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Abstract

Human beings like all organisms, are subject to a variety of diseases. Musculoskeletal
diseases such as arthritis, affecting our muscles and bones, are particularly debilitating
because they considerably limit our ability to interact with our environment. The symp-
toms of arthritis are joint pain and loss of movement, caused by a deterioration of the
cartilage in our articulations. The precise determination of the underlying cause of the
deterioration is a challenging task. It is believed that it is caused by excessive force in
the joints due to inappropriate muscle forces. Since only forces in muscles just beneath
the skin can be measured, the force hypothesis remains unproven. Musculoskeletal mod-
els are essential in analysing musculoskeletal diseases because they address the lack of
information on the forces involved. Such models are used to estimate muscle and joint
reaction forces. Determining the key elements in a musculoskeletal model to assess its
quality raises several challenges.

In this thesis, a musculoskeletal model of the shoulder is presented. The model is
governed by the laws of rigid-body mechanics and is similar to a model of a cable-driven
mechanism. Both the kinematic and dynamic aspects of the shoulder are contained in
the model. Applying the theory of rigid body mechanics requires a certain level of rigour
to ensure compatibility between the kinematic and dynamic parts of the model. There-
fore, a considerable part of the thesis is devoted to presenting the details of the model’s
construction. The model is designed specifically for estimating muscle and joint-reaction
forces in quasi-static and dynamic situations.

The muscle-force estimation problem is defined as a nonlinear program and solved in
this thesis using a two-step approach. In a first step, the desired kinematics is constructed
and inverse dynamics is used to estimate the associated joint torques. In a second step,
the nonlinear program is solved using null-space optimisation. An initial solution to the
estimation problem is obtained by taking a pseudo-inverse of the moment-arms matrix.
The solution is then corrected using the matrix’s null-space to satisfy the constraints.
This approach redefines the estimation problem as a quadratic program and considerably
reduces the time required to find a solution. Once the muscle-forces are estimated, the
joint reaction forces are deduced from the dynamic model. Muscle and joint-reaction
forces are compared to other results from the literature.

A key element of the first step is building the kinematics. The model’s kinematics
are analysed and a new method for describing them is presented. Indeed, obtaining com-
patible motion for the model’s dynamics is a challenging task. The inverse kinematics
technique is inappropriate and measured joint angle data is not always available. The
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shoulder girdle is shown to be a parallel platform with three degrees of freedom. The
kinematics are described by three coordinates obtained from a geometric interpretation
of the scapulothoracic contact. The coordinates provide a direct, efficient method of
planning the shoulder’s motion, directly compatible with the dynamic model.

A key element of solving the nonlinear program, second step of the muscle-force es-
timation problem, is computing muscle moment-arms. A rigorous definition of muscle
moment-arms is presented. The definition provides an alternative to the tendon excur-
sion method that can lead to incorrect moment-arms if used inappropriately due to its
dependency on the choice of joint coordinates. The proposed definition is independent of
any kinematic coordinate choice. It is used to analyse the problem of the existence of a
solution through the wrench- and torque-feasible sets. An analysis of the torque-feasible
set is used to answer certain questions regarding the underestimation of certain muscle
activities.

Lastly, the problem of how musculoskeletal systems are controlled through antagonis-
tic muscle structures is addressed. A hypothesis for the cause of arthritis is a deterioration
of neuromuscular coordination. Muscles are being badly coordinated by the neurological
system. Given the similarities between musculoskeletal models and cable-driven systems,
the problem is analysed using a cable-driven pendulum. The pendulum model consti-
tutes a simplified model of the shoulder and is used to prove the stability of a human
motor control mechanism called joint stiffness control through antagonistic muscle co-
contraction. A control strategy is developed for the pendulum based on the mechanism
of muscle co-contraction. Given a joint stiffness, the necessary muscle forces are obtained
using the estimation method previously described. The strategy is applied to a physical
cable-driven pendulum. Four cables, each controlled independently through a motor-
driven pulley, drive the pendulum. The results are used to open the discussion on the
possible neurological causes of neuromuscular dysfunctions.

Keywords: musculoskeletal modelling, shoulder mechanics, muscle-force estimation,
joint-force estimation, moment-arms, cable-driven systems.




Version abrégée

Les étres humains, comme tous les organismes vivants, sont exposés a une variété de
maladies. Les maladies musculo-squelettiques comme 'arthrose, lequel affectent les mus-
cles et les os, limitent considérablement notre capacité d’intéragir avec notre environ-
nement. Des douleurs articulaires et une perte de mouvement constituent les princi-
paux symptomes de 'arthrose. Il s’agit d'une dégradation du cartilage articulaire. La
détermination précise de la cause sous-jacente de la dégradation est une tache difficile.
On croit que cette dégradation est causée par une force excessive dans les articulations,
en raison de l'application de forces musculaires inappropriées. Etant donné que seules
les forces musculaires sous la peau peuvent étre mesurées, I’hypothese de la force reste
a prouver. Les modeles musculo-squelettiques sont essentiels dans I'analyse de ’arthrose
parce qu’ils fournissent des informations manquantes relatives aux forces impliquées.
Ces modeles sont utilisés pour estimer les forces musculaires et les forces articulaires.
La détermination des éléments clés d'un modele musculo-squelettique, afin d’évaluer sa
qualité, souleve plusieurs défis.

Dans cette these, un modele musculo-squelettique de 1’épaule est présenté. Le modele
est régi par les lois de la mécanique des corps rigides, et elle est similaire a un modele
d’un mécanisme actionné par cables. Le modele contient les deux aspects, cinématiques
et dynamiques, de I’épaule. L’application de la théorie de la mécanique des corps rigides
nécessite un certain niveau de rigueur pour assurer la compatibilité entre les parties
cinématiques et dynamiques du modele. Par conséquent, une grande partie de la these
est consacrée a la présentation des détails de la construction du modele. Le modele est
spécifiquement congu pour estimer les forces musculaires et articulaires, dans des situa-
tions quasi - statiques et dynamiques.

L’estimation des forces musculaires est définie comme un programme non linéaire et
résolue dans cette these en utilisant une approche en deux étapes. Dans une premiere
étape, le modele cinématique est construit, et la dynamique inverse est utilisée pour es-
timer les couples articulaires associés au mouvement de I’épaule. Dans une deuxieme
étape, le programme non linéaire est résolu en utilisant 'optimisation du nul espace.
Une premiere solution au probleme d’estimation est obtenue en prenant un pseudo-
inverse de la matrice des bras de levier. La solution est ensuite corrigée en utilisant
le nul espace de la matrice afin de satisfaire les contraintes. Cette approche redéfinit
le probleme d’estimation comme un programme quadratique et réduit considérablement
le temps nécessaire pour trouver une solution. Une fois que les forces musculaires sont
estimées, les forces articulaires sont déduites a partir du modele dynamique. Les forces
musculaires et articulaires estimées sont comparées a d’autres résultats de la littérature.
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Un élément clé de la premiere étape est la construction de la cinématique. La
cinématique du modele est analysée et une nouvelle méthode pour les décrire est présentée.
En effet, I'obtention de mouvement compatible pour la dynamique du modele est une
tache laborieuse. La technique de cinématique inverse est inappropriée et les données
des angles articulaires mesurés n’est pas toujours disponible. La ceinture scapulaire est
indiquée comme étant une plate-forme parallele a trois degrés de liberté. La cinématique
est décrites par trois coordonnées obtenues a partir d’une interprétation géométrique du
contact scapulo-thoracique. Les coordonnées constituent une méthode efficace de plan-
ification directe du mouvement de 'épaule, lequel est directement compatible avec le
modele dynamique de 1’épaule.

Un élément clé de la résolution du programme non-linéaire, deuxieme étape du probleme
d’estimation des forces musculaires, est le calcul des bras de levier musculaires. Une
définition rigoureuse des bras de levier musculaires est présentée. La définition offre une
alternative a la méthode d’excursion du tendon, laquelle pourrait induire des erreurs dans
les bras de levier si utilisée de fagon inappropriée, en raison de sa dépendance du choix
des coordonnées des articulations. La définition proposée est indépendante de tout choix
de coordonnées cinématique. Elle est utilisée afin d’analyser le probleme de 'existence
d’une solution a travers les espaces de réalisation cinématique et de couples. Une analyse
de 'espace de couple réalisable est utilisée pour répondre a certaines questions concernant
la sous-estimation de 'activité de certains muscles.

Pour finir, le controle des systéemes musculo-squelettique par des structures muscu-
laires antagonistes est adressée. Une hypothese expliquant 'origine de ’arthrose est une
détérioration de la coordination neuro-musculaire. Les muscles sont mal coordonnés par le
systeme neurologique. Etant donné les similarités entre les modeles musculo-squelettiques
et les systemes actionnés par cables, le probleme est analysée a travers un pendule ac-
tionné par cables. Le pendule constitue un modele simplifié de I’épaule et est utilisé pour
prouver la stabilité d’'un mécanisme de controle humain appelé le controle de la raideur
articulaire par co-contraction des muscles antagonistes. Une stratégie de controle est pro-
posée, basée sur la co-contraction musculaires. Etant donné une raideur articulaire, les
forces musculaires nécessaire sont obtenue en utilisant la méthode d’estimation décrite
précédemment. La stratégie de controle est appliquée a un pendule physique. Quatre
cables, chacun controlée de maniere indépendante a travers des moteurs et poulies, ac-
tionnent le pendule. Les résultats sont utilisés pour ouvrir la discussion sur les causes
possibles d'une détérioration de la coordination neuro-musculaire.

Mots-clés: modélisation musculo-squelettique, mécanique de 1’épaule, estimation de
forces musculaires, estimation de forces articulaires, bras de levier, systémes actionnés
par cables.




Contents

|2__Anatomy, Physiolo

2.1 _Shoulder Skeletal Anatomv and thsiologid .................

13 Multibody Systems Theoryl

B.1 Introduction . . . . . . ...

13.2.2  Geometric Confieuration . . . . . . . . o
13.2.3  Euclidean Displacementd . . . . . . . . . ..
3.2.4  Rotation Matriced . . . . . . . ...
13.2.5 Aneular Description of Rotationd . . . . . . . . . . . .. . ... .
3.2.6__Euler'’s Rotation Theorem . . . . . . o oo
13.3 Rieid-Bodv Kinematicd . . . . . . . . . .
13.3.1 _Instantaneous Angular Velocity{ ...................
3.3.2__Instantaneous Kinematicd . . . . . . . . ...
13.3.3  Movement: Velocity and Acceleration . . . . . . . . . . . ... ..
3.3.4 _Chasles’ Theorem and the Instantaneous Screw Axid . . . . . . .
3.4 Rieid-Bodyv Dvnami(‘.q ............................

13.4.1  Newtonian Mechanics . . . . . . . . . . . ...

13.4.2  Forces. Moments of Force and Poinsot’s Theorerd . . . . . . . . .

13.4.3 Inertia and Moment of Inertial . . . . . . . . . ..o

vii

xi

XV

xvii

O O W =



viii CONTENTS
13.4.4  Equations of Motionl . . . . . . . oo 44
3.4.5 Mechanical Energy, Work and Powerl . . . . . .. ......... 48

3.5 Multibody Kinematicd . . . . . . . oo 52
3.5.1  Machines and Mechanismd . . . . . ... ... ... ... 52
3.5.2  Kinematic Pairs and Kinematic Chaind . . . . . . . ... ... .. 53
M&Km@mam&am_h@bﬂﬁj .................. o7
3.5.4  Kinematic Constraintd . . . . . . . ... ... ... 60
3.5.5Forward Kinematic Mag . . . . . . . . . 61

3.6 Multibody dvnamicd . . . . .. .o 62
13.6.1  Analytical Mechanics and Virtual Displacementd . . . . . . . . . . 62
3.6.2The Principles of Jourdain and d’Alembert . . . . . . . ... ... 65
13.6.3  Principle of Virtual Powerl . . . . . . . . oo 66
13.6.4 _The Euler-Lagrange Equatiod .................... 67
3.6.5_The Principle of Virtual Work and Static Equilibriuml . . . . . . . 71

4__A Musculoskeletal Model of the Human Shoulder 73

M1 Introduction . . . . . ... 73

4.2 Kinematic Shoulder Model . . . . . . .. .. ... ... ... ... ..., 74
421  Bony Landmarks and Reference Frames . . . . . . . . . . . . ... 75
14.2.2  Joint Anele Parameterisation of the Model’s Kinematicd . . . . . it
14.2.3  Scapulothoracic Contact Model . . . . . . . . . . .. .. .. ... 79
4.2.4  Forward Kinematic Mag . . . . . . . . ..o 81

4.3 Dynamic Shoulder Model . . . . . . . . . . . . 82
l4.3.1 Equations of Motionl . . . . . . . ... 82
432 MuscdeForced . . . ... ... 85
14.3.3  Muscle Cable Model . . . . . . . . . . 87

4 Remarkd . . . . ... 89

W5 Conclusiond . . . . . o oo 91

5_Coordinated Redundancyl 93

51 Introduction . . . . . ... 93

5.2 Kinematic Redundancyl . . . . . . . .. ... 94

5.3 Overactuation . . . . . . . oo 97

5.4 Tasks for Coordination Strategied . . . . . . ... ... ... ... ..., 98

6 Shoulder Ki ic Redund C T ion) 103

6.1 Introduction . . . . . ..o 103

6.2 Minimal Coordinates for Coordination . . . . . .« . o o oo 105
16.2.1  Shoulder Kinematic Redundancy Coordination . . . . . . . . . . . 105
16.2.2  Manifolds and Coordinate Reduction . . . . . . . . . . ... ... 108
16.2.3 A Parallel Platform Kinematic Shoulder Model . . . . . ... .. 114
6.2.4 Equivalent Kinematic Maps and Coordinated . . . . . .. ... .. 117
6.2.5  The Coordinate Spacd . . . . . . . . . . 122
16.2.6 A Minimal Parameterisationl . . . . . . . . ..o 124




CONTENTS X

7.2 Moment-Arms for Coordination . . . . . . . . ... 137
[7.2.1 _ Shoulder Qveractuation Coordination . . . . . . . .. .. .. ... 137
7.2.2  Constraint Gradient Projection . . . . . . . . . ..o 139
7.2.3 A Coordination Strategyv to Shoulder Overactuation . . . . . . . . 142

“Arms Theordl . . o o o oo 145
Armd L 146
A Geometric Method of Computing Moment-Armd . . . . . . .. 147

endon Excursion Method of Computing Moment-Armd . . . . . 151

:7 3.4  Computing Muscle Moment—Armq .................. 153




CONTENTS

[11 Conclusions

|JA_Technical Detaild

|A 1 Uniform Dilation of an Ellipsoid

A
L)
A
L)

i% ég Ruled Surféggg




List of Figures

2.1 The shoulder’s skeletal anatomsl . . . . . . o o o v

2.2 The shoulder’s articulations and licaments . . . . . . . . o o i

2.5 Twypical force-length behaviour of a skeletal muscld . . . . . . . . . . . ..

12.6__The three bodv planes and the scapular pland . . . . . . . . . .. . ...

2.7 Schematic description of shoulder bone motion definitiond . . . . . . . . .

2.8 Three phase description of the scapulo-humeral vthythml . . . . . . . . . .

13.1 Coordinate svstem convention . . . . . . . . .

13.2 A free rigid-hodv’s geometric confieuration . . . . . . . . ...
13.3 A Euclidean displacementl . . . . . . . ...

3.4 A coordinate transformation . . . . . . ...

13.7 A screw encoding a helical vector field . . . . . . .. .. ... ... ...
13.9  The moment of force created bv a fored . . . . . . . . . . ... ... ..
13.10_Dualitv between Chasles’ theorem and Poinsot’s theorem . . . . . . . . .
13.11 A rigid bodv as a collection of particles or a continuous mass distribution

3.13 A bodv moving along a pat

13.14 Tllustration of the energyv conservation theorem . . . . . . . . . . . . . ..

13.15 Machines and their corresponding mechanisms . . . . . . . . . . . . . ..

3.16_The six lower Kinematic pairs with their svmbology{ ............
3.17_The higher kinematic pairs with their svmbolmgj ..............

3.18 Kinematic relation between two bodies in a kinematic paif . . . . . . . .
319 Displacement of a kinematic pair in a mechanisnd . . . . ... ... ...

4.1 The shoulder’s bonv landmarkd . . . . . . . . . . .

&memams_amnﬁ&mn&s&smmd ...................

x1

3
4
5

12
13
13
14
16
17
18
19

22
23
25
25
28
30
36
37
40
42
44
46



xii LIST OF FIGURES
4.5  Centroid line approach to muscle modelling . . . . . . . . . . . .. . ... 87
4.6 3rd order spline parameterisation of muscle seements . . . . . . . . . . . 88
M.uhf_pﬁ@mahs_ma@}“_m_th&mmi‘] ...................... 89
5.1 Coordinated redundancy in a milling machind . . . . . . . .. ... ... 94
5.2 Machines and their corresponding mechanisms . . . . . . . . . ... ... 95
5.3 Local manifolds in coordinated redundancy . . . . . . . . . ... ... .. 99
6.1 Bonyv landmarks. reference frames and joint coordinated . . . . . . . . . . 105
6.2 Diagram of the shoulder’s kinematic model . . . . . . . . . .. .. . ... 107
6.3 Examples of well known two-dimensional compact smooth manifoldd . . . 109
6.4 Diagram of two charts of a C* atlas on a differentiable (smooth) manifold 110
6.5 A two-dimensional analogue for the shoulder . . . . . . . . . .. . . ... 111
6.6 Two-dimensional analogue shoulder model with the new kinematic chain 113
6.7 Mechanical description of a free body in spaod ............... 116
6.8 Mechanism of a rieid body’s motion on a two-dimensional surfacd . . . . 117
6.9  Equivalent parallel shoulder model . . . . . . . . .. .o 118
6.10_Three methods of parameterising the forward kinematic ma,ﬂ ....... 121
6.11_Coordinates in the coordinate submanifoldd . . . .. . .. ... ... .. 123
16.12_ The natural kinematic map charts . . . . . . . . o o oo i 124
6.13 The submanifold decomposition . . . . . . . . . . o 125
6.14 Polynomial description of the scapula’s configuration . . . . . ...... 126

Bth_munmaLsmﬁmdmamﬂ ....................... 128

16.17 The driven Trammel of Archimeded . . . . . . . . .. . . ... ... ... 132
6.18 A use of the Trammel of Archimedes . . . . . . . .. . . ... .. .... 133
I7.1 Bonv landmarks. reference frames and joint coordinated . . . . . . . . . . 138
[7.2 Diagram of a manifold 9¢ in R3 of dimension 2: the two-torus T . ... 140
I7.3  Construction of the GH joint stability constraintl . . . . . . . . .. . ... 143
[7.4__The classical mechanics definition of force moment-arm . . . . . . . . . . 146
I7.5 A skeletal svstem with N joints and two muscled . . . . . . . . . . . . .. 148
I7.6 Force isolation in moment-arm computationd . . . . . . . . . . . . . . .. 149

7.9 A two-dimensional toy musculoskeletal model . . . . . . . .. .. .. .. 157
I7.10 Range and image spaces of the torque-force map . . . . . . . . . . . . .. 157
I7.11 Image space of the torque-force map in three different confieurationd 158
[7.12_The time-dependent. behaviour of the image space polytopd . . . . . . . . 159
8.1 Bonv landmarks. reference frames and joint coordinated . . . . . . . . . . 163
8.2 Minimal coordinates used to coordinate the shoulded . . . . . . ... .. 166
8.3 The implemented musculoskeletal shoulder model . . . . . .. ... ... 171
I8.4 Comparison of model-predicted and measured kinematicd . . . . . . . . . 172
8.5 Comparison of mode-predicted and measured moment-armd . . . . . . . . 173
8.6 Muscle forces during abduction in the scapular pland . . . . . . . . . . . 175




LIST OF FIGURES x1ii

8.8 Comparions of glenohumeral joint contact patternd . . . . . ... . . . . 177
8.9 The glenohumeral image space polytopd . . . . ... ........... 183
] ] M ................. 183

8.11 The clavicle’s actuation plana . . . . . . . . . . . ... ... 184
190

190

191

192

193

194

202

icati 203

10.3 The human motor control systerd . . . . . . . oo 203
10.4 Pendulum metaphor for human postural control . . . . . . . . . . . . .. 205
0 reometry of the cable-driven pendulum system . . . . . ... ... ... 207
0.6 Two wrapping configurationd. . . . . . . . . . . . . . ... ... 208
0 able moment-arms for —60° 600 . . .. .. 209
212

214

215

222

225

0.13Measured behaviour fo ajecto acking/ . . . . ... .. ... 225
0.14O0bserved pendulum states over one c of thepath . . ... ... ... 226
10.15Estimated cable tensions during one cvcle of the pathi . . . . . . . . . .. 227
[10.16Reaction force in the pendulum rotation axid . . . . . . . . .. ... ... 228
IA.1_Error between the scapulothoracic contact modeld . . . . . . . . . . ... 239




X1v

LIST OF FIGURES




List of Tables

nertial data to con ] lvna ]
3 Glenoid stability model datd . . . . . . . . . . . ... 249

[B.4_Muscle wrapping data. for constructing the muscle geometric model . . . 251

XV



Xvi LIST OF TABLES




List of Symbols

i07 j07 kO
B

)

Ro

i, Jis Ki

P,

T

Di

Pziy Pyyis Pz,
TE;

i,

R,

D,

¥, 0,0

Cji

P

0;.

i, Jj00 Ky
B

Pij

The n-dimensional real Euclidean space,

Sphere in R”,

Real projective space,

The 3-dimensional orthogonal group

Special orthogonal group,

Special Euclidean group,

Inertial reference frame,

Inertial frame centre,

Inertial frame z-, y-, z-axis unit vectors,

Designates a geometric point in R? with respect to Ry,
Vector representing a point in the inertial frame Ry,
Direct orthogonal rotation matrix in SO(3),

Designates a rigid-body 4 in R3,

Reference frame of 4;,

Body frame centre,

The z-, y-, z-axis unit vectors of a body frame R;,
Designates a geometric point on %; with respect to R;,
Muscle-force estimation cost function,

Vector representing a point on %; with respect to R;,
The z-, y-, z-coordinates of P; in R;,
Transformation/Displacement on R? from R; to R;,
Euclidean displacement on R? from R; to R;,
Translation of .7 ¢&; ;, from O; to O; in R;,

Rotation matrix of 7 &; ;, from R; to R;,

Homogenous transformation matrix of .7&’; ;, from R; to R;,
Euler or Bryan angles,

Configuration of a body %; in the frame R,

PCSA matrix,

Centre of the reference frame R; in frame R,

The z-, y-, z-axis unit vectors of frame R; in frame R;,
Designates a geometric point on %; with respect to R;,

Vector representing a point on %, in the frame R;,

Xvil



XVviii

LIST OF TABLES

pi; = Rjipi
Zjik

To.s Lo4s Lo
Ti05 Yi,05 Zi0
i, Viy @i

Z(Diy @)
mM0.4, Lo

m;, I;

Sy, Ty Fy,
Ps; Pt; Pf
(%o, 1)
Wois Po,i

Ex,ir Epiy EMi

S,

oD D

oy > B AL

>
NG

Abbreviates a vector being rotated from R; to R;,

Designates a point on %; with respect to R, indexed by k,

Vector representing a point on %; with respect to R;, indexed by £,
Position, velocity and acceleration of centre of gravity of %; in Ry,
The z-, y-, z-coordinates of centre of gravity of &; in Ry,

Angular coordinates of %; with respect to Ry,

Null-space matrix,

Vector of kinematic coordinates of %; with respect to Ry,

Translational position, velocity and acceleration vectors of %; in Ry,

Angular position, velocity and acceleration vectors of %; in Ry,

Insantaneous rotational velocit vector and matrix of %; in Ry,

Jacobian of &y ; with respect to fi,

Angle between vectors p; and ¢; in R,

Linear and angular momentum vectors of %; in Ry,
Mass and inertia of 4;,

Earth’s gravitational field,

Inertia of %; in Ry,

Space of real matrices,

Density function of %; using vectors in R;, or in Ry,

Resulting force of a system of forces applied to %; in Ry,

Indexed force of a system of forces on %; in Ry,

Unit direction vector of a force ﬁ),z‘,k on %; in Ry,

Resulting moment of force of a system of forces applied to #; in Ry,
Moment-arm vector of a force fézk on A; around R; in Ry,
Moment-arm matrix of a system of forces on a body %; in Ry,
Moment-arm matrix of a system of forces on mechanism in Ry,
Screw, twist or wrench at a point Y; on %; in R;,

Pitch of a screw, twist or wrench,

Free solution to an ordinary differential equation,

Total work and power of %; in Ry

Kinetic, potential or mechanical energy of %; in Ry,

Lagrange function of a mechanism,

Lagrange function of a body %; in a mechanism,

Lagrange function of a mechanism augmented by constraints,
Generalised coordinates,

Holonomic skleronomic constraint,

Lagrangian multiplier of ®,

Lagrange function of a mechanism, augmented by holonomic constraint,
Virtual displacement of generalised coordinates,

Real part of a number,




LIST OF TABLES

XixX

00,4, 6%0,
0,4, 0o,
1J

PX

c7

T8

SC

AC

GH

AA

TS

Al

HU

EL

EM

€o

Ers, Ear

Virtual displacement and velocity of centre of gravity in Ry,
Virtual angular velocity and acceleration of %; in Ry,
Jugular incision (shoulder model inertial frame centre),
Xyphoid process,

Tth cervical vertebrae,

8th thoracic vertebrae,

Sternoclavicular joint centre (clavicle frame centre),
Acromioclavicular joint centre(scapula frame centre),
Glenohumeral joint centre (humerus frame centre),
Angulus Acromialis,

Trigonum spinae,

Angulus inferior,

Humeroulnar joint centre (end-effector of kinematic model),
Lateral Epicondyle,

Medial Epicondyle,

Scapulothoracic ellipsoid centre in intertial frame,
Scapulothoracic ellipsoid quadric matrices,

Forward kinematic map coordinate space,

Forward kinematic map work space,

Muscle moment-arms matrix,

Scapulohthoracic constraint moment-arms matrix,
Muscle-force direction matrix,

Muscle-force direction unit vector,

Forward kinematic map,

Differentiable manifold,

Differentiable manifold tangent space,

Charts associated to a manifold,

Quadric-quadric intersection coordinate,

Muscle length and rate of change,

Muscle-force space,

Torque-force map,




XX

LIST OF TABLES




Chapter 1

Introduction

1.1 Research Context

The human body is complex. It is made up of a number of interacting systems, including
the musculoskeletal system that gives shape to our bodies and allows us to interact with
our environment. It consists of bones, ligaments, cartilage, tendons and muscles. Like
other systems in the human body, it is subject to a variety of debilitating diseases such
as arthritis. Arthritis designates a family of musculoskeletal diseases characterised by an
inflammation of one or more joint(s). There are more than 100 different types of arthritis,
of which osteoarthritis is the most common.

Osteoarthritis, also known as degenerative joint disease, is defined as a progressive degra-
dation of the mechanical elements in our articulations [206]. It occurs more frequently
in elderly people and the main symptoms are joint pain and reduced mobility. In com-
parison to other diseases affecting the human body osteoarthritis is not as devastating as
cancer. However, given its debilitating effect on everyday life and the number of people
it affects, the development of a proper treatment for osteoarthritis is important. Indeed,
the previous decade (2000-2010) was dubbed in 1999, the bone and joint decade for the
treatment and prevention of musculoskeletal disorders by the UN secretary general Kofi-
Annan [205].

The proper treatment of any disease requires a complete picture of the affected sys-
tem, healthy and otherwise. This presents an issue for musculoskeletal diseases such as
osteoarthritis because we do not have access to the affected areas consisting of the ar-
ticulations. Indeed, the observed cause of osteoarthritis is either excessive mechanical
stress in the articular cartilage or stress occuring in parts of the articulation that are not
designed to be loaded [27]. Frequent excessive stress does not give the body enough time
to repair the damage and the articulation progressively deteriorates. The observed cause
of osteoarthritis can only be found after it has occurred through invasive surgery. We can-
not observe the deterioration of the articulation as it occurs. We can measure the forces
in certain muscles that are just beneath the skin but we cannot measure the mechan-
ical loads occurring in the joints. Furthermore, the underlying cause of osteoarthritis
remains poorly understood [30]. What causes the inappropriate loading of the joints
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remains unknown. Deterioration of the joint is observed to occur even after complete
arthroplasty [3]. It has been hypothesised that osteoarthritis is the result of a neuro-
muscular disfunction [16]. The nervous system is badly coordinating the muscles, which
then produce excessive loading of the articulations. However, no conclusive evidence
has been presented proving or disproving this statement due to a lack of information on
the system. Thus, the development of effective treatments for musculoskeletal diseases
such as osteoarthritis are impeded by a lack of information on the proper functioning of
musculoskeletal systems.

To address the lack of information, we must rely on models of the musculoskeletal

system. These models can represent the entire body [49] or just a specific part like the
hip, knee or shoulder [144,194]. Musculoskeletal models are essential in analysing muscu-
loskeletal systems and their related diseases. Over the last twenty years, musculoskeletal
modelling has improved immensely as a result of the advances in computer technology.
Computers can handle larger, more complex models and can perform large computa-
tional procedures rapidly. Currently, there are two main techniques for constructing a
musculoskeletal model. The first technique uses classical mechanics to construct a model
where the bones are rigid bodies, the articulations are ideal mechanical joints and the
muscles are cables wrapping over the bones. Such models are capable of estimating the
force intensities in the muscles and joints during dynamic movements [76, 101, [144]. The
second technique uses finite elements to construct a model that includes a constitutive
model of the bones and muscles. Their internal behaviour is considered using models of
their elementary material constituents. In comparison to the first type of musculoskeletal
models, finite element models are most efficient in estimating the stress distributions in
the muscles and the joints, in static or quasi-static situations [11,188, [171]. Finite element
models can be used in dynamic situations but are harder to build. These two types of
models can be seen as complementary. For instance, a musculoskeletal model built using
classical mechanics can be used to estimate the forces in the muscles during a motion.
The estimated forces can then be used to estimate the stress distribution in the joints
using a finite element model of the articular cartilage [121].
Although musculoskeletal modelling has greatly improved, there remains a substantial
gap between the models and the real system. The reason for this gap is validation. A
musculoskeletal model must be validated before it can be used for analysing the system
it models [48]. Unlike models of other mechanical systems, validation of musculoskeletal
models represents a challenging task. First, there is no perfect match between simulations
of the model and experiments on the real system [182]. Second, there is no single test
validating a model and validation is an open-ended process |[135]. One must continuously
assess a models ability to reproduce the real system’s behaviour.

To sum up, musculoskeletal diseases such as osteoarthritis are difficult to understand
because of the un-observability of the affected area. Models of musculoskeletal systems
help obtain the necessary information such as muscle forces and joint reaction forces,
to develop proper treatments for musculoskeletal diseases. However, such models are
challenging because there is no simple answer regarding their validity.
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1.2 State of the Art

This thesis presents a musculoskeletal model of the human shoulder constructed from the
framework of classical mechanics. The model was constructed for the purpose of studying
osteoarthritis in the shoulder joint. To help set the context, the shoulder is comprised of
the clavicle, the scapula and humerus bone. The clavicle is attached to the sternum (bone
running down the centre of the chest) through the sternoclavicular articulation (SC). The
scapula is attached to the clavicle through the acromioclavicular articulation (AC) and
the humerus bone is attached to the scapula through the glenohumeral or shoulder artic-
ulation (GH). The contact between the scapula and ribcage is called the scapulothoracic
contact (A more detailed presentation of shoulder anatomy and physiology can be found
in chapter [2]).

Acromioclavicular Articulation AC

Clavicle

Glenohumeral Articulation GH Sternoclavicular Articulation SC

Sternum

Humerus bone

Medial border
Scapula

Figure 1.1: Illustration of the shoulder skeletal structure with some basic terminology.

The use of musculoskeletal models to help improve our understanding of the human
body and its related musculoskeletal diseases is a relatively modern concept. Historically,
human anatomy has been studied for a long time (~1600 B.C.). Leonardo da Vinci’s
drawings (~ 1500 A.D.) are the first recordings of human anatomy as we understand it
today. It was not until the end of the 19th century and beginning of the 20th century that
we started modelling the human body to better understand it. The first models of the
shoulder appeared in the early years of the 20'" century [152, [180]. These models were
physical models using wooden structures to represent the bones and cables to represent
the muscles. The cable model is still used today but in a virtual simulation context.
Shoulder modelling as we understand it today was introduced in 1965 [53]. It was the
first model to represent the bones as links in a mechanism. The clavicle was represented
as a straight link from the articulation with the sternum, to the articulation with the
scapula (Fig[I]). The scapula was represented by a short link between the clavicle and
the humerus bone. While the model introduced the idea of using linkages, it was mainly
a descriptive model.

During the 1980’s, a research program for building a more mathematical model of the
shoulder for simulation purposes was carried out [65]. This research program introduced
the idea of modelling the physical articulations as ideal mechanical joints [61, 62]. Each
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(a) (b) SC Sinus Cone

/ Humerus Link AC Sinus Cone
Scapula Link
~. ‘ s Clavicle Link GH Sinus Cone

Figure 1.2: (a) Illustration of the linkage model introduced by Dempster in 1965 [@]
b) Illustration of the joint sinus cone model introduced by Engin ,@?, Engin and Chen
, @] and Engin and Tumer [@, /

joint was attributed a sinus cone, limiting its motion @, @] The apex of the cone was
set at the centre of the joint and the distal link was constrained to remain in the cone
(Fig. [@I). The model produced by this research program was mainly kinematic. In
the late 80’s, a specific set of coordinates for describing the configuration of the shoulder
bones with respect to the sternum was published ,EM] The coordinates were used to
construct a regression model for the kinematics of the clavicle and scapula. This model
defined the kinematic coordinates of the clavicle and the scapula as functions of the
coordinates of the humerus bone. This model is referred to as the swedish model and was
initially kinematic. In 1992 and again in 1999, the swedish model was updated to include
dynamics and a more accurate representation of the muscles m, EB%] In 1994, the
first high fidelity musculoskeletal model of the shoulder to include dynamics in the sense
of classical mechanics, was constructed M] The model included a one-dimensional
finite element model of the bones and muscles (Fig. [[3]). It included a model of the
scapulothoracic contact, where two points on the scapula’s medial border were constrained
to remain at a constant distance form the surface of an ellipsoid representing the surface
of the ribcage. The additional distance represented the layer of tissue in between. The
model was also the first to investigate the most appropriate method of using the cable
muscle model to represent muscles with large attachment sites M]

The dynamic shoulder model with one-dimensional finite elements is now referred to
as the Delft Elbow and Shoulder Model (DSEM). It can be seen as the first example
of a modern musculoskeletal shoulder model. Indeed, many of its attributes are found
in a number of more recent models. In 1998, a highly detailed musculoskeletal model
for simulation of a virtual human being was published @] This model included all
the bones and muscles as well as the skin. In 2001, a kinematic musculoskeletal model
constructed from the Visible Human Project (VHP) dataset was developed @, @] The
model was designed for estimating the properties of a muscle model ﬂﬂ . It also included
a scapulothoracic contact model identical to the original model from |. Also in 2001,
a dynamic musculoskeletal shoulder model was published M] This model has been
progressively developed and is now included in the AnyBody(®) musculoskeletal modelling
software ﬂﬁj’ The model was designed for multiple purposes. In 2005, a dynamic model
of the shoulder was designed for studying the effects of musculoskeletal surgery M]
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This model is now one of many models available in the Simtk OpenSim musculoskeletal
modelling software @] In 2006, a shoulder model was developed for estimating the force
in the glenohumeral joint ﬂﬁ] This model is sometimes referred to as the Newcastle
shoulder model. In 2007, a musculoskeletal shoulder model was developed for analysing
ergonomy ﬂﬂ] In 2011, a model of the shoulder was developed for studying the stability of
the glenohumeral joint @] Stability is understood here as keeping the articulation from
dislocating. In 2012, the shoulder model constructed from the Visible Human Project was
given a dynamic model M] More comprehensive reviews of musculoskeletal shoulder
models can be found in the literature : ]

(b) (c)

Figure 1.3: (a) Illustration of a diagram from the van der Helm musculoskeletal shoulder
model 1@/ (b) Illustration of the shoulder model from the AnyBody modelling software
). (c) lllustration of the shoulder model from the OpenSim modelling software [@]

A number of numerical methods have been developed in parallel, specifically for mus-
culoskeletal models. These methods are designed either to deal with the different chal-
lenges arising from constructing a musculoskeletal model, or to simply use the model
efficiently. This dissertation focuses on two families of numerical methods in particular;
First, methods for motion planning of the model’s kinematics, and second, methods for
computing the necessary forces in the muscles to generate a specific motion.

The human shoulder is kinematically redundant. There are more internal degrees of free-
dom in the shoulder than degrees of freedom of the elbow’s position. Therefore, planning
the kinematics of shoulder models is not straightforward; A number of methods have been
developed to deal with the kinematic redundancy such as regression models. As stated
previously, the swedish model was the first to introduce a coordinate system for describing
the configuration of the bones @, ] A set of three Tait-Bryan angles was defined for
each bone and the coordinates were used to develop a regression model of shoulder kine-
matics. The kinematics of the clavicle and scapula where expressed as nonlinear functions
of the kinematics of the humerus. Thus, reducing the number of coordinates to three.
This regression model was adapted in 2009 to a Denavit-Hartenberg description of the
kinematics @] There are other regression models using linear functions ﬂ];ﬂ, @, ]
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Inverse kinematics was also used in planning the kinematics of a shoulder model [142]. A
third method consists of minimising the difference between the model’s kinematics and
measured kinematics [8, [156]. The development of kinematic motion planning strategies
for the shoulder is still a very relevant research topic [211]. Indeed, recent developments
in motion capture techniques have lead to more accurate descriptions of shoulder kine-
matics [58, 199]. Furthermore, a new direction in this research is to construct kinematic
descriptions that are specific to an individual [20)].

The human shoulder, like many other musculoskeletal systems, is overactuated. There is
an infinite number of muscle activation patterns generating the same motion. A number
of methods have been developed to estimate the forces in the muscles of a musculoskeletal
system that generate a desired movement. The problem is also referred to as the force
sharing problem. A comprehensive review can be found in the literature [66]. Solutions
to this problem are called coordination strategies. A strategy commonly used for the
shoulder is inverse dynamics coupled with static optimisation [70, 90, 195]. A kinematic
motion of the model is planned over a time horizon. The motion is then given to an
inverse dynamics model yielding the required torques or actuation at each joint. The
temporal evolution of the joint torques is discretised and a static optimisation problem
is defined at each instant, to find the muscle forces that generate the torques, while min-
imising a cost function. The problem is subject to a number of constraints representing
the restrictions imposed by the physical system. The optimisation problem is generally
formulated as a nonlinear program and solved using appropriate NLP algorithms. The
optimisation problem has also been formulated as a quadratic program using the rela-
tion between joint torques and muscle forces |3, [190]. This method is called null-space
optimisation. The most used cost function is the one minimising the mean square muscle
stress [194]. This cost function is called the second-order polynomial cost function and
is mathematically a quadratic sum of the forces, divided by their cross-sectional area.
Another cost function has been introduced called the min/max criterion [6]. This cost
function is shown to produce similar results to the polynomial cost function with higher
orders [172]. More recently, energy-based cost functions involving oxygen consumption
have been formulated [167].

The above presentation is not a comprehensive review of the literature. However, the
references stated above are viewed as the most relevant to the current work.

1.3 Contributions

The present dissertation is part of a research program funded by the Swiss National
Science Foundation (SNF) to study osteoarthritis. The question driving the research
program is the possibility of a neuromuscular dysfunction as the underlying cause of os-
teoarthritis. Osteoarthritis in the shoulder occurs mainly in the glenohumeral joint and
it causes excessive loading of the joint. The humeral head is pressed into the glenoid.
Therefore, the primary motivation behind the present dissertation, is the construction of
a musculoskeletal shoulder model for estimating the intensity of the joint reaction force

'Research grant reference number: K-32K1-122512
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in the glenohumeral joint. The shoulder models presented in the previous section can also
be used for such a study. However, given that the ultimate goal of the research program
is to investigate neuromuscular interactions the model is being designed from scratch.
Neuromuscular interactions are a control problem and therefore it is necessary to have
full knowledge and access to the model’s content. The model is capable of estimating
the forces in the muscles and the contact force in the glenohumeral articulation. The
dissertation focuses on the model’s construction. The model is constructed from the laws
of classical mechanics, considering the bones to be rigid bodies, the articulations to be
idealised mechanical joints and the muscles to be ideal cables wrapping over the bones.
The present model is based on the kinematic musculoskeletal shoulder model constructed
from the Visible Human Project [74, [76]. The present model adds a dynamic layer in
terms of equations of motion and uses a modified scapulothoracic contact model.

Using the modified contact model, a novel parameterisation of the shoulder’s kinemat-
ics is proposed. The parameterisation uses a set of independent minimal coordinates
that make kinematic computations related to the model, straightforward. The model
formulates the muscle-force estimation problem as a quadratic program and solves it us-
ing null-space optimisation [3, 190]. The null-space optimisation, previously published
[3,1190], was used in this dissertation to detect weaknesses in the model of the shoulder’s
muscle structure. The model was implemented and used to estimate the reaction forces
in the glenohumeral joint during quasi-static and dynamic raising of the outstretched arm
(abduction).

The present work addresses the topic of neuromuscular control through a brief analysis
of a human motor control mechanism called joint stiffness control through antagonistic
muscle co-contraction. This particular mechanism is analysed because it is related to
muscle-force coordination and hence to the joint forces themselves. It is also a mecha-
nism controlling a mechanical property of the joints, stiffness. The mechanism is analysed
using a simple model of a cable-driven pendulum. The pendulum model is relevant to
the analysis, given that it shares the same mathematical structure as models of muscu-
loskeletal systems. The joint stiffness control mechanism is implemented on a physical
system and the results are used to initiate the discussion of neuromuscular control as a
possible cause to osteoarthritis.

A second contribution of this dissertation is to propose a formal and precise mathe-
matical representation of musculoskeletal shoulder modelling. In general, musculoskeletal
models are designed for clinical purposes such as analysing osteoarthritis. The models are
constructed and used by both engineers and medical staff, which constitutes a challenge
when presenting one’s work. The message must be understandable for everyone work-
ing in the same interdisciplinary field. Therefore, many presentations of musculoskeletal
models do not include the technical or mathematical details of the model. A point that
makes it difficult for others to reconstruct the models.

Biomechanics and in particular biomechanics of the human shoulder involves research
that can be classified into four categories. Experimental, theoretical, applied and fun-
damental research [47, 48]. Musculoskeletal modelling is situated between theoretical
and fundamental research and is essentially applied physics. Physics describes our uni-
verse through a set of principles that are formally expressed as mathematical equations.
These principles govern both the macroscopic and microscopic elements of the universe.
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Given that musculoskeletal models are constructed from these principles, the equations
they involve constitute the model’s blueprint. Presenting the mathematical equations
of a model allows others to reproduce the work and test it more thoroughly. Lastly,
presenting the mathematics of a model favours dissemination of technical ”know-how”.
Others can profit from a technical description of a model and thereby further improve
research. Mathematics constitute an important foundation of musculoskeletal modelling
and therefore a good portion of this dissertation tries to formalise the principles used to
construct and work with the model. The work is presented such that technical details
are given where they are required for others to reconstruct the work. The presentation
is not however, entirely technical. A considerable effort has been made such that the
presentations and discussions remain accessible to as wide an audience as possible.

1.4 Organisation of the Thesis

The dissertation, present chapter included, is composed of eleven chapters, organised as
follows:

Chapter 2: Anatomy, physiology and movement of the human shoulder.
The core of the thesis is modelling the human shoulder. Therefore, this chapter presents
an overview of the human shoulder and introduces the system specific vocabulary.

Chapter 3: Multibody systems theory. This chapter gives an extended presenta-
tion of single-body and multibody mechanics and defines the notations used throughout
the thesis. The purpose of this chapter is to construct the technical framework of the
entire dissertation.

Chapter 4: A musculoskeletal model of the human shoulder. This chapter
presents the musculoskeletal shoulder model that is being developed for estimating forces
in the glenohumeral joint. The chapter focuses on the model’s construction and math-
ematical structure. The chapter also presents the geometric muscle model linking the
forces in the muscles to the dynamics of the skeletal system. The chapter concludes by
introducing the idea that models of musculoskeletal systems and models of cable-driven
robots have similar mathematical structures.

Chapter 5: Coordinated redundancy. This chapter defines the concept of co-
ordinated redundancy and sets a specific framework for chapters 6 and 7. The chapter
introduces the idea of using tasks for coordination and introduces the general coordination
strategy used for the shoulder model.

Chapter 6: Shoulder kinematic redundancy coordination. This chapter
presents a new method of solving the shoulder model’s kinematic redundancy without
requiring measured data. The method uses a minimal set of coordinates obtained through
a parameterisation of the shoulder girdle as a parallel platform. The coordinates are inde-
pendent from each other and significantly simplify the computational aspects of planning
movements for the shoulder model. The coordinates are constructed from a detailed
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analysis of the kinematic shoulder model’s mathematical structure.

Chapter 7: Shoulder overactuation coordination. This chapter presents a
coordination strategy for solving the shoulder’s overactuation problem relying on muscle
moment-arms. A classical definition of muscle moment-arms is given, followed by two
methods of computing moment-arms. The first is a geometric method and the second is
the well known tendon excursion method. The two methods are shown to not be strictly
equivalent. This chapter defines the necessary conditions for the existence of a solution
to the coordination problem and introduces the concept of wrench-feasibility.

Chapter 8: Estimating joint forces in the human shoulder. This chapter
presents the implementation of the musculoskeletal shoulder model from chapter 4, us-
ing the methods described in chapters 6 and 7. The chapter briefly reviews the model
and presents the results that were obtained, including model-estimated scapular kine-
matics, muscle moment-arms, muscle forces and most importantly the reaction force in
the glenohumeral joint. The chapter discusses the model’s current capabilities and uses
wrench-feasibility to explain the results.

Chapter 9: Introduction to control theory. This chapter presents a brief
overview of control theory, giving the essential concepts and definitions used in chap-
ter 10.

Chapter 10: Joint stiffness control for musculoskeletal stability. This chap-
ter investigates a mechanical stabilisation mechanism used in human motor control. The
chapter demonstrates that the mechanism does achieve stability in the sense of modern
control theory. A cable-driven pendulum is used as a tool to present and discuss the
investigation. The chapter also presents a joint stiffness control strategy that was im-
plemented on a physical cable-driven pendulum. The implementation results are used to
initiate a discussion of the possible cause of osteoarthritis.

Chapter 11: Conclusions This chapter summarises the work, draws some more
general conclusions and discusses future work.
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Chapter 2

Anatomy, Physiology and Movement
of the Human Shoulder

This chapter presents a brief, descriptive overview of the shoulder’s anatomy and physiol-
ogy. The shoulder’s movement is also covered. All the elements described in the chapter
can be found in closed-form in the literature [32, 153, 183].

The human musculoskeletal system allows us to move using our muscles and bones. It
is what gives us form and supports our body. The system is comprised of bones, mus-
cles, cartilage, tendons, ligaments, joints and connective tissue. These elements define its
anatomy or structure. The role played by each element define its physiology or function.
The purpose of this chapter is to introduce some of the terminology that will be used
throughout the thesis.

2.1 Shoulder Skeletal Anatomy and Physiology

The human shoulder is comprised of three bones and the upper [thoraxl The thorax can
be defined as the [sEernum], ribcage and spine (Fig. 2.1)). The first bone is the [claviclel a
small elongated bone connected to the sternum at one end and to the scapula at the other.
The clavicle protects the neurovascular bundle (nerves and blood vessels) supplying the
upper limb. Its serves as a strut between the sternum and scapula, transmitting loads
from the upper limb to the central skeletal axis of the body.

The second bone is the a concave triangular bone connected to the clavicle
and the humerus. The scapula’s inner edge is called the medial borderl The bony ridge
running outwards from the upper end of the medial border is called the scapula’s spine. It
finishes at thelacromionl the bony protrusion connecting the scapula to the clavicle. Below
the acromion is another bony protrusion called the [coracoid processl This landmark
is used as a muscle and ligament attachment site. Opposite the medial border is the
lateral border] running from the angulus inferior to the [glenoid cavity] The clavicle and
scapula together with the thorax define the [shoulder girdle,

The third bone is the humerus, a long bone connected to the scapula, the radius and the

11
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ulnal Its upper end is called the humeral headl having a spherical shape. Between the
humeral head and elbow, the humerus has a cylindrical shape. Its lower end is triangular.
The external points of this shape are the [lateral epicondyle] and medial epicondyle|

Anterior View Posterior View
Spinal Cord

Sternum

Clavicle

Scapula

Humerus

Sternal end of Clavicle Scapular Medial Border

Distal end of Clavicle Scapular Spine

Acromion

Glenoid
Humeral Head

Acromion

Coracoid Process

Humeral Head _—

Figure 2.1: Illustration of the shoulder’s skeletal anatomy as described in section [2.1].

The bones are joined together by three |[synovial articulations| providing mobility.
In synovial articulations, the bones are not directly connected and do not necessarily
touch each other. There is a synovial cavity surrounding the part of the bones that
are in contact. On the surface of each bone at the point of contact, there is layer of
larticular cartilage| that is softer than bone and has less friction. The contact is held by
dense tissue surrounding the bones called the articular capsules. The first articulation in
the shoulder is called thelsternoclavicular articulationl (SC) between the sternum and clav-
icle (Fig. 2.2)). The second articulation is called the [acromioclavicular articulationl (AC)
between the clavicle and scapula. The third articulation is the |glenohumeral articulation|
(GH) between the scapula and humerus. This articulation is commonly referred to as the
"shoulder joint” and is the shoulder’s primary articulation. When the joint is loaded, the
round shape of the humeral head is pressed against the concave shape of the glenoid cavity
on the scapula (Fig. 23). The glenoid has an elliptical shape with the long axis directed
vertically. When the joint is relaxed, there is a cavity between the bones. Surrounding the
glenoid is the [glenoid labrum| a fibro-elastic element protecting the edges of the glenoid
cavity. At the other end of the humerus is the elbow and lhumerolulnar articulation| (HU).
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Additional structures of the shoulder associated with articulations include
which are viscoelastic elements having a passive role. They are used to stabilise the
motion of the bones relative to each other. There are capsular ligaments mentioned
previously stabilising the synovial articulations. Stability is understood as keeping the
bones of an articulation in the correct configuration such that the load passing through
the articulation is not excessive or misaligned with the contact surfaces. Other ligaments
in the shoulder provide added strength to the shoulder. For instance, the [conoid ligament]
and [coracohumeral ligament| stabilise the motion of the scapula relative to the clavicle
and humerus. Lastly, the flat concave shape of the scapula allows it to glide over the
ribcage. This contact is called the [scapulothoracic joint] or gliding plane (ST) and is not
an articulation. Its role is mainly kinematic, guiding the scapula’s movements.

Sternoclavicular articulation Scapulothoracic contact area

Acromioclavicular articulation Conoid ligament

Glenohumeral articulation

Coracohumeral ligament

Coracoacromial ligament

Figure 2.2: [llustration of the shoulder’s articulations and ligaments as described in sec-
tion (2. The ligaments are not anatomically exact and were added to the illustration by
the author.

Glenoid Cavity

__~ Acromial Process Scapula’s Spine

Scapula’s Spine

AN Coracoid Process

\\,,

Tendon of the long head
of the biceps brachii

Humeral Head

: Y
Glenoid Labrum Glenoid Cavity

Figure 2.3: [llustration of the glenoid cavity in the glenohumeral joint as described in
section [2]].
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2.2 Shoulder Muscle Anatomy and Physiology

There are 16 muscles actuating the shoulder. These muscles are called [skeletal muscles]
and are comprised of large numbers of parallel fibres. At either end, there are tendons
connecting the muscle fibres to the bone. The connection with the skeleton that is closest
to the body’s central axis (spine) is called the origin. The other connection is called the
insertion. The names of each muscle and their anatomical locations are illustrated in

figure 2.4

Levator Scapulae
Deltoid Middle

Deltoid Posterior

Rhomboid Minor
Teres Major

Rhomboid Major

Subscapularis

Infraspinatus
Subclavius

Latissiumus Dorsi

Supraspinatus

Teres Minor
Pectoralis Major

Pectoralis Minor
Serratus Anterior (upper)
Serratus Anterior (middle)

Serratus Anterior (Lower)

Figure 2.4: Illustration of the shoulder’s muscle structure. Illustrations taken from [@/

The shoulder girdle is defined as the scapula, the clavicle and the upper left- or upper
right-hand side of the thorax. The shoulder girdle is differentiated from the shoulder
proper because it is the structure attaching the upper limb to the body. There are
muscles actuating the shoulder girdle and muscles actuating the glenohumeral articulation
or shoulder joint. The shoulder girdle muscles include:

o (TRP), kerratus anterior] (SRA), thomboid minor] (RMN), rhomboid major]
(RMJ), [levator scapula€] (LVS), [pectoralis minor| (PMN).




2.2. SHOULDER MUSCLE ANATOMY AND PHYSIOLOGY 15

These muscles originate on the thorax and insert on the scapula. The superior part of
the trapezius muscle inserts on the distal end of the clavicle. The trapezius and serratus
anterior are the two major muscles of this group. The glenohumeral articulation muscles
include:

« i (D), (INFR), FUpSPIRATS (SUPR), (sBSC).
[teres minorl (TMN), [feres major] (TMJ), lcoracobrachialid (CRCB).

The deltoid is the primary muscle of this group. The infraspinatus, supraspinatus, teres
minor and subscapularis form a group of muscles collectively known as the rotator cuff
muscles. The goal of these muscles is maintaining the stability of the glenohumeral ar-
ticulation. Again, stability is understood as keeping the bones of an articulation in the
correct configuration.

There are two additional muscles actuating the entire shoulder: the [[atissimus dorsil
(LTD) and [pectoralis major] (PMJ). Both muscles originate on the thorax and insert
on the humerus thereby influencing the motion of the entire shoulder. The [subclaviusl
(SBCL) muscle is of little importance in actuating the shoulder but rather plays a role of
protecting certain arteries passing beneath the clavicle. If the clavicle breaks, this muscle
protects the underlying arteries from puncture.

Skeletal muscles have a very specific structure. At either end there are tendons linking
the muscle to the bone and in-between there is the muscle proper. The tendon attaches
the muscle to the bone by dividing into many small fibres that insert into the bone.
Internally, a skeletal muscle is made up of a collection of fibres called muscle bundles.
Each bundle is made up of a collection of muscle fasciclel Each fascicle is a collection of
muscle fibres or muscle cells. This structure is similar to steal cables that are made up
of many thin wires of steel grouped together into larger cables forming the entire cable.
Internally, each muscle fibre is made up of a number [myofibrils| similar to the muscle
fibre but much smaller. Each myofibril is a sequence of sacromeres linked end-to-end
by [Z=disksl Sacromeres and Z-disks are connected through a noncontracting filament
called [connectinl The connectin and Z-disks constitute the muscle’s passive behaviour.
A sacromere consists of two types of proteins, lactin] and [myosin| that can store and release
energy by changing shape and constitute the muscles ability to produce force. There are
two ways in which sacromeres are stacked: serial or parallel. Serial structures lead to
muscles able to contract quickly while parallel structures lead to muscles producing more
force because of the increased thickness.

There exist two types of fibres in a muscle; The first are called lextrafusal muscle fibres|
and the second are called [intrafusal muscle fibres. Extrafusal fibres represent the majority
and constitute the muscle’s strength. Intrafusal fibres are less numerous and act as length
sensors for the nervous system. When myosin proteins in a muscle release energy, the
result is either a change in length or the production of force without change in length.
It will depend on the interaction of the muscle with the skeletal structure. For example,
if the force generated by the muscle is insufficient to overcome inertia, there will be no
movement. It is when muscles do not change length, that they produce the maximum
force, this situation is known as isometric contraction. Given that muscle’s have elastic
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properties, they apply forces even when not active, this is called the force-length behaviour
[95]. There is an optimal length at which a muscle can produce its overall maximum active
force. The maximum amount of force a muscle can produce diminishes when the muscle’s
length is not optimal. The active force-length relationship is a bell curve (Fig. 2.5). The
passive elements also produce force that steadily increases as the muscle’s length increases.
The total force produced by a muscle increases as the muscle’s length increases until the
optimal fibre length. Beyond the optimal fibre length, there is a slight decrease followed
by a rapid increase. The muscle’s passive resistance to being stretched dominates for
high values of muscle length. During normal everyday activities, the muscle works in an
area around the optimal fibre length. The muscle’s total force also depends on the rate
of change in muscle length. However, this behaviour is more complex and not covered
here.

Nominal functioning area '

Total force

Muscle Force

Active force

Optimal muscle length Muscle Length

Figure 2.5: [llustration of the typical force-length behaviour of a skeletal muscle as de-
scribed in section [2.2.

2.3 Shoulder Movement

Three orthogonal body planes are used to describe the human body and its motion. If
the thorax is attributed a frame such that the x-axis and y-axis define the horizontal
plane and the z-axis defines the vertical direction. The body planes are parallel to the
planes defined by the thorax frame and are defined as (Fig. [2.6]):

e X-Y plane: [transverse plane]

e X-Z plane: or frontal plane,
* Y-Z plane:

The scapular plane represents a fourth plane that is necessary to define the shoulder’s
motion. It is a plane perpendicular to the transverse plane but rotated around the z-axes
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by 30°. The scapular plane vertically cuts the glenohumeral joint in half.
Thoraco-clavicular motion is defined as the motion of the clavicle with respect to the
thorax frame. Scapulo-thoracic motion is defined as the motion of the scapula over the
thoracic cage with respect to the thorax frame. Thoraco-humeral motion is defined as the
motion of the humerus around the glenohumeral joint with respect to the thorax. Scapulo-
humeral motion is defined as the motion of the humerus around the glenohumeral joint
with respect to the scapula.

Coronal /Frontal plane Sagittal plane Transverse plane

Scapular plane

Figure 2.6: Illustration of the three body planes and the scapular plane.

Each bone has its own specific set of motions. These elementary motions are defined
as follows (Fig. 2.7):

e Clavicle:

— axial rotation: Rotation around the clavicle’s longitudinal axes,

— |depressionl/lelevationt rotation in the sagital plane,

— retraction (adduction of clavicle) /protraction (abduction of clavicle): rotation
in the transverse plane.

e Scapula:

— axial rotation: rotation around the scapula’s spine,
— [depression: 1 rotation around an axis normal to the scapular spine,

— retraction (adduction of scapula)/protraction (abduction of scapula): rotation
around the thoracic cage.

e Humerus:

— axial rotation: rotation around the humerus’s longitudinal axis,
— [fexionl/fextensiont rotation in the sagital plane,
— labduction|/adductiont rotation in the coronal plane.
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The arm’s large range of motion is primarily due to the [scapulo-humeral rhythm| The
scapulo-humeral rhythm is defined as the coordinated motion of the scapula and the
humerus NE, m] If the scapula was to remain stationary during arm movement, the
humerus/arm could at most abduct to 120°. Thus, the scapula’s motion contributes up to
60° of the arm’s total abduction angle @] Healthy scapulo-humeral rhythm is required
to achieve full 180° abduction.

Clavicle Motions

Elevation
Retraction \ - .
Axial Rotation\ “'3 :

T el —— o ! , -

s

Protraction

Depression

ol x
Elevation
Retraction
Protraction
Depression -

Spinal Tilt

Humeral Motions

Extension
Adduction
Flexion
Abduction

Axial Rotation

Figure 2.7: Schematic description of shoulder bone motion definitions. Image created
using ZygoteBody™ zygotebody.com.

There have been many studies of the scapulo-humeral rhythm to identify its charac-
teristics @, @, @] The modern description decomposes the scapulo-humeral rhythm
into three phases. In phase one, the humerus rotates upward to approximately 30° while
the scapula remains motionless. This is called the settling phase (Fig. [.). In phase
two, the humerus has rotated up to 90° abduction. As the humerus rotates up to 90°,
the scapula follows its rotation with a ratio of 1/2. For every two degrees of scapulo-
humeral rotation, there is one degree of scapulo-thoracic rotation. The humerus has
rotated by 70° with respect to the scapula. The scapula has contributed 20°. This is
called the 1-2 phase (Fig. II.). The 1:2 ratio continues up to 150° abduction. There
is 110° scapulo-humeral rotation and 40° scapulo-thoracic rotation. The third and last
phase of abduction is characterised by a 1:1 ratio. At 180° abduction, there is a 120°
scapulo-humeral rotation and 60° scapulo-thoracic rotation. This is called the 1-1 phase.
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Figure 2.8: Illustration of the three phase description of the scapulo-humeral rhythm.

This chapter presented the anatomy, physiology and movement of the human shoulder.
The remainder of this thesis deals with the construction of a model of this system and
the associated computational methods. The model is built on the principles of general
multibody mechanics. Therefore, the next chapter gives a presentation of multibody
mechanics in order to set the framework and notations used throughout the remainder
of the dissertation.
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Chapter 3

Multibody Systems Theory

3.1 Introduction

Multibody systems theory is the study of the time-dependent behaviour or dynamics
of interconnected bodies that can be either rigid or flexible. Multibody systems theory
is governed by general mechanics and is therefore described by a formal mathematical
framework. Thus, multibody systems modelling requires a the same rigour and formalism
for the theory to be applied appropriately |18, 186, 157]. The goal of this chapter is to give
a detailed overview of multibody systems and to introduce the notations and conventions
that will be used throughout the thesis.

At the core of multibody systems theory is the construction of the nonlinear equations
of motion which are derived from the expressions of a body’s kinematics and mechanical
energy. One of the principal methods of deriving a body’s equations of motion is the
Euler-Lagrange equation. However, the equations of motion alone are insufficient to
completely analyse the dynamics of interconnected bodies. The equations of motion
provide no information regarding the internal forces or interactions between the bodies.
Thus, the Newtonian approach is also necessary to obtain a complete description of each
body’s dynamics.

This chapter is divided into two parts. Part one presents multibody systems theory for
a single body beginning with the kinematics of a single rigid body. The kinematics are
presented in the classical sense of position, velocity and acceleration. The equations of
motion for a single rigid body are derived using the Newtonian approach. The same
equations are used to express the body’s mechanical energy. Part one also covers the
duality between Chasles’ theorem in kinematics and Poinsot’s theorem in dynamics.

Part two extends the presentation to the case of multiple bodies. The notions of kinematic
pairs and kinematic chains are introduced and the interconnections between bodies are
described in terms of constraints. This section also defines a system’s forward kinematic
map and the principle of mobility is introduced. The formalism of analytical mechanics
is presented with a focus on virtual displacements and the principles of virtual power and
work. The principle of virtual work is then used to derive the Euler-Lagrange equation.

21
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Section covers the fundamental concepts required to build the theory presented
in the following sections. Sections [3.3] and [.4] present the kinematics and dynamics of
a single rigid body. Section extends the presentation to systems of rigid bodies with
a presentation of the formalism of analytical mechanics for building the equations of
motion.

3.2 Preliminaries

3.2.1 Conventions

Space is the boundless three-dimensional extent, or three-dimensional Euclidean space,
denoted R®. A right-handed coordinate system Ry is used to describe space, defined by
three, mutually perpendicular axes, referred to as x, y and z. The intersection point of
the three axes is the origin Oy of the reference system. To each axis is associated a unit
vector i, j, and ko. A right-handed reference system is defined such that if one were to
grab the z-axis with the right hand, such that the thumb points in the direction of the
z-axis unit vector, the fingers would curl around the axis from the z-axis to the y-axis.

z z
R Pz,0

Figure 3.1: [llustration of the right-handed coordinate system and the right hand thumb
principle as described in section [T.2].

The position of a point P, in space is defined by a vector emanating from the origin
of the coordinate system to the point (Fig. Bl). The components for this vector are p, o,
py0 and p,o. A component of a position vector is positive if the projection of the vector
onto the corresponding coordinate axis points in the same direction as the unit vector
otherwise it is negative.

. T . .
Pyt o= (Peo Pyo DP20) = Duol+ Dyoi+ psoko,
Pz0 = (ﬁo : io)io7 Py,0 = (ﬁo 'j0>j07 Pzo0 = (ﬁo : ko)ko-

The point Oq is the only point in the reference system R, with all three coordinates
equal to zero. The coordinate system’s unit vectors satisfy the orthonormality properties
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in terms of the dot and cross products, defined in the usual manner.

ig-ip =Jjo-Jo = ko - ko =1, ig X ip = jo X jo = ko X ko = 0,

Jo-ko=1o-ko=1p-j, =0, ip X jo =ko, ko Xx1ig=]j, JoXko=1lo.

The reference frame which is fixed in space is referred to as the inertial reference frame
and will be denoted Ry. The subindex will always indicate this frame. In the case of
multiple reference systems, other reference systems will be denoted R;. The subindex
1=1,2,3,... will always denote a particular frame. Vectors defined in a particular frame
will have the associated subindex.

3.2.2 Geometric Configuration

The geometric configuration of a point F, in space with respect to the inertial frame R,
is simply the coordinates of the point. The geometric configuration Cy; of a body %; in
space is defined as the position of all its particles. A rigid body is an idealised solid, or
collection of particles, that cannot be deformed. The distance between any two points on
the body remains constant at all times. A free body is an unconstrained body that can
move freely within R3.

Figure 3.2: Illustration of a free rigid-body’s geometric configuration with respect to the
inertial reference frame Rq as described in section [3.2.2.

Under the rigid body hypothesis, it is sufficient to know the position of three non-
colinear particles to know the geometric configuration of the body. The geometric config-
uration Cy; of a free body %; is defined with respect to the inertial frame by three points
subject to the rigid-body constraints (3.2)).

RO,@' : 770,2‘ = (Tan,O Ty,0 TZ,O)T7

Coi : Soi ¢ S04 = (520 Syo SZ7O)T, (3.1)
Toi : to; = (tso tyo tz,O)Ta

| RoSol|2 = cte, | RoTo||2 = cte, 1S0T0]|2 = cte. (3.2)

There are nine coordinates subject to three equality constraints meaning that a free
rigid-body’s geometric configuration is described by siz independent coordinates.
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3.2.3 Euclidean Displacements

A transformation on R? is a map 7 (P, — P}) defined by giving every point Py in
R3 an image P} in R3. The map .7 defines a one-to-one correspondence or bijection.
Transformations on R? have the following properties and form a group G(R?).

Definition 1 (Transformations on R3). 1. For every transformation F(Py — P}),
there is an inverse transformation (P}~ P).

2. If Ty(Py — Pj) and Tg(Py— FY) are two transformations then T T4(Py — Fy)
s also a transformation called the product transformation.

3. The product of a transformation and its inverse defines the unit or identity trans-

formation & = T 1T .

4. The product of transformations is associative: FIo(TpTa) = (ToTp)Ta.

The rigid body hypothesis restricts the possible transformations to ones that do not
deform space. The distances between points remains constant under the transformation.
These transformations are called Fuclidean displacements.

Definition 2 (Euclidean Displacement). A Euclidean displacement is a transformation
T (Py — P}) on R? such that, the distance (in terms of the Buclidean norm) between any
two points Py and Qg remains invariant under the transformation.

[1PoQoll2 = [P Qoll2-

Euclidean displacements preserve distances and angles and form a group Gg(R3) that
is a subgroup of the group of transformations on R3. In practice, Euclidean displacements
are defined as either pure translations, pure rotations or both (Fig. B.3]). The equation
for a general displacement is given by:

T : R® 5 R3,
Py : fo— T(P)=PF, : py=dy+ Ro po, (3.3)

where dB is the translation vector and Ry the rotation matrix.

A Euclidean displacement also describes a change of coordinates (Fig. B.4]). Consider
two reference systems R; and R; for describing space, defined with respect to the inertial
frame Ry, with two distinct origins Op; and Op ;. A vector p; defined in R; is defined in
R; by: .

Pi . @,j = di,j + Rjﬂ' ]7]‘, PJ : ]5}', (34)

Notations: The double index p; ; indicates that it is a vector in the reference frame R;

but is related to the reference frame R;. In this dissertation, the vector de will always
designate the vector separating the origins of two reference systems R; and R; (The letter
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RO RO

>.00 . . |00 .
x 1o Jo y z 10 Jo y

Figure 3.3: [llustration of a Fuclidean displacement as a translation and a rotation as
described in section [F2.3.

d is specifically reserved for this). The first subindex will always designate the reference
system in which the vector is explicitly defined. The matrix R;; is the rotation matrix,
transforming a vector in frame R; into a vector in frame R;. For rotation matrices,
the order of the subindexes will always indicate the direction of transformations. R;;
indicates a transformation from R; to R;.

Figure 3.4: Illustration of a Fuclidean displacement as a coordinate transformation as
described in section [3.2.3.

Euclidean displacements can be expressed as linear applications using homogeneous
coordinates. The entire transformation is grouped into a single matrix H;,.

P\ (Rae LS\ (B g (B, p=p,
<1>_(0 00 | 1 1) =8 () Pi=p (3.5)

The inverse transformation is defined by

i R, —Ri,d;\ (D P L
(B)=(% | )@ m) smn oo
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The geometric description of a body’s configuration is more appropriate for describing
fixed configurations. Euclidean displacements are more appropriate for describing the
change in configuration of a rigid body, i.e. a body’s kinematics. The geometric and
Euclidean displacement descriptions are related. Given the geometric description in terms
of the points Ry, Sy and Tj in a frame R;, the Euclidean displacement from R; to R; is
defined by:

iy = Fig, Rou = (i plsilucty (Gomanto b ),
i~ Tigllz [[(,—75,5) x (85,5 —75,5) |2 H((SI,J_rl,J)X(tl,J_rl,J))X(Sl,J_TlaJ)||2
(3.7)
The columns of the matrix R;; are the base vectors ij, j; and k; described in the frame
RZ‘I ii,ja ji,j and ki,j-

3.2.4 Rotation Matrices

A general 3 x 3 rotation matrix is a way of representing a rotation defining a transfor-
mation between two orthonormal representations of space. Rotation matrices satisfy the
following properties.

Properties 1. (Rotation matrices)

1. For a rotation matriz Ry, there exists another matriz Ry' = RY such that RyR} =
I (Identity matriz).

2. For two rotation matrices Ry and Ry, the product RyRy = Ry is also a rotation

matrix.

3. The composition operation is not commutative Ry R, # Ry Ry.

Consider a rotation R; defined in a frame R, and a change of coordinates R; ;. The
same rotation is defined in the frame R; by:

Ri,jRiR;‘Z:j - Rj. (38)

This is valid for any frame two frames R; and R; and leads to the following statement.
The rotation matrices R; and R; are said to be equivalent and are two representatives
of a class of mutually orthogonal matrices. All the classes of such matrices under the
composition operation form a non-commutative group O(3) of dimension three. The
elements of this group represent both proper and improper rotations. Proper rotations
preserve orientation or right-handedness of the coordinate frame, improper rotations do
not. In rigid-body mechanics, only proper rotations are used. The rotation matrices
representing proper rotations satisfy the additional property.

Proper Rotation: det(R;) =1, Improper Rotation: det(R;) = —1. (3.9)

All rotation matrices representing proper rotations form the subgroup SO(3) of O(3)
called the special orthogonal group. This group will be discussed in section [3.2.5]
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The components of a rotation matrix R;; are the direction cosines of the coordinate
frame unit vectors. Direction cosines are the projections of the unit vectors of frame R;
onto the unit vectors of R;. i.e. the cosines of the angles between the reference frame
vectors.

i Ji = cos (£L(ii5,4:)) - (3.10)

Notation: A reference frame unit vector with double subindex i; ; means the vector
is a unit vector of the frame j indicated by the second index but defined in the frame ¢
indicated by the first index.

The columns of R;; are the unit vectors of R;, defined in R;.

N

Rj,z' = (lm‘ Jij ki,j) ) Jij = (jm. S TR PO PR P 'ki)
kij=(kij- i kij-J; kij ki)

T: (3.11)

T

3.2.5 Angular Description of Rotations

As mentioned previously, rotations in multibody systems are elements of SO(3). SO(3)
is a non-commutative group of dimension three, subgroup of O(3). The group is a Lie
group with a natural smooth manifold] structure, diffeomorphial to the real projective
space 3 [99, 100]E This can be understood as there exist smooth, invertible maps or
charts between subsets of R? and SO(3). Thus, three independent variables are needed to
describe a rotation. There are many charts on SO(3) defining coordinate systems. The
most well known examples of charts on SO(3) are Fuler angles and Tait-Bryan angles.
Both charts are based on the following statement:

A general rotation in R3 is built and determined by three successive planar rotations
in three mutually orthogonal planes.

Leonard Euler, [67]

If the three rotations occur in the same frame, the rotation sequence is extrinsic. If
the rotations occur in the intermediate frames, the rotation sequence is intrinsic. Euler
angles and Tait-Bryan angles define charts mapping [—m, 7| x [—m, 7] x [—m, 7] C R? to
SO(3). The Euler and Bryan angle descriptions of rotations are the most prominent but
define local charts on SO(3). There is a one-to-one correspondence between a rotation
matrix and its Euler or Bryan angles but this correspondence cannot be defined for every
set of angles. Both charts become singular at certain points, a problem known as gimbal
lock. There exist multiple sets of rotation angles yielding the same rotation matrix.

LA smooth manifold is a space of dimension n which locally looks like R™ (cf. chapter ).

2The term diffeomorphism designates that there is a smooth invertible map between SO(3) and P3.
3The real projective space P? is comprised of all the lines in R* passing through the origin.
4Gimbal lock: was coined because the mechanism used to measure the angles is called a gimbal.
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The difference between the Euler and Bryan angle descriptions is the order of the
rotation. Each planar rotation is defined by an angle: v, ¥ and . For Euler angles, the
first and third rotation axes are the same. For Bryan angles, all three rotation axes are
different. There are two sets of six rotation sequences.

oEulersequences: (:vfyfm, r—z—x, Yy—r—Y, Y—2—Y, Z2—T—2, zfyfz),

oBryansequences: (:vfyfm, rT—z—z, Yy—Tr—Y, Y—2—Y, 2Z2—T—%2, zfyfz).

For Euler angles, independently of the sequence, the first angle is the spin angle, the
second angle is nutation and the third angle is precession. For Bryan angles, the first
angle is roll, the second pitch and the third yaw (Bryan angles are often used to describe
an aircraft’s configuration). In this presentation, only intrinsic sequences are considered.
Intrinsic sequences define a change of coordinates between two reference frames R; and

R;.

(a)

R(¥)

Figure 3.5: Illustration of (a) the x —y — x Euler angle sequence and (b) the v —y — z
Bryan angle rotation sequence as described in section [3.2.5.

The intrinsic # — y — 2 Euler angle sequence from R, to R; is defined as follows (Fig.
3.5 (a))
Ri;(¥,0,9) = R(¢) - R"(0) - R(v), (3.12)

where

1 0 0 cos(¥) 0 — sin(19) 10 0
R(¢) = [ Ocos(y) —sin(¥) | = R(J) = , R(p) = [ 0cos(v) —sinfe) |,

0 1 0
0 sin(v) cos(v)) sin(9) 0 cos(¥) 0 sin(p) cos(y)

The first rotation R(t)) can be viewed as a map from R; to R;. The second rotation
R(?) can be viewed as a map from R} to R). The last rotation R(¢) maps R} to R;.
Euler sequences becomes singular if the nutation angle ¥ = nm (n € Z), then the first
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and third rotation axes coincide. The intrinsic x — y — z Bryan angle sequence from R;

to R, is defined as (Fig. (b))

Ri;j(1,0,0) = R(¢) - R'(0) - R(¥), (3.13)

where

1 0 0 cos(9¥) 0 —sin(9) cos(p) —sin(yp) 0
— | 0 cos(y) —sin(y) = = | sin 3 .
R(’L/J) (O sin(vp) cos(vp) ) ’ R(ﬂ) (sino(ﬂ) 3) coso(ﬂ) ) ’ R((p) ( 0([10) coso(ap) ?)

The Tait-Bryan sequence can also be viewed as a sequential change of reference frames.
Tait-Bryan sequences become singular when ¥ = nf (n = 2m+1,m € Z). The elementary
rotation matrices are defined such that positive values of the angles yield counterclockwise
rotations. Thus, both descriptions are valid for right-handed, orthonormal axes systems,
according to the right-hand rule. There is no universal convention regarding the angular
description of rotation matrices. Therefore, it becomes essential to always give the specific
sequence and convention used. This will always be done throughout the presentation.

3.2.6 Euler’s Rotation Theorem

The following theorem regarding rotations is of particular importance. Instead of con-
sidering each rotation as a sequence of three rotations around the reference frame axes,
Euler considered a single rotation around a particular axis. This theorem is based on the
property that all direct rotations have an eigenvalue of +1.

Theorem 1 (Euler’s Theorem [67]). For any rotation around a reference frame, there
s a line passing through the reference frame origin such that, all points on this line are
wnvariant under the rotation.

Stated differently, a sequence of three planar rotations, is equivalent to a single rota-
tion about an axis that runs through the centre of the frame by an angle v. The direction
77 of the rotation axis is the eigenvector of the rotation matrix associated to the eigenvalue
+1.

i tI'RO —1
= SR

A vector pp is related to its image pf, by a rotation around an axis 7, of an angle 7,
through the following relation (Fig. B.6])

no = Ry 7o, cos(7) (3.14)

Py = Ro po = po + (1 — cos(y))mo X (7o X po) + sin(7y)7ig X po. (3.15)

The rotation matrix can be expressed in terms of the coordinates of 77 and the angle ~.

nz,0my,0(1—cos(y))—nz,0 sin(y), ng o+ (1=nj o) cos(y), ny,0mz,0(1=cos(7))+naz,0 sin(7)
Nz,0mz,0(1—cos(7))+ny,0sin(v), ny,0mz,0(1—cos(y))—nz,0 sin(y), n? o+(1-n2 ;) cos(v)

ni’OJr(lfng’O) cos(v), Ng,0My,0(1—cos(y))+nz,0sin(v), ng,omnz,0(l—cos(y))—ny,osin(y)
Ry = )

(3.16)
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Based on this description of the rotation matrix, the following quantities are called Euler-
Rodrigues parameters.

Ko = COS (%) , K1 =Mngosin (%) . Kg =mnygsin (%) , K3 =mn,psin (%) . (3.17)

If grouped into a vector, these four variables constitute a quaternion.

The quaternion description of rotations is more suited to the structure of SO(3).
SO(3) is a three-dimensional manifold embedded in a four dimensional space. A quater-
nion is a four dimensional vector subject to an equality constraint. The quaternion chart
remains three-dimensional because of the unit length constraint. While quaternions avoid
the problem of singularities, they are more difficult to use for analysing kinematics. There-
fore, in many situations the angle description is used because only a portion of SO(3) is
considered.

Figure 3.6: Illustration of Euler’s Theorem as described in section[3.2.0.

3.3 Rigid-Body Kinematics

Kinematics studies the motion of points, bodies and systems of bodies in space without
considering the possible causes. The study of the properties of motion not depending
on time is called geometric kinematics. The study of time-dependent properties is called
instantaneous kinematics. This section presents the instantaneous kinematics for a single
rigid body. The classical description of a single-body’s kinematics is also given in terms
of position, velocity and acceleration. The Poisson formula for rotating vectors is given
as well as the fundamental transport theorem. This section ends with Chasle’s theorem
from screw theory and the instantaneous screw axis.

3.3.1 Instantaneous Angular velocity

Consider a point X ; fixed in R, but rotating around the inertial frame Ry. The location
of the point at a given instant is defined by:

Xoa(t) : Fou(t) = Rio(t)7:. (3.18)
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where 7; is the location of the point in the frame R;. This point has an instantaneous
linear velocity.

The matrix €, is called the instantaneous rotational velocity matrix. It is a skew-
symmetric matrix. Rotational motion is instantaneously described by a single set of
skew-symmetric matrices. Take the infinite taylor expansion of the rotation matrix.

1 1
Rio(t) =T+ Rat + S Rot" + SR+ (3.20)

Each of the matrices Ry can be written as the sum of a symmetric and skew symmetric
matrix.

1 1
Rio(t) =1+ (Ci+By)t+ E(CQ + By)t* + §(C3 +Ba)t 4. ... (3.21)

The symmetric matrices C, can be expressed in terms of the matrices By according to
the recursion formula, given that C; = 0.

1 k—1 L
C, = 7 Z <]) (Ck_j + Bk_j) (CJ — Bj) . (3.22)

J=1

Following these relations, the instantaneous rotational velocity matrix is defined by:

k+1
1 k
Qoﬂ‘(t) = Qo+ Nt + 592152 +..., Q= Z (] B 1) (CJ + BJ) (Ck,]qu — Bk,]qu). (323)
j=1

Using (8.22)) leads to the following results:

1
QO = B17 Ql == BQ, QQ - —Bif -+ §(B1B2 - BQBl) + B3. (324)

Thus, only the matrices By describe rotational motion in and around a given instant
(t = 0). Indeed, the matrices By result from a temporal linearisation. The linearised
rotation matrix describes the rotation from a moment shortly before the instant (—dt) to
a moment shortly after (0¢). The matrix €); has three independent elements and always
has the form:

0 —w, wy
Qoﬂ' = Wy 0 —Wy | - (325)
—Wy  Wg 0

Because the matrix has this form, the velocity of the point Xy ; is also defined by

T

Xoi(t) = Zoa(t) = Dos(t) x Zoi(t), Fos = (wo wy w,) (3.26)

This is the fundamental formula defining the velocity for rotating vectors. This formula
is sometimes referred to as the Poisson formula.
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3.3.2 Instantaneous Kinematics

Given a rigid body %;, with a reference frame R;, moving in space with respect to the
inertial frame Ry. The position of any point Xy ; on the body in the inertial frame, at a
given instant t is defined by a Euclidean displacement.

Xo,i(t) @ Zos(t) = dg,(t) +Rio(t) @ = dOz( )+ To4(t). (3.27)

This definition of Euclidean displacement is fundamental and will be continuously used in
this presentation. A vector with a star indicates that it is a rotated vector. The position
of the point Xj is defined by a polynomial of time.

X()’Z' . f()ﬂ' == fl + d?) + (Blfl + Cl—;) t+
1 -
2' ((C2 + BQ)ZL‘l + dg) 3' ((Cg + B3)ZL‘1 + dg) t3 —+ ..., (328)

Each coefficient of the polynomial is a itself a Euclidean displacement.

—

=d + (Ck + Bk)fl (329)

The velocity and acceleration are defined by:

. . N = 1 N
XOJ‘ . fO,i = Blfl + d1 + ((CQ + Bg)fl + dg) t + 5 ((Cg + Bg)fl + dg) t2 + ey
(3.30)

Xoi @ Zo; = ((02 + BT + d}) + ((Cg + BT + d},) . (3.31)

All the matrices B can be reduced to a set of vectors l;k, using the definition of the in-
stantaneous angular velocity matrix. The position, velocity and acceleration are therefore
also defined by vectors.

Xo,i @ Tog =) + do + (51 Xfl+6z1> i+

% (<6 - B0& + By )6 + 5o x 1+ o) £ (3.32)
Xoi @ Fos=b1 x &1 +d; + (—(5 B+ (B T+ By X T+ d2> L (3.33)
Xo,i : 'l_}O,i = (—(gl : gl)fl + (gl 'fl)gl + gg X T1 + Cl;) =+

(g(li -7 )by + g(b 71)by — 3(by - b)) Ty + by x :Eldg) . (3.34)

Instantaneous kinematics studies the low order terms of these expansions. The vectors by
and by are the instantaneous angular velocity and angular acceleration vectors at ¢t = 0.
These terms, along with by and by are used to construct the instantaneous kinematic
invariants [23].
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3.3.3 Movement: Velocity and Acceleration

As stated in section B.2.2] six parameters are necessary to parameterise the geometric
configuration of a free body 4; in space. A euclidean displacement parameterises the
position of a body as the linear position of the body frame’s centre Op; (in the inertial
frame) and the orientation of a point Xj; (in the inertial frame) with respect to the centre
of the body frame.

Xoi  Zoi=do; + RioZ; = do + fok,i
S~~~ ~—~
linear position  orientation

The asterisk symbol on a vector always is used to shorten the notation. It will always
mean the following 7 ; = R; ;#;. The six coordinates parameterising the body’s geometric
configuration are the three translational coordinates of the reference frame origin and the
three rotation angles. The kinematics of a rigid body are parameterised in terms of the
vector of kinematic coordinates and its derivatives.

TR A MR
7 — ( AN 3) = (F7, ¥1)T € SE(3). (3.35)

BT T
r; T

The vector f, is the translational coordinate vector and the vector Tz is the rota-
tional coordinate vector. The subindex ¢ indicates that the coordinates parameterise
the kinematics of body %;. The vector of kinematic coordinates belongs to the set
SE(3) = R3 x SE(3) called the special Euclidean group. The group acts on elements of
R3 through homogeneous transformations defined in section B.2.3l

o (Toa g (T _ ( Rio | dos\ (%
Xo, : (1)—Hlv°(1)_(o 00 | 1)(1). (3.36)

The matrix H; o is an element of SE(3). Given that SFE(3) is composed of R* and SO(3),
it is also a Lie group with a smooth manifold structure. The velocity of a point on the
body in the inertial frame is defined by:

Xoi(@)  @oy = GTo,z' + R, 07, (3.37)
Xo,z'((fz‘a (17) : fo,i = GTo,z' + doi X T ;- (3.38)

This is called the fundamental transport theorem. Using the Poisson formula again, the
acceleration of the point X ; is defined by the relation

Xo,i((fia a, (fz) : u%o,z‘ = GTo,i + tjo,i X Tg; + Woi X (ﬁo,z' X faz) ; (3.39)
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Theorem 2 (Rigid-Body Kinematics (Classical Description)). The spatial kinematics
of a single free rigid-body AB;, fized in the body frame, are defined with respect to the
inertial frame Rg, by the following set of equations:

Xoi t Toi = do@ + Ri oZi, (3.40)
%Juf—%ﬁwa&w“ (3.41)
Xoi @ Tos = dO,i + Wos X Rioi + Do X (Wos x Rio) . (3.42)

where dﬁM is the pure translational motion. R, is the rotation matriz defining the
rotational motion of the body and &y, is the instantaneous rotational velocity vector
with respect to the inertial frame.

The instantaneous angular velocity vector is defined according to the rotation se-
quence. Consider the z — y — z Tait-Bryan sequence defined previously in section
The velocity vector is parallel to the rotation axis and its direction gives the direction
of rotation, according to the right-hand rule (clockwise (-) / counterclockwise (+)). The
body is first rotated around the z-axis. Its first component is therefore defined by:

Vi
R(p)R" (:)R(¢) | 0
0

The second rotation occurs around the y-axis of the first intermediate rotated frame R;

(cf. Fig. B.3)).

i 0
R(p)RT(0)R(i) | 0| +R(p)RT(9:) | o
0 0

The third rotation occurs around the z-axis of the second intermediate rotated frame Rj,

(cf. Fig. B.5).

Uy 0 0
B (Vi Ui, 00) = R(@)RT(W0)R(W) [ 0 | +R(2)RT () [ 0 | +R(s) [ 0 | . (3.43)
0 0 i

The instantaneous rotational velocity vector can also be expressed in the body frame. It
defines the rotation of the inertial frame with respect to the body frame.

u_jl - RO,in,i- (344)

The rotational velocity vector is a linear function of the angular velocities T,. The vector

can be express in terms of its jacobian with respect to T,.

0o ; - 0o ;i - 0Wo; . 82 2\ A2
G = iy Ty T4 TR0y (T T (3.45)
o 99, oty oY,
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The matrix W ; is a 3 x 3 invertible matrix depending on the angle sequence and will be
extensively used in rigid-body dynamics (Section [3.4]). This matrix does become singular
for certain values of Euler and Bryan angle sequences. A similar map is defined for the
rotational velocities in the body frame.

Theorem 3 (Rigid-Body Kinematics (Parametric Description)). The spatial kine-
matics of a single free rigid-body B;, fixed in the body frame, are parameterised with
respect to the inertial frame Ro, in terms of the kinematic coordinates §; = (I'T, TT)T,
by the following set of equations:

_»O,z<f<17 fz) f + R (fZ)fz = fz + :Z*’S,i('fl)’ (3 46)
(5, T T F) =T+ Wou (1), (1), (3.47)
Foa(T To, T X0 T, X) =T+ (WoaT) T+ Woa(T)T) x 33, (To)+
Wo(T) T x (Wos(T)Tix 3,(T)) . (3.48)
I, = (w4, 95, 21)T is the vector of linear translational kinematic coordinates, T, =

(s, 9:,04)T is the vector angular/rotational kinematic coordmates.. W, is the jaco-

bian of the instantaneous rotational velocity vector with respect to fl

3.3.4 Chasles’ Theorem and the Instantaneous Screw Axis

Euler’s theorem states that every rotation takes place about a single axis. A corollary to
Euler’s theorem is Chasles’ theorem, obtained by allowing the rotation axis to translate
in space.

Theorem 4 (Chasles’ Theorem [39]). General rigid body displacements can be reduced
to a translation along a line followed by a rotation about that line.

The motion described in Chasles’ theorem is a screw motion. The translation axis is
called the screw axis. Mathematically, a screw S is a pair of three dimensional vectors
[12]. Geometrically, the pair represents a line in space of direction 7y with an associated
pitch p,, ratio between linear and angular quantities. The screw encodes a helical vector

field (Fig. B.7)). The screw of a point X is defined by:
SXO = (ﬁO psﬁO + ﬁO X FO) s ”ﬁ”Q =1. (349)

7o is the vector from X, to the screw axis, normal to the screw axis. In kinematics a
screw encodes a velocity field. The Euclidean displacement associated to a screw motion
is called a twist T. A twist is a screw with a scalar called the magnitude equal to || ;||2-
The translation along the axis is equal to the magnitude times the pitch p;.
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Screw Axis

27ps

Figure 3.7: Illustration of a screw encoding a helical vector field as described in section

[3.3.4)

To construct the screw axis for a body %4, consider a point X, on the screw axis.

o 7 . 7 e . oL o = . -
Xoi @ Zoi=do;+ RioZ; = do; + T, Xo © To; = do; + Wo X Ty

)

The vector ) ; is decomposed into a parallel and normal components to &y .

1_387/[: = l_rsvivll + l_‘)ayiyJ—’ :> f()’Z = d07l + u_jO’Z X ﬁ],i,J_? 5072 X %7i7|| - 0
Instantaneously, all the points on the screw axis have the same velocity proportional to
Wo;. The proportionality factor is the pitch p;.

— - — —k
Do = do; + WDoi X T4 1o

By dot- and cross-multiplying this relation by & ; and using the perpendicularity of 7 ; |
with respect to &y, yields the following relations [213]:

Wo,; X dO,i Wo,i * dO,i

Pt = (3.50)

Sk —
Loil =

— — ) — — *
Wo,i * Wo,i Wo,i * Wo,i

If the body’s reference frame is placed on the instantaneous screw axis, the position of
any point Yp,; (not on the axis) is defined with respect to the inertial frame by:

YO,z‘ : ?jO,z‘ = C%,i + fg,z’,l + ?jg,z‘ = Ci{),z‘ + %k,z'a (3-51)

and the velocity of the point Y;; on the body is defined by:

)

You ZjO,i = psWo,i + Woi X Yo 1 (3.52)

where g, | is the vector from the screw axis to the point Yp; normal to the screw axis.
The point has a translational velocity parallel to the screw axis defined by ¢y ; and pro-
portional to the norm of the rotational velocity.
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For rigid body motion, the twist is in general time variant and therefore one defines
the instantaneous screw azis (ISA). The instantaneous twist is mathematically defined
by its screw. This screw completely defines the body’s motion.

Tro,. () = (Go,i(t)  ps(t)@o.i(t) + Doilt) X 7,1 (1)) - (3.53)

The norm of the instantaneous rotational velocity vector and the pitch of the screw
are the first two instantaneous kinematic invariants mentioned in section B.3.21 The
instantaneous screw axis defines a ruled surfaceﬁ in the inertial frame and the body
frame.

Screw Axis
,

Screw Axis

Figure 3.8: Illustration of the construction of the instantaneous screw axis as described

in section [3.5.4)

A ruled surface .7 is such that at every point P on the surface, there is a line passing trough the
point which is also on the surface.
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3.4 Rigid-Body Dynamics

Rigid-body dynamics relates motion to its cause, it expresses the time-dependent be-
haviour of rigid bodies under external influences. There are multiple aspects of rigid-body
dynamics. The equations of motion describe how a body moves under the influence of
forces. There is the energetic aspect defining how much energy a body has and how much
energy is being given to it or taken away from it. This section describes both aspects and
covers Newtonian mechanics for a single rigid body. The presentation begins with New-
ton’s and Euler’s laws of motion and the definitions of forces and moments of force. The
inertia and moment of inertia of a body are also covered in this section. The equations
of motion are derived and the presentation ends with considerations on the mechanical
energy of a rigid body.

3.4.1 Newtonian Mechanics

The governing laws of rigid body dynamics are Newton’s three laws which, completely
define what causes translational motion.

Theorem 5. (Newton’s laws of motion)

1. When viewed in an inertial reference frame, a body %B; either remains at rest
or continues to move at a constant velocity, unless acted upon by an external
force.

2. f(;,i = ml-:'?oﬂ-: the vector sum of the forces f?m on a body B; (in the inertial
frame) is equal to the mass m; of that body multiplied by the acceleration vector
Zo,i of the body, in the inertial frame Ry.

3. When one body %; exerts a force on a second body %B;, the second body 2,
simultaneously exerts a force equal in magnitude and opposite in direction on
the first body ;.

The first law states that any change in a rigid body’s motion is caused by the action of
an external force. It is the most fundamental law. For there to be motion, there must be a
force. The second law states that the motion of a rigid body, defined by its acceleration,
is related to the forces acting on it. Newton’s second law provides a tool for computing
the translational dynamics of a rigid body, described by the equations of motion. The
third law defines the interactions between rigid bodies. When two bodies are in contact,
they exert a force on each other. Thus, forces are the underlying cause of any motion
and will be discussed first.
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Newton’s laws constitute only half the equations of motion of a rigid body. The second
law governs the translational dynamics only. The rotational dynamics are governed by
Euler’s laws of motion. They are as important as Newton’s laws of motion but are less
well known because they were discovered later.

Theorem 6. (Euler’s laws of motion)

1. The linear momentum of a body Py, is equal to the product of the mass of the
body m; and the velocity of its centre of mass oo, in the inertial frame Ry:

Po,i = M;Zo,;-

2. The rate of change of angular momentum l?],i with respect to the centre of the
inertial frame Ry, is equal to the sum of the external moments of force ty; about
that point: ly,; = %Z

The first law is a restatement of Newton’s second law, but is more general. Euler’s
formulation of the law is more general in that it incorporates the possibility of a time-
dependent mass. This occurs in rockets where the mass drops as the fuel is spent. Euler’s
second law is the analogue of Newton’s second law for rotational dynamics. It is used
to obtain the rotational part of the equations of motion (if the body can rotate). The

angular momentum [; contains the angular acceleration vector ;.

3.4.2 Forces, Moments of Force and Poinsot’s Theorem

A force is defined as any external action on a rigid body leading to a change in configura-
tion or movement of the body. Physically, only the effect of forces can be measured and
not the forces themselves. There are internal and external forces. Internal forces are for
instance the interaction forces at the atomic level that depend on the material [22, 46].
Internal forces are eliminated by the rigid body hypothesis and are thus not considered
in the remainder of this presentation. External forces are either the result of a contact
with another body or the effect of a force field like gravity or electromagnetism. The
first are called contact forces, the second are called body forces. There are concentrated
forces, applied to a single point or distributed forces, applied along a line, over a surface
or throughout a volume. All forces in the physical world are distributed. However, if the
size of the surface is much smaller than the size of the body, the force can be viewed as
a concentrated force. Furthermore, most distributed forces can be replaced by a result-
ing concentrated force. The point of application depends on the force distribution. The
following presentation considers only concentrated forces.
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Definition 3 (Force). A force (in the inertial frame) is characterised by a magnitude fo,
a direction 50 and a line of action l,. The line of action is the infinite line parallel to the
force. The direction is the unit vector indicating in which direction the force is pointing
along the line of action. Forces a therefore vector quantities and satisfy the rules of vector
algebra.

The first two important points concerning force are the principle of transmissibility
and the definition of moment of force about a point Y;; on a body %; in the inertial
frame.

Theorem 7 (Principle of Transmissibility). A force can be applied to a body at any point
along its line of action without changing its overall effect on the body.

Definition 4 (Moment of Force). A force fo,i; applied at a point Zy; on a body %;,
creates a moment of force 5072‘ at a point Yy ; of the body. The moment of force is defined
as the cross product between the vector 7y, from points Yy, to Zy,; and the force.

ﬁ),i = (20, — Yo,) ¥ ﬁ),i = 70, X ﬁ)z (3.54)

The double subindex of the force and moment of force vectors indicates the force vector
1s defined in the inertial frame but is applied to body 1.

The vector from Y{; to Zy; is decomposed into a vector normal to the line of action
and a vector parallel to the line of action. The moment of force is defined by

to; = FO,i X fO,i = (Fo,i,L + 770,@',||) X fo,z‘ = FO,i,i X fom (3-55)

where 70, | is called the lever arm of the force with respect to the point Yj ;.

Line of action

0,i = 70,i X fo,i =70,5,1 X fo,i

Figure 3.9: Illustration of the moment of force created by a force applied at a point Z;
about a point Yo, as described in section [3.4.5.

A force applied at a point Zj; defines a moment of force at any other point Yj; on
the body. Thus, the overall effect of a force applied at a point Zj; is equivalent to the
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overall effect of an equal and parallel force applied at Y, plus a moment of force (Fig.
B.9). The force and its moment define a screw called a wrench, encoding a helical force
field.

Fyos = (fouir Tos % fo.)- (3.56)

All the forces acting on a body define a system of forces. Every force ﬁ;,k in a system of
forces creates a moment of force at a point Yj ;. Consider a body Z; subject to a system
of N forces. Each force is applied to a point Zj; ;. One defines the resulting force applied
at Yp,; and moment of force about Yj ;.

N N N N
foi = Joiks toi = (Goin—tos) X foin = TosxXfoix = > Foiks X foin (3.57)
p B B p

Notation: The triple subindex on the forces indicates the following: JFom is the k"
force applied to body ¢ in the inertial frame Ry. The triple indexes on the vectors 2z ; x
indicate the following: k' vector associated to body i defined in the inertial frame. The
first index always indicates the frame in which the vector is defined, the second subindex
indicates to which body or frame the vector is related, and the third subindex is for
indexing multiple instances of the vector. If the force is defined in the body’s frame,
there is a double subindex: ﬁk

Again, the vectors 7 ; 5,1 are called the lever arms of the forces around the point Yj ;.
If the same system of forces is reduced to another point V;; (different from Y ;) we have
the following relation between the screws

Fvo, = (f?o,i, t0.4) + (0, (Go.; — Tos) ¥ foﬁ = Fyo,, + (0, (Ho,s — Vo) ¥ f_(;z) (3.58)

The difference between two resulting screws of the same force system at points Yj; and
Wo,i is a screw with zero force.

Definition 5 (Couple of Force or Torque). A couple or torque is a system of forces
with a resulting force equal to zero. The moment of force defined by a couple of force is
independent of any point of application.

This definition is followed by the following theorem.

Theorem 8. FEvery system of forces can be reduced to a single force applied at a point
Yo,i and a couple of force.

Consider a body %; with N forces acting on it at points Zy; ;. The screw at point
Yy, is defined by a screw at the origin of the inertial frame minus a couple of force.

N N N
Fyo, = (Z Joiks Z(go,z,k — Yo,i) X fO,i,k) = (fo,i, Zzo,i,k X fO,i,k) — (0, %o,i X fo),
k=1

k=1 k=1
= (ﬁ),z‘, {Oz) - (07 qo,z' X J?o@) = -7:00 - (07?70,2‘ X ﬁ)z) (3-60)
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The moment %,i is decomposed into moments parallel and normal to f_é,i (is the resulting
force of the system of forces).

Fxos = (J?o,z'a ﬁ),@ll "‘{O,M) — (0,70, x J?o@) = (ﬁ),z‘, {o,z‘,n) +(0,%0,4.1) — (0, o x J?o@) (3.61)

If the point Yy ; is chosen appropriately, the two couples (0, ﬁ)z 1) and (0, yo; X ]%Z) cancel
each other. Indeed, both couples are in a plane normal to fo;. The result is a screw of
force fy; and a couple parallel to the force.

The magnitude of a wrench is equal to || ]%Z||2 The pitch p,, is the ratio of moment
to force. Thus, Chasles’ theorem in kinematics has an analogue theorem in dynamics
known as Poinsot’s theorem.

Theorem 9 (Poinsot’s Theorem [164]). Fvery system of forces is equivalent to a single
force and a couple of force with moment parallel to the force. The magnitude of the couple
vector is proportional to the force’s magnitude. The proportionality factor is called the
pitch.

The twist 7 in kinematics and the wrench F in dynamics are screws with magnitudes.
They are dual (Fig. B.10). The screw of a point Ay; not on the screw axis is defined by:

on = (f(;,h EE],Z‘,H) - (07 Fo,z' X ﬁ)z) = (fT(;,hpr(;,i + f(;,i X Fo,z')- (3-62)

The force will govern the change in translational velocity while the couple will govern the
change in rotational velocity.

(a) (b)

Screw Axis

27py Lo 4, = Pt@o2mpy, to,i,| = pwfo.i

Wo,i X 70,4, 1 fo,i X 7oL

Figure 3.10: Duality between Chasles’ theorem (a) and Poinsot’s theorem (b) as described
i sections|3.5.4) and [5.4.2,
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3.4.3 Inertia and Moment of Inertia

Newton’s and Euler’s second laws state that the forces and moments of force acting
on a body are proportional to its linear acceleration and angular acceleration. From
Chasle’s theorem follows that a body will have a linear acceleration and a rotational
acceleration. From Poinsot’s theorem follows that a body will have a force and couple.
The proportionality factor between the linear acceleration and force is the inertia. The
proportionality factor between the angular acceleration and couple is the moment of
inertia. Both factors measure a bodies’ resistance to linear and rotational motion.

For a rigid body %; made up of a discrete number of particles N. Each particle has a
position Z; , with respect to the body frame and an inertia or mass m; ;. Mass is not to be
confused with weight which is the mass multiplied by the earth’s gravitational constant.
The total inertia m of a rigid body is the sum of all particle masses.

N
=3 (3.63)
k=1

The total mass is viewed as concentrated at a point called the centre of mass. The
location of the centre of mass is defined by:

N —
7=y TRk (3.64)

m4
k=1 ¢

From now on, the notation Z will be reserved for the centre of mass. Mass is a single
factor which describes the bodies’ resistance to being translated in any direction. For
rotations, three factors are required. For a body comprised of N particles, the moment
of inertia matrix is computed in any frame using the following definition:

N
= mu ((Fir - Za)I = Ziazll) - (3.65)
k=1

The matrix I is the 3 x 3 identity matrix. If the body consists of an infinite number of
particles which each occupy an infinitely small volume (dz;)® = dwzdydz within the body.
The total mass of the body is defined by the volume integral of the density p(z;). The
vector Z; is now a continuous vector describing the entire body (in the body frame R;)
that can be integrated.

m= [ otz (3.66)
The centre of mass is defined by:
5= [ oz (3.67)

and the moment of inertia is defined by:

Z— [ ol3) (5 2)1- 4G (@) (3.68)
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(a) Discrete Collection of Particles (b) Continous Distribution of Particles

Figure 3.11: Illustration of a rigid body as (a) a collection of particles with mass my or
as (b) a continuous mass distribution characterised by a density field p(Zy) as described

in section [3.4.5

In many problems, the body frame is located at the centre of mass and aligned with the
principle axes of inertia. The units of mass and inertia are kilograms [kg] and [kgm?|
respectively.

Any rotation is equivalent to three sequential rotations about three mutually perpen-
dicular axes. Given a bodies’ geometry, there is a unique definition of these axes such
that the bodies’ resistance to rotation around any axes is defined in terms of its resistance
to rotation around the three axes. The moment’s of inertia about these axes are called
the principle moments of inertia. The axes are called the principle axes of inertia. If the
body frame is aligned with these axes, the moment of inertia in the body frame is defined
by a diagonal matrix.

Lai 0 0
=0 I, o]. (3.69)
0 0 L.

In any other frame such as the inertial frame, the matrix is symmetric, positive definite
but not diagonal.
IJ:J:,O IJ:y,O IJ:z,O
Zoi= | Loyo Iyyo Iy20 | - (3.70)

[mz,(] [yz,O [zz,O

3.4.4 Equations of Motion

The time-dependent behaviour of a rigid body, in terms of motion, is defined by the
equations of motion. The equations of motion constitute a set of second order differential
equations in terms of the kinematic coordinates. This section constructs the equations
for a rigid body of constant mass, stationary in the body frame.
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Definition 6 (Equations of motion). The equations of motion for a rigid body %B; are
a set of second order differential equations (ODE) in terms of the vector of kinematic
coordinates @;[338]) and its first and second time derivatives with respect to time. The
equations of motion are of the form

- S5 ¢ = (xz‘,yi,zi,@/)z‘,ﬁi,%) (f Tz )
qi = %<t7 qi, QZ)a iR . .. . : . —' ;*

‘ G = (T, Uiy 2y iy 0iy i) T = (TF,XT)
with  qi(to), and G(to) the initial conditions.

T
)

T
)

(3.71)

Consider the rigid body Z; of the definition subject to N forces. The forces are applied
at points Zy;; on the body. The body’s centre of mass and the points of application of
the forces are defined in the inertial frame Ry by (Fig. BI2)):

— 7 — 7 —nk — 7 — 7 —
To;i = do; + Rio; = do; + T, Zoik = do; + RioZip = doi + 25 - (3.72)

The centre of mass is assumed to be fixed in the body frame (#; = cte). The system of
forces is reduced to a single force f,; and couple tqoﬂ- at the centre of the inertial frame.

N N
Joi = Z Joiks to; = dog % foi+ Z 20,0k X Joik- (3.73)
h—1 k=1

Newton’s second law states that the vector sum of all the forces acting on the body is
equal to the mass, multiplied by the acceleration of the centre of mass. The acceleration
of the centre of mass is the acceleration of a point ([353). Newton’s second law for a
three-dimensional rigid body is defined by:

. N
miZo,; = My <d0,i + Wo,i X gy + o, X (Soyi X f&)) = Z fo,ik = fo,i- (3.74)

The term m; (cﬁo,i X (QOJ X :E*OZ)) is the centripital force. If the centre of mass was not

fixed in the body frame, there would be a Coriolis force equal to m; (2w ; x RLO:Z). The
linear acceleration is related to the forces by the equation.

CZE]’Z‘ = fz = E]E(;,Z — ("‘_-50,2‘ X 3_7?),@- — u_j(],i X ((IjO,i X fal) . (375)

If the centre of mass is located at the centre of the body frame, this equation reduces to

‘ZM = m% foz This equation represents the translational part of the equations of motion.

The rotational part of the equations of motion is obtained by defining a quantity
called angular momentum lo i- Consider the rigid body %; to have a den51ty distribution
of p(Zp,;) in the inertial frame R,. The vector z; = dOz + R, 07 = dOz + ZOZ is the
location of elementary particles of mass with respect to the inertial frame (Fig. B.12).
The angular momentum of body %; in the inertial frame is defined by:

I = / p(75) (Gos X Sni)(dzs o) (3.76)
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Figure 3.12: Illustration of the construction of the dynamics of a rigid body as described

m section |3.4.4)

The relation is expanded using ([3.63)) and (B.67):
o= [ 030 ((os-+ 5.0 % (dos + v x 5,)) (d5,)°
= iy x (o + s % ) + iy % doa+ [ (35,) (G x s x 5,0(dz5,)% (377)
The last term in this equation can be developed further.
[ PG G x @ins x 7.0) (@5, 0°= [ 005, (@045, 75,) = 7,055, (d55,)°
— [ 0135 (35,751~ ,50,7) G0sld5, ) = Tosose (3.78)
Using the expression for inertia (3.65]), the angular momentum vector is defined by:
fo,i = midg),i X fo,i +mTy ; X CZOZ + Zo,i@0,3- (3.79)

Given the expression of angular momentum for a rigid body %;, Euler’s second law of
motion can be expressed.

Theorem 10 (Euler’s angular momentum theorem). For a rigid body %;, the time deriva-
tive of the absolute angular momentum vector with respect to the inertial frame centre is
equal to the sum of all the moments of force at the same point.

l?),i = ﬂ)z (3.80)

The expression is expanded on both sides yielding the following relation:
7 - 7 - - o 7 o 7 - - -
mido,; X Zoi + mido; X Toi +mi(&oi X T5;) X doi +mTg,; X doi + Lo o, + Goi X Lo,ido,i

N
= do; X foi + Z%kzk X fo,ik- (3.81)
k=1
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Using (3.69) eliminates the second term on the left side with the first on the right. The
first and third term on the left cancel each other. The resulting equation is

. N
—k 7 5 — — —k P
mixg; X do; + Lo o, + o X Lo o, = E Yo,ik X fo,i k- (3.82)
k=1

Theorem 11 (Equations of Motion (Classical Description)). The equations of motion
of a free rigid-body %; in the inertial frame, with constant mass, parameterised by the
kinematic coordinates and their derivatives ¢;, q; and ¢;, with the centre of gravity
located at the body frame’s centre are defined by:

7 1 2 N ~ ~
midoﬂ Hfoﬂ‘ —my (CUQJ' X ZL_'hokﬂ- + Wo,; X (woﬂ- X ifSﬂ)) (383)
i

T, =
N .
hn —% r —k 7 — —
Toioi = > Uoan % Join — maZl; x dog — G x Lo o (3.84)
k=1

If the centre of mass is placed at the centre of the body frame, the angular momentum
theorem takes its simplest form.

N
5 — — —gc %
Zoiwo,; + Woi X Lo o = E Yok X Joik: (3.85)
k=1

The vector &y ; = WOZ(fZ)fZ is used to express the equations of motion in terms of the
kinematic coordinates for a rigid body with constant mass, fixed in the body frame.

Theorem 12 (Equations of Motion (Parametric Description)). The equations of mo-
tion of a free rigid-body %; in the inertial frame, with constant mass, parameterised
by the kinematic coordinates and their derivatives g;, cﬁ and q;, with the centre of
gravity located at the body frame’s centre are defined by:

N
1 - - 5 = -
Fz = E Z fO,z,k - (WO,2<Ti)Tz + WO 1<T1>Tz) X fg Z<Tz)
P k=1
Wo,(T)T; x (Woﬂ-(ﬁ)fl x &), (3.86)
(EOZ - WO z(fz>Tz + WO,i<fz)fz = (3 87)
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If the body frame centre and centre of mass coincide, the equations simplify consid-
erably. The forces me can also depend on the orientation if it is simpler to define them
in the body frame. The equations of motion are in general non-linear and solutions are
mostly found numerically.

3.4.5 Mechanical Energy, Work and Power

Because of the complexity of the equations of motion, the energy approach to rigid body
mechanics provides insight without solving the equations. The energy of a rigid body has
two sources: kinetic energy and work.

The kinetic energy of a rigid body with continuous mass distribution is defined by:

1 o . 5 . .
Eki= 5 /P(gok,i)gggo,i(dzg,@')sa Zoi = doi + 25,4, Zoi = doi + o X ;e (3.88)

Expanding the expression yields:

1 . 5 . 5 . - "
EK,i= 5 /P(Zo,i)(do,i + Wo,i X %,i)T(dO,i +Wo,i X ZO,i)(dZO,i)sa

1 T - " 1_p - 1y 1.p -
= §mid0,id0,i + mido,i(ww X .%'671) + 5&)071-1.071'&)072‘ = §mim07ixo7,~ + §w0,iz—07iWQ7i. (389)

x fo,i(tr)

—

to,i(t2) = 5 i(t2) X fo.ilta)

R()

Figure 3.13: Construction for the mechanical work of a force on a rigid body along a path
as described in section[3.4.0.

The energy given to a body by a force is called work. The bodyﬁframe moves along a
path do;(t) with a single force fy;(t) applied at a point Yo, (4o = do; +45,) (Fig. BI3).
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The total work W; of the force fo,i between times t; and %, is defined in the inertial frame

by:
/ fo@ Yodt = / fo@ : (CZE]Z + o X Z]&) dt

to
=/ fO,i'dO,idt+/ i (yozxfol) (3.90)
t1

t1

It is the integral of the power P; ¢(t) = fo),i(t) : (on( t) developed by the force along the
path of the body frame plus the power P, (t) = & ;(t) - (;,(t) x ﬁ;,(t)) developed by
the moment around the body frame over time. For an infinitesimal displacement of the

body along the path, the infinitesimal amount of work is defined by:

dw; S . dy.; d¥; .
e pyt) = oo+l (¢ o) = oo 222 4w, Sy x o
AW; = Pydt = fo; - ddy; + (Wod o) (75 % fo)- (3.91)

The path is function of the kinematic Coordlnates G- Thus work can also be expressed
as a path integral in terms of the coordinates [; and T..

. Ci(t2) Ti(t2) T . . .
Wz = / Foodfor [T WE) - @500 x fdEe (392)
Ty (t1) Ti(t1)

A force producing work is said to be active otherwise it is inactive.

Force fields are of particular interest. They are forces dependent on the spatial position
Zo. Given that forces act on bodies, the force field can be parameterised by the position
of the body’s centre of gravity that is function of the kinematic coordinates ¢;.

foi(Zo.) = fou(@).

Examples of force fields include Newton’s gravitational field around bodies, electromag-
netic force fields and the force created by a elastic springs. There is a particular type of
force field called a conservative force field.

Definition 7 (Conservative force field). A force field ﬁ;z(cfl) is conservative if the work it
produces along a path is only dependent of the path’s end points. The work is independent
of the path. Such forces satisfy the following list of equivalent properties:

e The work produced by a conservative force along a closed path is zero : ¢ dW; = 0.
o There exists a function h(Zo;) = h(g) such that fol(cj;) =—Vsh(G).

—

o The rotational of a conservative force is zero. Vg X fo; =0

Any force not satisfying these properties is called a non-conservative force field.
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s A Energy

Emvil— —

. m§0 %1
mgo

~ % 6 %, time
Figure 3.14: Illustration of the energy conservation theorem as described in section[3.4.5.

The energy produced by conservative force fields is called potential energy and the
function h(Zy;) is called a potential function. More abstractly, a conservative force field

is called an exact 1-form and is irrotational (V x fo,;(Z) = 0).

The total mechanical energy of a rigid-body is a scalar function. It is defined as the
sum of the total kinetic energy due to the system’s motion and the total potential energy
due to conservative forces such a springs or gravity. The mechanical energy is function
of the kinematic coordinates and their first-order time derivatives.

EnilG, @) = Excil@ @) + Epa(d). (3.93)
There are two important theorems involving a body’s energy.

Theorem 13 (Energy Conservation theorem). The total mechanical energy of a system
not subject to any non-conservative forces is constant

ngi = Ct@, SMJ' = 0. (394)

Between two configurations, the variation in kinetic energy is equal to the opposite of the
potential energy variation.

A&ki(tr, ta) = —Ap;(t1, t2). (3.95)

This theorem is easy to understand when considering a frictionless pendulum subject
only to the earth’s gravitational force (Fig. BI4). In a configuration %7, the pendulum
has no velocity and therefore no kinetic energy. However, the gravitational force is giving
it energy that will cause it to rotate downwards. In configuration Co, the pendulum can
no longer drop any further and therefore has no potential energy. However, it does have a
velocity. All the potential energy from configuration C; is transformed into kinetic energy
in configuration %5.

Theorem 14 (Energy theorem). The variation over time of a body’s mechanical energy
1s equal to the power developed by all the non-conservative forces acting on it.

Enri = Prei- (3.96)
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The energy theorems provide a method of verifying if the equations of motion are
correct. If the solution obtained after numerical integration does not satisfy either theo-
rem, depending on the type of forces acting on the body, the equations of motion contain
errors. The energy approach provides a systematic method of constructing the equations
of motion that will be discussed in the following section.
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3.5 Multibody Kinematics

The previous sections presented the kinematics and dynamics of a single, free rigid body.
This section extends the kinematics analysis to systems of rigid bodies where there are
interactions between the bodies that are no longer free. The presentation’s focus is
mechanisms involving a specific type of interactions called joints. This section focuses
on the interactions between the different bodies in terms of relative movement. The
section begins by presenting the definitions of kinematic pairs and chains. The forward
kinematics and mobility of a mechanism are also presented followed by a presentation of
the constraints arising within mechanisms. Finally, a systematic method of constructing
the forward kinematic map is described.

3.5.1 Machines and Mechanisms

One example of a system of bodies is a machine. A machine has multiple parts or
links and uses energy to produce motion and therefore a force. In a machine there is
always one fixed link called the carrier link. The links within a machine are connected
through articulations or joints imposing a relative motion between two links. The motion
produced by a machine is transmitted to a specific link in the machine called the end-
effector. Machines are real systems where the link’s are not necessarily perfectly rigid, the
contacts have friction and there is play in the joints. Examples of machines include robot
manipulators. A mechanism is defined in this chapter as an idealisation of a machine
where the links are all rigid bodies and the contacts are perfect or ideal. There is no play
or friction in the interactions between bodies. As such, mechanisms satisfy the rules of
general mechanics. Each body’s behaviour is governed by the kinematics and dynamics
of a single rigid body under the influence of forces. The differences between each body
in a mechanism are the constraints and forces restricting and influencing their motion.

Two families or types of mechanisms are differentiated by the configuration of the
bodies between the carrier body and end-effector [126]. There are serial mechanisms
where the bodies are connected in series between the carrier body and end-effector (Fig.
BI0). In a serial mechanism there is a single path passing through each body from
carrier body to end-effector. An example of a serial mechanism is the SCARA pick and
place robot used in assembly lines in industry [202]. The second type of mechanisms
are parallel mechanisms where there are multiple serially connected groups of bodies
between the carrier body and end-effector. In a parallel mechanism there are multiple
paths between the carrier body and end-effector. The Gough-Stewart platform is a well
known example of parallel mechanism [79,184], initially designed for testing tires. There
is a third type of mechanism, not considered here, called a hybrid mechanism with both
serial and parallel configurations of its bodies.

Parallel mechanisms are more rigid than serial mechanisms because the play in the
joints cancels itself through the parallel design. However, such mechanisms are more chal-
lenging to design. Serial mechanisms have a wider space in which the end-effector can
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Machine (Serial Manipulator) Machine (Parallel Manipulator)

Mechanism

End-effector
Bodies

Connections

( Carrier Body ) ( Carrier Body )

Figure 3.15: Illustrations of machines and their corresponding mechanisms as described

in section [Z.5 1.

move while parallel mechanisms have a smaller end-effector workspace. Parallel mecha-
nisms can move at much greater speeds within their workspace than serial mechanisms.
A human being standing on one foot can be seen as a serial mechanism. The ground is
the carrier body and the body constitutes multiple serial elements. When the second foot
touches the ground, the body becomes a parallel mechanism. The two legs constitute
a parallel element of the mechanism between the ground and lower trunk . The upper
trunk, upper limbs and head constitute serial elements of the mechanism. The standing
human body is a hybrid mechanism.

3.5.2 Kinematic Pairs and Kinematic Chains

Mechanisms transmit motion and therefore forces. Forces are transmitted within a mech-
anism by the interactions between bodies called connections. Connections represent an
idealised model of the interactions between two bodies. There is no friction or play in
a connection. There are two types of connections, differentiated by the nature of the
interaction forces. Force elements and kinematic pairs.

A force element creates a force on either body in a connection that is a function of
their relative motion. For instance, a spring and damper creates a force that is a known
function of the relative position and velocity of the two bodies. A force element produces
a force that is known, given the mechanism’s geometric configuration, but does not limit
the kinematics of the mechanism.
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A kinematic pair or joint defines a kinematic constraint between two bodies and limits
their motion. The forces in a joint impose the constraint but are unknown a priori. This
difference with force elements is essential. Kinematic constraints do impose forces on the
bodies. These forces are dependent on the type of constraint but can only be resolved by
solving the equations of motion.

One distinguishes between form- and force-closed joints. A form-closed joint is held
together by the geometry of the joint. The kinematic constraint between the two bodies
is always enforced. A force-closed joint requires the application of an external force to
enforce the kinematic constraint. If there is no force, there is not necessarily a constraint
and the bodies can move apart. In any connection, the interaction forces applied on
either body are always equal and opposite according to Newton’s third law.

A kinematic chain represents a kinematic model of a mechanism. It is a set of rigid bodies
connected together by kinematic pairs. Because the model is kinematic, force elements
are not considered. A serial mechanism defines an open kinematic chain. A parallel
mechanism defines a closed kinematic chain. A kinematic chain is defined between the
carrier body and the end-effector. Therefore, closed kinematic chains can be seen as
multiple serial chains, joined together at the end-effector.

(a) Revolute (b) Prismatic

(e) Spherical

A

<
" \\‘-—o—‘
i\q\.

/éj;;;l}’l

2D 3D 2D 3D

o8| [k

Figure 3.16: Illustration of the six lower kinematic pairs with their symbology. (a) Revo-
lute (R) joint - 1 dof. (b) Prismatic (P) joint - 1 dof. (c¢) Helical (H) joint - 1 dof. (d)
Cylindrical (C) joint - 2 dof. (e) Spherical (S) joint - 3 dof. (f) Planar (F) joint - 3 dof.
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Kinematic pairs are characterised by the type of contact between the connecting bod-
ies. They can be punctual, linear or over a surface. Surface contact pairs are called lower
kinematic pairs while linear and punctual contact pairs are called higher kinematic pairs
[91, [173]. Lower pairs are the most predominant kinematic pairs found in mechanisms.
There are six different types of lower kinematic pairs (Fig. BI6]). The revolute pair (R),
the prismatic pair (P), the cylindrical pair (C), the helical pair (H), the spherical pair
(S) and the planar pair (F). The revolute and prismatic pairs are the most fundamental
and can be used to construct all other pairs. Higher kinematic pairs include the universal
pair (U) which is two serially connected revolute pairs (Fig. B.16]) and is for instance the
cardan joint. The linear pair (L) which is for instance, a wheel rolling on the ground
(linear contact). The spherical slider pair (E) which is a sphere that can slide and roll on
a surface (punctual contact).

(a) Universal (b) Linear (¢) Spherical Slider

N

2D 3D 2D 3D 2D 3D

o | 4| [4]ef [2]s

Figure 3.17: Illustration of the higher kinematic pairs with their symbology. (a) Universal
joint (U) - 2 dof. (b) Linear joint (L) - 4 dof. (c) Spherical Slider joint (E) - 5 dof..

Kinematic pairs impose a specific kinematic relation between two bodies. The motion
between two bodies %; and %; of a general kinematic pair is modelled by a Euclidean
displacement. The displacement describes the position of a point X ; on %;, for instance
the centre of mass, with respect to the inertial frame R, through the configuration C;
of the body %;. . .

XO,j : fO,j = do,j + Rj@fj = do,j + f?),j' (397)

The vector J;Lj defines the position of the reference frame R ;. This vector can be defined
as the position of the reference frame R; plus a vector.

JE),]' = Lﬂ),i + Ri,Ozji and Xi,j : SI_])Z"]' = gz + Rjﬂ'fj, Rjﬂ' = j,ORg:(]- (398)

where g is the position of R; with respect to R; in the frame R; (Fig. B.I8). Thus, the
configuration of a C; of a body %; is defined by:

Coj = (C%,jv R;o) = (CZOz + R, oy, R;Rio).

The configuration of %; is parameterised by a vector of kinematic coordinates ¢;. If
the coordinates are defined with respect to the inertial frame they are called absolute
coordinates and the configuration of %; is the global configuration Cy ;. If the coordinate
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Figure 3.18: [llustration of the kinematic relation between two bodies in a kinematic pair
as described in section [F5.2.

are defined with respect to another body (4;) they are called local or relative coordinates
and the configuration of %, is the local configuration C; ;. For a serial chain comprised
of N bodies, any given body %; is connect to a body %;_; in the direction of the
carrier body %, and connected to a body %;.; in the direction of the end-effector
HAB.. In a serial chain, the kinematic coordinates ¢; parameterise the kinematic pair
between %; and %;_; and the configuration of ;. Therefore, each kinematic pair has a
specific set of kinematic coordinates (Table3.1]). The number of independent coordinates
defines the degrees of freedom K of the kinematic pair. There are at most 6 degrees of
freedom for a single kinematic pair. The kinematic coordinates of a kinematic pair are
therefore elements of subsets of SE(3). These subsets can for certain kinematic pairs be
topologically equivalent or homeomorphic to other well known sets [31), [181].

e Prismatic pair is defined by one translational coordinate: ¢; € R,
e Revolute pair is defined by one rotational coordinate: ¢; € S' = SO(2),

e Cylindrical pair is defined by one translational coordinate and one rotational coordinate:
7 € Rx S

e Spherical pair is defined by three rotational elements: §¢; € SO(3),

e Planar pair is defined by one rotational coordinate and two translational coordinate:
g € R? x S,

e Universal pair is defined by two rotational coordinates: §; € S2,

e Linear pair is defined by two translational coordinates and two rotational coordinates:
7 € R? x §2,
e Spherical Slider pair is defined by two translational coordinates and three rotational

coordinates: ¢; € R? x SO(3).

Thus, the kinematics of any mechanism under the assumptions described in section
B35 are governed by a well defined mathematical formalism. Each of the kinematic pairs
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have kinematic coordinates belonging to smooth manifolds. Some of the manifolds are
compact (closed and bounded): S, S?, SO(3). R" is not compact but a product of n
intervals of R is compact a compact subset of R™ [31]. Remark: For the universal joint,
St x 81 £ S2% In a universal joint, the rotation axes always intersect and therefore the
coordinates belong to S?. Two serial revolute joints with non intersecting rotation axes
define coordinates belonging to S* x S*.

Consider the configuration of body %; to be defined with respect to %; using local
coordinates of the kinematic pair between them. The kinematic pair’s motion is charac-
terised by a twist 7 in terms of a local description of the kinematics. In a revolute joint,
the second body %; rotates around the axis defined by &;; (Instantaneous rotational
velocity of body %4; in the frame R;). This axis is fixed with respect to the body %;.

In a prismatic joint, %; translates along an axis defined by d:j This axis is also fixed
with respect to the body %;. Using a local description of the kinematics, the twists of a
revolute and prismatic pair are defined by:

7;“3 = ((Divj? aji,j X ‘fzj)v Tp = (67 CZ;) (399)

A revolute joint is a twist with zero pitch, a prismatic joint is a twist with infinite pitch.

Although this section does not deal with forces, there is a final point concerning
kinematic pairs. Given the duality between Chasles’ theorem and Poinsot’s theorem,
each kinematic pair has a wrench, dual to the twist. A kinematic pair’s twist defines
the permissible motion of body %; with respect to body %;. A kinematic pair’s wrench
defines the force and moment of force that body %, can apply to body %;. No force
or moment of force can be transmitted in the direction of a permissible motion. For
instance, in a prismatic pair, no force can be transmitted along the translation axis.
This leads to the following statement: the force and moment of force of a kinematic pair
produce no work. This point will become essential in building the equations of motion
for a mechanism.

3.5.3 Forward Kinematics and Mobility

Forward kinematics analyses the motion of the end-effector, through the motion of the
entire robot in terms of the kinematic coordinates of each body. Therefore, a description
of the entire mechanism’s kinematics is required. A systematic approach is to define the
configuration Cy; of each body in the mechanism with respect to the inertial frame R.
The reference frame of body 4; is placed at a point directly involved in the kinematic
pair with B;_;. For instance, at the centre of a spherical pair or on the axis of a prismatic
or revolute pair. The Euclidean displacement is defined with respect to the body’s centre

of gravity (Fig. B.19):
Toi\ _ (Rio doi\ (Ti\ _ e
<1>_<0 1><1>_HZ’0<1>. (3.100)

The configuration Cy; of every body in the mechanism is defined in the same way. As
stated in section [3.5.2] the vector dy; can be expressed with respect to the displacement
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Table 3.1: Euclidean displacement characteristics of some kinematic pairs [181]. The
displacements are described for body %; (with frame R;) with respect to body %B; with
frame R;.

Kinematic Pair Rotation Matrix R'j,o Vector cﬁ)’j Variables ¢
cos(wJ ) 0 —sin(¢y) 0 -
Revolute Pair 1 0 0 0 0 0 % 0 0
sin w]) 0 cos(vp;) 0
T 0 0 z;
Prismatic Pair 0 1 0 0 (zmj 0 0 0 O O)T
0 0 1 0
cos(wj) 0 —sin(v;) 0
Cylindrical Pair 1 0 yj 0 y 0 0 9 07
sin() 0 conliy) 0
0
Spherical Pair R(¢;)RT (9;)R(p;) (o) (0 0 0 v 9 ¢)"
0
cos(p;) —sin(p;) O x; -
Planar Pair sin(pj)  cos(pj) O Yj (z; w; 0 0 0 ¢j)

Universal Pair cos(1;) sin(p; cos(pj)  sin

0

cos(pj)cos(¥j) —sin(p;) cos(p;)sin(dy)

) ( (95)
—sin(d;) 0 cos(;)

Linear Pair cos(¥;)sin(p;)  cos(p;)  sin(p;)sin(d;

(cos(goj-) cos(¥;) —sin(p;) cos(e;) sm(ﬁj)))
—sin(¥;) 0 cos(V;)

Spherical Slider Pair R(4;)R” (9;)R(p;)

of the body %;_;. . .
do; = doi—1 + Ri_10¥i—1, (3.101)

where g;_ 1 is the vector between the reference frame R; ; and R; in the frame R; ;.
Proceeding backwards until the first body, one defines the following:

CZO,z‘ = Cio,l +Rio%1 -+ Ricoo¥ime + Riz1 071, (3.102)

The result is a homogeneous transformation, function of the global kinematic coordinates,

defined by:

Zos\ _ (Rio Cfo,l + Ry -+ Rioo¥io + Ric10%i—1\ (T
<1>_<6T 1 ). (3.103)

An alternative method is to use local coordinates. The configuration C;_;; of each body
A; is defined with respect to the previous body %; ;. The displacement of %; with
respect to #;_; is defined by the homogeneous transformation:

-

Tic1i\ _ (Rii1 dic1a\ (Ti) _ (T
()5 S Dml) e

The vector d:-_u is vector from R,;_; to R; in the frame R,;_,. The vector Z; is the vector
from R; to the centre of mass on %;. The displacements can be compiled such that any
point Y; on the mechanism is defined with respect to the inertial frame by the following
displacement:

Yo @ o =HioHsy .. . Hi_y; oH;; <y12> =H,, <yf) ; (3.105)
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In both cases (([B.103),(3.105)), the homogeneous transformation matrix H; , can be de-
fined in terms of all the kinematic coordinates §; of each kinematic pair between body %;
and the carrier body. The coordinates are either global coordinates or local coordinates.
For kinematic chains with only revolute and prismatic pairs, there is a convention on
the parameterisation of the homogeneous transformation, called the Denevit-Hartenberg
parameterisation M]

io jo

Ro

Figure 3.19: Illustration of the displacement of a kinematic pair in a mechanism as
described in section [3.5.3.

Thus, the configuration (Cy,; or Cp;—1) of any body %, in a kinematic chain with N,
bodies and Ny kinematic pairs (N > NN,) is defined by a single homogeneous transforma-
tion. This transformation is function off all the kinematic coordinates of the mechanism
G, © = 1,..., Np. The coordinates ¢ parameterise the kinematics of the kinematic pair
between %;_1 and %; and are either global or local coordinates. All the coordinates are
grouped into a single vector:

7g=(...q, .. )" (3.106)
—_————
Ny, vectors

As stated previously, each kinematic pair has a certain number degrees of freedom K; <
6 equal to the number of independent elements in ¢;. In general degrees of freedom
designates the minimal number of independent coordinates need to parameterise the
configuration of a joint, body or mechanism. Knowing K; for each joint allows one to
compute the number of degrees of freedom of the entire mechanism. The number of
degrees of freedom or mobility D of a mechanism i with N, bodies and N, kinematic
pairs is defined by the Chebychev-Griibler-Kutzbach or mobility formula @]

D =6(N,—1)— i(6 — K;), (3.107)

=1
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There are (N, — 1) rigid bodies without the carrier body. Each body has potentially six
degrees of freedom. There are Ny joints with K; degrees of freedom each. Each joint
eliminates 6 — K; degrees of freedom for body ;. The mobility D of the mechanism
is equal to the number of independent elements of ¢. A system is said to be holonomic
with D degrees of freedom if all the coordinates are independent and there is no relation
between ¢ and cj’ Otherwise, the system must have constraints limiting its motion. The-
oretically, if the number of kinematic coordinates is always selected to match the number
of degrees of freedom, there would never be constraints. This proposition is attractive in
that analysing the kinematics using independent coordinates is straightforward. However,
this is highly non-trivial for most mechanisms.

3.5.4 Kinematic Constraints

Any contact between two bodies restricts their relative motion and can be modelled as a
kinematic constraint. All kinematic pairs can be defined as constraints. The constraint
defines the restrictions on the motion as mathematical expressions. There are three types
of kinematic constraints classified according their mathematical expression. The first type
are called holonomic constraints and are expressed as algebraic functions of the kinematic
coordinates and time.

®(g,t) = 0. (3.108)

If time appears explicitly in the function ®, the constraint is holonomic-rheonomic,
otherwise it is holonomic-skleronomic. For instance, kinematic pairs define holonomic-
skleronomic constraints. The second type of constraints are called non-holonomic con-
straints and are expressed as:

(7, g, t) = 0. (3.109)

An example of a non-holomic constraint is for instance the rolling wheel constraint. A
wheel can only roll forwards and cannot translate sideways. The constraint states that
the linear velocity must be equal to the wheel’s rotation speed and orientation angle.

The last type of constraints are called isoparametric constraints. They are used for
example to enforce the conservation of some quantity such as a length or energy. They
are expressed as an integral with respect to time

t
/ ®(q,q,7)dr = C = cte. (3.110)
0

All the constraints stated above define equalities. This means that in the dynamic context
a force will always be needed to enforce the constraint. All three types of constraints can
also be defined as inequalities. In this situation, there is a force only when the system
is on the edge of the inequality. However, this section will not discuss this possibility
and will focus on holonomic-skleronomic constraints which are the most common type
of constraints found in mechanisms. For instance, in parallel mechanisms where the
geometry of the mechanism must be respected. Furthermore, the constraints will be
assumed to be smooth functions of the coordinates.
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3.5.5 Forward Kinematic Map

The forward kinematic map of a mechanism is a vector function defining the spatial con-
figuration (linear position & orientation) Cy . of the end-effector, in terms of the kinematic
coordinates ¢ with respect to the inertial frame Ry. One method of constructing the map
is to define a kinematic chain between the carrier body and end-effector. The associated
homogeneous transformation is defined using the same approach as in section [3.5.4l

Xoe (fg) =H.(q) (ﬁ) : (3.111)

The kinematic pairs used to construct this map are called the independent kinematic
pairs. The sub-index e relates to the end-effector frame. If the mechanism is non-
holonomic, additional coordinates are added until all the remaining kinematic pairs can
be expressed in terms of the kinematic coordinates using constraints, function of the
coordinates. Thus, the kinematics of the mechanism are defined by the map (B.111])
subject to a certain number of constraints.

Definition 8 (Forward Kinematic Map). For a mechanism with D degrees of freedom,
Q kinematic coordinates and N, = (Q — D smooth holonomic-skleronomic constraints,
the forward kinematic map is defined by:

=257,
7 2(q) = Coe = (T, T, (3.112)
@1(6.7) =0,
: (3.113)
Dy, (7) = 0.

The end-effector point X, . moves within the work space #'. This space is at most
parameterised by the six coordinates (fg:e, YT = (20, Ye, 2e, Ve, Ve, cpe)T. The number
of independent coordinates describing Cy . is D,, the number of degrees of freedom of the
end-effector.

Definition 9 (Work Space). The work space # of a mechanism is the end-effector’s
accessibility area.

The works space is in general a subspace of one of the following five possibilities

e R: a linear manipulator (D, = 1),
e R? a planar manipulator (D, = 2),

e R? x SO(2): a planar manipulator with orientation (D, = 3),
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R3: spatial manipulator (D, = 3),

R? x SO(2): spatial manipulator (D, = 4),

R3 x S2%: spatial manipulator (D, = 5),

R? x SO(3): spatial manipulator with orientation (D, = 6).

All possible joint configurations constitutes the configuration space 2. The structure
of this space is defined by the type of independent kinematic pairs and the constraints.
The workspace of the unconstrained mechanism 2,,. is defined as the cross product of all
the coordinate spaces associated to the independent kinematic pairs (cf. section B.5.2).
The configuration space of the constrained mechanism is a subset: 2 C 2,.. For a
mechanism with D degrees of freedom, () kinematic coordinates and N, = () — D smooth
constraints, the space 2 can in general be defined as a smooth manifold of dimension
D embedded in R®. Depending on the type of kinematic pair, the manifold is compact
or not. If 2 is compact, the workspace is also compact given that the map is a smooth
invertible map.

3.6 Multibody dynamics

The following sections present a mathematical refinement of classical mechanics for rigid
bodies called analytical mechanics. For system’s of rigid bodies, the classical Newtonian
method of constructing the equations of motion is complex and requires defining the
velocity and acceleration of each body as well as all the forces acting on them. In
analytical mechanics, the equations of motion are derived from a single scalar function.
This is called Lagrangian formalism of multibody dynamics. The presentation begins
with the definition of virtual displacements. The principles of virtual work and power are
presented and used to derive the Euler-Lagrange equation. The equation is defined for
a system of bodies subject to forces, moments of force and holonomic constraints. The
Euler-Lagrange equation is used to define the equations of motion for a system of rigid
bodies. The section concludes with a small discussion of the principle of virtual work in
the context of static equilibrium.

3.6.1 Analytical Mechanics and Virtual Displacements

Analytical mechanics extends the theory of classical mechanics using mathematical for-
malism. There are two essentially equivalent formalisms: Lagrangian formalism and
Hamiltonian formalism that construct the equations of motion using a set of generalised
coordinates K. In the previous sections, the equations of motion of a single body were
described using cartesian coordinates and rotational coordinates that are linear coordi-
nates. Indeed, the coordinates describe the configuration of a body in SE(3). The first
three coordinates belong to R?® which is a linear space and Euler or Bryan angles define
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charts between a subset of R* and SO(3). Therefore, the configuration of a free rigid
body is defined by a vector belonging to a subset of R®. Newton’s and Euler’s laws of
mechanics are built from a linear description of space.

Analytical mechanics uses a more general description of space. In the previous section,
the parameterisation of a mechanism’s configuration was defined using a set of coordi-
nates that were all either cartesian coordinates or rotational coordinates. The result was a
forward kinematic map between the coordinates and the configuration of the end-effector
subject to holonomic constraints. As stated in section [3.5.5] the coordinate space ¢ € 2
is in general defined as a smooth manifold of dimension D embedded in R¥. There were
more coordinates than necessary. The manifold can be viewed as a surface in R¥ in the
same way a sphere is a surface in R3. Just like the sphere, the manifold is a curved sur-
face. Analytical mechanics allows one to use a set of coordinates that is more suited to
the curved nature of the manifold. These coordinates are called generalised coordinates
K. Thus, instead of using () coordinates subject to N, = () — D constraints, one can use
D < Q < Q coordinates, directly incorporating all or part of the constraints into the
parameterisation. The generalised coordinates are a curved description of space. How-
ever, the generalised coordinates must be consistent with the original description using
() coordinates. This consistency is defined through the concept of virtual displacement
that will be presented subsequently.

The following discussion supposes that there are D < @ < (@ generalised coordinates
parameterising the configuration of a mechanism. The centre of gravity Xy, of a body
A; in the mechanism is defined with respect to the inertial frame by a position vector,
function of the generalised coordinates 2 ;(q).

Xoi : Fou(R) = doi(R) + Rig(R)d, o (}‘) — Ho,(7) (I) (3.114)

The generalised coordinates are function of time and the total derivative of the position
with respect to time is defined by:

— Q —
Dy 5 0%, -, - T
7 = Toi = gl 8—:‘%%’ K= (Kiy. ., Kky-.-KQ) - (3.115)

The relation is multiplied by dt, the infinitesimal change in time, yielding the real in-
finitesimal change in position of the point.

. 0%, ig
dity; = Zalfk (3.116)

A virtual change in position or virtual displacement, is an infinitesimal change in position
without an infinitesimal change in time.

. 0%, is
i Zal-fk (3.117)
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One of the main differences between a real infinitesimal displacement and a virtual one is
that dZy; can be integrated along a path, 7y, cannot. Otherwise they are mathematically
similar. One can also define the infinitesimal change in velocity.

Sitp = 0%, 57 (3.118)

If the mechanism has constraints, both the real and virtual displacements must be com-
patible with them. This yields the following definition of virtual displacements.

Definition 10 (Virtual displacement). A virtual displacement 0y ; compatible with
the kinematic coordinates K = (Ki, ..., Kk, ., /{Q)T 1s any displacement which can be
imposed on the system satisfying the following

o 890 é

This equation is called the compatibility equation. The dqi are solutions to the equa-
tions

25:1 %5/‘6@ = 0,
: (3.120)
) 0D
22:1 a—lif(s/‘ik =0.
. : S, , 0P
The virtual displacements 6K are part of the null space of the matrix [%, o 2]

The set of equations ([B.120) will be referred to as the consistency equations and must
be satisfied.

The virtual velocities are also solutions of (3.I120). Given that the position of any
point is defined by a displacement in terms of the kinematic coordinates, the velocity of
any point on the mechanism is defined by:

: 7 - Odo; -, 0y, -
To; = do; + Goq X Tp,; = o7 °t aJ KX T (3.121)
%

Thus, the virtual displacement is fully expressed by:

—

- Ol Odo; ., 0o - .
0o = Odo; + 2l 57 X T, = 2l 5R 4 VSR o B = Gd + 0o X Ths (3.122)
0K ’ Ok OR ’ ’

The virtual velocity is defined by:

O Odos | O,
= g OF = R Ot R

OR X T, = 8dy; + 0,0 X Tz, (3.123)
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Not the difference between 6, ,; and 6 ;.

(9(,00@' ()(ﬂoi
0Wg; = ——0K, 0,00 = —=0K. 3.124
Wo, 2 K Wo, = K ( )

There is also a virtual change in rotational acceleration

0ddo ;

860 = OR. 3.125
0, OR ( )
There are two important relations associated to the virtual displacements
0%y, 0Ty, 030 Do,
0 — 20 oF _ 20t (3.126)
o OR o OR

It is also to be remarked that the virtual displacements 5‘%72‘ and ddy; are independent.

The same can be said for 5(%71- and 6, ;. Their dot product is always zero. Finally, the
generalised coordinates K are in many situations equivalent to the kinematic coordinates

—

q.

3.6.2 The Principles of Jourdain and d’Alembert

Analytical mechanics uses an energy based approach for constructing the equations of
motion. There are three central theorems that are closely related. The first is Jourdain’s
principle of virtual power containing the classical equations of motion obtained in section
B4 (383), (384)). The second is d’Alembert’s principle of virtual work on which the
Lagrangian approach is founded. The third is Gauss’s principle of least action used in
the Hamiltonian approach. Like Euler’s second law of motion, Gauss’s principle is the
most general theorem and allows for a system with time-varying energy. The following
sections and paragraphs will present the first two theorems. Gauss’s principle is beyond
the scope of this presentation.

Theorem 15 (Jourdain’s Principle of Virtual Power). For a system of Ny, rigid bodies,
each with continuous mass distributions p(zj;), and where each body is subject to a
system of Ny forces. The sum of the virtual powers produced by each system of forces
15 equal to the virtual power produced by the motion of each body

Ny

> <577i - /P(Zok,i)?o,i : 550,i(d§g,i)3) =

i=1

N, [ Ny ) -

Z Joj 005 — /p(fg,i)go,z - 0Z0,i(dz5,;)° | = 0. (3.127)
i=1 \ j=1

where Zp; = do; + Ry Z; = do; + 531
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d’Alembert’s principle of virtual work is very similar to Jourdain’s principle but does
not involve any integrals.

Theorem 16 (d’Alembert’s Principle of Virtual Work). For a system of Ny rigid
bodies with constant mass, and where each body is subject to a system of Ny forces.
The sum of the virtual works produced by each system of forces is equal is equal to the
sum of the virtual works produced by the motion of each body.

Ny

Z (5Wz‘ - mz'fo,z‘ : 550,1’ - (Io,iﬁo,z')T5ﬁo,z'> =

i=1

Nb Nf . .

S D fos - 6oy — miZio - 6F0; — (Toatos) 00, | = 0. (3.128)
i=1 \ j=1

3.6.3 Principle of Virtual Power

Given Jourdain’s principle of virtual power, the following equation holds for one of the
bodies Z; in a mechanism with NV, bodies subject to a system of Ny forces.

Ny
S o Ok — / Pz Vini - O50(dZ5,)8 = 0. (3.129)
k=1

where Zy,; = JOJ +Ri 07 = JOJ + 25, and 5§0J~7k is the virtual displacement of the point

of application of the force ]%Zk The second term of this equation is expanded.
[ o0 Shustaz, )
= /P(%,i)?o,i : (550@ + 0rto,; X 551) (dzy,)° =,
- / p(E ) - 0do(dZ5,)° + / p(7a:) (%0, % Foi) - Buioa(dZ;,)*. (3.130)

Using the same development as in section [3.4.4] for the angular momentum yields the
following expression.

/p(zok,l)??o,z : 5§07i(d§g7i)3 = mi.l_}oJ : 56?071 + l_é7i : 555071'. (3131)

As stated in section B.6.1I the virtual displacements 5d7m and 0,Wo,; are independent
and therefore the equation can be separated into two parts. Jourdain’s theorem for a
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mechanism with N, bodies subject to Ny forces is expressed by the following equation.

N Ny . Ny

> D fos 8o+ Y Goin X foin - 0o — / p(Z04)70,i - 0%20,4(dZ,)” | =

i—1 \ k=1 =1
Ny Ny . Ny .
E E Jo.i — mudo; | - 0do,; + E Yo,ige X foik —loi | - 0xtdoi | =0. (3.132)
i—1 =1 )

Given the independence of 5d7m and 9, yields.

Ny Ny .
Z Z fous —miZo; | - 0do; =0, (3.133)
i=1 \ k=1
Ny Ny .
Z Z Toise X foiw — loa | - 0o = 0. (3.134)
i=1 \ k=1

The first equation is Newton’s second law of motion for every body in the mechanism
and the second equation is Euler’s second law. Thus, the complete set of equations of
motion of a rigid body or system of rigid bodies is contained within Jourdain’s principle
of virtual power.

3.6.4 The Euler-Lagrange Equation

The Euler-Lagrange equation defines the equations of motion of a rigid body or sys-
tem of rigid bodies with respect to the generalised coordinates. It is constructed from
d’Alembert’s principle of virtual work. d’Alembert’s principle of virtual work for one of
the bodies %; in a mechanism with NV, bodies is stated by:

5WZ — ml'.i.l,_}(],i . (Sfoﬂ' — (I()’Z'LL_J)O’Z')T . (S(IJ)OJ = 0, (3135)

where 7y, = (fo,i +R,; 07 = ‘ZM + fai is the position of the body’s centre of gravity. The
second and third terms of (3.130]) are also expressed by:

. d . .d
mifo,i : 5fo,i = % (mifo,iCSfo,z‘) - mifo,z‘%(dfo,i) =
d . . .
% (mifi'b’iél_‘)o#) — mifoviéfo,i, (3136)
d d

(Io,z‘bbo,z‘)T 0o = —
— g Lo 1660,z (3.137)
The kinetic energy of the body is defined by:

5K,i(Q7 (7) = §mz‘5€g,i370,z' + §W0T,izo,z'wo,i- (3-138)
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The two partial derivatives of the kinetic energy with respect to £ and i are defined by:

ang T a:I:‘O i T 8(«(70 3 T 83?0 i T 8&70 i
_»7 = mlf — + Wy I z—_: = mzf ; _: J0 L 1—7 3.139
OR 0,i OR 0,i+0, OR 0,i ) 0,i+0, or ( )

OEx o O | 6*2 p Ooi | g O,
I.j = mZ:L’OTZ BT Ty, 00 mTL, xﬂ’ + ngIO’Z-L?’. (3.140)

0K oK 0K " OR ’ 0K

Using the relations between the virtual displacements stated in section B.G.11 (3.120),
d’Alembert’s principle is expressed in terms of these two partial derivatives.

Ny
d (0Bx; .\ O0Fx; .\ _
Z((SW dt( > .(m)— = 55)_0. (3.141)

i=1

There are N, non-conservative forces acting on the body and N, conservative forces. The
virtual work is defined with respect to the generalised coordinates by:

Sl SN [ Ohy (o) \ T
oW, = Z fo,ik - 0Yoik — Z <#) 0%

ki
Oh T
= Zfo,z,k 0Yo,ik — Z( 8];( )) - OR. (3.142)

The second term is the partial derivative of the potential energy £p; of the body with
respect to the generalised coordinates.

ang
OR

5W Z fO,z,k 5y0,z,k

ji=k

. OR. (3.143)

The partial derivative of the potential energy with respect to i is equal to zero. Thus,
the following statement holds for d’Alembert’s principle.

Ny
> (5W - — (a&“) OR — a&jﬂaz) =,
OR oK

i=1

Ny

op; ., d | ks OEp; L O08ki: |
Z Z fO,z,k 53/0,@,16 R 0K — % 8% — E - OK — B 0Kk | =0.
=1 =

=0

(3.144)

This last expression can be written using partial derivatives of a single scalar function
called the Lagrangian. The Lagrangian function of a mechanism with N rigid bodies is
defined by:
Ny
L7 7) =Y (Exalf B) - EpilR)) (3.145)

=1




3.6. MULTIBODY DYNAMICS 69

The virtual displacement 0%y, is expressed differently using the same approach as
(B.136). }

ddy,i Od i

8/‘{/ 8/2‘: yo,l,k ( )
Using this expression in (3.144]) yields the Euler-Lagrange equation of a mechanism with
N, bodies and N,, non-conservative forces without any constraints.

N
d (0L or X (2 (5 d. . 030 \" /. B
dt <£) COR Z Z < OR ok + ( o ) . (yO,i,k X fo,z‘,k> . (3.147)

i=1 k=1

— 7 — —
0Yoik = 0do; + 0G0 X Yo p =

The first term of the left hand side of this equation is expanded yielding the equations of
motion in terms of K, K and K.

Definition 11. (Euler-Lagrange Equation) For a system of Ny bodies parameterised
by a vector of Q) generalised coordinates K, subject to N, conservative forces and no
constraints, the Euler-Lagrange equation is defined by:

- T
PL., PL. L on &[0\ s 050, \" (. 7
LA A i DL DY ( or | ot ( oF ) (Fhaa x four)

i=1 k=1

(3.148)

NS L \T
In this definition of the Euler-Lagrange equation, the matrices (ado’i) and (awo’l)

OR R
require further explanation. The vector J(M- is the linear translation vector of the centre
of the reference frame R; with respect to the inertial frame. The vector &y, is the
instantaneous rotational velocity vector of the reference frame R; with respect to the
inertial frame. Taking the partial derivatives with respect to the generalised coordinates
and their first derivatives generates two matrix. Both are Q x 3 matrices. If the rotational
950,i

OR
structure. Recall in section [3.3.3] that the instantaneous rotational velocity of a body can
be expressed in the following form:

coordinates are global coordinates, the second matrix ( has a very particular

Wo,i = 0 ’Tz = WOi’f\ia where Tz = (’l/)z 191 QOZ)T . (3149)

The rotational coordinate vector Y; uses global coordinates. If the same coordinates are
used to define the generalised coordinates, the partial derivative takes the following form:

—

050\ T 0
i)~ (WL (3.150)
OR 5
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The only part that is not zero is the 3 x 3 matrix ng If all the rotational coordinates are
global the following expression holds. The moment of force component of the generalised
forces can be expressed in matrix form.

N [ No go T )
Z (Z ( (9/%2) ' (gglk X fOzk;)) =

i=1 \k=1

T — —
Wi, 0 ... 0
0 e Np [ — % Np iy 7
) ) . e (Vo1 X Joak) - ket (Yony e X JoNuk ) ) -
— — T
0 ... 0 Wl
Wo

(3.151)

If the mechanism is subject to holonomic constraints, they must be added to the equa-
tions. Consider a mechanism with /N, holonomic constraints. The constraints are defined
by:

Q;(K) = 0. j=1,..., N, (3.152)

In this situation, the equations of motion are constructed from the augmented lagrange
function [89)].

Ne
L=L+) NEi(R)=L+3"(R)- X (3.153)
j=1

The scalars \; are called the lagrangian multipliers. This result originates from the
following reasoning. A holonomic-skleronomic constraint ®,(%) is a smooth function of
the Q generalised coordinates . In most cases, the equality (BI56) defines a smooth
manifold of dimension Q — 1 embedded in RQ. As stated previously in section [B.6.1]
such a manifold can be viewed as a surface. Inserting the augmented lagrangian into the
Euler-Lagrange equation yields the following:

d (0L oL d [OL oL od
= <§> —r = <§) i <%> : (3.154)

The partial derivative V:® can be viewed as the force vectors which are normal to the
manifold surfaces of each constraint. Just like a bead on wire, constraints apply forces on
the system to keep the system on the constraint manifold surface. The lagrangian multi-
plier is thus an intensity factor of sorts. Thus, the equations of motion for a mechanism
with [V, bodies, IV, non conservative forces and N, constraints are defined by:

OR? OROR oR
Nec

Oo(x (0d ' L (050" ’ o0\ "
; > oF 'fomﬁ(a/%’) (?féﬂfw) +;Aj <§) . (3.155)
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The Lagrange approach to rigid body dynamics is very systematic and efficient. In com-
parison to the Newtonian approach, this method yields only information on the dynamics
of the system. The contact forces in the joints are unknown because the principle of vir-
tual work has directly incorporated them into the Lagrangian. Thus, the Newtonian and
Lagrange approaches to rigid body dynamics can be seen as complementary.

3.6.5 The Principle of Virtual Work and Static Equilibrium

Static equilibrium represents a special case of rigid body dynamics. A body is in static
equilibrium when the left hand sides of (8.83) and (3.84) are zero. The body is either
stationary or moving at a constant velocity. For a system of N, rigid bodies, the following
conditions are both necessary and sufficient.

Ny
Z foi =0, Z?jo,i % fo;=0. (3.156)
i=1 i=1
Although trivial in the case of a single rigid body, these equations are essential in analysing
the forces within a mechanism in static equilibrium. Both these equations provide the
means of computing the forces applied to a single rigid body or to a system of rigid bodies
at equilibrium. Given a mechanism, each body is in turn isolated from the others and all
the forces acting on it are modelled and the body’s equilibrium is expressed in terms of eq.
(BI56). This procedure requires the modelling of forces acting on the body in question
due to its interaction with the other bodies. This method analyses the equilibrium of a
mechanical system in terms of forces and moments of forces. Therefore the equilibrium
position must be known a priori.

In many mechanical systems, there can be multiple equilibrium points and the ap-
proach described above does not apply directly. The principle of virtual work provides an
alternate method of analysing static equilibrium. At equilibrium, the principle is reduced
to

Theorem 17 (Principle of virtual work for Static Equilibrium). At equilibrium the sum
of all the virtual works produced by external forces on a rigid body is zero.

SW = ST e
= Z Joi - 0%o,i — Er 0K =0. (3.157)
i=1

If the system is only subject to conservative forces, the principle of virtual work
means that any virtual change in potential energy is zero. Thus, we have the following
statements. An equilibrium exists if

65]:
—0 1

The equilibrium is stable if
0PEp

OR?

> 0, (3.159)
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otherwise it is unstable. For conservative systems, the principle of virtual work helps
identify the stable equilibrium points. Once identified, the force analysis can be applied
for each equilibrium point.




Chapter 4

A Musculoskeletal Model of the
Human Shoulder

4.1 Introduction

The shoulder is the most complex joint in the human body with the widest range of
motion (Guinness World Records 2006). It is therefore a challenging system to model.
Several models of the shoulder have been developed over the years with varying degrees
of complexity depending on their purpose. The Delft shoulder and elbow model (DSEM),
developed for clinical purposes such as muscle and joint force estimation [156, [194]. The
Swedish model developed for muscle and joint force estimation [114, [138]. The model is
based on a previous model [103, [104]. The CHARM model, designed for virtual reality
purposes [142]. The kinematic Visible Human Project (VHP) model constructed for
analysing forces and joint torques in the upper limb [74,/76]. The dynamic Visible Human
Project model constructed for force estimation through inverse dynamics [170]. The
human body model of the AnyBody software also contains a shoulder model [49, [129].
The Stanford model, available in opensi and developed for simulating musculoskeletal
surgery 101, 200] and the Newcastle model developed for estimating glenohumeral joint
forces [37]. There are a number of other models which have been reviewed in the literature
(168, 1219].

Although all the models listed above are different, they are all constructed using the
same three principles. The first principle is that the bones in the skeletal system behave
like rigid bodies in a mechanism [53]. The second principle is that articulations behave
like ideal mechanical joints without play or friction. The joints in the shoulder behave like
spherical joints [61,162]. The third principle is that muscles are ideal cables, modelled by
one or more massless, frictionless cable(s), spanning from origin to insertion like a pulley
[108, [197]. As the skeletal system moves, the cables change length and remain perfectly
taut. The cable’s overall effect is represented by a system of forces [166]. The muscle

1Opensim is the free version of the SIMM musculoskeletal modelling software.
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cables are either straight lines or they wrap over regular surfaces, such as spheres and
cylinders, representing the muscle’s anatomical constraints. Under these three principles,
shoulder models fall into the domain of multibody systems and are governed by the laws
of general mechanics. A musculoskeletal model is a mechanism according to the definition
given in chapter (3

Many of the musculoskeletal models listed in the first paragraph are developed and

designed for clinical applications such as estimating muscle and joint forces. As such,
they are in general presented in the context of their clinical application. The presen-
tation focuses on the model’s ability to represent reality by comparing certain model
estimated quantities with measured quantitates such as moment-arms and muscle forces.
Clinical validation of musculoskeletal models is essential [135]. A musculoskeletal model
must able to predict the behaviour of the real healthy system before it can be used to
study its dysfunctions. However, clinical validation of a musculoskeletal model can only
be achieved once the model has been mathematically validated. A presentation in the
context of multibody systems is deemed to be as important for such models to be ac-
curately reconstructed and validated by others. Therefore, the goal of this chapter is to
present a musculoskeletal model of the human shoulder in the context of multibody sys-
tems, giving each element of the model a detailed mathematical description. Its ability
to predict real shoulder behaviour will be discussed in chapter [§
The model contains kinematic and dynamic sub-models, includes all 16 muscles of the
shoulder divided into 28 parts and a model of the scapulothoracic contact. The model
was built using the same framework as the VHP model [74, [76] but does not contain a
model of the entire upper limb. The upper limb is considered to remain outstretched.
The model’s kinematics are parameterised in terms of Euler and Bryan angles using the
spherical model of anatomical articulations [214]. The dynamic model is constructed
using rigid-body mechanics. The muscles are modelled as one or more ideal cables, wrap-
ping over the skeletal structure. The muscle model considers the effect of each cable on
the dynamic model but does not consider the muscle’s internal behaviour. The chapter
ends with a discussion of the model’s mathematical structure, showing it to be similar to
models of cable-driven robots.

This chapter is structured as follows. Section describes the kinematic model
including the scapulothoracic contact model and forward kinematic map. Section 4.3
describes the dynamic model and defines the equations of motion. The muscle cable
model and its contribution to the dynamic model is also presented. Section [£.4] reviews
the model’s structure and section [4.4] concludes the chapter.

4.2 Kinematic Shoulder Model

This section describes a musculoskeletal model of an adult male’s right shoulder [60].
The bones are considered to be rigid bodies. The articulations are considered to be ideal
mechanical joints. The muscles are considered to be massless, frictionless, elastic cables,
wrapping over the bones. The model is presented in four parts. The first part describes
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the model’s kinematic parameterisation. The second part describes the model’s dynamics
in terms of the equations of motion. The third and fourth parts describe the muscle cable
model in terms of its contribution to the dynamic model and in terms of its geometric
characteristics. The model is constructed using the kinematic VHP shoulder model as a
canvas [74, 76]. The model presented in this chapter and the VHP model share the same
muscle wrapping geometry but with different numerical implementations.

4.2.1 Bony Landmarks and Reference Frames

The kinematic model parameterises the movement of each of the three bones in the
shoulder relative to the thorax which is fixed. Movement is understood as the change of
a body’s spatial configuration over time. A rigid body’s configuration is defined as the
location of a point on the body and its orientation in space. At least three points are
needed to define a body’s spatial configuration (cf. chapter B]). Therefore, the kinematic
model is constructed by reducing each bone to a set of three geometric points. The
kinematic model parameterises the movement of these points which are the nine points
defined in the following list (Fig. [A.T]):

1. CR : Clavicle reference point (Clavicle configuration: point 1),

2. SC : Center of Sternoclavicular articulation (Clavicle configuration: point 2),
3. AC : Center of Acromioclavicular articulation (Clavicle configuration: point 3),
4. AA : Angulus acromialis (Scapula configuration: point 1),

5. TS : Trigonum Spinae (Scapula configuration: point 2),

6. AI : Angulus Inferior (Scapula configuration: point 3),

7. GH : Center of Glenohumeral articulation (Humerus configuration: point 1),

8. EL : Lateral epicondyle of the humerus (Humerus configuration: point 2),

9. EM : Medial epicondyle (Humerus configuration: point 3).

The first point is a fictional point located directly above the centre of the stern-
oclavicular articulation. This is necessary to complete the description of the clavicle’s
configuration with respect to the axial rotation around the SC' — AC axis. The eight other
points represent the geometric location of bony landmarks. The fixed reference frame is
constructed using four bony landmarks on the thorax. The first landmark defines the
origin of the fixed reference frame.

1. 1J : Jugular Inscision at the top of the sternum,
2. PX : Xyphoid process at the bottom of the sternum,

3. T8 : Eighth thoracic vertebrae,

4. CT7 : Seventh cervical vertebrae.
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To construct this model, the geometric position of all these points is needed for a
given position of the bones. This data was collected using MRI scans of a human male’s
shoulder and constitutes the skeletal model’s geometric dataset @] The same MRI scans
were also used to obtain the muscle geometry discussed subsequently.

Figure 4.1: Illustration of the bony landmarks used to construct the geometric model as
described in section[{-.2.1. Image created using ZygoteBody™ zygotebody.com.

A set of four reference systems are used to define the orientation of each bone. These
reference systems are constructed following the guide lines set by the International Society
of Biomechanics (ISB) M] As defined in chapter [3, a subindex is attributed to each
reference framdi (i;,j;, ki, 2 = 0,1,2,3) (Fig. E2]). The thorax is defined as the carrier
body and is attributed the subindex 0.

e Thorax Reference System R (io,jy, Ko):

— Centre: IJ = Oy,

— z-axis (ip): normal to the plane defined by 1.J,C'7, %(TS + PX)-1J, pointing to the
right,

— y-axis (jp): normal to the x and z axes, pointing forwards,

2Notation: Geometric points are defined by plane upper case lettres. Their vector position with
respect to the centre of a reference frame is defined by a plane lower case lettre with an arrow and the
subindex associated with the reference frame. A matrix is defined by a bold upper case letter. Plane
lower case letters with subindexes x, y or z define a vector’s coordinates. The three bold lower case
lettres i;, j,;, ki are the unit vectors of a reference frame.
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— z-axis (ko): parallel to the line between the points P = 1(PX + C7) and P, =
H(T8+ 1).

e Clavicle Reference System R (i1,j;, k1):

— Centre: SC = 04,
— zx-axis (i1): parallel to the line defined by SC and AC, pointing to the right,
— y-axis (j;): normal to the plane defined by i; and kg, pointing forwards,

— z-axis (ki): normal to the x and y axes, pointing upwards.
e Scapula Reference System Ro (i2, jo, k2):

— Centre: AC = O,
— z-axis (iz): parallel to the lined defined by T'S and AA, pointing to the right.
— y-axis (jy): normal to the plane defined by iy and AI — T'S axes, pointing forwards,

— z-axis (ke): normal to the z and y axes, pointing upwards.
e Humerus Reference System R3 (is,j3,ks3):

— Centre: GH = Og,

— z-axis (i3): normal to the y and z axes, pointing to the right,

— y-axis (js3): normal to the plane defined by GH, EL and EM, pointing forwards,
— z-axis (k3): parallel to the line between the points Py = 3(EL+EM) and P» = GH.

The orientations of the reference frames are equivalent to the recommendations set by
the ISB but with a 90° clockwise rotation around the z-axis. In the model presented in
this chapter, the x-axis of the inertial frame R, points laterally to the right, the y-axis
points forwards and the z-axis points upwards. In the ISB recommendations, the z-axis
points lateral to the right, the y-axis points upwards and the z-axis points backwards.
Both descriptions are consistent with each other. Two reference systems are consistent
if their axes are parallel. They are identical if the unit vectors have same direction. The
direction of the unit vectors used in this model are a more natural description of space.
The plane is defined by the x — y axes and the vertical direction is parameterised by
the z axis. Lastly, the scapula’s reference frame is placed at the acromioclavicular joint
centre and not the point AA. In the dynamic model, the moments of force are defined
with respect to the reference frame centre. Therefore, it is better to place the reference
frames at the joint centres.

4.2.2 Joint Angle Parameterisation of the Model’s Kinematics

In real musculoskeletal systems, each bone’s movement is mostly defined by its articu-
lations with other bones. Therefore, parameterisation of each articulation’s motion is a
natural choice to parameterise a musculoskeletal model’s motion. In the shoulder model,
the three articulations are modelled as ideal ball and socket joints. A ball and socket joint
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Figure 4.2: Illustration of joint coordinates and reference systems as described in sections
[4.2.1 and [{.2.2. Left to right, thoraz, clavicle, scapula and humerus reference frames.
Image created using ZygoteBody™ zygotebody.com.

is the mechanical equivalent of the spherical kinematic pair. Possible parameterisations of
the spherical pair include Euler or Bryan angles (cf. chapter B.5.2). The sternoclavicular
and acromioclavicular spherical pairs are parameterised using Bryan angles. The rotation
sequences are defined as X-Y-Z. The glenohumeral spherical pair is parameterised using
Euler angles. The rotation sequence is defined as Z-Y-Z. These angles and sequences are
based on the ISB guide lines [214]. Thus, each articulation is modelled as a spherical
kinematic pair, parameterised by a set of three coordinates angular coordinates.

Y= 0 @),  i=123 (4.1)

As stated in chapter [3, these angles also parameterise each bone’s orientation. Using
the definitions from chapter Bl the sternoclavicular coordinates T, are thoraco-clavicular
angles and parameterise the clavicle’s orientation. The acromioclavicular coordinates T,
are scapulo-thoracic angles and parameterise the scapula’s orientation. The glenohumeral
coordinates fg are thoraco-humeral angles and parameterise the humerus’s orientation.
The three angular coordinates of T, are all equal to zero when the reference frame R; is
aligned with the thorax or inertial frame Ry.

The Euclidean displacements which transform points defined in a bone’s reference
frame R; into a points defined in the thorax reference frame R are defined by:

Pox : po1 = CZE],I + Ry op1, (4.2)
Poo @ Pog = Cio,Q + Ry o7y = Cf(),1 + Ry 021 + Ropa,
Poz : pos = doz+ R3oTs = ai),l + Ri,021 + Rap2 + Raops. (4.4)

The vectors d}h 71, Zo and Wy parameterise the following geometric elements of the model.

. 6%71 Vector from IJ to SC in Ry.
° cfog Vector from IJ to AC in Ry. Also expressed by Jo,g = JQ,1 + R 071
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° d_(i')73 Vector from I.J to GH in Ry. Also expressed by ng = d_E)J +Ri 021 + Ro 2.
* 7 Vector from SC to AC in Rq.
* 7 Vector from AC to GH in Rs.

The rotation matrices are defined by:

Clavicle: Ry = Rz,1R£1Rx,1> 4.5)

(
1 0 0 cos(¥1) 0 —sin(¥1) cos(p1) —sin(p1) 0
]_:{,$ = [ 0 cos(¥1) —sin(y1) , R = 0 1 0 s Rz = sin cos(

1 (O sin(wll) cos(1/113 ) vl ( sin(¥1) 0 cos(¥1) ) 1 < (<,01 801) 0)

Scapula: Ry = RZ72RZ72R172, (4.6)
1 0 0 cos(¥2) 0 —sin(d2) cos(p2) —sin( gog) 0
R,o=[0 cos(tp2) —sin(¢2) , R, = 0 1 0 , R.o = sin cos
2 (O sin(@bj) cos(1/12§ ) v,2 ( sin(¥2) 0 cos(¥2) ) 2 ( (<P2 LPQ )

Humerus: R3o = R. 3R] R. 3, (4.7)

cos(¢3) —sin(¢z) 0 cos(¥3) 0 —sin(¥3) cos(¢3) 78211((,03 )0
Rz,3 = | sin(y3) cos(¢3) 0 ), Ry73 = 0 1 0 , 23 = sm(gag cos lpg 0
0 0 1 1

=

sin(¥3) 0 cos(¥3)

4.2.3 Scapulothoracic Contact Model

The present model includes the scapulothoracic contact using an ellipsoid model. Other
shoulder models which include the scapulothoracic contact constraint one or two points on
the scapula to remain at a constant distance from the surface of a single ellipsoid. Single-
point models use the mid point on the scapula’s medial border (T'S + AI)/2 [58, [142].
Double-point models use the points T'S and Al [74, 194]. In single or double-point
models, the ellipsoid represents the curved surface of the ribcage and the additional fixed
distance represents the layer of muscle tissue between the ribcage and scapula (Fig. A3
(a)). The ellipsoid is constructed to best fit the ribcages’s surface obtained from CT
scans [74]. For example, in a double-point model, the points T'S and AI are projected
onto the ellipsoid along the normal to its surface, yielding two new points 7'S, and AI,.
The distance constraint defines two holonomic scleronomic constraints. The points are
defined in the ellipsoid frame (the subindex 4 indicates the ellipsoid frame Ry).

q)TS(’fla T2) = ||?_[4,2 - 2_[4,2,p||2 —c =0, TS4,2 : 174,2 = R0,4 (Ciog + RQ,O@)

S . ~ . \, = (4.8)
q)AI<T17 T2) = HU4,2 - U4,2,pH2 — =0, A[4,2 U4 = R0,4 (d0,2 + R2,OU2> .

The double subindex (4,2) on T'S and Al indicates the points are defined in the ellipsoid
frame R4 but are related to the scapula and its frame R..

In the shoulder model presented in this chapter, the scapulothoracic contact is mod-
elled as a double-point model but differs from other models in that the points 7'S and
Al are constrained to remain on the surface of two separate ellipsoids (Fig. (b)).
The scapulothoracic contact model used in the musculoskeletal model of the shoulder
presented in this chapter is different from other double-point models |74, [194] in that it
uses two separate ellipsoids rather than a single ellipsoid. Both ellipsoids have the same




80 4.2. KINEMATIC SHOULDER MODEL

(a) SE-model (b) DE-model

TS ellipsoid surface
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Single ellipsoid surface Initial ellipsoid surface Al ellipsoid surface

Figure 4.3: Illustrations of the scapulothoracic contact model. (a) single ellipsoid used by
the DSEM model. (b) double ellipsoid model as described in section[{.2.3. Image created
using ZygoteBody™ zygotebody.com.

centre but different axial dimensions. They are constructed by fitting a single ellipsoid
to the surface of the ribcage. This ellipsoid is then uniformly dilated twice (a constant
is added to all three axial dimensions) such that two new ellipsoids are obtained. The
dilation constants are defined such that the points T'S and AI lie on the surface of their
respective ellipsoids. The geometric data of the model collected using MRI scans is for
a shoulder in the resting configuration. The subject was lying down with his arms down
against his sides. The ellipsoid was fitted to the scanned ribcage and the dilation coef-
ficients g and par were defined such that the scanned points T'S and Al were on the
dilated ellipsoids. The ellipsoid was fitted such that its reference system coincides with
the thorax frame: R4 = Ry. This yields two holonomic scleronomic constraints of the
form:

(o2 — 50)T Erg (to2 —€) —1=0, T'Soo : tpp = CZ),Q + Roptly, (4.9)
(17072 — go)T EA[ (1_)'0’2 — 50) —1= 0, AIO72 . 1_)'()’2 == Cig)g + RQ’OI_)‘Q. (410)

(I)TS(TD TQ)
¢AI(T17 TQ)

The matrices Erg and E4; are the quadric matrices associated to each ellipsoid and éj
is the ellipsoid’s common centre in the inertial frame Ry.

a% 0 0
E,. = (;“%0 ak:a‘-i_/'“m bk:b-i-/,bk, ck:C+,LLk,
g 0 bg .|’ k=TS Al a, b, c: ellipsoid half-axis dimensions.

Q

2
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This model will be referred to as the double-ellipsoid model (DE-model). Other scapu-
lothoracic contact models from the literature will be referred to as single-ellipsoid models
(SE-model) [58, 74, 1142, 194]. The reason for constructing the DE-model is to obtain a
simpler description of the contact. The SE-models from the literature require computing
the projection(s) of point(s) onto an ellipsoid’s surface. This operation gives the SE-
models added complexity. However, the difference between the models is small enough
to be neglected, a point demonstrated in Appendix A. Indeed, the DE-model used in
this shoulder model takes the original ellipsoid representing the thorax and uniformly ex-
pands it twice such that the points T'S and AI lie on the surface of one of the expanded
ellipsoids. A projection is therefore no longer needed.

4.2.4 Forward Kinematic Map

The forward kinematic map completely characterises a mechanism’s kinematic model. It
is defined as a map between the model’s kinematic coordinates and the configuration of
one of the bodies in the model called the end-effector (cf. chapter B], section B.:5.4]). The
map also includes all the kinematic constraints. For the shoulder model, the kinematic
coordinates vector is defined as the vector of nine joint angles ¢ = (Tf, T_:QT, Yg)T The
end-effector is defined as the humerus. The kinematic map relates the vector ¢ to the
position of the humeroulnar joint centre HUj 3 in the inertial frame R, and the gleno-
humeral joint configuration fg. The scapulothoracic contact constraints are imposed on
the map to constraint the coordinates.

ES : Qs — Ws,
>\ T -
7 Zs(q) =Ce = <€OT,3, T?) , HUyz : €3 =doz+ Rspes, (4.11)
s.t. ®T5<f17 fz) = (’11072 — éo)T ETS (’11)072 — éb) —1= O, (412)
B 4r(T1, Ts) = (Goo — )" Eay (Gon — &) —1=0. (4.13)

The vector position of the end-effector €3 is defined according to the Euclidean displace-

ment (4.4).

The spaces Zg and #s are the shoulder’s forward kinematic map range and image
spaces called the coordinate and end-effector work spaces respectively [31]. The config-
uration space Zg is a subset of SO(3) x SO(3) x SO(3). The work space is a subset of
SE(3) =R3 x SO(3) (cf. chapter B] sections and B.5.0]).

The kinematic shoulder model is redundant [44]. The configuration of the humerus
is defined by six degrees of freedom. There are nine kinematic coordinates which param-
eterise the model’s kinematics subject to two holonomic scleronomic constraints. Using
the Chebychev—Griibler—Kutzbach or mobility formula, the kinematic shoulder model has
seven degrees of freedom [192]

Man—i(G—k:j):Z (4.14)
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where n = 3 is the number of links, m = 5 is the number of kinematic joints and k; is
their associated degrees of freedom. There are three spherical kinematic pairs with three
degrees of freedom each and there are two constraints which define two spherical slider
kinematic pairs with five degrees of freedom each. The model is redundant of degree one
[181]. Tt is noteworthy that the conoid ligament is not considered in the model. This liga-
ment constrains the clavicle’s axial rotation to follow the scapula’s motion. This ligament
has been modelled in the DSEM model [156, 194] but is not considered here because the
clavicle’s axial rotation can be freely imposed using measured data, for instance [50].

4.3 Dynamic Shoulder Model

4.3.1 Equations of Motion

The dynamic shoulder model parameterises the behaviour of the skeletal structure under
the mechanical action of the muscles. Mechanical action is defined as the action of a
system of forces on a body or system of bodies. The dynamic model is built by attributing
to each bone a mass m; and an inertia Z; (i = 1,2,3) [28]. These parameters are defined
with respect to each bone’s centre of gravity. The thorax is defined as the carrier body
and its frame defines the inertial frame. The dynamic model considers the entire arm and
includes its mass and inertia which are added to the humeral mass and inertia using the
parallel axis theorem [111]. The centre of gravity positions in the thorax frame are listed
below using the Euclidean displacement definitions from section (Eq. (@2)-@.4)).

e Clavicle CGl . fO,l = d?)@ + %Rl,ozl,
® Scapula CG2 . fo,g = d_())71 + Rl,Ogl + RQ’O (%ZQ + %_)2),

e Humerus CGg : fo’g = d071 + RLle + R270 (IBQ - _)2) + Rgvoe_’g.

The shoulder model’s dynamics are obtained from analytical mechanics using the Euler-
Lagrange equation. The generalised coordinates are defined as the kinematic coordinates.

o T
g=hK= (1/11 Ui o1 Yo U2 w2 3 U <P3) =

(RT /5 /) = (17,77, 7))7. (4.15)

The action of the muscle’s on the skeleton is modelled by a system of forces [166] which

is reduced to a vector of generalised torques &, (cf. chapter [ section B.6.4]) , the Euler-
Lagrange equation is expressed by

d (0L oL -
y (%) — = =i, (4.16)

The right hand side of the Euler-Lagrange equation defines the generalised torques applied
by each muscle on each bone. The left hand side contains each bone’s acceleration and
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the conservative forces to which it is subject, including gravity and Coriolis force. The
shoulder’s lagrangian is the sum of the clavicle’s, scapula’s and humerus’s lagrangian
augmented by the two scapulothoracic constraints (Chapter 3] section B.6.4)).

L=Ly+Ls+ Ly + Aps@rs(R) + Aar®ar(R) = L + Aps®rs(R) + Aar@ar(R).  (4.17)
Each bone’s lagrangian is defined by its kinetic and potential energies. The general
expression is given by:

1 o
Li=3 {Mifg:ifo,i +w?mi} Mg (000 1)y i=1,23, (4.18)

where, as stated previously, the vector 7y, is the position of the centre of gravity of the
bone i, described in the global reference frame. The vector 3;3’071- is the translational velocity
vector of the bone i’s centre of gravity defined in the global reference frame. The vector
w; is bone i’s instantaneous rotational velocity vector in the bone’s reference frame.

. T -
T = %g, (4.19)
- O0Zo,-  d (07 .
L= Rl el ) 4.20
%o, ag“+dt<6q*>“ (4.20)
0 0\ (¥
G=RLR,; | 0| +RL [d|+]|O0]),i=12, (4.21)
&5 0 0
0 0 0
ds=RIR,; [0 |+RL (o |+ O], (4.22)
P3 0 V3
Woi = Ri o, (4.23)
L 0 0
= < 0 Iz2 O ) . (4.24)
0 0 I33

Note that the inertia tensor Z; is defined in the bone’s reference frame making it diagonal.
For the clavicle and scapula, I, ; is the longitudinal inertia and I = I3 3 the transverse
inertia. For the humerus, I53 is the longitudinal inertia and I;; = Iy the transverse
inertia [28].

The equations of motion are defined by a set of differential algebraic equations (DAE):

PL. PL . OL - s\ " 00ar\"
—K “R— — =ty + A A , 4.25
o oror” oR T TS( 8%) i Al(ﬁfé) (429)
s.t. (I)Ts(lz) = (17072 - gQ)T ETS (17072 - go) —1= O, (426)
®ar(R) = (Vo2 — €)" Eas (tho — ) —1=0. (4.27)

The constraint terms on the right hand side of the equations of motion (4.28) corre-
spond to the torques created at the joints by the reaction forces at the scapulothoracic
contact points T'S and Al. Holonomic skleronomic constraints impose forces on the equa-
tions of motion to enforce the constraints like a beed on the wire of a necklace. The wire
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Scapulo-thoracic contact

s

HU

Figure 4.4: Illustration of the shoulder mechanism and location of the bone centres of
gravity as described in section [{.3.1. Illustration is done using the standard kinematic
pair symbology from chapter(3, section[3.5.3. Image created using ZygoteBody™ zygote-
body.com.

applies a force on the beed to keep it on the wire. In model of the beed, the wire becomes
a constraint. The constraint’s jacobian defines the force’s direction and the lagrangian
multiplier is proportional to its amplitude. If the model’s geometry is simple enough, the
constraint forces can explicitly be defined without using the constraints.

For the shoulder model, the constraints are defined by ellipsoid parametric equations
(4.26)-([@.27). The jacobians of these constraints are the generalised torques created by
the scapulothoracic contact forces around the SC and AC joints. The scapulothoracic
contact forces create no torque at the glenohumeral joint. Knowing that the contact
forces are parallel to the ellipsoid surfaces, leads to the following equalities.

Wi (%01 — dog) ¥ fio,Q,Ts

T — —
Ars (82?) = W0,2(U0,2 - @,1) X fo,z,Ts )
- O~ - (4.28)
5 T W0,1(20,1 - d0,1) X f0,2,A1
b i 5 —
Ao,AI ( a,%”) = | Woa(th2 — Z01) X fo2.41
0

The matrices Wy ; and Wy are the jacobians of &y ; and &y o respectively with respect
to i (cf. principle of virtual work, chapter [, section B.6.4]). The vectors fo),g’TS and fz,27AI
are the reaction forces in the inertial frame. The lagrangian multiplier multiplied by the
constraint jacobian is equal to the contact force torque projected into the generalised
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coordinate space, using Wy ;. The reaction force intensities are extracted.

. WoT,l((qo,l —do1) X boars) W5150,1,Ts
— — 7 T —
ATs (acg,?) = frs Wg,l(( 0,1 — 0,1) X bo,Q,AI) = frs WOQ%},Q,TS )
0 0
. - - . (4.29)
T Wal((zog - do,l) X bo,Q,AI) Walco,l,AI
o o - T -
AAr (83’?1) = fAI W§1<< 0,1 — 2071) X b072,A1) = fAI WO,QC_E],Q,AI )
0 0

The vectors ¢p,;rs and ¢y, 4; are the moment-arm vectors around the sternoclavicular

and acromioclavicular joints respectively. The vectors go,z,Ts and go,z, ar are the ellipsoid
reaction force unit vectors. They are normal to the surface of the ellipsoids and depend
on the generalised coordinates, defined in the thorax frame.

T
o (may (
bo2rs(q) = 55—,
- 2pa ﬁ 2p=
(o e &) e \p. (4.30)
(2& 2py %)T Da '

2 3 2
ah;  bar  cap

bo,Q,AI(CD = T ) by | = UO,Q(K) — €,
I ) e

—

2ps 2py 2pz
2 2 2
aar  bar  car D

The constraint terms in the equations of motion are grouped into matrix form:

OBrs\ " 0P ar T_
ATS( R ) +AA’< 8/‘{) =

Wi 0 0\ [Gurs Gaar) o
0 Wi, 0 Coprs Cozar < fTS) = W,Co.. fe. (4.31)
0 0 Wi, 0 0 A

The matrix CQS is the moment-arms matrix of the scapulo-thoracic contact model in
the inertial frame. The vector f, is the vector of force intensities of the scapulothoracic

contact model.

4.3.2 Muscle Forces

This section describes the muscle actuation model and its contribution to the dynamic
model’s equations of motion (,, in equation (#25)). The principle hypothesis of the
muscle model, is that a muscle applies a system of forces on the skeletal structure [166].
Muscles are modelled using the ideal cable model. The shoulder’s musculature is modelled
by N, massless, frictionless, elastic cables. The geometry of the cable model will be
discussed in the following section. Each cable applies a system of forces on the skeletal
structure. All the forces applied by a single cable on the same bone are reduced to a
single force at a point and a moment of force about that point. Thus, each cable applies
a single force at each joint and moment of force around each joint. All the forces applied
by a given cable on the skeletal structure have the same amplitude or intensity fr. The
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forces and moments of force can be zero depending on the muscle. For instance, muscles
which do not span the GH joint create no force and no moment of force about that joint.
Forces applied to the clavicle are reduced to the centre of the SC joint. Forces applied to
the scapula are reduced to the centre of the AC joint. Forces applied to the humerus are
reduced to the centre of the GH joint.

For a model with N, muscle segments, the total force and moment of force at each
joint in the inertial reference frame Ry is defined by:

Np

Joi = Zfo,z‘,m i=1,2,3, (4.32)
k=1
Np Np Np

foi =Y doik X Joir =) (?jo,z‘,k X bo,z‘,k) fe=>_ Gouints = Coif. (4.33)
k=1 Jj=1 Jj=1

where the terms in these expressions are defined as:

ﬁ),i,k: resulting force of muscle k applied to body %; in Ry,

Yo,i,x: force system reduction vector for muscle k£ and body ¢ in Ry,

Co.ik = Yo.ik X boix: moment-arms of cable k and joint ¢ in Ry.

Cy,;: matrix of moment-arms of joint ¢ in Ry.

f: N, x 1 total vector of muscle force intensities.

The equations of motion are in terms of rotational coordinates. Therefore, the muscle
contribution to the equations of motion is from the resulting moments of force. The
resulting moment of force vectors ﬁ],i are transformed to obtain the generalised moment
of force vector t,,, using the method described in chapter Blsection B:6.4l The generalised
moment of force is defined by

Wi, 0 0\ [t Coif
tw=| 0 W{, 0 tos | = Wo | Coof | = WoCof. (4.34)
0 0 Wi,/ \tos Cosf

Cy is the 9 x N, matrix of moment-arms dependent on the configuration of the model.
Its computation will be discussed in detail in chapter [l The expression ([£34)) defines a
map between the muscle force intensities and the generalised moments of force will be
referred to as the torque-force map.

The muscle-force contribution to the dynamic model’s equations of motion (Z.25])-
(4.27)) is defined in terms of the force intensities using the torque-force map.
. C ., oL

L. L . o
illlad - WG f + WoCo fo 4.35
8/?52 8/%8/?5 a/{ 0 Of 00, f ( )
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Muscles can only pull the skeletal structure. As they contract, they pull on the bones to
which they are attached. This effect is included in the muscle force model by imposing
bounds on the muscle-force intensities. A muscle’s force must be positive or zero with
an upper limit given by the muscle’s maximum isometric strength (cf. chapter 2] section
2.2).

0< f< frum (4.36)

The values used to implement these bounds were taken from VHP kinematic shoulder
model [76].

4.3.3 Muscle Cable Model

Geometrically, a muscle is an elongated volume between two points, the origin and inser-
tion. The volume is filled with parallel fibres which go from origin to insertion. The cable
model represents a particular fibre called the centroid line. The centroid line represents
the fibre which passes through the centre of the volume and therefore the centre of the
volume’s cross-sections.

Q / Cg“antrmd line

'Underlying Muscle

Cylinder Constraint = Underlying muscle constraint

Figure 4.5: [llustration of the centroid line approach to muscle modelling as described in
section[4.3.3. The underlying muscle is represented by a cylinder.

Once the centroid line is defined for the anatomical muscle, using MRI scans of the
musculature, the geometric cable model is defined. The model is defined such that the
cable follows the centroid line as closely as possible. To start, the cable is attached
at two points representing the origin F; and insertion S; which are fixed in the bone
reference frames R, and R; respectively (Fig. [4.5]). The centroid line of the anatomical
muscle curves as the muscle passes over other anatomical structures. In the model,
smooth geometric surfaces are inserted into the model to force the cable to curve as the
anatomical centroid line does. The surfaces are spheres, cylinders, or cylinders with half
spheres at one end. For certain muscles, up to two extra fixed via points V; and V; are
added to force the cable to always pass through the point. These points are near the
origin and insertion points and are defined in the same reference frame. As the cable
passes over the surface, two points are defined which are the initial contact point Q)
and final contact point 7T with the surface. The points are defined in the same frame
as the surface itself R;. This construction of the cable model is the called the obstacle
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set method and was initially developed for the VHP kinematic shoulder model [75]. The
approach of modelling the muscle’s centroid line was first used in a model of the hip [108].

For the shoulder model, there are 16 anatomical muscles actuating the shoulder di-
vided into 28 parts using the guide lines set fourth in |197] (cf. Appendix C for details).
Thus, the shoulder model presented in this chapter uses at least 28 cables to model the
musculature. A method of adding more cables is defined by parameterising the muscle’s
centroid plane. A muscle’s centroid line passes through the centre of the muscle’s vol-
ume. The muscle’s centroid plane cuts the muscle in half longitudinally and contains
the centroid line. The centroid plane defines a line at the muscle’s origin and insertion.
The number of cables is modulated by parameterising these two lines using a third order
spline. The splines are constructed using three anchor points. The middle points are the
centroid line origins and insertions (Fig. [.6]).

Multi-cable model: Pi \ Spline Construction:

Vim =

Centroid Cable

Figure 4.6: (a) Illustration of a muscle’s centroid represented by three cables. (b) Illus-
tration of the 3rd order spline parameterisation as described in section[4.3.3

To illustrate the spline construction, consider the origin of a muscle which has been
identified by a curved line. In the model, this line is parameterised using a 3"¢ order
spline with three anchor points P, 5, P, ,,, and P, s (Fig. L7). The spline is defined in the
reference frame of the bone on which the muscle originates R;. The location of any point
P, ;. on the spline is defined using a single variable p € [0, 1]. The parameterisation is
defined by:

Pis
(WP 2 p1)s| B | ifo<p<o0s
DPim
Pi,g -

Pi(p) + pin(p) = ;S =
Pis
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The vectors pj s, P;,m and pj s are the points vectors of the points P 5, P, ,, and P, ; in the
local frame R;. The matrix S is the spline coefficient matrix and is the same for every
spline. For muscle parts with multiple cables, the origin and insertion points of each cable
are evenly distributed along the spline: p = 1/(2 - Nb cables). This parameterisation is
also applied to the fixed via points (Fig. [L.0). If the number of cables is odd, there is
a cable which represents the muscle’s centroid line. All the data necessary to construct
the geometry of the cable model was obtained through MRI scans of an adult male (cf.
Appendix B).

The cable model defines the geometry of each cable. Once the geometry is known,
pulley mechanics can be used to obtain the forces applied by each cable on the skeletal
system. This information can then be used to compute the moment-arms and related the
forces in the cables to the torques around the joints. This model does not state how much
force is applied. The model simply gives the relation between the muscle force intensities
and the joint torques. If there is force, this model transforms the force into torques at
the three joints.

4.4 Remarks

The musculoskeletal shoulder model presented in this chapter was developed for estimat-
ing the forces within the muscles and in the glenohumeral joint. This is the model’s
purpose that will be analysed in chapter [§ There are two other aspects to a model; its
structure and numerical implementation. Many musculoskeletal models of the shoulder
are presented in the context of their clinical application with a focus on the model’s clini-
cal validity. While clinical validation is essential, the model’s mathematical structure and
validity is also important. However, it seems there are few model oriented presentations
of musculoskeletal shoulder models, making their accurate reconstruction a challenging
task.

Figure 4.7: Pectoralis major (sternal muscle part, PMJs) modelled using one (left) and ten
segments (right). Single cylinder wrapping constraint. The green and blue lines represent
the muscle origin and insertion spline parameterisation.




90 4.4. REMARKS

The musculoskeletal shoulder model presented in this chapter contains a kinematic
model of the skeletal structure. The bones are considered to be rigid bodies and the
synovial joints are modelled as ideal ball and socket joints parameterised by spherical
kinematic pairs. The model also considers the scapulothoracic contact, modelled by
constraining two points (7S, Al) to remain on the surface of two ellipsoids. The ellipsoids
represent the surface of the ribcage with an additional layer of muscle. The model’s
kinematics are completely characterised by the forward kinematic map.

Zg Qs — 7/5 - SE(?)),
7 Z(Q) = (@,3@,T3> . with ¢= (YT, 1T, Y1)T (4.38)
s.t. ®T5<f1, fg) = (_)0,2 — éb)T ETS (7,_[072 — 50) —1= O, (439)
@A[(fl, fQ) - (17072 - éo)T EA[ (17072 - 50) - 1 - O (440)
The kinematic coordinates are the Euler and Bryan angles of the spherical kinematic
pairs. There are nine coordinates total and the model has seven degrees of freedom given
the two scapul-thoracic constraints.
The dynamic model is constructed from the Euler-Lagrange equation. The kinematic
coordinates are defined as the generalised coordinates K = ¢. The dynamics are subject
to the scapulothoracic contact constraints (Eq. (439)-(4.40)). The muscles are modelled
as massless, frictionless, perfectly elastic cables wrapping over the skeletal structure. Each
cable applies a system of forces to the skeletal structure modelled by a single matrix called
the moment-arm matrix Cy. The cable forces are also limited. Cables can only pull and
therefore the forces must be positive. Each cable’s ability to pull is limited by the muscle’s
maximum isometric strength. This is the maximum force the muscle can produce when
it is at its optimal length (cf. chapter [3]).

2 2 ~
D - S8 WG + WoCo, (4.41)
st Dpg(R) = (dos — )" Erg (tlgs — &) —1=0, (4.42)
®47(R) = (Voo — €0)" Ear (Too — &) —1=0, (4.43)
0<F < fonax. (4.44)

The musculoskeletal shoulder model presented in this chapter is most similar to the
dynamic shoulder model constructed form the Visible Human Project (VHP) |76, [170].
Both models differ mainly on the numerical data used to implement them and on the
scapulothoracic contact model. The present model uses two ellipsoids while the VHP
model uses a single ellipsoid. The model does not contain the entire upper limb or the
conoid ligament constraint. The upper limb is considered to be outstretched.

From a different perspective, the model presented in this chapter shares many similarities
with models of cable-driven robots [29]. A cable-riven robot is a mechanism or system of
rigid bodies actuated by a network of cables [21, 180, 92, 178, 217, 220]. Models of such
systems use the same hypothesis used to construct the musculoskeletal model presented
in this chapter. That is rigid bodies, ideal joints and ideal cables. This point is of interest
because it means that theory developed for cable-driven robots can be applied to models
of musculoskeletal systems. This will be used in chapter [7] to introduce a new concept
related to the muscle model.
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4.5 Conclusions

This chapter presented a musculoskeletal model of the human shoulder constructed for
the purpose of estimating forces in the muscles and in the glenohumeral joint. The model
is constructed from three hypothesis. i. the bones are rigid bodies. ii. the synovial
articulations are ideal ball and socket joints. iii. the muscles are massless, frictionless
cables wrapping over the skeletal structure. The model also includes an ellipsoid model of
the scapulothoracic contact. In comparison to other shoulder models, the present model
is most similar to the models constructed from the Visible Human Project. Furthermore,
the model is shown to share similarities with models of cable-driven robots. Therefore, the
outlook of this thesis on musculoskeletal modelling in general is that the mathematical
structure of musculoskeletal models is as important as their clinical validation. This
chapter presented many of the models mathematical details. The following chapters
will continue to discuss the different aspects of the shoulder model using the formalism
introduced in this chapter.
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Chapter 5

Coordinated Redundancy

5.1 Introduction

The human shoulder is a system that is kinematically redundant and overactuated [36].
The shoulder (humerus included) can move without moving the position of the elbow (tip
of humerus) and multiple muscle activation patterns yield the same movement [66]. To
function properly, the shoulder uses coordination strategies to ensure that all parts work
together harmoniously. Without the two characteristics of kinematic redundancy and
overactuation, the shoulder would not be nearly as performant as it is. The coordinated
motion of the scapula and humerus, called the scapulo-humeral rhythm is an example of
this coordination. As stated in chapter 2 the arm’s reachable space would be severely
reduced without the scapulo-humeral rhythm.

The general philosophy behind kinematic redundancy and overactuation is the dupli-
cation of certain elements such that the tasks they perform are divided amongst them to
enhance the system’s performance and flexibility [148]. This is called coordinated redun-
dancy and is different from the usual definition of redundancy implying the duplication
of elements to increase reliability and not necessarily performance. Coordinated redun-
dancy is used in systems design and robotics to increase performance and reduce costs.
For example, in a milling machine multiple motors are used to drive the same positioning
axis (Fig. [B.]). One motor does the rough positioning of the part. Once the rough posi-
tioning of the part is achieved, a second motor is used to precisely position the part. The
first motor drives the axis over its entire range of positions. The second motor drives the
axis around the rough position and has a small range of motion. This design enhances the
milling machine’s precision and is cheaper. A single motor with higher performance char-
acteristics is more expensive than two less performant motors. This is also an example
of overactuation. Two motors are used when one could theoretically do the job.

Models of real systems that are kinematically redundant or overactuated or both,
involve mathematical problems that are underdetermined. The primary characteristic of
underdetermined mathematical problems is that there is an infinite number of solutions

93
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@] Thus, a method of differentiating between the solutions is required, such that a
solution can be selected that is best suited to the physics of the real system. There exist
many methods of differentiating between solutions. Some consider the specifics of the
system and others are more general and can be used for different systems sharing the
same mathematical structure. In general, a good solution is one taking advantage of the
model’s mathematics while considering the physics of the real system.

The goal of this chapter is to present kinematic redundancy and overactuation in an
abstract mathematical context and to introduce possible coordination strategies without
considering the specifics of the system. The notions of objective and task are also given
formal definitions. Kinematic redundancy is presented in section with a formal defini-
tion of a kinematically redundant mechanism. Overactuation is presented in section
for a system where the equations of motion are described by the Euler-Lagrange equa-
tion. Section [5.4l concludes the chapter with a presentation of using tasks for coordinating

redundancy.
!‘ ! Tool

Part to be milled

Motor 1 Motor 2
Milling Machine Axes

Precise positioning system

Rough positioning system

Figure 5.1: Illustration of coordinated redundancy in a milling machine as described in
section [5.1].

5.2 Kinematic Redundancy

A kinematically redundant mechanism is informally defined as a mechanism with a num-
ber of internal degrees of freedom that exceeds the number of degrees of freedom of the
end-effector @] As stated in chapter B, a mechanism is a rigid body model of a ma-
chine where one body is fixed in the inertial frame. This body is called the carrier body.
The purpose of a machine is to transmit motion and therefore force to a specific part
of the machine called the end-effector. Motion is transmitted within a machine by the
interactions between bodies. Joints represent idealised mechanical models of the interac-
tions and kinematic pairs represent mathematical parameterisations of the interactions.
Kinematic pairs also impose holonomic skleronomic constraints on the bodies forming the
joint. This discussion is limited to systems subject to holonomic skleronomic constraints.
Thus, a mechanism is a set of rigid bodies connected by kinematic pairs and subject to
a certain number of constraints.
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A kinematic chain is a set of rigid bodies connected together by kinematic pairs. If
all the bodies are connected in series from carrier body to end-effector, the kinematic
chain is open. An example is a serial robot manipulator (Fig. 5.2)). A kinematic chain
is closed if there are two serial chains with same initial and final bodies. The simplest
closed kinematic chain is two serial chains, joined together (not necessarily at the carrier
body and end-effector). A mechanism with more than two kinematic chains between two
bodies is called a parallel mechanism. An example of a parallel mechanism is the Gough-
Stewart platform. An important remark is that redundancy is not related to whether
a kinematic chain is open or closed. Kinematic redundancy is defined by the number
of bodies and the number and types of connections. A Gough-Stewart platform is not
kinematically redundant.

Machine (Serial Manipulator) Machine (Parallel Manipulator)

Mechanism

End-effector
Bodies

Connections

( Carrier Body ) ( Carrier Body )

Figure 5.2: [llustrations of machines and their corresponding mechanisms as described in
section 5.2 and chapter[3.

A kinematic model is a parameterisation of a mechanism’s geometric configuration
and how it can change over time. Kinematics analyses the possible effects in terms of
motion without considering the cause. The parameterisation is obtained by constructing
a set of coordinates ¢ completely defining the mechanism’s geometric configuration C at
any given instant. Geometric configuration is understood as the position and orientation
of each body %; in the mechanism, defined by a Euclidean displacement with respect to
the inertial frame (cf. chapter [3)).

XO,i € %z . 3_7»07@' = doﬂ' —+ Ri,Ofi . (51)
~— S

Position  Orientation
A possible method of constructing the set of coordinates is to define coordinates for every
kinematic pair along one of the kinematic chains between the carrier body and end-
effector. If the set is incomplete, additional coordinates are defined until the remaining
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kinematic pairs can be expressed as holonomic skleronomic constraints in terms of the
complete set of kinematic coordinates. The selected kinematic chain between the carrier
body and end-effector is used to define the forward kinematic map which is then subject
to the constraints. The forward kinematic map of a mechanism with N, bodies and N,
kinematic pairs parameterised by () coordinates and subject to N, holonomic skleronomic
constraints is defined by:

= 2>,
T 2(@) = Co = (@, TTY, with (1) _H,, (1) (5.2)
(I)l(q_j = 07
st. (5.3)
Sy, (7) = 0.

The vector € is the end-effector’s position with respect to the carrier body and H,j is
the 4 x 4 homogeneous transformation matrix. 2 defines the coordinate or configuration
space and # defines the workspace. The workspace defines in what space the end-effector
can move. The nature of the work space is dependent on the type of manipulator. Given
that a rigid body has at most six degrees of freedom (dof), the work space is a subset of
one of the following possibilities.

e # CR: a linear manipulator (End-effector dof: D, = 1)

e # C R? a planar manipulator (dof: D, = 2)

o # CR? x SO(2): a planar manipulator with orientation (dof: D, = 3)

e W C R3: spatial manipulator (dof: D, = 3)

o W CR3x SO(2): spatial manipulator with partial orientation (dof: D, = 4)

e ¥ CR3 x S?%: spatial manipulator with partial orientation (dof: D, = 5)

e ¥ C (R®x SO(3)) = SE(3): spatial manipulator with orientation (dof: D, = 6)

The number of internal degrees of freedom of a mechanism is defined as D; = Q) — N..

Thus, a mechanism is kinematically redundant when D; > D,. The number D, = D;— D,
is called the degree of redundancy. An equivalent formal definition is stated as follows.

Definition 12 (Kinematically Redundant Mechanism [148]). A mechanism consisting
of Ny rigid bodies and N kinematic pairs, parameterised by () coordinates subject to N,
holonomic skleronomic constraints is kinematically redundant, when, for a fixed configu-
ration C. € W of the end-effector, there exists an infinite number of joint configurations

qge 2.

Given this definition of kinematic redundancy, a coordination strategy consists of find-
ing for any fixed configuration C, € # of the end-effector, a solution ¢ € 2 of the joint
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coordinates that satisfies the constraints. Furthermore, given the infinite number of so-
lutions one can find a solution satisfying additional requirements. The greater the degree
of redundancy, the more additional requirements the solution can satisfy simultaneously.

The concepts discussed above are very machine inspired concepts. The notion of end-
effector is a robotics oriented term. However, this discussion does have its meaning in
the context of biomechanics and musculoskeletal modelling. Indeed, the model presented
in chapter [l is built as a multibody systems model. This type of model can be abstractly
seen as machine. Furthermore, the hand is a manipulator that we continuously use to
interact with out environment. Our hand is an end-effector in the same way a mechanical
gripper is the end-effector of a robotic machine.

5.3 Overactuation

Actuation is defined as to put into action. In a machine, the external forces make the
different links move. However, the term actuation is limited to the forces that can be
controlled. The torque generated by an electric motor is an actuation, the earth’s grav-
itational pull is not. A machine can be fully actuated, underactuated or overactuated.
A machine can also be simultaneously under and overactuated. Although this situation
is not common, it is possible. Overactuation is to use more controlled forces than neces-
sary. An overactuated mechanism has a number of controlled actuators that exceeds the
number of internal degrees of freedom [159]. Fully actuated and underactuated machines
have respectively an equal number or less controlled actuators than internal degrees of
freedom.

An actuator is a controlled element of a mechanism that applies a force and /or moment
of force to the mechanism. The force and moment of force are function of a single variable
u; allowing the actuation to be controlled over time. The force in a muscle is controlled
by its activation level. The force depends on other variables but is actively controlled
by its neural activation level. Given that actuators generate forces in a machine, they
appear in the dynamic model of a mechanism relating the mechanism’s movement to the
forces and moments of force that are applied to it. Consider the dynamic model of a
mechanism parameterised by a vector of () generalised coordinates K and subject to IV,
holonomic skleronomic constraints. The model is constructed using the Euler-Lagrange
equation. The generalised coordinates are defined as the kinematic coordinates from the
previous section: K = ¢. The system has N, actuators. The Euler-Lagrange equation,
with the lagragian augmented by the constraints is defined according to chapter [3l by:

d aﬁ 8Z Na — ~ 2/ T
st. B(R) =0, N. constraints. (5.5)

where t;(u;) is the generalised force associated to an actuator, parameterised by the
variable u;. The generalised actuator force is either a real force or a moment of force.
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The right-hand side of (5.4)) is parameterised by the position, velocity and accelera-
tions of the mechanism’s generalised coordinates. The set {<, K, K} defines the mech-
anism’s dynamic state. The vector @ = (uy,..., uy,)? € R defines the mechanism’s
actuator state or input state. The degree of actuation of a mechanism is defined by the
number of actuator variables N,. A mechanism is overactuated when N, > D = Q — N..

An equivalent formal definition is stated below.

Definition 13 (Overactuated Mechanism [148]). A mechanism consisting of a number
of bodies and kinematic pairs, parameterised by n coordinates subject to p holonomic

skleronomic constraints is overactuated, when, for a fized dynamic state {K, R, K} of the
mechanism, there exists an infinite number actuator states @ € R¥.

Given this definition of overactuation, a coordination strategy consists of finding a

—

solution # € R* of the input states for any dynamic state {7, &, K} of the mechanism.
Just like kinematic redundancy, if the mechanism is highly overactuated a solution can
be found satisfying multiple criteria.

5.4 Tasks for Coordination Strategies

In both kinematic redundancy and overactuation, a coordination strategy consists of
finding a solution to a mathematically underdetermined problem. In this presentation, a
mathematically underdetermined problem is defined by a set of N, smooth scalar equa-
tions, function of N, > N, variables. The equations are grouped to define a map.

X(@) : By, CRM — %, C RM,
x1(0) = &1
T X(@) =€, (5.6)

XN, (U) = en.

The map is surjective. There are more equations than variables and therefore there is
an infinite number of vectors ¢ for a given vector €. A coordination strategy for such a
problem is to find a parameterisation of the variables v; in terms of the parameters ¢;.

7= 0(2). (5.7)

The problem can be solved for a continous time-dependent parameterisation of £(t),
t € [to,ts]. For every point (t;) along the path, there are an infinite number of solutions
Ua(ti), Up(ts), Ue(ts),... (Fig. B3). Thus, for every path £(t) there are an infinite number
of paths T,(t), Ty(t), Ue(t),..., defined by the collection of points for all ¢ € [tg, ty].

All the solutions ¥,(t;), Uy(t;), Ue(t;),... for a given point £(¢;) define a local man-
ifold 4,y within %,. For a given path £(t), all the paths U,(t), Uy(t), U.(t),... pass
through the local manifolds () at a point, respectively U,(t;), Uy(t;), Ue(ti),.... This

is important, the local manifolds () are normal to each other and do not intersect.
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Gy(0), t € [to, tf] _
' ’ \f ”l"(t)’te“‘“ ts] £(t) = x(Ta (1)) = X(T(5)) = x(Fe(t)), £ € [to, 1]

hd t ,/ /_‘
Ua( 0)ll \ Ua(tf)
’ \ U X
’
/ | \ — > {\/.
. ! T &t:i)  &lty)
Sn Sen Tvc(t),te[to, ty] E(to)
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RN« n(ty) € Qeey)
n(ti) € Qee;)
n(to) € Qery)

Figure 5.3: Illustrations of local manifolds Qlzy,y in coordinated redundancy as described

in section[5.4)

The collection of local manifolds defines the redundant manifold €z;). A coordination
strategy is to find a path ¥(¢) on the redundant manifold, given £(t).

The solutions are obtained by differentiation of the solution set %, using a task [148].
The primary task is £(t) because it differentiates the redundant manifold from within
H,. The redundant manifold is a subset of %, and contains all possible solutions given
the primary task. The primary task reduces the search for a solution to a subset of
K, but does not define a specific solution. Multiple tasks can be used to obtain a finer
differentiation of the solution set. The resulting solution will be a compromise between
the individual task specific solutions. This is defined as constructive coordination [148].

There are multiple methods of finding a specific solution. A first method which applies
to almost all underdetermined problems is to use static optimisation. A secondary task
is defined using a cost function of the variables ¢. The primary task is discretised into
N, points: £(t), t € {to,t1,...,tn, = ty}. A static optimisation problem or nonlinear
program (NLP) is defined for each point, where the underdetermined map defines an
equality constraint. The solution must also belong to the coordinate set Z%,,.

min D(8(t)), Oty € Z,, (5.8)

T(tk)

st x(0(t)) = £(te), (5.9)

A second method is to use an extension of the map y. Extra equations are added such as to
reduce the degree of underdeterminacy and thereby extend the map. Underdeterminacy
cannot be fully eliminated because there is no guarantee a solution will exist. However, by
adding additional equations, the search for a solution can be made easier. An optimisation
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problem is defined using the extended map. The extension defines additional tasks.

g(ltig C(d(tx)), U(ty) € Xy, (5.10)
st x(0(t)) = &lty), 5.11)
(T (t)) = 0, (5.12)

A third method is to define a reduced set of coordinates ¥ that is better suited to the
mathematical structure of the problem. This method is similar to the idea of using
generalised coordinates in analytical mechanics (cf. chapter [3)). In analytical mechan-
ics, generalised coordinates are defined that are better suited to the mathematics of the
dynamic model. These coordinates are constructed from equality constraints that are
thereby eliminated. In the context of underdetermined problems, the idea is the same. A
reduced set of coordinates is constructed using the mathematical structure of the redun-
dant manifold ). If the number of coordinates still exceeds the number of equations,
some form of optimisation will be needed. However, the problem will be easier, given
that there are less optimisation variables.

These three methods are not the only solutions to solving underdeterminacy. There
exist a number of other methods not discussed here. The following paragraphs redefine
the problems of kinematic redundancy and overactuation using the definitions of task
and redundancy manifold.

In kinematic redundancy, the primary task is a specific trajectory of the end-effector
Cc(t), t € [0,T], defined with respect to the internal reference frame. The problem is to
find the kinematic coordinates ¢'= ¢. If the static optimisation method is used, the cost
function could be for instance, the error between the kinematic coordinates of the model
and a set of measured coordinates obtained from the real system g, (tx), tx € [0, T]. The
coordination problem is solved at each time step ¢, for which a measurement was taken.

min L(q(ty) = 1@ (te) — dto)l*, ) € 2, (5.13)
st E(d(t) = Colte) = E(Gn(tr). (5.14)
‘1)1(@ =0,
: : (5.15)
‘PNC(C.T) =0

The redundant manifold ¢, ) is comprised of all the local manifolds ¢, (). The local
manifolds are called self motions. The mechanism moves without changing the configu-
ration of the end-effector.

In overactuation, the primary task is a dynamic behaviour defined by a time-dependent
parameterisation of the dynamic state: &(t), (t), #(t), t € [0, T]. The problem is to find
the input variables @ = . If the static optimisation method is used, the cost function
could be for instance, the inputs using the least amount of energy. A static optimisation
is defined for every discrete instant of the primary task and the input variables are further
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constrained by the real systems physical limitations.

1
i Talte) =35 2wl i(ty) € R 5.16
%15 (u(tx) 5 ;uj( k) u(ty) € : (5.16)
d (oL or No
t. — | =] -= =Y ti(u(t 5.17
’ (dt <az> az) o ' i(u;(tr)), (5.17)
R(te),R(te),R(tg) =1
i 0K) = e (5.18)

The redundant manifold €2, is the set of inputs that can be applied to the system without
changing the dynamic state.

As stated in the introduction, the human shoulder is a system that is both kinemati-
cally redundant and overactuated. There are seven degrees of freedom while the humerus
has six and there are p > 28 muscle forces. Overactuation coordination strategies require
the dynamic state of the model. If a system is both kinematically redundant and overac-
tuated, one must choose to either use two independent coordination strategies or to use
a combined strategy. Combined strategies are in general more complex. An example of a
combined strategy is optimal control |66, [165]. Therefore, this thesis proposes to use two
strategies that are solved successively. Chapter [l discusses the coordination strategy for
the kinematic redundancy problem and chapter [7] discusses the coordination strategy for
the overactuation problem.
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Chapter 6

Shoulder Kinematic Redundancy
Coordination

6.1 Introduction

Human motion or kinematics is defined as the combined motion of all the bones in the
skeletal system. Its synthesis for the purpose of simulation in a model is a challenging task
because the skeletal system is covered by a layer of skin and muscle. Human kinematics
are not directly observable [42]. One can only estimate human motion and a possible
technique is the palpation of markers on the skin [211].

The synthesis of human movement is composed of two parts: measurement based de-
scription and model based parameterisation. The description of human motion is the
description based on measurements of each bone’s individual movement relative to the
other and with respect to a fixed frame [113, 143, [147]. The parameterisation of human
motion is the use of mathematical models called kinematic pairs and chains to reproduce
the description [50,161),1104]. The models are constructed under the hypothesis that phys-
iological articulations behave like ideal mechanical joints [61, 162]. The use of kinematic
pairs to model joints provides a natural parameterisation of joint motion using joint co-
ordinates. This chapter focuses on the parametrisation of shoulder motion that has an
additional challenge. The skeletal structure of the human shoulder is a kinematically
redundant system. Multiple sets of joint coordinates produce the same elbow position.

Given the hypothesis of ideal mechanical joints, constructing kinematic shoulder mod-
els is straightforward. Many different models have been developed that can be divided
into two types. The first type includes the three anatomical joints and model the system
as an open kinematic chain [54, 163,101,103, 114]. The second type of kinematic shoulder
model includes the three joints and a model of the scapulothoracic contact, defining the
system as a closed kinematic chain [74, 194]. Open kinematic chain models are easier to
use because all the coordinates are independent but are less accurate because they do
not consider the scapula being held against the thoracic cage by the muscles [58]. Closed
kinematic chain models are more accurate but more difficult to use because the coordi-
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nates are not independent, there are constraints. The constraints impose a kinematic
relation between the thoracic cage and scapula. For any kinematic shoulder model the
challenge is motion planning, given that the system is redundant. Closed kinematic chain
models are more challenging due to constraints related to scapular kinematics.

There are three strategies of planning motion for a kinematic model of the shoulder.
The first strategy is data-driven, minimising the difference between measured joint coor-
dinates and the model’s joint coordinates [20, [156]. The second strategy is model-based,
using regression models of the shoulder’s kinematics [54, [101), [114]. The third strategy of
planning shoulder motion is to use inverse kinematics [142]. Data-driven methods are the
most effective, but require measured data, not easily obtainable [199]. Regression models
are constructed from measured data. However, once constructed they can be used with-
out data [33]. The primary disadvantage of regression models is they cannot be used on
models with constraints. Inverse kinematics does not require measured data but is the
least effective method because there is no guarantee that the joint coordinate motion will
reflect the description of the anatomical shoulder’s motion [142]. Thus it seems, there
does not exist an effective method of planning motion for a kinematic shoulder model
including constraints, without measured data.

The goal of this chapter is to present a new parameterisation of a kinematic shoulder
model including constraints that facilitates motion planning without measured data. The
parameterisation satisfies the constraints but does not explicitly include them and renders
all computations related to the kinematic model very straightforward. The chapter be-
gins with a summary of the model presented in chapter 4 and the kinematic redundancy
problem. The model considers the synovial articulations to be ball and socket joints,
parameterised by spherical kinematic pairs. The scapulothoracic contact is included in
the model and represented by two constraints. The end-points of the scapula’s medial
border are constrained to remain on the surfaces of two ellipsoids with common centre.
The concept of coordinate reduction is introduced and illustrated with a two-dimensional
model. The scapulothoracic contact model is replaced by two kinematic chains that are
used to analyse the model’s kinematics. The model is shown to be analogous to a parallel
mechanism similar to a Stewart platform. A minimal number of coordinates are defined
using the parallel description of the shoulder. The coordinates are minimal in the sense
of chapter Bl The number of coordinates equals the number of internal degrees of free-
dom. Independent from one another, they uniquely parameterise the shoulder model’s
kinematics. The minimal coordinates parametrisation is compared to other parameterisa-
tions from the literature and shown to have potential in developing a general description
of kinematic shoulder models which include the scapulothoracic contact.
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6.2 Minimal Coordinates for Coordination

6.2.1 Shoulder Kinematic Redundancy Coordination

In chapter (] a kinematic model of the shoulder’s skeletal structure is presented. The
model is constructed on the hypotheses that all bones are rigid bodies and that all the
synovial articulations behave like ideal ball and socket joints. The joints are parame-
terised using spherical kinematic pairs. The scapulothoracic contact is modelled using
two holonomic skleronomic constraints that keep the points T'S and Al on the surface
of two ellipsoids with identical centres E (cf. chapter 2] for anatomical references). The
ellipsoids represent the thoracic cage with the additional layer of muscle between the ribs
and the under side of the scapula. The constraints are equivalent to two spherical slider
kinematic pairs between the scapula and ribcage. A body gliding on a surface through a
punctual contact is a spherical slider kinematic pair (cf. chapter [3)).

C7

Joint Coordinate Definiti
R R
R ’ 3

¥1
191 SDQA@? 903
o U3

Figure 6.1: [llustration of the bony landmarks, reference frames and joint coordinates as
defined in section[6.2.1. Image created using ZygoteBody™ zygotebody.com.

Each bone is attributed a reference system located at the centre of a joint. The bone
reference frames are defined according to the ISB guide lines HM] The thorax is the
carrier body and its reference frame is defined as the inertial frame Ry (cf. chapter [)).
The frame is located at the point IJ (Fig. [6]). The clavicle’s reference frame R; is
located as the centre of the sternoclavicular joint SC'. The scapula’s reference frame
R, is located at the centre of the acromioclavicular joint AC. The humeral reference
frame R3 is located at the centre of the glenohumeral joint R3. The reference frames are




106 6.2. MINIMAL COORDINATES FOR COORDINATION

differentiated using subindexes. 0: thorax frame, 1: clavicle frame, 2: scapula frame, 3:
humerus frame.

The model’s configuration is parameterised by a set of nine angular coordinates
grouped into subsets of three. The first three coordinates T, = (¢1, 91, p1)T are Bryan
angles parameterising the configuration of the sternoclavicular joint (SC) and thereby
the clavicle’s configuration with respect to the thorax frame. The next three coordinates
T, = (g, ¥, ©2)T are Bryan angles parameterising the configuration of the acromio-
clavicular joint (AC) and scapula with respect to the thorax. The Bryan angle rotation
sequence is defined as XYZ. The last three coordinates Tg = (¢3, U3, @3)T are Euler an-
gles parameterising the configuration of the glenohumeral joint (GH) and humerus with
respect to the thorax. The Euler angle rotation sequence is ZYZ. Thus, the vector of
kinematic coordinates is defined by:

7= (7T 17 fg)T:(¢1 Ui o1 Yo Yo o th3 Vs S03)T- (6.1)

The end-effector is defined as the humerus. Its configuration C, is defined as the position
of the humeroulnar joint HU,3 and the orientation of the humerus with respect to the
thorax frame (cf. chapter 2] for conventions on notation).

Co = (&5, T, (6.2)
HUy3z : €3= GTo,l +Rio21 + RooZ + Ra 6. (6.3)

CZM: vector from I.J to SC in Ry. Zi: vector from SC to AC in R;. Z3: vector from
AC to GH in R,y. €3: vector from GH to HU in R3. The conventions on the rotation
matrices are defined in chapter [l

The forward kinematic map is defined as the function which maps the joint coordinates
to the spatial configuration of the humerus (position and orientation). The map is subject
to the constraints modelling the scapulothoracic contact.

Zs Qg = Ws,
7+ Z5(0) = Ce = (@5, T5)", (6.4)
st. Brs(q) = (dop — )" Ers (o — &) — 1 =0,
D 47(7) = (Vo2 — )" Bar (Tog — &) —1=0.

The matrices Epg and E4; are the ellipsoid quadric matrices. The vectors 2 and U2
are the point vectors of T'S and Al respectively, in the inertial frame Ry. The vector €
is the point vector of the common centre of the ellipsoids.

As stated in chapter B this kinematic shoulder model is kinematically redundant and
the map is underdetermined. For a fixed configuration of the humerus C, € #5, there is
an infinite number of kinematic coordinates sets ¢ € 2. Furthermore, it was also stated
in chapter [fl that a possible solution to the problem is to minimise the error between the
model’s coordinates ¢(t;) and the measured values of the coordinates ¢, (tx) at discrete
instances of a motion ¢, € [0, 7] (the subindex m indicates measured).
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Figure 6.2: Diagram of the shoulder’s kinematic model, as defined in chapter [ Image
created using ZygoteBody™ zygotebody.com.

Consider a movement was measured on a real shoulder, for instance abduction in the
scapular plane (cf. chapter [2). Markers were placed on the body of a subject at the
locations of bony landmarks and measurements of the marker locations were taken at
N different instants t; € {to,...,ty} during the motion. The palpated marker positions
where then used to estimate the position of the bony landmarks [56]. The estimated
bony landmark positions were used to reconstruct the bone reference frames and the
Euler and Bryan angles were extracted @, @, ] The result is a set of measured
coordinate vectors: {qn(to), Gm(t1), .- Gn(tr), .., @m(tn)}. As defined in chapter [ a
set of model coordinate vectors {q(to), q(t1), ..., q(tx),...,q(ty)} can be found by solving
the following static optimisation problem at every instant ¢; of the motion.

9

min T(7(t)) = 5 (0 — 00| = 5 Y (@nalte) — ()", @0 € 25, (6.7
st Es(qte) — Es(@n(ts) =0, (6.8)
Prs(dit) =0, (69

G 47(q(ty)) = 0. (6.10)

This problem defines a kinematic coordination strategy as presented in chapter B The
approach is straightforward but requires the availability of measured data. If the problem
is unconstrained, an optimisation problem is unnecessary. One could directly impose the
equality between the model’s coordinates and the measured coordinates.
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6.2.2 Manifolds and Coordinate Reduction

This section introduces the idea that a different parameterisation of the coordinate space
Qg can eliminate the constraints in the kinematic coordination strategy. Furthermore,
the parameterisation makes all computational operations related to the model’s kinematic
coordination straightforward. The parameterisation is constructed by taking advantage
of the mathematical structure of the coordinate space Zs.

The forward kinematic map and the two scapulothoracic constraints are assumed
to be smooth or C* functions of the joint coordinates. Under these assumptions, the
coordinate space is a compact smooth manifold. Indeed, the nine kinematic coordinates
define charts ¢; 5 from subsets of R? to SO(3) in sets of three.

bis : [—m, 7] X [-m, 7] X [-7, 7] = SO(3), i=1,2,3,
(¥, Vi, i) = @is(Vi, Vs, 05) = Rap. (6.11)

The coordinate space 2g is a subset of the space (SO(3))* = SO(3) x SO(3) x SO(3).
The elements of the coordinate space are the rotation matrices (R0, Roo, R30) € Zs C
(SO(3))*. For a given task of the end-effector, the redundant manifold Qe is a subspace
of Zg (cf. chapter [{). The redundant manifold contains all the self motions associated
to the task.

The group SO(3) is isomorphic or identical to the space of rotations in R®. It is a Lie
group (group with a natural manifold structure), diffeomorphic to the real projective
space RP?, a compact smooth or C°°-manifold. This implies that SO(3) is a compact
C>-manifold which implies that (SO(3))® is also a compact C*°-manifold. The coordinate
space of the kinematic shoulder model presented in chapter[f and summarised in section
6.2.1 is a compact C*-manifold of dimension seven. There are nine coordinates subject
to smooth equality constraints.

The image space or work space #5 is a subset of SE(3) = R3 x SO(3). SFE(3) is not
compact (R? is not compact) but is a smooth manifold. However, given that 2g is
compact and that Zg is smooth, the work space is also compact. The image of a compact
space through a smooth map is also compact. The humerus works in a compact subset of
R3. Thus, the coordinate space 25 and work space ¥4 of the shoulder’s forward kinematic
maps are compact C'*°-manifolds of dimensions seven and six respectively, having the
particular mathematical structure of locally looking like subsets of the Eulcidean space
of the same respective dimension.

A smooth or C*°-manifold is a particular type of differentiable manifold. Differentiable
manifolds are found in numerous engineering problems and involve C* functions with
k > 1. The constraints of an optimisation problem can define a differentiable manifold,
under certain assumptions on the type of constraints. The domain space and image
space of the kinematic map of a robot manipulator can involve differentiable manifolds
as illustrated previously. Dynamic systems can evolve on differentiable manifolds. Thus,
differentiable manifolds are important from an engineering point of view but are not
always apparent. A simple definition of a differentiable manifold is that it is a subset of
R" of dimension k that locally "looks” exactly like R*. This can also be understood as
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a surface in R™ for which any parameterisation requires at least k& coordinates. A formal
definition is stated as follows.

Definition 14 (Differentiable Manifold @]) A subset A of R" is a k-dimensional
manifold if for each ¥ € M there are: open subsets % and V of R™ with ¥ € %, and a
differentiable (bijective C* function) f from % to ¥V such that

f(na)={y= (?Jla---,yn)T €V i yYpy1 ==y, =0} (6.12)
Thus, the point i in the image of f has a representation like:

7= (n(Z),...,y(@),0,...,0)T. (6.13)

Figure 6.3: Examples of well known two-dimensional compact smooth manifolds. From
left to right, a sphere, a torus and a Klein bottle.

A smooth manifold is a differentiable manifold where all the maps f are smooth or
C*. The most well known examples are two-dimensional compact smooth manifolds
in R3 such as the sphere, the torus or the Klein bottle (Fig. [63)). It is noteworthy
that compact manifolds of lower dimension are in general easier to work with and are
therefore better documented. All the two-dimensional compact manifolds in R3 have
been catalogued. The step from two-dimensional compact manifolds to three-dimensional
compact manifolds is already a very large step in complexity and is the reason why the
Poincaré conjecture remained unproven for such a long period of time @, @] The
two most important definitions related to a differentiable manifold are the definitions of
charts and atlas providing a basis for working with manifolds.

Definition 15 (Charts and Atlas for a Smooth Manifold @]) A chart in M as a
pair (V,¢,) with ¥ an open set of M and ¢, a C> function onto an open set in R*
and having a C* inverse. A C* atlas is a set of such charts {(¥;, ¢;)} = A, with the
following properties.

o ./ = UY;: the manifold is equal to the union of all the sets ¥,
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Rk
(U NY)
Rk
¢uv a diffeomorphism

T~ @)
du(%)

Figure 6.4: Diagram of two charts of a C* atlas on a differentiable (smooth) manifold
A in R™ of dimension R¥ as described in section[6.2.3, definition 4.

o If (Y, du) and (¥, &y) are in A and ¥, N ¥, # 0, then

Gou = w0 0,1 G(F N V) = Gu(Ve N )

is a C* diffeomorphism (bijective C* function)

An intuitive example of charts and atlases on a smooth manifold, is the maps of the
Earth that are flat. They are parameterised in R? but they map at part of the Earth
which is a sphere in R3. Each map defines a chart and all the maps form an atlas of
the Earth’s spherical manifold. Just like maps of the Earth, charts and atlases are not
unique.

A k-dimensional, differentiable manifold in R™ can be parameterised by k < Q<n

coordinates. In general, each coordinate belongs to a subset of R and the vector of coor-
dinates belongs to a subset of R¥. The most attractive description is to use k coordinates
because they are all independent. Furthermore, the Euclidean space R¥ is a vector space
that is very easy to work with for any finite k. Given that the charts from the previous
definition are all C* and invertible, all operations related to the manifold can be carried
out in R* and then mapped onto the manifold using the inverse chart. The independent
directions related to each variable are orthogonal and straight. It is the charts that curve
the representation. If k coordinates parameterise a k-dimensional, differentiable manifold
in R™, the coordinates are said to be minimal. The difficulty lies in the construction of
charts and an atlas.
If the number of coordinates is greater than k, the coordinates are interdependent and
describe the curved space. Although, they belong to R?, the independent direction are
not not orthogonal and not straight. A sphere can be described by interdependent carte-
sian coordinates x, y and z. The interdependency is defined by z? + y? + 22 — r? = 0,
describing the curved surface of the sphere. This example is fairly simple and straight-
forward. However, the interdependency is in general not straightforward and the use of
such coordinates becomes difficult.
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Given a k-dimensional, differentiable manifold in R", parameterised by Q > k coordi-
nates, the construction of charts and an atlas is a coordinate reduction. The number of
coordinates is reduced from @) to k, through the construction of the charts.

To illustrate the concept of coordinate reduction applied to kinematics, consider a
two-dimensional analogue model of the shoulder (Fig. [6.5). The model considers the
clavicle rotating around the sternoclavicular joint (SC) through a revolute joint. The
joint is parameterised by the coordinate ;. The model considers the scapula (7S, AC
and GH) rotating around the acromioclavicular joint (AC) through a revolute joint. The
joint is parameterised by the coordinate ¢,. The point T'S on the scapula is constrained
to remain on an ellipse of axial dimensions a., b, centred at E. The scapula is not
attached to the ellipse, the pout T'S glides over the surface. The humerus is modelled as
a body rotating around the glenohumeral joint (GH) through a revolute joint. The joint
is parameterised by the coordinate 3.

Ro

PBr: Humerus
N

HU

Figure 6.5: [llustration of a two-dimensional analogue for the shoulder discussed in section

622

The most natural kinematic model of this system is to use the three joint coordinates
; subject to the circular constraint. The end-effector is defined as the humerus and its
configuration is simply defined as the position of HUj3s. The forward kinematic map is
defined by

=2,
(p1, P2, 03) = Ce = €03 = Ri0(91)21 + Raoo(92) 22 + Ry o(p3)és, (6.14)
s.t. (I)Ts((pl, Y2, (pg) = (17072 — gO)TETS(ﬁo’Q — 50) —1= O (615)

where R, o(;) are the rotation matrices from local to inertial frame. The model has two
degrees of freedom and is not redundant. There are three coordinates subject to a single
constraint. The coordinate space of a revolute joint is S, a compact smooth manifold (cf.
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chapter ). Thus, the coordinate space is a compact subset of 2 C (S!)3 = St x St x St
The map = is smooth and the work space # is a compact subset of R2. To each coordinate
is associated a map ¢; from [—m, 7] C R to SO(2) = S'. These three maps define the
inverse charts of (S1)? but not the coordinate manifold 2.

¢; : [-m, 7w — S

Vi ¢i(1) = Rio(¢). (6.16)

The constraint (6.15), defines an interdependency between ; and 5. The coordinate
reduction will be defined by using the constraint directly.

The point T'S' is constrained to remain on an ellipse that is homeomorphic or topolog-
ically equivalent to a circle. Like the shoulder kinematic model where the scapulothoracic
constraints define spherical slider kinematic pairs, the circular constraint also defines a
two dimensional spherical slider kinematic pair. The scapula can rotate around the points
TS if not connected to anything else and the point T'S can translate along the edge of
the ellipse. The position of T'S can be parameterised by a polar coordinate 9. This
coordinate defines a chart from [—7, 7] C R to S = {# € R?|||Z||» = 1}. The ellipse is
a deformed circle. Given the ellipse constraint, the radial polar coordinate p will also be
function of ¥.

b9 : [—m, 7] — S,

9+ 69(0) = o2 = (ggg;?;gg; j;:), (6.17)

where z, and g, are the cartesian coordinates with respect to the inertial frame located
at SC. This parameterisation must satisfy the ellipse constraint. This is imposed by
defining the following relation between the parameterisation and the parameterisation of
an ellipse, using a different angular coordinate .

p(V) cos(V)\ _ (accos(tp) tan(¥) = (be/ac) tan(v),
<p<79) Sin(ﬁ)) N <be Sin(lp)) = { p(0) = \/(ae cos(1)))2 + (b, sin(v)))2. (6.18)

The parameterisation (6.16]) is now be expressed in terms of the single elliptical coordinate

0.

a0t (P00 £ 20) _ (i) s (GO0 ()
’ p(0) sin(¥) + ye sin(d())  cos(d(y)) 0 Ye

(6.19)

This parameterisation mathematically represents a linear prismatic joint parameterised

by p(d()). The prismatic joint is dependent on the elliptical coordinate v which is

attached to a point E through a revolute joint parameterised by the elliptical coordinate.

Effectively, the spherical slider kinematic pair has been replaced a revolute joint at F, a

revolute joint at 7'S and a dependent or passive linear prismatic joint in-between (Fig.

[6.6). A second kinematic chain has been constructed between the carrier body and end-

effector. A coordinate reduction will use this parameterisation of T'S to parameters the
mechanism’s kinematics instead of using the two joint angles ¢; and 5.
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If the position of T'S is known, using the elliptical coordinate ), the configuration of
the scapula and clavicle are known. The point SC' is fixed and the point T'S is known.
Under the rigid body hypothesis, the distance between SC' and AC' is constant and the
distance between T'S and AC' is constant. The point AC' lies on the intersection of two
circles, centred at SC' and T'S (Fig. [6.5). The intersection has a single solution with two
branches. The two branches meet when the distance between SC and T'S' is equal to the
sum of the radii. The mechanism’s initial configuration defines AC' to be on one of the
two branches. When the mechanism moves, it suffices to guarantee that AC' is always
on the same branch. Depending on the mechanism’s geometry in terms of length, the
branches meet or not. Furthermore, it is not guaranteed that the point T'S can travel
around the entire ellipse. Thus, ¥ is a map between [¥_,9,] C R and 2y C S*.

The kinematics of the entire mechanism can be parameterised using two coordinates
(9, p3) in stead of three (¢1, @2, ¢3). The first two joint angles are defined as functions of
the coordinate 9. The corresponding kinematic map is now defined without constraints.

= 2C (SN - CRY
(9, @3) — C3 = €03 = Up2(V) + Rap(pa2(V)) 2 + Rs o(p3)és, (6.20)

The two coordinates (¢, p3) and the two maps ¢y and ¢3 define the charts on the coor-
dinate manifold 2. This parameterisation of the kinematics makes all kinematic com-
putations very straightforward given that there are no constraints. However, the param-
eterisation using the joint angles will be kept for constructing the dynamic model. The
following section extends this example to the entire shoulder model.

Ro /\

Figure 6.6: Illustration of a two-dimensional analogue shoulder model with the new kine-
matic chain as discussed in section [6.2.2.
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6.2.3 A Parallel Platform Kinematic Shoulder Model

The shoulder kinematic model presented in chapter M and briefly reviewed in section
parameterises the skeletal system’s motion using the joint coordinates. The forward
kinematic map between the coordinates and the configuration of the humerus is subject
to two holomomic skleronomic constraints modelling the scapulothoracic contact. In the
previous section a method of constructing a coordinate reduction was presented. The
underlying idea of the method is to redefine the constraints as kinematic chains between
the body that is constrained and the carrier body. Once the constraint is redefined, its
corresponding kinematic chain is used to parameterise the kinematics using less coordi-
nates.

The scapulothoracic contact is modelled using two holomomic skleronomic constraints.
The points T'S and AI are constrained to remain on the surface of ellipsoids. It is stated
in section [6.2.1], that these constraints can be viewed as spherical slider kinematic pairs.
A single spherical slider kinematic pair as described in chapter [3lis a body gliding over a
two-dimensional surface in R3. The contact between the body and the surface is punctual.
The following paragraphs present a mechanical description of this kinematic pair using
other pairs.

The configuration Cp; of a three dimensional rigid body %; in SE(3), is defined by
a Euclidean displacement with respect to the inertial reference frame. Any point F; on
the body is defined in the inertial frame by:

Poi @ Do = J{),i + Rio Dis (6.21)

If the body is free, the displacement is parameterised by six independent coordinates.
The three cartesian coordinates of the centre of the body’s frame with respect to the
inertial frame: dB, The three rotation angles (Bryan angles) of the body frame about
the inertial frame: R, (¢, 9, ¢).

A spherical kinematic pair parameterises the body’s rotation and is a mathematical de-
scription of a ball and socket joint. A ball and socket joint is an idealised mechanical
description of a freely rotating body. An ideal ball and socket joint is a mechanical im-
plementation of SO(3).

An alternate parameterisation of the linear translation CZ&,@‘ uses spherical coordinates.
Spherical coordinates (p, o, 3) are an alternate way of charting R®. The cartesian coor-
dinates of the displacement (6.2I]) are replaced by spherical coordinates.

- Zo pa cos(ay) sin(Sy)
dO,i = Yo,i = Pd Sil’l(()éd) sin(ﬁd) . (622)
20,i Pd COS(ﬁd)

In the Euclidean displacement (6.21]), the rotation is mechanically described by a ball
and socket joint. The mechanical description of the linear translation is defined by the
following theorem.

Theorem 18 (Mechanical Description of R?). The three-dimensional Euclidean space R?
s mechanically described using a linear prismatic joint connected to a fized point through
a universal joint (cf. chapter[3).
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Proof. Any point P in R3 is described with respect to a fixed point in a fixed frame
by three coordinates. Cartesian coordinates are the standard coordinates and define an
atlas with one chart, the identity chart. FEach point is identified with itself and this
atlas defines the standard smooth structure of R?. Another possible parameterisation is
spherical coordinates. The usual spherical coordinates define the following chart:

¢ : Ry x[0,27[x[0,7] = % C R?,

x p cos(a) sin(f)
(0.0.8) = d(p.0.8) == |y | = [ psin(@)sin(8) | . (6.23)
2 pcos(f3)

The inverse chart is defined by

¢t . % CR®— Ry x[0,2r[x][0, 7],

p arctan (%)

(@, y,2) = o7 (2,y,2) = || = o) (6.24)
B arctan <7sz+y)

These charts are local charts. A single set of spherical coordinates does not uniquely cover
R3. For a fixed value of p, the two coordinates a and 3 chart S? requiring at least two
charts. For instance, the north and south pole stereographic projections. The spherical
parameterisation states that R? is locally equivalent to Ry x S2. The chart ¢ is smooth
but not global. Thus, spherical coordinates do chart R3.

The chart (6.23]) can be written in the following form:

cos(a) —sin(a) 0 cos(B) 0 sin(p) 0
Py : po;= [ sin(a) cos(B) O 0 1 0 0]. (6.25)
0 0 1 sin(8) 0 cos(p) p

The vector (O 0 p)T, with p € R, parameterises an infinite linear prismatic kinematic
pair. There is one coordinate parameterising a one-dimensional axes [23].

The two successive rotations are rotations around intersecting axes. As stated in chapter
[3, the universal or cardan joint is a mechanical description of a two-dimensional rotation
in three-dimensional space. In a universal joint, the rotations occur around intersecting.
This differentiates the universal joint from two serially connected revolute joints with
non intersecting rotation axes. Thus, the spherical description of space is a mathematical
parameterisation of a mechanical description of space. The mechanical description uses
a linear prismatic joint connected to a fixed point through a universal joint. O

The special Euclidean group SFE/(3) has a mechanical implementation. The mechanism
has a universal joint fixed to a point in the inertial frame. An infinite prismatic joint
is attached, at one end, to the universal joint and allowed to freely rotate around the
fixed point. On the other end, there is a ball and socket joint connecting the body to the
prismatic joint (Fig: [6.7).
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Ball and Socket Joint: ¥, 9, ¢

Prismatic Joint: p

Universal Joint: «, 8

Figure 6.7: Illustration of the mechanical description of a free body in space defined by
spherical coordinates and a spherical joint as described in Theorem 18, section [6.2.3.

The scapulothoracic contact is modelled using two spherical slider joints on surfaces
that are ellipsoids. A spherical slider kinematic pair has five degrees of freedom (cf. chap-
ter[2). In the mechanical description of a body gliding on a surface, one of the coordinates
becomes function of the other two. The point P on the body is now constrained to glide

on a two-dimensional algebraic surface S defined by a smooth function of the coordinates
of P.

S ¢ fle,y,2) = f(p.a, B) = 0. (6.26)

Constraining P to remain on an algebraic surface S, is to enforce a dependency between
the coordinates. One of them is function of the others. For instance, p = p(as, Bs). The
subindex s indicates that (ay, 5s) parameterise the surface. The three Bryan angles (v,
9, ¢) remain independent. Mechanically, the prismatic joint’s length is now function
of both of the universal joint’s angles. The prismatic joint is said to be passive, and
cannot be actuated independently from the motion of the universal joint (Fig. [6.0). In
the shoulder model, the surface is an ellipsoid imposing the following relation on the
spherical coordinates:

p cos(a) sin(p) a. cos(a) sin(S,) R . ,
0 sin(a) sin(ﬂ) — | v, sin(ae) sin(ﬁe) ’ (a, ﬁ) : Universal joint coordinates,
pcos(f) e cos(fe) (ae, Be)

(6.27)

: Ellipsoid coordinates.

The prismatic and universal joint coordinates are now expressed in terms of the ellipsoid
coordinates (a., ).

p= \/(ae cos(ae) sin(e))? + (be sin(a.) sin(S,))? + (ce cos(fe))?,

a = arctan (Z—Z tan(ae)) )

(6.28)
[ = arctan <\/(ae oa(ae)) (b sn(ae)) tan(ﬁe)) :

C

The mechanism is a universal joint with coordinates (., .) and a passive prismatic
joint with coordinate p(c, B.). This illustrates the following point. Kinematic pairs with
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more degrees of freedom can be described using lower kinematic pairs. The spherical
slider kinematic pair is described by a universal pair, a prismatic pair and a spherical
pair [123].

Ball and Socket Joint: ¥, 9, ¢

Prismatic Joint: p(«, B)
Universal Joint: «, 3

Figure 6.8: Illustration of the mechanical equivalent of a rigid body’s motion on a two-
dimensional, algebraic surface as described in section [6.2.3.

The kinematic shoulder model described in chapter [3] contains two spherical slider
pairs. The algebraic surfaces are ellipsoids with identical centres. Applying the principles
described in the previous paragraphs yields a kinematic model of the shoulder where the
scapula is a 2-3 parallel platform. The synovial articulations are modelled as ball and
socket joints (Figl6.0). There are two additional ball and socket joints at the points TS
and AI. There are two universal joints located at the centre of the ellipsoids E. Between
the point E and T'S there is a prismatic joint and between the point F and the point
Al there is a another. The lengths of both prismatic joints are function of the universal
joint coordinates (s, frs) and (aar, Bar) according to (6.27).

prs = prs(ars, Prs), par = par(aar, Bar). (6.29)

The kinematic model described in chapter [3] and the parallel model described in this
chapter are equivalent. The change in representation of the scapulothoracic contact does
not change the kinematic model. However, two additional kinematic chains have been
added between the carrier body (thorax) and scapula. These kinematic chains will be
used to find a reduced set of coordinates.

6.2.4 Equivalent Kinematic Maps and Coordinates

Section summarised the kinematic shoulder model presented in chapter 4l The
model is characterised by its forward kinematic map. This map is defined as the natu-
ral kinematic map between the spherical joint coordinates and the configuration of the
humerus. The natural kinematic model is now given a formal definition.




118 6.2. MINIMAL COORDINATES FOR COORDINATION

SC (1,91, 1)
Sg/ AA
< T s

2 universal joints:
(ars, Brs)
(a1, Bar)

AC(1p2, 92, ¢2)

GH (v3,93,¢3)

Scapulothoracie joint : ST

@, AI(Yar, 9ar,¢Ar)

par(aar,Bar)
HU HU

Figure 6.9: Illustration of the equivalent parallel shoulder model as described in section
[6.2.3. Image courtesy of Visible Body (www.visiblebody.com).

Definition 16 (The Shoulder’s Natural Kinematic Map). The natural kinematic model
of the shoulder defines the bones as rigid bodies, the synovial articulations as ball and
socket joints, parameterised by spherical kinematic pairs. The scapulothoracic contact
1s modelled using two spherical slider kinematic pairs with respect to two ellipsoids with
identical centres. The kinematic coordinates are defined by:

Q1 V;

QS,:/V = JZ (72 |§Z = 01 S Qi,s C [_71-771-]37(;51',5(9@@5) C SO<3>7 1= 17 273 )
(T?; Wi

= D5y =215%x a5 x D35 C(SO(3))* = (SO(3) x SO(3) x SO(3)). (6.30)

The end-effector is defined as the humerus and its configuration C. s defined as the
position of the humeroulnar joint HU and orientation of the humerus with respect to the
wertial frame Ry. Under these assumptions, such a kinematic model of the shoulder has
a the following forward kinematic map, called the natural kinematic map.

Esn it Ly = Wsor,
G Zs.0 () =Ce, @3 =dos+ Rio(d@)7 + Rao(@)7 + Ryo(3)é, (6.31)
st Prg(q) = (o — )" Erg (ps — &) —1=0, (6.32)
®41(7) = (Vo2 — €0)" Eas (Vo — o) — 1 =0. (6.33)
where €y = (Te, Yo, 2e)T is the point vector of the common ellipsoid centre Ey in the iner-
tial frame. The map parameterises the kinematic shoulder model using nine coordinates

and has seven degrees of freedom. The coordinate space Z2s y is a compact C'*-manifold
of dimension seven. The work space #Ws 4 is a compact C*-manifold of dimension siz.

Wy = {ce — (6;1’3) € SEB3)|éhs € R G € D36,Cc = EM@} C SE(3). (6.34)
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The equivalent parallel model of the shoulder presented in section replaces the
scapulothoracic contact constraints by two kinematic chains. This equivalency provides
two alternate parameterisations of the shoulder model’s kinematics, using the method
described in chapter 3, section Two sets of three Bryan angles are defined for the
two spherical kinematic pairs at T'S and Al: (Vrg, Vrs, 0rs), (War, Var, ;) (Fig. E9).
Two sets of spherical angles are defined for the two superimposed universal joints located
at the point E: (ars, frs), (aar, Bar). The method is to define a forward kinematic
map with the necessary constraints, using either of these two kinematic chains.

The position of the humeroulnar joint centre HU is defined by one of the following
two expressions (cf. chapter [)).

TS map: €3 = Up2(ars, Brs) — Roo(@)ta + Raoo(G2)22 + Rso(q3)és, (6.35)
Al map: €3 = Up2(®ar, Bar) — Roo(@)02 + Raoo(q2)22 + R o(q3)€s, (6.36)

where the vectors T'Sy : wp2(ars, frs) and Aly @ Upo(aas, Ba;) are defined by:

ars cos(Qrs) sin(Brs) + e aarcos(aa;)sin(fa,) + .
Up2 = | brssin(ars)sin(Brs) +ye |+ Too2 = | barsin(oa,)sin(Bar) + ye (6.37)
Crs COS(ﬁTS) + Ze Car COS(ﬁAI) + Ze

The two definitions imply the following relation defining an interdependency between

(aT57 /BTS) and (aAla BAI)-
ﬁO,Q(QT& BTS) - RZ,O(Q_)Q)'L_[Q - UO,Z(O[AH /BAI) + RZ,O(Q_)?)'JZ = 6 (638)

The two alternate definitions of HU are parameterised by the following sets of coordinates

~, T
q:rs = (lpl Qrs Prs 2 Oy @2 Y3 O3 ¢3)T )
Gar = (101 Qar Bar Y2 b2 G2 b3 O3 <Z53) .
The coordinate 1 is added to the list of coordinates because the clavicle can rotate around

its longitudinal axes (SC' — AC axes) without disturbing the scapula. The coordinate is
not in either map (6.35]) or (€.36) but is included in the coordinate set to be complete.

(6.39)

The two alternate parameterisations are used to define two alternate forward kine-
matic maps. They are called the upper and lower scapulothoracic kinematic maps. Al-
though different from the natural kinematic map, they parameterise the same kinematic
structure.

Definition 17 (The Shoulder’s Upper Scapulothoracic Kinematic Map). The upper
scapulothoracic kinematic model of the shoulder defined the bones as rigid bodies, the syn-
ovial articulations as ball and socket joints, parameterised by spherical kinematic pairs.
The scapulothoracic contact is modelled, using two spherical slider kinematic pairs with
respect to two ellipsoids with identical centres. The kinematic coordinates are defined by:

Doy = {&Ts (eq. 639)) [t € 215 C S, (ars, frs) € Dos C S% o € Dy, s € o@s,s} ,
= 254 C (5" x5*x 50(3) x SO(3)) . (6.40)
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The end-effector is defined as the humerus and its configuration C. s defined as the
position of the humeroulnar joint HU and orientation of the humerus with respect to the
inertial frame Ry. Under these assumptions, such a kinematic model of the shoulder has
the following forward kinematic map, called the upper scapulothoracic kinematic map.

Esa - Lsu — Wsu,
s) =Ce, €3 =req. (635), (6.41)
st Dac(Ges) ( 01— J@T <cf071 - JO,Q) _ISC — AC|E=0,  (6.42)
D41 (Grs) = (Too — €))7 Bay (Gos — ) —1=0. (6.43)

where (fo,l and dBQ are the point vectors of SC and AC' respectively in the inertial frame.
The map parameterises the kinematic shoulder model using nine coordinates and has seven
degrees of freedom. The coordinate space Zs 4 is compact C*-manifold of dimension
seven. The work space Wsa is a compact C*°-manifold of dimension six.

q:)TS HS w (é)

7/570' = {Ce = (3, ) € SE( )|a),3 € R?’,q?, € 0@375,(:@ = ES,@(@} C SE(3) (644)
3

The lower scapulothoracic kinematic map is defined in a similar way.

Definition 18 (The Shoulder’s Lower Scapulothoracic Kinematic Map). The upper
scapulothoracic kinematic model of the shoulder models the bones as rigid bodies, the syn-
ovial articulations as ball and socket joints, parameterised by spherical kinematic pairs.
The scapulothoracic contact s modelled, using two spherical slider kinematic pairs with
respect to two ellipsoids with identical centres. The kinematic coordinates are defined by:

s g = {ffm (eq. ©39)) [t € 215 C S, (Aus, Bar) € Zog C 5% G5 € Dog, G5 € 33,5}7
= 254 C (5" x5*x50(3) x SO(3)) . (6.45)

The end-effector is defined as the humerus and its configuration C. s defined as the
position of the humeroulnar joint HU and orientation of the humerus with respect to the
inertial frame Ry. Under these assumptions, such a kinematic model of the shoulder has
the following forward kinematic map, called the lower scapulothoracic kinematic map.

Esy 1 Lsg — Wz,

Gar > Zs,2(qar) = Ce, 03 = eq. (630), (6.46)

~ = = T s, 5
st ®ac(in) = (dm - do,z) (do,l - do,z) —ISC — AC|2 =0,  (6.47)
(I)T,S'((%AI) = ('170,2 — go)T ETS (’170,2 — 50) —1=0. (648)

where cfo,l and dBQ are the point vectors of SC and AC' respectively in the inertial frame.
The map parameterises the kinematic shoulder model using nine coordinates and has seven
degrees of freedom. The coordinate space Zg ¢ is compact C*-manifold of dimension
seven. The work space Ws ¢ is a compact C*°-manifold of dimension six.

Ws,g = {Ce = (q(_], ) € SE( )|a),3 € R?’,q_}, € 0@375,(:@ = Es,g(q_')} C SE(3) (649)
3
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The parallel model of the shoulder defines the shoulder girdle as a 2-3 parallel plat-
form. A platform with three legs. Each leg defines a kinematic chain between the carrier
body (thorax) and end-effector (humerus). The natural kinematic map, the upper scapu-
lothoracic kinematic map and the lower scapulothoracic kinematic map, each define a map
between a vector of nine kinematic coordinates and the configuration of the end-effector.
The maps are each subject to two smooth equality constraints (Fig. [6.10]).

The three forward kinematic maps define coordinate spaces that are different repre-
sentations of the same kinematic structure. Given that the maps all use nine coordinates,
there are interdependencies between them. The following section analyses the three coor-
dinates spaces to identify the interdependencies. It will be shown that the interdependen-
cies are between specific coordinates. Once the interdependencies have been identified,
the coordinate reduction will be presented.

(b)

Carrier Body

The three forward kinematic maps:

(a) €3 = do1 + Rio(71)Z1 + Rao(@) 2 + Rao(d)és

(b) €3 = to2(ars, Brs) — Rao(@)d2 + Roo(2)Z2 + Rao(g5)e3
(c) €03 = Uo2(aar, Bar) — Ra,0(¢2)02 + Rao(G2) 72 + R30(q3)€3

Figure 6.10: [llustration of the three different methods of parameterising the forward
kinematic map. (a) The natural forward kinematic map. (b) The upper scapulothoracic
kinematic map. (c¢) The lower scapulothoracic kinematic map as described in section
[6-27. Image courtesy of Visible Body (www.visiblebody.com,).
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6.2.5 The Coordinate Space

The coordinate spaces of the natural kinematic map Zg 4, the upper scapulothoracic
kinematic map Zg4 and the lower scapulothoracic kinematic map Zg & are defined as
subsets of a product of C'"*°-manifolds. Each of the coordinate spaces are parameterised
by nine coordinates subject to two smooth constraints. They are all C*°-manifolds in R?
of dimension 7. The coordinate spaces are defined by:

ic2s,c | 503) x s0B3) x s03) |, (6.50)
S~—— S~—— S~——
Y1, 91, o1 Y2, V2, w2 Y3, U3, p3
Grs € D50 C | ST x S2 x SO(3) x SO@3) |, (6.51)
L1 ars:BTs 4o, 9a, 0o s, V3, 3
> 1 2
gar € Q&g - St x S X 50(3) X 50(3) . (6.52)

¥1 QALBAL  py g, o W3, s, 03

The three sets are equivalent in the sense that they each parameterises the configuration of
three bodies in space. They all parameterise the same kinematic structure. Independently
of the coordinates, the kinematic shoulder model defines a smooth manifold of dimension 7
in R?. The bodies are connected by spherical kinematic pairs and therefore, the kinematic
coordinate set can always be seen as a subset of (SO(3))*.

Doy = Dy = Ds.g = Ds C (SO(3))* = (SO(3) x SOB3) x SOB)).  (6.53)

The three kinematic maps presented in the previous section define charts from subsets of

R? to the same subset 2g of (SO(3))°.

A coordinate reduction for the kinematic shoulder model is to define charts from

subsets of R” to any of the three submanifolds. To define such charts, it is first necessary
to define the charts from the subsets R? to the same subset 2g of (SO(3))® for each
kinematic map.
The natural kinematic map defines the space Zg. It uses three sets of Euler/Bryan
angles belonging to three subsets 2; g of SO(3). The natural parameterisation uses three
identical charts from [—7,7]* to SO(3). In section B.2.2] it was stated that Euler and
Bryan angles define maps from subsets of R? to SO(3) (G.I1]). The three maps define the
charts from R? to the compact smooth manifold (SO(3))*.

bis ¢ [-m 7] CR® = SO(3),
(wia ﬁi? Spl) = gbi,s(d)ia ﬁi) SOZ) = Ri,O- (654)

Given the constraints in the natural kinematic map, the domain spaces of the three charts
¢i s are restricted to subsets 2; ¢ C [, 7] C R? and the image spaces are three subsets
¢i5(2;is) C SO(3) (Fig. 6IT)). The subsets 2; s are defined by the constraints. Without
constraints 2; ¢ = [—m, 7]* and ¢; 5(2;5) = SO(3) for i = 1,2, 3.
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Natural Kinematic Parameterisation: 2g 4 Alternate Kinematic Parameterisations: 25 4, or 25
SOB): (Y1, V1, ¥1) SO(3): (Y2, Vo, ©2) Sty
SO(3): (¥, U3, ¢3) 1 SO@3): (¥3, U3, p3)

V‘@/M

S% (ars,Brs) or (aar, Bar) SO(3): (v2, Vo, p2)

Figure 6.11: Illustration of the coordinates in the coordinate submanifolds as defined in
section [6.2.7, eq. ([€00)-(652). Image courtesy of Visible Body (www.visiblebody.com,).

The constraints are function of the clavicular coordinates and scapular coordinates only.
The humeral coordinates are independent of any constraint 23 ¢ = [—m, «1]>. There is an
interdependency of the clavicular and scapular coordinates, not directly apparent in the
natural kinematic description of the shoulder.

The upper and lower scapulothoracic forward kinematic maps use four maps. Two
maps ¢y and @3 g from [—m,7* to SO(3), one map ¢y g from [—m, 7 to S* = SO(2)
and one map <;A52,S from [—m, 7] x [=Z, %] to S®. The two maps ¢y g and ¢3¢ are the same
as the natural parameterisation discussed previously.

brs 1 [-m 1] CR— S,
U1 = d1s(th) = Ra(th). (6.55)
bus ¢ [~ x [, ] C R = 57,
(rs, Brs) o (aar, Bar) = dos(an, B.) = R, B.). (6.56)
The domain space of ¢y g is 2y g = [—, 7] and the image space is ¢y ¢(2;5) = S' =

SO(2). The clavicle can rotate around its longitudinal axes independently of all the
other coordinates. The domain space of <;52 s is a subset of the full domain space D, s C

[—m, 7] x [=F, 5] and the image space is a subset $2.5(2ag) C 52

This analysis shows that four of the nine kinematic coordinates are independent of any
constraints and of each other: (¢, 13, V3, ¢3). They define the clavicle’s axial rotation and
the orientation of the humerus. Furthermore, the five remaining coordinates parameterise
the scapula’s Euclidean displacement, a point that was not directly apparent in the
natural kinematic map. Two of the three clavicle coordinates (1, ¢1) parameterise the
linear position of the scapula and the three scapular coordinates (19, Yo, p2) parameterise
the orientation about the linear position.
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50(3) ¢1,S(=@1,S) SO(?)) ¢2’S(a@2,5’) ¢3,S(QS’S) = 50(3)
// PN N // - N N // b N
] I/ M i 4 \ \ I A
1 ) | >< \ f } | >< \ |
\ \ /1 VY , ! \ /
\ ~_77 \ \ P / \ /
~ _ \\ 2 ~ 7

- —_4
_____ L — — — — — [
[—m, )3 [, 7]3 [, 7]?
R3 R3 R3
v
Interdependent Coordinates Independent Coordinates

Figure 6.12: [llustration of the natural kinematic map charts from three subsets of 2; ¢ C
[—m, 7|? to three subsets of SO(3) as described in[6.2.1.

The upper and lower scapulothoracic kinematic maps model the scapula as a 2-3 par-
allel platform. The platform includes six independent kinematic pairs without including
the passive prismatic pairs. The mobility formula applied to the shoulder girdle (clavicle
and scapula) states that there are four degrees of freedom.

6
Ds=6-4—> (6—k)=6-4— 4.3 — 2.4 4. (6.57)
=1

Spherical Joints Universal Joints

Without the clavicle’s self rotation, the scapula has three degrees of freedom. In the kine-
matic maps defined thus far, the scapula’s three degrees of freedom are parameterised
by five coordinates: (curs, Brs, Walla, o) O (ar, Bar, P22, ¢2). The following section
presents how the five coordinates are reduced to three, using two coordinates to param-
eterise the scapula’s linear position and one coordinate to parameterise the orientation.

6.2.6 A Minimal Parameterisation

Finding a minimal parameterisation of the shoulder model’s kinematics is to find a set
of seven coordinates. Four coordinates have already been found through the analysis
of the coordinate manifold, associated to three different but equivalent kinematic maps.
The four coordinates are the clavicle’s axial rotation and the glenohumeral Euler angles:
(11, 13,33, p3). The three missing coordinates parameterise the scapula’s configuration.
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Figure 6.13: [llustration of the submanifold decomposition as defined in section [6.2.3.

In the parallel platform description of the shoulder girdle (thorax, clavicle and scapula),
the scapula is a platform resting on three legs. The points T'S and Al are defined in
the model as articulations. Using this perspective, its configuration is defined using six
polynomial equations. The polynomials are defined in terms of the cartesian coordinates
of the three articulation points AC, TS, AI.

TS ellipsoid: (o2 — 0)" Erg (g — &) = 1, 6.58)
AT ellipsoid: (o2 — &) Ear (Tos — &) =1, (6.59)
AC is on a sphere around SC: (CZOQ — CZ)J)T (7],2 — dﬁm> = prc (6.60)
TS is on a sphere around AC: (jOQ — ﬁo,g)T (7)72 — 6072> = 12, (6.61)
Al is on a sphere around AC: (%72 — 170,2>T ( _572 — 170,2> = 12, (6.62)
TS is on a sphere around Al: (oo — Tos)" (oo — Tos) = p. (6.63)

The first three equations define the location of the three points with respect to the thorax
and the remaining equations define their position with respect to each other (Fig. [6.14]).
The scapula’s configuration is defined by a Euclidean displacement. Any point on the
scapula, for instance G H o, is defined by:

GHQ,Q : 52,0 = d_())72 —+ R27052. (664)

The minimal set of coordinates can be obtained through either of the three kinematic
maps. In the three kinematic maps, there are two coordinates defining the position of
one of the three points on the scapula.
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o AC: ¥4, ¢, the y- and z-axis Bryan angles,
e TS: a4, Brs, the two spherical coordinates of the TS ellipsoid,

o Al a4y, Ba;, the two spherical coordinates of the Al ellipsoid.

Ra 022

SC point vector: dﬂoﬁl,

AC point vector: Jo,z = Jo,l + R 071,

TS point vector: @y o = d_E),l + R 021 + Ro otiz,
AT point vector: ¥y o = %71 + R 021 + Ro oo,

E 1, Ra, otz E point vector: €

' p2, Ro ot

Figure 6.14: Diagram illustrating the vectors and constants defined in the polynomial
description of the scapula’s configuration (6.58)-([€.63). Image courtesy of Visible Body
(www.visiblebody.com)

Once either of these points is fixed, the scapula has a single degree of freedom £g. The
coordinate defines the motion of one of the other two points with respect to the one that
is known, using the two coordinates. The point lies on the intersection of two quadrics.
All six polynomial equations stated previously define quadrics. The parameterisation of
the intersection between two quadrics is well defined and is extensively used in computer
aider design software (CAD). The locus can be parameterised using a single coordinate
&g [127, 1128].

Definition 19 (Natural Minimal Coordinates). The natural kinematic map defines
the following vector of minimal coordinates:

q_‘k = (1/}1719179017§57’l/}37’l937 ¢3>T € Q;,JV - (SO<3) X Sl X SO<3)) . (665)

Construction: The natural kinematic map defines the position of AC' through the
configuration of the sternoclavicular joint angles: 1,91, 1. The point T'S lies on
the intersection of two quadrics. A sphere centred at AC' of radius py and an ellip-
soid centred at E (eq. [6.00, [0-57). This intersection is homeomorphic (topologically
equivalent) to a circle [127]. It can be described using a single coordinate £s. Once
the position of T'S is known, the position of Al is know by trilateration (Intersection
of three spheres). Al belongs to the common intersection between a sphere centred at
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AC, a sphere centred at T'S and an ellipsoid centred at E (eq. [6.61], [6.62, [6258). Once
the scapula’s configuration is known, the humerus configuration is defined through the
glenohumeral joint angles 3, V3, p3.

Definition 20 (Upper Scapulothoracic Minimal Coordinates). The upper scapulotho-
racic kinematic map defines the following vector of minimal coordinates:

q_‘k = (wlvaTSU 6T5'7 §S7w37ﬁ37¢3)T S Q;ﬁ/ - (Sl X 52 X Sl X 50(3)) . (666)

Construction: The upper scapulothoracic kinematic map defines the position of
the point T'S through the spherical coordinates (ars, frs). The point Al lies on the
intersection of two quadrics. A sphere centred at T'S of radius ps and an ellipsoid
centred at E eq. [6.63, [6.58). This intersection is also homeomorphic to a circle
and parameterised by a single coordinate {s. Once the position of Al is known, the
position of AC' is know by trilateration. AC' belongs to the common intersection
between a sphere centred at Al, a sphere centred at T'S and a sphere centred at SC.
The same works for the lower kinematic map by replacing T'S with Al. (eq. [6.59,
[6.60, [62071). Once the scapula’s configuration is known, the humerus configuration is
defined through the glenohumeral joint angles 13,93, p3. The clavicle’s self rotation
1s also defined through ;.

Definition 21 (Lower Scapulothoracic Minimal Coordinates). The lower scapulotho-
racic kinematic map defines the following vector of minimal coordinates:

q_»< = <w17aAI7/BAI7557w37’l937903)T € Q;g C (Sl X 52 X Sl X SO(?))) . (667)

Construction: The lower scapulothoracic kinematic map defines the position of
the point Al through the spherical coordinates (car, Bar). The point T'S lies on the
intersection of two quadrics. A sphere centred at Al of radius us and an ellipsoid
centred at E eq. [60.63, [6.59). This intersection is also homeomorphic to a circle
and parameterised by a single coordinate £s. Once the position of T'S is known, the
position of AC is know by trilateration. AC' belongs to the common intersection
between a sphere centred at Al, a sphere centred at T'S and a sphere centred at SC.
The same works for the upper kinematic map by replacing AI with T'S. (eq. [6259,
6,60, [6.61]). Once the scapula’s configuration is known, the humerus configuration is
defined through the glenohumeral joint angles 13,93, p3. The clavicle’s self rotation
is also defined through ).
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In all three definitions, coordinate £g parameterises the intersection between a sphere
and an ellipsoid. The technical details of defining £s are found in Appendix A. The
intersection locus is homeomorphic to a circle. Thus, the coordinate £g has an associated
chart between [0,1] C R and S*. The coordinate is not an angular coordinate and
therefore the domain space is defined as the unit interval. The chart is defined by:

¢5s (0,1 CR— S,
§s = ¢3.5(Es) = Rao(&s)- (6.68)

The domain space is restricted to 25 5 C [0, 1] because, the triple sphere intersection
must exist. Given the location of two of the three points, the third point must lie on
the intersection of three spheres. This constraint limits the actual domain space and the
image space is therefore also a subset ¢3 4(235) C S* (Fig. [6I5). This condition also
restricts the domain space of the chart associated to (91, 1), (Qrs, Brs) or (ar, Bar),
depending on the set of minimal coordinates

The coordinate space 2 of the shoulder model is defined by a set of seven coordinates
([E69), (6.66) or (6.67)). The set of seven coordinates is said to be a minimal set of
coordinates in the sense that the number of coordinates is equal to the number of degrees
of freedom. There are three possible choices of coordinates depending on which kinematic
chain is used. The coordinates define maps from subsets of R” to the kinematic coordinate

manifold which is a submanifold of (SO(3))3.

| ,' \
vs il,':é |
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\-,"_/r \ e ;s - Sphere-ellipsoid
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Figure 6.15: [Illustration of the minimal set of coordinates, using the lower scapulo-
thoracic kinematic map as described in section[6.23 (Definition 21). Image created using
ZygoteBody™ zygotebody.com.
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The chart associated to the minimal coordinates, from a subset of R” onto the coor-
dinate manifold Zg, using the natural kinematic map, is defined by:

bs.y  21g X Q;‘,S X D55 — g,

q_‘k = <¢17 ,1917 ©1, £57 w?n 1937 903) — ¢S,/V<q_*) = <¢1,S(’l/}17 1917 @1)7 (b;,S(gS)a ¢3,S(’l/}37 ,1937 @3))7
= (R10,R20,Rsp). (6.69)

The chart associated to the minimal coordinates, constructed from the upper scapulo-
thoracic kinematic map, is defined by:

b @ Qi x Dosx Dy gx Dys — g,
q* = (1/}17 Qrgs, /BTS'7 555 1/}35 1937 903) = ¢S,% (q*) = (92’1,5(7/)1)7 é?,S(QTSH ﬂTS)a ¢;,S(§S)a ¢3,S(1/)35 1937 903))7
= (Ru1,0, Ra0, Rap). (6.70)

The chart associated to the minimal coordinates, constructed from the lower scapulo-
thoracic kinematic map, is defined by:

b5z + Q15X Log X 25X P35 — Lg,

q* = (wl; aar, ﬁAI) €Sa wl’n 1933 @3) — ¢S,$(q_*) = ((ﬁl,s(wl)a QEQ,S(CYAI; BAI)a ¢;,S(€S)a ¢3,S(1/133 1935 (103))3
= (R1,0, Ra,0, Rap). (6.71)
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Figure 6.16: Illustration of the minimal coordinate charts onto the submanifolds as defined

i section [6.2.4.

The coordinates parameterise the three rotation matrices of the clavicle, scapula and
humerus. The Euler and Bryan angle or natural parameterisation can be obtained, once
the three matrices are defined. The natural parameterisation is needed to define the
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dynamic model. The minimal coordinates are suited for describing the shoulder’s kine-
matics but not its dynamics.

In comparison to each other, the three possible sets of minimal coordinate parameterise
the same kinematic structure. Given this point, it is natural to ask if they are exactly
equivalent. The short answer is no. They are similar but not identical. There are four
coordinates that are the found in all three sets of minimal coordinates. The differences
between the sets lies in the three coordinates parameterising the scapula’s configuration.
For instance, if the natural set of minimal coordinates is used, the third point on the
scapula (TS or Al) is obtained by computing the intersection between two spheres and
an ellipsoid. For the other two sets of minimal coordinates, the third point is AC, lying
on the common intersection is between three spheres. Finally, an important difference
between the coordinate sets is in their implementation. The numerical range of each
coordinate will differ. Furthermore, this chapter presented the definition of the three co-
ordinate sets without discussing the numerical values. The specifics of the domain space
of the kinematic maps will depend on the numerical values of the shoulder model. It
could be that when implemented, a coordinate set could lead to difficulties because of
the numerics. The most likely source of trouble is the definition of the ellipsoids. Their
orientation and dimensions will have an impact on the implementation.

6.3 Remarks

This chapter began by presenting the usual parameterisation of a kinematic shoulder
model that includes the three synovial articulations and the scapulothoracic contact (cf.
chapter Ml). This parameterisation defines a natural forward kinematic map using the
natural joint coordinates as kinematic coordinates. The chapter then presented an alter-
nate description of a kinematic model of the shoulder by replacing the scapulothoracic
contact model with two kinematic chains between the carrier body (thorax) and scapula.
The kinematic chains were used to construct two alternate forward kinematic maps and
to analyse the shoulder model’s kinematic structure. The result is a minimal set of seven
coordinates. A set of four charts are defined to map the minimal coordinates onto the
shoulder model’s coordinate manifold, defined as a subset of (SO(3))? and parameterised
by the three rotation matrices. The minimal coordinates considerably simplify any com-
putational procedure associated with the kinematic model such as motion planning. The
following paragraphs compare the use of minimal coordinates for shoulder motion plan-
ning to other solutions from the literature.

Most kinematic models of the shoulder use the natural joint angle parameterisation
[58, 161, 74, 101, 114, [129, [194]. For models that contain constraints [58, (74, [194], the
most appropriate method of planning motion has been to use data-driven optimisation
[8, 166, 156]. The motion is planned by minimising, at discrete instances during the mo-
tion, the error between the model’s kinematic coordinates and measured values of the
kinematic coordinates. The measured values can be obtained for instance, from palpated
skin marker locations, using a model of the soft tissue effect [42,156]. The variables of
the optimisation problem are the model’s coordinates for every discrete configuration.
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The philosophy behind this approach is to obtain motion that satisfies the constraints
and reflects the real shoulder’s motion. Without the constraints, the model’s coordinates
are equal to the measured coordinates and motion planning is straightforward. With
constraints, the problem is considerably more difficult because the coordinates are in-
terdependent. Thus, constraints constitute one of the main challenges in planning the
motion of shoulder models including constraints.

The solution presented in this chapter eliminates the constraints by constructing co-

ordinates directly parameterising the constraints. The coordinates are independent from
each other. If motion of the real shoulder is described directly in terms of these coor-
dinates, the motion planning problem is mathematically trivial in that the model coor-
dinates are equal to the measured coordinates. The minimal coordinates are specific to
kinematic models of the shoulder where the scapulothoracic contact is modelled using
two points constrained on the surface of an ellipsoid |74, 194]. The coordinates are not
specific to a numerical implementation, but are specific to shoulder model’s with the
structure described above. This observation leads to the following remarks.
The minimal coordinate parameterisation of a kinematic shoulder model has potential
beyond the kinematic model presented in this chapter. In the literature, there are a
number of regression models that define thoraco-clavicular and scapulo-thoracic motion
in terms of thoraco-humeral motion [50, 184, [101], [104]. The sternoclavicular and acromio-
clavicular joint angles are defined as functions of the glenohumeral joint angles. These
models are highly appealing because they can be used to build clavicular and scapular
motion using only the motion of the humerus which is very straightforward to define. The
disadvantage with these models is that they produce motion that is generally incompati-
ble with any of the model’s kinematic constraints. Furthermore, most of these models are
linear. The coordinate manifolds associated to kinematic shoulder models are in general
nonlinear [215]. Linear regression models are local models of shoulder kinematics. The
primary drawback of regression models is that they do not respect the scapulothoracic
kinematic constraints. Therefore, the minimal coordinate parameterisation does present
an attractive alternative. Furthermore, given that the minimal coordinates presented in
this chapter directly incorporate the scapulothoracic constraints, they could be used to
construct a regression model. The model would respect the constraints and be nonlinear
and could be used to build general shoulder movements. Also, the minimal coordinates
parameterise the movement of bony landmarks and are seemingly suited for skin marker
palpation techniques. The possibility of building a constraint compatible regression model
requires further investigation but is an attractive prospect.

6.3.1 Trammel of Archimedes

Before concluding this chapter, it is of interest to return to the two-dimensional mech-
anism presented in section Recall that in the mechanism, the point TS glides on
an ellipse. A coordinate was defined directly parameterising the ellipse. This section
proposes a method of enforcing and actuating the constraint using a very old mechanism:
The Trammel of Archimedes. Kempe’s Universality theorem states that any portion of
a smooth curve in R? can be constructed using a linkage mechanism with only prismatic
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and revolute joints [116]. The Trammel of Archimedes is a particular example of such a
mechanism.

Figure 6.17: Illustration of the driven Trammel of Archimedes as described in section

631

In the mechanism from section [6.2.2] the point 7'S must follow an ellipse of dimensions
a. and b.. An ellipse can be constructed using a number of different mechanisms. The
most notable mechanism is the Trammel of Archimedes, using two blocks which move
along the two axes of the ellipse through two prismatic joints P, and P, (Fig. [6.17). A
straight link of length a. is connected to the two blocks through two revolute joints R;
and Ry. The first revolute joint is connected at the tip of the link and the other revolute
joint is connected at a distance a. — b.. As the two blocks move, the opposite tip of the
link X follows the edge of the ellipse. If the point 7T'S on the two-dimensional mechanism
is attached at this point to the link trough a revolute joint, it will follow the ellipse.
It was further explained in section that the ellipse coordinate v kinematically defines
part of the mechanism. The Trammel of Archimedes can be driven through a revolute
joint parameterised by 1. There is a point on the link which is always at a distance “e—gbe
from the centre of the ellipse. If a disk of radius “62;1’6 is set at the centre and connected to
the link, the mechanism can be driven through the rotation of the disk. This mechanism
would be a mechanically more robust solution because there is a single driven joint. The
initial solution using a single revolute joint and a single prismatic joint would not be a
good solution because the prismatic joint would need to be driven although its length
is dependent on ¥. The point T'S would not follow a perfect ellipse. The Trammel of

Archimedes on the other hand would guarantee that T'S remain on a perfect ellipse.
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Figure 6.18: Illustration of the use of the Trammel of Archimedes in driving the two-
dimensional analogue for the shoulder discussed in section [6.2.2.

6.4 Conclusions

The goal of this chapter was to present a novel parameterisation of a kinematic shoul-
der model with constraints, facilitating motion planning without measured data. The
main idea of the parameterisation is minimal coordinates. Instead of using more coor-
dinates subject to constraints, the parameterisation uses a number of coordinates equal
to the number of internal degrees of freedom. The coordinates were defined for the mus-
culoskeletal shoulder model presented in chapter 4. The model considers the synovial
articulations to be ball and socket joints, parameterised by spherical kinematic pairs.
The scapulothoracic contact is modelled by constraining the end points of the scapula’s
medial border to remain on the surface of two ellipsoids. The parameterisation in terms of
the minimal coordinates was derived by replacing the contact model with two equivalent
kinematic chains. There are three possible sets of minimal coordinates. Within each set,
the coordinates are independent from one another. The coordinates are shown to be a
highly efficient solution of parameterising the model’s kinematics. Finally, the parame-
terisation shows potential in constructing a regression model of the shoulder kinematics.
Such a regression model would be compatible with the kinematic constraints present in
the model.
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Chapter 7

Shoulder Overactuation
Coordination

7.1 Introduction

Musculoskeletal systems such as the shoulder, the hip or the knee, consist mainly of
bones, articulations and muscles. The bones and articulations define the skeletal system
with a number of degrees of freedom and the muscles act as external force generators
actuating the system. Musculoskeletal systems are overactuated. The number of muscles
exceeds the number of degrees of freedom. Overactuation is necessary given that muscles
can only pull and is a desirable characteristic to increase flexibility. This leads to what
chapter [l defines as coordinated redundancy. The additional actuators are redundant,
providing additional flexibility. However, the redundant actuators must be coordinated
to use the redundancy efficiently. The human body does this very well using neuromus-
cular control.

In models of musculoskeletal systems, the bones and articulations are modelled as ideal
rigid bodies and joints, yielding a dynamical system. The muscles are modelled as mass-
less, frictionless cables wrapping over the bones, applying forces on the skeletal system.
The models are also highly overactuated. For a given state of the dynamical skeletal
system, there are an infinite number of muscle-force patterns. Therefore, coordination
strategies for working with musculoskeletal models are also required.

There exist many different types of coordination strategies [66]. Such strategies are
often referred to in the literature as the force sharing problem [191], the muscle re-
cruitment problem [172] or muscle-force estimation problem [90]. There are three main
families of strategies. The first is called the inverse dynamics, static optimisation strat-
egy [26, 194, 190]. The dynamical model of the skeletal system is inverted. A kinematic
movement is imposed and the muscle forces are obtained by static optimisation (an op-
timisation problem is solved at discrete instances in time). The second family is called
forward dynamics assisted data tracking [145, [154]. Muscle forces are found, minimising

135
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the error between the skeletal model’s kinematics and measured kinematics. EMG mea-
surements have also been used for this type of method. The third family of coordination
strategies is optimal control |[163]. These methods use a forward dynamics approach but
the cost function includes muscle forces and kinematics without measured data.

The development of coordination strategies presents a challenge. The coordination strate-
gies must reproduce similar activation patterns as the ones observed in the real system.
Therefore, research related to muscle-force coordination has focused on the cost functions
and results which they produce [66]. For instance, it has been shown that minimising
mean square muscle stress yields muscle forces that agree with measured data [194]. This
particular cost function is referred to as the polynomial cost function. Another cost func-
tion is the min/max function that is shown to produce similar results to the polynomial
cost function with higher orders [6]. More recently energy based cost functions have been
proposed [167]. These results are fundamental but analyse the problem from a practical
application perspective.

There has been little research into the theoretical aspect of the muscle-force estimation
problem. The problem represents an example of a family of mathematically underdeter-
mined problems. These problems consist of finding a single solution within an infinite set
of solutions. Another example of this type of problem is found in cable-driven robotics
[57, 192, [178]. The forces in the cables actuating the system must be found to produce
a desired movement. In fact, the coordination problems found in cable-driven robotics
and the coordination problems found in biomechanics share a number of similarities. The
approach taken in this chapter is therefore relatively novel in that it uses a concept from
cable-driven robots to analyse the muscle-force coordination problem. The concept is
called wrench-feasibility and involves muscle moment-arms. Muscle moment-arms are of
fundamental importance and require further development. At present most presentations
related to moment-arms are experimental. They present the measured moment-arms of
certain muscles using cadaveric studies [2, 102, [130, [161]. Tt seems that the main theo-
retical developments concerning muscle moment-arms are, the tendon-excursion method
for computing moment-arms [7, 51, [179] and the minimum number of muscle segments
required to model muscles with large attachment sites [197).

The goal of this chapter, is to extend the theory of moment-arms using the con-
cept of wrench-feasibility. The presentation begins by giving a general definition of the
muscle-force coordination problem that applies to most musculoskeletal models. The
musculoskeletal shoulder model presented in chapter [ is used to present the definition.
A strategy for solving the muscle-force coordination problem for the shoulder model is
presented that uses the moment-arm map directly [3, 160, 190]. This particular method is
selected because it highlights the importance of moment-arms. The general theory behind
muscle moment-arms is reviewed. Two definitions of muscle moment-arm are presented.
The first is geometric and based on the cross-product of two vectors and the second is the
tendon excursion method. This review also includes a presentation of the main problems
related to computing muscle moment-arms. Finally, the concept of wrench feasibility is
introduced. Its implications are analysed using a two-dimensional musculoskeletal model
where it is possible to visualise the mathematical structures involved in wrench-feasibility.

IElectromyography (EMQ) is a technique for evaluating and recording the electrical activity produced
by skeletal muscles.
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7.2 Moment-Arms for Coordination

7.2.1 Shoulder Overactuation Coordination

In chapter [, a musculoskeletal model of the shoulder is presented. The synovial articula-
tions are modelled as ball and socket joints and parameterised using spherical kinematic
pairs. The model is parameterised by nine generalised coordinates representing the joint
angles, defined with respect to the inertial frame located on the thorax at the point I.J.
The reference frame axes are defined according the ISB guide lines [214]. Subindexes
are used to refer to each reference frame. 0: thorax (inertial), 1: clavicle, 2: scapula, 3:
humerus. Mass and inertia is attributed to each bone, defined with respect to the bone’s
centre of gravity [28] (cf. chapter @ for details).

R=(h o1 ¥o Yo 9o 3 U3 s03)T- (7.1)

The model considers the scapulothoracic contact. The contact is modelled by constraining
the points T'S and AI on the scapula’s medial border to remain in contact with the
surface of two ellipsoids. The ellipsoids have common centre and model the surface of
the thoracic cage with an additional layer of muscle tissue. The muscles are modelled as
one or more massless, frictionless, perfectly elastic cables from origin to insertion. The
cables wrap over the skeletal structure, modelled using constraints in the form of smooth
surfaces such as spheres and cylinders. Each cable creates a moment-arm around the
joints and the maximum amount of force a muscle can apply is limited. Muscles can
only pull and therefore the force must be positive and the upper bound is the muscle’s
maximum isometric strength (cf. chapter[2). The model is defined in terms of the skeletal
structure’s equations of motion. These equations are obtained using the Euler-Lagrange
equation (cf. chapter Ml). The dynamic model is defined by a set of differential algebraic
equations (DAE):

PL-  PL - OL o o = s o
TR k- 22 = WoCof + WoCo £, 7.2
912 RO OR 0 Of 00, f ( )
st B(R) = (Prs(R) Par(R))" =0, (7.3)
0<F < fonax. (7.4)

L defines the total lagrangian, sum of the three bone lagrangians. Wy is the matrix
containing the jacobians of the instantaneous rotational velocity vectors. Cy is the ma-
trix containing the muscle moment-arms. CQS is the matrix containing the constraint
moment-arms. f is the vector of muscle-force intensities. The vector f_; is the constraint

force intensities. For the constraint forces, the following equivalency holds (cf. chapter

1)
o (o) - . o5\
WOCO,sfs = <%> A, WOCO,S X (@) . (7-5)

The vector X is the vector of lagrangian multipliers. The projected constraint moment-
arms W(Cy ; are proportional to the constraint gradients. The columns of both matrices
are collinear.
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Joint Coordinate Definitions:
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Figure 7.1: Illustration of the bony landmarks, reference frame and the locations of the
bone centres of gravity. Image created using ZygoteBody™ zygotebody.com.

The model is actuated by the muscle forces. The muscle-force intensities multiplied
by the moment-arms yield the actuation vector ¢, of the dynamic model. The actuation
vector is also defined by inverting the dynamic model. The actuation is function of the
dynamic state and the intensity of the constraint forces.

24 27 d

Tk ULk WG = LR AR L) = WoCof  (76)

OR? OROR o ’
The dynamic musculoskeletal model is overactuated. The number of muscle-force inten-
sities is much larger than the number of generalised coordinates. For a given dynamic
state (R, K, K), there are an infinite number of muscle-force intensities producing this
state. Finding a solution requires a coordination strategy. In chapter [ it is stated that
a solution can be found using a task. The primary task of the muscle forces is to produce
motion. Therefore, a solution can be found by imposing a motion defined in terms of
the dynamic state (K(t),K(t),<(t)). An appropriate solution that agrees with measured
muscle forces, is found by minimising the amount of stress in each muscle @] Stress
is defined as the force in the muscle divided by the physiological cross-sectional area
(PCSA).
To construct such a solution, consider a dynamic movement of the skeletal structure de-
fined as a discrete sequence of dynamic states (R(t), K(tx), K(tx)), Vix € {to,...,tn}. The
dynamic states all satisfy the constraints: ®(7(t;)) = 0 V¢, € {to,...,ty}. The model
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has N, cables representing the musculature. A set of muscle-force intensities ﬁ; can be
found for each dynamic state by solving the following static optimisation problem.

. PR N O IR R 0ig
H}in U'(fx) = ) ; m — 5k P [k, (P)iy = m (7.7)
st To(R(tr), R(te), R(t), fa(ts)) = WoCo fi, Torque-force constraint, (7.8)
0< fr < Fonaes Min/max force bounds. (7.9)

This problem is referred to as the muscle-force estimation problem and represents a
particular coordination strategy. The first constraint imposes the primary task, the cost
function defines a secondary task and the second constraint imposes the limitations of
the physical system. A comprehensive review of implementations of this problem can be
found in [66].

7.2.2 Constraint Gradient Projection

The muscle-force coordination problem presented in the previous section has constraints
which is not the case with all musculoskeletal models. The particular musculoskeletal
model of the shoulder presented in chapter dl considers the scapulothoracic contact using
two holonomic skleronomic constraints. The forces f; representing the contact of the
scapula on the thorax ellipsoids are unknown a priori. This section presents two pos-
sible methods of dealing with the vector f; The first method uses the mathematical
structure of the constraints and the second method incorporates the vector into the force
coordination problem.

The first method is called the constraint gradient projective method [13]. As stated in
chapter B, the coordinates & chart the space (SO(3))® that is a compact smooth manifold.
They are mapped onto the manifold by:

bs o [-m 7] x [, 7] x =7, 7] = (SO(3)),
R~ ¢S("Z) = (RLO’ R270, R370). (710)

The manifold (SO(3))* locally looks like R?. Given the presence of smooth holonomic
skleronomic constraints, the coordinate space Zg is defined as a compact smooth sub-

manifold of (SO(3))*.
Dy = {/z e [—m,7]° € R, 65(R) C (SO(3))*, B(R) = 6} . (7.11)

There are two constraints and the dimension of the manifold is seven. This can be
understood in the sense that the coordinates K belong to a closed and bounded smooth
surface in RY of dimension seven.

At every point K € Zg there is a tangent space Tz Zs of dimension seven. This can be
understood as the linear surface or plane that is tangent to the manifold surface at 5. In
dynamics, the vector ¥ € R? belongs to the tangent space. It is a vector of dimension 9
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restricted to a subspace of dimension 7. The tangent bundle T' 2y is defined as the union
of the manifold and all the associated tangent spaces for all the points on the manifold.

T2s= | T:2s = {(e, R),R € g i € TEQS} . (7.12)

REZg

The tangent bundle is locally equivalent to R”xR7, a Euclidean vector space of dimension
14. Given an initial condition (Ko, /o), a solution K(&o, Ko,?) to the equations of motion
is defined as a path on the manifold 2g. At every instant along the path, the vector ¥
belongs to the tangent space and is tangent to the path.

\Tg*gs = RQ

Figure 7.2: Diagram of a manifold 25 in R of dimension 2: the two-torus T?. The
tangent space Tz2g at a point K* is locally equivalent to R? and the orthogonal space is
locally equivalent to R as described in section [7.2.3.

The constraints are defined by two functions of the generalised coordinates that are
equal to zero. In the tangent space at a given point £*, these functions define the following
relation.
0P
6;?:'(
The velocity and the constraint jacobian are orthogonal at every point on the manifold
2g. Furthermore, the column vectors of the constraint jacobian or constraint gradient
are always orthogonal to the tangent space of every point K*. Thus, the null-space of the
constrain jacobian parameterises the tangent space.

VE* € 25,  B(RY) =0, )R =0, (7.13)

The constraint gradient projective method projects the dynamics onto the tangent
space. The dynamics are defined using nine coordinates. Thus, nine equations of mo-
tion are needed to describe the dynamics. Projecting the initial set of equations onto
the tangent space yields seven equations. The constraint gradients provide the missing
equations and define a dynamic extension.
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The dynamics are projected onto the tangent space, using the constraint gradient null-
space. The null-space is parameterised by a matrix Ng that annihilates the jacobian of
the constraints for any configuration K € Zg.

N T
> 0P
Vi € 25 and (k) = 0, INg(R), s.t. N3 () <%> =0. (7.14)
The projected dynamics are defined by:
e e S =, 2 2 p N n
Na (R, 5 B X) = 1o F) = Na O Ny 2L Ny 2L NG WoGof. (715)
OR? OROR OR

There are now seven dynamic equations and the constraints have been eliminated from the
equations. To dynamics are extended using the second order derivative of the constraints
with respect to time. The constraints must always be equal to zero and therefore so must
their derivatives.

- ~ ; 0b ., - ; 0% d [0d .
®(K) =0, ©(%)—a7n_0 O(F) = =hi+ o <a/{> =0. (7.16)

The constraint gradient projective method leads to the equations of motion without the
constraints, defined by:

92L

NoZ£ aﬂz ) No 3o ' Nq>§—§ NpW,Cof
Py i - S
3 d (9% A o
of =1¢) 0 0

This method is used most often in forward dynamics simulation but is presented here to
be complete.

The second method, used in this chapter, is to include the vector of lagrangian mul-
tipliers in the vector of muscle forces. In chapter [ the constraint terms in the dynamic
equations ([Z.2)) are shown to be equivalent to the moments of force created by the scapulo-
thoracic contact model around the joints. Thus, the constraint force intensities can be
included in the muscle-force coordination problem. The constraint forces are found si-
multaneously with the muscle forces.

PL L. OL

o2 oror OR

—

= (WoCy W,Co) (J{:) — Wof (7.18)

—

S

The vector f is called the augmented muscle-force vector and the matrix Wy is the
augmented generalised moment-arms matrix. This matrix is function of the generalised
coordinates only. The drawback of this approach is that the constraint forces are an effect
of the muscle forces. The muscles apply a force that pushes the scapula onto the thorax
resulting in a contact. The second method includes them into the coordination strategy
and defines them as additional parameters which is not entirely correct.
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7.2.3 A Coordination Strategy to Shoulder Overactuation

This section presents a particular coordination strategy for solving the muscle-force es-
timation problem. The problem is initially defined as in section [.2.Il An additional
constraint is added to ensure glenohumeral joint stability. This is understood as con-
straining the glenohumeral reaction force to always be directed at the surface of the
glenoid.

n}]icn () = %; P(C];)Z? B %f{ﬁﬁ,, (B)i = ng‘jA} (7.19)
st tu(R(tr), R(t), K(te)) = WO(E(tk))ﬁk, Torque-force constraint, (7.20)
0< ﬁ < :max, Min/max force bounds, (7.21)
(R(t), R(t), R(ty), fr) <0, GH stability constraint. (7.22)

The scapulothoracic contact forces fs are compressive forces, the reaction forces are always
pointed away from the surface of the ellipsoids. Thus, the contact force intensities must
be positive. An upper bound is selected according to the observations from [88, [195].
The PSCA values for the constraint forces are selected at 1.

Glenohumeral joint stability is imposed in this model by constraining the GH joint
reaction force f, to remain within a cone representing the glenoid fossa’s orientation. The
reaction force in the glenohumeral joint satisfies the following relation:

MsZys = Msg, + Dof + fr, (7.23)

where :%’073 is the linear acceleration of the humerus’s centre of gravity with respect to the
inertial frame Ry. The vector g, is the Earth’s gravitational field vector. Dy is the matrix
containing the muscle-force direction vectors. For a model with NV, muscle segments, the
total force and moment of force at each joint in the inertial frame Ry is defined by:

Np

fO,i = Z fO,i,k = DOfa 1= ]-7 27 37 (724)
k=1
Np Np Np

toi =Y doik X foik =Y (?jo,z‘,k X bo,z‘,k) fv=">_ Goinfs = Coif. (7.25)
k=1 =1 =1

The reaction force with respect to the humerus points away from the glenoid fossa into
the humeral head. The reaction force with respect to the scapula points in the opposite
direction. Glenohumeral joint stability is imposed by constraining the reaction force
with respect to the scapula to remain within a cone. The cone’s apex is centred on the
glenohumeral joint centre (near the centre of the humeral head) and its basis is an ellipse
that fits the glenoid (Fig. [[.3). Mathematically, the constraint is defined by the scalar
product between the reaction force and the normal vectors to the cone’s surface around
the cone’s base. The scalar products must remain positive. Ny points evenly distributed
around the cone define N normal vectors and therefore Ny inequality constraints, which
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together define the joint stability constraint. The cone is given its own reference system
situated at its apex (subindex 5). The x-axis is parallel to the line passing through the
base ellipse centre and the GH joint centre, pointing away from the base. The constraints
are grouped into matrix form and defined by:

0<Bgs <M3(§— Zo3) + Dof) = Bos (Dof— ﬁiyn) , (7.26)

By 5 contains the Nk vectors normal to the cone’s surface around the edge of the glenoid
in the inertial frame.

Lateral View Posterior View

Y

Normal Vectors

w2
=1
o
@
=
o
=

/(f’?«""‘”Rzeaction Force: f;

GH, cone apex

posterior

Glenoid

Stabil-ity Cone Base (ay,az)

Figure 7.3: Construction of the GH joint stability constraint as presented in section
[7.2.3. The reaction force is attached to the glenoid but in the model, it is attached to the
glenohumeral joint centre.

A point on the edge of the glenoid in the cone’s frame Rj5 is defined by:
P i ps=(ca aycos(V) a. sin(ﬂ))T, (7.27)

where a, and a, are the ellipse half axis representing the glenoid and ¢, is the cone heigh.
The vector normal to the cone’s surface at this point is defined by:

. T
ﬁ5: (_1 __cgcos(v) _cmsm(ﬁ)) . (728)

ay a

The cone’s reference frame is defined with respect to the scapular frame R,. Thus, all the
normal vectors are rotated into the absolute frame using the following transformation:

’ITL'()75 = R270R572ﬁ5, = B§5 = (7_7:075’1 .. ﬁ0757NK) . (729)

The matrix Rs 2 is constructed by defining the cone frame unit vectors in the scapular
frame. The matrix Rj 5 is the scapula to thorax rotation matrix. This constraint models
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the edge of the glenoid as an ellipse. This is not strictly the shape of the anatomical
glenoid but is necessary to obtain an analytical form of the cone and define a constraint.

The muscle-force coordination strategy defined at the beginning of this section ([.19)-
(C22) is generally solved using a conventional optimisation solver. The idea of the fol-
lowing method is to use the torque-force constraint directly. The constraint is an equality
constraint and can be used directly to find an initial solution to the problem. Given an
actuation vector t, (R (t), R(ty), R(t)), a vector of muscle-force intensities is found by tak-
ing the Moore-Penrose pseudo-inverse of the augmented generalised moment-arms matrix

3.

2wl (v vl Y R e B =

fi = Wo (WouWay ) alF(t), i), F(1)). (7.30)
This solution is shown to minimise the mean square muscle forces [203]. Inserting the
PCSA matrix P yields a solution that minimises the mean square muscle stress.

pad S L o iR -
fg::PVVQk(VVQkP\V@k) (Rt R(te), R(ty). (7.31)

This solution satisfies the first constraint (.20) but not the others. The remaining
constraints (Z2I)) and ([22]) are satisfied by making use of the moment-arms matrix
null-space. Any vector within the moment-arm matrix’s null-space can be added to this
solution and the resulting solution will still respect the constraint (Z.20). The solution
satisfying all three constraints is parameterised by:

fi = Iy + Ny, Wo,eNw = 0. (7.32)

The vector ¢ is used to search for a solution, that respects all the constraints, but does
not violate the torque-force constraint. Using the re-parameterisation, the matrix form
of the cost function is defined by:

o L=z 1 g o0 L S o< 1 5 2%
Fk(’l]) = éf_']? Pfk = évTNW,k PNWJC’U + (fk )T PNWJC’U + §<fk )T Pfk (733)
The maximum force constraint becomes:
0 < fi < frnaes

=0 S f];k +NW,k'l7§ maz

= - ﬁ: S NW,kg S ]Fmax - f]ik (734)
The joint stability constraint becomes:
0< B0,5 (Do,k.fl; - .Eiyn,k) s = —B075,]§D0,kNW7k'l_}) < B075,k (DO,kﬁ — ﬁyﬂﬁ) .
(7.35)

The matrix Ny, is the null space of the generalised moment-arms matrix without the
scapulothoracic contact forces. Thus, the nonlinear program is now defined as a quadratic
program with the constraints grouped together into a single linear inequality constraint
13, 190].
min n@aziTNkamww+uwTPwa, (7.36)
v

s.b. Ayt — by <0, (7.37)
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The constraint matrix Aj; and vector l;k are defined by:

NW,k fma:{f .]E]i<
A, = ~ Nk , fr ) (7.38)
—Bo,5,:Do,xNw Bo.s (Do,kf;f _ fdyn)

Once a solution to the muscle-force estimation problem is found, the results are used in
combination with (T.23)) to obtain the joint reaction force.

=1
Il

7.3 Muscle Moment-Arms Theory

As stated in the introduction to this chapter, moment-arms play a central role in de-
termining if a solution to the muscle-force estimation problem exists. In the previous
section, a coordination strategy was presented and solved using the moment-arms ma-
trix directly. The moment-arms matrix was used to parameterise the solution. Muscle
moment-arms are the key element in any coordination strategy. Given this fact, muscle
moment-arms require a formal presentation..

Physically a muscle’s moment-arm characterises its ability to actuate the skeletal

system. It characterises the muscle’s ability to change the configuration of the joints in the
skeletal system. The muscle moment-arms relate the forces in the muscles to the primary
task of movement. They map the muscle-force vector to the actuation vector and appear
in the equations of motion. Muscle moment-arms were initially defined experimentally
in cadaveric studies, by relating the change in muscle length to the change in joint angle
[2,15, 125, 130, 161]. This experimental definition was formalised using the principle of
virtual work, leading to the tendon excursion definition, where the moment-arm is defined
as partial derivative of the muscle length with respect to the joint angle [7, 51]. This
formalisation was done on the basis of a number of assumptions. First, the muscles are
represented by one or more massless, frictionless cable(s). The path taken by the cable
is the minimum distance between the two points passing over the bones modelled using
constraints. The constraints define smooth surfaces. A second assumption is that the
cable’s length depends only on the configuration of the skeletal structure. It is a kinematic
quantity. The third assumption is that there is a uniform tension in the cable.
The tendon excursion method is not the only method of computing muscle moment-
arms. Other methods have been proposed using velocities [179]. However, moment-arms
have a more fundamental interpretation that was introduced to biomechanics previously
to the tendon excursion method. If the notion of muscle is removed, the concept of
moment-arm has a more fundamental geometric interpretation. A moment-arm can be
defined for any system of forces. The notion of muscle length and coordinates is not
required to define moment-arms. Previous to the formalisation of the tendon excursion
method, muscles were initially considered to apply a system of forces on the skeletal
system [166]. Furthermore, all the forces in the system of forces are assumed to have the
same intensity. This assumption can therefore be seen as the fundamental assumption
behind muscle moment-arms.
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This section completely reviews the concept of moment-arm starting with the fun-
damental concept of moment-arm without muscles. A method of computing a muscle’s
moment-arm is presented based on the geometric interpretation. This method is related
to the tendon excursion definition of moment-arms. Finally, a some practical issues re-
lated to moment-arms are presented.

7.3.1 Fundamentals of Moment-Arms

In classical mechanics, a force fé,i, applied on a rigid body %; at a point A, creates a
moment of force at any other point B of the body (Fig. [4). The moment of force fg
is defined as the cross product between the vector 7 ; from points B to A and the force.
The force and its moment, if grouped together in an ordered pair, define a wrench with
respect to the point B [12, 186, 204]. The wrench is defined by:

FBy, = (ﬁ;,i; To,i X ﬁ)z) = | fo,il (go,z‘7 To,i X go,z) = | fo,il (go,h 50,z‘> . (7.39)
Bo.: B B

0,7
All the vectors are defined in the inertial frame Ry. The associated moment-arm ¢; is
defined by the same cross product but with a normalised force vector l;o,i. This definition
of moment-arm applies to a single body subject to a single force, and has a geometric
interpretation. The norm of the moment-arm represents the distance from point B to the
line defined by the vector go,z passing through A, a quantity called the lever-arm. The

moment-arm is therefore a purely geometric quantity associated to a given point on the
body, depending only on the direction of the force and its point of application.

I fo,i = |fo,il - o,
| e Moment of Force :

to0,i = 70,; % |fo,i] - bo,i
e Moment-arm :

— ' 1
70,; X bo,; = Too toi

Figure 7.4: Illustration of the classical mechanics definition of force moment-arm as

described in section[7.3.1]

There is another interpretation of the moment-arm. If the body is attached to a fixed
point trough a spherical kinematic pair at the point B, and no other force is applied to
the body, then the moment-arm vector defines the instantaneous axis of rotation of the
body around the joint. This is a direct result of the duality between Chasle’s theorem in
kinematics and Poinsot’s theorem in dynamics (cf. chapter [3]).

A system of Ny forces applied to a body can always be reduced to a single force and
moment of force at a given point. The resulting force is the sum of all the forces applied
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to the body and the resulting moment of force is the sum of all the individual moments
of force.

Ny Ny
Joi = Z Jfoijs to = Zfo,i,j X fo,ij- (7.40)
j=1 j=1
Assuming that all the forces have the same intensity, a total moment-arm is defined by:
Ny ) Ny
Coi= > Toiy X —=—foij = > Touj X bosj- (7.41)
j=1 HfOZJ” j=1

Without the assumption on the intensity, the resulting torque cannot be expressed by a
single scalar multiplied by a single moment-arm.

to.s = || fos]| .- (7.42)

The uniform intensity assumption is what allows one to represent the action of a muscle
by a single moment-arm for each body.

7.3.2 A Geometric Method of Computing Moment-Arms

The previous definition only considered a single body. A musculoskeletal system is defined
by a number of bones and muscles apply multiple forces on the bones. Each muscle is
defined as a massless, frictionless cable with a certain geometry. Given this assumption,
pulley mechanics are used to compute the points of application and direction of the forces
applied by the muscles on the bones.

A cable applies forces at its origin and insertion points parallel to and directed along the
cable. At every point in between, the muscle applies two forces parallel to the cable with
opposite directions. If the muscle wraps over a bone, it applies two forces on the bone at
the initial and final points of contact parallel to the cable but in opposite directions. All
the forces applied by a single muscle on the bone are of equal magnitude. In accordance
with this description, a muscle applies multiple forces fo,z,j to the bodies and creates
moment-arms for every body to which it applies a force. These forces include the forces
applied at the origin and insertion as well as the forces applied on the wrapping objects
attached to the bones. Like the moment-arm of a force, muscle moment-arms are defined
with respect to a specific point, usually one of the joints attached to the body. In this
manner, a muscle’s moment-arms define its ability to change the configuration of the
joints.

To illustrate the application of the geometric definition, consider a serial skeletal
system with N, bones %; and N, joints J; (Fig. [[H). The bones are considered to
be rigid bodies and the joints are ideal ball and socket joints parameterised by spherical
kinematic pairs. A reference system R; is attached to each joint J; (subindex i) describing
the configuration of the bone %; with respect to the carrier body reference frame Ry. A
first muscle .#; spans the last joint Jy, and is attached to the bones #y, and By,_1. A
second muscle inserts on the bone %y, and originates on the carrier body.
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Carrier Body

J3

Figure 7.5: Illustration of a skeletal system with n joints and two muscles. Muscle .#
spans a single joint. Muscle M5 spans multiple joints with m via points including origin
and insertion as described in section [7.3.3,

The muscle .#, spans the joint .Jy,, originates on the bone %y,_; and inserts on
the bone #y,. In between it wraps over two surfaces Wy,_1 and Wy,, modelling the
bones. Given the location of the muscle’s origin and insertion points, the muscle creates
moment-arms at the joints Jy, and Jy,—1. To define the moment-arms around the joints
Jn, and Jy,_1, the two bodies are isolated (Fig. [.6]). There are three contact points with
body %n,: Pn,1, Pn,2, Pn, 3. There are three forces. The two contact points associated
to the wrapping surface and the insertion force. The total screw at the joint Jy, in the
fixed frame (subindex 0) is defined by
=+ (fo,N,,,B,yo,N,,,B x fo,Nb,s)J )

Fin,= (fo Nouts J0.Nos1 X foNu1 ) + (fO,N,,,2;?70,N,,,2 X fo,Nb,z)J

Ny Ny, Ny,
= (fO,Nb,lng,Nb,l X fo,n,1) - (fO,Nb,lagO,NbQ X fo,Nb,1) + (fO,Nb,BagO,N,,,B X fo,Nb,s) )
Iy, Iy, Iy,
= (fO,Nb,ngO,Nb,B X fo,N,,,B) o (7-43)

JNy,

The forces applied at the points Py, ; and Py, o completely cancel each other out. The
moment-arm of the muscle around the joint Jy, is thus equal to:

— — 1 r — '
Co,N, = Yo,N,,3 X mfo,Nb,s = Yo,n,,3 X bo.n,- (7.44)

There are three contact points with body %n,-1: Pn,—1.1, Pn,-12, Pn,—1,3. The joint
Jn, is a ball and socket joint. It therefore transmits only forces and no moments of force.
There are three forces associated to the contact points and the reaction force transmitted
by the joint. This force is equal to the resulting force in the screw at the joint Jy,. The
screw at the joint Jy,_; is defined by

+ (fo,Nb—Lz,go,Nb—Lz X fO,Nb—l,Q)J +

Np—1

FIng -1 Z(fo,Nb—l,layo,Nb—l,l X fo,Nb—l,l)J

Np—1
(fo,Nb—1,3,go,Nb—1,3 X fo,Nb—1,3)J + (fo,Nb—1,4,§0,Nb—1,4 X fo,Nb—1,4)J . (7-45)
N, 1

[ Np—1

The vector yo .N,—1,4 1s the vector between the joints, from Jy,_; to Jy,. The force fo Np—1.4
is equal to fo N,,3 and is the inverse of fo N,—11- The forces at the points Py, 12 and Py, _1 3




7.3. MUSCLE MOMENT-ARMS THEORY 149

Moment-Arm Around Jy,

B,

Yo,Ny—1,3

fO,Nb—l,3
Yo,Npy—1,1 ——*

fon,—1,4
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Figure 7.6: Isolation of the bones that the muscle .#, contacts and identification of all
forces and points of application as described in section [7.3.3.

cancel each other out. The screw at joint Jy,—; reduces to the following expression

Fingr == (Jonss Yony—1,1 X fon,3 + { fo,Ny,35 Yo,N,—1,4 X fo,n3 ;
b Jn—1
-

INp—1

= (07 (Yo.ny—1.4 — Yo.ny—1.1) X ﬁ),Nb,?;)J . (7.46)

Ny—1

The resulting force at the joint Jy,_; is zero but the moment of force is not, and therefore
the moment arm is also not zero.

— — — 1 - — — '
Co.Ny—1 = (Yo.N,—1.4 — Yo,Ny—1,1) X mfo,Nb,s = (Yo,ny—1,4 — Yo.Ny—11) X bon,—1.  (7.47)

The location of all the contact points can be computed using any one of a number of
wrapping algorithms [38, 75, [139]. Given these points, the force direction vectors by y;,
and by n,—1 can be computed.

In the more general situation, a muscle’s moment-arm vector around a joint is com-
puted by isolating the body associated to the joint and identifying all the forces which
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apply to it. Consider the muscle .#5 from the illustration which applies forces to the body
#; (Fig. [[1). There are m points where forces are applied P, k = 1,2,...,m. The first
observation is that the only forces which are of importance are the forces being applied
at the end points in the direction of the other bodies and the reaction force at the joint
Jiy1. All the other forces cancel each other. This leads to the second observation, the
force transmitted to the next body through the joint J; along the chain in the direction
of the carrier body is equal to the force being applied at the last point P;,,. Thus, the
screw of the muscle at the joint J; is defined by

FJi = <f0,i,m7 Zjo,i,m X fO,i,m)J + (fo,z‘,hgo,i,l X fo,m)J - (fO,i,l; 370,@',m+1 X fo,m)J )

= (ﬁ),i,m Yo,im X fo,z‘,m>J + (0, (Yo,i1 — Yoim—1) X ﬁ),i,l)J . (7.48)

The muscle moment-arm around the joint J is defined by

— — 1 > = R 1 —
Co,i =Y0,im X mfo,z',m + (Y01 — Yo.im—1) X mfo,z,la

gO,i,m X bO,i,m + (gO,Ll - gO,i,m—l) X gO,i,l- (749)

This method of computing moment-arms is valid under the hypothesis that the bones
are rigid bodies, the muscles are ideal cables and that the joints are parameterised by
spherical pairs. If the type of kinematic pairs within the musculoskeletal model are
different than spherical pairs, the method of computing the moment-arms would need
to be adapted. Different types of kinematic pairs transfer different types of forces and
moments of force. However, the philosophy remains the same. Each body is isolated and
analysed in terms of muscle forces and joint reaction forces.

Only transmitted force

\ Pim

Cancellation

Cancellation

Py

Figure 7.7: Illustration of force cancellations and force transmissions in a general mus-
culoskeletal model as described in section[7.3.3.
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7.3.3 Tendon Excursion Method of Computing Moment-Arms

The second method of computing muscle moment-arms is the tendon excursion method.
This method depends on the generalised coordinates used to define the model. This
method is derived from the principle of virtual work. Given its simplicity and relation
to the experimental definition, the tendon excursion method has been widely used to
compute and validate model-based moment-arms [38, |76, [101]. However, it is a definition
that requires caution and a certain amount of rigour. The tendon excursion method is
defined using the principle of virtual work, a concept from analytical mechanics, and
must be applied according to the same framework and hypothesis.

Consider a rigid body %; in space that is part of a mechanism. Its configuration with
respect to a fixed frame Ry is parameterised by a Euclidean displacement function of the
mechanism’s generalised coordinates & = (k1, ..., /)"

— 7 — 7 —k —k —
Zo,i = dO,i + Ri,OfEi - d07z‘ + 1‘07“ Lo, = RZ‘7QZL‘Z‘. (750)

N2

The velocity of the point is defined by:

— 5 Q .
: 7 Ody; -, Oy -, 0To,; .
Lo 3oxq = Qi OWoin o :E :&,{k' (7.51)

where &y ; is the instantaneous rotational velocity of the body in the fixed frame. Given
this definition of velocity, the real infinitesimal change in configuration or real infinitesimal
displacement of the body is defined by (cf. chapter Bl for details):

Q 4 7 -
0% ; Odo; ,, 0do;
dZo; = ~dki = ~d —d . 7.52
2o, ; Brer Kk ER K+ Py KX Ty, ( )

A virtual displacement, is an infinitesimal displacement without an infinitesimal change
in time.

<. O, do, Do,
670, = ; 88;; Srp = 88/%,@ R + 8&%’ SR X T ;. (7.53)
One of the primary differences between real and virtual displacements is that real dis-
placements dZy; can be integrated along a path and virtual displacements 6% ; cannot. If
the mechanism’s kinematic parameterisation contains holonomic skleronomic constraints
of the form ®(7) = (91(7), ... ®,(7))” = 0, both real and virtual displacements must be
compatible with the constraints. The formal definition is as follows.

Definition 22 (Virtual displacement [86]). A virtual displacement 6%y, compatible with
the kinematic coordinates R = (K1, ..., Kiy .- HQ)T 15 any displacement that can be imposed
on the system satisfying the following relation:

o




152 7.3. MUSCLE MOMENT-ARMS THEORY

This equation is called the compatibility equation. The dqx are solutions to the equations

22:1 %&ik = O,
: (7.55)
Q o2 _
Ek:l W:(s/‘ik =0.
The virtual displacement dK vector is part of the null-space of the matrix [8821 N 852"].

This definition states that if there are constraints, the real and virtual displacements
are in the constraint manifold’s tangent space, orthogonal to the space defined by the
constraint jacobians (cf. section [T.2.2]).

There is a muscle inserting on the body %;. This muscle applies a force foﬂ-, defined
in the fixed frame at a point P (¢;). The virtual work created by the force, due to a
virtual displacement, is defined by:

B} ddy 0o,

The same force also shortens the muscle’s length by 6L. The virtual work associated to
the muscle’s change in length is defined by:

SW = —fo; 6L = —f, - %55_ (7.57)

The work in one-dimensional and function of the force intensity. The tendon excursion
method is based on the hypothesis that both virtual works are equal.

oL Ody i 0.
W = —fL-0L = fT:-650,, = —f@-%éﬁ— i 2R+ fL - ;’; SR X i (7.58)

S o

The virtual change in generalised coordinates can be eliminated from the problem by
rearranging the dot and cross products leading to:

- T
oL ! 8d0,z’ r 8(,3071' r . -
— <%) fO,i - ( R ) fO,z‘ + ( ag ) (yOJ‘ X f07i> . (759)

The force intensity can also be removed from the expression yielding the following equiv-

alence .
oL ’ aCZE],z T 8(,3071' r R -
a <%) 1= < B ) bo,i + ( 0F ) (yo,z‘ X bo,z‘) . (7.60)

This expression states that the partial derivative of the muscle length with respect to the
generalised coordinates is equal to the generalised muscle moment-arms. This point is
fundamentally important. The tendon excursion method does not yield the moment-arms
proper but the generalised moment-arms associated to the generalised coordinates. The
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following equality is true for models with revolute joints that all have parallel rotation
axes (one-dimensional moment-arms)

oLN\" /. .
B (%) - (yO,i % b07i>3rd coordinate ' (761)

Thus, the coordinates used to construct the definition are not just any joint coordinates,
but the generalised coordinates used to describe the musculoskeletal model. This last
point is key: the tendon excursion method is dependent on the choice of generalised
coordinates and must be used accordingly. Furthermore, it is based on the principle of
virtual displacements and therefore it must satisfy all the conditions of the definition of
virtual displacement. The importance of this point will be illustrated in the following
section.

7.3.4 Computing Muscle Moment-Arms

In the previous sections two definitions of moment-arms were presented. The first is
geometric and defined moment-arms using the cross-product. The second definition is the
well known tendon-excursion definition. The two definitions were shown not to be strictly
equivalent. The geometric definition yields the moment-arms proper in the inertial frame.
The tendon excursion definition yields the moment-arms in the generalised coordinate
space. The definitions of moment-arms for a muscle .#; around joint J; are given by:

Geometric definition : (go,i,j X gO,i,j) s f_.(;,i,j = fO,i,jEO,i,j (762)
. » OL;\"
Tendon excursion definition : — 27 ) (7.63)
Ki

where Lj; is the length of muscle .#;. The vector £; is the vector of generalised coordinates
parameterising joint .J;. The other coordinates are not considered. The vector 4, ; is the
vector between the joint J; and the point where muscle .#; applies a force. f?],i,j is the
force itself of amplitude fy; ;. The two definitions are related by the following expression.

oL;\" aCZ(J N\ 0o g
— J = it r . X = _) )
<8/%}) < OR, ) bo,i + < o, ) (yo,z X bO,z) . (7.64)

where CZEM is the displacement vector of joint ¢ in the inertial frame. The vector &y ; is
the instantaneous rotational velocity vector of the joint ¢ in the inertial frame.

As stated in section [[.3.3], the tendon excursion method is defined from the principle
of virtual work and must satisfy the conditions of the definition of virtual displacement.
Given a configuration of the skeletal structure defined by the vector of generalised co-
ordinates K*, the moment-arms of a muscle are computed using the tendon excursion
method. The muscle’s length is computed for the configuration L;(K*). The muscle’s
length is then computed again after adding a small displacement dq; to each coordinate
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Ky in turn. Each generalised coordinate ky, is displaced and the muscle length is computed
L;(R* + ¢k}). The moment-arm associated to each coordinate is thus defined by:

(i) = - o

(7.65)

The displacement dky, is a virtual displacement and therefore must respect the conditions
of the definition of virtual displacement. These conditions are restated here.

Kk

2152:1 %5’% =0,
: (7.66)
S 225k, = 0.

Ok

The virtual displacements must respect the holonomic constraints. This point is fun-
damental and can lead to issues during practical implementation. The musculoskeletal
shoulder model presented in chapter 4 contains two holonomic constraints defining the
scapulothoracic contact and a number N, of holomomic constraints defining the wrapping
surfaces. Under the assumption that the muscle’s length is a purely kinematic quantity,
the wrapping constraints for each muscle are constraints that must be respected by each
virtual displacement. Therefore, if a fixed point of a muscle lies on the wrapping con-
straint, the small displacements must be defined such that the point does not violate the
constraint. This point concerning constraints is essential and makes the tendon excursion
method difficult to use appropriately if there are many muscles with many constraints.

Rhomboid Major Sternoclavicular Moment-Arm [m] Initial Configuration:

0.15 X —
0.15 —_______i__—"\i Wrapping ™
- Y-axis Moment-Arm Surface ! .
0.1 | 1 | y Insertion
3 3 Geometric Method Origin N J/
0.05 | 1 - - - Tendon Excursion
00 Looooaa ‘:- B -‘3 Initial Configuration with displacement: ¢+ 64
| iy TN
—0.05 - .~ X-axis Moment-Arm Wrapping N
{ Surface s )
—0.1 | K \—-ﬁ'—,‘ Z-axis Moment-Arm \ + Insertion
1 n Origin ./
—0lplZTTTTETTom
Scapula Fixed) ‘ Insertion Point Leaves Constraint

S la M . . . . .
capuia Atoves Incompatible displacement = Constraint Violation

Figure 7.8: Illustration of how the tendon-excursion method can lead to incorrect moment-
arms because the virtual displacement used to compute the moment-arm does not respect
the constraints.

To illustrate the difficulty of using the tendon excursion method appropriately, con-
sider the rhomboid major muscle that originates on the thorax and inserts on the scapula.
There is a wrapping constraint for this muscle that is cylinder (Fig. [[.§)). The muscle
segment representing the rhomboid major must pass over the surface of this cylinder. For
this particular muscle, the insertion point of the segment lies on the surface of the cylinder
in the initial configuration of the skeletal structure. If the tendon excursion method is
applied inappropriately the moment-arms differ greatly from the moment-arms computed
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using the geometric method. When the insertion point leaves the wrapping constraint,
the tendon excursion method moment-arms coincide with the geometric moment-arms.
However, there is a significant discontinuity of the tendon-excursion moment-arms.

By comparison, the geometric method does not rely on the principle of virtual dis-
placements. Furthermore, the method does not rely on a particular choice of coordinates.
It simply depends on the definition of the body frames and carrier body frames. However,
the geometric method cannot easily be generalised to an algorithm. It can require a case
by case analysis of the muscles and is therefore more difficult to work with. The tendon
excursion method can be generalised more easily and is therefore favoured as a method
of computing moment-arms.

7.4 The Solution Set and Wrench-Feasibility

The previous sections showed that moment-arms are key in estimating muscle forces and
reviewed the theory of moment-arms. This section re-introduces the concept of wrench
feasibility. The concept has been extensively used in cable-driven robots [81] and has
been used in neuromuscular control [183]. However, it seems that it is a concept that is
rarely found in presentations of musculoskeletal models. The concept is related to the
existence of a solution to the muscle-force estimation problem.

In chapter [4] it is stated that models of musculoskeletal systems and models of cable-
driven robots are constructed from the same hypothesis. These hypothesis include rigid
body mechanics, ideal mechanical joints and massless, frictionless, perfectly elastic mus-
cles/cables. A cable-driven robot is a mechanism that is actuated by a network of ca-
bles. There are two types of cable-driven robots: suspended and articulated. In sus-
pended robots there is only one body connected to a frame through a network of cables
[21, 180, [178]. In articulated robots there is a mechanical skeleton composed of mul-
tiple bodies with joints between them and a network of cables [92, 217, 220]. In any
cable-driven robot, each cable applies a system of forces to the bodies comprising the
mechanism and the tension in each cable is uniform. The system of forces is reduced to
a single force and moment of force about one point for each body. This reduction yields
the body’s actuation as defined in section [[.3.1l Each cable has a motor and pulley at
one end generating a tractive force within the cable by winding the cable around the
pulley. The cable can only pull and its tractive strength is limited by the motor’s power.
The first constraint of the cable-force coordination problem is the torque-force map. The
cables must apply the necessary actuation. The second constraint is the limitation of
the cable’s strength. Thus, the first two constraints of the cable-force coordination prob-
lem are identical to the first two constraints of the muscle-force coordination problem

(C8)-C)).
L(R(t), R(tr), R(te)) = Wo(R(te)) fr, Torque-force constraint, (7.67)
0< ﬂ < fmax, Min/max force bounds. (7.68)

As described in chapter B cost functions provide a means of differentiating the solutions
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within the feasible set. The solution set itself is defined by the constraints and the space
of the decision variables (forces within the muscles/cables). Additional constraints fur-
ther restrict the solution set defined by the first two constraints (7.8)-(7.9). Therefore,
the muscle-force coordination problem defined in section [.2.1] is mathematically almost
identical to the cable-force coordination problem of cable-driven robots. Both coordina-
tion problems are defined by nonlinear programs. Their purpose being to compute the
required forces in the muscles/cables to drive the system (skeleton/mechanism) along a
pre-defined kinematic path. Therefore, theory regarding the force coordination problem
that has been developed for models of cable-driven robots can be applied to models of
musculoskeletal systems such as the shoulder.

For both coordination problems, solving the NLP is straightforward [14,124,135]. There
exist numerous NLP solvers. However, the question of the existence of a solution is not.
In cable-driven robotics, this question is called wrench feasibility [21,81),146]. At the core
of the analysis is the torque-force map ([L.75) governing the solutions to the NLP. At a
given instant t;, the relation between the forces in the cables and the actuation applied to
the system, defines a linear map between two vector spaces. The force intensity space .#
which is a subset of R and the tangent space of the coordinate manifold Trt)Zs C RP,
where D is the number of degrees of freedom.

My = F = Trun2s,
o > M (o) = a(R(t), R(te), K(ty)) = Wo(R(tr)) fi. (7.69)

For a system with IV, forces, the upper and lower bounds (Z.68) on the forces (without
additional constraints) define the map’s domain space F as a convex polytopeg in RN,
The geometry of the domain space polytope is defined by the values of fi... The image
of a convex polytope under linear transformation is a convex polytope [87]. The image
space My (F) is therefore also a convex polytope in Tk, )Zs. The geometry of the image
space polytope is defined by My (finaz)-

Definition 23 (Torque Set #;.q()). The torque set #,eq(E) is the set of actuation vectors
that the cables must be able to produce for a given kinematic configuration (i, R, KJ)

Wyeg(R) = {t, € Te2s C R}, (7.70)

Definition 24 (Wrench-Feasible Workspace and Torque-Feasible Space). The wrench-
feasible workspace 1s the set of kinematic configurations (/{ K, /{) such that for any actu-
ation vector t, € Wreq(K), there is a vector of cable forces feZF satisfying

= Wo(R)/. (7.71)

The actuation vectors belong to the torque-feasible space.

Given this definition of wrench-feasible workspace, a system is said to be wrench-
feasible if the following condition holds [21), |57]:

Wyeo(R) C Me(F), V(R R K) e TQs. (7.72)

2A polytope is a geometric object with flat sides. Examples include polygons in 2-dimensions and
polyhedrons in 3-dimensions.
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The torque set must be a subset of the image set of the force intensity space. This
condition guarantees the existence of a solution to force coordination problem.

In cable-driven robotics, wrench-feasibility is a design criterion. In musculoskeletal
systems, although the real system is already wrench-feasible, the model must be well de-
fined such that wrench-feasibility naturally occurs. Design of the cable/muscle structure
is the design of the moment-arms matrix. Thus, again the moment-arms matrix is the
key element in muscle-force estimation.

Figure 7.9: A two-dimensional toy musculoskeletal model used to illustrate the discussion

of section[7.4)

To illustrate wrench feasibility, consider a musculoskeletal model with two bones %,
and %, (Fig. [[9). The bones are connected through a revolute joint 7, and the first bone
is connected to a carrier body through a second revolute joint J;. There are three muscles
actuating the skeletal structure. The first muscle .#; spans the revolute joint [J;. The
second muscle .# spans both joints. There is a cylinder aligned with the second joint’s
rotation axis to constrain the muscle paths. The third muscle .#3 spans the revolute
joint J5. The configuration of the skeletal structure is defined by the configurations of
the revolute joints which are parameterised by the angles # = (1,92)%. The coordinate

manifold 2 is S! x St.
Z =1[0,125] x [0,75] x [0,200] C R3 My (F) C Te) D5 C B2
I3

A 50 ta72
]

‘:’ """""""""""" i My

The necessary actuation vector
f must remain inside this area.

L (N B .
f=1r ta(tk) = mk(f) = (taJ)
f3 a,2
Figure 7.10: Range and image spaces of the torque-force map for the musculoskeletal
model presented in section[7.4) and illustrated in figure[7.9

The dynamics of the system are the dynamics of a double pendulum with distributed
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mass [209]. There are two equations of motion and the actuation vector is defined by:

— .

- (t) = M0, o) — (7, 7) = Wo(R)f. (7.73)

a2
There are three cable-force intensities. The torque-force map is defined by:
M, - .Z CR— Tr)2s C R?,
Fi = M fi) = Faltr) = Wo(R(tx)) fr- (7.74)

The first muscle always creates a moment-arm around the joint [J;. The second and
third muscles define moment-arms around both joints. The moment-arm matrix has the
following structure:

- (ta1) _ oy o (wia(P) wia(Y1,Y2) wiz(Vh,V2) h
ty = (ta,2> - %(tg) = WO(/{)f - ( 0 w272(192) w273(792) > (;2) . (775)

The muscles are attributed different maximum forces: fimax = 125[NV], fimax = 75[V],
f3max = 200[N]. All the physical constants are set to 1, including the lengths of the
pendulum’s links.

As the configuration of the mechanism changes, the image space polytope 9 (%) changes
shape (Fig. [L10). The mechanism is wrench feasible as long as the necessary actuation
t, remains inside the image space polytope, and this for any configuration & = (91, 95)7.

25 204
20 15
15 10
10 5

5

o

=10

Joint 2 Actuation: tq o
(=]

-15
-20 -10 0o 10 20 -10 ] 10 20 -60 -40 -20 ]

Joint 1 Actuation: tq,1 Joint 1 Actuation: tq,1 Joint 1 Actuation: tq,1

91 = —45°, 95 = 45°

Figure 7.11: Image space of the torque-force map in three different configurations for the
musculoskeletal model presented in section [7.4) and illustrated in figure[7.9

For a path £(t) in the configuration space, the set 9;(.#) defines the time-dependent
behaviour of the image space polytope. The image space depends only on the set of
configurations £(t) that the path passes through. The system remains wrench-feasible as
long as the necessary actuation to perform the motion remains within the image space
polytope for the entire motion. The wrench-feasibility condition will limit how fast the
motion can be performed. At slower speeds, the required actuation is smaller and more
likely to be inside 9t,(.%), whereas at higher speed, the actuation vector increases and
can leave M (.F).
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The concept of wrench-feasibility allows one to design the musculature as a collective
[183]. This result complements the result regarding the modelling of large muscles [197].
The previous result states how best to model each muscle individually. Wrench-feasibility
uses that result as a basis for improving the muscle model as a collective. Therefore, both
results combined provide a tool for developing improved geometric muscle models. The
use of wrench feasibility will be illustrated in the following chapter.

EM t = 0.6 [b} t"a7 t =0.8 [S]

I T, t =1s]

fayt=02s] tet=04][s

o, t =0 [s]

Joint 2 Actuation: tq,2

84 0 Time t [s]

Figure 7.12: Illustration of the time-dependent behaviour of the image space polytope for
the musculoskeletal model presented in section and illustrated in figure[7.9

7.5 Conclusions

The goal of this chapter was to present the muscle-force coordination strategy used to es-
timate the forces in the musculoskeletal shoulder model presented in chapter 4l Based on
this presentation, moment-arms were shown to be the key element governing muscle-force
estimation. Therefore, this chapter reviewed the theory of moment-arms by discussing
the fundamental geometric concepts behind moment-arms and presenting the tendon-
excursion method of computing moment-arms. This chapter showed that the tendon
excursion method does not yield the muscle moment-arms in the geometric sense. The
tendon excursion method and geometric definition of moment-arms are related through
a projection matrix from analytical mechanics. Finally, this chapter re-introduced a rel-
atively new concept with respect to musculoskeletal modelling called wrench-feasibility.
The concept complements the already existing results concerning muscle-force estimation
by providing information regarding the possible movements, the system can perform. The
limitations on the muscle forces defines limitations on the possible movements that the
model can realise. These limitations can be pre-analysed without solving the muscle-force
estimation problem by computing the torque-feasible set. The troque-feasible set can be
used to improve the model of the musculature.
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Chapter 8

Estimating Joint Force in the
Human Shoulder

8.1 Introduction

Osteoarthritis or degenerative arthritis is the most common form of arthritis and is just
one of the many dysfunctions affecting the human musculoskeletal system. In the shoul-
der, it causes premature degradation of the glenohumeral or shoulder joint and is quite
painful. The degradation is the result of frequent inappropriate mechanical loading of
the articular cartilage [27] (cf. chapter 2] for anatomical references). To help understand
osteoarthritis of the shoulder, it necessary to have an estimate of how the articular carti-
lage is being loaded in healthy and dysfunctional shoulders. This information is critical
in the development of treatments of osteoarthritis.

In general, the stress occurring in the articular cartilage cannot be measured. In recent
years a prothesis of the humeral bone has been developed containing a load sensor [201].
The measurements obtained from such a device are a good indicator of the stress but are
not a completely accurate representation of the loading given that part of the shoulder
has been replaced with a prosthesis. We must therefore continue to rely on musculoskele-
tal models to estimate the stress occurring in the articular cartilage of joints affected by
osteoarthritis.

There are a number of musculoskeletal models of the shoulder that have been de-
veloped for the purpose of studying the forces in the glenohumeral joint. There is the
Delft shoulder and elbow model (DSEM). Constructed in 1994 [194], the model has been
recently validated as a model for measuring the force in the glenohumeral joint [155]. The
validation process was done using data collected by the shoulder prosthesis mentioned
previously [156]. There is the AnyBody® shoulder model. Developed for multiple pur-
poses [49], the model has been used to specifically estimate the force in the glenohumeral
joint [158]. There is the model developed at the ETH Zurich Switzelrand. Developed for
analysing the stability of the glenohumeral articulation [71], the model uses an algorithm
designed specifically for computing the force in the glenohumeral joint [70]. Finally there

161
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is the Newcastle model. The model was initially developed for analysing the forces in the
glenohumeral joint during activities of daily living [37] and has since been used to study
the effects of surgery on the joint force [120].

Although these models are high fidelity models and are successful in estimating gleno-
humeral joint forces, the consensus of the International Shoulder Group (ISG) is that
there still remains a considerably large gap between models and reality [47, 48]. Given
that there is no perfect match between simulations and experiments [182], future research
should focus on clinical validation. A musculoskeletal model must be validated before
it can be used to make conclusions regarding musculoskeletal systems. Validation con-
stitutes the most challenging task of musculoskeletal modelling once a model has been
constructed [135].

The goal of this chapter is to present the implementation of the musculoskeletal shoul-
der model discussed in chapter @l The model is being designed specifically for the purpose
of estimating the force in the glenohumeral joint. The model is to be used in parallel with
a finite element model of the glenohumeral joint [59]. The chapter begins by reviewing
the model’s characteristics and the methods from chapters [6] and [7] to solve its kinematic
redundancy and overactuation. The chapter then introduces the computational proce-
dure used to compute the models outputs that are muscle forces and the joint reaction
force in the glenohumeral joint. The model is used to estimate the forces during fast
and slow abduction in the scapular plane. The results are presented in terms of scapu-
lar kinematics, muscle moment-arms, muscle forces, joint reaction forces (intensity and
orientation). The results are discussed and compared to results from the literature. The
chapter concludes with a brief discussion regarding the models current most important
weakness and suggestions on how to improve it.

8.2 Methods

8.2.1 A Musculoskeletal Model of the Human Shoulder

This section presents a brief review of the musculoskeletal shoulder model from chapter
. The model is a right shoulder of an adult male. It includes the thorax, clavicle,
scapula and humerus. The thorax is the carrier body to which the inertial reference
frame is attached Ry. A reference frame R; is also defined for the clavicle, scapula and
humerus (Fig. BJ]). The reference frames are defined according the guide lines set by the
International Society of Biomechanics (ISB) [214] (cf. chapter H]). Subindexes are used
to identify each frame: thorax: 0, clavicle: 1, scapula: 2, humerus: 3.

The three synovial articulations (sternoclavicular SC, acromioclavicular AC' and
glenohumeral GH) are modelled as ideal ball and socket joints and parameterised using
spherical kinematic pairs. The configurations of the sternoclavicular and acromioclavic-

IThe ISG is a collaboration of biomechanics research groups who’s main focus is the shoulder. It is
also one of the many technical groups of the International Society of Biomechanics (ISB).
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ular spherical pairs are described using two sets of Bryan angles: Y’lT = (Y1, Y1, 1)
and 'fg = (19, Yo, ©2)T. The rotation sequence is XYZ. The configuration of the gleno-
humeral spherical pair is described using Euler angles: TE{ = (¢3, U3, p3)T. The rotation
sequence is ZYZ. The shoulder’s configuration is parameterised by a vector of nine joint
angles.

= (1T 17 TE{)TZ(% U1 o1 Yo Yo o Pz U3 903)T- (8.1)

Three Euclidean displacements are defined that map vectors in a local frame to vectors
in the inertial frame. The displacements are parameterised by the vector of coordinates
¢ using the standard charts on SO(3) to build the rotation matrices (cf. chapters @ and
for details on constructing the rotation sequences).

Poi @ Do = Cf(),i + R o(vi, Vs, i) (8.2)

The vector d_EM is the translation vector from the centre of the inertial frame to the centre
of the local frame, defined in the inertial frame (cf. chapter B for notations regarding
Euclidean displacements). The matrix R, is the rotation matrix from the local frame
R; to the inertial frame Ry.

Joint Coordinate Definitions:

Ri1 Ro Rs
B2 3

©1
"91 ()02 903
P1 2 V3

Figure 8.1: Illustration of the bony landmarks, reference frame and the locations of the
bone centres of gravity. Image created using ZygoteBody™ zygotebody.com.

The scapulothoracic contact is modelled by constraining two points on the scapula’s
medial border to remain on the surface of two ellipsoids. The ellipsoids have identical
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centres but different dimensions and are aligned with the inertial frame. The ellipsoids
model the surface of the ribcage with an additional layer of muscle. The points defining
the constraints are the trigonum spinae (TS) and the angulus inferior (AI). They are the
end-points of the scapula’s medial border. The ellipsoids are defined in the thorax frame
yielding the following two holonomic skleronomic constraints.

Drg(Ty, Ts) = (to2 — &) Erg (oo —€y) =1 =0, T'Spz : tos = Cfop + Ry otiz, (8.3)
(I)Al<f17 Ty) = (Vo2 — €)' Ear (Top— &) —1=0, Alps : Tpo = GTo,z + Rooth. (84)

where €y is the point vector of the centre of the ellipsoid £ common to both constraints,
in the inertial frame. The matrices Erg and E 47 are the quadric matrices of each ellipsoid

(cf. appendix [A]).

The forward kinematic map defines the map from the joint coordinates to the spatial
configuration of the end-effector. The end-effector is defined as the centre of the humer-
oulnar joint (HU). Its spatial configuration is defined as the position of the humeroulnar
joint centre HU and the orientation of the humerus.

Es 1 Zg — Ws,
N\ T -
7 Z5(q) =Ce = (5537 ?) , HUys @ €3 =dos+ Rsp6s, (8.5)
s.t. q)TS<f17 fz) = <_»072 - _)0)T ETS ('IIO,Q - 50) —1= 0, (86)
©a1(Y1,T2) = (o2 — é)" Bar (fo2 — &) —1=0. (8.7)

The kinematic model has seven degrees of freedom. The map is parameterised by the
nine kinematic coordinates (81]) and subject to the two scapulothoracic constraints.

Each body is given a mass M; and an inertia Z; defined with respect to the centre
of gravity [28]. The clavicle’s centre of gravity is located at the mid-point along the
axis between the SC and AC joints. The scapula’s centre of gravity is located one third
of the way along the axis between the AC and Al points, starting from the AC point.
The humerus centre of gravity also defining the arm’s centre of gravity, is located at the
point HU. The arm is considered to always be outstretched. The equations of motion are
obtained using the Euler-Lagrange equation. The generalised coordinates are defined as
the kinematic coordinates: K = ¢. The total lagrangian is the sum of the bone lagrangians
augmented by the constraints (cf. chapter Bl and ). The dynamic model is defined by:

PL-,  PL . OL -,
o " oror” or oW (88)
s.t. (I)T5</%) = ('IIO,Q — €0>T ETS (_)0,2 — g()) —1= 0, (89)
D4;(R) = (Vo2 — €)' Ear (T2 — ) —1=0, (8.10)

where £ is the sum of the bone lagrangians. As presented in chapter [7 the constraint
forces (scapulothoracic contact forces) and muscle forces are grouped into a single vector

f. The matrix Wy is the generalised moment-arm matrix defined with respect to the
inertial frame. The muscles can only pull and the scapulothoracic contact forces are
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only compressive forces. They cannot pull the scapula onto the surface of the ellipsoid.
Furthermore, the muscles have a maximum isometric strength [76] and the contact forces
are limited using the observations from [88; [195]

6 S ]FS fmax- (811)

The geometric muscle model was constructed using the framework set in |76]. The 16
anatomical muscles are divided into 28 segments and wrapping constraints are defined
for each segment using the algorithms from [75]. Thus, the wrapping constraints and
topology of the geometric muscle model are identical to the model defined in [76] but the
numerical values are different. Furthermore, in chapter Ml it is stated that each muscle
segment can be parameterised by one or more cable(s). The musculature in the present
model is represented by NV, > 28 cables.

8.2.2 Kinematic Coordination

The forward kinematic map (8H)-(871) is parameterised by nine angular coordinates
subject to two holonomic skleronomic constraints. This map is the structure for the
dynamic model. In chapter [6] a method of planning the model’s kinematics is presented.
The method proposes an alternate set of coordinates 5 that can be used to construct a
time-dependent parameterisation of the joint angles ¢. The coordinates are called minimal
coordinates because their number is equal to the number of degrees of freedom. They are
independent and make kinematic computations more straightforward. Optimisation can
be used but is no longer required.

The minimal coordinates are defined using the lower scapulothoracic kinematic map.
In chapter [6, the scapula is shown to be equivalent to a rigid body constrained to glide
over three surfaces through punctual contacts AC, T'S and AI. The surfaces are a sphere
centred at SC, an ellipsoid centred at E and a second ellipsoid centred at E of different
dimensions. According to this description, the minimal coordinates are defined as follows.
The first coordinate (; parameterises the clavicle’s axial rotation and is equivalent to
the angular coordinate ;. The last three coordinates (5, (s and (7 parameterise the
glenohumeral motion and are equivalent the glenohumeral joint Euler angles (5,93, ¢3).
The three remaining coordinates (5, (3 and (4 parameterise the configuration of the
scapula. The point Al is located by the two spherical coordinates (aar, Bar) = ((2,(3)
parameterising the ellipsoid on which it glides.

Te + aar cos(aar) sin(Bar), Te
Al = < ye + barsin(aar) sin(Bar), é = | ve (8.12)
Ze + ca1 cos(Bar). Ze

where aag, bar, car are the ellipsoid axial dimensions. The point T'S is constrained on
the ellipsoid &7 (8I0) and is at a fixed distance from Al. The point is located by the
intersection of a sphere centred at Al and the ellipsoid ®rg. The intersection between
two such quadrics is well defined and is homeomorphic to a circle. The coordinate (4
parameterises the intersection. Once the locations of the points Al and T'S are known,
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the point AC' is known by trilateration M] It lies on the intersection of three spheres.
The coordinates (s, (3 and (4 parameterise thoraco-scapular motion and are equivalent to
the five joint angles (¢, 1, 12, U2, p2). The relation between the joint angle coordinates
¢ and the minimal coordinates is summarised by:

§! = Y, Clavicle axial rotation,
G2 (3 G = Y1 o1 Y2 Vo o, Thoraco-Scapular motion,
C5 CG C? = 1?3 193 ©3. Glenohumeral motion rotation.

Given the set of minimal coordinate, kinematic coordination of the shoulder model is
achieved by first planning the motion in terms of the minimal coordinates 5 Once a
motion is constructed in terms of ((t), it is mapped to a motion in terms of (t). For
coordinates (q, (5, (¢ and (; the mapping is the identity map. For the coordinates (5, (3
and (4, the five angular coordinates (¥1, @1, %9, Vs, o) are obtained by constructing the
rotation matrices Ry g and Ry, using the geometric location of the points AC, AA, T'S
and Al with respect to the inertial frame. Once the rotations are known the angles are
extracted using the inverse trigonometric functions. The joint angles ¢(t) are equivalent

to the generalised coordinates K(t).

The parameterisation is defined over the interval ¢ € [0,1]. The first and second
derivatives are obtained numerically. The dynamic behaviour is further defined by setting
the time horizon T'. As T increases, the behaviour becomes more quasi-static. Oppositely,
as T decreases, the behaviour becomes more dynamic.

K(tri1) — K(tr)

F(t) = R(trr2) — 2R(tk+1) + E(tr)

_ L V€01, (813
T%(tgro — thr) (b — ti) pelo )

R(ty) =

T(tps1 — tr)
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Figure 8.2: Illustration of the minimal coordinates used to coordinate the shoulder as
defined in section[8.2.2. Image created using ZygoteBody™ zygotebody.com.

Al

The model has thus far been used for humeral abduction in the scapular plane. The
time-dependent parameterisation of the minimal coordinates was defined using a dataset
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from the literature [58]. This particular dataset was chosen because it was specifically
constructed to obtained measured shoulder kinematics. The data contains the location of
all the bony landmarks necessary to implement the kinematic model. The bony landmarks
were obtained by transformation of their corresponding measured skin markers [56]. The
dataset also contains a single ellipsoid that was used to construct the two ellipsoids
necessary for the model described in this thesis. The single ellipsoid was rotated such
that its axes coincide with the inertial frame axes. The ellipsoid was then uniformly
dilated twice to produce two ellipsoids with identical centres. The dilation coefficient
was obtained such that T'S and AI lie on their respective ellipsoids. Finally, the data
set contains measured values of the three scapular angles 15, 95 and ¢ during humeral
abduction in the scapular plane for six subjects. The measurements were taken at 0°,
45°,90°, 120°, 140° and 160° humeral abduction. The minimal coordinates were planned

to match these values as closely as possible.

Table 8.1: Joint angle terminology. The joint angles are defined in chapter[4].

Y1 = (¢ Axial Rotation 1o Anterior/Posterior Tilt | 3 =5 Axial Rotation
Jq Depression/Elevation Y2 Depression/Elevation U3 = (s Elevation
V1 Protraction/Retraction | ¢ Protraction/Retraction | o3 = (7 Elevation Plane

Using the dataset, each coordinate (;(t) was planned according to the description of
humeral abduction presented in chapter 3l Between 0° and 30° abduction, the scapular
coordinates (o, (3 and (4 were held constant at their initial values. Between 30° and
160° abduction, the scapular coordinates were planned using a linear function of time.
The clavicle’s axial rotation coordinate (; was held constant during the first 30° humeral
abduction and then rotated posteriorly by 40° using a linear function of time. The
glenohumeral coordinates (5 and (; were held constant at 0° and 30° to obtain abduction
in the scapular plane with no internal rotation. The third glenohumeral coordinate (4
was planed using a linear function of time.

0, t € [0,30/160]
Gt) = { 0° 4 40°¢, t € [30/160, 1] (8.14)

_ [ ¢(0), t € [0,30/160]
) = { Cz(O) 1 (G(1) — G(0)E,  t e [30/160, 1] (8.15)
_ | &(0), t € [0,30/160]
) = { @Z(o) +(G(1) = G(0)E,  t € [30/160, 1] (8.16)
_ [ ¢(0), t € [0,30/160]
) = { 42(0) +(Ca(1) — G(0)E,  t e [30/160, 1] (8.17)
G5(t)=0°, t €[0,1] (8.18)
Co(t)=0° +160°t, t € [0,1] (8.19)
Gz ()= 30°, t €[0,1] (8.20)

The initial values (2(0), (5(0) and (4(0) are obtained from the location of the bony land-
marks at 0° abduction. The values (5(1), (3(1) and (4(1) are selected appropriately to

2The dataset was provided courtesy of the Laboratoire de Biomécanique et Mécanique des Chocs,
Université de Lyon
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obtain a configuration of the scapula which is consistent with the measured configurations
at 160° abduction. The values were set by hand, but an optimisation method could also
be used.

8.2.3 Muscle-Force Coordination

In chapter [7 the proposed muscle-force coordination strategy is to impose a desired
motion and use the model’s inverse dynamics (8.8)-(8.10) to obtain the required actuation
torque for each joint. The desired kinematics reduce to a single vector ,(&, &, KJ) called
the actuation vector. Given this torque, the muscle forces are computed by solving
a non-linear program. As stated in chapter [l the central equation of of muscle-force
coordination is the relation between the kinematics and the muscle forces.
2 2
0Ly, OL . a_g = 1, (R, 7, R) = Wo(R) . (8.21)
OR? OROR OR

This relation defines the inverse dynamic model used to coordinate the muscle forces.
Using the same terminology as chapter [, the primary task is the kinematics. By imposing
this task, a set of solutions has already been differentiated from the complete set of
solutions for any kinematics. The muscle forces must generate the desired kinematics.
The next phase is to use a secondary task to differentiate a single solution from within
the subset. )

Given the desired kinematics (R(t), <(t), R(t)), a single solution to (821 is differentiated
from the subset using a static optimisation problem for a finite number of instances tj.
The set of solutions is further differentiated by imposing the bounds on the muscle forces
(BI1)) and the glenohumeral stability constraint (cf. chapter [7). The secondary task is
the cost function of the optimisation problem. It has been shown that minimising the
mean square muscle stress yields solutions that agree with measured muscle forces [195)].
This cost function has been selected, although others are possible [167, [172].

Muscle stress is defined as the muscle’s force divided by the physiological cross-sectional
area (PCSA). The optimisation problem uses the primary task as a constraint. This
constraint is called the torque-force constraint.

min T(f}) = li (e _1 TP, (B),; = —ui (8.22)
> M oL posaAz T 2 R W PCSAY '
Ik j=1 J J
st L(R(ty), R(ty), B(te)) = Wo(R(t:)) fe, Torque-force constraint, (8.23)
0< f < fass Min/max force bounds, (8.24)
G(R(t), R(ty), R(ty), fr) <0, GH stability constraint. (8.25)

A solution to this problem is found using null-space optimisation. The muscle-force vector
is parameterised directly in terms of the primary task or torque-force constraint. The
solution is defined by:

fr= PN, = W (R() Ta(R(t), (1), B(8) Wo(R(t:))Ny = 0. (8.26)
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where f:’; is an initial solution obtained by taking the Moore-Penrose pseudo-inverse of the
generalised moment-arms matrix Wo(%(t;)). This particular pseudo-inverse minimises
the mean-square muscle stress if it is weighted by the PCSAs [203]. The initial solution
does not however satisfy the other two constraints. The vector v, parameterises the null-
space N}, of the generalised moment-arms matrix. This parameterisation is inserted into
the cost function ([822) yielding a quadratic optimisation problem (c.f. chapter [0 for
details).

1 ~ T ~ ~ =, ~ ~
min D(5,) = 55 N, PN, G, + (f)" PN, (8.27)
U,
s.t. Akl_fk - glc S 6, (828)

The null-space of the moment-arms matrix is used to change the initial solution without
violating the primary task while realising the secondary task and satisfying the addition
constraints.

Once the solution to the muscle-force coordination problem is found, the glenohumeral
joint reaction force is computed. The constraint forces are removed from the solution
yielding f, containing just the muscle forces. As stated previously in section B.2.2] the

scapulothoracic contact forces are included in the vector f and must be removed before
compute the joint reaction force. The glenohumeral reaction force f, is computed from
the expression of the arm’s translational dynamics (Newton’s second law of motion).

Msfo,s = Msgy + Dof + fr, (8.29)

where M; is the arm’s mass. The vector :?073 is the arms translational acceleration defined
in the inertial frame. The vector gy is the earth’s gravitational vector field defined in the
inertial frame. The matrix Dy is the force direction matrix defined in the inertial frame.

8.2.4 Implementation and Model Output

The musculoskeletal model of the human shoulder presented in chapter d and briefly
reviewed in section R.2.1] was implemented into the Mathworks computing environment:
MATLAB (Version 2014a for Mac) (Fig. B3)). The necessary physical data (bony land-
marks, muscle insertions and origins, etc.) to construct the model was collected from
MRI scans of an adult male [60]. All the data required to reconstruct and implement the
model can be found in appendix [Bl

The model is being designed to estimate the force in the glenohumeral joint. As
stated previously the general methodology is to define a kinematic motion. The inverse
dynamics model is used to compute the associated actuation vector. The muscle-forces
that generate the actuation vector are found through a static optimisation program.
Once the muscle-forces are found, the joint reaction force is obtained using the arm’s
translational dynamics. The computational procedure for obtaining the glenohumeral
joint reaction force for a given movement is defined as follows:
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1. A motion of the skeletal system is planned using the minimal coordinates ((t).

2. The same motion is computed in terms of the generalised kinematics 7(t), 7(t)

3. The necessary actuation vector i, (&(t), (t), R(t)) is computed using the inverse

4. For each time step ti € {to,t1,...,tny = T} the muscle-force coordination prob-

5. The scapulothoracic contact forces are removed from the solution to yield the

Glenohumeral Joint-Force Estimation Computational Procedure:

—

The motion is planned over the time horizon t € [0, 1] for N evenly distributed
discrete instances.

and R(t). The dynamic behaviour is defined by setting the time horizon T
B.I3).

—

dynamic model (82I). The lagrangians are computed using the method pre-
sented in chapter Bl

lem is solved using the quadratic optimisation problem (827), ([828). The
moment-arms matrix is computed using the geometric method from chapter [7
The problem is numerically solved using MATLAB’s quadprog function. The
upper bounds on the muscle forces are taken from [76].

muscle forces f (tx). The glenohumeral joint reaction force ﬁ(t) is computed
using the arms translational dynamics ([829). These dynamics are computed
using the method presented in chapter [3

The model’s performance is evaluated with respect to four points that cover the

important aspects of muscle and joint-force estimation. The results will be presented
in terms of these points.

e Scapular kinematics: The most challenging point of kinematic shoulder mod-

elling is the description of scapular kinematics due to the scapulothoracic con-
straints. The model-predicted scapular kinematics are compared to the measured
scapular kinematics from [58].

Muscle moment-arms: The muscle-force coordination strategy is centred around
the moment-arms matrix. The moment-arms are compared to measured moment-
arms from cadaveric studies |2, 1102, 130, [161]. In cadaveric studies, the rotator cuff
muscle moment-arms are measured for humeral abduction in the scapular plane.
the scapula remains fixed and the humerus is abducted up to 90° in the scapular
plane. The moment-arm of each muscle in the rotator cuff is measured in terms
of its component around the y-axis normal to the scapular plane. The model’s
moment-arms were also compared to the moment-arms from the Visible Human
Project (VHP) kinematic model [76]. This comparison is well founded, given that
the two models share the same muscle topology. The present model’s geometric
muscle model was constructed using the same framework.
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e Muscle-forces: The model is designed to estimate muscle forces. The muscle
forces are presented for quasi-static (T = 20 [s]) and dynamic (T = 2 [s]) abduction
in the scapular plane. The computation was done for 100 points evenly distributed
between 0° and 140° abduction. The computation was stopped at 140° because
the model’s validity is questionable for high abduction angles. The estimation was
performed using 28 muscle segments (one segment per muscle).

e Joint reaction force intensity and orientation: Is the primary objective of
the model. The joint reaction force intensity for quasi-static abduction is compared
to results reported in m, 71, @] The joint force orientation with respect to the
glenoid is compared to results reported in |59, .

Figure 8.3: Illustration of the musculoskeletal shoulder model implemented into the Math-
works computing environment: MATLAB (Version 2014a for Mac).
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8.3 Results

8.3.1 Scapular Kinematics

For humeral abduction in the scapular plane, the model predicted scapular kinematics
show protraction, depression and posterior tilt (Fig. B4]). The scapula protracts forwards
around the ribcage and depresses. The movement of the lowest point on the scapula (an-
gelus inferior Al) creates posterior tilt. The elevation/depression angle shows the largest
variation between initial and final values.

For all three angles, the minimal coordinate-constructed scapular kinematics remain
within the variability of the measured behaviour during the entire motion (Fig. [B.4]).
The tilt angle is the one that agrees best with the mean measured behaviour. The mini-
mal coordinate-constructed kinematics show less overall depression and protraction. The
scapula is observed to depress quicker than the measured kinematics but finishes with
less depression than the mean measured value. The minimal coordinate-constructed pro-
traction initially has the same slope but slightly diverges after 120° abduction. Lastly,
holding the scapula fixed in its initial configuration for the first 30° of abduction agrees
with the mean measured kinematics. The mean measured kinematics for all angles are
observed to remain nearly constant during the first 45° abduction.
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Figure 8.4: Comparison of model-predicted (black) scapular kinematics and measured
scapular kinematics (red). The shaded area represents the measured data variability as
described in section [8.31.

8.3.2 Muscle Moment-Arms

The muscle moment-arms are presented for the anterior deltoid, middle deltoid, posterior
deltoid, supraspinatus, infraspinatus and subscapularis (Fig. BH]). The moment-arms of
all six muscles are of the same order of magnitude as the moment arms reported in the
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literature. The moment-arm of the anterior deltoid is slightly larger than the moment-
arm reported in ﬂﬂ] but has the same tendency to increase as the humerus abducts.
The observed discontinuity is the segment leaving the wrapping surface. The moment-
arm of the middle deltoid is initially larger than the values reported in the literature
but decreases as the humerus abducts. The posterior deltoid moment-arm is positive
and increasing where as the moment-arms reported in the literature are negative and
increasing. The trends are similar but with an offset. The supraspinatus moment-
arm shows the best correspondence with the measured moment-arms @, ] The
infraspinatus moment-arm shows an overall similar trend as the moment-arms from

) @] The subscapularis exhibits an inverse trend to the moment-arms reported in

,[102, [130].
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Figure 8.5: Comparison of model-predicted (red) and measured moment-arms [@, %, @,
@, m] for abduction in the scapular plane as described in section [8.3.2.
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Compared to the moment arms predicted by the Visible Human Project (VHP) kine-
matic shoulder model [76], the moment-arms of the middle deltoid, posterior deltoid,
supraspinatus and subscapularis of the present model differ more significantly from mea-
sured values than do the moment-arms from the VHP model.

8.3.3 Muscle Forces

The model predicted muscle-forces are presented in % of the maximum isometric muscle
force (Fig. B.6). The muscle-forces are presented for all the muscles spanning the gleno-
humeral joint, not including the latissimus dorsi and pectoralis major muscles. All the
muscles are active during part or all the motion. The only muscle not showing activity
is the anterior part of the deltoid. The middle deltoid, teres minor and coracobrachialis
are the muscles showing the most activity with activation levels above 50%, and are the
only muscles to remain active throughout the motion.

During quasi-static abduction, all active muscles except the middle deltoid, show an

increase followed by a decrease in muscle force. The curves are all more or less bell-shaped.
In contrast, the middle deltoid shows a steady increase in muscle force throughout the
entire motion.
The middle deltoid shows a maximum activation level of almost 60% at 140° abduction.
The posterior deltoid shows a maximum activation level of 17% at 110° abduction. The
muscle becomes inactive above 130° abduction. The supraspinatus and infraspinatus show
a small amount of activity during the initiation of the movement. The supraspinatus re-
mains active to around 125° abduction with a maximum value of 6%. The infraspinatus
remains active up to 30° abduction with a maximum value of 4%. The subscapularis
muscle shows a peak activation level of 20% at 120° abduction after which it becomes
inactive. The teres minor muscle shows a monotonous rise towards its peak activation
level of 57% at 105° abduction, followed by a rapid decrease. The teres major muscle
shows a behaviour similar to the posterior deltoid. The force initially decreases and then
increases to a peak value of 21% at 125° abduction. The coracobrachialis shows a
monotonous increase to its peak value of 28% at 70° abduction, followed by a decrease to
near inactivity. The peak activation levels of the posterior deltoid, subscapularis, teres
minor and teres major occurs after 90° abduction.

During dynamic abduction, the behaviour is consistently a sharp rise at the initiation
of the movement, followed by a steady decrease in muscle force. Furthermore, a number
of muscles show a notch at 30° abduction corresponding to the scapula beginning to
move. The middle deltoid, teres minor, teres major and coracobrachialis show a sharp
increase at the end of the dynamic motion.

The middle deltoid has a peak value of 55% at 140° abduction. The posterior deltoid
exhibits a similar behaviour as in quasi-static but with a peak value of 8% at 100°
abduction. The supraspinatus as a peak value of 17% at 10° abduction. After 45°
abduction it shows the same trend as in quasi-static. The infraspinatus has a peak
value of 10% at 10° abduction and also exhibits the same behaviour as in quasi-static
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after 30° abduction. The subscapularis has a peak value of 18% at 10° abduction. The
force then decreases progressively. The teres minor has a peak value of 44% at 45°
abduction. Its final value at 140° is almost identical to its final value in quasi-static. The
teres major has a peak value of 8% at 140° abduction and follows the same trend as
in quasi-static but with less amplitude at the end. The coracobrachialis shows a peak
value of 56% at 140° abduction.
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Figure 8.6: Muscle forces in the muscles spanning the glenohumeral joint during quasi-
static and dynamic abduction in the scapular plane (plane rotated 30° anteriorly with
respect to the frontal plane) as described in section [8.3.3.
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8.3.4 Joint Reaction Force

The glenohumeral joint reaction force is presented in terms of the force intensitiy in New-
tons (Fig. BT). The stereographic projection of the reaction force vector onto the glenoid
is also presented (Fig. B.S).
During quasi-static abduction, the force intensity rises steadily from 140 [N] at 0° abduc-
tion to a peak value of 1200 [N] at 140° abduction. Between 120° and 140° abduction, the
force intensity slightly drops. The initial behaviour is consistent with other behaviours
reported in the literature [10,[71,[155]. The joint force direction is initially on the superior-
anterior edge (quadrant I) of the glenoid (Fig. B8 From 0° to 45° abduction. The force
initially moves posteriorly and then moves anteriorly between 0° and 45° abduction. After
45° abduction the force moves downwards almost vertically. At 90° abduction, the force
is close to the middle axes in the anterior region (quadrant I). The force then continues
to drop until 140° abduction. The predicted behaviour is most similar to the behaviour
from [195].
During dynamic abduction, the joint reaction force shows a rapid increase from 100 [N]
at 0° to 550 [N] at 10° abduction. The reaction force intensity then shows a slightly
decreasing behaviour. Like the muscle forces, there is a notch at 30° abduction. Between
100° and 140° abduction, the force shows a rapid decrease follow by a sharp increase to
its peak value of 1100 [N] at 140° abduction. This behaviour is consistent with having
to stop the arm’s abduction. The contact pattern in dynamic abduction is similar to the
quasi-static situation. The force is observed to drop all the way to the bottom anterior
edge of the glenoid (quadrant II). The final directions for both quasi-static and dynamic
abduction are similar.

Quasi-static Abduction (T = 20 [s]) Dynamic Abduction (T = 2 [s])
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Figure 8.7: Reaction force in the glenohumeral joint during quasi-static and dynamic
abduction in the scapular plane as described in section[8.3.7)
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Quasi-static Abduction (T = 20 [s]) Dynamic Abduction (T = 2 [s])
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Figure 8.8: Visualisation of the model predicted glenohumeral joint contact patterns for
quasi-static and dynamic optimisation as described in section[8.3.4).

8.4 Discussion

The goal of this chapter was to assess and review the ability of a musculoskeletal shoulder
model at estimating the reaction force in the glenohumeral joint. The model assumes the
bones to be rigid bodies, the articulations to be ideal mechanical joints and the muscles to
be massless frictionless cables wrapping over the bones. The model has been tested for the
simple movement of abduction in the scapular plane and shown to perform moderately
well. The results presented in this chapter constitute the first step of a lengthy validation
process.

To fully review the model’s performance, it is necessary to review the computational
procedure and extract the key points. The computational procedure that is currently
being used to estimate the glenohumeral contact force involves two stages. The first stage
imposes the primary task of movement. A movement of the entire shoulder is defined
that provides through inverse dynamics, the required joint torques that the muscles must
generate. The secondary task computes the required muscle-force activation patterns.
The joint reaction force is deduced from the activation pattern. The two important
elements of the computational procedure are kinematics and muscle geometry.

The kinematics define the required torque through the inverse dynamics model. Physical
parameters such as length, mass and inertia do influence the torque but the kinematics are
the key element of inverse dynamics. The kinematics also contribute directly to the joint
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reaction force through the translational dynamics, along with the muscle-force activation
patterns.

A muscle’s geometry defines its contribution to the actuation of the skeletal system. For
the shoulder model, the contribution is summarised by a vector of moment-arms that
define the relation between joint torques and muscle forces. The moment-arms matrix in
the torque-force relation (8.21]) drives the muscle-force activation patterns. The moment-
arm matrix is what relates the muscle-force intensities to the primary task of movement.

The model is currently able to produce shoulder kinematics that are in very good

agreement with the literature. The kinematics were planned using a new method with
respect to the shoulder. Minimal coordinates have been used in other contexts [106],
but to the authors knowledge, this is the first time minimal coordinates have been used
to plan a shoulder model’s kinematics. There are seven coordinates, four of which are
equivalent to joint angles. The three remaining coordinates uniquely parameterise the
scapula’s kinematics and are new. The minimal coordinates have been used to plan ab-
duction in the scapular plane and produce scapular kinematics that are very similar to
the findings from [58].
In comparison to the joint angle-description of shoulder kinematics [214], the minimal
coordinates have the advantage of being independent. The traditional description is
redundant and subject to constraints. The coordinates are dependent. The available
solutions for constructing shoulder movement using the redundant description are, min-
imisation with respect to measured kinematics [156] or regression models of scapular
kinematics with respect to humeral kinematics [33]. The first solution requires measured
data that is not easily obtainable. Measuring scapular kinematics is a lengthy, chal-
lenging task and therefore regression models of scapular kinematics have been developed
[50, 184, 1104, 215, 218]. These models define scapular kinematics in terms of Euler or
Bryan angles as functions of the glenohumeral joint angles. There are linear |50, |84] and
non-linear models [104, 215, 218]. The attractiveness of regression models is the ease
with which movements can be defined once the model is constructed. The downside to
this point is that regression models do not satisfy the kinematic constraints such as the
scapulothoracic constraints. Regression models can only be used with shoulder models
exempt of kinematic constraints. Minimal coordinates present a method of correcting
this characteristic of regression models. If a regression model were to be constructed us-
ing the minimal coordinate description of a shoulder model with scapulothoracic contact
constraints, it would be usable on other shoulder models that have the same constraints.
Thus, minimal coordinates represent a promising new solution to planning shoulder kine-
matics that merits further development.

The model is currently able to produce consistent kinematics but is unable to pro-
duce muscle activation patterns that are consistent with activation patterns from the
literature. Although the intensity of the force in the glenohumeral joint does agree with
results reported in the literature up to 90° [10, (71, [155], it over estimates the force in-
tensity for higher abduction values. A number of studies have reported that after 90°
abduction, the reaction force decreases [189, [195]. However, more recently the force has
been estimated through simulation and measured in-vivo to steadily increase throughout
the entire abduction movement [17, 68]. The predicted contact pattern is similar to the
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contact pattern initially reported by the DSEM model [195] but lies partially on the edge
of the glenoid. These inconsistencies come from the muscle activation patterns that are
not in complete agreement with the literature and as explained previously, the muscle
activation patterns are primarily governed by the geometric muscle model. A poor geo-
metric muscle model explains all these inconsistencies.

The current geometric muscle model is constructed on the same framework as the kine-
matic shoulder model constructed from the Visible Human Project (VHP) [74, [76]. Both
models share the same wrapping topology but have different numerical implementations.
Furthermore, the VHP dataset was the result of an optimisation to follow the centroid
line of the muscles. The dataset used to construct the current model has not been op-
timised. A careful review of the wrapping topology defined in the presentation of the
VHP model, revealed a number of inaccuracies. For instance, the superior part of the
trapezius is defined in the VHP model to insert on the scapula while anatomically it
inserts on the clavicle. This point is an inaccuracy because after implementation of the
VHP model, the superior part of the trapezius visually inserts on the clavicle. A second
example concerns the definition of the wrapping objects for the deltoid and rotator cuff
muscles. The objects are used to represent the humeral head but are defined as being
part of the scapula. While these inaccuracies explain part of the inconsistencies in the
muscle activation patterns, they do not explain the inactive anterior deltoid muscle seg-
ment. This point has a source related to the fundamental approach of modelling the
musculature using cables that will be expanded subsequently in section B.4.1l

The results presented in this chapter show that the model is currently capable of gen-
erating consistent shoulder kinematics but does not completely fulfil its primary purpose
of estimating the force in the glenohumeral joint. There are a number of points with the
estimated muscle forces that must be sorted out before testing can continue. In compari-
son to other models from the literature |71, 155, [158], the present model requires further
development. The glenohumeral joint is now modelled as a fixed centre ball and socket
joint while in reality the humeral head moves with respect to the glenoid. The model
has been insufficiently validated and tested. To illustrate this point, the DSEM model
underwent its most thorough round of validation in 2011 while its initial development
was presented in 1994. Although in its initial development phase, the model does show
promise at being a competitive model for studying the shoulder and more specifically the
force in the glenohumeral joint.

8.4.1 Wrench-Feasibility of a Shoulder Musculoskeletal Model

The previous discussion stated that the source of the inconsistent muscle activation pat-
terns comes from a poor definition of the geometric muscle model. The best example of the
inconsistent behaviour is the inactivity of the anterior deltoid muscle segment. The source
of the anterior deltoid’s inactivity is moment-arms and the torque-feasible workspace de-
fined in chapter [7l This section analyses the shoulder model’s wrench-feasible workspace
and proposes a solution to the problem.

The presentation begins with a more complete description of the model’s geometric
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muscle model. The shoulder musculature is modelled in this thesis using the same frame-
work as the Visible Human Project (VHP) kinematic model |74, [76]. Both models share
the same topological structure of the geometric muscle model but use different numerical
implementations. Both models use 28 cables or segments to represent the musculature.
In both models, there are three joints parameterised by nine coordinates and both models
consider two points on the scapula’s medial border to define the scapulothoracic contact.
Therefore, the size of the moment-arm matrix without the scapula-thoracic constraints is
9 x 28. Each column of the matrix corresponds to the moment-arms of a muscle segment
around all three joints. The moment-arm matrix is defined by:

u_fl,i u_fl,i : SC moment-arms for muscle i,
Wy € Myyos(R), (Wy),, = [ W |, wWo; : AC moment-arms for muscle 4, (8.30)
u_fg,i U73,i : GH moment-arms for muscle i.

The relation between the columns and muscle segments is defined as follows:

e Column 1: The first muscle is the subclavius, defining three moment-arms around
each of the three SC joint axes.

e Columns 2-4: The three serratus anterior muscle segments originate on the thorax
and insert on the scapula. They all define six moment arms. Three moment-arms
around the SC joint axes and three moment-arms around the AC joint axes.

e Columns 5-8: The four trapezius muscle segments. All segments originate on
the thorax. The first segment corresponds to the superior part and inserts on the
clavicle. The three remaining segments insert on the scapula.

e Columns 9: The levator scapulae muscle segment. Originates on the thorax and
insert on the scapula.

e Columns 10-12: The rhomboid minor and major muscle segments. Originate
on the thorax and insert on the scapula.

e Column 13: The pectoralis minor muscle segment. Originates on the thorax and
insert on the scapula.

e Columns 14-16: The three pectoralis major muscle segments. The first segment
originates on the scapula and inserts on the humerus. The other two segments
originate on the sternum and insert on the humerus.

e Columns 17-19: The three latissimus dorsi muscle segments. All the segments
originate on the thorax and insert on the humerus.

e Columns 20-22: The three deltoid muscle segments. The first segment represents
the anterior deltoid, originating on the clavicle and inserting on the humerus. The
other two segments represent the middle and posterior parts of the deltoid. Both
originate on the scapula and insert on the humerus.

e Columns 23-24: The supraspinatus and infraspinatus muscle segments. Both
originates on the scapula and insert on humerus.
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e Columns 25: The subscapularis muscle segment. Originates on the scapula and
inserts on humerus.

e Columns 26-27: The teres minor and major muscle segments. Both originate
on the scapula and insert on humerus.

e Column 28: The coracobrachialis muscle segment. Originates on the scapula and
inserts on humerus.

In chapter [7] a geometric method of computing moment-arms is defined. The method
shows that each muscle defines non-zero moment-arms around the joints it spans and
around the proximal joint along the kinematic chain that it does not span. For instance,
the middle deltoid spans the glenohumeral joint only but creates moment-arms around the
glenohumeral and acromioclavicular joints. Thus, the non-zero elements of the moment-
arm matrix can be defined using only the knowledge of each muscles origin and insertion
(Table 8.2). The moment-arm around a joint that the muscle does not span is called
the coupling moment-arm. The coupling moment-arms of the shoulder model explain the
inconsistent muscle activation patterns.

The moment-arms of a muscle segment relate the intensity of the force in the segment
to the torque or actuation around the joints. This relation is defined for the entire model
by the torque-force map (82I). The moment-arm matrix Wy defines the torque-force
map for a given configuration &.

m,g : g%TgQS,
F= Me(f) =ty = Wo(R)f (8.31)

As presented in chapter [1, the domain of the map % is defined by the upper and lower
bounds on the muscle forces. These bounds are simple inequalities that define the domain
as being a polytope in R?®. This polytope is referred to as the muscle-force polytope.
For the shoulder model specifically, the image of the muscle-force polytope through the
torque-force map is three polytopes. Each image polytope corresponds to the range of
possible actuations that the musculature can produce at a each joint in a given configu-
ration K. Given the presence of the coupling moment-arms, the image polytopes are not
independent. To illustrate the concept, the image polytopes of the shoulder model have
been computed in the resting configuration for the glenohumeral and sternoclavicular

joints (Figs. B9 B.10).

There is a striking difference between the glenohumeral and sternoclavicular joint im-
age polytopes. The sternoclavicular image polytope is almost flat. There is a direction
in which it has almost no thickness. This results is explained by the following reason-
ing: The sternoclavicular polytope is defined by the first 20 muscles (Table 8.2). There
are four muscles originating or inserting directly on the clavicle (marked by a star in
table 8.2). The remaining 16 muscles originate on the thorax and insert on the scapula.
These muscles do not attach to the clavicle that has the following consequence. The
moment-arms created by the 16 muscles not attached to the clavicle define moment-arms
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Table 8.2: Muscle segment moment-arms. This table describes where the muscle segments
define moment-arms given their origin and insertion.

Muscle Name Origin | Insertion | SC | AC | GH
Subclavius Sternum Clavicle w11 0 0 *
Serratus Anterior 1 | Thorax Scapula W2 W2 0
Serratus Anterior 2 | Thorax Scapula w3 W3 0
Serratus Anterior 3 | Thorax Scapula Wya | Woa 0
Trapezius 1 Thorax Clavicle W5 0 0 *
Trapezius 2 Thorax Scapula Wie | Woe 0
Trapezius 3 Thorax Scapula w7 W, 7 0
Trapezius 4 Thorax Scapula wig | Wasg 0
Levator scapulae Thorax Scapula W9 W9 0
Rhomboid minor Thorax Scapula W10 | W10 0
Rhomboid major 1 | Thorax Scapula W11 | Wo1 0
Rhomboid major 2 | Thorax Scapula W12 | Wo,12 0
Pectoralis minor Thorax Scapula W13 | Wos 0
Pectoralis major 1 Clavicle Humerus W14 | Wo1a | W31 *
Pectoralis major 2 Thorax Humerus W5 | Wois | W35
Pectoralis major 3 Thorax Humerus W16 | Wo,i6 | Ws,16
Latissimus dorsi 1 Thorax Humerus W17 | Woi7 | W37
Latissimus dorsi 2 Thorax Humerus Wh,1s | Wo,is | W31
Latissimus dorsi 3 Thorax Humerus W19 | Woig | Ws,19
Anterior Deltoid Clavicle Humerus 151720 11_)’2_’2() 11_)'372() *
Middle Deltoid Scapula Humerus 0 Wo,21 | W21
Posterior Deltoid Scapula Humerus 0 Wo,22 | W3 22
Supraspinatus Scapula Humerus 0 Wo,23 | W3 23
Infraspinatus Scapula | Humerus 0 Wo,24 | W3,24
Subscapularis Scapula Humerus 0 Wo,25 | Ws,25
Teres minor Scapula Humerus 0 Wa,26 | Ws3,26
Teres major Scapula Humerus 0 Wo,27 | Ws,27
Coracobrachialis Scapula Humerus 0 Wo,28 | Ws328

around the sternoclavicular joint through the force they transmit across the acromioclav-
icular joint. These muscles apply a force on the scapula that is transmitted across the
acromioclavicular joint. Therefore, the moment-arm of the transmitted force is always
perpendicular to the vector between the two joints. Out of the 20 muscles creating a
moment-arm around the sternoclavicular joint, 16 muscles create moment-arms that are
co-planar. The plane in which they lie is normal the SC-AC axis (Fig. RI]).

The flat shape of the sternoclavicular image polytope explains the inactivity of the
anterior deltoid. If the anterior deltoid is activated, it creates a torque around the ster-
noclavicular joint that cannot be compensated for. The anterior deltoid is one of the
four muscles creating a moment-arm around the sternoclavicular joint not in the plane
normal to the SC-AC axis. The model’s current geometry is such that the moment-arms
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Figure 8.9: Visualisation of the glenohumeral image space polytope Mz cu(F) through
the torque-force map Mz as defined in section [8-4.1. The polytope is computed for the
shoulder in the resting position and visualised from two different stand points.

-100

Figure 8.10: Visualisation of the sternoclavicular image space polytope Mz sc(F ) through
the torque-force map My as defined in section [8.4.1. The polytope is computed for the
shoulder in the resting position and visualised from two different stand points.

of the other three muscles cannot compensate for an active anterior deltoid. This analysis
of the torque-force map is called wrench-feasibility analysis, and is extensively used in
cable-driven robotics to assess the geometry of the cable network [80, 181].

This preliminary analysis leads to a more fundamental remark concerning muscle mod-
elling in general. At present, the theory of modelling muscles using cables has not been
fully developed. To the authors knowledge, there is a single theoretical result regarding
the use of cables to model muscles with large attachment sites [197]. The result gives the
minimum number of cables to accurately and efficiently represent the mechanical effect
of muscles. The result is of fundamental importance but is incomplete in that it does not
consider the collective effect of the musculature. To illustrate this point, consider the fol-
lowing. The geometric muscle model of the musculoskeletal shoulder model presented in
this thesis is based on the framework from the VHP model. The geometric muscle model
of the VHP shoulder model was constructed using the guide lines to model muscles with
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Figure 8.11: Visualisation of the clavicle’s actuation plane and the four forces not creating
moment-arms in this plane as described in section[8.4.1].

large attachment sites M] Before the implementation presented in this chapter, the
VHP model was implemented. The results were no activation of the anterior deltoid
and no solution to the muscle-force coordination problem in certain configurations of the
model during simple movements such as abduction and elevation.

These observations were not made during the presentation of the VHP model, because
the torque-force map was not inverted. The VHP model found the muscle forces by
minimising the error between the model’s joint torques and desired joint torques. The
torque-force map was not imposed as an equality constraint. Therefore, a solution to the
optimisation problem could always be found. Imposing the torque-force map as an equal-
ity constraint restricts the possible actuations to the image polytopes of the torque-force
map. This leads to the final remark. The theoretical result regarding muscles with large
attachment sites defines a necessary condition of the muscle cable model. The moment-
arm matrix must be full column rank. This result is necessary to invert the torque-force
map when it is used as an equality constraint but is not sufficient to guarantee the ex-
istence of a solution to the muscle-force coordination problem. The imposed actuation
vector must be inside the wrench feasibility space.




8.5. CONCLUSIONS 185

8.5 Conclusions

This chapter presented the implementation of the musculoskeletal shoulder model de-
scribed in chapter @l The model is being designed to estimate the force in the gleno-
humeral articulation for the study of osteoarthritis. The implementation used the min-
imal coordinates from chapter [(] to plan the kinematics and the null-space optimisation
method from chapter [7 to estimate the muscle forces. The joint reaction force was de-
termined from the muscle forces using Netwon’s second law of motion. The model was
tested for abduction in the scapular plane and is currently capable of estimating the force
in the glenohumeral articulation. However, the force is overestimated for high abduction
values and the model predicts a contact pattern outside the glenoid during part of the
movement. Furthermore, the estimated muscle forces are shown to exhibit abnormal be-
haviours. The anterior part of the deltoid never activates.

The muscle-force abnormalities have been investigated and are shown to come from the
geometric muscle model. The coupling terms in the moment-arm matrix are such that
an active anterior deltoid creates torque that cannot be compensate for by the other
muscles. The present model’s muscle geometry was constructed using the same frame-
work as another model from the literature [76] but with different numerical values. The
model from the literature constructed the muscle geometry using a method to determine
the number of cables required for each muscle [197]. The method defines the minimum
number of cables for each muscle individually. The final conclusion of this chapter is
that this method requires updating. The muscle geometry should be designed as a col-
lective to maximise wrench feasibility. Each muscle must be represented accurately and
the complete musculature should be represented. Future developments should therefore
completely remodel the muscle geometry and continue the validation process.
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Chapter 9

Introduction to Control Theory

This chapter presents a brief introduction to control theory that is necessary for chapter
I where the theory is used to investigate human motor control. Complete presentations
can be found in closed-form in the literature [117, 131, [153].

Control theory is a field of engineering that analyses how the behaviour of dynamic
systems with inputs can be manipulated by feedback using one or more controller(s).
It is a theory that can be applied to a large number of systems. Examples include,
the cruise control in motor vehicles, the current flow in power grids or the control of
chemical reactions [208]. The chapter reviews the definitions of system and controller,
the difference between open and closed-loop, the mathematical definition of stability in
the sense of Lyapunov, the LaSalle invariance theorem and the basics of linear state

feedback.

9.1 Systems and Controllers

A system is a set of element(s), interacting or independent that form a whole [207]. This
definition includes the employees in a company as it does the parts in a mechanism. Every
system has a structure and exhibits a behaviour. Systems are differentiated according
to their structure and/or behaviour and one defines categories of systems. Every system
also has interconnections defining the relations between the elements in terms of structure
and behaviour. A system’s state characterises the interconnections between the different
elements at a given instant. In general, the state of a system changes over time and the
system is said to be dynamic or exhibit dynamic behaviour.

A dynamical system is a concept from mathematics where, the time dependence of
a system’s state or dynamic behaviour is described using a fixed rule. The rule is a
mathematical model or dynamic model of the system’s dynamic behaviour. The model
is characterised by its state but also by its inputs and outputs. A dynamical system’s
inputs model how a system’s behaviour can be changed by an external action. This can
be seen in the same way a motor changes the speed of a car. The car is the system,

187
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its state is its speed and the input is the torque given to the car’s wheels. A dynamical
system’s outputs are a measure of its state by an external observer. The measure can
be complete or only partial. The speedometer of a car measure’s the car’s speed but
does not give the car’s direction. Dynamical systems can also contain disturbances that
are similar to inputs. The inputs and disturbances are different from each other in that
inputs can be actively changed or designed, disturbances are the result of the system’s
environment. Using the car example, the driver can actively change how much torque
the motor produces while the state of the road is a disturbance.

A standard representation of a dynamical system is as a state model. A state model
is defined as a set of ordinary differential equations (ODE) characterising the system’s
dynamic behaviour in terms of the states and inputs. Each equation is the mathematical
rule modelling a given state’s time dependence. A dynamical system with n states and
m inputs is defined by a state model of the form:

r = f1<t, L1y ... ,SL’n) +g1(t,l’1, A T T ,um) = fl(t,f) +g1<t, f, ﬁ),
= filt,xi, . ) F it Ty, T, U, uy) = fi( D)+ gi(E, X W), (9.1)

T = folt 1, o xn) + gt T1, oo Ty U, e Uy) = [ot, T) + ga(t, Z,10).

The variables x; € R are the state variables and the state vector ¥ € R™ characterises
the dynamic state of the model at any given instant. The variables u; € R are the
inputs and the input vector © € R characterises the current state of all the external
actuators. The rule of the differential equations is divided into two terms f; and g;. The
first term contains the model of the system’s intrinsic dynamic behaviour. In other words
how the system behaves when no external actions are being applied. The second term
characterises how the inputs can influence the system’s state. Both terms can be linear
or nonlinear depending on the system they model and are assumed, in this presentation,
to be smooth functions. If time appears explicitly in the equations, the dynamic model
is said to be time variant. The mathematical rule changes over time. If time does not
appear, the system is time invariant. The outputs of a state model are functions of state
variables than can be observed or measured externally. Most state models are therefore
completely characterised by a mathematical description of the form:

—

= f{t.7) + gt 7. 4), (9.2)
i =h@), (9:3)
7 eR", u e R™, y e RP. (9.4)

The input vector function § will be assumed to be of the form §(Z, 4) = ¢(Z)u. Such
state models are said to be affine in the input and are the most common state models.
A free solution of the state model (0.2)) is defined as an evolution of the states X' (Zy,t)
under no input (@ = 0) given a vector of initial conditions .

As stated previously, to control a system is to manipulate its intrinsic behaviour and
thereby impose a desired behaviour. The purpose of control is to impose a specific be-
haviour on the system. The outputs of a system are a measure of its behaviour. A
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controller monitors the outputs of a dynamical system and compares them to a desired
set of outputs. The error between the two behaviours is used to actively and continuously
change the inputs of the system.
Initially, controllers where physical systems such as the regulator on a steam engine. To-
day, controllers are computer chips containing mathematical algorithms for generating
physical signals via motors or other actuators. The standard representation of the math-
ematical algorithm or control law is a rule or vector function that defines the system’s
inputs at every instant.

i=K(te). (9.5)

The inputs of the control law are the errors € between the measured behaviour and desired
behaviour. The error will be discussed in the following section. Like the dynamic model,
the controller’s rule can be time variant or time invariant. In the following sections only
time invariant systems and controllers are considered.

Given the previous descriptions and definitions of system and controller, the purpose
of control theory is first, to analyse the state model’s intrinsic dynamic behaviour and
second, to construct a controller with a control law K that imposes a desired dynamic
behaviour on the state model.

9.2 Open-Loop and Closed-Loop

When a controller and system are connected in series (Fig. [@.]), the information always
flows from the controller to the system. The system does not send any information back
to the controller. This is called open-loop. In this situation, the vector € is equal to
the desired behaviour ¢.. The control law can be for instance, the inverse model of the
system (if the equations are invertible, which is not always the case).

Open-Loop: @(t) = g.(1),  (t) =g (7. — f(&),&), T=h"'@G) (9.6)

The drawback of open-loop control is that the controller does not know if the desired
path is being followed because of the unilateral information flow direction. In open-loop,
the controller does not monitor the system’s output. The controller assumes the system
to follow the desired behaviour. In a perfect world, this assumption is acceptable and
makes sense, the system is behaving exactly as the model predicts. In the real world, even
the smallest error will make the system diverge from the desired behaviour. This occurs
also in simulation where a controller can be given a desired path and an exact inverse
model of the system. Divergence from the path occurs during simulation simply because
the numerical solver is imperfect. For instance, MATLAB’s precision is ¢ = 1071 which
is far from perfect. Perfection exists only on paper.

Closed-loop is defined as creating an information loop between the controller and
system. In closed-loop, the controller monitors the system’s outputs (Fig. [@.2)). The
outputs are fed back to the controller that compares them to the desired outputs. Given
the error, the controller corrects, if necessary, the inputs using the control law. The error
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Open-Loop:  Information Flow Direction

_______________________ *
oL Controller . Dynamical System | _ E( )
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¥ = h(Z)

Figure 9.1: Illustration of the relation between system and controller and the direction of
information flow in open-loop as described in section [9.2.

is always defined as the desired behaviour minus the measured behaviour. This is called
negative feedback and is used to reduce the effect of changes in the inputs. The opposite
is positive feedback, characterised by exponential growth of the amplitude of the changes
in input. As opposed to open-loop, the control law is now a function of this error and
not just the desired outputs.

—

Closed-Loop: €(t) = §.(t) — i(t) = Gu(t) — h(F(t)),  a(t) = K(e(G(t), &(t))). (9.7)

The input is function of the states through the measured outputs. The simplest example
of closed-loop control is proportional control. The input vector « is proportional to the
error and the proportionality factor K is called the gain.

Proportional Control: (t) = K - (y.(t) — y(Z)) . (9.8)

The key idea behind closed-loop control is to make the inputs function of the system’s
dynamic state. If the function is inserted into the the state model, a new system is

defined:

&= f(Z) + G K (§e, T) = [(Z, Ge)- (9.9)
The new model is called the closed-loop state model and has the desired characteristics
imposed by the control law. Applied to a real system, closed-loop control defines a new
system called the closed-loop dynamical system.

., = Controller Dynamical System | | .
Ye + © . u R ¥ = h(Z)
a i=K(t¢) - &= f(7)+g@)u >

y = h@)

A Closed-Loop: Information Loop |

. Closed-Loop Dynamical System 7= h(Z)
7= h(7)

Figure 9.2: Illustration of the relation between system and controller and the direction of
information flow in closed-loop as described in section[9.2.
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The purpose of closed-loop control is to construct a control law that generates the

necessary inputs to manipulate the system. The closed-loop behaviour must be as near
as possible to the desired behaviour. In simulation, the desired behaviour is generally
impose. Applied to a real system, there remains a difference due to the presence of effects
not included in the model. The desired behaviour can be a specific fixed state, in which
case the control law is designed for disturbance rejection. The desired behaviour can also
be a time-dependent evolution of the state, in which case the control law is designed for
trajectory tracking.
A system can also be controlled using multiple feedback loops (Fig. @.3]). This type of
control is used for instance to reject disturbances while following a trajectory. The high-
level tasks of trajectory planning and tracking are done by an outer feedback loop. The
low-level task of disturbance rejection around the trajectory is done by an inner feedback
loop. The outer feedback loop generates the corrected trajectory for the inner loop to
use as reference. The inner loop corrects the effects of disturbances being applied to the
system around the trajectory generated by the outer loop.

High-Level Low-level Dynamical

Path Planning Controller Controller System

Y
Y

Figure 9.3: Illustration of the multi-feedback loop strategqy as described in section [9.2.

9.3 Stability

For any type of closed-loop control, the most indispensable characteristic is stability. The
closed-loop system must be stable. Stability is in general defined with respect to a certain
state called the equilibrium point. For every state model, there are equilibrium states or
equilibrium points. These points correspond to dynamic states where the system stops
moving. Equilibrium points are fixed points of the state model’s mathematical rule and
have the following definition.

Definition 25 (Equilibrium Point [153]). Given a dynamic time invariant system of
the form .
T = f(2), T e R" (9.10)

The equilibrium points are points z for which the following holds:

—

0= f(2). (9.11)
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Equilibrium points can be stable or unstable. From a general perspective, an equilib-
rium point is stable if the system naturally tends to go to that point from any neighbour-
ing point. Oppositely, a system is unstable if it moves away from the point. A system
remains at an unstable point, if and only if, it is exactly at the point. If a beam is put
upright, it stays upright. However, even the smallest perturbation will make it fall.
Stability and instability can be understood in the same way a ball is stable with respect
to the bottom of a valley and unstable with respect to the top of a hill (Fig. [@.4]). This
metaphor applies to almost any problem but is too unspecific to be used directly. For
instance, does the ball roll to the bottom of the valley from any arbitrary point? How
fast does the ball roll to the bottom of the valley? Thus, stability requires a formal
mathematical definition to eliminate any ambiguity.

AP
N\ g/

Stable Unstable

Figure 9.4: Illustration of stability and instability using the ball metaphor as described in
section [0.3.

The formal definition of stability is called Lyapunov stability (Lyapunov 1892 [136]).

Definition 26 (Lyapunov Stability [153]). Given a dynamic time invariant system
of the form & = f(f), an equilibrium point T = 0 and a solution X (%o, t) starting
from xy. The equilibrium point Z=0 is Lyapunov stable if for any choice of R > 0,
there exists at least one r > 0 such that all solutions starting in the ball of radius r
around T = 0, remain in the ball of radius R.

1X(Zo, )]s, VE> 0. (9.12)

This definition is specific in that it uses the 2-norm to define the balls of radius r and
R. Other norms can also be used. It also clearly defines the notion of neighbourhood
around an equilibrium point as a ball defined by a norm.
The above definition of stability is the fundamental definition but is not the most practical
definition. To prove a system is stable, one generally uses one of the following theorems
that are some of the central theorems of stability in control theory. Both theorems involve
a function V called a Lyapunov function.
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Figure 9.5: [llustration of Lyapunov stability and instability according to definition 26,
stated in section [2.3.

Theorem 19 (Local Asymptotic Stability [153]). If there exists a ball Bg, such that

1. V(%) >0,VZ € Bg,, £#0, and V(0) = 0,
2. (LYW (Z) <0, VT € Bg,,

then & = 0 is stable. If in addition (%£)V(Z) < 0, VZ # 0 in Bp, then & = 0 is

asymptotically stable. The function V is called a Lyapunov function.

Theorem 20 (Global Asymptotic Stability [153]). If there exists a function V' such
that

1. V(Z) >0, YZ#0, and V(0) = 0,
2. ||Z]| — o0, = V(Z) = o0,

3. (LHV(F) <0, VZ #0,

dt

then ¥ = 0 is globally asymptotically stable. The function V s called a Lyapunov
function.

The strongest form of asymptotic stability is exponential stability. Meaning the
asymptotic convergence can be described using a decreasing exponential function of time.
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This form of stability is difficult to achieve, especially for systems with nonlinear be-
haviours.

These theorems are very powerful but are hard to prove. They reduce the proof
of stability to finding a single scalar function of the states V. Any candidate for the
Lyapunov function is required to satisfy all the points of either theorem 1 or 2. Theorem
2 is harder to prove because it requires the properties to be valid for all £ € R". The
primary difficulty with the Lyapunov function, is that there exists no well defined method
for constructing V. Trial and error and intuition are often the only tools.

Phase Plane with Lyapunov function contours.

T2

|« To
_/4/ Lo
T \X(fo,t)

Figure 9.6: Illustration of the Lyapunov function as positive definite function according
to theorem 19, stated in section [I.3.

Associated to theorems 1 and 2 is the LaSalle invariance theorem which can be used
to identify a region where the system is stable and does not require global stability.

Theorem 21 (LaSalle Invariance Theorem [153]). Given a function V(Z) : R — R

—

and a dynamic system & = f(Z). If it is possible to determine three sets Q, V and T
such that:

o () a compact set (closed & bounded) is invariant :
TeQ = X(&,t) €, vt > 0.
o In all ), the derivative of the function V is less than or equal to zero,
VieQ = V(@)= %fgo.

o The set V is a subset containing points in ) for which the derivative of V' 1is
equal to zero.

V={ZeR"s.t.7€Q, V(&) =0}
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o The set T is the largest invariant set, subset of V

ICV, Vi€l = X@nt)eT, Vt>0.

Thus, for any given initial condition Ty € €2, the solution asymptotically converges to
7z

)

foEQ = X(fg,t)%z, t — o0.

The invariant set Z in this theorem can be a single point, a finite collection of points
or an infinite set of points in which case the invariant set is called a limit cycle. The size
of the region in which a system is stable is called the domain of attraction.

The are a number of other results related to stability including bounded-input, bounded-
output stability (BIBO stability) and Nyquist’s stability theorem. These points are not
discussed because they are not used in this dissertation.

9.4 Linear State Feedback Control

State feedback control is defined for systems where all the states are observed and used by
the controller. In this type of control, the goal is to stabilise the system at the equilibrium
point Z=0, 4 =0 (O is always an equilibrium under the appropriate coordinate change).

i = [(%) + §(@), (9.13)
X

The control law is a smooth vector function of the system’s states.
i = K(&) (9.14)

The most well known example of state feedback control is linear state feedback. The
dynamic state model is linear and is defined by:

&= A7+ Bu,
y=q, (9.15)
T e R, i e R™, A e M,y (R), B e M,n(R)

A linear system (& = AZ) is stable without control if the eigenvalues of the matrix A
have negative real parts. The matrix A is said to be Hurwitz [40)].

A7 = )\7, with R(N) <O0. (9.16)
In linear state feedback, the control law is defined by a linear function of the form:

i =—-Kz, where K € M« (R). (9.17)
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The closed-loop state model is defined by:
I = AZ+BKZ = Af. (9.18)

The values of the gain matrix K are found such that the closed-loop matrix A is Hurwitz.
The appeal of this type of control is that there exists a wide range of methods for com-
puting the gain matrix [1, 115, [134, 150, [198]. The method can even be applied to non
linear systems using the first order Taylor expansion around the equilibrium point & = 0.

fla) = fid) + 5

=0

(f — :?) + higher order terms, (9.19)

=

Given a nonlinear system and an equilibrium point Z =0, 4 =0. The model is linearised
around the equilibrium point using the Taylor expansion. The matrices A and B of the
linearised model are defined by:

of 09~
A= (aa? * af“>
Once the linearised model is obtained, the gain matrix K is obtained using any one of
the possible methods. The drawback is that the controller is only valid locally around
the equilibrium point because the linear model is itself a local model. With regards to
the LaSalle invariance theorem the set €2 is relatively small. However, this method does
work well on a large number of systems and is therefore very popular. Furthermore, one

can compute gain matrices for linearised forms of the model around different points. This
method is used in aircraft control and is called gain scheduling.

,  B=g@ (9.20)

- o
T=X

There are two important properties related to state feedback in general. They are
most easily stated in the context of linear state feedback. The first is controllability
which is the property that all the states can be modified using the inputs. The second
property is observability which is the property that all the states can be observed given
the outputs. For state feedback to work, the system must be controllable and observable.

Definition 27 (Controllability). The state model (QI5) or the pair (A, B) is said
to be controllable if for any initial condition Xy and any final state Ty, there exists an
input that transfers @y to Ty in a finite time. Otherwise (Q.18) or (A, B) is said to
be uncontrollable.

Definition 28 (Observability). The state model (Q.15) is said to be observable if for
any unknown initial state Xy, there exists a finite time t; > 0, such that the knowledge
of the input 4 and the output § over [0,t1] suffices to determine uniquely the initial
state Ty. Otherwise (Q.10) is said to be unobservable.
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It is not always necessary for a system to be controllable or observable for a control
strategy to successfully stabilise the system. A system that is only partially controllable
is stable if the uncontrollable part is stable. To determine if a system is controllable or
observable, it is sufficient to compute the ranks of the controllability G and observabil-
ity O matrices, constructed using the pairs (A, B) and (A, C) respectively [40]. The
controllability and observability matrices of a system with n states are defined by:

C

CA
G=(B AB ... A"'B), O= _ (9.21)

CAnfl

A system with n states is controllable if rank(G) = n. A system is observable if rank(O)
= n. For systems with many states, these conditions can be difficult to evaluate due to
numerical instability. Both the controllability and observability matrices use the system
matrix at the power of n — 1. This can quickly lead to numerical problems.

A final remark concerning control is the notion of observer. If the full state vector can-
not be measured, an observer is used to reconstruct the missing states from the measured
states. The model of the system and the measured states are used to dynamically recon-
struct the missing states and build an observed state vector Z. The symbol A indicates
observed state vector. This procedure works as long as the states are observable through
the measured outputs y. The simplest form of observer is called a Luenberger observer.
The observed output CZ is compared to the measured output y. The error is used to
make the observed states converge to the values of the exact states. The convergence is
imposed through the following dynamic equation.

7=A7+BKi+L (gj— C;%) , L€ Muy,(R). (9.22)

The observer matrix L is defined such that the error between the exact states and observed
states satisfies the dynamics:

é=(A-LC)é, ée=i-7 (9.23)

For an observer to successfully provide the missing information on the system’s state, the
matrix (A — LC) must be Hurwitz and have faster converging dynamics than the control
law.

This chapter presented a very brief, very condensed introduction to control theory.
The concepts that are used in chapter [I0] are primarily Lyapunov stability, observability
and the idea of closed-loop control.
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Chapter 10

Musculoskeletal Stability through
Joint Stiffiness Control

10.1 Introduction

The previous chapters of the dissertation have presented a musculoskeletal model of the
shoulder and two methods used to deal with its kinematic redundancy and overactuation.
The model is being developed for the purpose of studying osteoarthritis, the most common
form of arthritis that causes frequent excessive loading of the articulations leading to their
premature deterioration [27]. The model has been implemented and used to estimate
the force in the glenohumeral articulation, the most affected articulation of the shoulder.
Excessive stress is the observed cause of osteoarthritis. However, it has been hypothesised
that excessive stress is the result of an underlying neuromuscular dysfunction. Proving
or disproving this hypothesis represents the following challenge. Given the complexity of
neuromuscular control, where does one begin to search for a cause?

To understand the magnitude of the challenge, consider the following points. The human
nervous system is the result of tens of thousands of years of evolution. It has developed
into a complex, versatile and highly efficient system capable of managing every process
in our body, including the control of our musculoskeletal system [93, [177]. It is only
recently that technology has provided us with the tools to analyse in detail certain aspects
of the brain’s function. The nervous system is of such complexity that the amount of
information required to analyse only a portion of its function is already more than a
personal computer can handle. With the almost exponential growth of computing power
over the last decade, we have constructed more complex and more accurate models that
explain the nervous system’s functions down to the molecular level [41]. However, at
present any analysis of the nervous system still constitutes a challenging task.

A first observation is that any neuromuscular dysfunction creating a deterioration of
the musculoskeletal system will most likely be found in the part of the nervous system
controlling the musculoskeletal system. This particular task of our nervous system is
called human motor control.

199
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Human motor control is achieved in part through proprioception and coordination [177).
Proprioception is the process where the nervous system integrates signals sent by the
body’s sensors. The signals include information regarding the body’s state. The nervous
system then coordinates the body’s movements by sending activation signals to the mus-
cles to produce force. Thus, human motor control can be understood as control in the
sense of modern control theory (cf. chapter [d)). There is an information loop between the
body’s musculoskeletal system and the motor controller (nervous system).

The current leading paradigm for explaining and modelling human motor control is the
modern control algorithm known as model predictive control (MPC) [112,1119,193]. Sur-
prisingly human motor control achieves stability through a number of mechanisms than
do the current algorithms developed in control theory [133, [177]. Implementations of
modern control theory generally use fast computers communicating with fast reacting
actuators at nearly the speed of light (speed at which an electrical signal travels down
a wire). The goal being to achieve a near continuous process given that the dynamic
behaviour of many dynamical systems is continuous and fast reacting. In contrast, the
human nervous system communicates with the body at nearly the speed of sound and
involves continuous and discrete processes in its function. Muscles are slow reacting ac-
tuators although the dynamics of the musculoskeletal system are faster than the nervous
system’s reaction time [177]. The subject of how stability of the musculoskeletal system
is maintained, in the sense of modern control theory, remains open to controversy [133].

To focus the search for a possible neuromuscular dysfunction, this chapter investigates
a particular mechanism that is known to be used in human motor control. The mechanism
is called joint stiffness control through antagonistic muscle co-contraction [97, (98, [160].
The topology of the musculature is such that certain muscles act as opposites to other
muscles. The muscles are said to be antagonistic. When one muscle contracts, the other
muscle is distended and vice versa. It is known that stability of the musculoskeletal
system is partly achieved by continuously activating or co-contracting antagonistic mus-
cles or muscle groups |177]. The co-contraction confers more or less stiffness the body’s
joints, contributing to their stability and thereby to the stability of the entire system.
This mechanism is of particular relevance to the investigation of osteoarthritis given that
it involves the joints directly.
The goal of this chapter is therefore the investigation of joint stiffness control by an-
tagonistic muscle co-contraction using the model of a cable-driven pendulum. The use
of such a model is relevant because in chapter M, the mathematical structure of models
of musculoskeletal systems and cable-driven systems are shown to be almost identical.
The investigation uses a simple description of human motor control that defines a certain
number of elements regarding the signals exchanged by the nervous and musculoskeletal
systems [196]. A more detailed comparison of human motor control and modern control of
a pendulum is presented followed by a quick overview of the different mechanisms used by
human motor control. The model of the cable-driven pendulum is then presented. Joint
stiffness control by antagonistic muscle co-contraction is defined in a formal mathematical
context and proven to be a stabilising mechanism in the sense of Lyapunov stability. A
control strategy based on joint stiffness control is then formulated and implemented on
a physical system. A hypothesis regarding the cause of osteoarthritis is proposed and
discussed using the results of the implementation.




10.2. STABILITY BY ANTAGONISTIC MUSCLE CO-CONTRACTION 201

10.2 Stability by Antagonistic Muscle Co-contraction

10.2.1 Human Motor Control

The following paragraphs give a brief, simplified overview of the nervous system’s anatomy
and the physiology of human motor control. The presentation is based on the descriptions
found in the following references [85, 107, 141, [177, [196]. Complete presentations can be
found in closed-form in the literature |15, 45, [110].

The primary elements of human motor control are the [central nervous system| (CNS),
consisting of the brain and spinal cord, and the[peripheral nervous system| (PNS) consist-
ing of the nerve cells or neurones emanating from the spinal cord towards other parts of
the body (Fig. [0.J]). The CNS is responsible for integration and processing of the signals
received from the PNS and the coordination of the entire body’s activity. The PNS is
responsible for [proprioception| and transmitting signals between the CNS and the other
parts of the body. The [somatic nervous system| (SNS) is the part of the PNS connecting
the CNS to the musculoskeletal system. The [brachial plexus| is the SNS nerve bundle
exiting the spinal cord and traveling down the upper limbs. The [lumbar plexus|is the
SNS nerve bundle existing the spinal cord and traveling down the lower limbs.

The building block of the nervous system is the meurom that acts as a signal trans-
mitter and processor. The two main functions of a neuron are to transmit and receive
information from other types of cells through sensory receptors and to transmit and re-
ceive information from other neurons. The connection between two nerve cells is called a
gymapse (Fig. M0.J]). If a neuron is compared to a tree, then the synapses are found both
at the tip of the branches as well as at the tip of the roots. The cell body containing
the nucleus would be between the trunk and the roots. The @xom is the trunk emanating
from the cell body. At the end of the axon are [dendrites consisting of smaller branches
with the synapses at the tip. Axons are what allow neurons to be extremely long and
connect different parts of the body using a single cell.

The transmission of signals within the nervous system is achieved by an action po-
tential. A chemical process creates a potential difference traveling down the axon like a
wave. The direction in which the wave travel’s depends on the signal’s origin. The axons
of a neuron are surrounded by a layer of myelin|, designed to improve conductivity of the
axon given the resistive nature of the axons environment. Neurons can be classified into
three groups, based on the direction in which they transmit signals.

e [afferentl neurons: transmit signals from parts of the body to the spinal cord.
e [efferent] neurons: transmit signals from the spinal cord to other parts of the body.
e [nterneuronst found in the entire CNS and do all the integrating and processing.

The nervous system is such that the signals decussate. Meaning that signals coming from
the left side of the body cross over to the right side of the CNS and vice versa.
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Figure 10.1: [llustration of the nervous system. The arrangement of interneurons, affer-

ent neurons and efferent neurons at the spinal cord level and the structure of a meuron
as described in section [I0. 21

The brachial plexus stems from the C5 vertebrae to the T1 vertebrae of the spinal
cord. Each muscle is innervated by a group of mofor neurons known as motor pools.
A motor neuron together with the muscle fibre it innervates is called a motor unit.
Each muscle fibre is innervated by a single motor neuron but a motor neuron can con-
nect to multiple muscle fibres. There exist two types of motor neurons. There are
[alpha-motor neurons| (e-motor neurons) that connect to extrafusal muscle fibres and
there are [gamma-motor neurons| (y-motor neurons) that connect to intrafusal motor fi-
bres (Figure [[0.2)). The extrafusal fibres are more numerous and give the muscle it’s
strength. Intrafusal muscle fibres are more sensitive to changes in a muscle’s length.
There is a third type of neuron called a gemnsory meuron relaying information on a mus-
cle’s state back to the spinal cord. Sensory neurons connect to intrafusal muscle fibres by
wrapping around them creating [muscle spindles| They also connect to the tendon part
of the muscle through the [golgi tendon organs (GTO).

Human motor control is achieved in part through the use of a-motor neurons, ~-
motor neurons and sensory neurons (Fig. [0.3). a-motor neurons transmit activation
level signals from the CNS to the extrafusal muscle fibres telling the fibres to generate a
certain amount of force within the muscle’s strength limits (cf. chapter 2]). This defines
the muscle fibre’s activation level a between 0 and 1. Sensory neurons attached to the
golgi tendon organs measure the muscle’s tension f which is also an indirect measure of
its activity. Given that intrafusal muscle fibres are sensitive to their length, the sensory
neurons measure the muscle’s length [ through the muscle spindles. Furthermore, -
motor neurons transmit sensitivity level signals s from the CNS to the intrafusal muscle
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Figure 10.2: Illustration of the neuromuscular communication system. FExtrafusal € in-
trafusal muscle fibers with innervation & muscle spindles as described in section [10.2.1.

fibres. By modulating the sensitivity of the intrafusal muscle fibres, the sensory neurons
also measure the rate of change in muscle length {. Thus, it is assumed that the CNS
measures each skeletal muscle’s state in terms of tension, length and rate of change in
length. These three states are only part of what the CNS measures. This chapter only
considers the muscle’s state in terms of (a, [, ) because they are the most relevant from
a musculoskeletal modelling perspective.

CNS
Sensory Neurons

a-motor: a

f PNS

Extrafusal Fibers Intrafu

Muscle Structure

Force-Length behaviour

Bones & Joints>

Figure 10.3: Illustration of the human nervous system and motor control as described in

section [10.21.

Skeletal Structure
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10.2.2 Stability in Human Motor Control

Human control does agree with modern control theory as defined in chapter There
is feedback between the musculoskeletal system and the nervous system. The nervous
system monitors the outputs of the musculoskeletal system (f,, l) and changes the input
signals (a, s) to manipulate the musculoskeletal system. Furthermore, the musculoskele-
tal system can be represented by a state model. In chapter 4l the dynamic behaviour of
a musculoskeletal shoulder model is presented in terms of the equations of motion. These
equations can be used to construct a state model. However, the nervous system does not
control our bodies in the way computer chips control physical systems [133, [177]. There
is no control law that is a function of the error between desired behaviour and measured
behaviour.
To illustrate the differences between human motor control and conventional control, con-
sider the example of a pendulum which is a long body rotating with one degree of freedom
around an axis through a revolute joint. This metaphor is relevant because the human
body, when upright, can be seen as a pendulum with the rotation axis at our ankles
[72, 1132, 1212]. The pendulum’s states are its angle and angular velocity and it is actu-
ated by applying a torque to the pendulum’s rotation axis (Fig[I04]). We use our muscles
of the entire lower limb to stabilise our bodies. The pendulum’s state model is defined
by:

.jj‘lz.rg, .I‘1:’Z9, 1’2:19

Ty = —% sin(zy) + cu, c = cte.

(10.1)

A measure of the pendulum’s dynamic behaviour is its length. The pendulum’s length
appears in a parameter called the time constant 7. This value defines the speed at which
the pendulum reacts to changes in input and is defined by:

T =2m\/l/ge, (10.2)

where [ is the pendulum’s length and g. is the earth’s gravitational constant.

For a human being the time constant is between 2.5 and 3 seconds. If a computer is
used to control a pendulum with such a time constant, the sampling rate (rate at which
the pendulum’s state is measured and at which the input signals are updated) needs to
be 50 Hz or higher. The time constant of the electric motor being used is approximately
0.002 seconds and the rate at which the signals travel down the wires is near the speed
of light. Our nervous system does the same job with a sampling rate between 10 and
30 Hz. A muscle’s time constant is roughly 0.04 seconds and the information travels at
the speed of sound (~80000 times slower). Muscles and electric motors are controlled in
a similar way. In human motor control, information is transmitted through the nervous
system in waves and the signal is binary. Muscles receive the activation level signals as
on/off signals at different frequencies. This is very similar to pulse width modulation
(PWM), used to control electric motors. Furthermore, the dynamic behaviour of both
muscles and motors can be represented using first order dynamic models. The difference
between a muscle and motor is that muscle’s react 10 times slower to a step input (step

response) (Fig. [10.4)).
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Figure 10.4: (a) lllustration of the pendulum metaphor for human postural control. (b)
Example of muscle and electric motor reaction times. Graph obtained using 1st order
model with two time constants (Section [10.2.2).

To stabilise our body, human motor control uses multiple mechanisms. This presenta-
tion distinguishes between mechanisms that are actively controlled from mechanisms that
are passive. For instance, muscle activation is actively controlled while the force-length
behaviour of muscles is a passive property helping to stabilise the system (cf. chapter ).
A first mechanism is the use of multiple control loops called reflex loops [177]. These
loops, once set in place, never change and are the fastest reacting elements in human
motor control. Reflex loops are used to compensate for small perturbations around the
current set point and ensure that motion occurs smoothly. There are two reflex loops or
reflex pathways. Long-loop reflex pathways traveling into the brain and can be actively
regulated. Short-loop reflex pathways traveling to the spinal coord. Short-loop reflexes
are passive in that they are not regulated.

A second mechanism is the use of synergies that are groups of neurons that share the
same task. An individual neuron processes information slowly. Millions of neurons put
together process the same information much faster. Thus, the brain has been called the
"most powerful computer in the world” because of its ability to parallel compute on a
massive scale. This mechanism can be actively changed to deal with new situations. It
can be viewed as a low level or unconscious form of learning and has been modelled using
artificial neural nets (ANN) [19, 176, [187).

A third mechanism is motor programs that are neurons designed to activate muscles
according to specific patterns. In terms of control, motor programs are executed in open-
loop. Once set in place, these patterns never change and produce ballistic movements
[133]. Ballistic movements are in general fast movements over a short period of time.
The term ballistic is understood as once the movement is initiated by the pattern it will
follow a known trajectory similar to a bullet being fired from a gun.

A fourth mechanism is the use of models [177]. The information collected by the sensory
neurons is processed by the brain and is used in either forward or inverse models of parts
of the body. This mechanism is much slower but gives human motor control the ability
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to predict the future inputs. In modern control theory, this is known as a priori control.
A model of the system is used to compute the input producing the desired behaviour.
Thus, the controller need only correct around the desired input.

The mechanism that will be discussed throughout this chapter is joint stiffness con-
trol through antagonistic muscle co-contraction [177, 196]. The human nervous system
changes the stiffness of the joints to adapt to its environment using the muscles. This
mechanism is observed in hopping or when running over uneven terrain. The stiffness is
changed though the control of an antagonist muscle structure. The muscles work against
each other. By contracting muscles at different activity levels, the joint stiffness can be
varied.

10.2.3 Model of a Cable-Driven Pendulum

This section presents the model of a cable-driven pendulum. The model is relevant to the
present discussion, given the use of a pendulum model in the previous section to discuss
human motor control. Furthermore, the model constitutes a very simplified model of a
shoulder. The pendulum can be seen as the humerus rotating around the glenohumeral
joint in the sagital plane. Lastly, models of cable-driven mechanisms are almost identical
to models of musculoskeletal systems. Thus, the results obtained from the cable-driven
system can be transposed to musculoskeletal systems.

The system is a pendulum of length [ (Fig. [0.5). The pendulum rotates around an axis,
normal to the zy plane, placed at the origin Oy. The pendulum is body %, and the frame
is the carrier body ;. The rotation is defined by the angle v. The position of any point
So,1 on the pendulum is defined by:

S(],l . §0,1 — R170§1, RI,O — <§?I?((Z)))) _C(S)lsr(l,fi)})) . (103)

There are four cables attached to the pendulum at four points S; ; on a rectangular plate
mounted on the pendulum. The plate is mounted at a distance [, from the rotation axis
and has dimensions w x b. At the opposite end, the cables are attached to four pulleys,
centred at Cp;. The rotation of each pulley is defined by an angle 9J;,. The pulleys are
of radius r,. The pulley attachment points Fy; are located on the top of each pulley.
There is a disk of radius r centred at the origin, to keep the cables from intersecting the
pendulum’s rotation axis. The rotation of each pulley is defined by an angle ;. For the
pendulum angle and pulley angles, positive rotation is counterclockwise.

At this point, only the dynamic behaviour of the pendulum is considered. The cables
are considered to be taught, massless, frictionless cables wrapping over the pulleys and
central disk. The pendulum has a mass M, and an inertia Z, (Fig. [[0.8). The pendulum’s
centre of gravity is located at a distance [, from the rotation axis. The pendulum is
considered to be subject to a viscous friction b,. The dynamic model is built using the
Euler-Lagrange equation. The generalised coordinates of the model are the pendulum
angle ¢ and angular velocity ¢ with respect to the vertical axis. The equation of motion
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Figure 10.5: [llustration of the geometry of the cable-driven pendulum system as described
i section [10.2.3.

associated to the model is defined by;

- <_bp¢ — Mpgelysin(y) + W () f) R B+ OW . 104
1/} - (Ip + Mplg) - Sln(dj) - 1/} + (1/}) f7 ( 0. )

—

where the vector f is the vector of cable tensions. The constants A, B and C' are all
strictly positive. The matrix W(¢)) is the 4 x 1 cable moment-arms matrix. The moment-
arms of each cable are defined with respect to the pendulum’s axis of rotation. There is
a single degree of freedom and therefore, there is a single moment-arm per cable. The
moment arm is a vector along the z-axis parallel to the pendulum’s rotation axis.

The geometry of the cables is defined by the configuration of the pendulum. The cables
are assumed to always be taught. Depending on the configuration of the pendulum, a
cable can have two configurations (Fig. [10.6]).

e Configuration I: the cable wraps only around the pulley.

e Configuration II: the cable wraps around the pulley and around the central disk.
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The geometric configuration %; of a cable is defined by a set of points. The first point is
the origin F ;, the second point Gy ; is when the cable leaves the pulley. For configuration
I, there is a third point S;; where the cable attaches to the pendulum. For configuration
II, there are three additional points Hy,;, Tp; and S;;. The points Hy; and Ty, define
the initial and final contact points between the cable and central disk. The location of
all the points are computed using planar geometry and a cable’s geometry is defined by
one of the following set of points:

(51',1 : {Po,szo,z" 51,2‘}, or (51',11 : {PO,Z'7GO,Z'7 HO,iaTO,iu Sl,z’}-

The two configurations can be identified based on an angle criteria. For any given con-
figuration of the pendulum, the lines S;,0, S1,:,Go,; and S; 1o, are defined, regardless
of the wrapping configuration. The following condition on the angles between these lines
differentiates between the two cases.

Conﬁguration I: KOSLZ‘TOJ < AOSLZ'GOJ,

Configuration II: £0S, ;/T,; > £051,Go,, (10.5)

This condition differentiates between the two configurations as long as the pendulum
remains within the bounds ¢ € [~7, 7]. The pendulum’s work space is [¢)| < 75. The
configuration of the pulleys physically blocks the pendulum. At an angle ¢ = +75° the
pendulum touches the pulleys.

Configuration I: Not wrapped Configuration II: Wrapped

Figure 10.6: Illustration of the two wrapping configurations and the angular differentiation
criterion as described by (I0.5).

The attachment points Fp; are considered to be fixed. The length of each cable is
dependent on the angle of the pendulum ¢: L; = L;(¢). The length is computed explic-
itly using the pendulum’s angle. The geometry of the cable is computed, knowing the
configuration %; ;/%; ;r and the length is obtained by adding the length of the segments.
For instance:

L; = (|51, T0.|| + la(To:Hos) + || HoiGoil| + rplo(GoiPos)- (10.6)
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The functions [,(.) and [,(.) are the lengths of the circular arcs. The action of each cable
on the pendulum is defined by its moment-arm (Fig. [[0.7). For configurations I and II,
the moment-arm vector of a cable is defined by (only the z-axis component is non-zero):

Cir: Coi =To,1: X bo,r,, Cirr: Coi = Torr,i X bo,rr,- (10.7)

The vector 7 1, is the vector from Ogy to S;,;. The vector 7 1, is the vector from Oy to
Hy ;. The vector by ;; is the unit vector parallel to the line from S;; to G ;. The vector

507 71, is the unit vector parallel to the line from H; to Gy,. For the two centre cables
attached to pulleys two and three, the moment-arm becomes constant when the cable
wraps around the centre disk.

Cable 1 Moment-Arm wi(¢) [mm] Cable 2 Moment-Arm w2(¢)) [mm]
-0.04 T T T T T -0.03 T
-0.04} }
-0.06/ ; ‘
: -0.05/ } ‘
/) G /6o nr
-0.08r -0.06
-0.07+
-0.1
-0.08
-0.12 -0.09 O
-0.1
-0.14+
-0.11y 1]
%% -0 20 o0 20 40 60 0% -0 20 o0 20 40 60
Pendulum Angle v [deg] Pendulum Angle ¢ [deg]
Cable 3 Moment-Arm w3(¢) [mm] Cable 4 Moment-Arm w4 () [mm]
0.12 ‘ ‘ : w w 0.16
0.11-
©) 0.14
0.1r
0.09+ 0.12
0.08-
0.1
0.07
0.06

€3,1/63,11

0.05} :
0.06
0.04f ' i
0.03 . ; L ; ; ‘ ‘ : ‘ ‘
260 -40 -20 0 20 40 60 0-0%40 20 —20 o0 20 40 60

Pendulum Angle ¢ [deg] Pendulum Angle v [deg]

Figure 10.7: The z-axis cable moment-arms w;(1)) for ¢ € [—60°,60°] computed using

(D).
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10.2.4 Stability by Antagonistic Cable Co-contraction

In the human musculoskeletal system, muscles can only pull. Therefore, at least two
muscles are required to fully actuate a single degree of freedom. One muscle to pull in
one direction and another muscle to pull in the other direction. The two muscles are said
to be antagonistic. They work against each other in opposite directions. If antagonistic
muscles are activated simultaneously or co-contracted, the degree of freedom reaches an
equilibrium point where the effects of both muscles compensate for each other [78; 197].
The equilibrium point depends on the ratio of the muscle co-activation. For higher ac-
tivation levels at constant ratio, the stiffness of the equilibrium point is increased. It
becomes harder for a disturbance to push the system away from the equilibrium point.
Thus, antagonistic muscle co-contraction creates stiffness.

Joint stiffness control by antagonistic muscle co-contraction raises a question with respect
to its stability. Is it a naturally stabilising mechanism? If two antagonistic muscles are
activated, is the system stable without additional help. The following paragraphs inves-
tigates and proves stability of antagonistic muscle co-contraction, using the pendulum
model. The proof will use the cable-driven pendulum’s state model without cables 2 and
3. The pendulum’s state model is defined by setting the states: z; = ), x5 = ). The
pendulum’s dynamic behaviour is defined by the following state model:

X1 = Ta,

. . A>0, B>0,C>0. (108
&g = —Asin(xy) — Bxg + Cwy (1) fi + Cwa(xq) fa, 7 7 (108)

The functions wy (x;) and wy(z) are the cable moment-arms (third coordinate of (I0.7))
(Fig. M0.7). To prove the stability of antagonistic muscle co-contraction, the following
theorem must first be proven.

Theorem 22 (Pendulum With Constant Torque). The state model defined by:

T, = T,

9 = —Asin(xy) — Bro +C 1, A>0, B>0, C>0. (10.9)

is asymptotically stable to an equilibrium point (z1,0), |Z1| < ©/2 from within the set
Q= {7 € R?||z1| < 7}, (10.10)

if the torque T is constant.

Proof. The equilibrium point (z;,0) must satisfy the following relation:

A
0=—Asin(z,) +C T, = T=5 sin(zy). (10.11)
Given that |z;| < 7/2, the torque is bounded by:
A <7< A (10.12)
—— <7< —=. :
C C
For a value of 7 satisfying this equation, there are two solutions to 7 = £ sin(z;): (|Z1,1| <

7/2,0) and (7/2 < |Z1 2| < m,0). By assumption |Z;| < 7/2, and therefore only the first
solution is considered.




10.2. STABILITY BY ANTAGONISTIC MUSCLE CO-CONTRACTION 211

Consider the following lyapunov candidate for this system:

1
V(zy, x0) = 51‘% + A(1 — cos(xy)), (10.13)

V(l’l,.TQ) = (C T — B.TQ).CL’Q, (1014)

The lyapunov candidate satisfies the condition V(f) < —0, 0 > 0 outside the following
neighbourhood of the origin:

A C
Q= {FeR?| || >, |2a| > £|;_|} (10.15)
The maximum value of V(F) on the boundary 052 is:
Ve (09) = L (€1 ey (10.16)
max - 2 B . .

The lyapunov candidate satisfies the condition of uniform boundedness [117]. Thus,
system will eventually enter the domain Q and remain inside the domain. Furthermore,
as stated previously, there are at most two fixed points inside €2, given a value of 7
satisfying (I0I2). The point (|7;| < 7/2,0) € Q is a stable centre.

The state model defined by (I0.9]) is asymptotically stable to an equilibrium point (Z1,0),
|Z1| < 7/2 from within the set (2. O

This theorem is used to prove the stability of muscle co-contraction.

Theorem 23 (Antagonistic Cable Co-contraction Stability). The pendulum’s state model

(IO.8) is locally asymptotically stable to the point (Z1,0), |T1| < 5, within the set

O = {7 € R?||ay| < g}, (10.17)
by imposing the cable tensions fi and fy to be fixed at constant values
fi=h=cte>0,  fi=fi=cte>0, (10.18)

such that —Asin(z,) + Cwy(Z1)f1 + Cwy(Z)fs = 0. Furthermore, the moment-arm
functions are assumed to have opposite signs (Antagonist muscles).
T

wy(xy) <0, and — wy(xy) >0, Vo, €] — 3 5[ (10.19)

Proof. The first point to observe is that given the geometry of the system the moment-
arm functions w(z1) and wy(z;) are bounded functions. The cable attachment points
are defined such that in the pendulum frame Ry, Vz; €] — 7, 7|, cable 1’s force direction

vector 51,1 is always in quadrant II of the pendulum’s xy plane. Cable 2’s force direction
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vector 5172 is always in quadrant I (Fig. [[0.8]). Cable 1’s moment-arm function is bounded
by:

Sz —1
R170(l‘1) Sl,y X R170(l‘1) 0 <w1(x1) < O,
0 0
Stz cos(xq) — Sty sin(zy) — cos(z1)
Sigsin(zy) + Sy ycos(xy) | x | —sin(xq) | <wi(z1) <0, Si, <0,
0 0
—|517y| <w1(x1) < 0. (1020)
Cable 4’s moment-arm function is bounded by:
Saz 1
0 <U)4(.§L’1) < Rl,o(.’lfl) S4,y X Rl,O(xl) 0 ,
0 0
Sy cos(z1) — Syysin(xy) cos(zy)
0 <wy(z1) < | Sapsin(zy) + Syycos(xy) | x | sin(zy) |, Sy <O,
0 0
0 <U}4(ZL‘1) < |S47y|, (1021)

where S;, and S;, are the x- and y-coordinates of the cable insertion points in the
pendulum frame R;. Rjo(z1) is the rotation matrix from the pendulum frame to the

inertial frame (T0.3)).

Quadrant IT Quadrant I

Cable 1

/ b1z Cable 4 ’
/ Sl,y - S4,y /

Quadrant I [] Quadrant IT

Si1

S14

Figure 10.8: Illustration of the bounding of the moment-arm functions wy and wy as

described in the proof of theorem 4 [10.2.4)
The bounds on the moment-arm functions define bounds on the actuations:

—C]E1|51,y| <CUJ1(3?1)]E1 < O, (1022)
0 <C’w4(x1)f4 < Cf4|547y|, (1023)

Thus, the state model’s dynamics are also bounded:

Zt‘g’inf =—-A Sin(l‘l) — BZL‘Q — Cf1|517y| < i‘g < :t2,sup =—A sin(xl) — BI‘Q + Cf4|S47y|,
with 4y = —Asin(xy) — By + Cw(z1) fi + Cwy(z1) fs. (10.24)
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By theorem 4, the bounding dynamics are stable. The lower bound is asymptotically
stable to the equilibrium point (Zj s, 0) with —7/2 < Zy ¢ < 0 from within Q = {& €
R?||x1| < 7}. The upper bound is asymptotically stable to the equilibrium point (Z1 gup, 0)
with 0 < 7y qp < 7/2 from within Q = {Z € R?||z| < 7}.

The stability of the bounding dynamics imposes the following on the cable tensions:

- A
SLy 7& 0, 0< f4 < = S47y 7& 0. (1025)

0< f, < ,

A
O,
The insertion points Sy and Sj 4 of the cables are such that S, = Sy, (symmetry).

Furthermore, relations (I0.22), (I0.23) and (I0.25]) define:
—A < Cwi(z1)f1 <0, 0 < Cwy(xy)fs < A. (10.26)
For equilibrium points (z1,0), |Z1| < 7/2, the following relation is defined:

— Asin(i’l) + Cwl(fl)f1 + Cw4(i’1)f4 = 0,
= Cwl(fl)fl + C’w4(f1)f4 = ASiIl(Zf’l),

™ T

= A< C’wl(fl)ﬁ + C’w4(f1)f4 < A, \V/fl 6] — 5, 5[ (1027)
Relations (I0.26) and (I0.27) agree with each other and impose:
—-A< C’wl(xl)fl + C’w4(x1)f4 < A. (1028)

The actuation generated by the co-contraction is bounded. Through theorem 4, the
system is stable to the equilibrium point (z1,0) with —7/2 < z; < 7/2 from within
Q = {7 € R?||z;| < 7}. Therefore, the system is asymptotically stable to the equilibrium
point (z1,0) with —7/3 < 7; < /3 from within Q* = {7 € R?||z,| < 7/2}. O

The previous theorem proves that by activating antagonistic cables, the system is
stabilised to an equilibrium point. The value of the equilibrium point depends on the
ratio between the cable tensions and the tensions are limited to a maximum value. The
cable tensions can be changed without changing the equilibrium point if the ratio between
cable tensions remains constant (Fig. [[0.9]).

10.2.5 Joint Stiffness Control

Thus far, the term ”stiffness” has been used without a formal definition. Stiffness gen-
erally defines the relation between force and displacement applied to an object. In a
spring, it characterises the amount of force A f required to stretch or compress the spring
by Al. In structural engineering it characterises the change in geometry or deflection
(angle AY or length Ad) of the structure under an applied force Af. In material science
it characterises the amount of deformation Ae of the material under a given load Ao.
The common point between all of these different definitions of stiffness is that when the
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6 | )

Equilibrium point : ¢ [deg]

-20

Cable force fo [N]

1.5 2

1
Time ¢t [s]

0 0.5

Cable force fi [N]

Figure 10.9: Illustration of the equilibrium point achieved by antagonistic cable co-
contraction as described by theorem 5, section[10.2.4)

force or load is removed, the spring, structure or material returns to its original state.
Stiffness characterises a behaviour that is reversible or elastic.

Stiffness is mathematically defined as the infinitesimal change in external action over the
infinitesimal change in internal reaction.

ox x : force f / load o, (10.29)

K= oq’ q : displacement [ / deflection d/ deformation e.

In this chapter, joint stiffness is defined as the required infinitesimal change in joint torque
T to impose an infinitesimal change in joint configuration .

K 8_7' 7 : torque on pendulum axis,

oy’ . pendulum angle. (10.30)

For the complete cable-driven mechanism (all four cables), the stiffness normalised by
the inertia, is defined by:

K(zy) = g—z? = —Acos(x) + Ca‘gfiﬁcl)f (10.31)
The stiffness around an equilibrium point z; is K(Z;). For a given muscle activation
level, the stiffness is governed by moment-arms. The first term in the previous relation is
from the system’s dynamics. The second term is from the cable structure. Once the force
activation levels are set, the stiffness depends on the internal dynamics and moment-
arms. For there to be stability, the moment-arms must be the governing term. The
muscle co-contraction must control the stiffness and not the system’s dynamics.

Human motor control uses the muscle activation levels to actively change the prop-
erties of the joint in terms of stiffness and configuration. Joint stiffness control by an-
tagonistic muscle co-contraction changes the activation levels of the muscles to achieve a
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desired characteristic.

There are two distinct methods of using the antagonistic muscles. At constant ratio,
the muscle forces can be changed to produce more or less stiffness without changing the
equilibrium point. This is called iso-equilibrium stiffness control (Fig. M0.I0). The mus-
culature can actively control the stiffness to deal with the external perturbations. At
constant stiffness, the equilibrium point can be changed. The activation ratio is changed
such that the equilibrium point changes but not the stiffness. This is called iso-stiffness
equilibrium control. In general situations, the stiffness and equilibrium point are contin-
uously changed.

Equilibrium Stiffness Contours K (Z;) Iso-Stiffness / Iso-Equilibrium

6

K

Cable force f2 [N]

Cable force fo [N]

S

1Tso-equilibrium point stiffness change

N

5 s ° % 1 2 3 1 5 6

2 3 4
Cable force f; [N] Cable force f; [N]

Figure 10.10: Illustration of the equilibrium stiffness and the relation between iso-stiffness
and iso-equilibrium lines[10.2.7].

10.2.6 Observability of Pendulum States

Joint stiffness control relies on knowledge of the joint’s position. In section [0.2.1] it is
stated that the nervous system measures primarily each muscle’s length, rate of change
and activation level. There is another type of nerve cell that measures information re-
garding the joints, called mechanoreceptor. Mechanoreceptors are known to measure
mechanical deformation. There are other types of mechanoreceptors in our skin that give
us a sense of touch. Golgi tendon organs are also a type of mechanoreceptor. However, it
is unclear if joint mechanoreceptors relay information regarding each joint’s current con-
figuration Eﬁ] Therefore, this section shows that the joint’s position can be measured
or observed through the measure of muscle length and rate of change.

As stated in section [0.2.1] the nervous system measures the muscle lengths L; and
the rates of changes in each length LZ Therefore, are the pendulum states z; and x,
observable through the cable lengths L; and rates L;? The short answer is ves, but the
observability will be formally proven.
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Theorem 24 (Observability of Pendulum States). The states of the following dynamic
system

l"l = Z9, (1032)

tg = —Asin(x1) — Bxg + C W(xy)f, (10.33)
are observable through the output function defined by:
. . . . . T
Jlxr,20) = (Ly Ly Lz Ly Ly Ly Ly Ly) , (10.34)

Proof. The proof involves showing the observability matrix is full column rank. The
matrix is constructed from a linearisation around an arbitrary equilibrium point ¥, =

—

(71,0), |71] < §. The vector f is the cable force distribution at the equilibrium point.
—Asin(z,) + CW(z1)f = 0. (10.35)
The linearised pendulum model is defined by:

Zt'l ~ T9, (1036)

f) w1 — By + CW(T1) f, (10.37)

The state matrices A and B are defined by:

0 1
= B 0
A= <—A cos(z1) + C gTWI B f) Bl B = (C’W(xl)) (10.38)

The output function ¢(xy, xs) is also linearised around the equilibrium point:

9Ly 0
El 81'1 :Z'170
= OLy4
Ly o1 0 x
—, T 1 = — :Ijl
T1,To) | = 70 . = ¢(71,0 C . 10.39
Jeve) ~ L E L F o oLy (xQ) Ho0+C L, (10.39)
0z Z1,0 w2 z1,0
La dLa L4
ox1 71,0 ox2 71,0

The states x; and x5 are locally observable if and only if the observability matrix O has
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full column rank. The observability matrix is defined for this particular model by:

oLy 0 X1 0
921 13,0 Xo 0
: : x3 0
OL,
oz 71,0 0 X4 0
oLy 8Ly X X
oxq 71,0 ED 71,0 % %
Le oL X X
C 5 o X x
O — _ 91 |z, .0 923 |31 ,0 — (10 40)

CA 0 oLy 0 *1

oxq 71,0
O *9
0 oLy 0 *3
. . ol 0 %4

oLy oLy oLy
EED 51,0A2’17 oxq 1,0 EED il,OAQ’Q X X
X X
oiy| oiy oty X X
dzo il,oAQ’l’ 9z |z, 0 972 il,OAQ’Q % %

The observability matrix is full column rank (rank = 2) for any equilibrium point 7. =
(21,0), |71] < %. Indeed, the first four rows have a single non-zero element (x;). Rows
9 to 12 also have a single non-zero element (%;). The non-zero elements are in different
columns. Furthermore, the elements are equal to each other in pairs of two (x; = x,
i =1,2,3,4). These elements are never zero on the interval z; €] —x/3, 7/3[ (Fig. I0.7).
Thus, as long as at least one of these elements is non-zero, the matrix is guaranteed to
have full column rank. Therefore, the states z; and z or ¢ and ¢ are observable through
the cable lengths L; and rates Lz O

This theorem proves that the state of the pendulum can be known through the lengths
and rates of change in length of each cable. It is therefore hypothesised that the nervous
system does know the state of each joint using the measured muscle states and the
information from the mechanoreceptors [169].

10.3 A Joint Stiffness Control Strategy

Thus far, the general function of human motor control has been presented and the mech-
anism of joint stiffness control through antagonistic muscle co-contraction has been pre-
sented and analysed. The findings are that antagonistic muscle co-contraction produces
more or less stiffness around an equilibrium point and the equilibrium point depends
on the muscle activation levels. Furthermore, muscle co-contraction yields a stabilising
effect around the equilibrium point. The equilibrium point is stable. Meaning, if the
skeletal system is pushed away from the equilibrium point by a disturbance, the muscle
co-contraction pushes it back to the equilibrium in the same way a spring would.

It was also shown that muscle moment-arms govern the stability around the equilibrium
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point. Once the muscle activation levels are set, the moment-arms govern the actuation.
Muscle moment-arms play an important role in that they relate skeletal dynamics to mus-
cle forces. In musculoskeletal modelling, moment-arms are used to estimate the muscle
forces, given desired skeletal dynamics. Thus, the hypothesis put fourth by this chapter
concerning a possible neuromuscular dysfunction causing osteoarthritis is the following.
A deterioration in the nervous system’s knowledge of the moment-arms can lead to ex-
cessive muscle forces. This in turn causes excessive joint forces. There is some form of
mismatch between the actual system and the nervous system’s perception of the system.

The following sections present and discuss how a mismatch between the system’s

moment-arms and the moment-arms perceived by the controller can induce excessive
joint loading through joint stiffness control. If a mismatch is inserted into the joint stiff-
ness control mechanism, excessive muscle forces are generated and therefore excessive
joint forces are generated. To illustrate this point, a joint stiffness control strategy is first
proposed for the cable-driven pendulum. The strategy is then implemented onto the real
system and tests are run using biased and unbiased moment-arms.
The reason for investigating moment-arms is that they are the primary quantity describ-
ing the musculature’s ability to actuate the skeletal system. If the moment-arms are
not computed correctly, the coordination strategy will yield inappropriate muscle forces.
This point was previously illustrated in chapter 8 A poor definition of the shoulder
model’s muscle wrapping yielded inappropriate muscle activation patterns and overesti-
mated joint reaction forces. There is another less obvious reason for investigating the
effect of biased moment-arms. In control in general, there are a number of reason’s why
a controller can generate inappropriate input patterns. However, in many situations the
result is instability. Therefore, the fact that biased moment-arms leads to inappropriate
moment-arms without loss of stability is relevant because osteoarthritis is a dysfunction
without loss of stability.

10.3.1 Control Algorithm

This section proposes a strategy of using muscle co-contraction to actively control and
stabilise the cable-driven pendulum. The general concept of the strategy is to impose a
stiffness and compute the required forces by solving the cable-force coordination problem
presented in chapter [l In the previous section only two cables were considered. The
proposed strategy uses all four cables for more flexibility. The required torque on the
pendulum’s axis is produced by four cables thereby reducing the intensity in each cable.
To impose a stiffness on the system, around an equilibrium point (z,0), is to impose the
following behaviour on the pendulum’s dynamics.

iy = —Asin(xy) — Bro+CW (zy) f = —Asin(ay)— By + K, (71 —x1)+ Asin(z), (10.41)

where K > 0 is the imposed stiffness. The stiffness around any equilibrium point (Z;,0)

is defined by:

K(.f‘l) - =

Oz, = —Acos(71) + K,. (10.42)

Tr1=T1

= (—A cos(xy) + Ca\gfigl)f)

r1=7T1
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where f is the vector of muscle forces associated to the equilibrium point.

The proposed strategy is an iso-stiffness strategy. The stiffness coefficient is selected
and remains constant. The following theorem proves that such a strategy is stable for
the pendulum system.

Theorem 25. The dynamical system defined by the following state model:

Ty = Ta,

iy = —Asin(z,) — By + Cu, A>0, B>0, C>0, (10.43)

is locally asymptotically stable to the point T = (21,0), |Z1| < 7, within the set

Q= {7 € R?||z1| < 7}, (10.44)
using the control law
_ A
u= Ky —x) + G sin(zy), K,> B >0. (10.45)

Proof. The proof involves showing that a suitable lyapunov candidate satisfies the con-
ditions of theorem 1 in chapter[@l To prove asymptotic stability of the system within the
domain €2, the following variable change is defined

A
Y1 =21 — %1 — sin(zy) = o1 — 27, 1 = Yo,
{ n K. ;s{ B o 20— o+ B, (10446)
2 25
Consider the lyapunov candidate
1
V() = 59" Py + AL = cos(ys + 7)), (10.47)

where the matrix P is symmetric positive definite [117].

P= (pll p12> , P12 > 0, P11P22 — p?z > 0. (1048)
P12 P22

Given that A > 0 by assumption and P is symmetric positive definite, the function
V() > 0, Vi € R% The time derivative of the function is defined by:

V(i) =0 Py + Ayysin(y; + %)),
=2 (p12 - de22) ?/S - 2Ksp12?/% +2 (Pll — Kgp12 — Ksp22) Y12+

(Y2 — 2p12y1 — 2paaye) sin(yy + 7). (10.49)
By selecting p1; = % + @, P12 = % and poy = %, the expression of V reduces to
. 1 ' .
V(e = —3 (C?K,By; + CBy; + ACBy; sin(y; + 7)) . (10.50)

This function is negative definite within the set:

Q, = {7 € ||y + 7| <}, (10.51)
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The interval is valid because the term z] = 77 + CiKs sin(z) has the same sign as z; over
the interval |Z;| < 7. Furthermore, the derivative is equal to zero for ¢ = (0,0). Thus,
(I040) is asymptotically stable to 0 in 2, and therefore (I0.43) is asymptotically stable
to (Z1,0) in §2 using the control law (10.45). O

Given a stiffness K¢ and equilibrium point z; the cable tensions must produce the
desired input. The desired behaviour is . = (Z1,0). The outputs of the system are the
states ¥ = (x1,22). The cable-tension must satisfy the following relation which is the
primary task:

u=K(j,—7) = (Ks@l — 1) + g sin(gsl)) —Wf (10.52)

Furthermore, the desired behaviour must be within the wrench feasibility space imposed
by the strength limits of each cable. The cable tensions are obtained using the same
strategy as chapter [[l The coordination strategy is defined as an optimisation problem
to find a solution minimising the cable tensions. This is the secondary task. The cost
function is the sum of cable forces squared. The primary task is defined as an equality
constraint. Bounds are also set on the tensions. Cables can only pull and have a maximum
tensile strength. The coordination strategy is thus defined by:

—

1 -
mfiﬁ I(f) = éf_Tf, Secondary Task, (10.53)

A S
s.t. (Ks(xl —x1) + - SiIl(:L‘l)) =W/, Control Law, Primary Task, (10.54)

0< fg ﬁnax, Min/Max Tensions Bounds. (10.55)

This coordination strategy can be solved using the same null-space optimisation approach
as defined in chapter [ A pseudo-inverse of the moment-arms matrix yields a solution
minimising the cable tensions while satisfying the control law constraint.

]ﬁ =W7T (WWT)*l (KS(SZ’1 — 1)+ g sin(:i’l)) ) (10.56)

The solution is then corrected using the null-space of the moment-arm matrix to satisfy
the bounds on the cable-tensions.

f=f"+N#, WN=0. (10.57)
This parameterisation of the problem yields a quadratic program (cf. chapter [).
1 1 /2\T
min T(7) = 57" NN+ 3 ( f*) N7, (10.58)
st. NT< foax — f5 (10.59)
~ N7 < f*. (10.60)

Thus, the control algorithm is stated in the form of a theorem. A damping factor Ky is
included into the control law to have more flexibility. This does not change the stability as
long as Kg > K4+ B > 0 and Ky > 0. There is no proof, given that the previous theorems
and proofs have already defined its stability. Lastly, wrench-feasibility is assumed.
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Theorem 26 (Joint Stiffness Control Algorithm). The following dynamic system:

l"l = Z9, (]_06]_)
iy = —Asin(z;) — Bas + C W(zy)f, (10.62)
g: (x17x2)T7 (1063)

s

3, within the set

is locally asymptotically stable to the point i, = (Z1,0), |Z1| <

Q= {7 c R¥|x| < 7}, (10.64)
using the control law
L _ A -
u=K(y.—19) = <Ks(x1 — ) — Kgzo + I sm(xl)) = Wf (10.65)

where f@'s defined by

S S _ A
f = f* + NU, f* = WT (WWT) ! (KS(ZL'l — IL‘1) — Kd!L‘Q + 5 Sin(l‘l)) .

(10.66)
The vector f is found through the quadratic program
: I VU A .
min [() = 50" NTNv+ 3 (f ) N, (10.67)
st NU< frae— [ (10.68)
— Nv < f*~. (10.69)

10.3.2 Implementation

The stiffness control strategy was implemented on a physical system (Fig. [0.I1]). The
physical system is exactly like the model presented in section [0.2.3l The pulleys are
driven by brushless EC motors through a planetary gear head with a gear of ratio N,
(Fig. M0.8). The electric motors are driven in current /; and can be viewed as ideal
torque sources. The pulleys have an inertia 7,. The motor’s have inertia’s 7, and there

is friction 7'(¢;). The friction on the real system is hypothesised to behave according to
the kinetic friction model [4].

() = oudi + o0g (D) sign(9,) + (1 |sign(i)]) sat(NokLi,7,), (10.70)

00g(9:) = T exp(—i2/v,) + 7. (1 = exp(=d2/v,)) (10.71)
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where 7, is the static friction torque, 7. is the kinetic friction, v, the Stribeck curve
coefficient. sign(6;) is the sign usual sign function. sat(l;,T,) is a saturation function
that switches between the current input being applied and the static friction force. All
the coefficients were identified on the real system using the appropriate techniques M]

CAD Drawning Schematic of drive-train Friction T(gi)

Motor Inertia Jm

Amplifier

Real System

1/

Pulley Inertia Jp

e Motor 3
! !! Motor 4

Figure 10.11: [Illustration of the physical system and schematic of the drive train as
described in section [10.3.5.

The motors are used to generate tension f; within each cable and actuate the system.
A dynamic state model is constructed for each pulley. The states are defined as the angle
x1,; = v; and angular velocity x2; = ¥;. The inputs are the motor currents u; = I;.

jjl,i = T2, (1072)

. 1 9 /. .
xQ’i = m (_NgT(fL‘Q’i) —+ ]\]g/'flZ — ’l“fz) s 1 = 1, 2, 3, 4, (1073)

The parameter k is the ideal torque source proportionality constant. A state model is
built for the entire system by selecting the states and inputs as follows.

c A = Y, 210 =V, 14 = 04,00 = VY, 001 = V1, ..., Doy = Us},

. {Ul = ]1,U2 = IQ,U3 = 13,U4 = 14}

8y

£y

All states are measured on the real system using angular encoders. The motor currents
are also measured. The resulting model is a non-linear affine in the input state model:




10.3. A JOINT STIFFNESS CONTROL STRATEGY 223

—

7= f(Z)+ §@).

(

Ty = T ’ Mgl
T11 = T A= 411,41-7?/12%
5.6’1,2 i L2,2 B = 41174{)77\/111%
;1’3 _ o C= 4Ip+1Mz2
T . ’ (10.74)
to = —Asin(zy) — Bro + CW(zq) f Do ___1
Bo1 =D -7(x21) + F- fi+G-wy NG Tm+Tp
i‘272 :D'T($272)+F'f2+G'UQ F= _NgQJerJp
jfz,g:D'T<.T273)+F'f3+G'u3 \G:%
. 1’2,4:D-T(:U274)—|—F-f4—|—(}’~u4

Given that each motor is equipped with an encoder, the length of each cable can be
computed using the pulley angles ¥;. The pendulum is initially at an angle ¢y (= 0 by
default). The initial length L;(1)g) of each cable is known using method the geometric
method described in section [10.2.3l The pulley angles are all initially zero and the cables
are assumed to always remain taught. Once the pendulum begins to move, the length of
each cable is computed using the following relation.

L= L) + 10,1 =1,2, L= L) — v, i = 3,4 (10.75)

The sign is different for cables three and four because the pulley angle is positive when
the cable’s length is decreasing.

The joint stiffness control algorithm presented in the previous section is implemented
for tracking a reference behaviour 3. = (z1,0). The control algorithm yields the necessary
cable tensions f; that each motor must produce. The motor currents were obtained by
assuming that the pulley accelerations 5, are equal to the desired accelerations %o ; .
This assumption allows one to define the motor inputs as:

u; = é (95— aD - 1(xe;) — F - fi), i=1,2,3,4. (10.76)
The friction term is incorporated into the control law. This is called friction compen-
sation by positive feedback. The coefficient 0 < « < 1 is such that the friction term
does not destabilise the system and is tuned by hand. Friction compensation is essential
because planetary gear heads are prone to large amounts of friction.
The control algorithm was implemented using the assumption that the pendulum states
are known and need not be observed. An Luenberger observer was designed and imple-
mented but the observer states were not used for control (cf. chapter @l). The observer
was designed for illustration purposes with respect to the discussion of section [10.2.6] on
the observability of joint states through the muscle states. The observer is not performant
enough to use in a control strategy.

The state variables on the physical system are measured using angular encoders. There
is an angular encoder on each motor with a precision of 0.7° (512 counts per turn). On
the pendulum itself there is an angular encoder with a precision of 0.08 °. The inputs are
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also measured. Each motor is controlled by an operational amplifier that also measures
the amount of current being applied to each motor. The implantation is done using a
sampling rate of 80Hz (Measurements are taken 80 times a second and inputs are sent
to the system 80 times a second). Finally, the control algorithm was implemented by
imposing a minimum tension f min > 0. This ensures that the cables remain taught.

10.3.3 Methods

To analyse the effect of biased moment-arms on the joint reaction force in the joint
stiffness control strategy, the system was programmed to track a reference signal that
switches between constant values at regular intervals. Each switch is defined using a
transition function that smoothly changes the reference value. This avoides any sudden
jump in motor current that would yank on the cables and cause damage to the mechanism.
The transition function (¢, 14, ¥ p) is defined by the following polynomial function. The
initial time is always defined as ¢y = 0 and the final time 7" can be modulated to impose
more or less dynamics.

5 i
t—1
§(t, w14, 71,8) = T1,4 + ;1 pi(x1,8 — x1,4) (T — 2) . (10.77)

The coefficients p; of the polynomial are obtained by imposing the following initial and
final conditions:

g(t(]a xl,Awrl,B) = xl,Au §<t07 xl,Awrl,B) = 07 §<t07xT,A7'r1,B) = 07 (1078)

(T, x1,4,018) =118 &(T, ria,21.8) =0, &T,x14,218)=0.

The order of the polynomial function is set at five but other orders can be used. Higher
orders allow one to have greater control over the behaviour. The order five is selected
because it yields a sufficiently smooth behaviour.

The reference signal uses most of the pendulum’s angular space. In section [10.2.3 it
was stated that the pendulum can swing in the interval £75°. The reference signal is
defined with an amplitude range of £60°. The constant values are defined at 0°, +30°
and 60°.

During one cycle of the reference trajectory, the pendulum’s states are measured

through an encoder. The states of each motor and the amount of current being applied
to each motor are measured. The currents are proportional to the forces within each
cable and are used to compute the reaction force in the pendulum’s axis.
To analyse the effect of stiffness control on the joint reaction force, the system was set
to track the desired path using three settings of the moment arms. First, the path was
tracked using nominal values of the moment-arms. Second, the path was tracked using
moment-arms that were underestimated by 20%. Third, and last, the path was tracked
using moment-arms that were 20% overestimated.
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Figure 10.12: Illustration of the reference signal that the system was programmed to track.

10.4 Results

The cable-driven pendulum’s ability to follow the desired path z; = v.(t), using the joint
stiffness control strategy is presented in terms of the measured joint angles 1) and velocity
¢ (Fig. MUI3). A large stiffness value K, = 60 and a long transition time T = 4 yield
very good tracking of the reference signal. Once the stationary value is achieved, the
static error 1. — 9 is less than 0.2° at the maximum angle of 60°. A smaller stiffness
value K, = 20 and a shorter transition time (7" = 1) yield poor tracking of the reference
signal. The static error around the stationary value is less than 5° at the maximum angle

of 60°.

Pendulum Angle v [deg]
‘ " | — Reference (1)
—— Measured (closed-loop)

Pendulum Angular Velocity 1) [deg/s]

100

50

K : 60 [Nm]|, B =20 [Nms|, T'= 4 [5]

5 10 15 20 25 30 35 40

-1
000

53 L

K, =20 [Nm], B=10 [Nms], T'=1 3]
0 5 10 15 20 25 30 35 40 0 é 1‘0 1‘5 2‘0 2‘5 3‘0 3‘5 40

Time t [s] Time t [s]

Figure 10.13: Measured behaviour for trajectory tracking using stiffness and damping
values (K, B) = (60, 20), (20, 10) and transition times T = 4 [s], 1 [s]. [10-27.

The system’s ability to observe the pendulum’s state is presented in terms of the
observed states (Fig. [[0I4]). The test was run for a small stiffness value Ky = 20 and a
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Pendulum Angle v [deg] Pendulum Angular Velocity ¢ [deg/s]
T T
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. \
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Figure 10.14: Observed pendulum states over one cycle of the path 1.(t) with stiffness
and damping values: Ky =20 [Nm/, B =10 [Nms/]. The transition time was set at T =1

[s].

short transition time. The observed pendulum angle follows the measured angle quite well
considering the nature of the observer. At every change in static angle, there is a small
overshoot of the observed angle. There is a static error of less than 4° at the maximum
angle of 60° between the measured angle and the observed angle. The observed velocity
has an extremely large overshoot and does not converge to a steady state before the next
step. The observed velocity does tend towards the measured value but convergence to a
static value is not observed.

The required tensions within the cables were observed through the currents in the
motors (Fig. M0.I5). The maximum cable tensions were observed when the right/left
cables had to pull the pendulum towards them at +60° (t = 10 and t = 30 [s]). The
two outer cables were observed to pull harder than the two inner cables. Larger cable
tensions were required for faster transition times and higher stiffness values.

The effect of using over or underestimated moments-arms is a decrease or increase
in joint reaction force by the same amount (Fig. MO.I6). It was observed that a 20%
increase in moment-arms lead to a 20% decrease in joint reaction force. Vice-versa, a
20% decrease in moment-arms results in a 20% increase in joint reaction force. This
affect was most prominently observed when the cables had to pull the hardest.

10.5 Discussion

In the introduction, it was stated that osteoarthritis could be caused by an underlying
neuromuscular dysfunction. The observed cause is frequent excessive loading of the ar-
ticular cartilage leading to premature deterioration. However, the source of the excessive
loading has not been identified [16]. The neuromuscular dysfunction hypothesis results
from the following reasoning. A musculoskeletal system is a tensegrity system [188]. The
muscles are in tension and the bones are in compression. The compression results from
the muscles contracting. The contraction results from neural stimuli. Thus, the neu-
romuscular dysfunction hypothesis is that the neural stimuli are causing inappropriate
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Figure 10.15: Estimated cable tensions during one cycle of the path .(t). These tensions
are for a stiffness of Ky = 20 [Nm/, a damping factor of B = 10 [Nms/]. The transition
time was set at T =1 [s].

muscle contraction leading to excessive loads in the joints. Osteoarthritis is a neural
control problem.

The part of our nervous system controlling our musculoskeletal system is called human
motor control. Within human motor control is a mechanism called joint stiffness control
through antagonistic muscle co-contraction. Our musculature is setup such that certain
muscles act as opposites. The nervous system activates or co-contracts these muscles to
give the joints variable stiffness. The findings of this chapter show that such a mechanism
can contribute to excessive loads in the joints. The findings of this chapter are obtained
using a model of a cable-driven pendulum. Although the model is not that of a muscu-
loskeletal system, the results are relevant. Indeed, the model is mathematically identical
to a model of a musculoskeletal system. Models of cable-driven mechanisms and models
of musculoskeletal systems are based on the same set of principles.

The chapter used a simplified model of neuromuscular interactions where the nervous
system measures each muscle’s length, rate of change in length and muscle activation
level. This information was also shown to contain the state of the joints using the con-
cept of observability from control theory. Therefore, the nervous system is assumed to
have full knowledge of the dynamic state of the skeletal system |. Furthermore, it
is believed that the nervous system has a model of the musculoskeletal system M] It
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Figure 10.16: Reaction force in the pendulum rotation axis using nominal, overestimated
and underestimated moment-arms.

uses the model to predict required muscle activation levels.

Throughout this dissertation, muscle moment-arms are shown to govern the prediction of
muscle activation levels (cf. chapter[7]). The moment-arms can be obtained using the ten-
don excursion method. The moment-arms are defined as the variation in muscle length
over the variation in joint configuration. Given that both quantities are measured by
the musculoskeletal system, it is highly probable that the nervous system has a measure
of the moment-arms. Indeed, this information characterises the musculature’s ability to
actuate the skeletal system and produce movement.

Based on the hypothesis that moment-arms are measured by the nervous system, exces-
sive joint loads are produced if the moment-arms are biased. Predicted muscle activation
levels computed from biased moment-arms yield altered joint loads. Underestimated
moment-arms lead to excessive joint loads. This point was illustrated through an im-
plementation of a joint stiffness control strategy onto a physical cable-driven pendulum
system. There are many possible dysfunctions of the system that could disturb human
motor control. Biased moment-arms were selected because they yielded altered joint
loads without compromising stability. Loss of stability is not on the list of symptoms of
osteoarthritis. The insertion of delay into the control loop was tested but quickly lead to
instability.
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Finally, the results showed that the use of underestimated moment-arms produces ex-
cessive loads without producing instability. This point is important because osteoarthri-
tis does not destabilise the musculoskeletal system. Thus, a contributing factor of os-
teoarthritis could be biased information regarding the musculoskeletal system, leading
to underestimated muscle moment-arms, leading to excessive muscle forces, leading to
excessive joint forces. This point remains however an unproven conjecture.

10.6 Conclusions

The goal of this chapter was to initiate the investigation of a possible neuromuscular
dysfunction as the underlying cause of osteoarthritis. The investigation was carried out
using a model of a cable-driven pendulum that is mathematically identical to a model
of a musculoskeletal system. The presentation was set in the context of modern control
theory, using a simple model of the interactions between the musculoskeletal and nervous
systems. The investigation focused on the mechanism of joint stiffness control through
antagonistic muscle co-contraction. The results showed that joint stiffness control is a
naturally stabilising mechanism. By activating the antagonistic cables, the pendulum
is stabilised to an equilibrium point. The equilibrium point is defined by the ratio of
the activation levels. The investigation also showed that the joint’s dynamic state can be
observed through the dynamic states of the muscles. An implementation of a joint stiffness
control strategy onto a physical cable-driven pendulum showed that if the controller uses
biased information regarding the cable’s ability to actuate the system, the reaction force
in the joint is increased by a factor proportional to the bias. The use of biased information
did not however lead to instability. Therefore, joint stiffness control can contribute to
excessive joint loads through antagonistic muscle co-contraction.

The results are relevant to the subject of osteoarthritis and open the discussion on the
possible causes but does not provide a definitive answer. The next step of the investigation
should be to use a model of a musculoskeletal system such as the shoulder model presented
in this dissertation. Also an internal muscle model should be added to the shoulder model
to give it more realism.
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Chapter 11

Conclusions

Modelling musculoskeletal systems constitutes a necessary tool for understanding muscu-
loskeletal diseases and developing appropriate treatments. Models provide information on
the behaviour of musculoskeletal systems that cannot be directly observed. The develop-
ment of such models is a challenging task because of the complexity of the musculoskeletal
systems and because there is no standard validation method.

This dissertation presented a musculoskeletal model of the human shoulder. The model
is being developed for the study of osteoarthritis, the most common form of arthritis.
Osteoarthritis can be defined as a premature deterioration of the articular cartilage due
to frequent excessive loading. The development of proper treatments for osteoarthritis
requires identifying and estimating the forces in the affected articulations. Given that
the glenohumeral joint is the shoulder articulation that is most affected by osteoarthritis,
the model is being specifically designed to compute the reaction force intensity in the
shoulder joint, during quasi-static and dynamic movements of the upper limb.

Two main conclusions can be made from the work presented in this dissertation. The
first conclusion is that the reaction force in an articulation is dependent on the movement
of the articulation itself and on the movement of other articulations. The parameterisa-
tion of the shoulder’s kinematics constitutes the first critical point in estimating the force
in the glenohumeral joint. Muscle forces and joint reaction forces are related through
the laws of motion from classical mechanics. A muscle activation pattern generates a
movement of the skeletal structure and creates a reaction force in the joints. In this dis-
sertation, the kinematics are imposed and the corresponding muscle forces are estimated
by inverting the laws of rotation motion. The estimated muscle forces are used to obtain
the reaction force in the glenohumeral joint through the translational laws of motion. To
sum up, for a musculoskeletal model to successfully predict the joint reaction forces, the
kinematic model must be able to accurately reproduce the systems movement.

The second conclusion is that geometry of the muscle model must be designed by con-
sidering all the muscles together. In the real shoulder, muscles are coordinated by the
nervous system and produce together the overall result of movement and strength of our
musculoskeletal system. There have been few analysis of how to use the cable model
for representing the musculature. The one most referred to in the literature analyses

231
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muscles individually and describes how to represent muscles with large attachment sites
[197]. This constitutes the first step in constructing the model of the musculature. As a
second step, this dissertation proposes to analyse the model’s wrench-feasibility through
the moment-arms. In the model, the relation between muscle forces and movement is de-
fined by muscle moment-arms. The muscles are geometrically modelled by cables defining
moment-arms around each joint. The force of a cable multiplied by its moment-arm cre-
ates a torque at each joint that contributes with the other cable forces to the movement
of the system. A model is wrench feasible if it can generate the same set of movements
as the real system.

This leads to the third and final conclusion. The articulations of the real system are sta-
ble. Stability in this context is understood as keeping the joint reaction force directed at
the surface of the joint. In the real system the muscle-force activation patterns produce
stable joint force patterns. In the model, the estimated muscle forces should also produce
stable joint reaction forces, without using constraints. For a musculoskeletal model to
successfully predict the joint reaction force pattern, the geometric muscle model must
be able to accurately reproduce the relation between muscle-forces and movement. To
achieve stable reaction force patterns, the geometric muscle model should be designed
as a collective, considering each muscle’s contribution in relation to the others. A good
musculoskeletal model should naturally produce stable joint reaction force patterns.

11.1 Contributions

The motivation of this thesis was the construction of a musculoskeletal model of the
human shoulder. The model is based on other shoulder models found in the literature |76,
101,1170]. The main contributions of this thesis are the development of a parameterisation
of the shoulder model’s kinematics to facilitate motion planning, and the improvement
of a geometric model of the shoulder’s musculature.

e The model is constructed using classical mechanics on the hypothesis that bones
are rigid bodies, articulations are ideal mechanical joints, and muscles are massless,
frictionless cables wrapping over the bones. The model is similar to the model
constructed from the Virtual Human Project (VHP) dataset [74, [76], but uses a
modified model of the scapulothoracic contact. Two ellipsoids are used to constraint
the motion of the scapula with respect to the ribcage. The cable model representing
the muscles is built using the same framework as the VHP model. The same set of
wrapping objects are used but the number of cables can be changed. The final point
regarding the model in general is that null-space optimisation is used to estimate
the muscle forces rather than the conventional methods.

e The shoulder model is shown to be kinematically redundant. There are more inter-
nal degrees of freedom than the number of degrees of freedom of the elbow. The
shoulder model’s kinematic redundancy was solved using the modified scapulotho-
racic contact model directly. The modified contact model leads to a redefinition of
the shoulder girdle’s kinematics as a 2-3 parallel platform. Based on the parallel
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definition of the model’s kinematics, three different kinematic parameterisations
of the parallel model were defined and used to extract a set of seven independent
minimal coordinates. The coordinates considerably simplify the kinematic motion
planning procedure given their independence. Indeed, abduction in the scapular
plane was planned manually using the minimal coordinates and shown to be very
similar to the same motion measured on a real shoulder. Furthermore, the coordi-
nates are shown to be a promising new method of developing a regression model of
shoulder kinematics that could be used on other models.

e The human shoulder is overactuated. There is an infinite number of muscle acti-
vation patterns that generate the same motion. The problem of overactuation was
solved in this thesis using null-space optimisation [3, [190]. The method solves the
problem by computing an initial muscle activation pattern using a pseudo inverse
of the moment-arms matrix. The solution is then corrected to satisfy constraints
using the null-space of the moment-arm matrix. Null-space optimisation allowed
the detection of faults in the geometric muscle model. For instance, the model never
activates the anterior deltoid because the torque generated by the muscle cannot
be compensate for by the other muscles. This leads to the following conclusion:
it is insufficient to design a cable model of the shoulder’s musculature where each
muscle is considered independently. The guidelines on how to model each muscle
should be used to construct an initial cable model [197]. Once the initial model
is defined, it should be optimised to obtain the largest torque-feasible space and
thereby guarantee wrench feasibility.

e The purpose of the model is to help improve the understanding of osteoarthritis.
The general question driving the research behind the model, is whether or not
a neuromuscular disfunction is the underlying cause of osteoarthritis. This dis-
sertation initiates the discussion of neuromuscular control as a possible cause of
osteoarthritis. The mechanism of joint stiffness control through antagonistic mus-
cle co-contraction is investigated using a cable-driven pendulum. Human motor
control uses this mechanism to help stabilise our musculoskeletal system. Stability
is understood here in the sense of Lyapunov stability from modern control theory.
The use of a cable-driven pendulum is relevant to the issue in that its mathemati-
cal modelling is identical to modelling a musculoskeletal system. The investigation
showed that the mechanism is a stabilising mechanism. It also showed that our ner-
vous system measures the length and the rate of change in length of each muscle.
Through the measurements, the nervous system can observe the joint’s configura-
tion. This point was proven using the concept of observability from control theory.
Finally, the implementation of stiffness control onto a physical system showed that
bias in the moment-arms, leads to changes in the joint reaction force without loss
of stability. The evidence presented in this thesis is not fully conclusive but does
open the discussion of the possibility that osteoarthritis is caused by change in the
information regarding the muscle’s ability to actuate the system. As our bodies
age, our nervous system’s observation of the musculoskeletal system could become
biased causing excessive joint force.

e The final contribution of this thesis is the presentation of musculoskeletal shoul-
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der modelling from a technical perspective. Throughout the dissertation, elements
from theoretical robotics are used in an effort to mathematically formalise the mus-
culoskeletal modelling of the shoulder. The formalisation helped to construct the
minimal set of coordinates and helped improve the geometric muscle model. Fi-
nally, the technical details of the model are presented throughout the dissertation
in an a way to facilitate the model’s reconstruction, improvement, and testing as
part of future research work.

11.2 Future Research Directions

At present, the musculoskeletal shoulder model does not activate the anterior deltoid
muscle segment due to the moment-arm coupling; the superior part of the trapezius
cannot compensate for the moment of force created by the anterior deltoid around the
sternoclavicular joint. This issue should be addressed by reviewing the muscle wrap-
ping definitions for each muscle. Furthermore, the joint reaction force is currently being
overestimated because the wrapping constraints of certain muscles are defined as being
attached to the scapula when anatomy says they should be part of the humerus.

After improving the geometric muscle model as part of future research work, the model
should be validated. Thus far, the model has been tested for abduction in the scapular
plane. Other movements should be tested to ensure that the muscle wrappings remain
coherent, and that the model remains wrench-feasible.

In addition to addressing the current problems, future research can also work on
improving the model by adding new elements. For instance, the DSEM model considers
internal muscle behaviour and the upper limb [156]. The AnyBody model considers the
upper limb and internal muscle dynamics [49]. The AnyBody software also allows one to
include humeral head translation using force-dependent kinematics (FDK) [9].

An initial improvement should be to consider the internal behaviour of the muscles. There
are a number of models which already exist |77,195,[177, 186]. These models are mostly for
general skeletal muscles and require adaptation for each muscle in the shoulder. Including
an internal muscle model will make the bounds on the muscle forces dependent on the
configuration of the bones through the force-length behaviour. This will have the effect
of reducing the wrench-feasible space. A suggestion for future work would be to combine
the development of the internal muscle model with the development of the geometric
muscle model.

Another improvement is to include humeral head translation (HHT). Given that HHT
adds a certain complexity to the model, strategies should initially be developed on models
with reduced complexity. This will allow a more focused approach on the model of
humeral head translation. Also it will determine the importance of considering HHT in
the model. A foreseeable challenge to including HHT, is the definition of humeral head
movement. There are accurate in-vivo studies of humeral head translation but these
studies can only consider static positions due to the available measurement techniques
such as X-ray, MRI or fluoroscopy [82, 124, 140, [175]. Furthermore, mathematically
keeping the humeral head in the glenoid and obtaining movement for the model that is
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consistent with the in-vivo data will also be challenging.

Another useful future contribution would consist of including the entire upper limb into
the model. The biceps brachii has been shown to have an effect on the glenohumeral joint
[216]. Integrating the entire upper limb will also provide a model, capable of analysing
shoulder movements that are associated to more complex upper limb movements. At
present the model considers an outstretched arm.

An important direction of future research consists of using a forward dynamics ap-
proach. The forward dynamics approach has been used but is not as popular as the
inverse approach due to its complexity [144, [145, 162]. Using inverse models to estimate
the joint reaction force is restrictive in that the movement is completely imposed. The
kinematics are stiff. The only freedom is the muscle activation pattern. Also, the inverse
model approach is not ideal for incorporating elements such as HHT. As stated previously,
HHT can be included into an inverse model approach using FDK. FDK has been proven
successful in modelling joints with translation [9]. However, the drawback of using FDK
is that it is based on a number of simplifying assumptions such as small movements and
slow variation of the translational degrees of freedom. FDK also neglects friction and
uses numerical artefacts to create stiffness. These coefficients have to be set empirically.
A forward dynamics approach would require some form of run-to-run optimisation. Cur-
rent methods for such problems include real time optimisation (RTO) [34] and machine
learning [151], but one could also develop an entirely new strategy, specifically adapted for
the shoulder and non-conforming joints in general. The general idea of these approaches
is to run forward simulations and correct the activation patterns before each simulation
using an algorithm. The forward approach would include HHT but would not require
imposing a specific movement of the humeral head. Translation of the humeral head
would result from the activation pattern and be unknown a priori. Finally, a number of
such algorithms have been developed in robotics to deal with systems of high complexity
where part of the behaviour is unknown [109]. This approach was used for instance to
control the Kenshiro humanoid robot which includes a cable-driven shoulder with floating
scapula [122].
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Appendix A

Technical Details

A.1 Uniform Dilation of an Ellipsoid

In chapter [, it is stated that the scapulothoracic contact is modelled by constraining
two points to remain on the surface of two ellipsoids with common centres. This model
is almost equivalent to the model where the two points are constrained to remain at a
constant distance from the surface of a single ellipsoid. The single ellipsoid has the same
centre as the two ellipsoids but has smaller dimensions. This section proves the statement
that using a uniformly dilated ellipsoid is almost equivalent to constraining a point to
remain at a constant distance from its surface.

The single ellipsoid with smaller dimensions is assumed to be at the origin of a refer-
ence frame and aligned with its axes. The surface is defined by a quadric equation and
is parameterised by spherical coordinates (o, ().

22 .2 x = Acos(a)sin(f),
o + = + o 1=0, X(a, B) := 4 y= Bsin(a)sin(s), (A.1)
z = Ccos(f).

This ellipsoid is referred to as the original ellipsoid. The uniform dilation of an ellipsoid
by a factor D is defined by:
22 2 L2 ) { z = (A+ D) cos(a) sin(f),

Pt B Dy fowpp S0 Kol D uZ B i@, (A2

A point is constrained to remain at a constant distance D from the original ellipsoid.
The distance is defined along the normal to the original ellipsoid’s surface. The normal
to an ellipsoid’s surface is defined by:

s 9= d L sniaysin), |ﬁ||J<<C°i§‘“))2+<Snj§“)>2> (sin(ﬂ»u(“’iﬂ))z (A.3)
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The point is constrained to remain at a distance D and is defined by:

. A cos(a)sin(f) + ”n” cos(a) sin(f3),
Xp(a, B):=<{ Bsin(a)sin(3) + 2 Ty Sin(e) sin(B), (A.4)
C cos(B) + ﬁ cos(f3).

The statement is that the error between Xp(a, ) and Xp(a, B) is negligible. The
difference vector between the two is defined by:

D cos(a) sin(3) — n” cos(a) sin(f),
Xp(a, B) — Xp(a, B) =< Dsin(a)sin(3) — B sin(a) sin(f3), (A.5)
D cos(B) — at%r cos(B).

C||7|

The norm of this vector is defined by:

IXp(a, B) = Xp(a, B)I| == \/2|!n|!2—2|!n|!g( B); (A.6)

where the function g(«, 3) is defined by:

9(a, B) = ((ﬁ) ¥ (g)) (sin(8))? + (fg)) (A7)

It can be shown that this function is bounded by:

0 < gla, B) < |1, (A8)
This inequality can be shown using the following;:
0 < (cos(a))? < |cos(a)| <1, 0 < (sin(a))? < |sin(a)| < 1. (A9)
The error function is bounded by:
0< | Xp(a, B) — Xpla = /2(1 =)D < v2D. (A.10)
In the shoulder model, the values of A, B, C' and D are such that:
max (|| Xp(o, 8) — Xp(a, B)||) ~ 1% min(A, B, C). (A.11)

The difference of using two uniformly dilated ellipsoids rather than a single ellipsoid and

fixed distances is negligible (Fig. [A.T]).
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Figure A.1: [llustration of the error between the two scapulothoracic models. The error
1s plotted on the original ribcage ellipsoid and defined relative to the original ellipsoid’s
smallest dimension. The error is plotted in %.

A.2 Sphere-Ellipsoid Intersection

A.2.1 Quadric Surfaces

Quadrics are surfaces resulting from a locus of zeros of a polynomial equation. More
specifically, a quadric is an n-dimensional hyper surface in an n+1-dimensional space.
Representing any point in space by a vector & = (1,...,2,.1)7, every point on the
surface is solution to an equation of the form

F'Cx 428" % +1r =0, (A.12)

where C is an + 1 x n+ 1 matrix, ¢ an+ 1 x 1 vector and r a constant. This section
focuses on quadrics which are two-dimensional surfaces in three-dimensional Euclidean
space.

A generalised two-dimensional quadric surface .% is defined by the following equation

B 0511’% + 042333 + 0531’% + 20041 T9 + 200513 + . ..
20[6,1‘21‘3 + 20(71‘1 + 20(81‘2 + 20(91‘3 + a9 = 0. (A].g)
In homogeneous coordinates 7, = (77, w)T = (z1, w9, w3, w)T, the same equation is
expressed by:
B ale + 042363 + a3x§ + 204110 + . ..
20511 T3 + 206T2T3 + 207w + 2072w + 2073w + apw? = 0. (A.14)
where w = 1. In matrix form, the quadric surface equation has the form:
a1 a4 a5 Qy

B fZth = (.Tl Ty X3 1)T (gé gg gg gg) (SL’l To I3 1) =0. (A15)

Qa7 ag g 10
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The matrix C is a 4 x 4 symmetric matrix having the following structure

Cq | gq
c=(- - -, (A.16)
6T | 10

where C, is a 3 x 3 matrix and ¢; a 3 x 1 vector.

The generalised form of a quadric is not always simple to work with. If the quadric is
real (eigenvalues of C, are all real), it is preferable to have the quadric in canonical form
(Tab. A.1). In canonical form, the equation of a real quadric can in general be written
by:

S 1yt + Goys + Gsys + 2agys + g = 0. (A.17)

The canonical coordinate vector is 7, = (47, 1)T = (y1, vo, y3, 1)T. To pass from this
frame to the frame in which the general quadric is defined, a homogeneous transformation
is used.

h=Hg=|—- — —| (A.18)
o | 1

where R is the 3 x 3 rotation matrix and d the 3 x 1 translation vector. Inserting this
equation into ([A.4) leads to:

T T 7 T =,
rRTc,R RTc,d+ R
T e _ ToxT vpr _ =T —1 7‘ q7+ “a T Cq b ~ A.19
zp, CZp, = 3, H CHY)p = 4, o T o . Yh = Yp &9 | Uny .
dTCqR+ G, R | dTCqd+2d7 ¢ + ag -
0

0 &g | @

where Cq is diagonal with the coefficients @y, &y and &3 along the diagonal. The coeffi-
cients &; (i = 1,2, 3) are the eigenvalues of the matrix C, and C,. The columns of the
rotation matrix R are the eigenvectors associated to the eigenvalues.

To find the coefficient &g and the translation vector d one can solve the following
problem

0
RTC,d+R%¢ - | 0
g =0. (A.20)
dTCyd + 2d"E, + arp — g
Given an initial estimate o = (d&, (é)o)” the solution to the problem is given by the
following recursion

-1

|0 0
R'C, | 0 R'C.d, +R"¢,— [ 0
[l = fi — I (Go)e/ . (A21)

2qu;€ —+ 25(] | 0 d_Z:qu_;g —+ 2(1_%5(] + a9 — 5(10
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The value of @y is linked to the type of quadric. The type can be determined using the
following three scalars.

p = N° positive eigenvalues of C,

n = N° negative eigenvalues of C,
(A.22)

An exhaustive list is given in [127]. The quadric can also be normalised with respect to

|&10]. The normalised canonical form is defined as

s1 = det(C,) s9 = det(C) s3 = |p—nl, {

Q2

[a3)

- Qq

Qg
c Ty =
a3y

« ~
P 22420 b 1=0,  dy#0. (A.23)
| o |Go

2 4

Table A.1: List of non-degenerate and degenerate (d) real quadric surfaces in normalised
canonical form.

Non-degenerate Intrinsic Equations Degenerate Intrinsic Equations
Ellipsoid @? a4V o +*7 /2 =1 | Cone (d)(r) 2% a4V Jya =% J 2 =0
Elliptic Spheroid @? /a2 4v? /a2 427 2 =1 Circular Cone (d)(r) @? /a2 v /a2 — /e2=0
Sphere @? /a2 +v° /a2 +#° /42 =1 | Elliptic Cylinder (d)(r) @? /a2 +v? Jp2 =1
Elliptic paraboiloid a? /a2 4v? Jp2 =% /2 =0 Circular Cylinder (d)(r) z2/az 4v? a2 =1
Circular paraboloid a? /a2 4v? [a2 =% /2=0 Hyperbolic Cylinder (d)(r) a? /a2 —v? /p2 =1
Hyperbolic paraboloid (r) a? /a2 —v? Jp2 =% /2 =0 Parabolic Cylinder (d)(r) 22 +2ay =0
Hyperboloid (1-sheet) (r) a? /a2 4v? /b2 — [z =1

Hyperboloid (2-sheet) a? /a2 v /b2 —=* Je2 =—1

A.2.2 Ruled Surfaces

A ruled surface .7, is a surface for which at every point S on the surface, there is a
line [ passing through S which lies entirely on .#.. Such surfaces can be described
parametrically in terms of two parameters u and v. Any point S on the surface is defined
using the general form

S(u,v) = §=plu) +vq(u), (A.24)

where p(u) and ¢(u) are 3 x 1 vector functions of w. If the ruled surface is a quadric, it
is easier to find the vectors p(u) and ¢(u) for the canonical form and then to transform
using ([A.8). The quadrics that are also ruled surfaces are denoted with an (r) in table
A.1. The two most fundamental ruled quadrics are the hyperbolic paraboloid and the
hyperbolic cylinder. These two surfaces are fundamental because they also parameterise
the intersection between two quadrics.

The hyperbolic paraboloid described in the previous section (Tab. A.1) has the fol-
lowing parameterisation

4(u+v) 2y e
S(u,v) : §= é(u—v) = éu +o|-2]. (A.25)

4uv 0 4u




242 A.2. SPHERE-ELLIPSOID INTERSECTION

This parameterisation comes from the change of variable

Y=Y + Y, Yo = Y1 — Yo, ys = 4Y1Ys, with Yy =u, Yy=wv. (A.20)

The hyperbolic cylinder, described in the previous section (Tab. A.1), has the param-
eterisation

a sinh(u) asinh(u) 0
S(u,v) : §= [ bcosh(u) | = | beosh(u) | +v 0] . (A.27)
v 0 1

Note that both parameterisations correspond to the normalised canonical forms of the
quadric surfaces to which they correspond, respectively:

Yi_ Y2 Y _ i _ Y% 4 _ (A.28)

Z-axis

X-axis

Figure A.2: Example of the hyperbolic paraboloid with lines representing the ruled surface
parameterisation.
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A.2.3 Quadric-Quadric Intersections

The intersection between two quadrics defines a locus of points. The locus in question is
one-dimensional, i.e. parameterised by a single variable. There exists an algorithm for
constructing the intersection between two quadrics based on the following fundamental
theorem [128].

Theorem 27. Given two real quadric surfaces . and 7 defined by the matrices S and
T. There exists a real ruled quadric surface 2 belonging to the pencil E = S+ \T.
Where the quadric matrices are define by:

arararar (S| & 5 s b o, T, | &
S: as ag as ag frnd :T - — s T: 65 66 ﬁg ﬁg = _; - - y <A29)
a7 ag ag a1 54 | a0 87 Bs Bo Bio ty | Bio

The intersection between the two quadrics is defined by:

I(w) : 7= plu)£+/o(u)(u), (A.30)

where u is the same parameter used to define the ruled quadric. The ruled quadric
is called the parameterisation surface. The ruled surface in question can be found by
searching for the quadric with the following property

det(S, + A\T,) = det(E,) = 0. (A.31)
The solutions to (A.20) are given as the roots of the following polynomial
P(N) =psA° + p2 X+ piA +po =0, (A.32)
p3 = B1B2B3 + 2848685 — BEB2 — B1B3 — 155,
p2 = a1 (B85 — B3) + a2(B8183 — B2) + az(B182 — BI) + 224 (B585 — B3Ba) + 205(84B6 — BaBs) + 206(B4B5 — B156)5

p1 =By (a2as — af) + Ba(cras — o) + Bz(cnaa — af) + 2B, (asce — asaa) + 285 (cuas — azas) + 28g(cuas — arag),

po = a1azas + 2auapas — azal — ajad — aas.
The solution X of interest is identified by testing the conditions set fourth in [127].
s1 =det(E,) =0, sy = det(E) > 0, s3=|p—mn|=0. (A.33)

Once the parameterisation quadric is found, it is identified as either a hyperbolic paraboloid
or a hyperbolic cylinder based on the structure of the matrix E. The intersection in par-
ticular is computed by the following procedure.

The ruled quadric is defined by:
E(u,v) = &= pu) +vq(u) = R(p(u) + vg(w) +d,  plu) =Rj(w) +d.  qlu) =Rgu). (A.34)

This parameterisation must also satisfy the quadric equation for the surface ., for certain
values of u and v. Inserting (A.23]) into the quadric equation associated to . leads to
the following expression:

(i) + 0G5 ()" - (i) + () = 0.
= (@ @-S-@w) v +2 (@ (W) S Fulw) v+ 5 (w) - S filu) 0. (A35)




244 A.2. SPHERE-ELLIPSOID INTERSECTION

This equation gives the expression for v(u):

(@S B ) £/ (@l ) - S By )" — (@ () -8 @y (u)) BE () - S - Bu () (A.36)

(Qh( ) S'(lh(u))

This equation also defines the interval for u. The possible values for u, must be such
that:

sy = ()-8 5(w) — (F(w)-S Glw)) Fw) S i) >0, (A3D

Thus, the bounds on u are obtained by finding the zeros of s(u). Finally, the parameter-
isation of the intersection is defined by:

-

I(u) : 7=plu)— <qh (u>'s'ﬁh(u>) - s(u

- - 7(u) + 7 (u), u€u_sui].  (A.38)
(@w-s-aw)" !

The parameter u is parameterised by a normalised coordinate i € [0, 1]. The parameter-
isation is defined by

_Jou A 2p(uy —u) if0<p<0.5
uln) = { uy —2(p—0.5)(uy —u_) f05<pu<1 (A.39)

This presentation of the quadric-quadric intersection problem is general and does not
consider a number of important cases which can arise. For a more complete presentation,
the reader is referred to [210].

A.2.4 Sphere-Ellipsoid Intersection

This section presents the particular case of the intersection between a sphere S? and an
ellipsoid E2. The intersection between a sphere centred at C; of radius p, and an ellipsoid
centred at C, with axial dimensions e,, e, and e, is a simple example of the quadric-
quadric intersection problem. The quadric matrices S and T are partially diagonal and

can be written by:
a1 0 0 af ﬁOlBO 8 57
_ [ 0azo0 _
s=(Twai). T=(1%a0) (A0

a7 ag g 10 [—}7 68 59 [—}10

Thus, the polynomial of X is given by
9<)\) = (513233))\3 -+ (18283 + a2B183 +033132))\2 -+ (B1agasz + Baajas +,6’3a1a2))\ —+ (a1agagz) =— O <A41)

Because the sphere is independent of the orientation, the problem can always be solved
in the ellipsoid reference frame and thus R = I. The ruled quadric is given by

—

E(u,v) : €= plu) +vq(u) +d. (A.42)
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The coordinates can always be arranged such that the implicit equations have the form
given by (A7) for the hyperbolic paraboloid and hyperbolic cylinder. The ruled quadric
surface is defined by:

Ozl-i-;\ﬁl 0 0 Oé7+5\ﬂ7

N woe 0 astrBy 0 A8
— — 0 v2 0 738 — (5] 2 . agtAbg
E S + AT 0 0 v3 79 0 0 a3+AB3 ag+ABy : (A43)
Y7 Y8 Y9 Y10

a7+AB7 as+ABs ag+ABg a10+AB1g

If the ruled surface is a hyperbolic cylinder: v3 = 79 = 0. If the ruled surface is a hy-
perbolic paraboloid: v3 = 0. Once the type of ruled surface is known, the coefficients are
identified and the translation vector d is defined.

For the hyperbolic cylinder, the following relation is defined :
Y12% + Yoy® + 2772 + 298y + Y10 = du(x — 20)* + G2 (y — yo)® + @ = 0. (A.44)
Where the coeflicients are

ar =M, Qp = 72,
297 = —2aq 79 295 = —2dYo,

Y10 = dﬂ% + 542?/3 +
For the hyperbolic paraboloid, the following relation is defined :
YT 4 Yoy 4 2978 + 278y + 2792 + 10 = G (T —20) 2 + Aoy —10)? +ds(z—20) = 0. (A.45)
Where the coefficients are

oy = 71, Qg = Y2, Qg = 279
2’)/7 = —25(11’0 2’78 - _2&23/07

~ 9 ~ 9 ~
Y10 = 1Ty + QlYy — Q320

These expressions are used to build the intersection.
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Appendix B

Shoulder Model Numerical Dataset

B.1 Bony Landmarks and Rotation Matrices

This appendix provides the numerical dataset necessary to construct the musculoskeletal
shoulder model described in chapter Bl The dataset was obtained from MRI scans of
an adult male’s right shoulder. The numerical data was extracted using the Amira 3D
Software for Life Sciences.

The MATALB/ISG reference frame is defined by the following vectors. These vectors
are parallel to the unit vectors of the inertial frame Ry, but are defined in the Amira
frame R,.
Koo =5 (C7+17) = § (T8 + PX),
0o = (67 _ fJ) x 1 ((fg + PTX) _ fJ) , (B.1)
ja,o = ka,O X ia,O-

The rotation matrix to transform points in the Amira frame into points in the MAT-

LAB/ISG frame is defined by:

Ra,o — (Iia,() ja,() ka,() > ) (B2)

lia,0ll” la,oll” ka0l
The homogeneous transformation from the Amira frame into the MATLAB/ISG inertial
frame is defined by:
_( Ry —Reo-1J
T ) o3

Using the transformed points, the clavicle, scapula and humerus reference frames are
constructed using the following definitions. The unit vectors are in the inertial frame.
The clavicle frame vectors in the inertial frame are defined by:

i1 = ACy — SCy,
Jor=(0 0 1) xigy, (B.4)
ko1 =g X jO,l'
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The rotation matrix to transform points in the clavicle frame R; into points in the inertial

frame Ry is defined by:

Rl,O _ (| iog  Joa ko,1 ) . (B5)

lio,1 17 N30, 117 liko,1
The scapula frame vectors in the inertial frame are defined by:
i072 — A_AAO - T_S(]
. L \T
Jos = i0a X (A[O _ TSO> (B.6)
koo =ig2 X jo,2

The rotation matrix to transform points in the clavicle frame R, into points in the inertial

frame Ry is defined by:

Ry, = ( io2  Jog2 ko,2 ) . (B7)

, llio,2[17 [ljo,2ll" IIko,z2]
The humerus frame vectors in the inertial frame are defined by:
k073 — G_HO - % (EMO —|— E_’Lo) y
jos = (G}IO _ E“L(]) x (E“LO - EMO) , (B.8)
i3 = Jjos X Ko

The rotation matrix to transform points in the humerus frame Rj3 into points in the
inertial frame Ry is defined by:

Ry = ( io,3  Jos  kogs ) (BQ)

: 0,31l 0,3l " [lko,3l

Table B.1: List of bony landmarks for constructing the shoulder kinematic model. Data
provided in the Amira 3D Software for Life Sciences frame.

Bony Landmark Initials | X [mm] Y [mm] Z [mm]
Jugular Incision 1J 74.1129 -74.8060 68.9446
Xyphoid Process PX 82.5171 -133.1130 -76.9724
T8 vertebrae T8 78.9481 -24.5985 -40.6273
CT vertebrae C7 70.5729 -35.7244 150.7640
Sternoclavicular Joint SC 52.0511 -79.0859 75.0302
Acromioclavicular Joint AC -82.1051 -30.7575 145.4510
Glenohumeral Joint GH -86.1456 -31.7209 107.6860
Humeroulnar Joint HU -103.7780 | -33.3235 -205.8640
Trigonum Spinae TS -0.9241 52.0670 121.3280
Angulus Inferior Al -6.7869 50.3866 -4.7008
Angulus Acromialis AA -104.3290 -1.0350 133.7840
Lateral Epicondyle EL -127.2850 | -54.8861 | -208.4960
Medial Epicondyle EM -80.2709 -11.7610 | -203.2320
Ellipsoid Centre E 34.06 -10.23 -60.63
Ellipsoid Dimension AE 106.39 111.48 152.00
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B.2 Mass, Intertia and Glendoid Stability

The dynamic model was constructed using the inertial data from [28] (Table B.2). The
centre of gravity of each bone is defined by:

CGoy : To1 = ST+ %Rlo (A 1) (B.10)
CGos : Ton = SCo+Rig (Acn) n %RN (A12> , (B.11)
CGos : Tos = SCo+ Rig (Ac ) + Ry (GH2> + Ry (H*Uz) . (B.12)

The humeral data is also the data for the outstretched arm.

Table B.2: List of inertial data to construct dynamic model. The data taken from [28].
The humerus data _includes the arm.

Data Type Clavicle | Scapula | Humerus (Arm)
Mass [kg] 0.156 0.704 3.67
Transverse Inertia [kgm?] 0.001 0.007 1.996
Longitudinal Inertia [kgm?] 0.003 0.007 0.309

The glenoid stability constraint is defined using the data collected from the MRI scans.
The data contains the dimensions of the glenoid ellipse (H,,, H.), the centre of the glenoid
ellipse GC' in the inertial frame but with respect to the centre of the glenohumeral joint.
The cone reference frame axes are defined by:

iy = GHy— GC,
kos = (0, 0, )T,
jo,5 = ko5 X igs,
kos =105 X Jo5-

(B.13)

The rotation matrix to transform a point in the glenoid frame into a point in the inertial
frame is defined by:

R50 ( ig,5 Jo,s ko5 ) (B.14)

’ 0,511 o 5117 lko,5 I

Table B.3: The data is provided in the thoraz/inertial reference system.

Data Type X [mm] | Y [mm] | Z [mm]
Centre of Glenoid GC -13.80 -15.50 -2.46
Suprerior/Inferior Dimension H, [mm)] 17.5
Posterior/Anterior Dimension Hy, [mm] 12.8
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B.3 Muscle Geometry and Wrapping

This section provides the geometric data necessary to construct the muscle wrapping.
The data contains the origin, the insertion and any via points of each muscle. Each
muscle has been given a trio of anchor points to construct the third order splines of the
muscle origins, insertions and via points. In the local bone frame, the spline construction

is defined by:

ﬁi,s
(W prp)s| B | ito<pu<os
DPiom
ﬁz,f 7%
Pir(p) : pinlp) = S=|"
ﬁi,s
(WP 2 p)s | Pim | iros<pu<t
Di g
Di,f

I
Njw
N

= O njojw

—%). (B.15)

0
0

oNl= N

where p is the spline parameterisation variable. Each point is defined in terms of its z-,
y-, and z-coordinates in the Amira frame. The bone reference frame R; (i = 0, 1, 2, 3)
to which the point is attached is also given.

The data contains the wrapping constraints, modelling the anatomical constraints of
the real shoulder which are either other muscles or bony structures. The constraints are
of the same type as the ones defined in [76]. The constraints are one of the following:

e None: The muscle has no wrapping constraints,
e Single: The muscle has single cylinder wrapping constraint,
e Double: The muscle has a double wrapping constraint,

e Stub: The muscle has a sphere capped cylinder wrapping constraint.

Each of the constraint types is a smooth surface. The surfaces are characterised by
a point, an orientation and a dimension. The point fixes the location of the constraint
surface with respect to the bone which it represents. The point is designated by O; ,,. The
subindex 7 is the index of the bone to which the constraint is attached. The orientation is
parameterised by a single vector Z;,,. The constraint surfaces are cylinders, the vector Z; ,,
is the cylinder axes direction vector with respect to same bone as O, ,,. The dimension D,,
is the diameter of the cylinder. For sphere capped cylinders, the half sphere is situated
in the positive z-axis direction. All the data is provided in the MATLAB frame. The
wrappings are constructed using the geometric algorithms from [75]. The D,, values have
a sign which indicates which path the muscle segment takes around the cylinder.
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Table B.4: Muscle wrapping data for constructing the muscle geometric model. Data is
provided in the Amira 3D Software for Life Sciences frame.

Subclavius Origin Ro Insertion R
Point Id X [mm] | Y [mm] | Z [mm] X [mm] Y [mm] Z [mm]
Di,s 47.3022 -21.8898 21.4841 124.6826 -8.302 8.677
Di,m 40.1071 -16.5496 14.6819 106.0602 -0.31249 6.6497
Di, f 32.8671 -11.9641 8.885 89.4372 5.0201 2.5492
Type: None
Serratus Anterior Sup. Origin Ro Insertion R
Point Id X [mm] | Y [mm] | Z [mm] X [mm] Y [mm] Z [mm]
Di,s 94.7792 -28.9257 5.9179 -121.029 2.772 -7.7555
Di,m 78.1183 -33.3803 35.5112 -119.0805 8.5437 6.9199
Di, f 65.8219 -41.8242 48.2433 -113.547 21.9331 21.7063
Type: Single Centre Ry Axis Ro
Radius: 62.4636 [mm] 78.9075 -68.7859 10.967 0.70426 0.099214 -0.70297
Serratus Anterior Mid. Origin Ro Insertion Ro
Point Id X [mm] | Y [mm] | Z [mm] X [mm] Y [mm] Z [mm]
Di,s 100.5324 -8.6176 -52.4343 | -124.7227 | 0.035524 -48.6225
Di,m 95.1886 -15.1122 -25.1971 -122.906 | -0.065892 -32.328
Di, f 92.3368 -19.8318 -4.0179 -121.6444 2.3897 -13.4542
Type: Single Centre Ry Axis Ro
Radius: 83.3324 [mm] 90.9775 -58.6028 -37.1678 0.43024 0.096155 -0.89758
Serratus Anterior Inf. Origin Ro Insertion Ro
Point Id X [mm] | Y [mm] | Z [mm] X [mm] Y [mm] Z [mm]
Di,s 114.3886 | -82.1116 | -165.5598 | -129.361 7.5023 -124.0556
Di,m 126.4075 | -24.6966 | -110.3313 | -131.0031 0.9116 -88.1316
Di, f 104.6699 -7.7682 -54.275 -126.5523 0.86269 -55.1583
Type: Single Centre Ry Axis Ro
Radius: 114.0104 [mm)] 66.9717 -55.2411 -75.9889 | -0.019976 | -0.01175 -0.99973
Trapezius C1-C6 Origin Ro Insertion R
Point Id X [mm] | Y [mm] | Z [mm] X [mm] Y [mm] Z [mm]
Di,s 17.933 -40.1305 144.999 110.4728 2.4786 12.9065
Di,m 6.9117 -54.655 130.1448 142.5331 -4.7352 13.0363
Di, f 4.4143 -69.5781 116.992 157.5417 -5.5202 7.9516
Type: Single Centre Ro Axis Ro
Radius: 65.23 [mm] 63.4174 -48.0171 130.8476 0.17043 -0.90071 0.39959
Trapezius C7 Origin Ro Insertion Ro
Point Id X [mm] | Y [mm] | Z [mm] X [mm] | Y [mm] Z [mm)]
Di,s 9.3247 -95.6367 80.1995 -45.7456 0.8996 13.1699
Di,m 9.7249 -86.2045 101.2646 -28.0669 7.2086 14.5804
Di, f 3.4617 -72.0971 113.1491 -13.8296 18.7389 12.4691
Type: Single Centre Ro Axis Ro
Radius: 76.1526 [mm] 48.4107 -55.7942 80.0767 -0.11248 0.89622 0.42911
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Trapezius T1 Origin Ro Insertion Ro
Point Id X [mm)] | Y [mm] Z [mm] X [mm] | YV [mm] | Z [mm]
Di,s 9.5704 -111.3463 35.6335 -79.9134 -11.4331 7.743
Di,m 7.7586 -106.525 56.8341 -62.1015 -6.056 11.0343
i, f 5.5539 -97.0621 78.3253 -50.1784 -0.97814 13.5338
Type: Single Centre Ro Axis Ro
Radius: 95.6832 [mm] 63.7866 -84.4989 52.4261 -0.025594 | 0.53043 0.84734
Trapezius T2-T7 Origin Ro Insertion R2
Point Id X [mm] | Y [mm] Z [mm] X [mm] | Y [mm] | Z [mm]
Di,s 4.3375 -114.3685 | -203.4799 -86.013 -12.1708 6.5964
Di,m 6.1887 -125.1353 | -91.0941 -95.9787 -8.495 -2.1346
Di, 7.4436 -117.4578 32.2477 -113.4155 -3.393 -0.42729
Type: Single Centre Ro Axis Ro
Radius: 121.5968 [mm)] 50.3929 ‘ -74.9743 ‘ -70.7722 0.012283 ‘ 0.012307 ‘ 0.99985
Levator Scapulae Origin Ro Insertion R2
Point Id X [mm] | Y [mm)] Z [mml] X [mm] | Y [mm] | Z [mm)]
Di,s 16.0717 -42.3965 166.4632 | -112.9184 17.2979 23.1744
Di,m 15.824 -50.0719 154.5936 | -117.6254 10.792 15.6349
Di, f 16.8122 -56.7843 141.4639 | -117.2106 4.8568 8.3213
Type: None
Rhomboid Minor Origin Ro Insertion Ro
Point Id X [mm] | Y [mm)] Z [mml] X [mm] | Y [mm] | Z [mm)]
Di,s 10.1598 -85.1539 101.1227 -119.332 7.178 7.618
Di,m 9.7589 -91.293 90.9366 -119.7223 | 0.62991 -2.048
i, f 9.6095 -96.2044 79.1984 -121.3933 | -0.48993 -11.5158
Type: None
Rhomboid Major T1-T2 Origin Ro Insertion R2
Point Id X [mm] | Y [mm] Z [mm] X [mm] | Y [mm] | Z [mm]
Di,s 7.7951 -100.6494 72.6624 -122.0314 | -1.3421 -16.8202
Di,m 12.0043 | -108.3404 54.4455 -124.3712 -2.7343 -38.3552
Di, 13.2638 | -114.3854 32.1064 -127.6047 | -1.1541 -65.5843
Type: Single Centre Ro Axis Ro
Radius: 90.2222 [mm] 49.2891 -79.2561 39.7921 -0.077561 | 0.21154 0.97429
Rhomboid Major T3-T4 Origin Ro Insertion R2
Point Id X [mm] | Y [mm)] Z [mml] X [mm] | Y [mm] | Z [mm)]
Di,s 16.0253 | -120.6784 | -20.5786 | -132.9776 2.8646 -122.1601
Di,m 14.735 -119.6945 5.0805 -132.0646 | -0.99899 -94.523
Di, 13.6637 | -117.1852 25.4825 -129.3213 -1.4088 -70.663
Type: Single Centre Ro Axis Ro
Radius: 90.2222 [mm] 52.2229 -88.3502 -9.6992 -0.052258 | 0.054114 0.99717
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Pectoralis Minor Origin Ro Insertion R2
Point Id X [mm)] | Y [mm] Z [mm] X [mm] Y [mm] Z [mm)]
Di,s 112.4553 1.9047 -114.5028 -33.6689 66.8144 -12.1784
Di,m 108.3519 -2.7766 -85.7049 -36.7303 63.7507 -9.9863
Di, 104.19 -11.663 -48.3304 -40.1253 60.8655 -7.3816
Type: None
Pectoralis Major Sup. Origin R1 Insertion R3
Point Id X [mm)] | Y [mm] Z [mm] X [mm] Y [mm] Z [mm)]
Di,s 6.5281 6.8431 -6.0261 6.0428 10.2123 -81.5794
Di,m 30.0086 13.1245 -4.589 5.0411 9.4042 -89.0349
Di, 53.5354 17.2967 -3.6244 3.8217 8.5626 -94.5638
Type: Single Centre Rg Axis Ro
Radius: 78.733 [mm)] 89.7779 -32.6979 -17.2779 -0.31284 0.31596 -0.89571
Pectoralis Major Mid. Origin Ro Insertion R3
Point Id X [mm)] | Y [mm] Z [mm] X [mm] Y [mm] Z [mm)]
Di,s 8.527 24.306 -78.8645 6.7832 10.2222 -68.0628
Di,m 9.7158 16.0647 -50.3474 5.727 10.3971 -75.4138
Di, 24.1675 -2.6064 -12.786 5.7225 10.2745 -83.3312
Type: Single Centre Ry Axis Ro
Radius: 103.5784 [mm)] 72.1919 -31.2906 -52.9492 | -0.0025661 0.32076 -0.94716
Pectoralis Major Inf. Origin Ro Insertion R3
Point Id X [mm)] | Y [mm] Z [mm] X [mm] Y [mm] Z [mm)]
Di,s 45.934 39.1666 -157.381 7.5278 12.1484 -52.3811
Di,m 10.9816 34.5373 -117.0259 7.0048 11.1011 -62.0383
Di, 8.7838 25.2681 -85.1756 6.6532 10.5044 -70.9866
Type: Single Centre Ro Axis Ro
Radius: 119.8136 [mm)] 65.2042 -25.25 -103.5016 0.36618 0.15146 -0.91814
Latisimuss Dorsi Thoracic Origin Ro Insertion R3
Point Id X [mm)] | Y [mm] Z [mm] X [mm] Y [mm] Z [mm)]
Di,s 10.6486 | -127.1927 | -59.9564 6.2547 10.1442 -81.9018
Di,m 8.025 -125.1166 | -121.7227 6.1941 10.4861 -77.1875
Di, 5.3463 -122.0054 | -173.2486 5.6998 10.404 -70.9403
Type: Double Centre Ro Axis Ro
Radius: 126.8796 [mm)] 66.287 ‘ -75.6991 ‘ -117.425 0.064623 ‘ -0.03431 ‘ 0.99732
Centre R3 Axis R3
Radius: 27.2296 [mm] -5.1088 ‘ -2.0566 ‘ -75.6967 0.019975 ‘ 0.067257 ‘ -0.99754
Latisimuss Dorsi Lumbar Origin Ro Insertion R3
Point Id X [mm] | Y [mm)] Z [mm] X [mm)] Y [mm] Z [mm)]
Di,s 16.6142 -92.133 -303.7379 7.1407 11.6001 -56.8227
Di,m 12.0451 -107.6165 | -240.7004 6.2475 11.0229 -62.8968
Di, f 5.1454 -121.5951 | -186.0512 5.6569 10.0836 -68.0006
Type: Double Centre Ro Axis Ro
Radius: 144.3066 [mm)] 78.1611 ‘ -42.8298 ‘ -240.6841 | -0.075133 ‘ -0.11952 ‘ 0.98999
Centre R3 Axis Rg3
Radius: 27.2296 [mm] -6.9135 ‘ -2.3851 ‘ -63.8543 0.1204 ‘ -0.0078034 ‘ -0.99269
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Latisimuss Dorsi Iliac Origin Ro Insertion R3
Point Id X [mm)] | Y [mm] Z [mm] | X [mm] | Y [mm] Z [mm]
Di,s 29.3382 | -114.9391 | -371.6228 7.2496 10.6415 -43.4864
Di,m 21.7063 -96.3715 | -338.6665 6.9115 10.7837 -49.0554
i, f 17.3063 -89.5 -308.8827 7.2819 11.9251 -53.6699
Type: Double Centre Ry Axis Ro
Radius: 168.1542 [mm)] 78.0742 ‘ -36.8231 ‘ -202.3643 | -0.14768 ‘ -0.10953 ‘ 0.98295
Centre R3 Axis R3
Radius: 27.2296 [mm] -5.7337 ‘ 1.1047 ‘ -52.4145 0.038747 ‘ -0.11434 ‘ -0.99269
Anterior Deltoid Origin R; Insertion R3
Point Id X [mm] | Y [mm)] Z [mm] | X [mm] | Y [mm] Z [mm)]
Di,s 126.6803 | -0.87531 10.275 9.4509 4.0979 -129.2376
Di,m 143.604 -0.39192 7.1363 9.56 5.2246 -139.2259
Di, f 160.8002 6.0558 0.40596 9.3273 5.3664 -148.3023
Point Id Via A Via B R3
Pi,s 23.0056 13.9745 | -102.6272
Di,m 23.4855 10.2534 -102.7768
Di, f 23.3426 5.9889 -102.9171
Type: Single Centre Ro Axis R2
Radius: -73.1998 [mm] -14.6895 44.6045 -32.5017 0.73986 -0.50467 0.44489
Middle Deltoid Origin Ra Insertion Rj3
Point Id X [mm)] | Y [mm] Z [mm] | X [mm] | Y [mm] Z [mm]
Di,s -0.20406 | -0.074248 0.13482 10.2435 -0.36749 | -129.4244
Di,m 11.8236 27.4926 1.9362 10.8922 0.59153 -139.4917
i, f 1.0065 39.9286 9.0799 10.3543 1.1799 -147.7047
Point Id Via A R Via B R3
Di,s 20.1262 5.4089 -0.075243 21.9272 -7.8303 -103.3292
Di.m 19.672 32.11 0.066403 22.6176 -3.6131 -103.215
Di, f 8.8135 52.8413 2.7152 23.3555 1.4133 -103.0751
Type: Stub Centre R3 Axis R3
Radius: 55.3988 [mm] 6.9099 -3.21 0.56374 0.28815 | -0.024237 0.95728
Posterior Deltoid Origin Ra Insertion R3
Point Id X [mm)] | Y [mm] Z [mm] | X [mm] | Y [mm] Z [mm]
Di,s -69.6536 -10.1689 2.1174 9.7675 -4.5744 -129.1426
Di.m -29.2521 -3.4775 7.3322 11.1254 -3.3937 -138.7676
Di, f -3.5772 -0.92811 -0.30127 10.6649 -3.3442 -147.7837
Point Id Via A R Via B R3
Di,s -38.2118 -13.8338 -13.9952 14.3382 -20.1916 | -103.4148
Di,m -14.3091 -11.162 -6.1601 18.0168 -16.2487 | -103.4438
Di, f 9.0994 -1.4206 -8.9833 20.6761 -11.6495 | -103.4046
Type: Stub Centre R2 Axis Ro
Radius: 58.0972 [mm] 3.4356 31.7188 -25.3069 0.2912 -0.17793 0.93997
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Supraspinatus Origin Ra2 Insertion R3
Point Id X [mm] | Y [mm] | Z [mm] X [mm] Y [mm] | Z [mm)]
Di,s -92.7644 31.4612 22.0077 23.834 9.767 6.4975
Di,m -101.1358 22.9552 13.4189 25.7241 2.5645 5.9216
Di, f -104.8622 10.9751 5.223 24.4828 -5.4397 3.8368
Point Id Via A Ro2 Via B
Di,s -54.4191 40.7818 5.6817
Di,m -56.2815 27.0486 4.2737
Di, f -58.7211 13.4467 -2.6139
Type: Single Centre R3 Axis R3
Radius: 41.9158 [mm] 1.167 2.3044 2.4789 0.0013802 0.99991 0.013388
Infraspinatus Origin R Insertion R3
Point Id X [mm] | Y [mm] | Z [mm] X [mm)] Y [mm] | Z [mm]
Di,s -124.0628 -1.9184 -105.6435 9.8596 -17.645 -7.6911
Di,m -115.8308 -3.1223 -58.2159 17.373 -16.6175 0.37414
Di, f -107.9192 | 0.17217 -13.055 23.5991 -10.3027 3.044
Point Id Via A R»2 Via B
Di,s -38.4143 9.8302 -57.7836
Di,m -38.6937 3.2995 -30.2236
Di, f -35.5198 3.7126 -3.7866
Type: Stub Centre R3 Axis R3

Radius: 41.9158 [mm)] 1.0394 -0.96844 1.8502 -0.0013809 | -0.99991 | -0.013387

Subscapularis Origin R2 Insertion R3

Point Id X [mm] | Y [mm] | Z [mm] X [mm)] Y [mm] | Z [mm]
Di,s -123.4762 7.3923 -122.5987 -3.3505 20.0523 -13.5801
Di,m -116.0687 1.189 -29.0969 -4.1732 23.0766 -6.468
Di, f -103.6795 | 22.1996 7.8449 -0.21938 24.4173 | -0.067492

Point Id Via A R»2 Via B
Di,s -66.6935 26.507 -53.8117
Di,m -65.0629 28.4745 -31.1974
Di, f -66.4803 35.0349 -13.4779

Type: Stub Centre R3 Axis R3
Radius: 41.9158 [mm] | -19.6158 0.39544 -5.8439 0.0013825 0.99991 0.013387
Teres Minor Origin R2 Insertion R3

Point Id X [mm] | Y [mm] | Z [mm] X [mm] Y [mm] | Z [mm)]
Di,s -87.0304 2.9277 -98.9601 9.5286 -8.4224 -24.7259
Di,m -69.9267 6.3263 -71.0541 8.6471 -11.0262 -17.2425
Di, f -53.4579 11.6022 -54.0939 9.0415 -15.3647 | -11.0582

Point Id Via A Ro> Via B
Di,s -39.943 3.277 -82.3658
Di,m -33.9335 3.9595 -69.5523
Di, f -32.2664 3.7599 -57.2188

Type: Stub Centre R3 Axis Rs3

Radius: 41.9158 [mm)] -12.696 -1.8977 -28.0528 | -0.0013809 | -0.99991 | -0.013387
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Teres Major Origin R»> Insertion R3
Point Id X [mm] Y [mm] Z mm] | X [mm] | Y [mm] | Z [mm]
Di,s -119.7216 | -0.086785 | -124.673 -7.7406 -7.1199 -64.2176
Di,m -103.8587 1.3343 -113.6005 -5.8226 -7.5546 -52.9684
Di, f -89.3545 2.2673 -96.8496 -4.0775 -7.4641 -42.6903
Type: Single Centre R Axis Ro
Radius: -88.1642 [mm] | -70.3344 41.235 -69.2185 0.15794 0.11704 -0.98049
Coracobrachialis Origin Ra Insertion R3
Point Id X [mm] Y [mm] Z mm] | X [mm] | Y [mm] | Z [mm]
Di,s -28.9214 69.2424 -15.8828 -1.7615 6.0047 -128.974
Di,m -23.783 69.1095 -16.4699 -0.75833 7.6193 -116.4488
Di, f -20.0873 65.7181 -17.1945 -0.23017 8.135 -104.5418
Point Id Via A Via B R3
Di,s -6.9501 14.5571 -99.8291
Di,m -4.7246 11.4883 -92.895
Di, f -2.9801 8.9123 -87.2432
Type: None
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Glossary

abduction Abduction refers to a motion that pulls a structure or part away from the

midline of the body. 1T

acromioclavicular articulation The acromioclavicular articulation is the articulation
between the acromion process of the scapula and the lateral end of the clavicle (All
anatomical definitions are from Wikipedia).

acromion The acromion is a bony process on the scapula (shoulder blade). [I1]
actin Actin is a globular multi-functional protein that forms microfilaments.

adduction Adduction refers to a motion that pulls a structure or part toward the midline
of the body, or towards the midline of a limb. [I7]

afferent In the nervous system, afferent neurons carry nerve impulses from receptors or
sense organs toward the central nervous system. 201]

alpha-motor neurons Alpha motor neurons (also called alpha motoneurons), are large
lower motor neurons of the brainstem and spinal cord.

articular cartilage Articular or hyaline cartilage is cartilage that is transparent. It is
found on many joint surfaces. It is pearly bluish in color with firm consistency and
has a considerable amount of collagen.

axon An axon, also known as a nerve fibre, is a long, slender projection of a nerve cell,
or neuron, that typically conducts electrical impulses away from the neuron’s cell

body.

brachial plexus The brachial plexus is a network of nerve, running from the spine,
formed by the ventral rami of the lower four cervical nerves and first thoracic nerve
roots (C5-C8, T1).

central nervous system The central nervous system is the part of the nervous system
consisting of the brain and spinal cord. 201}

clavicle The clavicle or collarbone is a long bone that serves as a strut between the
scapula and the sternum. It makes up the anterior part of the shoulder girdle. [I1]
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connectin Connectin, is a giant protein, greater than 1 ym in length, that functions as
a molecular spring which is responsible for the passive elasticity of muscle.

conoid ligament The conoidlLigament, the posterior and medial fasciculus, is a dense
band of fibers, conical in form, with its base directed upward. [13]

coracobrachialis The coracobrachialis is the smallest of the three muscles that attach
to the coracoid process of the scapula.

coracohumeral ligament The coracohumeral ligament is a broad ligament which strength-
ens the upper part of the capsule of the shoulder joint. [I3]

coracoid process The coracoid process is a small hook-like structure on the lateral edge
of the superior anterior portion of the scapula. [I1]

coronal plane The coronal plane (also known as the frontal plane) is any vertical plane
that divides the body into ventral and dorsal (belly and back) sections.

deltoid The deltoid muscle is the muscle forming the rounded contour of the shoulder.
Anatomically, it appears to be made up of three distinct sets of fibres though
electromyography suggests that it consists of at least seven groups that can be
independently coordinated by the central nervous system.

dendrites Dendrites are the branched projections of a neuron that act to propagate
the electrochemical stimulation received from other neural cells to the cell body, or
soma, of the neuron from which the dendrites project. 201

depression Depression refers to movement in an inferior direction, the opposite of ele-
vation. [I7]

efferent In the nervous system, efferent nerves carry nerve impulses away from the
central nervous system to effectors such as muscles or glands. 20T]

elevation Elevation refers to movement in a superior direction. [I7]

extension Extension is the opposite of flexion, describing a straightening movement that
increases the angle between body parts. [I1

extrafusal muscle fibres Extrafusal muscle fibres are the skeletal standard muscle fi-
bres that are innervated by alpha motor neurons and generate tension by contract-
ing, thereby allowing for skeletal movement. They make up large mass of skeletal
(striated) muscle and are attached to bone by fibrous tissue extensions (tendons).
13

flexion Flexion describes a bending movement that decreases the angle between two
parts. [I7]

gamma-motor neurons Gamma motor neurons, also called gamma motoneurons, are
a type of lower motor neuron that take part in the process of muscle contraction,
and represent about 30% of fibres going to the muscle. 202
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glenohumeral articulation The glenohumeral articulation is the articulation between
the head of the humerus and the glenoid cavity of the scapula.

glenoid cavity The glenoid cavity is a part of the shoulder. It is a shallow pyriform,
articular surface, which is located on the lateral angle of the scapula. [11]

glenoid labrum The glenoid labrum is a fibrocartilaginous rim attached around the
margin of the glenoid cavity in the shoulder blade.

golgi tendon organs The Golgi organ senses changes in muscle tension. It is a proprio-
ceptive sensory receptor organ that is at the origins and insertion of skeletal muscle
fibres into the tendons of skeletal muscle. It provides the sensory component of the
Golgi tendon reflex.

humeral head The upper extremity of the humerus or humeral head consists of the
bone’s large rounded head joined to the body by a constricted portion called the
neck, and two eminences, the greater and lesser tubercles.

humerolulnar articulation The humeroulnar joint is part of the elbow-joint. It com-
posed of two bones, the humerus and ulna, and is the junction between the trochlear
notch of ulna and the trochlea of humerus.

humerus The humerus is a long bone in the arm or forelimb that runs from the shoulder

to the elbow. [I1]

infraspinatus The infraspinatus muscle is a thick triangular muscle, which occupies the
chief part of the infraspinatous fossa.

interneurons An interneuron is a neuron that forms a connection between other neu-
rons. Interneurons are neither motor nor sensory. 201l

intrafusal muscle fibres Intrafusal muscle fibers are skeletal muscle fibers that serve
as specialized sensory organs (proprioceptors) that detect the amount and rate
of change in length of a muscle.[1] They constitute the muscle spindle and are
innervated by two axons, one sensory and one motor.

lateral border The lateral border is the thickest of the three. It begins above at the
lower margin of the glenoid cavity, and inclines obliquely downward and backward
to the inferior angle. [Tl

lateral epicondyle The lateral epicondyle of the humerus is a small, tuberculated em-
inence, curved a little forward, and giving attachment to the radial collateral lig-
ament of the elbow-joint, and to a tendon common to the origin of the supinator
and some of the extensor muscles.

latissimus dorsi The latissimus dorsi is the larger, flat, dorso-lateral muscle on the
trunk, posterior to the arm, and partly covered by the trapezius on its median
dorsal region.
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levator scapulae The levator scapulae is a skeletal muscle situated at the back and side
of the neck. Its main function is to lift the scapula. [14]

ligaments Band of fibrous tissue connecting bones or cartilages, serving to support and
strengthen joints. [I3]

lumbar plexus The lumbar plexus is a nervous plexus in the lumbar region of the body
which forms part of the lumbosacral plexus. It is formed by the divisions of the first
four lumbar nerves (L1-L4) and from contributions of the subcostal nerve (T12),
which is the last thoracic nerve. 201]

medial border The medial border of the scapula (vertebral border, medial margin) is
the longest of the three borders, and extends from the superior to the inferior angle.

I8l

medial epicondyle The medial epicondyle of the humerus in humans is larger and more
prominent than the lateral epicondyle and is directed slightly more posteriorly in
the anatomical position.

motor neurons A motor neuron (or motoneuron) is a nerve cell (neuron) that originates
in the motor region of the cerebral cortex or the brain stem, whose cell body is
located in the spinal cord and whose fibre (axon) projects outside the spinal cord
to directly or indirectly control muscles.

muscle fascicle In anatomy, a fascicle is a bundle of skeletal muscle fibres surrounded
by perimysium, a type of connective tissue.

muscle spindles Muscle spindles are sensory receptors within the belly of a muscle
that primarily detect changes in the length of this muscle. They convey length
information to the central nervous system via sensory neurons. 202

myelin Myelin is a dielectric (electrically insulating) material that forms a layer, the
myelin sheath, usually around only the axon of a neuron.

myofibrils A myofibril is a basic rod-like unit of a muscle. Muscles are composed of
tubular cells called myocytes, also known as muscle fibres, and these cells in turn
contain many chains of myofibrils.

myosin Myosins comprise a family of ATP-dependent motor proteins and are best known
for their role in muscle contraction and their involvement in a wide range of other
eukaryotic motility processes.

neuron A neuron is an electrically excitable cell that processes and transmits information
through electrical and chemical signals. 2071

pectoralis major The pectoralis major is a thick, fan-shaped muscle, situated at the
chest (anterior) of the human body.

pectoralis minor The pectoralis minor is a thin, triangular muscle, situated at the
upper part of the chest, beneath the pectoralis major in the human body. [14]
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peripheral nervous system The peripheral nervous system (or PNS), is composed of
nerves leading to and from the central nervous system. [201]

proprioception Proprioception is the sense of the relative position of neighbouring parts
of the body and strength of effort being employed in movement.

rhomboid major The rhomboid major is a skeletal muscle on the back that connects
the scapula with the vertebrae of the spinal column. 14

rhomboid minor The rhomboid minor is a small skeletal muscle on the back that con-
nects the scapula with the vertebrae of the spinal column. [14]

sagittal plane The sagittal plane is a vertical plane which passes from anterior to pos-
terior, dividing the body into right and left halves.

scapula The scapula or shoulder blade, is the bone that connects the humerus with the
clavicle. The scapula forms the posterior located part of the shoulder girdle. [IT]

scapulo-humeral rhythm Coordinated rotational movement of the scapula that ac-
companies abduction, adduction, internal and external rotation, extension, and
flexion of the humerus; roughly a 2:1 ratio. [1§

scapulothoracic joint The scapulocostal joint (also known as the scapulothoracic joint)
is a physiological joint formed by an articulation of the anterior scapula and the
posterior thoracic rib cage. [I3]

sensory neuron Sensory neurons are nerve cells that transmit sensory information
(sight, sound, feeling, etc.). They are activated by sensory input, and send pro-
jections to other elements of the nervous system, ultimately conveying sensory in-
formation to the brain or spinal cord.

serratus anterior The serratus anterior is a muscle that originates on the surface of the
1st to 8th ribs at the side of the chest and inserts along the entire anterior length
of the medial border of the scapula. [14

shoulder girdle The pectoral girdle or shoulder girdle is the set of bones which connects
the upper limb to the axial skeleton on each side. It consists of the clavicle and
scapula. [IT]

skeletal muscles Skeletal muscle is a form of striated muscle tissue which is under the
control of the somatic nervous system; that is to say, it is voluntarily controlled. [I4]

somatic nervous system The somatic nervous system is the part of the peripheral ner-
vous system associated with the voluntary control of body movements via skeletal
muscles. 201]

sternoclavicular articulation The sternoclavicular articulation is the articulation of
the manubrium of the sternum and the first costal cartilage with the medial end of
the clavicle.
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sternum The sternum or breastbone is a long flat bony plate shaped like a capital ”T”
located anteriorly to the heart in the centre of the thorax (chest). [I1]

subclavius The subclavius is a small triangular muscle, placed between the clavicle and

the first rib.

subscapularis The subscapularis is a large triangular muscle which fills the subscapular
fossa and inserts into the lesser tubercle of the humerus and the front of the capsule
of the shoulder-joint.

supraspinatus The supraspinatus is a relatively small muscle of the upper back that
runs from the supraspinatous fossa superior of the scapula to the greater tubercle
of the humerus.

synapse In the nervous system, a synapse is a structure that permits a neuron (or nerve
cell) to pass an electrical or chemical signal to another cell. 201]

synovial articulations A synovial joint, also known as a diarthrosis, is the most com-
mon and most movable type of joint in the body of a mammal. As with most other
joints, synovial joints achieve movement at the point of contact of the articulating
bones.

tendons A tendon (or sinew) is a tough band of fibrous connective tissue that usually
connects muscle to bone and is capable of withstanding tension. [I4]

teres major The teres major muscle is a muscle of the upper limb and one of seven
scapulohumeral muscles.

teres minor The teres minor is a narrow, elongated muscle of the rotator cuff.

thorax The thorax or chest is a part of the anatomy of humans, located between the
neck and the abdomen. In terms of the bones it is comprised of the ribs, sternum
and vertebrae. [I1]

transverse plane The transverse plane (also called the horizontal plane, axial plane,
or transaxial plane) is an imaginary plane that divides the body into superior and
inferior parts. It is perpendicular to the coronal and sagittal planes.

trapezius The trapezius is a large superficial muscle that extends longitudinally from
the occipital bone to the lower thoracic vertebrae and laterally to the spine of the
scapula. [I4]

ulna The ulna is one of the two long bones in the forearm, the other being the radius.
12

Z-disks A dark thin protein band to which actin filaments are attached in a striated
muscle fibre, marking the boundaries between adjacent sarcomeres.
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moment of inertia,
muscle cable model, [RT
muscle forces,
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musculoskeletal modelling, [74]

Newton’s laws of motion,

observability, [194]
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parallel mechanism,
Poinsot’s theorem,

Poisson formula, 3]

power,

principle of transmissibility,
principle of virtual power,
principle of virtual work,
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rotation matrix,

scapula, [T

scapulothoracic,
scapulothoracic contact model, [79]
screw motion,

shoulder girdle, 14l

space, 22

special orthogonal group,
spherical pair,

spherical slider pair,
stability,

state model,

states,

sternoclavicular articulation,
system,

Tait-Bryan angles,
tendon excursion method, 149
torque, 411

universal pair,
virtual displacement,

work,
wrench, (1]
wrench feasibility, [[53]
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