62], the

element free Galerkin [11], the radial point interpolation method [80], the reproducing kernel

particle method [47], the meshless local Petrov-Galerkin [7], the moving least squares particle

hydrodynamics [17] and the Finite Volume Particle Method (FVPM) [26]. The advantage of

strong form methods like SPH is their ease of implementation. However, SPH suffers from a

lack of consistency and the boundary conditions enforcement or multi-scale resolution are

still open challenges. The advantages of the weak form methods are that they are consistent

and conservative regardless of any variation in particles resolution and they discretize the

boundary conditions precisely. However, these methods require a significant computational

cost to integrate the shape functions.

The standard SPH method was developed in 1977 by Lucy [48], and Gingold and Monaghan

[21] for astrophysical simulations. The advantage of this method is its Lagrangian formulation,

which avoids the difficulties of the mesh generation for complex geometries with moving

interfaces. However, this method suffers from a lack of accuracy compared to the grid-based

numerical simulations when dealing with non-uniform particles distribution. Therefore, many

different renormalized SPH methods were developed to restore the consistency e.g. Rieman

SPH [79, 53] or Incompressible SPH (ISPH) [83]. However, these renormalized methods present

an increase of computational time due to the resolutions of the Poisson equation or Riemann

system. Chen and Beraun [14] and Liu et al. [46], proposed a set of correction formulas for

the SPH kernel function, which they called the Finite Particle Method (FPM). Comparing to

standard SPH, the FPM requires more computational costs to compute the renormalized

kernel function and derivatives but it ensures the consistency of the simulation even for a

non-uniform particles distribution.

During the SPH simulations, the contraction of the streamlines as well as the tensile instability

described by Monaghan [59] result in the clustering of particles. This particles clustering in-

creases the spatial discretization error, which decreases the overall accuracy of the simulation.

To restore a better particles distribution, Xu et al. [83] apply a small shift to each particle at

the end of each time step. This particle shifting strategy has demonstrated its efficiency for

confined flows. Recently, Jahanbakhsh et al. [31] extend this method for free surface flows.

The solid wall boundary treatment in SPH is handled by replacing the wall boundary surface

with so called "boundary particles". Three main approaches are found in the literature. First,

the repulsive force approach described by Monaghan and Kajtar [57] or Marongiu et al. [52]

consists in placing boundary particles on the wall surface. These boundary particles exert

a repulsive force, which is proportional to the distance between the boundary and the fluid.

However, the particle spacing of the boundary has to be fine-tuned to a smaller value compared

to the particle spacing in the fluid domain, the tuning depending on the flow conditions. The

second approach used by Bierbrauer et al. [12] places "mirroring ghost particles" behind the

6
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wall boundary surface. The drawback of this second approach is that a particular attention to

the generation of the mirroring particles has to be given close to the sharp edges to ensure a

proper boundary treatment. The third boundary treatment is based on fixed ghost particles

as described by Adami et al. [1] and Marrone et al. [55] where "dummy particles" are placed

under the wall boundary with a fixed location. The physical properties of theses dummy

particles are then updated from a ghost sampling in the fluid region at each time step.

FVPM is a particle-based solver introduced by Hietel [26] in 2000. In 2009, Nestor et al. [63]

extended the method to incompressible flows. This method features an Arbitrary Lagrangian-

Eulerian (ALE) formulation, which means that the computing nodes can either moves with

the material velocity or a user-prescribed velocity. This method is able to satisfy free surface

and no-slip wall boundary conditions precisely. FVPM combines attractive features of SPH

and conventional grid-based FVM. Like SPH, FVPM is based on a kernel and a smoothing

length to compute the interactions between the particles. Like FVM, this method is consistent

because it uses the interaction vectors to weight the fluxes exchanged between the particles,

which overcomes the main drawback of standard SPH. Moreover, FVPM is locally conservative

regardless of any variation in particles smoothing length [70]. This enables users to refine the

solution by splitting the particles in the region of interest and perform accurate simulation

more efficiently [34]. In FVPM, the control volumes are replaced by particles and the exchange

occurs through the interfaces defined by overlapping regions. For each pair of overlapping

particles, two interaction vectors are defined. Their difference is analogous to the area vector

in FVM. Due to the complexity of shape functions, their integrations are usually approximated

using Quadrature rules over a large number of integration points. In 2011, Quinlan and Nestor

[70] developed a new FVPM in which the integrals are computed quickly and exactly for 2-D

simulations. They simplified the shape functions to circular top-hat kernels and achieved a

reasonable compromise between computational cost and accuracy. Recently, Jahanbakhsh et

al. [33] introduced rectangular top-hat kernels to compute exactly the integrals in 3-D.

The main drawback of all the particle-based methods is the significant increase of computa-

tional cost compared to grid-based methods. Therefore, the development of massively parallel

codes on multi-CPU or multi-GPU clusters is required [74] to mitigate this drawback. Accord-

ing to Holmes et al. [28] and Basa et al. [10], the use of multi-CPU clusters with an efficient

communication allows to reach a near linear speed up. However, a particular attention has

to be paid to obtain a uniform load on each CPU. As the computational domain is split in

multiple subdomains, and each subdomain is assigned to a single core, the computational

time is linked to the most loaded subdomain. Therefore, the size of the subdomains have to

be adapted during the simulation [16]. In the literature, two main strategies have been used

for the Adaptive Domain Decomposition (ADD) of particle-based methods. The first one is

based on the space filling curves, which map the 3-D space into a 1-D curve. Springel [73]

used this strategy for cosmological simulations. The second strategy is based on the recursive

multi-section algorithm, recently improved by Ishiyama et al. [29].

7
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1.3 Thesis objective and methodology

Efficient Pelton turbine engineering requires accurate flow numerical simulation to compute

the net torque acting on the Pelton runner. This resulting torque is produced by the deviation

of the high-speed water jets by the buckets. Therefore, the unsteady wall pressure field on the

buckets needs to be accurately simulated to yield, after integration, the time history of the

runner torque. The purpose of this Doctoral Thesis is to develop and define the methodology

for new numerical simulations, which capture accurately the deviation of high-speed jet flows.

The development of consistent numerical methods are investigated to simulate the flow in

rotating Pelton buckets. Highly-parallelized simulations using dynamic load balancing are

implemented to reduce the computing time and improve the efficiency of the computations.

The assessment of the simulations is performed by comparing the physics of the flow to

available numerical and experimental data.

The use of particle-based methods is investigated to perform the numerical simulations. The

advantage of these methods is their Lagrangian formulation, which avoids the well-known

difficulties of the mesh generation for complex geometries with moving interfaces. Moreover,

particle-based methods are well suited to simulate free-surface flows subject to extremely

large deformation [44]. For the numerical simulations, the water flow is assumed to be single

phase, without surface tension and weakly compressible. The state equation of the water flow

is used to derive the pressure from the actual density, by passing the need of solving a Poisson

equation if a strictly incompressible flow were assumed [2]. The weakly compressible flow

hypothesis imposes that the Mach number remains always below 0.1 all along the numerical

simulation, which allows to increase the time step value compared to a pure compressible

simulation.

The use of FPM is investigated to improve the overall accuracy of the simulations compared to

standard SPH thanks to its renormalized kernel. A new particle shifting method is proposed to

stabilize the simulation and avoid the artificial spread of particles through the free surface.

The solid boundary is modeled by three layers of dummy particles and an improved boundary

treatment is applied to ensure the proper location of the interface. The impingement of a

high-speed water jet on a flat plate is simulated using FPM to validate that the jet deviation

is captured accurately. The FPM results are compared with experimental data and VOF

numerical simulations from Kvicinsky et al. [41].

The use of FVPM is investigated to simulate high-speed jet flow impinging on Pelton buckets.

In FVPM, the wall boundary is represented by one layer of particles located on the bucket

surface, which overcome the difficulty of FPM to model accurately the geometry of the splitter.

Another advantage of FVPM is that its formulation is consistent and conservative. First, the

flow in a steady bucket is simulated using FVPM to validate that the wall pressure field on the

bucket inner surfaces matches the experimental and VOF results from Kvicinsky et al. [39].

Second, the simulation of rotating Pelton buckets is simulated using FVPM and the results are

compared to pressure measurements and flow visualization from Perrig [65].
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The numerical simulations are performed with the FPM/FVPM solver SPHEROS, developed at

EPFL since 2010 [32]. This software is designed for massively parallel computing using MPI

library and tree-based neighbor searching. To reduce the computing time, the computational

domain is split into several subdomains. An adaptive domain decomposition strategy based

on the recursive multi-section algorithm of Ishiyama et al. [29] is proposed to make the load

in the subdomains uniform. Consequently, efficient highly-parallelized simulations can be

run on the Lemanicus BG/Q at EPFL.

1.4 Document structure

This Doctoral Thesis is organized in five chapters. Chapter 1 presents the introduction includ-

ing an overview of Pelton turbines and high-speed jet flows, a literature review of grid-based

and particle-based numerical simulations of high-speed jet flows as well as the Thesis objective

and methodology.

Chapter 2 includes the fundamental theory of Pelton turbines and the governing equation

of the fluid flow. Then, this chapter describes the computational models used for the FPM

and FVPM solvers, including the discretization, particle shifting strategy and solid boundary

condition. Finally, the main characteristics of the SPHEROS software are introduced.

Chapter 3 presents the proposed adaptive domain decomposition strategy. First, the orbital

shaking test case is used to validate the efficiency of the ADD strategy. A strong scaling analysis

on the Lemanicus BG/Q at EPFL shows the performance of the ADD. Second, the simulation of

rotating Pelton buckets highlights the importance of load balancing for simulations featuring

highly scattered particles.

Chapter 4 includes the validation of the FPM to simulate the deviation of high-speed water

jet on a flat plate. First, the effects of the particle shifting strategy and inlet treatment are

discussed. Then, a convergence study of the FPM results is presented for three different

impinging angles. The pressure profile on the flat plate as well as the free surface location are

compared to VOF and measurement from Kvicinsky et al. [41]. Finally, a comparison of FPM

and FVPM results is given for the three different impinging angles.

Chapter 5 is devided in three sections. The first section presents the FVPM simulation of a

steady bucket at three different impinging angles. A convergence study analyses the effect of

spatial discretization on the wall pressure field inside the bucket. Next, the wall pressure field is

compared to the VOF and measurements of Kvicinsky et al. [39]. The second section, contains

the rotating Pelton buckets analysis. The spatial discretization is validated by analyzing the

time history of the torque applied on the buckets for different particles resolutions. The wall

pressure field in the buckets inner and outer surfaces are compared to the VOF results and

experimental data of Perrig [65]. Finally, the evolution of the relative flow pattern inside the

buckets are compared to the VOF results and experimental data in the third section.
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2 Computational Model

2.1 Governing equations

2.1.1 Pelton turbines

The Pelton turbine is an impulse hydraulic machine as described in Figure 1.2. The available

specific energy E is converted by the z0 injectors into high-speed water jets with a velocity

C2 = c2

p
2E = c2

√
2g H (2.1)

where H is the head, g the gravity and c2 the overall efficiency of the injector. The latter is

assumed constant and usually included in 0.98 < c2 < 0.99. The jet diameter D2 is imposed by

the needle stroke, which controls the discharge Q through the Pelton unit.

The zb buckets deviate the high-speed water jets, which generates a mechanical torque. The

velocity triangles at the inlet (subscript 1) and outlet (subscript 1̄) of a Pelton bucket are

sketched in Figure 2.1. In this figure, C represents the absolute flow velocity, U the peripheral

flow velocity and W the relative flow velocity. The transferred specific energy is obtained by

the Euler’s equation for hydraulic turbomachine

Et =U1 ·Cu1 −U1̄ ·Cu1̄. (2.2)

By assuming that the mean flow enters and leaves the buckets at the reference diameter D1 of

the Pelton runner, the peripheral flow velocity is equal to

U1 =U1̄ =ωD1/2 (2.3)

where ω is the angular speed. Using the relation W1 =C1 −U1 from the inlet velocity triangle

and introducing the loss factor in the bucket ∆= 1−W1̄/W1, the Euler’s equation becomes

Et =U1W1
[
1+ (1−∆)cos(β1̄)

]
. (2.4)
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Figure 2.1 – Outline of a Pelton bucket.

The expression of the transferred power is given by

Pt = ρQEt = ρQU1 (C1 −U1)
[
1+ (1−∆)cos(β1̄)

]
(2.5)

and the torque is expressed by

Tt = Pt

ω
= ρQD1

2
(C1 −U1)

[
1+ (1−∆)cos(β1̄)

]
. (2.6)

The theoretical maximum transferred power is obtained for U1 =C1/2. The runaway condition

is fulfilled when U1 =C1, i.e. the torque and transferred power become zero.

The characteristic of a Pelton runner is described by an hillchart in function of the discharge

and energy coefficients. These coefficients are respectively

ϕB2 = Q

Qref
= 4Q

U1z0πB 2
2

(2.7)

and

ψ1 = 2E

U 2
1

. (2.8)
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The hillchart represents the hydraulic efficiency of the Pelton unit in function of the operating

condition. The hydraulic efficiency is expressed by

η= Pt

Ph
= Pt

ρQE
. (2.9)

2.1.2 Inviscid weakly compressible flow

The water flow is assumed inviscid and weakly compressible. The flow motion is governed by

the mass and linear momentum conservation equations

dρ

d t
=−ρ∇·C (2.10)

and

d
(
ρC

)
d t

=∇·σ+ρg (2.11)

where ρ is the density, C the velocity vector, g the gravity vector and σ = s − p I the stress

tensor, which includes p the static pressure and s the deviatoric stress contribution defined as

s = 2µ∗
(

D − 1

3
tr(D) I

)
. (2.12)

In the case of an inviscid flow, the deviatoric stress contribution is equal to zero. However, in

the present study, an artificial viscosity µ∗ is introduced to damp the numerical oscillations.

In the latter expression, D is the deformation rate tensor

D = ∇C + (∇C )T

2
. (2.13)

In order to close the system of equations (2.10) and (2.11), the pressure is derived from the

state equation

p = ρrefa
2

7

((
ρ

ρref

)7

−1

)
(2.14)

where ρref is the reference density and a is the sound speed. According to the weakly com-

pressible assumption, the sound speed is set to 10 ·Cmax, Cmax being the discharge velocity of

the water jet. This assumption is based on the weakly compressible approach of Monaghan

[60] to ensure that the density variations remain below one percent and the Mach number

remains below 0.1 all along the numerical simulation. Therefore, the weakly compressible

approach allows to increase the time step value compared to a pure compressible simulation

by decreasing the sound speed in the CFL condition. Moreover, the weakly compressible

approach does not need to solve a Poisson equation, which is time consuming in the strictly

incompressible approach [2].
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2.2 Finite Particle Method (FPM)

2.2.1 Formulation

The standard SPH formulation of a function is based on a kernel approximation and a decom-

position of the continuous matter into a set of N disordered particles. Therefore, the function

f (Xi ) =
N∑
j

f
(

X j
)

W
(

Xi −X j ,h
)

V j (2.15)

is evaluated for each particle i by its j neighboring particles. The kernel function W weights the

interaction between these particles according to a given smoothing length h. The advantage

of this formulation is that the derivatives

∂ f (Xi )

∂Xα
=−

N∑
j

f
(

X j
) ∂W

(
Xi −X j ,h

)
∂Xα

V j (2.16)

are directly computed from the derivatives of the kernel [45].

Each particle features a uniform mass mi and a volume

Vi = mi

ρi
(2.17)

where ρi is the density of the particle. The distance between two particles is defined by the

vector

Xi j = Xi −X j (2.18)

whose components in the Cartesian coordinate system are Xα with α= [X ,Y , Z ]. To simplify

the notation, the approximated function f and kernel W are expressed as

fi = f (Xi ) ; fi ,α = ∂ fi

∂Xα
(2.19)

and

Wi j =W
(

Xi j ,h
)

; Wi j ,α = ∂Wi j

∂Xα
. (2.20)

The Laplacian of the function ∇∇∇2 f is computed according to Morris et al. [61] in order to

conserve the linear momentum:

∇∇∇2 fi =
N∑
j
ξi j

(
fi − f j

)
V j (2.21)
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where

ξi j =
1
2

(
W̃i j ,α−W̃i j ,α

)
Xi j ,α∥∥Xi j

∥∥2 +10−4h2
. (2.22)

In the present work, the quintic Wendland kernel used by Fatehi and Manzari [20] is chosen

Wi j = 21

2πh3 L
(

Xi j
)(

1− ‖Xi j‖
h

)4 (
4
‖Xi j‖

h
+1

)
; (2.23)

L
(

Xi j
)={

1 if‖Xi j‖ < h,

0 otherwise.
(2.24)

This kernel is used with a constant smoothing length h = 2.6Xref where Xref is the reference

particle spacing.

The derivatives of the standard SPH formulation are not consistent for a non-uniform particle

distribution. Therefore, the FPM formulation proposed by Chen and Beraun [14] and Liu et

al. [46] is applied. This approach is based on the Taylor series expansions of the function f ,

which is weighted by the SPH kernel

N∑
j

f j Wi j V j = fi

N∑
j

Wi j V j + fi ,α

N∑
j

X j i ,αWi j V j (2.25)

and its derivatives

N∑
j

f j Wi j ,βV j = fi

N∑
j

Wi j ,βV j + fi ,α

N∑
j

X j i ,αWi j ,βV j (2.26)

to compute the renormalized FPM kernel[
W̃i j

W̃i j ,β

]
=

[ ∑N
j Wi j V j

∑N
j X j i ,αWi j V j∑N

j Wi j ,βV j
∑N

j X j i ,αWi j ,βV j

]−1 [
Wi j

Wi j ,β

]
. (2.27)

2.2.2 Discretization

The water flow is assumed weakly compressible and inviscid. The hydrodynamics equations

are built according to the energy-based framework of Fang et al. [19]. The flow motion is

governed by the governing equations (2.10) and (2.11), which are discretized following the

FPM formulation:

Dρi

Dt
= ρi

N∑
j

(
Ci ,β−C j ,β

)
W̃i j ,βV j (2.28)
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and

ρi
DCi ,α

Dt
=

N∑
j

[
pi W̃i j ,α+p j

(
3

4
W̃i j ,α− 1

4
W̃ j i ,α

)]
V j +ρi gα. (2.29)

The positions of the particles are derived from

D Xi ,α

Dt
=Ci ,α (2.30)

while the pressure is derived from the equation of state (2.14).

2.2.3 Introduction of diffusive terms

For reducing the numerical oscillations and stabilizing the simulation, the diffusive terms M1,

M2 and A are introduced in the mass equation

Dρi

Dt
= Ei ⇒ Dρi

Dt
= Ei +M1i +M2i (2.31)

and linear momentum conservation equation

DCi ,α

Dt
= Fi ,α⇒ DCi ,α

Dt
= Fi ,α+ Ai ,α. (2.32)

The damping of the spurious oscillations in the pressure field proposed by Fatehi and Manzari

[20] is applied to (2.31). The terms

M1i =−ρi∆t
N∑
j

(
pi ,α−p j ,α

)
W̃i j ,αV j ; (2.33)

pi ,α =
N∑
j

(
p j −pi

)
W̃i j ,αV j (2.34)

and

M2i = 2ρi∆t
N∑
j
ξi j

(
pi −p j

)
V j (2.35)

represent two different formulations for the approximation of the Laplacian of the pressure.

The difference between M1 and M2 is used as a numerical filter to damp the pressure oscilla-

tions.
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The artificial viscosity proposed by Molteni and Colagrossi [56]

Ai ,α = 0.01hCref

N∑
j

2

1+ V j

Vi

L
((

Ci ,β−C j ,β
)

Xi j ,β
)
ξi j

(
Ci ,α−C j ,α

)
V j ; (2.36)

L
((

Ci ,β−C j ,β
)

Xi j ,β
)={

1 if
(
C j ,β−C j ,β

)
Xi j ,β < 0,

0 otherwise
(2.37)

is applied to (2.32) to damp spurious oscillations which appear when SPH is applied to weakly

compressible liquid.

2.2.4 Time integration

The time integration of the governing equations is solved with a modified Verlet scheme

introduced by Molteni and Colagrossi [56]


C n+1/2
α =C n

α + ∆t
2

(
F n
α + An

α

)
X n+1/2
α = X n

α + ∆t
2 C n

α

ρn+1/2 = ρn + ∆t
2

(
E n +M n

1 +M n
2

) ⇒



C n+1
α =C n

α +∆t
(
F n+1/2
α + An+1/2

α

)
⇓
X n+1
α = X n+1/2

α + ∆t
2 C n+1

α

⇓
ρn+1 = ρn+1/2 + ∆t

2

(
E n+1 +M n+1

1 +M n+1
2

)
(2.38)

This modified Verlet scheme evaluates the variables at the midtime n+1/2, which corresponds

to the time step ∆t/2 = (
t n+1 − t n

)
/2. Then, the velocities are computed at the next time

step n +1 and used to update the positions of the particles. Finally, the density is evaluated

according to the new velocities and positions.

During the simulation, the time step ∆t is updated to fulfill the Courant Friedrichs Lewy (CFL)

criteria defined as

(Cref +Cmax)
∆t

h
≤ max(CFL) (2.39)

2.2.5 Shifting strategy

At the end of each time step, the particle shifting applies a small displacement δX to all the

particles. This displacement is computed by

δXi = 0.0125Cmax∆tRi (2.40)

where Ri is the shifting vector, which depends on the location of the neighboring particles.

The updated values of velocity and pressure are extrapolated from the particles displacements

knowing the gradients at the former particles positions.
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The purpose of the shifting strategy is to restore a more uniform particles distribution. An

outline of the shifting strategy is presented in Figure 2.2 for two particles: one being in the

bulk flow and the other one being close to the free surface. In the second case a particular

attention is paid to avoid an artificial spread of particles through the free surface.

Figure 2.2 – The shifting strategy restores a more uniform particles distribution. At the end
of each time step, a small displacement is applied to all the particles. These displacements
depend on the particles location to ensure that the particles do not spread artificially through
the free surface.

The previous work of Vessaz et al. [78] has shown the importance of using a shifting strategy,

which depends on the particle location. For example, the shifting method introduced by Xu et

al. [83] is well suited for the bulk flow because it was developed for confined flows and applied

to ISPH simulations of a lid-driven cavity. In the Xu et al. [83] method, the shifting vector is

given by

Rxu,i =
N∑
j

(
r̄i

r j i

)2

n j i ; (2.41)

r̄i = 1

N

N∑
j

r j i (2.42)

where r j i = ‖X j i‖ and n j i = X j i /r j i describe respectively the absolute distance and the unit

vector between particles i and j . Jahanbakhsh et al. [31] extended the method of Xu et al.

[83] for the simulation of a rotating square patch of fluid. To mitigate the artificial spread

of particles through the free surface, the neighboring particles used to compute the shifting

vector are reduced. In the Jahanbakhsh et al. [31] method, the shifting vector is given by

Rjah,i =
N∑
j

(
Xref

r j i

)2

L
(
Xref − r j i

)
n j i ; (2.43)

L
(
Xref − r j i

)={
1 if Xref − r j i ≥ 0,

0 otherwise.
(2.44)
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In the present study, a new shifting strategy is followed. The proposed shifting vector is

computed in two steps. The first step

R̃i =
N∑
j

X 2
ref +λ

(
(r̄i )2 −X 2

ref

)
(
r j i

)2 H
(
Xref +λ (h −Xref)− r j i

)
n j i (2.45)

corresponds to a linear blending between the former shifting vectors (2.41) and (2.43) accord-

ing to a blending function λ. The second step

Ri = R̃i −
[
(1−λ)(R̃i ·nF S)nF S

]
(2.46)

reduces the shifting according to the normal to the free surface

nF S =
∑N

j ∇∇∇W̃i j V j∥∥∥∑N
j ∇∇∇W̃i j V j

∥∥∥ . (2.47)

The blending function λ provides an estimation of the location of the particles: if λ= 0, the

particle is on the free surface, and if λ = 1, the particle is in the bulk flow. The blending

function is computed by

λ= L (Si ) ·Sin; (2.48)

L (Si ) =
{

min(Si ,1)−0.8
0.2 ifSi > 0.8,

0 otherwise
(2.49)

where Si is the Shepard coefficient defined as

Si =
N∑
j

Wi j V j . (2.50)

The value of Sin is an empirical estimation imposed at the particles inlet and kept constant

during the simulation. In the present work, the value of Sin is linearly interpolated between

the jet axis (Sin = 1) and the jet surface (Sin = 0).

2.2.6 Boundary conditions

Solid boundary

Three layers of dummy particles are located under the solid boundary to ensure that the

kernel of the fluid particles is complete. Each dummy particle has a constant mass and

reference spacing, which are equal to their corresponding fluid values. The boundary location

is defined by the normal vector nB and the distance d1. The physical properties of the dummy
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particles are computed from a ghost sampling in the fluid region, which follows the boundary

representation of Adami et al. [1]. An outline of the velocity computation is presented in

Figure 2.3 in the case of a no-slip wall.

h

d
1

d
2

C
B

U
B

C
G

n
B

Figure 2.3 – Outline of the solid boundary, represented by three layers of dummy particles
under the solid limit. The boundary velocity of the dummy particle CB is computed from the
ghost velocity CG in the case of a no-slip wall with a given boundary velocity UB . The distance
d1 is between the dummy particle and the boundary and d2 between the latter and the ghost
sampling location. The normal vector to the boundary is nB and h is the smoothing length.

In this example, the ghost velocity is computed from a Shepard interpolation in the neighbor-

ing fluid particles

CG ,i =
∑N

j C j Wi j V j∑N
j Wi j V j

(2.51)

In order to ensure the proper location of the interface, this velocity is assumed to be imposed

at d2, the distance between the solid wall boundary and the center of the kernel volume in the

fluid region

d2,i =
3(h −d1,i )

8
∀d1,i ∈ ]0,h[ (2.52)

Consequently, the boundary velocity of the dummy particle is computed by

CB ,i =UB ,i +
d1,i

d2,i
(UB ,i −CG ,i ) (2.53)

which improves the boundary treatment in the case of a no-slip wall with a given boundary

velocity UB ,i .
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Inlet boundary with damping zone

The inlet boundary condition is represented by three layers of dummy particles located above

the inlet surface to ensure that the kernel of the fluid particles is complete. These inlet particles

have a prescribed velocity and move according to the time step value. When an inlet particle

crosses the inlet surface, a fluid particle is injected at its location and the inlet particle is moved

back of a 3Xref distance. In order to prevent the pressure waves reflection on the inlet surface,

a damping zone is applied on the first 20% of the jet length. This damping zone is inspired

from the perfectly matched layer method described by Atkins [6]. Inside the damping zone

the mass and momentum equations are modified as follow

Dρi

Dt
= Dρi

Dt
− (
ρi −ρref

) γ

∆t
(2.54)

and

DCi ,α

Dt
= DCi ,α

Dt
− (

Ci ,α−Cmax,α
) γ

∆t
(2.55)

where γ is the damping coefficient. This coefficient is equal to one at the top and decreases

quadratically to zero at the bottom of the damping zone.

2.3 Finite Volume Particle Method (FVPM)

2.3.1 Formulation

The FVPM formulation is based on the Sheppard interpolating or shape function. This function

is zero-order consistent and is defined as

ψi (X ) = Wi (X )

σ (X )
(2.56)

where Wi (X ) =Wi (X −Xi ,h) is the kernel function and σ (X ) =∑
j W j (X ) is the kernel sum-

mation. The spatial resolution of the interpolation is given by the smoothing length h, which

is imposed by the initial spatial resolution h = 0.75Xref. The spatial and temporal derivatives

of the Sheppard shape function are expressed by

∇ψi = ∇Wiσ−∇σWi

σ2 (2.57)

and

∂Wi

∂t
=

∂Wi
∂t σ− ∂σ

∂t Wi

σ2 =−Ẋi ·∇Wi . (2.58)

In the present study, a rectangular top-hat kernel is used to compute the interaction vectors,
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which reads

Wi (x) =
1 ‖X −Xi‖∞ ≤ h

0 ‖X −Xi‖∞ > h
(2.59)

A 2-D example of particles interactions with rectangular support is given in Figure 2.4(a). The

top-hat kernel is less smooth than a bell-shaped kernel as shown by the contours of the Shep-

pard shape function given in Figure 2.4(b). However, Quinlan and Nestor [70] demonstrated

that a top-hat kernel allows a fast and exact computation of the interaction vector in 2-D with

a circular support. The rectangular support is used to simplify the geometrical computation

in 3-D [33].

(a) (b)

i

2h

Figure 2.4 – Rectangular support kernels and overlapping regions (a) plotted with the contour
of Sheppard shape function for the particle i and top-hat kernels (b) [30].

2.3.2 Discretization

The governing equations (2.10) and (2.11) can be written as the Partial Differential Equation

(PDE)

∂U

∂t
+∇·F (U ) = 0 (2.60)

where U = {
ρ,ρC

}
represents the conserved variables and F = {

ρC ,ρCC −σ}
is the flux func-

tion.

In FVPM, the Sheppard interpolating or shape function ψ is used to discretized the conserva-

tive form of the PDE∫
Ω

∂U

∂t
ψi dV +

∫
Ω
∇·Fψi dV = 0 (2.61)

where Ω represents the whole computational domain and dV an element of volume. After
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some mathematical operations [30], the PDE is simplified as

d

d t
(Ui Vi )+

∑
j

1

2

(
Ui +U j

) · (Ẋi ·Γ j i − Ẋ j ·Γi j
)+∑

j

1

2

(
Fi +F j

) · (∆i j +Bi j
)= 0 (2.62)

where Ẋ is the particle velocity and Bi j is the boundary interaction defined by Dilts [18]

Bi j = Ai j + A j i =
∫
∂Ω
ψ jψi ndS. (2.63)

In equation (2.62),∆i j represents a weight vector

∆i j =Γi j −Γ j i (2.64)

which depends on the interaction vector between particles i and j

Γi j =
∫
Ω

ψi∇W j

σ
dV =

∫
Ω

Wi∇W j

σ2 dV. (2.65)

Quinlan and Nestor [70] demonstrated that a top-hat kernel allows a fast and exact computa-

tion of the interaction vector in 2-D with a circular support. In 3-D, Jahanbakhsh et al. [33]

showed that the use of top-hat kernel with a rectangular support reduces significantly the

geometrical computations, to compute the integral of (2.65). The latter is simplified as

Γi j =−
m∑
l

(
∆Sl

σ+
l σ

−
l

)
(2.66)

where m is the number of partitioned rectangles, ∆S represents the surface vector of the

partitions, σ− and σ+ are the summation kernel inside and outside the surfaces respectively.

An outline of the 2-D computation of (2.66) is given in Figure 2.5, where the rectangular

partitions are reduced to lines segments.

ΔS

i

j1

1

1

2

2

3

3
2

2

2

=

1=

Figure 2.5 – Outline of the intersection volume between particles i and j [30].
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2.3.3 Inviscid flux

For reducing the numerical oscillations and stabilizing the simulation, artificial viscosity has

to be introduced [58]. In FVPM, the AUSM+ approach followed by Nestor et al. [63] is applied.

Therefore, equation (2.62) is rearranged following Jahanbakhsh [30] to exhibit the inviscid

terms by decomposing the flux function as

F =Q +P −G (2.67)

where Q = {
ρC ,ρCC

}
, P = {

0, p I
}

and G = {0, s}. Equation (2.62) becomes

d

d t
(Ui Vi )+

∑
j

((
Q −U Ẋ

)
i j +Pi j

)
·∆i j −

∑
j

Gi j ·∆i j = 0. (2.68)

In order to damp the spurious numerical oscillations,
(
Q −U Ẋ

)
i j and Pi j are computed using

the AUSM+ scheme of Liou [42] and a correction term is applied to the mass flux as described

in [30]. The expression of the deviatoric stress Gi j is given by

Gi j =µ∗
(
∇̃Ci j +

(∇̃Ci j
)T

)
(2.69)

where µ∗ is the artificial dynamic viscosity, Ci j the averaged velocity between particles i and j

and ∇̃ the gradient operator obtained from weighted least square to avoid double summation

of gradient operator [30].

In order to avoid the checker-board oscillations due to pressure and velocities computed at

the same computational node, a correction term Ri j ·∆i j is added to the mass conservation

equation. The correction coefficient Ri j is computed according to Jahanbakhsh [30]

Ri j =
(∇pi +∇p j

2
−∇̃pi j

)
∆t (2.70)

where

∇pi = 1

Vi

∑
j

(
pi +p j

2

)
∆i j (2.71)

and ∇̃p is computed at the interface of particles i and j using the gradient operator obtained

from weighted least square to avoid double summation of gradient operator.

2.3.4 Time integration

The time integration is performed using a second-order explicit Runge-Kuta scheme. First,

the field variables are evaluated at the midtime n +1/2

U n+1/2 =U n −∇·F
(
U n) ∆t

2
(2.72)
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which corresponds to the time step ∆t/2 = (
t n+1 − t n

)
/2. Then, the fluxes are computed

according to the midtime. Finally, the field variables at the next time step n +1 are evaluated

using the intermediate fluxes

U n+1 =U n −∇·F
(
U n+1/2) ∆t

2
. (2.73)

The time step value ∆t is updated to fulfill the CFL criteria defined as

∆t = CFL ·min

(
h

a +‖Ci‖
)

. (2.74)

2.3.5 Particle velocity correction

FVPM is an ALE method, which means that ẋi , the velocity of the particle i , could be prescribed

arbitrarily. In the present study, the fluid particles velocity are set equal to the flow velocity

plus a correction vector

Ẋi =Ci + Ẋ ′
i . (2.75)

The correction vector is defined by

Ẋ ′
i = 0.4

(
h

Cmax

)∑
j
Ω∗

i j

Γi j −Γ j i∣∣Γi j −Γ j i
∣∣2 (2.76)

whereΩ∗
i j represents an interaction volume between particle i and j . Like the particle shifting

strategy in FPM, the particle velocity correction is applied to ensure a uniform distribution of

particles in the flow and avoid particles clustering. To compute an interaction with another

fluid particle,Ω∗
i j is defined by

Ω∗
i j =Vi ∩V j (2.77)

where Vi ∩V j represents the intersection volume between the volumes of particle i and j . In

the case of an interaction with a wall boundary particle, the interaction volume is increased

to prevent the penetration of the fluid particles through the solid boundary. The latter is

expressed as

Ω∗
i j = 50

(
2Vh,i ∩Vh, j

(2h)3

)2 (
Vi ∩V j

)
(2.78)

where Vh,i ∩Vh, j represents the intersection volume between the kernels of particle i and j .

25



Chapter 2. Computational Model

2.3.6 Boundary conditions

Free surface boundary

One advantage of FVPM compared to FPM is that the free surface particles are known precisely.

Indeed, the following condition

Si =
∫
∂Ω
ψi ndS =

∫
Ω
∇ψi dV =∑

j
∆i j = 0 (2.79)

highlights the interior fluid particles. Therefore, the free surface particles are identified when

Si do not vanish [70] and the normal vector to the free surface is given by

ni = Si

‖Si‖
. (2.80)

In the present study, the pressure of the free surface particles is imposed to zero. To take into

account the free surface displacement, Jahanbakhsh [30] expressed the change of volume as

dVi

d t
=∑

j

(
Ẋ j ·Γi j − Ẋi ·Γ j i

)+ Ẋi ·Si (2.81)

and the impermeability condition as

Ẋi ·ni =Ci ·ni . (2.82)

To avoid the artificial spread of particles through the interface, the particle velocity correction

is modified for all the free surface particles. Therefore, the correction vector (2.76) becomes

Ẋ ′
i = Ẋ ′

i −
(

Ẋ ′
i ·ni

)
ni . (2.83)

Solid boundary

To impose the solid boundary condition, one layer of wall boundary particles is located on the

interface. In comparison with FPM where three layers of boundary particles are located under

the solid boundary, FVPM solid boundary representation is able to model complex geometries

exactly e.g. the sharp edge of the bucket splitter. The wall boundary particles have the property

of the fluid particles, i.e. their pressure and stress are computed from governing equations of

the fluid. However, their velocities C and ẋ are imposed equal to the wall velocity to ensure

that the wall boundary particles remain fixed on the solid interface. Moreover, no special

treatment has to be applied to the governing equations of the fluid particles close to the solid

boundary. Indeed, they are considered as interior particles since Si = 0. Consequently, the
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force applied on the boundary is given by

fB ,i =
∑

j∈fluid

(−pi j I + si j
) ·∆i j . (2.84)

Inlet boundary

The inlet boundary condition is represented by three layers of dummy particles located

above the inlet surface like in FPM. These inlet particles have a prescribed velocity and move

according to the time step value. When an inlet particle crosses the inlet surface, a fluid

particle is injected at its location and the inlet particle is moved back of a 3Xref distance.

2.4 SPHEROS

2.4.1 Main features and applications

SPHEROS is a particle-based software developed at EPFL since 2010 by Jahanbakhsh et al. [32]

and Vessaz et al. [76]. SPHEROS stands for SPH and erosion. Its aim is to simulate the silt

erosion phenomena occurring in hydraulic machines, and especially in Pelton turbines. This

software features SPH, FPM and FVPM solvers for the fluid flow. The simulation of the erosion

is performed using the FVPM solver and includes the material deformation, mass removal

and rigid spherical silt particles motion [30]. In order to validate this software, different

applications and test cases have been investigated:

• rotating square patch and lid-driven cavity [31],

• 2-D impinging jet [32],

• 3-D impinging jet [75, 78],

• orbital shaking [76],

• steady bucket flow [77],

• square cylinder, sedimentation, elastic gate, erosion studies [30],

• and many other e.g. fountain, dam break, water wheel and Pelton injector.

To perform simulations of millions of particles in a reasonable computing time, SPHEROS

is designed for massively parallel computing. It is developed in C++ to take the advantage

of object-oriented programming and use the Message Passing Interface (MPI) library from

MPICH2 to parallelize the computation. The parallel Input and Output (I/O) is performed

by the HDF5 library to efficiently load and store the results. This library is designed to store,

access, analyze, share, and preserve diverse and complex data in heterogeneous computing

27



Chapter 2. Computational Model

and storage environments. The parallel I/O driver of HDF5 reduces access time on parallel

systems by reading/writing multiple data streams. An octree algorithm is applied to identify

the neighbors of each particle at the beginning of each time step. The computational domain

is decomposed into a fixed number of subdomains using a recursive multi-section algorithm.

The domain decomposition strategy presented in Chapter 3 is applied during the simulations

to dynamically balance the particles load in the subdomains.

The efficiency of SPHEROS is studied by a weak scaling analysis, which reports the computing

time with respect to the number of cores keeping the load per core constant. This analysis

is based on FVPM simulations of the liddriven cavity and run on the Lemanicus BG/Q at

EPFL. The BG/Q is an IBM supercomputer, which features one rack of 1’024 sixteen-cores

computing nodes PowerA2 at 1.6 GHz, 16 GB of memory per computing node and a 5D torus

communication network. The load per subdomain is set to 253 particles, which means that

the weak scaling simulations feature between 15’625 and 256’000’000 fluid particles. The

evolution of the computing efficiency η is presented in Figure 2.6 between 1 core and the full

Lemanicus BG/Q i.e. 16’384 cores. The efficiency decreases linearly between 1 and 64 cores.

Then, an efficiency around 80% is highlighted between 64 and 16’384 cores.

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384
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Figure 2.6 – Weak scaling performed on the Lemanicus BG/Q at EPFL.

2.4.2 Octree neighbor search

In particle based method, each particle has a close interaction with its neighboring particles,

which imposes to identify the neighbors of each particle at the beginning of each time step.

However, basic search methods represent a significant computational cost i.e. O(N 2) for

N particles. Therefore, more efficient search algorithms such as Verlet list or octree, are

investigated.
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On the one hand, the Verlet list algorithm is usually chosen in SPH codes [22]. In this method,

the computational domain is uniformly divided into numbers of subdivisions, see Figure

2.7(a). In this case, the distance check is performed for a limited number of particles which

are placed in the close-enough subdivisions. This method is very efficient for simple particle

systems. On the other hand, octree search algorithm [73] is able to adapt subdivisions at the

location of the particles. With this method, the root octree recursively splits the maximal

problem domain into eight octants, see Figure 2.7(b). The method is called "complete octree"

if the branches at the end of the tree contain individual particle [46]. The 2-D complete tree, i.e.

quadtree, is shown in Figure 2.7(c). To profit both efficiency and adaptivity, the "incomplete

octree" method stops the decomposition when the subdivision size is lower or equal to 2h, see

Figure 2.7(d). Defining M as the average number of particles per subdivision, the construction

and access complexities of the Verlet list, complete octree and incomplete octree algorithms

are summarized in Table 2.1.

(c) Complete Quadtree

≤2h

(d) Incomplete Quadtree

(b) Octree Decomposition

2h

(a) Verlet List

Figure 2.7 – Schematic subdivision of a computational domain: (a) the Verlet list, (b) the 3-D
octree, (c) the complete quadtree and (d) the incomplete quadtree. In (a) and (d), h represents
the smoothing length [76].

Table 2.1 – Complexity of different search algorithms [76].

Complexity Verlet list complete octree incomplete octree

Access O(N /M) O(N log(N )) O(N /M log(N /M))
Construction O(1) O(log(N )) O(log(N /M))
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To implement the incomplete octree search algorithm in SPHEROS, three different methods

have been examined. First, the particle-wise method, relies on a loop over the list containing

all particles. To perform the neighbor search, the neighboring data particles present in the

surrounded branches, need to be loaded from the main memory. Similarly, the neighboring

data particles present in the surrounded branches, need also to be loaded from the main

memory. In the worst case, it results that the data have to be accessed from the main memory,

instead of cache memory, which is time consuming. Second, the branch-wise method relies on

a loop over the incomplete octree branches. Using this method, only one load of the particles

data presented in the surrounding branches is required to complete the search process for

each particle in a given branch. As the required data are located into the cache, the benefit of

this method is that less data have to be loaded from the main memory, which is time saving.

Third, the modified branch-wise method relies on the branch-wise method with a modified

incomplete octree. According to Monaghan [58], the convenient value for the branch size is 2h.

As this criterion is not always achieved with the branch-wise method, the latter is modified in

order to always reach this value. Therefore, the smallest branch size is set to 2h and the size of

upper branches are set accordingly. The time measurements for the three search methods are

given in Figure 2.8. For this purpose, particles were distributed randomly inside a unit cube

and then the search time was measured. These measurements were performed on an Intel

Xeon-based processor.
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Particle-wise method
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         method

Figure 2.8 – Search time measurements for the three search methods [76].

2.4.3 Parallelization

In the present study, the domain decomposition is integrated in SPHEROS. During the initial-

ization process, the whole domain is decomposed into nd1×nd2×nd3 subdomains, as shown

in Figure 2.9(b). Each subdomain is then assigned to a specific processor, where the latter can
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read its own particles position, velocity and density to proceed the computation. Since each

subdomain is assigned to a specific processor, linkages between processors are mandatory

and each subdomain needs the particle information of its neighboring subdomains. These

required data are obtained by expanding the subdomain, followed by the recording of the over-

lap region on its neighbors. The overlap region is responsible for sending all corresponding

data to the appropriate subdomain. This process is illustrated in Figure 2.9(c) and (d). The

expansion size determines the amount of data sent to the subdomain of interest i.e. the higher

the expansion, the higher the number of particles has to be sent. The subdomain 2 expands

and overlaps all the other subdomains, see Figure 2.9(c). Then, all others subdomains send

the information about the particles, colored in black, to subdomain 2, as depicted in Figure

2.9(d).

subdomain 1 subdomain 2 subdomain 3

subdomain 4 subdomain 5 subdomain 6

2h 2hsubdomain 2

core 1core 0 core 2

core 4core 3 core 5

(b)

(d)

(a)

(c)

Figure 2.9 – Domain decomposition and overlapping subdomains [76].

The MPI library is used in SPHEROS to handle inter-processor communications and syn-

chronization. The communication process, based on the aforementioned strategy, has the

advantage of having autonomous processors, more suited for massively parallel simulations.

Moreover, point-to-point communication with non-blocking MPI_Isend and MPI_Irecv is used,

which enables the code to overlap communication and computation.

As the particles are not fixed in space and could move freely between the subdomains, it

is required to establish a particles migration procedure. To handle this type of migration,

particles are divided in two groups called "active" and "inactive" groups. The active group
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contains particles that belong to the subdomain of interest and the inactive group contains the

received particles which belong to its neighboring subdomains. At the beginning of each time

step and after the communication procedure, both groups of particles are checked in two steps.

First, all inactive particles are added to the active group. Second, all active particles, which

are out of range of the subdomain of interest, are transferred to the inactive group. To avoid

particle accumulation, inactive particles are removed before starting a new communication

process.

2.4.4 Solver implementation

The simulation parameters and solvers definition are written in a control text file, which

is read by SPHEROS at the beginning of the simulation. This file contains the following

sections: container, domain, state equation and solvers. The container includes the name of

the simulation, the parameters for the time step computation, the export of the results and

the log file of the solver. The domain section contains the domain size and decomposition

as well as the adaptive domain decomposition parameters. The state equation includes the

parameters for the equation of state (2.14). The solver sections contain the definition for each

solver e.g. fluid, inlet, wall boundary and sample for the simulation of an impinging jet on a

flat plate or Pelton buckets.

After loading all the required parameters for the computation from the control text file, the

initial particle location and reference spacing is loaded from HDF5 or text files. Then, the

variables data are shared with the neighboring subdomains and a search for the neighboring

particles is performed. Next, the solver variables are initialized for the first iteration and the

initial state of the computation is saved in the HDF5 results files. Finally, the computation

enters the solver iteration presented in Algorithm 1.
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Algorithm 1 Description of a FVPM solver iteration for a fluid simulation.

for each time step ∆t do
share variables data with the neighboring subdomains
compute Γi j

compute forces f (t )
i =∑

j

(
2µ∗D (t )

i j −p(t )
i j I

)
·∆i j

compute AUSM+

compute mass change rate ṁ(t )
i =∑

j

(
aM (t )

i j ρ
(t )
i j ,AUSM+ni j −R (t )

i j

)
·∆i j

compute volume change rate V̇ (t )
i =∑

j

(
Ẋ (t )

j ·Γi j − Ẋ (t )
i ·Γ j i

)
+ Ẋ (t )

i ·∑ j ∆i j

update momentum (mi Ci )(t+ ∆t
2 ) = (mi Ci )(t ) + f (t )

i
∆t
2

update mass m
(t+ ∆t

2 )
i = m(t )

i +ṁ(t )
i
∆t
2

update volume V
(t+ ∆t

2 )
i =V (t )

i + V̇ (t )
i

∆t
2

update density ρi = mi /Vi and compute pi from equation of state

update particle velocity Ẋ
(t+ ∆t

2 )
i =C

(t+ ∆t
2 )

i + Ẋ ′
i

update position X (t+∆t )
i = X (t )

i + Ẋ (t+∆t )
i ∆t

enforce displacement of the boundary conditions
share variables data with the neighboring subdomains
search neighboring particles

if (ADD is required)
then enter ADD process and search neighboring particles

compute Γi j

compute forces f
(t+ ∆t

2 )
i

compute AUSM+

compute mass change rate ṁ
(t+ ∆t

2 )
i

compute volume change rate V̇
(t+ ∆t

2 )
i

update momentum (mi Ci )(t+∆t ) = (mi Ci )(t ) + f
(t+ ∆t

2 )
i ∆t

update mass m(t+∆t )
i = m(t )

i +ṁ
(t+ ∆t

2 )
i ∆t

update volume V (t+∆t )
i =V (t )

i + V̇
(t+ ∆t

2 )
i ∆t

update density ρi = mi /Vi and compute pi from equation of state
update particle velocity Ẋ (t+∆t )

i
t ← t +∆t
solver iteration output

if (export results is required)
then HDF5 output

compute new ∆t
end for
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3 Adaptive Domain Decomposition

3.1 Recursive multi-section algorithm

The Adaptive Domain Decomposition (ADD) is a useful tool, which enables to fully exploit

the computational power of a cluster by adapting the subdomains size to ensure a uniform

particles load. In particle-based simulations, the load balancing process is usually done by

changing the domains size according to one given direction, e.g. [74] and [16]. In the literature,

two main strategies have been used for 3-D adaptive process of particle-based simulations.

The first one is based on the space filling curves used by Springel [73], which map the 3-D

space into a 1-D curve. The second one is the recursive multi-section algorithm of Ishiyama

et al. [29]. In the present study, the recursive multi-section algorithm is used to partition the

computational domain but the adaptive process is computed by a new approach based on the

real subdomains load instead of using the sampling approach from Guibert et al. [23].

The recursive multi-section algorithm of Ishiyama et al. [29] decomposes the 3-D compu-

tational domain into rectangular subdomains. The recursive multi-section decomposition

performed by this algorithm is presented in Figure 3.1(a) for a given nd1 ×nd2 ×nd3 uniform

decomposition. This decomposition depends on the user-prescribed main directions (1, 2

and 3 instead of X , Y and Z ). The recursive multi-section algorithm first splits the compu-

tational domain in nd1 blocks according to the first direction. Then, each nd1 new formed

block of subdomains are split, independently from each other, in nd2 blocks according to the

second direction. Finally, the nd1 ×nd2 blocks of subdomains are split independently in nd3

subdomains according to the third direction. An example of adapted domain decomposition

using the recursive multi-section algorithm is shown in Figure 3.1(b). The number of block per

main direction is given by nB = {nd1,nd1 ·nd2,nd1 ·nd2 ·nd3} and the number of subdomains

per block is nD = {nd2 ·nd3,nd3,1}. Consequently, the number of interface to move per main

direction is given by nS = {nd1 −1,nd1 (nd2 −1) ,nd1 ·nd2 (nd3 −1)}.
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Figure 3.1 – Uniform domain decomposition (a) and adapted domain decomposition using
the recursive multi-section algorithm (b).

3.2 Adaptive process

During the ADD process, the interfaces between the subdomains are moved to make uniform

the load in the subdomains blocks. In the adaptive process of Guibert et al. [23], the displace-

ment of the subdomains interfaces are computed by a sampling, which probes the particles

number in the computational domain. Although the sampling approximation allows a fast

estimation of the load in the subdomains, a particular attention has to be paid in the case of

highly dispersed flows or highly parallelized simulations. Therefore, in the proposed adaptive

process, the displacements are computed from the real load in the subdomains.

The maximum load in the subdomains blocks Lmax is computed at each iteration of the solver

and for each main direction. If one or several components of the maximum load are greater

than a user-prescribed load limit Llim, the solver enters the adaptive process according the first

main direction involved. When entering the adaptive process, the solver communicates the

particles information from the neighboring subdomains according to the 2h overlap region.

Therefore, each interface between the subdomains blocks can be moved of a maximum

distance mmax = 2h to ensure that the ADD process do not lose particles. Moreover, the

minimum subdomains size is set by dmin = 6h to avoid inefficient computation by increasing

drastically the size of the inactive group of particles.

The adaptive process is applied to each group of subdomains blocks for the main direction of

interest. A group is composed of all the blocks included in the same block at the previous main

direction. An example of a group is shown in Figure 3.2 for the third main direction. According

to this example, the differences between the blocks load and the ideal load are computed for

each interface by
L1 = I −NA

L2 = L1 + I −NB

L3 = L2 + I −NC

(3.1)
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where I = (NA +NB +NC +ND )/nd3 is the ideal load per group. The direction of the interfaces

displacements is imposed by the sign of L. In the case where L = 0, the interface is not moved

during the adaptive process.
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Figure 3.2 – Example of a subdomains group for the third main direction. The number of
particles in the subdomains are NA , NB , NC and ND . The interfaces s1, s2 and s3 are moved by
the adaptive process.

In order to compute the magnitude of the interface displacement, the gradient of load is

evaluated and stored for each interface. This gradient of load is approximated from an imposed

displacement of mmax, and so, is expressed as

G = ∆N

mmax
(3.2)

where ∆N represents the difference of particles numbers that results from the mmax dis-

placement of the interface. As the particles data of the overlapping zone are included in the

subdomains data, no extra particles search is required to evaluate this gradient. In the case

where the gradient of load is equal to zero for an interface, the magnitude of the displacement

is set to mmax.

Knowing the load differences from (3.1) and the approximated gradients from (3.2), the

magnitudes of the interfaces displacements are expressed as
m1 = L1/G1

m2 = L2/G2

m3 = L3/G3

. (3.3)

After computing the displacements in the blocks using (3.3), their magnitudes are limited

to mmax. This limitation is applied to ensure that the interface displacement remains in the

overlapping region of the subdomains, which contains the neighboring informations required

to transfer the particles data. An example of interfaces displacements in a group is presented

in Figure 3.3 for the third main direction.
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Figure 3.3 – Example of the interfaces displacements in a subdomains group for the third
main direction. The displacements of the interfaces are given by m and mmax denotes the
maximum displacement allowed.

To improve the adaptive process, a special treatment is applied to the interfaces which are

linked to an empty subdomains block. When a subdomain block is empty, the displacement is

allowed to be greater than mmax. In the case were both blocks are empty, the displacement

of the interface is computed according to dmin. In the case were only one block is empty, the

displacement is computed according to d f the free distance between the interface and the

particles. In the latter case, the displacement is computed by

m = max
(
d f −h,mmax

)
. (3.4)

At the end of the adaptive process, the size of subdomains are checked to ensure that the

computed displacements will not generate subdomains size smaller than dmin. Then, a

communicate and search process is required to update the active and inactive groups in the

subdomains. Moreover, two additional checks are performed to avoid that the adaptive process

gets stuck. The first check reports if the differences between the computed displacements for

the three last iterations are within 30% for all the interfaces of the main direction. The second

check reports if the number of consecutive iterations for the main direction of interest are

greater than a user-specified value. If at least one of these checks are validated, the adaptive

process can not enter this main direction for a given value of solver iterations.

3.3 Validation

3.3.1 Orbital shaking

The validation of the proposed ADD process is performed on the orbital shaking test case,

described in Figure 3.4. The orbital shaking test case imposes an orbital motion to a cylinder

partially filled with water. The orbital shaking process is often used in biomedical applications

for the growth of cell-cultures in bioreactors. The cylinder’s orientation is fixed in the Cartesian
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coordinate system and a circular motion is imposed to its center around the Z axis. The

diameter of the cylinder is D = 144 mm and the initial water height is Z0 = 75 mm. The

rotational speed of the boundary is set to 85 rpm and the shaking diameter is ds = 11.4 mm,

which corresponds to one of the operating conditions investigated by Reclari [71].

Z

Y

X

Z
0
 = 75 mm

d
s
 = 11.4 mm

D = 144 mm

Figure 3.4 – Description of the orbital shaking test case. The diameter of the cylinder is D , the
initial water height is Z0 and ds is the shaking diameter.

The case study is simulated with the FPM solver of SPHEROS. The interest of the FPM solver is

its ease to capture accurately the waves of the free surface compared to grid-based code. An

example of FPM result is represented in Figure 3.5 using the POV-Ray software to render the

free surface.

Figure 3.5 – Visualization of the SPHEROS result using the POV-Ray rendering software.
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The evolution of the free surface on the cylinder’s boundary is presented in Figure 3.6 for a

spatial discretization of Z0/Xref = 40. The FPM result is first run during 40 cylinder’s revolutions

to obtain a converged flow pattern. Then, 20 revolutions are used to generate the FPM

evolution of the free surface given in Figure 3.6. The FPM result is compared to measurements

performed by Reclari [71]. Despite a larger standard deviation, the FPM result is in good

agreement with the experimental data.
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Figure 3.6 – Evolution of the free surface on the cylinder’s boundary according to the revo-
lutions. Comparison between the measurements from Reclari [71] and the FPM result for a
spatial discretization of Z0/Xref = 40.

In order to validate the ADD process, the orbital shaking is simulated with the spatial dis-

cretization of Z0/Xref = 40 on 16 cores starting from a uniform domain decomposition nd1 = 4,

nd2 = 4 and nd3 = 1. The main directions correspond to the cartesian coordinate system. The

load limit Llim = 5% is chosen for the ADD process. The Figure 3.7 shows the evolution of the

subdomains size according to the position of the cylinder. Thanks to the ADD process, the

motion of the cylinder is followed by looking at the size of the subdomains in Figure 3.7. This

figure also reports the evolution of Lmax the maximum load in the subdomains. In this case,

the maximum load is given by Lmax = Lmax,2. The initial uniform domain decomposition

features a maximum load in the subdomains 8.44 times greater than the chosen load limit.

Then, Lmax remains under Llim for all the other cylinder’s position presented in Figure 3.7.

The evolution of the maximum load is presented in Figure 3.8 as a function of the simulated

time. After only three iterations of the ADD process, the maximum load becomes lower than

Llim. During the simulation, Lmax increases due to the rotation of the cylinder. When Lmax is

greater than Llim, the ADD is activated to reduce the maximum load in the subdomains. The

Figure 3.8 highlights the efficiency of the adaptive process applied to the orbital shaking test

case.
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Figure 3.7 – Size of the subdomains according to the cylinder’s rotations. Lmax denotes the
maximum load in the subdomains and Llim is the imposed load limit for the ADD process.
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Figure 3.8 – Evolution of the maximum load in function of the cylinder’s rotations. Lmax

denotes the maximum load in the subdomains and Llim is the imposed load limit for the ADD
process.

The efficiency of the proposed ADD process, compared to a fixed uniform domain decom-

position, is validated by a strong scaling analysis of the orbital shaking test case. The strong

scaling reports the computing time with respect to the number of cores, keeping the total load

constant. The strong scaling is performed on two different clusters: an IBM blade center and

the Lemanicus BG/Q.

First, the computations are run on an IBM blade center, which consists of 6 blades with 32

cores E5 2670 at 2.6 GHz (hyper threading 2x16) and 32 Gb of memory. The simulated time

corresponds to 1.25 rotations of the cylinder. Two different discretizations Z0/Xref = 40 and

Z0/Xref = 80 are investigated, which feature 256’671 and 782’157 particles respectively. The

computations are run with 2, 4, 8, 16, 32, 64 and 128 cores. The strong scaling analysis given

in Figure 3.9, compares the speed up for the simulation with ADD to the same simulation

with a fixed Uniform Domain Decomposition (UDD). The measured time for the simulations

on 2 cores are chosen as the reference for the speed up curves. Up to 4 cores, there is no

improvement between the ADD and UDD because the uniform decomposition corresponds

approximately to the symmetry axis of the computational domain. Between 4 and 32 cores,

the uniform decomposition shows a stagnation in the computational time. This stagnation is

explained by the lost of efficiency due to the unbalanced load. The ADD presents a satisfactory

slope up to 16 cores, which highlight the efficiency of this strategy. The change of slope

after 16 cores is due to the rather slow blade to blade connection (Ethernet 1 Gb cable). The

simulations with the uniform domain decomposition has a shifted behavior after 32 cores

compared to the ADD simulations. This is explained by the higher number of decomposition

in the X and Y axis, which leads to smaller subdomains sizes.
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Figure 3.9 – Strong scaling analysis of the orbital shaking test case for two different spatial
discretizations. The simulations are performed with a fixed uniform domain decomposition
(UDD) or with the adaptive domain decomposition process (ADD).

Second, the computations are run on the Lemanicus BG/Q, which features one rack of 1’024

sixteen-cores computing nodes PowerA2 at 1.6 GHz, 16 GB of memory per computing node

and a 5-D torus communication network. The orbital shaking is simulated using the FVPM

solver and a spatial discretization of Z0/Xref = 85, which leads to 1’927’260 particles. The

strong scaling is presented in Figure 3.10 for both ADD and UDD between 2 and 16’384 cores.
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Figure 3.10 – Strong scaling analysis of the orbital shaking test case on the Lemanicus BG/Q.
The simulations are performed with a fixed uniform domain decomposition (UDD) or with
the adaptive domain decomposition process (ADD).
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In comparison with Figure 3.9, the Lemanicus BG/Q is more efficient for highly-parallelized

computations due to a better communication strategy. Moreover, the Figure 3.10 highlights

the efficiency improvement of the ADD compared to UDD. Indeed, the adaptive process allows

a computation 3 times faster in average for this case study. However, the decrease of efficiency

for ADD at 16’384 cores highlights the limitation of the recursive multi-section algorithm. In

the latter simulation, the ideal load per core is less than 120 particles. Therefore, the adaptive

process is not able to decrease the maximum load under Llim because the subdomains size is

limited by dmin.

3.3.2 Pelton buckets

The validation of the ADD process is performed on the rotating Pelton buckets test case,

which features a high-speed water jet impinging on three rotating buckets. This test case

is simulated with the FVPM solver of SPHEROS on the Lemanicus BG/Q. The detailed case

study, convergence study and results are presented in Chapter 5. The present study reports the

influence of the domain decomposition and adaptive process on the subdomains load and

computing time. The influence of the domain decompositions 6×6×6, 8×8×8, 32×6×6 and

18×8×8 on the subdomains sizes is highlighted in Figures 3.11(a), (b), (c) and (d). In these

figures, the subdomains sizes are obtained from the converged ADD process on the initial

particles position, which is given in Figure 3.11(e). The maximum load in the main directions

and mean particles number per core are given in Table 3.1 for all the domain decompositions

investigated.

Table 3.1 – Influence of the domain decomposition on the maximum load in the main direc-
tions and mean particles number per core.

Decomposition Lmax,1/Llim Lmax,2/Llim Lmax,3/Llim Nmean

6×6×6 0.77 0.97 0.96 1’856
8×8×8 0.74 0.65 4.28 783

32×6×6 0.73 0.91 4.55 348
18×8×8 0.72 0.93 7.87 348

According to this table, the converged ADD process for the 6×6×6 domain decomposition is

able to reach Llim for all the main directions. However, for the 8×8×8 decomposition, the ADD

process is not able to reduce Lmax,2 under Llim due to the dmin subdomains size limitation.

To perform efficient simulations on the Lemanicus BG/Q, a mean particles number per core

between 300 and 400 is aimed. Different domain decompositions may be used to reach this

goal. The comparison between the 32×6×6 and the 18×8×8 decompositions highlights that

the first one leads to a smaller Lmax. Therefore, the 32×6×6 decomposition is chosen for the

following analysis despite Llim is not reached for Lmax,2.
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Figure 3.11 – Influence of the domain decomposition on the subdomains sizes. The subdo-
mains sizes are obtained from the converged ADD process on the initial particles position.
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The evolution of the maximum load is presented in Figure 3.12 in function of the buckets

position. The maximum load in the first direction reaches the fixed load limit of 20% during

the simulation. However, the maximum load in the second and third main directions are

not able to reach this limit due to the dmin limitation. As expected from the results in Table

3.1, the third main direction presents the highest maximum load during the simulation. The

maximum loads evolve with the buckets position due to the rotation of the geometry and

evolution of the flow pattern.
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Figure 3.12 – Evolution of the maximum load in function of the buckets position. Lmax,i

denotes the maximum load in the subdomains according to the main direction i and Llim is
the imposed load limit for the ADD process.

The evolution of the computing time for a solver iteration is reported in Figure 3.13 in function

of the buckets position for the simulations with ADD and UDD. This computing time is

normalized by the mean ADD time per iteration. In comparison to ADD, the UDD time

increases significantly during the computations, which highlights the efficiency of the adaptive

process. The computing time for the ADD is less than one tenth of the time for a solver iteration.

Therefore, the cost of the ADD for a computation is not significant. Moreover, the number of

ADD iterations divided by the number of solver iterations is equal to 0.2658 for this test case.

The maximum number of consecutive ADD iterations according to a main direction is set to

10 and the number of solver iterations to wait when the ADD get stuck is set to 100. The total

computing time for the simulation with ADD is 75 hours and this time increases to 254 hours

for the simulations with UDD. Consequently, the ADD process decreases the computing time

by a factor 3.4, which corresponds to the value obtained from the strong scaling analysis of the

orbital shaking test case.
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Figure 3.13 – Computing time for a solver iteration in function of the buckets position. Com-
parison between simulations with ADD and UDD.
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4 Impinging Jet on a Flat Plate

4.1 Case study

The purpose of this chapter is to validate that the deviation of the high-speed water jet is

captured properly by the FPM simulations. Therefore, a simplified case study is investigated,

which consists of a jet impinging a flat plate at three different angles. The FPM simulations are

done with the software SPHEROS, developed at EPFL since 2010 for the purpose of efficient

massively parallel simulations [32]. The FPM simulations are validated with grid-based nu-

merical simulations and experimental data obtained by Kvicinsky et al. [41]. The grid-based

numerical simulations were performed with the commercial software ANSYS-CFX by using

Volume of Fluid (VOF) two-phase method.

An outline of the experimental setup is given in Figure 4.1. It consists of a flat plate, which can

tilt around the Y axis of the Cartesian coordinate system. A variable stroke needle controls the

diameter of the high-speed jet generated at the injector nozzle. The inlet section is located at

a length L = 0.1m above the plate center, where the jet is stabilized with a diameter D = 0.03m

and a discharge velocity Cmax = 19.8ms−1. At the inlet section, the velocity profile is imposed

according to the measurements of Kvicinsky et al. [41] for taking into account the perturbation

of the flow by the injector needle, see Figure 4.2.

The experimental data consist of pressure measurements on the flat plate and location of

the free surface for three different impinging angles: θ = 0◦, θ = 30◦ and θ = 60◦. Pictures of

the experimental setup are given in Figure 4.3. In this Chapter the FPM simulations of the

impinging jet using SPHEROS are compared to the CFD and measurements from Kvicinsky et

al. [41]. The free surface location as well as the pressure coefficient

Cp = p −pref
1
2ρrefC 2

max

(4.1)

are used to quantitatively compare the results. All the simulations are run on a Intel Xeon

CPU E5 2670 at 2.6 GHz with 16 cores and 32 Gb of memory. The domain decomposition is

uniform, 4×4×1 in the X , Y and Z directions.
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Figure 4.1 – Outline of the impinging jet test case. The Cartesian coordinate system (X , Y and
Z ) is located on the center of the flat plate. This flat plate can tilt of an angle θ around the Y
axis. The inlet of the jet is located at L, D is the jet diameter and Cmax is the discharge velocity
at the inlet.
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Figure 4.2 – Measured velocity profile on the inlet section [41]. The absolute velocity is C , D is
the jet diameter and Cmax is the discharge velocity at the inlet.
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(a) impinging angle of 0° (b) impinging angle of 30°

(c) impinging angle of 60°

Figure 4.3 – Water jet impinging on the plate at θ = 0◦, θ = 30◦ and θ = 60◦ [38].

4.2 FPM validation

4.2.1 Shifting strategy

The mean Cp profile along the X axis of the flat plate is presented in Figure 4.4 for different

shifting strategies. First, the pressure peak experiences instabilities when no shifting is applied,

which highlights the importance of the shifting strategies. Second, the simulation with the

shifting vector (2.41) from Xu et al. [83] presents a significant increase of the jet diameter

due to the artificial spread of particles through the free surface. This behavior is expected

because this shifting method was developed in the case of confined flows. The simulation

with the shifting vector (2.43) from Jahanbakhsh et al. [31] improves the results. However, the

pressure peak is overestimated compared the measurements. Finally, the simulation with the

proposed shifting vector (2.46) improves the accuracy of the FPM simulation. The efficiency

of this method to avoid the artificial spread of particle through the free surface is highlighted.

Moreover, the pressure profile of the simulation with the proposed shifting fits extremely well

both the measurements and the CFD results.
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Figure 4.4 – Influence of the particle shifting method on the averaged Cp along the X axis of the
flat plate. The pressure peak experiences instabilities when no shifting is applied. The artificial
spread of particles through the free surface is highlighted with the shifting vector from Xu et
al. [83]. The proposed shifting methods improves the accuracy of the simulation to capture
the pressure peak compared to the simulation with the shifting vector from Jahanbakhsh et al.
[31].

4.2.2 Inlet conditions

The influence of the imposed velocity profile at inlet is highlighted in Figure 4.5, which

represents the mean Cp profile along the X axis of the flat plate for different inlet velocity

profiles. The uniform velocity profile does not take into account the disturbance of the flow by

the injector’s needle, and so, produces a standard bell-shaped pressure profile. The imposed

velocity profile from Kvicinsky et al. [41] applies the measured velocity profile from the

experiment to the inlet of the computational domain. This imposed profile was also applied

to the CFD results. Therefore, the FVPM result with the imposed profile fits better the CFD

results and measurements.

At the beginning of the simulation, the computational domain is empty and the water jet

is injected from the inlet. Therefore, the impingement starts with a transient behavior and

then converges to a steady state. A damping zone is used to reduce the pressure waves, which

are reflected from the plate back to the inlet at the beginning of the impingement. In this

damping zone, the governing equations follow (2.54) and (2.55) to damp the flow according to

its reference state. As the θ = 0◦ impinging angle case presents the most reflections of pressure

waves, the time history of Cp at the center of the flat plate is shown in Figure 4.6 for this worst

case. This time history confirms that the pressure oscillations are stabilized quicker with the

damping zone. In the present analysis, the mean Cp profile along the X axis of the flat plate is

used to compare the results to the CFD and measurements. Thus, the mean value is performed

for a time 3 ≤ t Cmax/L ≤ 6 to ensure that the simulations are stabilized.
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Figure 4.5 – Influence of the inlet velocity profile on the averaged Cp along the X axis of the flat
plate for an impinging angle of θ = 0◦. The uniform velocity profile generates a bell-shaped
pressure profile because it does not take into account the disturbance of the flow by the
injector. The imposed profile from Kvicinsky et al. [41] fits properly the CFD results and
measurements.
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Figure 4.6 – Influence of the damping on the time history of Cp at the center of the flat plate.
The pressure waves, which are reflected from the plate back to the inlet, are stabilized quicker
with the damping zone.
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4.2.3 Artificial viscosity

The influence of the artificial viscosity on the averaged Cp along the X axis of the flat plate is

presented in Figure 4.7 for an impinging angle of θ = 0◦. The difference between the simulation

without artificial viscosity, i.e. µ∗ = 0 Pa·s, and the simulation withµ∗ = 0.001 Pa·s is negligible,

which validates the inviscid flow hypothesis. Indeed, the jet deviation depends on the inertial

forces not on the viscous ones. However, in the case where the viscous forces are significant,

i.e. µ∗ = 1 Pa · s, the viscous forces damp the inlet velocity profile, which produces a standard

bell-shaped pressure profile on the flat plate.
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Figure 4.7 – Influence of the artificial viscosity on the averaged Cp along the X axis of the flat
plate for an impinging angle of θ = 0◦. The artificial viscosity influence is negligible when
µ∗ ≤ 0.001 Pa · s.

4.3 Results

4.3.1 Pressure profile

The influence of spatial and time discretizations are investigated in the case of a θ = 0◦

impinging angle. The computing hours and final number of particles are summarized in Table

4.1. According to this table, the elapsed time of a simulation is strongly influenced by the

number of particles, and so, by the prescribed spatial discretization. The time discretization

affects only the computing time of the simulation. However, instabilities appear during

the computation when this value is larger than 0.7. Consequently, a maximum CFL of 0.5

is selected for the following analyses. In the cases where the spatial discretization is not

specifically mentioned, the medium discretization D/Xref = 20 is selected to ensure that the

computational time remains below 5 hours.
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Table 4.1 – Influence of spatial and time discretizations.

D/Xref max(CFL) Computing hours Nfinal

10 0.5 0.89 41’204
20 0.5 3.93 197’255
40 0.5 81.92 1’024’971

20 0.3 6.14 198’025
20 0.5 3.93 197’255
20 0.7 3.43 196’771

The influence of the spatial discretization is analyzed for three different impinging angles;

θ = 0◦, θ = 30◦ and θ = 60◦. The averaged Cp along the X axis of the flat plate are given in

Figure 4.8. The global shape of the pressure profiles is extremely well represented for all the

impinging angles. However, the finer discretization D/Xref = 40 is required to capture properly

the very sharp pressure profile for the θ = 60◦ impinging angle. By increasing the spatial

discretization, the number of particles in the high gradient zone is increased, which improves

the FPM results and increases the computing time.

4.3.2 Free surface location

The free surface location is compared in Figure 4.9 for the three different impinging angles;

θ = 0◦, θ = 30◦ and θ = 60◦. Despite some small oscillations with the coarser resolution, all the

FPM simulations present a good accuracy to capture the free surface location compared to

the measurements and CFD results. For the θ = 60◦ impinging angle, the free surface location

is only compared to the CFD results because the experimental arrangement did not allow

to measure accurately the free surface location. A 3-D visualization of the FPM results is

presented in Figure 4.10. The particles data are first projected on a unstructured grid. Then,

the free surface is computed and exported as a unstructured surface. The rendering is done

with the software POV-Ray, which defines the camera location, light effects and external

components in order to generate the images.

4.3.3 FPM vs FVPM simulations

The averaged Cp along the X axis of the flat plate is presented in Figure 4.11 for an impinging

angle of θ = 0◦, θ = 30◦ and θ = 60◦ and for both FPM and FVPM results. In these simulations,

the spatial discretization corresponds to D/Xref = 40 for both methods. Although the FVPM

is not able to capture properly the pressure peak at 60◦, the FVPM fits better the CFD results

and measurements compared to FPM. However, the FVPM computing time is twice bigger

compared to the FPM computing time. This drawback can be mitigated by increasing the

domain decomposition, i.e. increasing the number of cores required for the simulation.

55



Chapter 4. Impinging Jet on a Flat Plate

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

X / D

[-]

C
p

[-]

 

 

Measurements

CFD Results

D / X
ref

 = 10

D / X
ref

 = 20

D / X
ref

 = 40

θ = 0°

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

X / D

[-]

C
p

[-]

 

 

Measurements

CFD Results

D / X
ref

 = 10

D / X
ref

 = 20

D / X
ref

 = 40

θ = 30°

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

X / D

[-]

C
p

[-]

 

 

Measurements

CFD Results

D / X
ref

 = 10

D / X
ref

 = 20

D / X
ref

 = 40

θ = 60°

Figure 4.8 – Influence of the spatial discretization on the averaged Cp along the X axis of the
flat plate for an impinging angle of θ = 0◦, θ = 30◦ and θ = 60◦.
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Figure 4.9 – Influence of the spatial discretization on the free surface location in the X Z plane
for an impinging angle of θ = 0◦, θ = 30◦ and θ = 60◦.
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Figure 4.10 – Rendering of the FPM simulations of a θ = 0◦, θ = 30◦ and θ = 60◦ impinging jet
using the software POV-Ray.
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Figure 4.11 – Comparison between FPM and FVPM on the averaged Cp along the X axis of
the flat plate for an impinging angle of θ = 0◦, θ = 30◦ and θ = 60◦. The spatial discretization
corresponds to D/Xref = 40 for both methods.
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5 Impinging Jet on Pelton Buckets

5.1 Steady bucket analysis

5.1.1 Case study

The purpose of the present section is to validate that FVPM simulations are able to capture

accurately the deviation of a high-speed water jet by a stationary Pelton bucket. The FVPM

simulations are done with the software SPHEROS, developed at EPFL since 2010 [32, 75].

The FVPM simulations of the flow in a stationary bucket are validated by VOF numerical

simulations and experimental data obtained by Kvicinsky et al. [39]. The wall pressure field in

the stationary bucket inner wall is used to compare the FVPM results with pressure sensors

and VOF results.

In the present study, a high-speed water jet impinges on a stationary bucket at different

impinging angles. An outline of the case study is given in Figure 5.1. The bucket geometry

and the 32 pressure samples location are taken from Kvicinsky et al. [39]. The bucket width is

B2 = 0.09 m and its reference diameter is D1 = 0.315 m. The location of the pressure samples

fits the position of lines X 1 to X 7, Z 1 to Z 5 and D1 to D4. In this stationary analysis, the bucket

is tilted of an angle θ = 72◦, 90◦ or 108◦ around the Z axis. The jet diameter is D2 = 0.03 m and

its axis is in the −X direction at a distance Y =−D1/2. The discharge velocity of the water jet is

Cmax = 28.5 ms−1. The discretization of the bucket geometry into wall particles is performed

using the software ANSYS ICEM. An unstructured triangular mesh is applied to the bucket

inner and outer walls. The maximum edges size of the 2-D triangular mesh are limited to

Xref. The node location are imported into SPHEROS to model the bucket geometry and the

connectivity table is stored for the post-processing of the results.

The FVPM simulations are run on two Intel Xeon CPUs E5 2670 at 2.6 GHz with 32 cores (hyper-

threading 2×16) and 32 Gb of memory. The domain decomposition is 4×4×4 and the domains

size is adapted according to the particles load using the adaptive domain decomposition

strategy from Vessaz et al. [76].
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Figure 5.1 – Outline of the case study. The bucket can tilt of an angle θ around the Z axis.
The inlet of the water jet has a diameter D2 and its axis is in the −X direction at a distance
Y =−D1/2. The 32 pressure samples are located on the bucket inner surface, their location
fits the position of lines X 1 to X 7, Z 1 to Z 5 and D1 to D4.

5.1.2 Convergence study

The influence of the reference particle spacing Xref on the FVPM results is analyzed for an

impinging angle of θ = 90◦. The time history of F /F∗ is shown in Figure 5.2, where F is the

magnitude of the force applied on the bucket and F∗ = 2ρπ(D2/2)2C 2
max is the maximum

force of the water jet. A mean value of the converged force, the computing time as well as the

number of particles at the end of the simulation are given in Table 5.1.

Table 5.1 – Influence of the spatial discretization.

D2/Xref F /F∗ Computing hours Nfinal

10 0.8226 6.17 9’075
20 0.8761 5.55 51’174
30 0.8956 9.55 146’495
40 0.9097 20.92 317’688
50 0.9188 44.33 584’336

According to these results, the convergence of the FVPM results with the refinement of the

spatial discretization is highlighted. However, the computing cost increases significantly with

the spatial discretization. A free surface reconstruction of the water sheet is shown in Figure

5.3 for a discretization of D2/Xref = 30. The free surface location is less influenced by the

spatial discretization compared to the force or pressure measurements.
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5.1. Steady bucket analysis

Figure 5.2 – Time history of the force in a θ = 90◦ stationary bucket: influence of the spatial
discretization.

Figure 5.3 – FVPM simulation in a stationary bucket at an impinging angle of θ = 90◦: free
surface reconstruction using ParaView.
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5.1.3 Results

The pressure coefficient Cp = (p − pref)/(0.5ρC 2
max) is compared to the VOF computations

and measurements from Kvicinsky et al. [39]. The averaged Cp profile along the lines X 1 to

X 7, Z 1 to Z 5 and D1 to D4 are given in Figures 5.4, 5.5 and 5.6 respectively. Three different

discretizations are presented for the FVPM results: coarse D2/Xref = 10, medium D2/Xref = 30

and fine D2/Xref = 50.

The FVPM pressure profiles on the lines X 1 to X 7 fit qualitatively well the VOF and measure-

ments from Kvicinsky et al. [39] despite some quantitative differences. Moreover, the VOF

results present also some quantitative differences in comparison to the measurements, e.g.

lines X 1 and X 2. The difference between the medium and fine FVPM simulations is very small,

which highlights the convergence of the FVPM results according to the spatial discretization.

The FVPM results fits better the measurement close to the impingement zone, i.e. lines X 3 to

X 5 and for the values of Z ≤ D2.

The convergence of the pressure profile is also highlighted by comparing the medium and fine

FVPM results on the lines Z 1 to Z 5. Moreover, the FVPM results fit well the measurements

from Kvicinsky et al. [39]. As highlighted in the comparison on the lines X 1 to X 7, the FVPM

pressure profiles are better predicted close to the impingement zone, i.e lines Z 3 to Z 5 and

for the values of 4.75D2 ≤ X ≤ 5.75D2.

The pressure profile for the diagonal lines D1 to D4 are represented according to L, which

represents the distance between the tip of the bucket and the sample location in the plane

X Z . The convergence of the FVPM results is also highlighted in these diagonal lines and the

shape of the pressure profiles fit well the measurements.

The wall pressure field comparisons between the finest FVPM results of D2/Xref = 50, VOF and

measurements are presented in Figure 5.9 for the three different impinging angles θ = 72◦,

θ = 90◦ and θ = 108◦. The measurements wall pressure field is rough because it is interpolated

by only 32 pressure samples location. The FVPM wall pressure field features more numer-

ical fluctuations compared to VOF. However, these fluctuations decrease when the spatial

resolution is increased (see Figure 5.2). The highest value of Cp is found on the splitter due

to the bucket discretization for both VOF and FVPM. Generally speaking, the FVPM results

for the three different impinging angles fit qualitatively well the VOF computations and mea-

surements. However, some differences are highlighted at θ = 72◦ close to the cut out location.

Finally, FVPM results fit better the measurement than VOF in the center of the bucket inner

wall. Indeed, in this zone the VOF pressure field is more diffusive than the FVPM results.
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Figure 5.4 – Averaged Cp along the lines X 1 to X 7 of the bucket at an impinging angle of
θ = 90◦: influence of the spatial discretization.
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Figure 5.5 – Averaged Cp along the lines Z 1 to Z 5 of the bucket at an impinging angle of
θ = 90◦: influence of the spatial discretization.
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Figure 5.6 – Averaged Cp along the lines D1 to D4 of the bucket at an impinging angle of
θ = 90◦: influence of the spatial discretization.
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5.1. Steady bucket analysis

Figure 5.7 – Comparison of the wall pressure field between experimental (up), VOF (middle)
and FVPM (down) for the impinging angles θ = 72◦.
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Figure 5.8 – Comparison of the wall pressure field between experimental (up), VOF (middle)
and FVPM (down) for the impinging angles θ = 90◦.
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Figure 5.9 – Comparison of the wall pressure field between experimental (up), VOF (middle)
and FVPM (down) for the impinging angles θ = 108◦.
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5.2 Rotating buckets analysis

5.2.1 Case study

The purpose of the present section is to validate that FVPM simulations are able to capture

accurately the deviation of a high-speed water jet by five rotating Pelton buckets. The FVPM

simulations are done with the software SPHEROS, developed at EPFL since 2010 [32, 75].

The FVPM simulations are validated with VOF numerical simulation and experimental data

obtained by Perrig [65].

In the present study, a high-speed water jet impinges on five rotating buckets. An outline of the

case study is given in Figure 5.10 and 5.11. The buckets geometry and the 43 pressure samples

location are taken from Perrig [65]. The bucket width is B2 = 0.08 m and its reference diameter

is D1 = 0.328 m. Five buckets rotate around the Z axis with a rotation speed N = 1’025 rpm.

The five buckets are spaced with an angle of 17.14◦ corresponding to a Pelton runner featuring

21 buckets. The water jet is oriented in the −X direction and its inlet is located at X = 0.185 m,

Y =−D1/2 and Z = 0 m. The operating point simulated corresponds to a discharge coefficient

ϕB2 = 0.233 and an energy coefficient ψ1 = 3.8. The discharge velocity of the water jet is

Cmax = 33.6 ms−1 with a diameter D2 = 0.028 m. At the initial condition, the first bucket has

an angle of θ = 54◦ and the length of the water jet is 0.1 m. The results are saved each 0.5042◦

and the simulation time corresponds to a 160◦ buckets rotation angle.

D
1

D
2

X

Y

θ=90°

Figure 5.10 – Outline of the case study. The buckets are defined by a reference diameter D1

and a width B2. They tilt around the Z axis and their angular position is given by θ. The inlet
of the water jet has a diameter D2 and its axis is in the −X direction at a distance Y =−D1/2.
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Figure 5.11 – Outline of the case study. 30 pressure samples are located on the buckets inner
wall and 13 on the outer wall.

The discretization of the buckets geometry into wall particles is performed using the software

ANSYS ICEM. An unstructured triangular mesh is applied to the buckets inner and outer walls.

The maximum edges size of the 2-D triangular mesh are limited to Xref. The node location are

imported into SPHEROS to model the buckets geometry and the connectivity table is stored

for the post-processing of the results. In the case of an arbitrary Pelton bucket design, the

appendix A proposes a parametric model to generate the buckets geometry using 4 Bézier

surfaces for the inner wall and an offset method for the outer wall.

The FVPM simulations are run on the Lemanicus IBM BG/Q at EPFL, which features one rack

of 1’024 sixteen-cores computing nodes PowerA2 at 1.6 GHz, 16 GB of memory per computing

node and a 5-D torus communication network. The domain decomposition depends on the

spatial discretization of the simulation. The domains size is adapted according to the particles

load using the adaptive domain decomposition strategy developed by Vessaz et al. [76].

5.2.2 Convergence study

Spatial resolution

The influence of the reference particle spacing Xref on the resulting torque is investigated

in Figure 5.12. The evolution of the torque coefficient TED = T /(ρ ·E ·D3
1) in each bucket

as well as the total torque applying on the five buckets in function of the angular position
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is shown in this figure for the finest particles resolution D2/Xref = 50. The convergence of

the FVPM results is highlighted in Figure 5.13, where the evolution of the averaged torque

in one bucket is presented. This averaged torque is obtained by time averaging the torque

in the buckets 2, 3 and 4. The fluctuation of the torque signal decreases when the particles

resolution is increased. Moreover, the onset of the first pressure peak converges to an angle of

72◦ by increasing the spatial discretization. Therefore, the FVPM simulations with a particles

resolution of D2/Xref = 40 and D2/Xref = 50 are considered as converged.

The domain decomposition, the mean computing time per step, the number of time step

as well as the number of particles at the end of the simulation are given in Table 5.2 for

each particles resolution. The domain decomposition is adapted according to the spatial

discretization in order to obtain an initial number of particle per core around 500. The adaptive

domain decomposition strategy adapts the domains size during the computation to ensure a

maximum load difference of 20% between the subdomains. Therefore, the influence of the

particles number on the computing time per time step is decreased. However, the number of

time steps is directly linked to the particles spacing due to the CFL definition given in (2.74). A

free surface reconstruction of the water sheet for a discretization of D2/Xref = 40 is presented in

Figure 5.14. The free surface location is less influenced by the spatial discretization compared

to the torque or pressure measurements.

Table 5.2 – Influence of the spatial discretization.

D2/Xref Decomposition Time per step Nstep Nfinal

10 4×4×4 30.1 7’262 60’167
20 16×4×4 10.2 14’580 211’307
30 24×5×5 16.2 21’814 582’261
40 32×6×6 18.1 29’293 1’243’887
50 38×7×7 20.5 36’886 2’278’456

Sound speed effect

The influence of the sound speed on the resulting torque is investigated in Figure 5.15 for

a spatial discretization which corresponds to D2/Xref = 40. The black curve represents the

FVPM results with the standard value of sound speed a = 10 ·Cmax. The green curve highlights

that the pressure peak at θ = 72◦ is not captured when the sound speed is lower. However,

increasing the sound speed does not improve the results (see the red curve). Indeed, the

simulation parameters such as CFL or artificial viscosity have been tuned for the sound speed

of a = 10 ·Cmax. Moreover, increasing the sound speed will decrease the time step value, which

will increase the computing time.
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Figure 5.12 – Evolution of the torque for each bucket (colors) and total torque (black) in
function of the angular position.

Figure 5.13 – Averaged torque for one bucket in function of the angular position: influence of
the spatial resolution.
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Figure 5.14 – FVPM simulation of five rotating buckets: free surface reconstruction using
ParaView.

Figure 5.15 – Averaged torque for one bucket in function of the angular position: influence of
the sound speed.
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5.2.3 Results

Pressure samples

The pressure coefficient Cp = (p −pref)/(0.5ρC 2
max) is compared to the VOF computation and

measurements from Perrig [65]. The FVPM results are obtained by averaging Cp in the buckets

2, 3 and 4 for the discretization D2/Xref = 50. The time history of Cp for the 43 pressure sensors

are given in Figures 5.16 to 5.22, which correspond to the different zones in the bucket defined

by Perrig et al. [66]. On the inner surface, five different zones are highlighted: the splitter side

of the frontal region, the central region, splitter side of the aft region, the outer side of the aft

region and the outer side of the frontal region. On the outer surface, the pressure samples are

divided in two zones: the splitter edge region and the outer edge region. The RMS fluctuation

of the pressure signals are represented by the light colored area in Figures 5.16 to 5.22.

On the splitter side of the frontal region (see Figure 5.16), the shape of the FVPM pressure

signals fits qualitatively well the VOF computation and measurements except for the sample 1.

However, the sample 1 is located close to the bucket tip and does not contribute significantly

to the torque generation. The numerical fluctuations of the FVPM signals are always larger

compared to the RMS fluctuation of the VOF signals but the impingement early stage is better

predicted with the FVPM results compared to the VOF results, see samples 6 and 7. The tail

of pressure profile is underestimated between θ = 90◦ and θ = 120◦ for the FVPM signals in

sample 3 and overestimated in samples 6 and 11.

The pressure peak at θ = 72◦ is highlighted in the central region (see Figure 5.17). This peak

is also highlighted in the measurement for the sample 14 but the VOF results only capture

a small disturbance of the pressure signals. Despite a small underestimation of the tail of

pressure profile between θ = 90◦ and θ = 130◦, the FVPM results fit qualitatively well the VOF

computation and measurements in this central region.

On the splitter side of the aft region (see Figure 5.18), the samples 4, 5 and 10 feature only

numerical fluctuations due to some water droplets stuck close to the bucket root. The shape of

the pressure samples 8, 9 and 16 fits qualitatively well the VOF computation and measurements

but the tail of pressure profile is also underestimated between θ = 90◦ and θ = 120◦. The

pressure peak at θ = 72◦ is only seen by samples 8 and 9 and its magnitude is smaller compared

to the samples located in the central region.

On the outer side of the aft region (see Figure 5.19), the shape of the pressure signals fits

qualitatively well the VOF computation and measurements but the RMS fluctuations of FVPM

results are always larger than the RMS fluctuations of VOF results. The VOF and FVPM pressure

signals for pressure sample 23 have difficulties to match the measurements, which can be

explained by the lack of water close to the bucket root.

On the outer side of the frontal region (see Figure 5.20), the shape of the pressure signals

fits qualitatively well the VOF and measurements. However, the impingement early stage is
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predicted 5◦ in advance for the samples 17, 18 and 24. The numerical pressure fluctuations

are also larger for the FVPM results compared to the VOF results.

On the splitter edge of the outer surface (see Figure 5.21), the VOF computation fits better

the measurements than the FVPM results. The pressure sample 31 is the only one which

can reproduce the shape of the measurements pressure profile. However, the FVPM results

highlight significant numerical fluctuations compared to the bucket inner surface. The VOF

results feature also some unexpected fluctuations between θ = 100◦ and θ = 140◦.

On the outer edge of the outer surface (see Figure 5.22), both VOF and FVPM have difficulties

to capture the measurements. This difficulty to represent properly the pressure profile on

the outer edge of the outer surface is explained by the lack of particles close to the sampling

locations. The pressure sample 37 is not represented in Figure 5.22 because all the pressure

signals feature a constant zero value.

Consequently, the shape of the FVPM pressure signals on the buckets inner wall fits quali-

tatively well the VOF computation and measurement from Perrig [65]. Moreover, the FVPM

simulation is able to capture the pressure peak at θ = 72◦, e.g. pressure sample 14. However,

the numerical fluctuations of the FVPM signals are always larger than the RMS fluctuations

of the VOF results. These numerical fluctuations are partly explained by the lack of particles

close to the sampling location, e.g. the buckets outer wall.

Wall pressure field

The FVPM wall pressure field on the buckets inner wall is presented in Figure 5.23 to Figure

5.26 for the impinging angles of θ = 57◦,θ = 62◦,θ = 67◦,θ = 72◦,θ = 77◦,θ = 82◦,θ = 87◦,θ =
94◦,θ = 99◦,θ = 104◦,θ = 109◦,θ = 104◦,θ = 119◦,θ = 124◦,θ = 129◦ and θ = 134◦. These

impinging angles have been chosen for the comparison of the free surface evolution in the

following section.

At θ = 57◦, the bucket features the impingement early stage: the pressure field increases on

the bucket tip and cutout. At θ = 62◦ and θ = 67◦, the wall pressure field moves along the

splitter. The pressure peak at θ = 72◦ is highlighted in Figure 5.23. According to Perrig [65],

this pressure peak reached during this initial impact stage depends on the contact area edge

expansion Mach number, the liquid density and the local sound speed in the liquid. Therefore,

the weakly compressible approach of FVPM is better suited to capture this phenomenon

than the incompressible approach of VOF. Between θ = 77◦ and θ = 87◦, the central and aft

region of the bucket feature the highest wall pressure field. Moreover, the FVPM wall pressure

field highlights the impingement of many water droplets (see Figure 5.24), which explains the

fluctuations present in the sampling comparisons in Figures 5.16 to 5.22. Between θ = 94◦

and θ = 114◦, the frontal region features the highest wall pressure field (see Figure 5.25). The

remaining water droplets are evacuated between θ = 119◦ and θ = 134◦ (see Figure 5.26).
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Figure 5.16 – Time history of Cp at the pressure sensors 1, 2, 3, 6 and 7 on the buckets inner
surface, which corresponds to the splitter side of the frontal region of the inner surface.
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Figure 5.17 – Time history of Cp at the pressure sensors 12, 13, 14, 15, 20 and 29 on the buckets
inner surface, which corresponds to the central region of the inner surface.
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Figure 5.18 – Time history of Cp at the pressure sensors 4, 5, 8, 9, 10 and 16 on the buckets
inner surface, which corresponds to the splitter side of the aft region of the inner surface.

79



Chapter 5. Impinging Jet on Pelton Buckets

Figure 5.19 – Time history of Cp at the pressure sensors 21, 22, 23, 27, 28 and 30 on the buckets
inner surface, which corresponds to the outer side of the aft region of the inner surface.
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Figure 5.20 – Time history of Cp at the pressure sensors 17, 18, 19, 24, 25 and 26 on the buckets
inner surface, which corresponds to the outer side of the frontal region of the inner surface.
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Figure 5.21 – Time history of Cp at the pressure sensors 31, 32, 33, 34, 35 and 36 on the buckets
outer surface, which corresponds to the splitter edge of the outer surface.
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Figure 5.22 – Time history of Cp at the pressure sensors 38, 39, 40, 41, 42 and 43 on the buckets
outer surface, which corresponds to the outer edge of the outer surface.

83



Chapter 5. Impinging Jet on Pelton Buckets

Figure 5.23 – Pressure field on the bucket inner wall for the impinging angles of θ = 57◦,θ =
62◦,θ = 67◦ and θ = 72◦.

84



5.2. Rotating buckets analysis

Figure 5.24 – Pressure field on the bucket inner wall for the impinging angles of θ = 77◦,θ =
82◦,θ = 87◦ and θ = 94◦.
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Figure 5.25 – Pressure field on the bucket inner wall for the impinging angles of θ = 99◦,θ =
104◦,θ = 109◦ and θ = 104◦.
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Figure 5.26 – Pressure field on the bucket inner wall for the impinging angles of θ = 119◦,θ =
124◦,θ = 129◦ and θ = 134◦.
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5.3 Free surface evolution analysis

5.3.1 Free surface reconstruction

The FVPM results contain the particles position and fluid properties, e.g. density, pressure and

velocity. In order to reconstruct the free surface location, the algorithm of Zhu and Bridson [85]

is implemented in a C++ code called Particle2Grid. First, an unstructured grid is generated in

the vicinity of the free surface particles. The grid resolution is arbitrarily set as Xref/2. Second,

the distance to the free surface

δ= |X − X̄ |− r̄ (5.1)

is computed for each nodes of the grid featuring a position X . The computation of δ depends

on the weighted average of the nearby particles

X̄ =
N∑
i

W s
i Xi (5.2)

and weighted average of their radii

r̄ =
N∑
i

W s
i ri (5.3)

where W s
i is the weight defined as

W s
i = Wi∑

j W j
. (5.4)

The computation of this weight is performed using the Wendland kernel with a smoothing

length h = 1.3 ·Xref. This kernel is applied to each fluid particle i featuring a position Xi and a

radius ri . Finally, the rendering of the free surface is performed using ParaView and Python

scripts. The unstructured grid containing the free surface distance is loaded in ParaView. A

contour filter is applied to the grid data with the value δ = 0 in order to represent the free

surface. The Python script automatically performs this procedure according to the time step

and defines the camera position, bucket angle, colors and opacity values.

5.3.2 Convergence study

The evolution of the free surface is presented in Figure 5.27 to 5.30 for two different dis-

cretizations: a coarse D2/Xref = 20 and a fine D2/Xref = 40. The bucket angles investigated

correspond to the ones from the wall pressure field analysis given in the previous section. The

free surface evolution is represented in the X Z view for the second bucket. In order to obtain

a proper visualization, the water sheet is represented with a 0.5 opacity and the free surface

located higher than the outer edge plane is discarded.
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θ = 57◦

θ = 62◦

θ = 67◦

θ = 72◦

Figure 5.27 – Influence of the particles resolution on the free surface evolution for the imping-
ing angles of θ = 57◦,θ = 62◦,θ = 67◦ and θ = 72◦. The spatial discretization investigated are
D2/Xref = 20 (left) and D2/Xref = 40 (right).
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θ = 77◦

θ = 82◦

θ = 87◦

θ = 94◦

Figure 5.28 – Influence of the particles resolution on the free surface evolution for the imping-
ing angles of θ = 77◦,θ = 82◦,θ = 87◦ and θ = 94◦. The spatial discretization investigated are
D2/Xref = 20 (left) and D2/Xref = 40 (right).
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θ = 99◦

θ = 104◦

θ = 109◦

θ = 114◦

Figure 5.29 – Influence of the particles resolution on the free surface evolution for the imping-
ing angles of θ = 99◦,θ = 104◦,θ = 109◦ and θ = 114◦. The spatial discretization investigated
are D2/Xref = 20 (left) and D2/Xref = 40 (right).
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θ = 119◦

θ = 124◦

θ = 129◦

θ = 134◦

Figure 5.30 – Influence of the particles resolution on the free surface evolution for the imping-
ing angles of θ = 119◦,θ = 124◦,θ = 129◦ and θ = 134◦. The spatial discretization investigated
are D2/Xref = 20 (left) and D2/Xref = 40 (right).
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The cut of the water jet by the outer edge plane is well represented for both discretization.

At the impingement first stage, i.e. θ = 57◦ and θ = 62◦, pressure waves are generated near

the cutout and reflected in direction of the jet inlet. This phenomenon is due to the flow

compressibility and has a bigger influence for the fine discretization. The disturbance of

the jet since θ = 94◦ is due to the next bucket, i.e bucket 3 and is also well captured for both

resolutions. The evolution of the wet surface is similar for both discretization but the fine

resolution presents the advantage to capture more details of the flow. The outflow of the

previous bucket, i.e bucket 1, features some delay with the coarse discretization at θ = 77◦ and

θ = 82◦. Since θ = 99◦ the flow exits from the cutout. Both resolutions capture this behavior but

more details are highlighted with the fine discretization. The water sheet evolution is overall

well reproduced for both resolutions. However, the fine discretization is better suited in the

case of a full runner simulation with casing interaction. Indeed, the fine resolution predicts

this diverging flow with more accuracy because the size of the water droplets is smaller. An

accurate prediction of the water sheets trajectories is important to prevent the apparition of

the heeling phenomenon, i.e. the decrease of performance due to the impingement of the

water jet on the next bucket. Moreover, the prediction of the water sheet trajectories is also

important to check if any bad interactions with the casing take place.

5.3.3 Results

The relative flow pattern inside the second bucket is compared to the VOF result and flow

high-speed visualization from Perrig [65] in Figure 5.31 to 5.34. The point of view is taken from

the high-speed visualization. The FVPM free surface results feature a spatial discretization

which corresponds to D2/Xref = 40 and a 0.5 opacity is applied to the free surface visualization.

Between θ = 57◦ and θ = 67◦, the water jet starts to impinge the buckets and a small distur-

bance of the water sheet is highlighted in experimental and FVPM results. At θ = 72◦, the water

sheet impinges the central zone of the buckets inner wall. This phenomenon, called water-

hammer by Perrig [65], is well reproduced by FVPM. Moreover, the FVPM results are similar to

the flow visualization. The FVPM water sheet, which is disturbed by the impingement first

stage, impinges on the buckets central zone and produces the pressure peak highlighted in

Figure 5.17. The VOF water sheet remains more compact, which explains the difficulty to

capture the pressure peak and the smoother pressure profile. Between θ = 87◦ and θ = 99◦, the

water jet is perturbed by the next bucket, i.e. bucket 3 and the FVPM water sheet spreads more

on the inner wall compared to VOF. At θ = 104◦, the last portion of the jet arrives on splitter

while the water sheet starts to exit the bucket by the cutout, which is confirmed by the pressure

profile of sensor 17 in Figure 5.20. Between θ = 109◦ and θ = 134◦, the remaining water is

evacuated from the bucket. The VOF results are in advance compared to the measurements

and FVPM results.
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θ = 57◦

θ = 62◦

θ = 67◦

θ = 72◦

Figure 5.31 – Comparison of the relative flow pattern inside the buckets between FVPM (right),
VOF (middle) and experimental (right) for the impinging angles of θ = 57◦,θ = 62◦,θ = 67◦ and
θ = 72◦.
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θ = 77◦

θ = 82◦

θ = 87◦

θ = 94◦

Figure 5.32 – Comparison of the relative flow pattern inside the buckets between FVPM (right),
VOF (middle) and experimental (right) for the impinging angles of θ = 77◦,θ = 82◦,θ = 87◦ and
θ = 94◦.
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θ = 99◦

θ = 104◦

θ = 109◦

θ = 114◦

Figure 5.33 – Comparison of the relative flow pattern inside the buckets between FVPM (right),
VOF (middle) and experimental (right) for the impinging angles of θ = 99◦,θ = 104◦,θ = 109◦

and θ = 114◦.
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θ = 119◦

θ = 124◦

θ = 129◦

θ = 134◦

Figure 5.34 – Comparison of the relative flow pattern inside the buckets between FVPM (right),
VOF (middle) and experimental (right) for the impinging angles of θ = 119◦,θ = 124◦,θ = 129◦

and θ = 134◦.
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6 Conclusions and Perspectives

6.1 Conclusions

Numerical simulations of free jet deviations are performed using particle-based methods

and validated by conventional grid-based simulations and experimental data. In order to

decrease the computational time required for the particle-based simulation, the computations

are massively parallelized and run on two different clusters: an IBM blade center and the

Lemanicus BG/Q. The present study highlights the efficiency of the adaptive domain decom-

position process to dynamically balance the load in the subdomains. The orbital shaking

and Pelton buckets test cases show a decrease of the computational time by a factor between

three and four. Moreover, the proposed ADD strategy is well suited for complex free surface

applications and highly dispersed particles system. The computing cost of the ADD process

remains reasonable, i.e. about one tenth of the solver iteration time.

The FPM flow simulations of the impinging jet on a flat plate are validated with the available

VOF computations and measurements from Kvicinsky et al. [41]. The new shifting strategy as

well as the improved boundary treatment are validated and implemented within SPHEROS.

The FPM solver allows to represent properly the physic of free jet deviation. The free surface

location is in good agreement with the measurements and VOF results for the three impinging

angles and all the spatial discretizations investigated. Therefore, the use of particle based

method to obtain animations of free surface flows is fast and efficient. However, the FPM

results highlight that a fine spatial discretization is required to capture accurately the pressure

profile, especially when dealing with high pressure gradients. The FVPM simulations are

compared to the FPM results. The FVPM results fit better the VOF and measurements but the

computing time is increased by a factor two. Nevertheless, the use of FVPM is mandatory to

simulate the flow in Pelton buckets. Indeed, the solid boundary treatment in FVPM is simpler

and more accurate for complex geometries compared to the solid boundary treatment in FPM.

The FVPM flow simulations of a steady bucket at different impinging angles are validated

with VOF computations and measurements from Kvicinsky et al. [39]. It is demonstrated that

the FVPM ensures the convergence of the results thanks to its conservative and consistent
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formulation. Indeed, the more particles are added, the better are the results. Moreover, if

the CFL condition is fulfilled, no instabilities are observed with the increase of the spatial

resolution. The wall pressure field fits qualitatively well the VOF computations and measure-

ments for all the impinging angles investigated. The FVPM wall pressure field features more

numerical fluctuations compared to VOF. However, these fluctuations decrease when the

spatial resolution is increased.

The FVPM flow simulation of rotating Pelton buckets are validated with VOF computations

and measurements from Perrig [65]. The convergence of the method according to the spatial

discretization is demonstrated by the convergence of the resulting torque evolution. The pres-

sure field in the buckets inner wall is in good agreement with the experimental and numerical

data. However, the numerical fluctuations of the FVPM signals are always larger than the

RMS fluctuations of the VOF results. These numerical fluctuations are partly explained by the

lack of particles close to the sampling location, e.g. the buckets outer wall. Moreover, FVPM

is better suited to capture the pressure peak, which occurs at θ = 72◦ in the central zone of

the buckets inner wall. This phenomenon, called waterhammer by Perrig [65], is due to the

compressibility of the water/air mixture, which impinges on the central zone at θ = 72◦. This

mixture is generated by the impingement first stage at the buckets cutout. Therefore, the

weakly compressible approach of FVPM is better suited to capture this phenomenon than the

incompressible approach of VOF. The relative flow pattern in the buckets is in good agreement

with the flow high-speed visualization for all the spatial resolutions investigated. However, the

fine discretization provides more accuracy to represent the water sheets because the size of the

water droplets is smaller. Consequently, the FVPM simulation is an accurate tool to capture

the deviation of high-speed water jets by rotating Pelton buckets. A spatial discretization of

D2/Xref = 40 is recommended to obtain a converged simulation with a good representation of

the water sheets

6.2 Perspectives

In the present research project, the deviation of a free jet by rotating Pelton buckets is simulated

using FVPM. The numerical fluctuation of the wall pressure field is significant due to the lack

of particles close to the sampling location. Therefore, the use of particle splitting should be

investigated to mitigate this phenomenon. As the flow is diverging, the particle splitting is also

a good option to improve the accuracy of the simulation in the water sheets. Another option

that could be investigated to improve the wall pressure field is the use of the ALE formulation

to have more particles which remain close to the buckets geometry all along the simulation.

In order to capture accurately the magnitude of the pressure peak at θ = 72◦, the possibility to

adapt the sound speed according to the location in the flow should be investigated.

The computing costs of the FVPM simulations remain significant with the today’s computing

resources. However, the performance of SPHEROS could be improved to obtain a better peak

performance efficiency on the Lemanicus BG/Q. Therefore, a code profiling could be applied
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to identify the algorithms which have to be optimized to improve the code performance.

Moreover, the possibility to adapt some parts of the code to run on GPU instead of CPU should

be investigated to allow large computations without using a BG/Q.

Finally, the simulation of the flow in rotating Pelton buckets using SPHEROS could be used to

optimize the buckets geometry according to given operating conditions. A genetic algorithm

may be coupled to the SPHEROS simulations in order to shape the design of the buckets

wall. The basis of this optimization process is the parametric representation of the buckets

geometry given in appendix A.
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A Parametric Model of a Pelton Bucket

Introduction

In order to run CFD-based optimization of Pelton runners, a parametric model of a bucket

is proposed by Andolfatto [4]. The inner bucket wall is defined by 4 Bézier surfaces. Some

general dimensions of the bucket are assumed to be predefined according to global hydraulic

characteristics of the machine to be designed. An additional set of parameters is proposed to

completely define the bucket inner wall. The bucket outer wall is defined by an offset of the

inner wall using a specified thickness map. Finally, all the parameters used are inventoried and

classified to generate the geometry, which is given as an input of the numerical simulation.

Definition of the inner surface

General dimensions

Some general dimensions of the Pelton bucket are considered to be fixed according to previous

studies. These dimensions are represented in Figure A.1.

The intersection of the water jet axis with the outer edge plane of the bucket is named O and

its coordinates are (0,0,0) in the outline given in Figure A.2. As the bucket is assumed to be

symmetric with respect to the X Y plane, only the half bucket with positive coordinates along

the Z axis will be described.

Definition of physical points

A set of physical points, with specific characteristics are defined on the inner surface:

• T is the tip of the bucket, with the coordinate (C2,−Yt ,0);

• Ce is the other extremity of the cutout, with the coordinate (A2,0,E/2);
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• C b is the bottom point of the cutout edge, where the edge tangent is normal to the Y

axis, with the coordinate (XC b ,−YC b , ZC b);

• B t is the bottom of the inner surface where the surface normal is oriented along Y , with

the coordinate (XB t ,−F,B/4);

• Om is the extreme point of the outlet edge along the Z direction, with the coordinate

(XB t ,0,B/2);

• Sm is the intermediate point of the inlet edge, with the coordinate (XB t ,YSm ,0);

• Se is the extreme point of the inlet edge, with the coordinate (−C3,YSe ,0);

• Oe is the extreme point of the outlet edge along the X direction, with the coordinate

(−A1,0,B/4).
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A
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A
2

C

C
1

C
2
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3
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B

F

D2

O

Figure A.1 – General dimensions defined in [4].
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Bt

Sm
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Oe

Om Ce

Cb

Figure A.2 – Physical points considered to describe the inner surface [4].

𝜄

Figure A.3 – Definition of the inlet orientation angle ι [4].
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The inlet orientation angle ι is defined between the inlet edge and the X direction, as depicted

in Figure A.3. Then the coordinates of the physical points Sm and Se along the Y direction

can be expressed with the following expressions:

YSm =C2 · tan ι−YT (A.1)

YSe =C · tan ι−YT (A.2)

The definition of the physical point finally requires the five additional parameters on top of

the general dimensions previously defined: ι,YT , XB t , XC b , YC b , ZC b . Four Bézier surfaces

of order 4×4 are defined based on these physical points. A C 1 continuity between the four

surfaces is ensured by imposing a symmetry of the four control points at each vertex shared

by several surfaces.

Definition of the Bézier surfaces

First surface

The control points of the first surface are built according to the scheme described in Figure A.4.

This surface depends on the following parameters:

• the inlet angle β1 defines the angle between the inlet surface and the X Y plane;

• the cutout tip angle αT defines the orientation of the cutout edge;

• the cutout inlet angle β1,C b defines the angle between the cutout inlet surface and the

Y Z plane;

• the cutout rotation angle αC b defines the local rotation of the cutout edge around Y ;

• the λ• that are fixed ratio of the general dimensions for the four surfaces.

Second surface

The C 1 continuity between the first and the second surface directly defines 8 of the 16 control

points of the second surfaces, as shown in Figure A.5. The other part of the inlet surface

between Sm and Se is oriented with the same β1 angle with respect to the X Y plane.

The outlet surface in Oe is oriented with an angle β1,Oe around Z . The angle αSe is arbitrarily

set to 45◦ in order to create a smooth edge between Se and Oe but this edge is unlikely to have

an influence on the hydrodynamic behaviour of the bucket.
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Cb

T

Bt

𝛼𝐶𝑏

𝛽1,𝐶𝑏

𝛼𝑇

𝛽1

Sm

𝛽1
𝑥𝑦

𝑧
𝜆𝑎

𝜆𝑎

𝜆𝑏

𝜆𝑏

𝜆𝑐𝜆𝑑

𝜆𝑒

𝜆𝑓

Figure A.4 – Control points defining the first Bézier surface [4].

Bt

Sm

Se
Oe

𝑥

𝑦

𝑧

𝛽 1,𝑂𝑒 𝛽1

𝛼𝑆𝑒

Inherited from the 

first surface

𝜆𝑔

𝜆ℎ 𝜆𝑎

𝜆𝑏

Figure A.5 – Control points defining the second Bézier surface [4].
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Third surface

The C 1 continuity between the second and the third surface directly defines 8 of the 16 control

points of the second surfaces, as shown in Figure A.6. Only three vertex of the third surface are

physical points. The fourth vertex named Or and the associated edge orientation are built

according to the definition given in Figure A.7 with three scalar parameters φOr , ψOr and χOr .

The outlet surface is oriented with the angles β1,Om and β1,Or .

Oe

𝑥

𝑦

𝑧

𝛽 1,𝑂𝑚

Om

Bt

Inherited from the 

second surface

Or

𝛽 1,𝑂𝑟

𝜆𝑖

𝜆𝑗

𝜆𝑗

Figure A.6 – Control points defining the third Bézier surface [4].

𝑧

𝑥

Oe

Om

𝐿

𝜓𝑂𝑟 × 𝐿

Or

Figure A.7 – Definition of the fourth vertex of the third Bézier surface with respect to physical
points [4].
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Fourth surface

For the fourth surface, only the three control points around Ce are still free. The other control

points are inherited from the other surfaces to ensure continuity. The outlet edge is oriented

with an angle αCe around Y in Ce and the cutout edge in Ce is oriented directly along Y .

The position of the other control points are defined by the two distances Lu,Ce and Lv,Ce

represented in Figure A.8.

Bt

Om

Cb

Ce

Inherited from the 

third surface

Inherited from the 

first surface

𝑥
𝑦

𝑧

𝛼𝐶𝑒

𝐿𝑢,𝐶𝑒

Figure A.8 – Control points defining the fourth Bézier surface [4].

Definition of the outer surface

The outer surface is built by offsetting the inner surface along its local normals with a given

thickness. Puv represents a point of the inner surface with the parameters (u, v). The normal

at this point is written nuv . Given a thickness function T defined on [0,1]2 that returns a

thickness for each (u, v) parameters, then the point P ′
uv of the outer surface associated to Puv ,

is given by:

P ′
uv = Puv +T (u, v) ·nuv (A.3)

For each surface of the bucket inner wall, a thickness map is defined by a set of m ×n control

thickness ti j . The thickness function is of the form defined in (A.5).

T :

∣∣∣∣∣ [0,1]2 −→ R

u, v 7−→ ∑m
i=0

∑n
j=0 Bi m(u) ·B j n(v) · ti j

(A.4)
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Appendix A. Parametric Model of a Pelton Bucket

Three values t1, t2 and t3 are used to define the thickness maps associated to the four inner

surfaces. The sets of control thickness are graphically represented in Figure A.9.

When generating the entire bucket by symmetry, the sampled points with negative coordinates

along Z will be removed.

Ce

Om

Or

Oe

Se
Sm

𝑡1

Ce

Cb

T

Sm

Se

𝑡2

𝑡2

𝑡3

Figure A.9 – Variable thickness map defining the outer surface as an offset of the inner surface
[4].

Closing the bucket volume

The inner surfaces and outer surfaces edges are collections of isoparametric curves. A pair of

curve Ci and Co with parameter written p defined on adjacent edges are considered to define

the joining surface S between them as follows:

S :

∣∣∣∣∣ [0,1]2 −→ R

p,α 7−→ α ·Ci (p)+ (1−α) ·Co(p)
(A.5)

This yield half of a bucket as pictured in Figure A.10.

Figure A.10 – Representation of half a bucket [4].
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Conclusion on the implementation of the model

The proposed model defines a Pelton bucket as a collection of parametric surfaces S (u, v).

Given a sampling strategy for the parameters u and v for each surface adapted to the simula-

tion requirement, a geometrical model of the bucket can be generated for CFD simulations.

This geometrical model will depend on numerous parameters inventoried in Table A.1. They

are classified in four categories:

• the pre-determined parameters are the general dimensions assumed to be computed

according to general charateristics of the machine;

• the optimisation parameters that constitute the search space for the Pelton bucket

optimisation;

• the fixed parameters, that are arbitrarily fixed and that are assumed to have a minor

impact on the Pelton bucket performances;

• the internally optimised parameters defined in the following paragraph.

Table A.1 – Inventory of the parameters describing the Pelton bucket geometry.

Category Parameters
Pre-determined A1, A2, B , C2, C3, E and F
Optimisation yT , αT , ι, β1, β1,C b , xC b , yC b , zC b , αCe , Lu,Ce and Lv,Ce

Fixed λ•
Internally optimised β1,Oe , β1,Om and β1,Or

Internally optimized parameters

The Pelton bucket performance are known to increase with a decrease of the outlet angles

β1. The Figure A.11 illustrates the limit of this assertion: up to a certain angle, the water jet

impinges on the next bucket with an associated loss of energy.

With all the other parameters fixed, and considering the output water jet of known thickness

tangent to the outlet surface, the optimal β1 can then be searched to provide the minimal

values without collision.

111



Appendix A. Parametric Model of a Pelton Bucket

β1

Figure A.11 – Illustration of the heeling phenomenon [4].
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