
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. P. Dillenbourg, président du jury
Prof. V. Kuncak, directeur de thèse

Prof. D. Marinov, rapporteur
Prof. M. Odersky, rapporteur

Prof. E. Yahav, rapporteur

Search Techniques for Code Generation

THÈSE NO 6378 (2015)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 30 JANVIER 2015

 À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE D'ANALYSE ET DE RAISONNEMENT AUTOMATISÉS

PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS

Suisse
2015

PAR

Tihomir GVERO

To Gordana and Darko. . .

Acknowledgements
First and foremost, I would like to thank my advisor Viktor Kuncak for his support, without

which this dissertation would not have been possible. Viktor is an outstanding person that

posses great knowledge, kindness and modesty and I consider myself lucky and privileged for

having the chance to work with him. I would also like to thank Viktor for teaching me many

research and personal skills, that will help me in the years to come.

I am grateful to Pierre Dillenbourg, Darko Marinov, Martin Odersky and Eran Yahav for taking

the time to serve on my thesis committee. I am aware of their busy schedules and I thank

them for their time.

Without my co-authors, parts of this dissertation would not exist. I thank Darko Marinov

for giving me opportunity to work on program testing and model checking. With Darko I

made my first steps in research and those moments I will always keep in my memory with

great gratitude, respect and happiness. Like Viktor, Darko is the person of great knowledge

and kindness. I thank him for a valuable contribution on UDITA, described in Chapter 4.

Next, I would like to thank Ruzica Piskac with whom I spent many hours solving synthesis

problems and discussing formalism and algorithms. I will never forget her cheerful nature.

I thank her for the contributions on InSynth and PolySynth, described in Chapter 2. I also

thank Milos Gligoric, young, brilliant and industrious person, with whom I worked on many

class projects during our bachelor and master studies. Our great collaboration culminated

in UDITA paper. I would also like to thank Ivan Kuraj for a great help with the InSynth’s

implementation and for the numerous hours we spend discussing the main challenges and

techniques which we can apply to make the implementation more efficient. Lastly, I would

like to thank Marcelo d’Amorim, Brett Daniel, Danny Dig, Peli de Halleux, Vilas Jagannath,

Sarfraz Khurshid, Aleksandar Milicevic, Sasa Misailovic and Nikolai Tillmann for helping me

during my PhD studies.

I thank the members of the LARA group, past or present, who made my work more enjoyable in

many different ways : Ali, Andrej, Andrew, Etienne, Eva, Emmanouil, Filip, Giuliano, Hossein,

Ivan, Mikaël, Philippe, Ravi, Ruzica, Régis, Swen, Philipp and Pierre-Emmanuel. I thank the

members of the LAMP group, including Alex, Heather, Hubert, Ingo, Iulian, Lukas, Miguel,

Manohar, Nada, Sandro, Philipp and Vlad for their help in taming Scala and its compiler, and

for the stimulating conversations. I thank Danielle Chamberlain and Yvette Gallay for their

mastery of the bureaucratic ways. I thank Fabien Salvi for keeping our technical infrastructure

i

Acknowledgements

running, and for rescuing me whenever my urge to switch to the latest technology proved

damaging.

I thank my friends Alex, Drazen and Pedja for the many great moments we have spent together.

I know that without them this would have been much tougher road. I also thank my girlfriend

Alba for giving me a lot of support and having a lot of understanding and patience with me

and my busy work schedule.

Finally, I thank my parents for their continuous support. In particular, I thank my mother that

always believed in me and my father for teaching me important life skills.

Lausanne, 14 January 2015 Tihomir Gvero

ii

Preface
What are meaningful computer programs? What is the process by which developers transform

software requirements into concrete pieces of software? The research presented in this dis-

sertation develops algorithms that automatically explore the space of meaningful pieces of

software. These tools take a description of requirements and offer to the developer a set of

programs that satisfy these requirements.

A practical way to introduce such tools is to combine them with auto-completion facility of

integrated development environments. In previous tools, auto-completion has been largely

confined to listing the methods that can be invoked on an object of a given class. Chapter 2

shows that it is possible to do much more: it presents tools that suggest to the developers

entire code fragments. A hard constraint on such code fragments is that they type check

according to the type rules of a programming language. Exploring the space of well-typed

expressions is closely related to the question of type inhabitation from type theory, and is there-

fore connected to intuitionistic theorem proving through Curry-Howard isomorphism. The

algorithms presented in this dissertation can efficiently perform theorem proving, especially

when the search space has a high degree of branching, as is the case in the presence of large

programming libraries. Another important aspect of the presented tool is that it generates

a representation of all type-correct expressions, then allows the developer to choose one of

them to be inserted into the program. Because the set of possible well-typed expressions is

often infinite, it is crucial to also automatically prioritize the expressions that are likely to be

useful to the developers. This is where the presented techniques start to incorporate statistical

and heuristic reasoning: expressions using more frequently appearing components, as well as

those more local to the current scope should be prioritized.

Chapter 3 takes the statistical reasoning much further by building a statistical model of Java

expressions, namely a probabilistic context-free grammar that refines the grammar of Java by

lexicalizing it with concrete names of methods from Java libraries, and introduces probabilities

derived from millions of files available from public software repositories. In addition to the

use of a statistical model for Java code generation, Chapter 3 presents a unique approach to

accept descriptions of the intended code fragment in the form of free-form text that mixes

English sentences and Java constructs.

This combination results in a tool that bridges an unprecedentedly large range between free-

form text input given by the user and executable Java code that the tool generates. Bridging

this gap required modifying the natural language processing tools to accept input that includes

programming language constructs. It also required robustly extracting useful information

iii

Preface

from the generated parse trees and using this information to guide the generation of Java code.

Examples shown in Chapter 3 illustrate remarkable performance of the tool in several cases.

Among other aspects, the results illustrate that the tool looks beyond the literal spelling of

words and finds methods that refer to synonyms and related words. The tool does so by

leveraging semantic relationships of WordNet, adapted to the jargon of words used in the

names of Java methods from a corpus of code.

In other cases, a cost-effective approach to generate code is to provide the developer or a test

engineer with a language in which they can describe test inputs. Chapter 4 presents such a

language, UDITA, formulated as a non-deterministic extension of Java. The work presents the

implementation of UDITA as well its evaluation in finding real-world software bugs. Given

a UDITA program, the set of all its executions is a concise description of a potentially large

set of test inputs. The chapter presents several optimizations that exponentially speed up

the enumeration of executions of UDITA programs. Among these optimizations is delaying

non-deterministic choices and avoiding isomorphisms when generating graph structures.

Thanks to these optimizations, UDITA was successful in finding real bugs in compilers, virtual

machines, and integrated development environments.

Concrete examples of tools presented in the dissertation explore different possible divisions

of tasks between the automated exploration of the space of programs and user input that

directs this exploration. In each case, the message is that there is a higher-level approach to

constructing software, with the potential to make developers more productive and focused

more on high-level design decisions as opposed to low-level coding details.

Lausanne, 13 January 2015 Viktor Kuncak

iv

Abstract
This dissertation explores techniques that synthesize and generate program fragments and test

inputs. The main goal of these techniques is to improve and support automation in program

synthesis and test input generation. This is important because performing those processes

manually is often tedious, time consuming and error prone. The main challenge that these

techniques face is exploring the search space in efficient and scalable ways.

In the first part of the dissertation, we present tools InSynth and PolySynth that interactively

synthesize code fragments. They take as input a partial program and automatically extract type

information, the desired type, and set of visible declarations. They use this input to synthesize

ranked list of expressions with the desired type. Finally, they present the expressions to a

developer in similar manner to code completions in modern IDEs. InSynth is the first tool

that uses a complete algorithm to generate expressions with first class functions and higher

order functions. We present the theoretical foundation of the InSynth problem, that is based

on type inhabitation, and the type-based backward search algorithm that solves it. PolySynth

uses type-driven, resolution based algorithm that considers polymorphic types (generics) to

generate expressions. Furthermore, the uniqueness of both tools comes from the fact that their

algorithms operate using corpus statistics. The statistics are used to steer the algorithms and

the search space exploration towards the most relevant solutions. To show InSynth’s practical

usefulness we built 50 examples based on the real word code that demonstrate proper usage

of API. To build the benchmark we randomly choose an expression in the example, remove

it and try to recover it with InSynth. The results show that InSynth can recover the expected

expression in 96% of the examples, in a short period of time.

In the second part of the dissertation we present the tool anyCode that uses natural language

input to synthesize expressions. As input it accepts English words or Java program language

constructs. This allows a developer to encode her intuition about the desired expression using

words or the expression that approximates the desired structure. Thanks to this flexibility,

anyCode can also repair broken expressions. It uses a pipeline of natural language and related-

word tools to analyze the input. This helps anyCode to identify the set of the most relevant

components and to reduce the size of search space. To further reduce the size of search space

and to create the most relevant expressions, anyCode uses two statistical models: unigram

and probabilistic context free grammar. To demonstrate the anyCode’s generation power we

write 60 examples with a text description as input, and an expected expression, that properly

uses API, as output. The results show that anyCode generates 93% of expected expressions in

v

Preface

a short period of time and that it greatly benefits from both statistical models.

Finally, in the last part of the dissertation we present UDITA, a Java-like language with sup-

port for non-determinism, which allows a user to describe test generation programs. Test

generation programs are run on a top of Java PathFinder (JPF), a popular explicit-state model

checker, that has a built-in backtracking mechanism and supports non-determinism. Using

UDITA programs, JPF generates test inputs. The first benefit of UDITA is that non-determinism

empowers a user to describe many test inputs as easily as describing a single test input. The

second benefit is that it gives a user more flexibility allowing her to describe test generation

programs by arbitrarily combining filters and generators. UDITA reduces the size of search

space using an algorithm that reduces the number of generated complex isomorphic struc-

tures and that delays non-deterministic choices. We demonstrate UDITA expressiveness and

usefulnesses by generating test programs for Java compilers, refactoring engines (in Eclipse

and NetBeans) and an early implementation of our UDITA algorithm. Using the generated

programs we manage to discover numerous bugs in those tools, including some previously

unknown.

Key words: Program Synthesis, Test Input Generation, Interactive Synthesis, Natural Language

Processing

vi

Résumé
Cette thèse explore les techniques qui synthétisent et génèrent les fragments de programmes

et les entrées de test. Le principal objectif de ces techniques est d’améliorer et de supporter

l’automation dans le programme de synthèses et la génération d’entrées de test. Cela est

important parce que l’exécution de ces processus manuellement est souvent fastidieuse, c’est

une perte de temps et source d’erreurs. Le principal défi que ces techniques doivent relever

est celui d’explorer l’espace de recherche d’une manière efficace et paramétrable.

Dans la première partie de la dissertation, nous présentons les outils InSynth et PolySynth

qui synthétisent interactivement les fragments du code. Comme entrée, ils prennent un

programme partiel et extraient automatiquement des types d’informations, le type désiré, et

l’ensemble des déclarations visibles. Ils utilisent cette entrée pour synthétiser la liste ordonnée

des expressions avec le type désiré. À la fin, ils présentent les expressions à un concepteur

d’une manière analogue pour coder les applications dans des IDE modernes. InSynth est

le premier outil qui utilise un algorithme complet pour générer des expressions avec des

fonctions de première classe et des fonctions d’ordre supérieur. Nous présentons le fondement

théorique du problème InSynth, qui est basé sur le type inhabitation, et l’algorithme basé

sur le type rétrogressif qui le résout. PolySynth utilise l’algorithme de guidage, basé sur la

résolution, qui prend en compte les types polymorphiques (génériques) pour générer des

expressions. De plus, l’unicité des deux outils provient du fait que leurs algorithmes opèrent en

utilisant les statistiques du corpus. Les statistiques sont utilisées pour diriger les algorithmes

et l’exploration de l’espace de recherche vers les solutions les plus pertinentes. Pour montrer

l’utilité pratique de InSynth, nous avons construit 50 exemples basés sur de code tiré du monde

réel qui démontrent l’utilisation appropriée d’API. Pour construire un étalon nous choisissons

au hasard une expression dans l’exemple, nous la retirons et essayons de la recouvrer au

moyen de InSynth. Les résultats démontrent que InSynth peut recouvrer l’expression attendue

dans 96% des exemples, dans un laps de temps court.

Dans la deuxième partie de la dissertation, nous présentons l’outil anyCode qui utilise l’entrée

du langage naturel pour synthétiser les expressions. Comme entrée, il accepte les mots anglais

ou les constructions du langage du programme Java. Cela permet au concepteur d’encoder

son intuition sur l’expression désirée en utilisant les mots ou l’expression qui se rapprochent

de la structure désirée. Grâce à cette flexibilité, anyCode peut aussi réparer les expressions

démontées. Il utilise le pipeline du langage naturel et les outils destinés aux mots pour analyser

l’entrée. Cela aide anyCode à identifier l’ensemble des composantes les plus pertinentes et à

vii

Preface

réduire la taille de l’espace de recherche. Pour réduire encore la taille de l’espace de recherche

et pour créer les expressions les plus pertinentes, anyCode utilise les deux modèles statistiques :

unigramme et la grammaire probabiliste hors contexte. Pour faire une démonstration du

pouvoir de la génération anyCode, nous écrivons 60 étalons avec une description textuelle

comme entrée, et une expression attendue, qui utilise adéquatement API, comme sortie. Les

résultats montrent qu’anyCode génère 93% des expressions attendues dans un laps de temps

court et qu’il tire grand profit des deux modèles statistiques.

Enfin, dans la dernière partie de la dissertation, nous présentons UDITA, un langage à la Java

qui supporte le non-déterminisme, ce qui permet à l’utilisateur de décrire des générations de

programmes de test. Des générations de programmes de test fonctionnent au-dessus de Java

PathFinder (JPF), un model checker explicite, qui possède un mécanisme interne de retour

en arrière et supporte le non-déterminisme. En utilisant les programmes UDITA, JPF génère

les entrées de test. Le premier avantage de UDITA est que le non-déterminisme autorise un

utilisateur à décrire de nombreuses entrées de test aussi facilement qu’à décrire une seule

entrée de test. Le second avantage est que cela donne à l’utilisateur plus de flexibilité qui

lui permet de décrire la génération des programmes de test en combinant arbitrairement

les filtres et les générateurs. UDITA réduit la taille de l’espace de recherche en utilisant un

algorithme qui réduit le nombre de structures générées isomorphiques complexes et qui

retarde les choix non-déterministes. Nous prouvons l’expressivité et l’utilité de UDITA en

générant les programmes de test pour les compilateurs Java, moteurs de refactoring (dans

Eclipse et NetBeans) et une application précoce de notre algorithme UDITA. En utilisant

les programmes générés nous réussissons à découvrir les nombreux bugs dans ces outils, y

compris certains inconnus auparavant.

Mots clefs : Programme de Synthèses, Génération d’Entrée de Test, Synthèse Interactive,

Traitement du Langage Naturel

viii

Contents
Acknowledgements i

Preface iii

Abstract (English/Français) v

List of figures xiii

List of tables xv

1 Introduction 1

1.1 Synthesizing and Repairing Code Fragments . 3

1.2 Test Input Generation . 6

1.3 Contributions and Outline . 8

2 Complete Completion using Types and Weights 11

2.1 Motivation . 11

2.2 Motivating Examples . 14

2.2.1 InSynth: Sequence of Streams . 14

2.2.2 InSynth: Using Higher-Order Functions . 15

2.2.3 InSynth: Using Subtyping . 16

2.2.4 PolySynth: Parametric polymorphism . 16

2.2.5 PolySynth: Using code behavior . 17

2.2.6 PolySynth: Applying user preferences . 17

2.3 Type Inhabitation Problem for Succinct Types . 18

2.3.1 Simply Typed Lambda Calculus for Deriving Terms in Long Normal Form 18

2.3.2 Succinct Types . 19

2.3.3 Succinct Patterns . 21

2.3.4 Succinct Calculus . 21

2.3.5 Soundness and Completeness of Succinct Calculus 21

2.4 Quantitative Type Inhabitation Problem . 23

2.5 Synthesis of All Terms in Long Normal Form . 24

2.5.1 Backward Search . 24

2.5.2 Main Algorithm . 25

2.5.3 Exploration phase . 26

ix

Contents

2.5.4 Pattern generation phase . 27

2.5.5 Term generation phase . 28

2.5.6 Responsiveness . 29

2.5.7 Optimizations . 31

2.6 Subtyping using Coercion Functions . 31

2.7 Evaluation of the Effectiveness of InSynth . 31

2.7.1 Implementation in Eclipse . 34

2.7.2 Creating Benchmarks . 34

2.7.3 Corpus for Computing Symbol Usage Frequencies 35

2.7.4 Platform for Experiments . 35

2.7.5 Measuring Overall Effectiveness . 36

2.8 Quantitative Inhabitation for Generics . 37

2.9 PolySynth Implementation and Evaluation . 39

2.10 Related Work . 40

2.11 Conclusions . 43

3 Synthesizing Code from Free-Form Queries 45

3.1 Motivation . 45

3.2 Examples . 48

3.2.1 Making a Backup of a File . 48

3.2.2 Invoking the Class Loader . 49

3.2.3 Creating a Temporary File . 49

3.2.4 Writing to a File . 50

3.2.5 Reading from a File . 50

3.3 System Overview . 51

3.4 Evaluation . 53

3.4.1 Benchmarks . 53

3.4.2 Threats to Validity . 56

3.5 Parsing . 56

3.5.1 Input Text Parsing . 57

3.5.2 Declaration Parsing . 58

3.6 Related WordMap: Modifying WordNet . 59

3.7 Declaration Search . 60

3.8 Synthesis . 60

3.8.1 Probabilistic Context Free Grammar Model 60

3.8.2 Partial Expression Synthesis . 62

3.9 Declaration Score . 63

3.9.1 WordGroup-Declaration Matching Score 63

3.9.2 Declaration Unigram Score . 64

3.10 Partial Expression Score . 64

3.11 Constructing PCFG and Unigram Models . 65

3.12 Related Work . 65

x

Contents

3.13 Conclusions . 67

4 Test Generation through Programming in UDITA 69

4.1 Motivation . 69

4.2 Example . 72

4.3 UDITA Language . 77

4.4 Test Generation in UDITA . 79

4.4.1 Test Generation for Primitive Values . 79

4.4.2 Test Generation for Linked Structures . 80

4.4.3 Benefits of Object Pools . 84

4.5 Evaluation . 84

4.5.1 Black-Box Testing . 85

4.5.2 White-Box Testing . 88

4.6 Related Work . 90

4.7 Conclusions . 92

5 Conclusions 93

A Appendix 97

A.1 InSynth Algorithm Completeness Proof . 97

Bibliography 109

Curriculum Vitae 111

xi

List of Figures
2.1 InSynth suggesting five highest-ranked well-typed expressions synthesized from

declarations visible at a given program point . 14

2.2 Rules for deriving lambda terms in long normal form 19

2.3 Calculus rules for deriving succinct patterns . 21

2.4 The function RCN constructs lambda terms in long normal form up to given

depth d, invoking the auxiliary functions CL and Select. 22

2.5 The algorithm that generates all terms with a given type τo and an environment

Γo . 25

2.6 Type reachability rules. 26

2.7 The algorithm that explores the search space. 27

2.8 Pattern synthesis rules. 27

2.9 The algorithm that generates patterns. 28

2.10 A function that constructs the best N lambda terms in long normal form. . . . 30

2.11 Rules for Generic Types used by Our Algorithm 37

2.12 The Search Algorithm for Quantiative Inhabitation for Generic Types 38

2.13 Basic algorithm for synthesizing code snippets 40

3.1 After the user inserts text input, anyCode suggests five highest-ranked well-typed

expressions that it synthesized for this input. 48

3.2 anyCode system overview. The offline components run only once and for all.

The online components run as part of the Eclipse plugin. 52

3.3 The high level description of online portion of anyCode. 52

3.4 Natural language semantic graph for the input from Table 3.3. 58

4.1 A representation of inheritance graphs . 73

4.2 Filtering approach for inheritance graphs . 73

4.3 Examples of bounded-exhaustive generation . 74

4.4 Generating approach for inheritance graphs . 75

4.5 InferGenericType bug in Eclipse: when the refactoring is applied on the input program

(left), Eclipse incorrectly infers the type of A.m.l as List<List<List>>, which does

not match the return type of A.m . 76

xiii

List of Figures

4.6 UseSupertypeWherePossible bug in Eclipse: when the refactoring is applied on A, the re-

turn type of A.m is incorrectly changed to C instead of displaying a warning or suggesting

changing the return type to B . 77

4.7 Basic operations for object pools . 77

4.8 UDITA interface for generators and some example generators 77

4.9 Eager implementation of object pools . 80

4.10 Delayed execution for object pools: data structures, getAny, getNew 82

4.11 Picking a concrete object for symbolic variable of object pool in delayed execution . . 83

4.12 Enumeration of structures satisfying their invariants (“o.o.m.” means “out of memory”) 85

4.13 Comparing ASTGen and UDITA . 87

4.14 Refactorings tested and bugs found . 87

4.15 Generators for testing JPF; bugs in parentheses were found in an older JPF version

(revision 954) . 88

4.16 Testing the remove method . 89

4.17 Time taken and structures explored to find the first bug in remove/put methods of red-

black tree. “timeout” denotes time over 1 hour. “filter” denotes using purely filtering;

“f/g” denotes combined filtering/generating style. UDITA requires bounds; “1–s” for N

denotes the generation of all trees of sizes from 1 to s, where s is the smallest size that

reveals the bug. Pex can also work without bounds (denoted “filter 1-*”). 89

xiv

List of Tables
2.1 Weights for names appearing in declarations. We found these values to work

well in practice, but the quality of results is not highly sensitive to the precise

values of parameters. 23

2.2 Results of measuring overall effectiveness (part 1). The first 4 columns denote

the ordinal and name of a benchmark, size of the desired snippet (in terms of

number of declarations: with coercion function accounted/only visible) and

the initial number of declarations seen at the invocation point. The subsequent

columns denote the rank at which the desired snippet was found and (averaged)

execution times in milliseconds for the algorithm with no weights, with weight

but without use of input statistics, and with weights and input statistics (with

the distribution of execution time between the engine and reconstruction parts).

The last two columns show execution time for checking provability using the

Imogen and fCube provers. 32

2.3 Results of measuring overall effectiveness (part 2). The first 4 columns denote

the ordinal and name of a benchmark, size of the desired snippet (in terms of

number of declarations: with coercion function accounted/only visible) and

the initial number of declarations seen at the invocation point. The subsequent

columns denote the rank at which the desired snippet was found and (averaged)

execution times in milliseconds for the algorithm with no weights, with weight

but without use of input statistics, and with weights and input statistics (with

the distribution of execution time between the engine and reconstruction parts).

The last two columns show execution time for checking provability using the

Imogen and fCube provers. 33

2.4 Scala open-source projects used for the corpus extraction. 35

3.1 The table that shows the results of the comparison of the different anyCode

configurations with and without unigram and PCFG models (part 1). 54

3.2 The table that shows the results of the comparison of the different anyCode

configurations with and without unigram and PCFG models (part 2). 55

3.3 Phases of parsing an example input sentence. 57

xv

1 Introduction

In this dissertation we present guided techniques that automatically construct and enumerate

distinct structures and make program synthesis and test input generation more effective

and efficient. Before we proceed, we will introduce a few terms. First, program synthesis

is a technique that automatically generates a program or a program fragment from a given

specification. Second, automated test input generation is a technique that automatically gen-

erates a set of test inputs from a given description. Finally, a guided technique is a technique

that is directed by an external entity which can be either a user or a statistical model. The

goal of the specification or the description is to describe the search space a system needs to

explore to generate relevant programs, program fragments or test inputs. However, the search

space is often very large and the main challenge that the systems face is efficient search space

exploration. In this dissertation we describe our tools that use a specification or a description

to automatically synthesize and generate test inputs, programs and program fragments. The

tools employ techniques that efficiently explore the search space by narrowing, pruning and

reducing it to generate the most interesting outputs.

Program synthesis is often defined as a method that automatically constructs a program from a

high-level specification. The specification is usually written explicitly in a language that raises

the level of abstraction closer to the language of requirements. Frequently, it is used to describe

what the desired program should perform [55, 57, 84, 85], in contrast to imperative code that

describes how the program is executed. This gives a power to a programmer to choose between

an explicit specification and imperative code when encoding and solving a problem. This is

important, because some programming problems are easier to express using a specification

and others using imperative code. In contrast to explicitly written specification, the implicit

specification is automatically extracted from the structure of the partial program. The implicit

specification is very convenient for capturing the system properties that are important for

synthesizing program fragments [47, 65, 80, 82, 88]. The program fragment synthesis generates

code that fills in holes in a given partial program, using available information about the

structure of the program. The information is automatically extracted using rules that depend

on a domain where the synthesis is applied. For instance, if the domain is expression synthesis,

1

Chapter 1. Introduction

the goal of extraction is to collect all visible declarations in scope of a given program hole.

The collected declarations represent the implicit specification and are used to define space

of relevant expressions that can fill in the hole. Furthermore, the implicit specification can

be combined (strengthened) with the explicit specification. This is done for two reasons: (1)

to encode developers intuition, additional knowledge, about the desired expression, and (2)

to narrow and speed up the search space exploration. For instance, to encode knowledge, a

developer may want to explicitly specify a desired expression type, an approximate structure

of the desired expression or a set of words that will appear in the expression.

In contrast to the goal of program synthesis, the goal of software testing is evaluation of a sys-

tem or its components with the intent to find whether they satisfy the specified requirements

or not. Software testing is a widely used technique in the industrial software development

process. It includes system or component code execution to identify errors or missing require-

ments. However, executing the code is not simple because the system and the components

often need input supply. Therefore, to execute and test them, one needs to create test inputs.

Moreover, it is desirable to create test inputs that allow exploring different execution scenarios

of the code. This is important because maximizing the number of different test inputs min-

imizes the chance of missing a potential bug in the component. Creating these test inputs

manually is challenging, slow and error prone. Therefore, the tools that automate the test

input generation are important. As input they take a description that describes a set of test

inputs. The description can be explicit, written explicitly by a user, or implicit, automatically

extracted from code under test. A user can write an explicit description using a declarative

or an imperative style or the combination of the two. On the other hand, techniques like

symbolic [24, 54] and concolic execution [20, 26, 32, 44, 75, 83, 90] are used to extract an implicit

description. They collect conditions along execution paths, in code under test, to create the

implicit description. The implicit description is a formula that captures relations among the

inputs. The techniques automatically extract the formula and solve it for the inputs. However,

sometime these techniques need to be guided by the explicit description [53], to generate

complex test inputs. This is an example of the mixed explicit and implicit description. In this

context an explicit declaration is used for the same two reasons as an explicit specification in

program synthesis: (1) to encode additional knowledge about a domain, and (2) to narrow

and speed up the search space exploration.

Test input generation can be used to generate code (to test programming language tools like

compilers, interpreters and refactoring engines) and to generate other forms of structures data.

Therefore, a test input is a more general term than a program and a program fragment. Also,

test input generation systems often generate code fragments that initialize and set primitive

or complex data test inputs.

The point where the two often differ is quantity, order and priority of generated output. As

mentioned, the goal of test input generation is to systematically test a component and thus

generate many test inputs that will achieve desired coverage. All test inputs work together to

meet this goal. However, the challenge is to find those interesting test inputs given a fairly

2

1.1. Synthesizing and Repairing Code Fragments

small amount of time, because there are other parts of the software life cycle besides software

testing that are equally important and also need to be executed. In contrast to test input

generation, the goal of program synthesis is to generate a few programs or program fragments

that satisfy a specification. Moreover, often one program or fragment is desired, although

many can satisfy the specification. Therefore, a program synthesis tool needs to identify the

best program or program fragment. To do so, it usually requires additional ranking models,

for example, statistical. The tool then uses the model to estimate the quality of the generated

code. Like test input generation tools, program synthesis tools often need to synthesize code

in a short period of time. The requirement comes from the fact that a synthesis tool must

produce desired code automatically before a developer can do it manually.

Program synthesis and test input generation techniques are the two topics of this dissertation,

and in the following sections we will outline in more detail the contributions of each.

1.1 Synthesizing and Repairing Code Fragments

In this section we motivate and introduce three tools: InSynth, PolySynth and anyCode that

generate code fragments. Moreover, anyCode is able to repair code fragments. We also

introduce the related work and the techniques we implement and include in these tools.

To speed up production and build more reliable software a developer usually solves a task

by using existing components. The attractiveness of using existing components comes from

the fact that they are usually very well written by experienced developers, and are often very

reliable, tested and verified. Among other important things, they often represent the best

solution in terms of performance. Sometimes developers use them to quickly build prototypes

and test the feasibility of new ideas. However, besides all these advantages, the main problem

represents a familiarity with their protocol. Namely, components are often shipped as a part

of a library and an application programming interface (API). Often, each library and API follow

a different protocol. To use them properly, a developer needs to know what components are

suitable for a given task and how to combine them such that they run in a desired manner. In

other words, a user needs to be familiar with a component and a protocol specification. There

are several ways to obtain the specification: (1) by searching and reading API documentation,

(2) by searching, comprehending and using examples that demonstrate the proper component

usage, and (3) by combining components into code, running the code and observing the code

execution.

There are several tools that try to automate these approaches. Prospector [65] is a pioneering

tool that employs a graph search to synthesize chains of declaration calls. As input it takes

two types: a desired (expected) type and a receiver (object) type. The intuition is that a

developer often knows the desired type of the expression she needs, as well as the receiver

type. To efficiently traverse the search space, Prospector uses a precomputed graph, whose

nodes are types. An edge connects two types if one is a return and the other a receiver type

of an API declaration. Prospector uses a shortest path algorithm to find the best chains. It

3

Chapter 1. Introduction

generates the chain of declaration calls that can be directly fit into context, thanks to the

context type information and the receiver object that is integrated into the chain. However, if

the declarations, in the chain, need arguments, a developer needs to invoke Prospector a few

times to complete the code.

Furthermore, we are today witnessing a massive popularity of the on-line repository host

services such as GitHub [5], BitBucket [4], SourceForge [1]. These services allow developers to

keep and share their projects. A lot of content in these repositories is publicly available and

they are becoming an excellent sources of code examples that can help developers understand

APIs.

PARSEWeb [88] and XSnippet [82] are synthesis tools that use statistics extracted from reposi-

tories of existing Java code. The tools use queries as input to search for code examples in the

repositories. The returned examples are not cleaned and usually do not adapt to the context

because they include unnecessary code. The tools use length and usage frequency of the code

examples to rank them. In addition, they also rank the examples using the similarity of their

enclosing context with the invocation context.

The three tools that we have briefly introduced come with advantages and drawbacks. Prospec-

tor synthesizes expressions that may directly fit into the context, but it often generates irrele-

vant expressions because it does not employ usage statistics when ranking the expressions.

On the other hand, PARSEWeb and XSnippet use the statistics to rank solutions, but do not

fit them into context. An excellent example of a tool that combines the two advantages is

SLANG [80]. It uses repositories to build statistical model based on n-gram, a model often

used in natural language tools. SLANG uses context information with the model to complete a

partial program and properly fit the code fragments.

In this dissertation we propose the tool InSynth that, like SLANG, combines the two advantages:

it uses the statistics from the code corpus and builds the expressions that fits into context.

Moreover, it is the first tool with a complete algorithm that generates expressions with first class

functions and higher order functions, features of the popular programming languages like Java,

C#, Scala and Python. As input InSynth takes a desired type and a set of automatically extracted

declarations in scope, visible from the place where InSynth was invoked. As output InSynth

produces a ranked list of expressions with the desired type. In other words, the desired type

and the declarations are the specification InSynth uses to synthesize the expressions. Unlike

Prospector, that takes two types, InSynth requires simpler input and less intervention from

a user. Moreover, the InSynth algorithm generates more complex expressions than the ones

generated by Prospector. Namely, unlike Prospector that generates a chain of declaration calls,

we generate a complete expression, with all declaration arguments. To rank solutions InSynth

uses a declaration usage frequency and a novel metric that takes into account the declaration

proximity to the invocation place. InSynth uses two metric to calculate declaration priorities. It

uses a weights mechanism to implement the declaration prioritization. Because InSynth works

in interactive environment it embeds an algorithm that effectively and efficiently generates

4

1.1. Synthesizing and Repairing Code Fragments

expressions in short period of time (usually in less that half a second). The algorithm consists of

the two phases: (1) the reduction of the size of search space and (2) the expression construction.

The reduction is done by combining a backward search strategy, a succinct type representation

and a declaration priority search. The backward search reduces the size of search space by

considering only declarations reachable from the desired type. Further, the succinct type

representation treats the duplicate argument types as a single argument type. Consequently,

this reduces the search space because we explore the space only once per all duplicates. Finally,

the declaration priority search steers and accelerates the algorithm towards better solutions.

The result of the reduction phase is the finite graph that encodes all possible expressions

with the desired type that can be constructed in the search space. The construction phase

uses the graph to produce N best expressions. As an intermediate result it produces partial

expressions. It follows the graph to unfold the partial expression arguments until they become

full expressions. While unfolding the arguments the construction chooses the declarations

with the highest priority. This ensures that the first N synthesized expressions have the highest

priority. In both phases, InSynth uses type-driven approach, meaning that it builds the graph

and unfolds arguments using type information to select appropriate declarations.

We additionally propose the tool PolySynth that also takes as input a desired type and a set

of visible declarations, and returns a list of ranked expressions. Unlike InSynth, it supports

polymorphic types, but has limited support for function types. It does not construct new

first class functions but uses only ones in scope, visible from the invocation place. PolySynth

synthesis algorithm is based on resolution, whose core is unification that helps the algorithm

to deal with polymorphic types. As additional input PolySynth can take a set of tests to further

filter synthesized expression. For each synthesized expression the filtering is preformed as

follows: (1) the expression is inserted into partial program, then (2) the tests are run, and (3) if

all succeed, the expression is output to a user.

Another alternative and very appealing way of expressing developers intent is by using the

natural language input. A typical example of synthesis tools that use such input is SNIFF [22].

It uses a natural language description as input and outputs a set of code examples. The code

examples are selected from the previously prepared source corpus. To select the examples

SNIFF uses an algorithm based on a keywords search. Each example is annotated with key-

words from the corresponding documentation that describes declarations in the example. To

select examples SNIFF uses the input matching score and the example usage frequency. Smart-

Synth [60] is another tool that uses a natural language text as input. It generates smartphone

automation scripts from natural language descriptions. SmartSynth uses natural language

processing (NLP) techniques to infer API components and their partial dataflow, from the

description. Then it uses a type based synthesis algorithm to construct scripts. Unlike SNIFF,

SmartSynth does not use any statistical data to select and sort the solutions. Additionally,

G. Little and R. C. Miller [62] propose a tool that translates a small number of keywords into

a valid expression. It first matches the API declarations with the keywords. Then, it selects

the ones with the best matching score and combines them to produce the expressions. Like

SmartSynth, it does not use any API statistics.

5

Chapter 1. Introduction

The usage of natural language input becomes more important knowing that a large obstacle

for beginning developers is a strict structure of a programming language. This usually includes

conforming to syntax and language typing rules. Frequently, this is tedious and frustrating

because the developer is usually familiar with the concepts that help her solve the main task,

but nevertheless she spends considerable amount of time implementing them due to the strict

rules. Moreover, we observe that a developer usually knows the approximate structure of the

desired code. When the expression that approximates the desired structure is written it often

does not meet a programming language strictness requirements. Mostly, such an expression

does not type-check, because it misses some declarations or the names of declarations are

wrongly specified. However, it often contains enough information to make code repair feasible.

This brings up the importance of the techniques that automatically repair code. If we have

tools that fix broken code, which still reflects the intended behavior, we would manage to

relieve a developer of a language bothersome rules.

Therefore, as the most flexible solution we finally propose anyCode, a tool that takes a free-

form query as input and returns a list of ranked expressions. The free-form query is a textual

input that represents a list of English words, a Java expression that approximates desired

structure or a mixture of the two. Such input allows anyCode to treat two different problems,

expression synthesis using text and code repair, as the same problem. Although, it seems

that they are different, the same algorithm that uses text to search for the top expressions

can be applied to both. The necessary step is to transform an expression that approximates a

desired structure into a list of words (text). Once textual representation is obtained we apply

a set of NLP and related-word tools to parse the text and identify a semantic structure. To

reduce the search space anyCode first uses the semantic structure to select most popular and

relevant declarations. This is done by matching the semantic structure with words that appear

in declarations. Based on the matching score and the popularity of declarations anyCode

selects the most likely ones. The popularity is determined by unigram model collected from a

corpus. In the last phase, the selected declarations are unfolded using probabilistic context

free grammar (PCFG) model that captures declaration composition information from the

corpus. By unfolding declaration arguments anyCode builds partial and full expressions. The

expressions with the highest score, based on the two statistical models, are output to a user.

Therefore, the statistical models help to find the best solutions and to guide anyCode synthesis

algorithms.

1.2 Test Input Generation

Unlike the synthesis tools and techniques we introduced in the previous section that require

little input from a user, in this section we introduce UDITA technology that requires more

input to generate complex test inputs. The reason is that synthesizing automatically complex

test inputs, like programs, is often more challenging than synthesizing expressions. Therefore,

it is desirable for a user to precisely describe the complex test inputs and thus help a system

efficiently reduce the size of search space. For this reason, UDITA includes both: a language

6

1.2. Test Input Generation

that allows a user to describe test inputs, and a test generation algorithm. Although it is less

automated, UDITA technology allows a user to generate many complex test inputs in short

period of time, which makes it useful.

It is hard and tedious to manually write test cases that achieve high code coverage. This is

mainly due to a large number of the test cases that a developer needs to write. However, testing

is important. It helps identify bugs and build a regression suite that makes an application

stable as it shifts through different versions and changes. Without testing, developing complex

applications would be impossible. Therefore, an important problem in software engineering

is automation of software testing and in particular test input generation.

Many techniques have been developed with the aim to reduce a burden of manual testing. The

examples include tools that use an explicit description of tests [16,52] or systems that extract an

implicit description using symbolic [24, 54] and concolic execution [20, 26, 32, 44, 53, 75, 83, 90].

The symbolic and concolic execution tools can handle advanced constructs of object-oriented

programs, but still struggle with testing units that as input take complex structured data, like

Java programs. Automatically handling programs of the complexity of a compiler remains

challenging for such systematic approaches. Therefore, we aim to create a system that allows

a user to encode her intuition and thus scale these systematic approaches, to overcome the

challenge.

In this dissertation we propose UDITA, a Java-like language extended with non-deterministic

constructs, that helps a user to specify test generation programs. The test generation program

is an explicit description that the UDITA algorithm uses to generate test inputs. To describe

a test generation program a user defines, uses and combines a set of generators and filters.

This simultaneously allows him to describe a set of test inputs in a flexible way and to control

the size of the search space. A UDITA program runs on a Java PathFinder (JPF), a popular

Java explicit-state model checker. JPF is implemented as a Java virtual machine (JVM) with

embedded backtracking mechanism, that supports non-determinism. We improve JPF’s

basic backtracking with a delayed choice technique that postpones a non-deterministic value

assignment to a variable until the variable is read for the first time. In addition, we introduce

an object pool abstraction that allows a user to describe complex linked data structures.

We also implement mechanism that with respect to the abstraction and the test generation

program reduces the number of isomorphic data structures. Together with the delayed choice

technique, it represents the technique we use to prune the search space. The main advantage

of UDITA is simple and concise way of describing the complex test inputs. Thanks to non-

determinism, writing a test generation program, that describes many test inputs, is as simple

as writing single Java code that describes one particular test input. In addition, UDITA can

be used both for black box and white-box testing. We used UDITA, in a black-box manner, to

generate input programs and test different versions of Java compilers, refactoring engines (in

Eclipse and NetBeans) and our implementation of the delayed-choice algorithm. Using the

input we discovered numerous bugs in the tools, including some previously unknown. We

also used UDITA, in a white-box manner, to generate complex data structures, like red black

7

Chapter 1. Introduction

trees, and to reveal bugs in broken operations over the generated structures. The results show

that UDITA manages to revel all the bugs in a short period of time.

1.3 Contributions and Outline

The rest of the dissertation is organized as follows:

• Chapter 2 presents InSynth, an interactive code synthesis tool. InSynth uses a complete

type-driven algorithm that as input takes a desired type and a set of visible declarations,

and outputs a ranked list of expressions. The algorithm is complete in a sense that

given enough time it can generate and enumerate all expressions with the desired type

using the visible declarations. To support this claim, we provide the completeness and

soundness proof of the algorithm. We build InSynth algorithm based on results regarding

the well-known type-inhabitation problem. We make it practical using declaration

priority to guide the synthesis and rank the expressions. The priority is estimated using

declaration frequency in a corpus and a declaration proximity to InSynth invocation

point. The priority of the final expressions is proportional to priorities of the containing

declarations. Finally, on a number of real-world examples we show the effectiveness

of InSynth. In addition, this chapter presents PolySynth, a tool similar to InSynth, that

includes support for polymorphic types and limited support for functions types. To

support polymorphic types PolySynth executes a resolution based algorithm that uses

unification. Unlike InSynth, in addition to a desired type, PolySynth can accept as input

a set of test cases. PolySynth uses the test cases to filter out irrelevant expressions.

• Chapter 3 describes anyCode, a tool that takes a free-form query as input and returns

a set of ranked expressions. The free-form query is a mix of a natural language input

and Java programming language constructs. This simultaneously solves two problems:

(1) synthesizing expressions from a natural language input, and (2) repairing a broken

expression. The anyCode algorithm contains three key phases. In the first phase,

anyCode employs an NLP tool pipeline to analyze the input and discover a semantic

structure. This includes our custom built map of related words based on WordNet [36],

a large lexical database of English. In the second phase, anyCode uses the semantic

structure to find and select declarations. In the third and the last phase, anyCode uses

the selected declarations to construct (partial) expressions by unfolding their arguments.

To unfold the arguments effectively anyCode uses two statistical models: unigram and

PCFG. Finally, anyCode uses the same models to rank the final expressions. In this

chapter we also show a number of examples that demonstrate effectiveness of anyCode.

• Chapter 4 describes UDITA, a Java-like language that helps a user to specify a set of test

inputs. It extends Java with non-deterministic choice points and the abstraction used to

support initialization and generation of complex linked data structures. A UDITA test

input description is executed on top of an optimized version of JPF. JPF executes the

8

1.3. Contributions and Outline

specification using built-in backtracking mechanism, that supports non-determinism,

to generate a set of test inputs. We optimized JPF by implementing delayed choice

execution that postpones the moment of a non-deterministic value assignment. We

use UDITA to write generators and filters to create programs and test inputs for Java

compilers, refactoring engines and JPF itself. Additionally, we use it to generate complex

data structures, like red black trees, to test the different operations applied to those

structures. We demonstrate that UDITA can be effectively and efficiently used for both

black-box and white-box testing.

• Chapter 5 concludes the dissertation and highlights selected future work directions.

9

2 Complete Completion using Types
and Weights

Developing modern software typically involves composing functionality from existing libraries.

This task is difficult because libraries may expose many methods to the developer. To help

developers in such scenarios, we present tools and techniques that synthesize and suggest

valid expressions of a given type at a given program point.

We first describe the tool InSynth that as a base technique uses type inhabitation for lambda

calculus terms in long normal form. We introduce a succinct representation for type judge-

ments that merges types into equivalence classes to reduce the search space, then reconstructs

any desired number of solutions on demand. Furthermore, we introduce a method to rank

solutions based on weights derived from a corpus of code. We implemented InSynth and

deployed it as a plugin for the Eclipse IDE for Scala. We show that the techniques we incorpo-

rated greatly increase the effectiveness of the approach. Our evaluation benchmarks are code

examples from programming practice; we make them available for future comparisons.

We additionally describe the tool PolySynth that applies theorem proving technology to synthe-

size code fragments that use given library functions. To determine candidate code fragments,

our approach takes into account polymorphic type constraints as well as test cases. PolySynth

interactively displays a ranked list of suggested code fragments that are appropriate for the

current program point. We have found PolySynth to be useful for synthesizing code fragments

for common programming tasks, and we believe it is a good platform for exploring software

synthesis techniques.

2.1 Motivation

Libraries are one of the biggest assets for today’s software developers. Useful libraries often

evolve into complex application programming interfaces (APIs) with a large number of classes

and methods. It can be difficult for a developer to start using such APIs productively, even

for simple tasks. Existing Integrated Development Environments (IDEs) help developers to

use APIs by providing code completion functionality. For example, an IDE can offer a list of

11

Chapter 2. Complete Completion using Types and Weights

applicable members to a given receiver object, extracted by finding the declared type of the

object. Eclipse [40] and IntelliJ [10] recommend methods applicable to an object, and allow

the developer to fill in additional method arguments. Such completion typically considers

one step of computation. IntelliJ can additionally compose simple method sequences to form

a type-correct expression, but requires both the receiver object as well as assistance from the

developer to fill in the arguments. These efforts suggest a general direction for improving

modern IDEs: introduce the ability to synthesize entire type-correct code fragments and offer

them as suggestions to the developer.

In this chapter we describe InSynth and PolySynth, tools for automated synthesis of code

snippets. The tools generate and suggest a list of expressions that have a desired type. One

observation behind our work is that, in addition to the forward-directed completion in existing

tools, developers can benefit from a backward-directed completion. Indeed, when identifying

a computation step, the developer often has the type of a desired object in mind. We therefore

do not require the developer to indicate a starting value (such as a receiver object) explicitly.

Instead, we follow a more ambitious approach that considers all values in the current scope as

the candidate leaf values of expressions to be synthesized. Our approach therefore requires

fewer inputs than the pioneering work on the Prospector tool [65], or than the recent work of

Perelman et al. [77].

Finding a code snippet of the given type leads us directly to the type inhabitation problem:

given a desired type T , and a type environment Γ (a map from identifiers to their types), find

an expression e of this type T . Formally, find e such that Γ ` e : T . In our deployment, the

tools compute Γ from the position of the cursor in the editor buffer. It similarly looks up T by

examining the declared type appearing left of the cursor in the editor. The goal of the tools is

to find an expression e, and insert it at the current program point, so that the overall program

type checks. When there are multiple solutions, the tools prompt the developer to select one,

much like in simpler code completion scenarios.

The type inhabitation in the simply typed lambda calculus corresponds to provability in

propositional intuitionistic logic; it is decidable and PSPACE-complete [86, 93]. InSynth

embeds a version of the algorithm that is complete in the lambda calculus sense (up to αβη-

conversion): it is guaranteed to synthesize a lambda expression of the given type, if such

an expression exists. Moreover, if there are multiple solutions, it can enumerate all of them.

If there are infinitely many solutions, then the algorithm can enumerate any desired finite

prefix of the list of all solutions. Note also that each synthesized expression is a complete in

that method calls have all of their arguments synthesized. Because of all these aspects of the

algorithm we describe our technique as complete completion.

We present InSynth algorithm using a calculus of succinct types, which we tailored for efficiently

solving type inhabitation queries. The calculus computes equivalence classes of types that

reduce the search space in goal-directed search, without losing completeness. Moreover,

InSynth algorithm generates a representation of all solutions, from which it can then extract

12

2.1. Motivation

any desired finite subset of solutions.

Given a possibility of an infinite number of type inhabitants, it is natural to consider the

problem of finding the best one. To solve this problem, we introduce weights to guide the

search and rank the presented solutions. Initially we assign the weight to each type declaration.

Those weights play a crucial role in the algorithm, since they guide the search and rank the

presented solutions. The weight is defined in a way that a smaller weight indicates a more

desirable formula. To estimate the initial weights of declarations we leverage 1) the lexical

nesting structure, with closer declarations having lower weight, and 2) implicit statistical

information from a corpus of code, with more frequently occurring declarations having smaller

weight, and thus being preferred. In addition, we used a corpus of open-source Java and Scala

projects as well as the standard Scala library to collect the usage statistics for the initial weights

of declarations.

We implemented our tool, InSynth, within the Scala Eclipse plugin. Our experience shows fast

response times as well as a high quality of the offered suggestions, even in the presence of

thousands of candidate API calls. We evaluated InSynth on a set of 50 benchmarks constructed

from examples found on the Web, written to illustrate API usage, as well as examples from

larger projects. To estimate the interactive nature of InSynth, we measured the time needed

to synthesize the expected snippet. The running times of InSynth were always a fraction of

a second. In the great majority of cases we found that the expected snippets were returned

among the top dozen solutions.

Furthermore, we evaluated a number of techniques deployed in final version of InSynth,

and found that all of them are important for obtaining good results. We also observed that,

even for checking existence of terms InSynth outperforms recent propositional intuitionistic

provers [37, 71] on our benchmarks. Our overall experience suggests that InSynth is effective

in providing help to developers.

Additionally we present the tool PolySynth, that similarly to InSynth, takes the desired type

as input and returns a list of ranked expressions, using the algorithm that consider generic

types. The support for generic types is a fundamental generalization compared to previous

tools, which handled only ground types. With generic types, a finite set of declarations will

generate an infinite set of possible values, and the synthesis of a value of a given type becomes

undecidable. PolySynth therefore encodes the synthesis problem in first-order logic. This

encoding has the property that a value of the desired type can be built from functions of given

types iff there exists a proof for the corresponding theorem in first-order logic. It is therefore

related to known connections between proof theory and type theory. In type-theoretic terms,

PolySynth attempts to check whether there exists a term of a given type in a given polymorphic

type environment. If such terms exist, the goal of PolySynth is to produce a finite subset of

them, ranked according to some criterion.

PolySynth implements a custom resolution-based algorithm to find multiple proofs represent-

ing candidate code fragments. The use of resolution is related to the traditional deductive

13

Chapter 2. Complete Completion using Types and Weights

program synthesis [66], but our approach attempts to derive code fragments by using type in-

formation instead of the code itself. Like InSynth, PolySynth uses declaration weights to guide

the algorithm and to rank the expressions. As a post-processing step, PolySynth filters out the

candidate code fragments that crash the program, or that violate assertions or postconditions.

This functionality incorporates input/output behavior [50], but uses it mostly to improve the

precision of the primary mechanism, the type-driven synthesis. We have found PolySynth to

be fast enough for interactive use and helpful in synthesizing meaningful code fragments.

2.2 Motivating Examples

In this section we illustrate functionalities of InSynth and PolySynth using six examples. The

first three examples illustrate usage of InSynth. The first example is taken from the online

repository of Java API usage samples http://www.java2s.com/. The second example is a

real-world fragment of the code base of the Scala IDE for Eclipse, http://scala-ide.org/, and

requires invoking a higher-order function. For these two examples, the original code imports

only declarations from a few specific classes; to make the problems more challenging and

illustrate the task that a programmer faces, we import all declarations from packages where

those classes reside. The third example illustrates that InSynth supports subtyping. The last

three examples illustrate usage of PolySynth. Using those examples we demonstrate support

for polymorphic types, and usage of test case and user preferences to filter out irrelevant

expressions.

Figure 2.1: InSynth suggesting five highest-ranked well-typed expressions synthesized from
declarations visible at a given program point

2.2.1 InSynth: Sequence of Streams

In this example the goal is to create a SequenceInputStream object, which is a concatenation of

two streams. Suppose that the developer has the code shown in the Eclipse editor in Figure 2.1.

If she invokes InSynth at the program point indicated by the cursor, in a fraction of a second

InSynth displays the ranked list of five expressions. Seeing the list, the developer can decide

that e.g. the second expression in the list matches their intention, and select it to be inserted

14

http://www.java2s.com/
http://scala-ide.org/

2.2. Motivating Examples

into the editor buffer.

This example illustrates that InSynth only needs the current program context, and does not

require additional information from the developer. InSynth is able to use both imported values

(such as the constructors in this example) and locally declared ones (such as body and sig).

InSynth supports methods with multiple arguments and synthesizes expressions for each

argument. In this example InSynth loads over 3000 declarations from the context, including

local and imported values, and finds the expected solution in less than 250 milliseconds.

The effectiveness of InSynth is characterized by both scalability to many declarations and

the quality of the returned suggestions. InSynth ranks the resulting expressions according

to the weights and selects the ones with the lowest weight. The weights of expressions and

types guide the final ranking and also make the search itself more goal-directed and effective.

InSynth derives weights from a corpus of declarations, assigning lower weight to declarations

appearing more frequently, and therefore favoring their appearance in the suggested fragments

over more exotic declarations.

2.2.2 InSynth: Using Higher-Order Functions

We demonstrate the generation of expressions with higher-order functions on real code from

the Scala IDE project:

import scala.tools.eclipse.javaelements._

import scala.collection.mutable._

trait TypeTreeTraverser {

val global: tools.nsc.Global

import global._

class TreeWrapper(tree: Tree) {

def �lter(p: Tree => Boolean): List[Tree] = {

val ft:FilterTypeTreeTraverser =

ft.traverse(tree)

ft.hits.toList

}

}

}

The example shows how a developer should properly check if a Scala AST tree satisfies a given

property. In the code, the tree is an argument of the class TreeWrapper, whereas the property p

is an input of the method �lter. The property p is a predicate function that takes the tree and

returns true if the tree satisfies it. In order to properly use p inside �lter, the developer first

needs to create an object of the type FilterTypeTreeTraverser. If the developer calls InSynth at

the place , the tool offers several expressions, and the one ranked first turns out to be precisely

the one found in the original code, namely

new FilterTypeTreeTraverser(var1 => p(var1))

15

Chapter 2. Complete Completion using Types and Weights

The constructor FilterTypeTreeTraverser is a higher-order function that takes as input another

function, in this case p. In this example, InSynth loads over 4000 initial declarations and finds

the snippets in less than 300 milliseconds.

2.2.3 InSynth: Using Subtyping

The next example illustrates a situation often encountered when using java.awt: implementing

a getter method that returns a layout of an object Panel stored in a class Drawing. To implement

such a method, we use code of the following form.

import java.awt._

class Drawing(panel:Panel) {

def getLayout:LayoutManager =

}

Note that handling this example requires support for subtyping, because the type declarations

are given by the following code.

class Panel extends Container with Accessible { ... }

class Container extends Component {

...

def getLayout():LayoutManager = { ... }

}

The Scala compiler has access to the information about all supertypes of all types in a given

scope. InSynth supports subtyping and, in 426 milliseconds, returns a number of solutions

among which the second one is the desired expression panel.getLayout(). While doing so, it

examines 4965 declarations.

For more experience with InSynth, we encourage the reader to download it from:

http://lara.epfl.ch/w/insynth

The rest of the chapter describes a formalization of the problem that InSynth solves as well

as the algorithms we designed to solve it. We then describe the implementation and the

evaluation, provide a survey of related efforts, and conclude.

2.2.4 PolySynth: Parametric polymorphism

We next illustrate the support of parametric polymorphism in PolySynth. Consider the stan-

dard higher-order function map that applies a given function to each element of the list.

Assume that the map function is in the scope. Further assume that we wish to define a method

that takes as arguments a function from integers to strings and a list of strings, and returns a

list of strings.

16

http://lara.epfl.ch/w/insynth

2.2. Motivating Examples

def map[A,B](f:A ⇒ B, l:List[A]):List[B] = { ... }

def stringConcat(lst:List[String]):String = { ... }

def printInts(intList:List[Int], prn:Int ⇒ String):String =

PolySynth returns stringConcat(map[Int,String](prn, intList)) as a result, instantiating poly-

morphic definition of map and composing it with stringConcat. PolySynth efficiently handles

polymorphic types through resolution and unification.

2.2.5 PolySynth: Using code behavior

The next example shows how PolySynth applies testing to discard those snippets that would

make code inconsistent.

class Mode(mode:String) class File(name:String, val state:Mode)

object FileManager {

private �nal val WRITE:Mode = new Mode("write")

private �nal val READ:Mode = new Mode("read")

def openForReading(name:String):File =

ensuring { result => result.state == READ}

}

object Tests { FileManager.openForReading("book.txt") }

The Scala object FileManager contains methods for opening files either for reading or for

writing. If it were based only on types, PolySynth would return both new File(name,WRITE)

and new File(name,READ). However, PolySynth also checks run-time method contracts (pre-

and post-conditions) and verifies whether each of the returned snippets passes the test cases

with them. Because of postconditions requiring that the file is open for reading, PolySynth

discards the snippet new File(name,WRITE) and returns only new File(name,READ).

2.2.6 PolySynth: Applying user preferences

The last example demonstrates one way in which a developer can influence the ranking of the

returned solutions. We consider the following functionality for managing calendar events.

private val events:List[Event] = List.empty[Event]

def reserve(user:User, date:Date):Event = { ... }

def getEvent(user:User, date:Date):Event = { ... }

def remove(user:User, date:Date):Event =

Assume that a user wishes to obtain a code snippet for remove. In general, PolySynth ranks

the results based on the weight function. We have found that the default computation of

the weight is often adequate. Running the above example returns reserve(user,date) and

getEvent(user,date), in this order. If this order is not the preferred one, the developer can

modify it using elements of text search. To do so, the developer supplies a list of suggested

strings indicating the names of some of the methods expected to appear in the code snippet.

17

Chapter 2. Complete Completion using Types and Weights

For example, if the developer invokes PolySynth with “getEvent” as a suggestion, the ranking

of returned snippets changes, and getEvent(user,date) appears first in the list.

In the sections that follow we will describe in more detail the techniques we embed in InSynth

and PolySynth and the evaluation results they achieve. From Section 2.3 to Section 2.7 we

present InSynth and in Sections 2.8 and 2.9 we present InSynth in more detail. Finally, in

Section 2.10 we discuss related work and we conclude with Section 2.11.

2.3 Type Inhabitation Problem for Succinct Types

To answer whether there exists a code snippet of a given type, our starting point is the type

inhabitation problem. In this section we establish a connection between type inhabitation

and the synthesis of code snippets.

Let T be a set of types. A type environment Γ is a finite set {x1 : τ1, . . . , xn : τn} of pairs of the

form xi : τi , where xi is a variable of a type τi ∈ T . We call the pair xi : τi a type declaration.

The type judgment, denoted by Γ` e : τ, states that from the environment Γ, we can derive

the type declaration e : τ by applying rules of some calculus. The type inhabitation problem

for a given calculus is defined as follows: given a type τ and a type environment Γ, does there

exist an expression e such that Γ` e : τ?

In the sequel we first describe type rules for the standard lambda calculus restricted to normal-

form terms. We denote the corresponding type judgment relation `λ. We then introduce

a new succinct representation of types and terms, with the corresponding type judgment

relation `c .

2.3.1 Simply Typed Lambda Calculus for Deriving Terms in Long Normal Form

As background we present relevant rules for the simply typed lambda calculus, focusing on

terms in long normal form (LNF). Let B be a set of basic types. Types are formed according to

the following syntax:

τ ::= τ→ τ | v, where v ∈ B

We denote the set of all types as τλ(B).

Let V be a set of typed variables. Typed expressions are constructed according to the following

syntax:

e ::= x |λx.e | e e, where x ∈V

Figure 2.2 shows the type derivation rules used to derive terms in long normal form. This

calculus is slightly more restrictive than the standard lambda calculus: the App rule requires

that only those functions present in the original environment Γo can be applied on terms.

18

2.3. Type Inhabitation Problem for Succinct Types

APP
(f : τ1 → . . . → τn → τ) ∈ Γo Γo `λ ei :τi , i = 1..n τ ∈ B

Γo `λ f e1 . . .en :τ

ABS
Γo ∪ {x1 :τ1, . . . , xm :τn} `λ e :τ τ ∈ B

Γo `λ λx1 . . . xm .e :τ1 → . . . → τm → τ

Figure 2.2: Rules for deriving lambda terms in long normal form

Definition 2.3.1 (Long Normal Form) A judgement Γo `λ e : τe is in long normal form if the

following holds:

• e ≡λx1 . . . xm . f e1...en , where m,n ≥ 0

• (f : ρ1 → . . . → ρn → τ) ∈ Γo , where τ ∈ B

• τe ≡ τ1 → . . . → τm → τ

• Γ′o `λ ei : ρi are in long normal form, where

Γ′o = Γo ∪ {x1 : τ1, . . . , xm : τm}

Note that m can be zero. Then, τe ≡ τ and Definition 2.3.1 reduces to the App rule. Otherwise,

if M ≡ f e1...en , then M : τ can be derived by App and λx1 . . . xm .M : τe by Abs rule.

In long normal form a variable f is followed by exactly the same number of sub-terms as the

number of arguments indicated by the type of f . As an illustration, consider f : τ1 → τ2 → τ3

and x : τ1. There is no derivation resulting in a judgement Γo `λ f x : τ2 → τ3 in long normal

form, but λy. f x y : τ2 → τ3 has a long normal form derivation.

When solving the type inhabitation problem it suffices to derive only terms in long normal

form, which restricts the search space. This does not affect the completeness of search,

because each simply-typed term can be converted to its long normal form [33].

We define the depth D of a term from a long normal form judgement as follows:

D(λx1 . . . xm .a) = 1

D(λx1 . . . xm . f e1, . . . ,en) = max(D(e1), . . . ,D(en))+1

where a and f belong to V .

2.3.2 Succinct Types

To make the search more efficient we introduce succinct types, which are types modulo iso-

morphisms of products and currying, that is, according to the Curry-Howard correspondence,

modulo commutativity, associativity, and idempotence of the intuitionistic conjunction.

19

Chapter 2. Complete Completion using Types and Weights

Definition 2.3.2 (Succinct Types) Let B be a set containing basic types. Succinct types ts are

constructed according to the grammar:

ts ::= {ts , . . . , ts} → v, where v ∈ B

We denote the set of all succinct types with ts(B), sometimes also only with ts .

A type declaration f : {t1, . . . , tn} → t is a type declaration for a function that takes arguments

of n different types and returns a value of type t . The type ;→ t plays a special role: it is a

type of a function that takes no arguments and returns a value of type t , i.e. we consider types

t and ;→ t equivalent.

Every type τ ∈ τλ(B) can be converted into a succinct type in ts(B). With σ : τλ(B)→ts(B) we

denote this conversion function. Every basic type v ∈ B becomes an element of the set of basic

succinct types, and σ(v) =;→v . We also denote ;→v only with v . Let A (arguments) and R

(return type) be two functions defined on ts(B) as follows:

A({t1, . . . , tn} → v) = {t1, . . . , tn}

R({t1, . . . , tn} → v) = v

Using A and R we define the σ function as follows:

σ(τ1 → τ2) = {σ(τ1)}∪ A(σ(τ2)) → R(σ(τ2))

In particular, for v ∈ B , a type of the form

τ1 → . . . → τn → v

which often occurs in practice, has the succinct representation

{σ(τ1), . . . ,σ(τn)} → v

Given a type environmentΓo = {x1 : τ1, . . . , xn : τn} where τi are types in the simply type lambda

calculus, we define

Γ=σ(Γo) = {σ(τ1), . . . ,σ(τn)}

It follows immediately that the conversion distributes over unions:

σ(
⋃
i∈I
Γi

o) = ⋃
i∈I

σ(Γi
o)

To demonstrate the power of the succinct representation, we provide the statistics from the

example in Figure 2.1. In this example, the original type environment with 3356 declara-

tions is reduced to the compact succinct environment with 1783 succinct types, after the σ

20

2.3. Type Inhabitation Problem for Succinct Types

transformation. This drastically reduces the search space later explored by our main algorithm.

2.3.3 Succinct Patterns

Succinct patterns have the following structure:

Γ@{t1, . . . , tn} : t

where ti ∈ ts(B), i = 1..n, and t ∈ B .

A pattern Γ@{t1, . . . , tn} : t indicates that types t1, . . . , tn are inhabited in Γ and an inhabitant of

type t can be computed from them also in Γ. They abstractly represent an application term in

lambda calculus.

Our algorithm for finding all type inhabitants works in two phases. In the first phase we derive

all succinct patterns. They can be seen as a generalization of terms, because they describe all

the ways in which a term can be computed. In the second phase we do a term reconstruction

based on the original type declarations (Γo) and the set of succinct patterns.

2.3.4 Succinct Calculus

Figure 2.3 describes the calculus for succinct types. Note that the patterns are derived only

in the App rule. The rule Abs modifies Γ – it can either reduce Γ or enlarge it, depending on

whether we are doing backward or forward reasoning.

APP
{t1, . . . , tn}→t ∈ Γ Γ`c ti , i = 1..n t ∈ B

Γ`c Γ@{t1, . . . , tn} : t
ABS

Γ∪S `c (Γ∪S)@π : t t ∈ B

Γ`c S→t

Figure 2.3: Calculus rules for deriving succinct patterns

Consider the example given at the beginning of this section and its type environment Γo =
{a : Int, f : Int → Int → Int → String}. From the type environment Γo we compute Γ = {;→
Int, {; → Int} → String} = {Int, {Int} → String}. By applying the APP rule on Int, we derive a

succinct pattern Γ@; : Int that we add to a set of derived patterns. Having a pattern for Int we

apply the Abs rule. By setting S =;, we derive Γ`c ;→Int. Finally, by applying again the APP

rule, we directly derive a pattern Γ@{Int} : String, for the String type and store it into the set of

derived patterns.

2.3.5 Soundness and Completeness of Succinct Calculus

In this section we show that the calculus in Figure 2.3 is sound and complete with respect to

synthesis of lambda terms in long normal form.

21

Chapter 2. Complete Completion using Types and Weights

We are interested in generating any desired number of expressions of a given type without

missing any expressions equivalent up to β reduction. To formulate a completeness that

captures this ability, we introduce two functions, CL and RCN, shown in Figure 2.4. These

functions describe the terms in long normal form of a desired type, up to a given depth d. They

refer directly to `c and are therefore not meant as algorithms, but as a way of expressing the

completeness of succinct representation and as specifications for the algorithms we outline in

Section 2.5.

fun CL(Γ,S→t) = {(Γ∪S)@S1 : t | (S1→t) ∈ (Γ∪S), ∀t ′ ∈ S1.Γ∪S `c t ′}
fun Select(Γo , t) := {v:τ | v:τ ∈ Γo and σ(τ) = t}

fun RCN(Γo , τ1→···→τn→v , d) :=

if (d = 0) return ;
else

S→v := σ(τ1→···→τn→v)

Γ := σ(Γo)

Γ′o := Γo ∪ {x1 : τ1, . . . , xn : τn} //x1, . . . , xn are fresh

TERMS := ;
foreach ((Γ∪S)@{t1, . . . , tm′ } : v) ∈ CL(Γ, S→v)

foreach (f : τ) ∈ Select(Γ′o , {t1, . . . , tm′ }→v)

(ρ1→···→ρm→v) := τ

if (m=0) TERMS := TERMS ∪ {λx1 . . . xn . f }

else

foreach i ← [1..m]

Ti := RCN(Γ′o , ρi , d−1)
foreach (e1, . . . ,em) ← (T1 ×·· ·×Tm)

TERMS := TERMS ∪ {λx1 . . . xn . f e1 . . .em}

return TERMS

Figure 2.4: The function RCN constructs lambda terms in long normal form up to given depth
d, invoking the auxiliary functions CL and Select.

The CL function in Figure 2.4 takes as arguments a succinct type environment Γ and a succinct

type S→t . It returns the set of all patterns (Γ∪S)@S1 : t that describe the derivation of t . The

function RCN uses the initial environment and the desired type to reconstruct lambda terms.

Additionally, RCN takes a non-negative integer d to limit the reconstruction to terms with

depth smaller or equal to d. It uses type τ1→···→τn→v to extend the environment and find

all patterns that witness inhabitation of v . We extend the environment with fresh variables

x1 : τ1, . . . , xn : τn , and use CL to find the patterns. Further, we find all declarations f with

a return type v in the extended environment. If f has a function type ρ1→···→ρm→v , we

recursively generate corresponding sub-terms with types ρ1, . . . ,ρm . Finally, we use x1, . . . , xn ,

f and sub-terms to construct terms in long normal form.

Given the functions CL and RCN we can formalize the completeness theorem: each judge-

ment in long normal form derived in the standard lambda calculus can also be derived by

reconstruction using derivations (patterns) of the succinct calculus.

22

2.4. Quantitative Type Inhabitation Problem

Theorem 2.3.3 (Soundness and Completeness) Let Γo be an original environment, e an

lambda expression, τ ∈ τλ(B) and functions RCN and D defined as above, then:

Γo `λ e : τ⇔ e ∈RCN(Γo ,τ,D(e))

We provide the proof of Theorem 2.3.3 in Appendix A.1.

2.4 Quantitative Type Inhabitation Problem

When answering the question of the type inhabitation problem, there might be many terms

having the required type τ. A question that naturally arises is how to find the “best” term, for

some adequate meaning of “best”. For this purpose we assign a weight to every term. As in

resolution-based theorem proving, a lower weight indicates a higher relevance of the term.

Using weights we extend the type inhabitation problem to the quantitative type inhabitation

problem – given a type environment Γ, a type τ and a weight function w , is τ inhabited and if

it is, return a term that has the lowest weight.

Nature of Declaration or Literal Weight
Lambda 1
Local 5
Coercion 10
Class 20
Package 25
Literal 200

Imported 215+ 785
1+ f (x)

Table 2.1: Weights for names appearing in declarations. We found these values to work well in
practice, but the quality of results is not highly sensitive to the precise values of parameters.

Let w be a function that assigns a weight (a non-negative number) to each symbol primarily

determined by:

1. the proximity to the point at which InSynth is invoked. We assume that the user prefers

a code snippet composed from values and methods defined closer to the program point

and assign the lower weight to the symbols which are declared closer. As shown in

Table 2.1, we assign the lowest weight to local symbols declared in the same method.

We assign a higher weight to symbols defined in the class where the query is initiated

and the highest weight to symbols that are only in the same package.

2. the frequency with which the symbol appears in the training data corpus, as described

in Section 2.7.3. For an imported symbol x, we determine its weight using the formula

in Table 2.1. Here f (x) is the number of occurrences of x in the corpus.

23

Chapter 2. Complete Completion using Types and Weights

We also assign a low weight to a conversion function that witnesses the subtyping relation, as

explained in Section 2.6. While we believe that our strategy is fairly reasonable, we arrived at

the particular constants via trial and error, so further improvements are likely possible.

The function w also assigns a weight to a term such that the weight of λx1 . . . xm . f e1 . . .en is

equal to the sum of weights of all elements that occur in the expression:

w(λx1 . . . xm . f e1 . . .en) =
m∑

i=1
w(xi)+w(f)+

n∑
i=1

w(ei)

We use the weight of succinct types to guide the algorithm in Figure 2.5. Given Select in Fig-

ure 2.4, the weight of a succinct type t in Γo is defined as:

w(t ,Γo) = mi n({w(f) | (f : τ) ∈ Select(Γo , t)})

Defined this way, w has two important properties. The first property is that local variables

and declarations that are defined in a user’s project have higher priority than API declarations.

The second property is that strictly non-negative weights and a weight of an expression, that

is equal to the sum of its components’ weights, allow us to build an algorithm that reaches

and constructs every possible expression, given enough time.

2.5 Synthesis of All Terms in Long Normal Form

In this section we first motivate and introduce the backward search as the core mechanism of

the algorithm, then we illustrate the algorithm and optimizations we implement in InSynth.

2.5.1 Backward Search

If we were to apply the rules in Figure 2.3 in a forward manner we could have started from

any environment in the premise(s). However, there are infinitely many such environments.

Moreover, rule Abs states that we can split Γ′ in 3|Γ′| possible ways into two subsets S and Γ,

such that Γ′ = Γ∪S. However, only some environments and splittings will lead to the final

conclusion Γi ni t `c Si ni t→ti ni t , where Γi ni t and Si ni t→ti ni t are the initial environment and

the desired type, respectively. This means we would have many unnecessary guesses and

computations, leading to the wrong conclusions.

In contrast, if we use a backward search, then we start from the conclusion Γi ni t `c Si ni t→ti ni t

in Abs rule, and use a premise to create a hypothesis that a pattern (Γi ni t ∪Si ni t)@π : ti ni t is

derivable. Further, we need to check that it is indeed derivable by applying App rule. Now,

unlike in the forward manner, thanks to the conclusion in App, we know the exact environment

and the type t of the first premise. Selecting only types in Γ that have return types t introduce

constraints on the other premises as well. The entire process is applied recursively until the

initial hypothesis is proven or disproved. However, the constraints allow us to narrow the

24

2.5. Synthesis of All Terms in Long Normal Form

search. This is the main advantage of the backward search. All this suggest that the backward

search is more efficient, revealing only the search space reachable from the initial environment

and the desired type, unlike the forward search.

To formalize the backward search we reformulate the earlier rules by splitting them into the

five new rules shown in Figures 2.6 and 2.8. One should read and apply the new rules in the

forward manner. In the following subsections we explain those rules in more detail.

2.5.2 Main Algorithm

In this section we present an algorithm based on the succinct ground calculus that we use for

finding type inhabitants. This algorithm is further used as an interactive tool for synthesizing

expression suggestions from which a developer can select a suitable expression. To be applica-

ble, such an algorithm needs to 1) generate multiple solutions, and 2) rank these solutions to

maximize the chances of returning relevant expressions to the developer.

The algorithm is illustrated in Figure 2.5. As input Synthesize takes a desired type τo , and an

environment Γo and outputs at most N terms in long normal form with a type τo . We first

transform Γo and τo byσ into a succinct environment and a type, respectively. Then we execute

the algorithm in three phases. First, Explore takes the succinct type and the environment as

input, and returns the discovered search space reachable from the desired type and the initial

environment. Next, GenerateP takes the space as input and outputs a set of patterns. Finally,

GenerateT takes patterns, Γo , τo and the integer N, and produces at most N ranked terms.

The Explore and GenerateP use succinct types to prune the search space in a light way. They

leave only a portion where declaration argument-return types conform. This helps GenerateT

to perform heavy reconstruct only when needed, returning compilable terms.

fun Synthesize(Γo , τo , N):= {

space := Explore(σ(Γo), σ(τo))

patterns := GenerateP(space)

return GenerateT(patterns, Γo , τo , N)

}

Figure 2.5: The algorithm that generates all terms with a given type τo and an environment Γo

The algorithm Synthesize represents the imperative description of RCN, in Figure 2.4. It is the

RCN version with a bound on the number of terms, N. Moreover, it uses weights to steer the

search towards useful terms. We discuss this at the end of the section. The backward search

and search driven by weights make the new algorithm effective, practical and interactive.

Synthesize produces the same set of solutions as RCN, given the same input, if we remove

bounds d and N or gradually increase them. Note that the set of solutions might be infinite.

25

Chapter 2. Complete Completion using Types and Weights

2.5.3 Exploration phase

The goal of Explore is to start from the desired succinct type and environment and gradually

explore the search space. We split the algorithm into three key steps:

1. Type reachability. Given a succinct type t and Γ we want to find all types reachable

from t . We specify this request by t ;
Γ

?. We use the request to trigger the Match rule

in Figure 2.3. By the rule, types in set S are reachable from type t , A(t) = ;, in Γ, if

(S→t) ∈ Γ holds. We denote this with reachability term, t ;
Γ

(S,Π) (later we explain what

the setΠ is).

2. Request propagation. Once we discover that types S are reachable from t , we want to

discover what types are reachable from any type t ′ ∈ S. Thus, we generate a new request

t ′ ;
Γ

?. New requests are issued with the Prop rule. In other words, we use the Prop rule

to propagate the search.

3. Environment extension. However, t can be a function type, i.e., t ≡ S′ → t ′ and S′ 6= ;.

Thus, we introduce the Strip rule that transforms a request (S → t);
Γ

? to a request t ;
Γ∪S

?.

Now, we can further use the request t ;
Γ∪S

? in the Match rule.

MATCH

t ;
Γ

? (S→t) ∈ Γ A(t) =;
t ;
Γ

(S,;)

PROP

t ;
Γ

(S,;) t ′ ∈ S

t ′ ;
Γ

?
STRIP

(S → t);
Γ

?

t ;
Γ∪S

?

Figure 2.6: Type reachability rules.

A set of reachability terms keep the information about the explored search space. Thus our

goal is to derive all such terms starting from the desired type and the environment. We next

give the detailed description of the Explore algorithm.

To initiate the Explore algorithm in Figure 2.7 we create the request (S→t);
Γ

?, where S→t is

the desired type, and Γ is the initial type environment. We put the request into a working

queue. In the loop we process one request at the time, until queue is empty. First, we use Strip

to obtain a new request t ′ ;
Γ′

? with an extended environment Γ′. Here, Strip is the function that

implements the corresponding rule, Strip in Figure 2.3. It takes request (S→t);
Γ

? and returns

new request t ;
Γ∪S

?. In the same fashion, we implement the other two functions, Match that

returns a reachability term, and Prop that returns a request. Next, by applying Match to t ′ ;
Γ′

?

and every type in Γ′ we find a set of reachability terms, found. We store the terms in the set

space. The space set represents the entire search space discovered from the desired type and

26

2.5. Synthesis of All Terms in Long Normal Form

fun Explore(Γ, S→t) := {

queue := {S→t ;
Γ

?}

visited := ;
space := ;
while(queue 6= ;) {
curr := queue.dequeue

visited := visited ∪ {curr}

t ′ ;
Γ′

? := Strip(curr)

found := {Match(t ′ ;
Γ′

?, S′→t ′) | S′→t ′ ∈ Γ′}
space := space ∪ found

newr := {Prop(t f ;
Γ f

(S f ,;), t ′) | t f ;
Γ f

(S f ,;) ∈ found and t ′ ∈ S f }

queue := queue ∪ (newr \ visited)

}

return space

}

Figure 2.7: The algorithm that explores the search space.

the initial environment. Finally, we propagate the search by issuing newr requests using the

Prop function onto found. We update queue with these requests. We additionally keep the set of

all visited requests, to avoid cycles in the exploration.

2.5.4 Pattern generation phase

In this phase we use the space explored by the Explore algorithm to create patterns. We start

from the reachability terms with inhabited types, and use them to produce patterns and new

inhabited types. We repeat the process until no new types can be inhabited.

PROD

t ;
Γ

(;,Π)

Γ@Π : t

TRANSFER

t ;
Γ

(S ∪ {S′ → t ′},Π) t ′ ;
Γ∪S′ (;,Π′)

t ;
Γ

(S,Π∪ {S′ → t ′})

Figure 2.8: Pattern synthesis rules.

Initially, we divide the search space, space, into two groups: 1) leaves that contains reachability

terms in the form t ;
Γ

(;,Π), i.e., reachability terms with inhabited types, and 2) others that

contains the remaining terms. The setΠ collects succinct types that have an inhabitant. It is

initialized by Match to an empty set. The Transfer rule, in Figure 2.8, turns t ;
Γ

(S ∪ {S′→t ′},Π)

27

Chapter 2. Complete Completion using Types and Weights

fun GenerateP(space) := {

patterns := ;
visited := ;
leaves := {x | x = t ;

Γ
(;,;) and x ∈ space}

others := space \ leaves

while (leaves 6= ;) {
t ;
Γ

(;,Π) := leaves.dequeue

visited := visited ∪ {t ;
Γ

(;,Π)}

patterns := patterns ∪ {Prod(t ;
Γ

(;,Π))}

compatible := {x | x = t ′ ;
Γ′

(S ∪ {S′ → t },Π′) and Γ = Γ′∪S′ and x ∈ others}

newt := {Transfer(x, t ;
Γ

(;,Π)) | x ∈ compatible}

newLeaves := {x | x = t ′ ;
Γ′

(;,Π′) and x ∈ newt}

others := (others \ compatible) ∪ (newt \ newLeaves)

leaves := leaves ∪ (newLeaves \ visited)

}

return patterns

}

Figure 2.9: The algorithm that generates patterns.

into t ;
Γ

(S,Π∪ {S′→t ′}) if {S′→t ′} is inhabited. We useΠ to produce a pattern by the Prod rule.

In the loop we remove one term t ;
Γ

(;,Π) from leaves to generate: 1) a pattern Γ@Π : t by the

Prod function, and 2) the newt reachability terms by the Transfer function. To perform the

latter we first calculate the set of compatible terms. Those are the reachability terms in form

t ;
Γ

(S ∪ {S′ → t ′},Π), such that Γ = Γ′∪S′ holds. Every term in compatible can be resolved with

t ;
Γ

(;,Π) by the Transfer rule. The result is the set of newt terms. These reachability terms can

be split into two groups. The first group contains terms of the form t ′ ;
Γ′

(;,Π′), that we add to

leaves. The second group contains the remaining terms and we add them to others. We also

keep the set of visited leaves in order to avoid cycles in generation.

2.5.5 Term generation phase

In Figure 2.10 we illustrate the algorithm that finds at most N lambda expressions with the

smallest weight. First, we introduce the notion of holes to define the partial expressions, and

later we describe the algorithm GenerateT.

A typed hole []h : τ is a constant [] with a name h and a type τ. Let V be a set of typed

variables, and H a set of typed holes. Partial typed expressions are constructed according to

the following syntax:

e ::= x | []h : τ |λx :τ.e | e e, where x ∈V and []h : τ ∈ H

28

2.5. Synthesis of All Terms in Long Normal Form

To derive the partial expressions in long normal form one can use the same APP and ABS

rules in Figure 2.2, where ei , i = [1..m] and e are partial types expressions. Moreover, one

can substitute all holes in a partial expression and get a new partial or complete expression,

without holes. A hole []h : τ, in a judgment Γo ` []h : τ, can be substituted only with a partial

expression e : τ, where Γo ` e : τ.

We next describe the GenerateT algorithm. We start from the desired type and original environ-

ment, follow patterns and gradually create and unfold partial expressions. During the process

we keep partial expressions in the queue. Once a partial expression becomes complete, we

store it in the set of snippets.

We use a priority queue to process partial expressions. The expressions are sorted by the weight

in ascending order. We initiate the queue with []x : τi ni t , where τi ni t is the desired type. In the

loop we process one partial expression at a time. The loop terminates either when the queue

is empty or we find N expression. First, we remove the highest ranked partial expression, exprp ,

from the priority queue. Then, we call the function �ndFirstHole, that for a given judgment

Γi ni t ` exprp finds (if it exists) a hole []h : τ1→···→τn→v and its corresponding environment Γo .

If exprp has no holes, it is a complete lambda expression, i.e., a snippet that we will output to a

user. Hence, we append it to snippets. If there is a hole in exprp we build all partial expressions

that can substitute the hole. We extend the environment and use patterns with the return

type v to find declarations f . If the declaration has function type, we build the expression

filling all arguments with fresh holes. (Note that the new holes might be substituted in a later

iteration.) For each expression exprnew p , we build a substitution that maps a name of the hole

to the expressions. We apply the substitution to substitute the hole with the new expression.

We use the function w to calculate expression weights and store them in the priority queue.

The weight of a hole is equal to zero. We find the partial expressions that replace the hole

using patterns. First we calculate a succinct type S→v and environment Γ. We expand the

environment to Γ∪S and use it with type v to find all patterns with form (Γ∪S)@S′ : v in the

pattern set. When we find all such sets S′ we use them to select all type variables in Γ′o whose

type maps to a succinct type S′→v . Once we have such a variable we use it to create the most

general partial expression λx1 . . . xn . f []r1 : ρ1 . . . []rm : ρm . Such an expression has holes at the

places of f ’s arguments. In this way we gradually unfold a partial expression until it becomes

complete.

2.5.6 Responsiveness

We use first two phases to synthesize patterns starting from the desired type and the initial

environment. We referred to those phases as a pr over . To be interactive we allow a user to

specify a time limit for the prover. Due to time bound, we decide to interleave the two phases,

such that whenever Explore discovers a new leaf, it immediately triggers GenerateP. Every time

GenerateP is called it uses all discovered reachability terms to generate as many new patterns

as possible. Moreover, to generate the best solutions, within a given time, we use a priority

29

Chapter 2. Complete Completion using Types and Weights

fun GenerateT(patterns, Γi ni t , τi ni t , N) := {

snippets := NIL

pq := PriorityQueue.empty

pq.put(0, []x : τi ni t)

while (pq.size > 0 and |snippets| < N){

exprp = pq.dequeue

�ndFirstHole(Γi ni t ,exprp) match {

case None ⇒
snippets.append(exprp) //appends to the end

case Some((Γo , []h : τ1→···→τn→v)) ⇒
S→v := σ(τ1→···→τn→v)

Γ := σ(Γo)

//x1, . . . , xn are fresh

Γ′o := Γo ∪ {x1 : τ1, . . . , xn : τn}

foreach ((Γ∪S)@S′ : v) ∈ patterns //S′ is binder

foreach (f : ρ1→···→ρm→v) ∈ Select(Γ′o , S′→v)

exprnew p :=

sub(exprp , h � (λx1 . . . xn . f []r1 : ρ1 . . . []rm : ρm))

//r1, . . . ,rm are fresh names

pq.put(w(exprnew p), exprnew p)

}

}

return snippets

}

fun �ndFirstHole(Γo , exp):= exp match {

case []x : τ ⇒ Some((Γo , []x : τ))

case λx1 . . . xn . f e1 . . .em ⇒
Γ′o := Γo ∪ {x1 : τ1, . . . , xn : τn} //x1, . . . , xn are fresh

for(i ∈ [1..m])

�ndFirstHole(Γ′o , ei) match {

case Some(hole) ⇒ return Some(hole)

case None ⇒
}

None

}

fun sub(expr1, y � expr2):= expr1 match {

case []x : τ ⇒ if (x = y) expr2 else expr1

case λx1 . . . xn . f e1 . . .em ⇒
λx1 . . . xn . f sub(e1, y � exp2) . . . sub(em , y � exp2)

}

Figure 2.10: A function that constructs the best N lambda terms in long normal form.

30

2.6. Subtyping using Coercion Functions

queue in Explore instead of the regular queue. Requests in the priority queue are sorted by

weights. A weight of a request t ;
Γ

? is equal to a weight of type t in the initial environment.

Additionally, we allow a user to specify a time limit for GenerateT.

2.5.7 Optimizations

To efficiently find the compatible set in GenerateP, we create a backward map that maps a term

to its predecessor terms. Last reachability term_f that initiated creation of term, through prop-

agation, is the predecessor of term. We build the map in Explore, that records all predecessors of

a given term, by storing an entry (term, predecessors). By using the map, compatible becomes the

predecessors set of t ;
Γ

(;,Π). This way we do not preform expensive calculation of compatible.

However, whenever a new term x is generate by Transfer(y, z) in GenerateP, we need to update

the map by substituting every occurrence of y with x in the map. To speed up this process, for

every term in the map we keep the list of entries where the term occurs.

2.6 Subtyping using Coercion Functions

We use a simple method of coercion functions [17, 64, 81] to extend our approach to deal

with subtyping. We found that this method works well in practice. On the given set of basic

types, we model each subtyping relation v1 <: v2 by introducing into the environment a fresh

coercion expression c12 : {v1} → v2. If there is an expression e : τ, and e was generated using

the coercion functions, then while translating e into simply typed lambda terms, the coercion

is removed. Up to η-conversion, this approach generates all terms of the desired type in a

system with subtyping on primitive types with the usual subtyping rules on function types.

In the standard lambda calculus there are three additional rules to handle subtyping: transitiv-

ity (τ1 <: τ2 and τ2 <: τ3 imply τ1 <: τ3), subsumption (if e : τ1 and τ1 <: τ2 then e : τ2), and the

cvariant rule (τ1 <: ρ1 and ρ2 <: τ2 imply ρ1 → ρ2 <: τ1 → τ2). We proved that even with those

new rules the complexity of the problem does not change and the type inhabitation remains a

PSPACE-complete problem. If subtyping constraints are present, then the coercion functions

are used in the construction of succinct patterns. However, in the RCN function the coercion

functions are omitted when deriving new lambda terms.

2.7 Evaluation of the Effectiveness of InSynth

This section discusses our implementation, a set of benchmarks we used to evaluate InSynth,

and the experimental results.

31

C
h

ap
ter

2.
C

o
m

p
lete

C
o

m
p

letio
n

u
sin

g
Typ

es
an

d
W

eigh
ts

No weights No corpus All Provers
Benchmarks Size #Initial Rank Total Rank Total Rank Prove Recon Total Imogen fCube

1 AWTPermissionStringname 2/2 5615 >10 5157 1 101 1 8 125 133 127 20123
2 BufferedInputStreamFileInputStream 3/2 3364 >10 2235 1 45 1 7 46 53 44 5827
3 BufferedOutputStream 3/2 3367 >10 2009 1 18 1 7 11 19 44 5781
4 BufferedReaderFileReaderfileReader 4/2 3364 >10 2276 2 69 1 7 43 50 44 0176
5 BufferedReaderInputStreamReader 4/2 3364 >10 2481 2 66 1 7 42 49 44 0175
6 BufferedReaderReaderin 5/4 4094 >10 5185 >10 4760 6 7 237 244 61 0228
7 ByteArrayInputStreambytebuf 4/4 3366 >10 5146 3 94 >10 4 18 22 44 5836
8 ByteArrayOutputStreamintsize 2/2 3363 >10 2583 2 51 2 8 63 70 44 5204
9 DatagramSocket 1/1 3246 >10 5024 1 74 1 7 80 88 38 5555

10 DataInputStreamFileInput 3/2 3364 >10 2643 1 20 1 6 46 52 44 5791
11 DataOutputStreamFileOutput 3/2 3364 >10 5189 1 29 1 7 38 45 44 5839
12 DefaultBoundedRangeModel 1/1 6673 >10 3353 1 220 1 10 257 266 193 36337
13 DisplayModeintwidthintheightintbit 2/2 4999 >10 6116 1 136 1 6 147 154 99 10525
14 FileInputStreamFileDescriptorfdObj 2/2 3366 >10 3882 3 24 2 6 17 23 44 3929
15 FileInputStreamStringname 2/2 3363 >10 2870 1 125 1 9 100 109 44 4425
16 FileOutputStreamFilefile 2/2 3364 >10 4878 1 86 1 8 51 60 44 4415
17 FileReaderFilefile 2/2 3365 >10 3484 2 37 2 7 13 20 44 4495
18 FileStringname 2/2 3363 >10 3697 1 169 1 7 155 163 44 5859
19 FileWriterFilefile 2/2 3366 >10 4255 1 40 1 8 28 36 45 4515
20 FileWriterLPT1 2/2 3363 6 3884 1 139 1 7 89 96 44 4461
21 GridBagConstraints 1/1 8402 >10 3419 1 3241 1 19 323 342 290 0121
22 GridBagLayout 1/1 8401 >10 2 1 1 1 0 1 1 290 56553
23 GroupLayoutContainerhost 4/2 6436 >10 4055 1 24 1 10 26 36 190 29794
24 ImageIconStringfilename 2/2 8277 >10 3625 2 495 1 13 154 167 300 50576
25 InputStreamReaderInputStreamin 3/3 3363 >10 3558 8 90 4 7 177 184 44 4507

Table 2.2: Results of measuring overall effectiveness (part 1). The first 4 columns denote the ordinal and name of a benchmark, size of the
desired snippet (in terms of number of declarations: with coercion function accounted/only visible) and the initial number of declarations
seen at the invocation point. The subsequent columns denote the rank at which the desired snippet was found and (averaged) execution times
in milliseconds for the algorithm with no weights, with weight but without use of input statistics, and with weights and input statistics (with
the distribution of execution time between the engine and reconstruction parts). The last two columns show execution time for checking
provability using the Imogen and fCube provers.

32

2.7.
E

valu
atio

n
o

fth
e

E
ffectiven

ess
o

fIn
Syn

th

No weights No corpus All Provers
Benchmarks Size #Initial Rank Total Rank Total Rank Prove Recon Total Imogen fCube
26 JButtonStringtext 2/2 6434 >10 3289 2 117 1 9 85 95 184 27828
27 JCheckBoxStringtext 2/2 8401 >10 3738 3 134 2 18 50 68 188 4946
28 JformattedTextFieldAbstractFormatter 3/2 10700 >10 3087 2 2048 4 21 101 122 520 99238
29 JFormattedTextFieldFormatterformatter 2/2 9783 >10 3404 2 67 2 15 85 100 419 74713
30 JTableObjectnameObjectdata 3/3 8280 >10 3676 2 109 2 13 129 142 300 46738
31 JTextAreaStringtext 2/2 6433 >10 2012 2 232 >10 9 293 302 183 29601
32 JToggleButtonStringtext 2/2 8277 >10 3171 2 177 2 12 123 135 299 5231
33 JTree 1/1 8278 2 3534 1 3162 1 16 2022 2039 298 52417
34 JViewport 1/1 8282 8 5017 1 20 8 12 7 19 298 22946
35 JWindow 1/1 6434 3 4274 1 296 1 10 425 434 194 2862
36 LineNumberReaderReaderin 5/4 3363 >10 2315 >10 3770 9 6 233 239 44 5876
37 ObjectInputStreamInputStreamin 3/2 3367 >10 3093 1 20 1 6 29 35 44 5849
38 ObjectOutputStreamOutputStreamout 3/2 3364 >10 4883 1 31 1 7 47 54 44 5438
39 PipedReaderPipedWritersrc 2/2 3364 >10 2762 2 54 2 8 60 68 44 262
40 PipedWriter 1/1 3359 >10 4801 1 107 1 6 133 139 44 5432
41 Pointintxinty 3/1 4997 >10 2068 5 133 2 6 96 103 101 8573
42 PrintStreamOutputStreamout 3/2 3365 >10 2100 6 16 1 7 20 27 44 5841
43 PrintWriterBufferedWriter 4/3 3365 >10 2521 4 135 4 8 36 44 44 448
44 SequenceInputStreamInputStreams 5/3 3365 >10 4777 2 35 2 8 20 28 44 5862
45 ServerSocketintport 2/2 4094 >10 2285 2 28 1 6 57 63 61 11123
46 StreamTokenizerFileReaderfileReader 3/2 3365 >10 2012 1 34 1 8 57 65 44 5782
47 StringReaderStrings 2/2 3363 >10 2006 1 35 1 6 37 43 45 5746
48 TimerintvalueActionListeneract 3/3 6665 >10 2051 1 123 1 10 189 199 186 34841
49 TransferHandlerStringproperty 2/2 8648 >10 3911 1 27 1 14 17 31 319 67997
50 URLStringspecthrows 3/3 4093 >10 3302 6 124 1 8 175 183 60 11197

Table 2.3: Results of measuring overall effectiveness (part 2). The first 4 columns denote the ordinal and name of a benchmark, size of the
desired snippet (in terms of number of declarations: with coercion function accounted/only visible) and the initial number of declarations
seen at the invocation point. The subsequent columns denote the rank at which the desired snippet was found and (averaged) execution times
in milliseconds for the algorithm with no weights, with weight but without use of input statistics, and with weights and input statistics (with
the distribution of execution time between the engine and reconstruction parts). The last two columns show execution time for checking
provability using the Imogen and fCube provers.

33

Chapter 2. Complete Completion using Types and Weights

2.7.1 Implementation in Eclipse

We implemented InSynth as an Eclipse plugin that extends the code completion feature. It

enables developers to accomplish a complex action with only a few keystrokes: declare a type

of a term, invoke InSynth, and select one of the suggested expressions.

InSynth provides its functionality in Eclipse as a contribution to the standard Eclipse content

assist framework and contributes its results to the list of content assist proposals. These

proposals can be returned by invoking the content assist feature when Scala source files are

edited (usually with Ctrl + Space). If the code completion is invoked at any valid program point

in the source code, InSynth attempts to synthesize and return code snippets of the desired

type. Only the top specified number of snippets are displayed as proposals in the content

assist proposal list, in the order corresponding to the weighted ranking. InSynth supports

invocation at any location immediately following declaration of a typed value, variable or

a method, i.e. in the place of its definition and also at the place of method parameters, if

condition expressions, and similar (where the type can be inferred). InSynth uses the Scala

presentation compiler to extract program declarations and imported API functions visible

at a given point. InSynth can be easily configured though standard Eclipse preference pages,

and the user can set maximum execution time of the synthesis process, desired number of

synthesized solutions and code style of Scala snippets.

2.7.2 Creating Benchmarks

There is no standardized set of benchmarks for the problem that we examine, so we con-

structed our own benchmark suite. We collected examples primarily from http://www.java2s.

com/. These examples illustrate correct usage of Java API functions and classes in various sce-

narios. We manually translated the examples from Java into equivalent Scala code. Since only

single class imports are used in the original examples, we generalized the import statements

for the benchmarks to include more declarations and thereby made the synthesis problem

more difficult by increasing the size of the search space.

One idea of measuring the effectiveness of a synthesis tool is to estimate its ability to recon-

struct certain expressions from existing code. We arbitrarily chose some expressions from the

collected examples, removed them and marked them as goal expressions that needed to be

synthesized (we replaced them with a fresh value definition if the place of the expression was

not valid for InSynth invocation). The resulting benchmark is a partial program, similar to a

program sketch [84]. We measure whether InSynth can reconstruct an expression equal to the

one removed, modulo literal constants (of integer, string, or boolean type). Our benchmark

suite is available for download from the InSynth web site.

34

http://www.java2s.com/
http://www.java2s.com/

2.7. Evaluation of the Effectiveness of InSynth

2.7.3 Corpus for Computing Symbol Usage Frequencies

Our algorithm searches for typed terms that can be derived from the initial environment

and that minimize the weight function. To compute initial declaration weights we follow the

steps presented in Section 2.4. The key step is to derive declarations frequencies. Hence,

we collected a code corpus which dictates those initial weights. The corpus contains code

statistics from 18 Java and Scala open-source projects. Table 2.4 lists those projects together

with their description.

Project Description
Akka Transactional actors
CCSTM Software transactional memory
GooChaSca Google Charts API for Scala
Kestrel Tiny queue system based on starling
LiftWeb Web framework
LiftTicket Issue ticket system
O/R Broker JDBC framework with support for externalized SQL
scala0.orm O/R mapping tool
ScalaCheck Unit test automation
Scala compiler Compiles Scala source to Java bytecode
Scala Migrations Database migrations
ScalaNLP Natural language processing
ScalaQuery Typesafe database query API
Scalaz "Scala on steroidz" - scala extensions
simpledb-scala-binding Bindings for Amazon’s SimpleDB
smr Map Reduce implementation
Specs Behaviour Driven Development framework
Talking Puffin Twitter client

Table 2.4: Scala open-source projects used for the corpus extraction.

One of the analyzed projects is the Scala compiler, which is mainly written in the Scala

language itself. In addition to the projects listed in Table 2.4, we analyzed the Scala standard

library, which mainly consists of wrappers around Java API calls. We extracted the relevant

information only about Java and Scala APIs, and ignored information specific to the projects

themselves. Overall, we extracted 7516 declarations and identified a total of 90422 uses of

these declarations. 98% of declarations have less than 100 uses in the entire corpus, whereas

the maximal number of occurrences of a single declaration is 5162 (for the symbol &&).

2.7.4 Platform for Experiments

We ran all experiments on a machine with a 3Ghz clock speed processor and 8MB of cache. We

imposed a 2GB limit for allowed memory usage. Software configuration consisted of Ubuntu

12.04.1 LTS (64b) with Scala 2.9.3 (a nightly version), and Java(TM) Virtual Machine 1.6.0_24.

The reconstruction part of InSynth is implemented sequentially and does not make use of

multiple CPU cores.

35

Chapter 2. Complete Completion using Types and Weights

2.7.5 Measuring Overall Effectiveness

In each benchmark, we invoked InSynth at the place where the goal expression was missing.

We parametrized InSynth with N=10 and used a time limit of 0.5s seconds for pr over (Sec-

tion 2.5.6) and 7s for the reconstruction. By using a time limit, our goal was to evaluate the

usability of InSynth in an interactive environment (which IDEs usually are).

We ran InSynth on the set of 50 benchmarks. Results are shown in Tables 2.2 and 2.3. The Size

column represents the size of the goal expression in terms of number of declarations in its

structure. It is illustrated in the form c/nc where c is the size with coercion functions and nc is

the size without. Note that when c>nc holds, InSynth needs to deal with subtyping to synthe-

size the goal expression. The #Initial column represents the size of the initial environment, i.e.

the number of initial type declarations that InSynth extracts at a given program point. The

following columns are partitioned into three groups, one for each variant of the synthesis

algorithm: 1) the algorithm without weights (the No weights column), 2) the algorithm with

weights derived without the corpus (the No corpus column) and 3) finally, the full algorithm,

with weights derived using the corpus (the All column).

In all groups, Rank represents the rank of the goal expression in the resulting list, and Total

represents the total execution time of synthesis. The distribution of the execution time be-

tween pr over and the reconstruction is shown in columns Prove and Recon, respectively. The

last column group gives execution times of two state-of-the-art intuitionistic theorem provers

(Imogen [71] and fCube [37]) employed for checking provability of inhabitation problems for

the benchmarks.

Tables 2.2 and 2.3 show the differences in both effectiveness and execution time between the

variants of the algorithm.

First, the table shows that the algorithm without weights does not perform well and finds the

goal expressions in only 4 out of 50 cases and executes by more than an order of magnitude

slower than the other variants. This is due to the fact that without the utilization of the weight

function to guide the search, InSynth is driven into a wrong direction toward less important

solutions, whose ranks are as low as the actual solutions.

Second, we can see that adding weights to terms helps the search drastically and the algorithm

without corpus fails to find the goal expression in only 2 cases. Also, the running times are

decreased substantially. In 33 cases, this variant finds the solution with the same rank as the

variant which incorporates corpus, while on 4 of them it finds the solution of a higher rank.

This suggests that in some cases, synthesis does not benefit from the derived corpus – initial

weights defined by it are not biased favorably and do not direct the search toward the goal

expression.

Third, we show the times for Imogen and fCube provers on the same set of benchmarks. We

can see that our pr over is up to 2 orders of magnitude faster than Imogen and up to 4 orders

36

2.8. Quantitative Inhabitation for Generics

AXIOM
x : τ

Γ` x : τ

APP
Γ` f : τ1 → τ2 Γ` x : τ′1

Γ` f (x) : τ′2

σ=mgu(τ1,τ′1)
τ′2 =σ(τ2)

COMPOSE
Γ` f : τ1 → τ2 Γ` g : τ0 → τ′1

Γ` (f ◦ g) : τ′0 → τ′2

σ=mgu(τ1,τ′1)
τ′0 =σ(τ0)
τ′2 =σ(τ2)

Figure 2.11: Rules for Generic Types used by Our Algorithm

than fCube. Note that reconstruction of terms in Imogen was limited to 10 seconds and

Imogen failed to reconstruct a proof within that time limit in all cases.

In the case of the full algorithm, the results show that the desired expressions appear in the top

10 suggested snippets in 48 benchmarks (96%). They appear as the top snippet (with rank 1) in

32 benchmarks (64%). Note that our corpus (Section 2.7.3) is derived from a source code base

that is disjoint (and somewhat different in nature) from the one used for benchmarks. This

suggests that even a knowledge corpus derived from unrelated code increases the effectiveness

of the synthesis process; a specialized corpus would probably further increase the quality of

results.

In summary, the expected snippets were found among the top 10 solutions in many bench-

marks. Weights play an important role in finding and ranking those snippets high in a short

period of time (on average around just 145ms). Finally, our pr over outperforms two state of

the art provers Imogen and fCube. These results suggest that InSynth is effective in quickly

finding (i.e. synthesizing) desired expressions at various places in source code.

2.8 Quantitative Inhabitation for Generics

Unlike previous sections that describe InSynth techniques, in this section we present PolySynth

that like InSynth takes a desired type as input and returns a list of ranked declarations. The

main difference is that PolySynth, unlike InSynth, supports polymorphic types (generics).

We start by presenting PolySynth algorithm for type inhabitation in the presence of generic

(parametric) types as in the Hindley-Milner type system, without nested type quantifiers. We

represent type variables implicitly, as in resolution for logics with variables. Those types are

also known under the names ML-style types or Hindley-Milner types.

37

Chapter 2. Complete Completion using Types and Weights

De�nitions:

w(e:τ) := w(e)+w(τ)

bestT(τ,Γ) := {(e:τ) ∈ Γ | (∀(e ′:τ) ∈ Γ. w(e) ≤ w(e ′))}

bestT(e ′:τ′,Γ) := bestT(τ′,Γ)

w(bestT(b,Γ)) = w(b), if ∃b ∈ bestT(b,Γ), +∞ otherwise

best(q) := {b ∈ q | ∀b′ ∈ Γ. w(b) ≤ w(b′)}

cmpt(τ1,τ2) := an mgu in App or Compose rules

fun synth(Γ0, τG) { // Γ0 − environment at program point, τG − desired type

Γ= Γ0 ∪ΓComb∪ {(G:τG →⊥ f r esh)}

q= Γ
res=;
while (¬timeout∧q 6= ;) {
let (e1:τ1) ∈ best(q)

q= q\ {(e1:τ1)}

foreach((e2:τ2) ∈ {(e2:τ2) ∈ bestT(τ2,Γ) | cmpt(τ1,τ2)}) {

derived=App(e1:τ1,e2:τ2)∪Comp(e1:τ1,e2:τ2)

res= res∪ {e ′ | (e : ⊥ f r esh) ∈ derived,e[G := I]
I(t)→t
;∗ e ′}

q= q∪ {b ∈ derived | w(b) < w(bestT(b,Γ))}

Γ= Γ∪derived

}

}

return res;

}

Figure 2.12: The Search Algorithm for Quantiative Inhabitation for Generic Types

Definition 2.8.1 (Generic Types) Let C be a fixed finite set. For every c ∈C , with c/n we denote

the arity of the element. Let V be a set of type variables. The set of all generic types T is defined

by the grammar:

Tb ::=V |C (Tb , . . . ,T b) | Tb → Tb

T ::= Tb | ∀V.T

Figure 2.11 shows the axiom rule, the rules for application and the rule for composition (which

we introduce to improve performance by making derivations shorter).

Description of the algorithm. Figure 2.12 shows the algorithm that systematically applies

rules in Figure 2.11, while avoiding cycles due to repeated types whose terms have non-

minimal weights. The algorithm maintains two sets of bindings (pairs of expressions and their

types): Γ, which holds all initial and derived bindings, and q, which is a work list containing

the bindings that still need to be processed. At the start of algorithm, Γ contains the initial

declarations, as well as the goal encoded as (G:τG →⊥ f r esh) where τG is the type for which the

38

2.9. PolySynth Implementation and Evaluation

user wishes to generate expressions. The work list initially contains all these declarations as

well. The algorithm accumulates the expressions of the desired type in the set res. The main

loop of the algorithm runs until the timeout is reached or the work list q becomes empty.

The body of the main loop of the algorithm selects a minimal (given by best(_)) binding (e1:τ1)

from the work list q and attempts to combine it with all other bindings in Γ for which the types

τ1 and τ2 can be unified to participate in one of the inference rules (we denote this condition

using the cmpt(τ1,τ2) relation). Note, however, that there is no point in combining (e1:τ1)

with a (e2:τ2) if there is another (e ′2:τ2), with the same τ2 but with a strictly smaller w(e ′2).

Therefore, the algorithm restricts the choice of (e2:τ2) to those where w(e2) is minimal for a

given τ2. We formalize this using the function bestT(τ2,Γ) that finds a set of such bindings

with minimal e2. We also extend the function to accept a candidate e ′2 (which is ignored in

looking up the minimal e2). Moreover, we define w(bestT(τ2,Γ)) to denote the value of this

minimum (if it exists).

The sets App(e1:τ1,e2:τ2) and Comp(e1:τ1,e2:τ2) are results of applying the rules from Fig-

ure 2.11. If no rule can be applied the result is the empty set. We use derived to denote the set

of results of applying the inference rules to selected bindings. These results may need to be

processed further and therefore the algorithm may need them into q. However, it avoids doing

this if the derived binding has a type that already exists in Γ and the newly derived expression

does not have a strictly smaller weight. This reduces the amount of search that the algorithm

needs to perform.

Because of the declaration (G:τG →⊥ f r esh), the algorithm detects expressions of type τG using

the expressions e of fresh type ⊥ f r esh . To obtain the expression of the desired type, we replace

in e every occurrence of G with the identity combinator I. This is justified because ⊥ f r esh is a

fresh constant, so replacing it with τG in a derivation of Γ∪ {(G:τG →⊥ f r esh)}(e:⊥ f r esh) yields

a derivation of Γ∪ {(G:τG → τG)} ` (e:τG), in which we can use I instead of G. The algorithm

also simplifies the accumulated expressions by reducing I where possible. In the presence of

higher-order functions I may still remain in the expressions, which is not a problem because it

is deducible from any complete set of combinators.

Finally, under the assumption that a linear weight function is given, and the weight of each

expression symbol is strictly positive, it is straightforward to see that the algorithm finds the

derivations for all types that can be obtained using the rules from Figure 2.11. Indeed, the

weight of an expression strictly increases during the derivation, so an algorithm, if it runs long

enough, reaches arbitrarily long value as the minimum of the work list. This shows that the

algorithm is complete.

2.9 PolySynth Implementation and Evaluation

PolySynth is implemented in Scala and built on top of the Ensime plugin [21]. It can therefore

directly use program information computed by the Scala compiler, including abstract syntax

39

Chapter 2. Complete Completion using Types and Weights

Program # Loaded Declarations # Methods in Synthesized Snippets Time [s]

FileReader 6 4 < 0.001
Map 4 4 < 0.001

FileManager 3 3 < 0.001
Calendar 7 3 < 0.001
FileWriter 320 6 0.093

SwingBorder 161 2 0.016
TcpService 89 2 < 0.001

Figure 2.13: Basic algorithm for synthesizing code snippets

trees and the inferred types. Furthermore, it can generate an appropriate pop-up window

with suggested synthesized snippets and allow the user to interactively select the desired

fragment. Our implementation consists of four key components: the loader that finds all

visible declarations from a given point in code; the synthesis algorithm described before; and

the filter that runs a user written tests and discards snippets that fail the tests. Although, the

test cases can filter many irrelevant solutions, test execution is often slow and sometimes

unfeasible due to several holes in the code under test.

Figure 2.13 gives an idea of the performance of the system. We ran all examples on Intel(R)

Core(TM) i7 CPU 2.67 GHz with 4 GB RAM. The running times to find the first solution are

usually bellow two milliseconds. Our experience suggests that the algorithm scales well. As an

illustration, we were able to synthesize a snippet containing six methods in 0.093 seconds from

the set of 320 declarations. Times to encode declarations into FOL formulas range from 0.015

(Calendar) to 0.046 (FileWriter) seconds. If the synthesized snippets need to use more methods

from imported libraries, the synthesis typically takes longer, but is typically fast enough to be

useful. The above examples and the system PolySynth are available on the following web site:

http://lara.epfl.ch/w/insynth.

2.10 Related Work

Several tools including Prospector [65], XSnippet [82], Strathcona [47], PARSEWeb [88] and

SNIFF [22] that generate or search for relevant code examples have been proposed. In con-

trast to all these tools we support expressions with higher order functions. Additionally, we

synthesize snippets using all visible methods in a context, whereas the other existing tools

build or present them only if they exist in a corpus. Prospector, Strathcona and PARSEWeb

do not incorporate the extracted examples into the current program context; this requires

additional effort on the part of the programmer. Moreover, Prospector does not solve queries

with multiple argument methods unless the user initiates multiple queries. In contrast, we

generate full expressions using just a single query. We could not effectively compare InSynth

and PolySynth with those tools, since unfortunately, the authors did not report exact running

times.

40

http://lara.epfl.ch/w/insynth

2.10. Related Work

We next provide more detailed descriptions for some of the tools, and we compare their

functionality to InSynth and PolySynth. InSynth and PolySynth are similar in operation to

Eclipse content assist proposals [40] and it implements the same behaviour. More advanced

solutions appeared recently, such as [18], that proposes declarations, and the Eclipse code

recommenders [8], that suggests declarations and code templates. Both systems use API

declaration call statistics from the existing code examples in order to offer suggestions to the

developer with appropriate statistical confidence value. InSynth and PolySynth are fundamen-

tally different from these approaches (they even subsume them) and can synthesize even code

fragments that never previously occurred in code. Additionally, the system by Lee et al. [61]

makes code completion and navigation aware of code evolution and enables them to operate

on multiple versions at a time, without having to manually switch across these versions.

Prospector [65] uses a type graph and searches for the shortest path from a receiver type,

t y pei n , to the desire type, t y peout . The nodes of the graph are monomorphic types, and the

edges are the names of the methods. The nodes are connected based on the method signature.

Prospector also encodes subtypes and downcasts into the graph. The query is formulated

through t y pei n and t y peout . The solution is a chain of method calls that starts at t y pei n

and ends at t y peout . Prospector ranks solutions by the length, preferring shorter solutions.

In contrast, we find solutions that have minimal weights. This potentially enables us to get

solutions that have better quality, since the shortest solution may not be the most relevant.

Furthermore, in order to fill in the method parameters, a user needs to initiate multiple queries

in Prospector. In InSynth and PolySynth this is done automatically. Prospector uses a corpus

for down-casting, whereas we use it to guide the search and rank the solutions. Moreover,

Prospector has no knowledge of what methods are used most frequently. Unfortunately, we

could not compare our implementation with Prospector, because it was not publicly available.

XSnippet [82] offers a range of queries from generalized to specialized. The tool uses them

to extract Java code from the sample repository. XSnippet ranks solutions based on their

length, frequency, and context-sensitive as well as context-independent heuristics. In order

to narrow the search the tool uses the parental structure of the class where the query is

initiated to compare it with the parents of the classes in the corpus. The returned examples

are not adjusted automatically into a context—the user needs to do this manually. Similar to

Prospector the user needs to initiate additional queries to fill in the method parameters. In

Strathcona [47], a query based on the structure of the code under development is automatically

extracted. One cannot explicitly specify the desired type. Thus, the returned set of examples is

often irrelevant. Moreover, in contrast to InSynth and PolySynth, those examples can not be

fitted into the code without additional interventions. PARSEWeb [88] uses the Google code

search engine to get relevant code examples. The solutions are ranked by length and frequency.

In InSynth and PolySynth the length of a returned snippet also plays an important role in

ranking the snippets but InSynth and PolySynth also have an additional component by taking

into account the proximity of derived snippets and the point where InSynth and PolySynth

were invoked. The main idea behind the SNIFF [22] tool is to use natural language to search

for code examples. The authors collected the corpus of examples and annotated them with

41

Chapter 2. Complete Completion using Types and Weights

keywords, and attached them to corresponding method calls in the examples. The keywords

are collected from the available API documentation. InSynth is based on a logical formalism,

so it can overcome the gap between programming languages and natural language.

The synthesized code in our approach is extracted from the proof derivation. Similar ideas

have been exploited in the context of sophisticated dependently typed languages and proof

assistants [15]. Our goal is to apply it to simpler scenarios, where propositions are only partial

specifications of the code, as in the current programming practice. Agda is a dependently

typed programming language and proof assistant. Using Agda’s Emacs interface, programs

can be developed incrementally, leaving parts of the program unfinished. By type checking the

unfinished program, the programmer can get useful information on how to fill in the missing

parts. The Emacs interface also provides syntax highlighting and code navigation facilities.

However, because it is a new language and lacks large examples, it is difficult to evaluate this

functionality on larger numbers of declarations.

There are several tools for the Haskell API search. The Hoogle [7] search engine searches

for a single function that has either a given type or a given name in Haskell, but it does not

return a composed expression of the given type. The Hayoo [6] search engine does not use

types for searching functions: its search is based on function names. The main difference

between Djinn [3] and our system is that Djinn generates a Haskell expression of a given

type, but unlike our system it does not use weights to guide the algorithm and rank solutions.

Recently we have witnessed a renewed interest in semi-automated code completion [77]. The

tool [77] generates partial expressions to help a programmer write code more easily. While

their tool helps to guess the method name based on the given arguments, or it suggests

arguments based on the method name, we generate complete expressions based only on

the type constraints. In addition, our approach also supports higher order functions, and

the returned code snippets can be arbitrarily nested and complex: there is no bound on the

number and depth of arguments. This allows us to automatically synthesize larger pieces of

code in practice, as our evaluation shows. In that sense, our result is a step further from simple

completion to synthesis.

The use of type constraints was explored in interactive theorem provers, as well as in synthesis

of code fragments. SearchIsos [31] uses type constraints to search for lemmas in Coq, but it

does not use weights to guide the algorithm and rank the solutions. Having the type constraints,

a natural step towards the construction of proofs is the use of the Curry-Howard isomorphism.

The drawback of this approach is the lack of a mechanism that would automatically enumerate

all the proofs. By representing proofs using graphs, the problem of their enumeration was

shown to be theoretically solvable [97], but there is a large gap between a theoretical result

and an effective tool. Furthermore, InSynth and PolySynth can not only enumerate terms but

also rank them and return a desired number of best-ranked ones.

Having a witness term that a type is inhabited is a vital ingredient of our tools, so one could

think of InSynth and PolySynth as provers for propositional intuitionistic logic (with substantial

42

2.11. Conclusions

additional functionality). Among recent modern provers are Imogen [71] and fCube [37]. These

tools can reason about more expressive fragments of logic: they support not only implication

but also intuitionistic counterparts for other propositional operators such as ∨,⇒,⇔, and

Imogen also supports first-order and not only propositional fragment. Our results on fairly

large benchmarks suggests that InSynth is faster for our purpose. This is not entirely surprising

because these tools are not necessarily optimized for the task that we aim to solve (looking for

shallow proofs from many assumptions), and often do not have efficient representation of

large initial environments. The main purpose of our comparison is to show that our technique

is no worse than the existing ones for our purpose, even when used to merely check the

existence of proofs. What is more important than performance is that InSynth produces not

only one proof, but a representation of all proofs, along with their ranking. This additional

functionality of our algorithm is essential for the intended application: using type inhabitation

as a generalization of code completion.

For a given type InSynth produces a finite representation of all the type inhabitants. In

general, if an expression is an inhabitant of the given type, there is a derivation that proves

that fact. Using Curry-Howard isomorphism for each proof derivation there is a lambda

term representing it. The problem of enumerating all the proofs for a given formula is an

important research topic, since it can be also used to answer other problems like provability

or definability. We keep the system of patterns to represent all the type inhabitants, achieving

this way finite representation of a possibly infinite set of the proofs. G. Dowek and Y. Jiang [34]

used a semi-grammatically description of all proof-terms for minimal predicate logic and a

positive sequent calculus. The use of grammars is an alternative to our use of graphs as the

representation for all solutions; we therefore expect that grammars could similarly be used as

the starting point for a practical system such as ours.

2.11 Conclusions

We have presented the design and implementation of InSynth, a code completion tool in-

spired by complete implementation of type inhabitation for the simply typed lambda calculus.

InSynth algorithm uses succinct types, an efficient representation for types, terms, and en-

vironments that takes into account that the order of assumptions is unimportant. InSynth

approach generates a representation of all solutions (a set of pattens), from which it can extract

any desired number of solutions.

To further increase the usefulness of generated results, we introduce the ability to assign

weights to terms and types. The resulting algorithm performs search for expressions of a given

type in a type environment while minimizing the weight, and preserves the completeness.

The presence of weights increases the quality of the generated results. To compute weights

we use the proximity to the declaration point as well as weights mined from a corpus. We

have deployed the algorithm in an IDE for Scala. InSynth evaluation on synthesis problems

constructed from API usage indicate that the technique is practical and that several technical

43

Chapter 2. Complete Completion using Types and Weights

ingredients had to come together to make it powerful enough to work in practice. InSynth and

additional evaluation details are publicly available.

Our experience suggests that the idea of computing type inhabitats using succinct types

and weights is useful by itself. Moreover, our subsequent exploration suggests that these

techniques can also serve as the initial phase of semantic-based synthesis [58]. The idea is

to generate a stream of type-correct solutions and then filter it to contain only expressions

that meet given specifications, such as postconditions (or, in the special case, input/output

examples).

Additionally, we have presented PolySynth that like InSynth takes the desire type and synthe-

sizes a ranked list of expressions, considering declarations with polymorphic types (generics).

It uses a resolution based algorithm and wights to synthesize and ranked candidate expres-

sions. In addition, it takes test cases and user preferences to further filler undesired candidates.

Our results show that PolySynth is useful for synthesizing code fragments that include declara-

tions with polymorphic types.

Note that the approach based on the techniques we presented can also generate programs with

various control patterns, because conditionals, loops, and recursion schemas can themselves

be viewed as higher-order functions. Although we believe the current results to be a good

starting point for such tasks, further techniques may be needed to control larger search spaces

for more complex code correctness criteria and larger expected code sizes.

44

3 Synthesizing Code from Free-Form
Queries

We present a new code assistance tool for integrated development environments. Our system

accepts free-form queries allowing a mixture of English and Java as an input, and produces Java

code fragments that take the query into account and respect syntax, types, and scoping rules

of Java as well as statistical usage patterns. The returned results need not have the structure of

any previously seen code fragment. As part of our system we have constructed a probabilistic

context free grammar for Java constructs and library invocations, as well as an algorithm

that uses a customized natural language processing tool chain to extract information from

free-form text queries. We present the results on a number of examples showing that our

technique can tolerate much of the flexibility present in natural language, and can also be

used to repair incorrect Java expressions that contain useful information about the developer’s

intent.

3.1 Motivation

Application programming interfaces (APIs) are becoming more and more complex, presenting

a bottleneck when solving simple tasks, especially for new developers. APIs contain many

types and declarations, so it is difficult to know how to combine them to achieve a task of

interest. Instead of focusing on more creative aspects of the development, a developer ends

up spending a lot of time trying to understand informal documentation or adapt the API

documentation examples. Integrated development environments (IDEs) help in this task by

listing declarations that belong to a given type, but leave it to the developer to decide how to

combine the declarations.

On the other hand, on-line repository host services such as GitHub [5], BitBucket [4], Source-

Forge [1] are becoming more and more popular, hosting a large number of freely accessible

projects. Such repositories are an excellent sources of code examples that the developers can

use to learn API usage. Moreover, their large size and variety suggests that they can be used by

machine learning techniques to create more sophisticated IDE support. A natural first step is

to perform code search [88], though this still leaves the user with the task of understanding

45

Chapter 3. Synthesizing Code from Free-Form Queries

the context and adapting it to their needs. Several researchers have pursued the problem of

generalizing from such examples in repositories, combining non-trivial program analysis and

machine learning techniques [80].

In this chapter, we present a new approach that synthesizes code appropriate for a given

program point, guided by hints given in free-form text. We have implemented our approach in

a system anyCode, and have found it to be very useful in our experience (see Tables 3.1 and 3.2).

Our approach builds a model of the Java language based on corpus of code in repositories,

and adapts the model to a given text input. In that sense, our approach combines some of

the advantages of statistical programming language models [80] but also of natural language

processing of the input containing English phrases, previously done for restricted APIs [60].

Our approach builds on our past experience with the InSynth tool, already presented in Chap-

ter 2, in which a user only indicates the desired API type; the tool InSynth then generates

ranked expressions of a given type. With our new tool, anyCode, the input can be interpreted

as a result type, but, more generally, it can be any text, referring to any part of an expected

expression. We find this interface more convenient and expressive than in InSynth. Further-

more, InSynth uses only the unigram model [51, Chapter 4], which assigns a probability to

a declaration based on its call frequency in a corpus. InSynth uses the model to synthesize

and rank expressions. In anyCode, besides unigram, we use the more sophisticated prob-

abilistic context free grammar (PCFG) model [51, Chapter 14], to synthesize and rank the

expressions. We perform synthesis in three phases: (1) we use natural language processing

(NLP) tools [29, 67, 92] to structure the input text and split the text input into chunks of words

based on their relationships in the sentence parse tree; (2) we use the structured text and

unigram model to select a set of most likely API declarations, using a set of scoring metrics

and the Hungarian method [56] to solve the resulting assignment problem [19]; (3) we finally

use the selected declarations, PCFG and unigram model to unfold the declaration arguments.

The result is a list of ranked (partial) expressions, which anyCode offers to the developer using

the familiar code completion interface of Eclipse.

By introducing a textual input interface, we aim to automatically reduce the gap between a

natural and a programming language. anyCode allows the developer to formulate a query using

a mixture of English and code fragments. anyCode takes into account English grammar when

processing input text. To improve the input flexibility and expressiveness we also consider

word synonyms and other related words (hypernyms and hyponyms). We build a related word

map based on WordNet [36], a large lexical database of English. We present a technique to

make WordNet usable in our context by automatically projecting it onto the API jargon. We use

these techniques along with the NLP tools to support the natural language aspect in anyCode.

The techniques we implement in anyCode are inspired by stochastic machine translation.

However, we had to overcome the lack of a parallel corpus relating English and Java, as well as

the gap between an informal medium such as English and the rigorous syntax and type rules

of a programming language such as Java.

46

3.1. Motivation

We aim to relieve the user of the strict structure of a programming language when describing

their intention. From our perspective, IDE tools should allow a user to gloss over aspects such

as the number and the order of arguments in method calls, or parenthesis usage. Instead,

the developers should focus more on solving important higher-level software architecture

and decomposition problems. Finally, we also hope to lower the entry for those who are

learning to program, for whom syntax is often one of the first obstacles. To achieve this, we

find that a short text input that approximately describes the structure of the desired expression

is the most convenient. To make the input useful for programming, we also allow a user to

explicitly write literals and local variable names in input. Using such input, anyCode manages

to synthesize valid Java code fragments. It can do that because it does not impose any strict

requirement on the input: it has the ability to generate likely expressions according to the Java

language model, and uses as much of the information from the input as it can extract to steer

the generation towards developer’s intention.

In summary, this chapter makes the following contributions:

• A new technique that maps text to a list of ranked (partial) expressions. It combines

NLP tools, a text-declaration matching, PCFG and unigram models to process input,

synthesize and rank expressions.

• A new text and declaration models that encode input and a declaration as a set of

words. They prioritize words based on their importance and position, both in text and a

declaration.

• Efficiently performing text-declaration matching thanks in part to the creation of appro-

priate indices and the use of the algorithms for the assignment problem, in particular

the Hungarian method.

• A fast corpus analysis and extraction algorithm. The algorithm extracts method com-

positions and frequencies and builds PCFG and unigram models. The implementation

combines the Eclipse JDT parser, our symbol table and type-checker.

• A customized related word-map that maps a word to its related words. We use relations

in WordNet and a novel scoring technique that for a given word ranks and finds the

closest related words. We use a set of API words to build the score and filter out irrelevant

words.

• A benchmark set of 60 text-expression (input-output) benchmarks and experimental

result that shows the effectiveness of our techniques and can also be used to calibrate

future open ended tool that map free-form text into Java API invocations.

47

Chapter 3. Synthesizing Code from Free-Form Queries

3.2 Examples

In this section we use five examples to illustrate main functionality of anyCode. The first

example demonstrates anyCode’s interactive deployment, the text interface, and the use of

program context to guide the synthesis.

Figure 3.1: After the user inserts text input, anyCode suggests five highest-ranked well-typed
expressions that it synthesized for this input.

3.2.1 Making a Backup of a File

Suppose that a user wishes to create a method that backs up the content of a file. The method

should take a file name as a parameter and copy the content of the file to a new file with an

appropriately modified name. To implement such a backup method, the user needs to identify

the appropriate API, select the set of its declarations (typically method calls) and combine

them into an expression. In practice, to perform this, a user might follow these steps manually:

(1) search the Internet, or API documentation (if it exists) to find the examples of API use, (2)

select the most suitable example, (3) copy-paste it into the working editor with code, and (4)

edit the example such that it fits into the context, using appropriate values in the program

scope. anyCode offers an automatic approach that combines all the mentioned operations,

and more. Suppose that a user writes an incomplete piece of code of the method that takes

the parameter fname that stores the file name, as shown in Figure 3.1. She also creates a

variable bname that stores the backup file name. Here, the backup name is obtained by adding

``.bak'' extension to bname. In the next line the user invokes anyCode. A pop-up text field

appears where she can insert the text, such as copy �le fname to bname that specifies her desire

to copy the file content. anyCode automatically extracts the program context from Eclipse

and identifies words fname and bname in the input as values referring to a parameter and a

local variable. anyCode then uses this information to generate and present several ranked

expressions to the user. When the user makes her choice, the tool inserts the chosen expression

at the invocation point. In this example, anyCode works for less than 50 milliseconds and then

48

3.2. Examples

presents five solutions of which the first one copies the file fname content to a file with name

bname:

FileUtils.copyFile(new File(fname), new File(bname))

This is a valid solution; it uses the method FileUtils.copyFile from the popular “Commons IO”

library.

3.2.2 Invoking the Class Loader

Suppose that a user intends to load a class with a name ``MyClas.class''. She invokes the tool

with the free-form input

load class ``MyClas.class''

anyCode automatically synthesizes and suggests the following (partial) expressions:

1 Thread.currentThread().getContextClassLoader().loadClass(``MyClas.class'').getClass()

2 Thread.currentThread().getContextClassLoader().loadClass(``MyClas.class'')

3 Thread.currentThread().getContextClassLoader().loadClass(〈arg〉).getClass()
4 ``MyClas.class''.getClass()

5 Thread.currentThread().getContextClassLoader().loadClass(〈arg〉)

In this example anyCode generates suggestions in less than 40 milliseconds. The second

suggestion turns out to be the desired one.

The suggestions 1, 2, and 4 represent complete expressions. On the other hand, suggestions

3 and 5 represent templates that include the symbol 〈arg〉 that marks the places where local

variables are often used. The main reason why we present templates is that a user often inserts

incomplete input and for an incomplete input the best solution is an incomplete output,

i.e., a template. If we have insisted only on completed expressions, we would miss many

interesting solutions that are more convenient for such an incomplete input. Thus, anyCode

treats a textual input both as complete and incomplete, and tries to find both complete and

incomplete solutions.

Note that the complete expressions 1 and 2 include declarations whose selection and integra-

tion does not directly depend on the textual input. For instance, method loadClass contains

both input words load and class, whereas currentThread does not. To reach the currentThread

from loadClass we use probabilistic language model for Java and its API calls, derived from a

corpus of code. Without such a model we would not be able to construct complex expressions

such as the above one.

3.2.3 Creating a Temporary File

In the third example we demonstrate the use of semantically related words. For instance, if a

user wants to discover templates that make a new file, she may insert 'make �le'. In a less than

49

Chapter 3. Synthesizing Code from Free-Form Queries

80 milliseconds, anyCode generates the following output:

1 new File(〈arg〉).createNewFile()
2 new File(〈arg〉).isFile()
3 new File(〈arg〉)
4 new FileInputStream(〈arg〉)
5 new FileOutputStream(〈arg〉)

Note that word make does not appear among the solutions, because API designers used

the word create. anyCode succeeds in finding the solution because it considers, in addition

to the words such as make appearing in the input, its related words, which includes create.

anyCode uses a custom related-word map to compute the relevant words. We built this map by

automatically processing and adapting WordNet, a large lexical semantic network of English

words.

3.2.4 Writing to a File

Consider next the following input of a developer:

write ``hello'' to �le ``text.txt''

For this input, in less than 50 milliseconds anyCode outputs:

1 FileUtils.writeStringToFile(new File(``text.txt''), ``hello'')

2 FileUtils.writeStringToFile(new File(``hello''), ``text.txt'')

3 FileUtils.writeStringToFile(new File(``hello''), ``hello'')

4 FileUtils.writeStringToFile(new File(``text.txt''), ``text.txt'')

5 FileUtils.writeStringToFile(new File(〈arg〉), ``hello'')

The expressions under 1 and 2 are ranked higher than, e.g., the solution 3 because they have a

higher usage of the input text elements. Indeed, solution 3 does not refer to one of the string

literals in the input. The synthesis algorithm and our scoring techniques favor solutions with

the greater input coverage. In this example, the first expression performs the desired task.

3.2.5 Reading from a File

In the final example we show that our input interface may also accept an approximate ex-

pression. For instance, if a user attempts to write an expression that reads the file, in the first

iteration she may write the following expression

readFile(``text.txt'',``UTF−8'')

Unfortunately, this expression is not well-typed according to common Java APIs. Nevertheless,

if anyCode takes such a broken expression, it pulls it apart and recomposes it into a correct

one, suggesting (again in less than 40 milliseconds) the following solutions:

50

3.3. System Overview

1 FileUtils.readFileToString(new File(``text.txt''))

2 FileUtils.readFileToString(new File(``UTF−8''))
3 FileUtils.readFileToString(〈arg〉)
4 FileUtils.readFileToString(new File(〈arg〉))
5 FileUtils.readFileToString(new File(``text.txt''), ``UTF−8'')

anyCode first transforms the input by ignoring the language specific symbols (e.g., parenthesis

and commas). It then slices complex identifiers, so called k-words, into single words. Here,

readFile is a 2-word that gets sliced into read and �le. Despite the loss of some structure in

treating the input, our language model gives us the power to recover meaningful expressions

from such an input. This shows that anyCode can be used as a simple expression repair system.

The desired solution is ranked fifth because it uses a version of readFileToString method with

two arguments, which appears less frequently in the corpus than the simpler versions of the

method.

We have evaluated our system on a number of examples; Tables 3.1 and 3.2 show 60 text

queries and the code that we expected to obtain in return. The “All” column indicates the rank

on which the expression was found with all features of our system turned on, as discussed in

Section 3.4.

3.3 System Overview

In this section we give a high-level picture of the main components of our system. Input to our

system consists of i) a textual description, explicitly typed by the developer and ii) a partial Java

program with a position of the cursor, which anyCode extracts automatically from the Eclipse

IDE. anyCode uses the input to generate, rank and present (possibly partial) expressions to

the user. As Figure 3.2 shows, the key components of anyCode are the input text parser, the

declaration search engine, and the expression synthesizer. The method getExpressions is the

main method that performs these steps, as outlined in Figure 3.3.

The first goal of parsing is to identify structure of the input text using a set of natural language

processing tools. anyCode uses the structure to group input words into WordGroups. The

intuition is that the input text corresponds to several declarations, and grouping according to

the rules of English helps to identify these declarations from multiple input words. Moreover,

the system uses a map of related words to complete the words given in the input with some of

the related meanings computed from a modified version of WordNet [36]. To complement

natural language input, the system uses program context from the IDE to mark local variables

and literals in the input text. Section 3.5 describes our parsing and related word completion

techniques in more depth.

In the declaration search engine, the system uses the groups, WordGroups, to find a subset of

API declarations that are most likely to form the final expressions. The system tries to match

word groups against declarations in our API collection. To perform matching, the system

51

Chapter 3. Synthesizing Code from Free-Form Queries

Figure 3.2: anyCode system overview. The offline components run only once and for all. The
online components run as part of the Eclipse plugin.

getExpressions(text, context, N−bestExprs):
// Text Parsing

(WordGroups, Literals, Locals) ← parse(text, context)

// Declaration Search

DeclGroups ← declSearch(WordGroups, API, Unigram)

// Synthesis

ExPCFG ← extend(PCFG, Literals, Locals)

Exprs ← synth(DeclGroups, ExPCFG , N−steps)
return keepBest(Exprs, N−bestExprs)

Figure 3.3: The high level description of online portion of anyCode.

extracts a list of words from declarations and matches them against the words in the groups.

Based on the number of words that match, declaration Unigram [51, Chapter 4] score, and

other parameters the system estimates the matching score. We explain this in more details in

Section 3.9. Finally, for each word group the system selects the top N−best declarations with

the highest scores and puts them in a declaration group. In summary, the method declSearch

transforms each word group into a declaration group. Lastly, we would like to mention that

API contains a set of declarations we collect from different APIs and packages. This is done in

advance, before a user invokes anyCode for the first time.

In the last step the system uses declaration groups and a probabilistic context free gram-

mar (PCFG) model [51, Chapter 14] to synthesize expression. ExPCFG consists of the initial

PCFG model, pre-collected from a large Java source code corpus and the extension, a set

of production rules for literals and local variables. The method extend extends PCFG with

the extension and returns ExPCFG. The method synth tries to unfold declaration arguments

following ExPCFG model, in N−steps. Given a declaration, ExPCFG suggests declarations that

52

3.4. Evaluation

should fill in the argument places. The method synth also assigns scores to the expressions,

based on the ExPCFG and declarations scores. Finally, the system uses the method keepBest in

order to filter the top N−bestExprs expressions with the highest scores.

3.4 Evaluation

This section discusses a set of benchmarks we use to evaluate anyCode and presents the

experimental results.

3.4.1 Benchmarks

We wrote 60 benchmarks shown in Tables 3.1 and 3.2. Each benchmark consists of a textual

description and local variables as input, and a desired expression as output. We say that the

system passes the benchmark if for the given input, the desired expression appears among

the synthesized expressions. We use the benchmarks to estimate the effectiveness and the

importance of different aspects of our system.

We ran all experiments on a machine with a quad-core processor with 2.7Ghz clock speed and

16MB of cache. We imposed a 8GB limit for allowed memory usage. Software configuration

consisted of Windows 7 (64-bit) and Java(TM) Virtual Machine 1.7.0.55. The declaration search

and the expression synthesis algorithm make use of multiple CPU cores.

We parametrized anyCode with N−bestExprs=10 and N−steps=5. By using a N−step=5 limit,

our goal was to evaluate the usability of anyCode in an interactive environment (which IDEs

usually are).

Results are shown in Tables 3.1 and 3.2. The Input column represents the textual descriptions,

and the Output column represents the expected expressions. The column Rank represent the

ranks of the expected expressions after we run anyCode. With >10 we mark the case when the

expected expression is not among the top ten synthesized expressions. The Rank column is

split in three sub-columns. Each column relates to a different anyCode configuration. The

first, NoPU, denotes anyCode that does not use unigram and PCFG models. In this setting all

declarations have the same unigram score and all PCFG productions have the same probability.

The second, NoP, denotes anyCode that uses unigram, but does not use PCFG model. In this

setting the tool uses unigram model to select declarations, but all PCFG productions still have

the same probability. The last, All, denotes anyCode that uses both unigram and PCFG to guide

the synthesis algorithm and to rank the expressions. The results show that the system without

the both models generates only 8 (13%) expected expressions among the top ten solutions. The

system with unigram model generates 21 (35%) and the system with both models generates

56 (93%) expressions. In the latter case, we observe that the expected expressions are not

synthesizes in 4 examples for two reasons. The first reason is that the statistical data on

declaration compositions, required to build those expressions, cannot be extracted and found

53

C
h

ap
ter

3.
Syn

th
esizin

g
C

o
d

e
fro

m
Free-Fo

rm
Q

u
eries

Input Output Rank Time
NoPU NoP All [ms]

1 copy file fname to bname FileUtils.copyFile(new File(fname), new File(bname)) >10 >10 1 47
2 does x begin with y x.startsWith(y) >10 >10 1 62
3 load class “MyClass.class” Thread.currentThread().getContextClassLoader() >10 >10 2 31

.loadClass(“MyClass.class”)
4 make file new File(<arg>).createNewFile() >10 >10 1 78
5 write “hello” to file “text.txt” FileUtils.writeStringToFile(new File(“text.txt”), “hello”) >10 >10 1 47
6 readFile(“text.txt”,“UTF-8”) FileUtils.readFileToString(new File(“text.txt”), “UTF-8”) >10 >10 5 31
7 parse “2015” Integer.parseInt(“2015”) >10 >10 1 16
8 substring “EPFL2015” 4 “EPFL2015”.substring(4) >10 >10 1 31
9 new buffered stream “text.txt” new BufferedReader(new InputStreamReader(>10 1 1 47

new BufferedInputStream(new FileInputStream(“text.txt”))))
10 get the current year new Date().getYear() >10 >10 6 62
11 current time System.currentTimeMillis() 1 1 1 16
12 open connection “http://www.oracle.com/” new URL(“http://www.oracle.com/”).openConnection() >10 >10 1 31
13 create socket “http://www.oracle.com/” 8080 new Socket(“http://www.oracle.com/”, 8080) >10 >10 6 47
14 put a pair (“Mike”,“+007-345-89-23”) into a map new HashMap().put(“Mike”, “+007-345-89-23”) >10 9 1 109
15 set thread max priority Thread.currentThread().setPriority(Thread.MAX_PRIORITY) >10 >10 1 109
16 set property “gate.home” to value “http://gate.ac.uk/” new Properties().setProperty(“gate.home”, “http://gate.ac.uk/”) >10 >10 3 94
17 does the file “text.txt” exist new File(“text.txt”).exists() >10 4 1 47
18 min 1 3 Math.min(1, 3) >10 7 1 31
19 get thread id Thread.currentThread().getId() >10 1 1 31
20 join threads Thread.currentThread().join() >10 1 2 16
21 delete file “text.txt” new File(“text.txt”).delete() >10 1 1 31
22 print exception ex stack trace ex.printStackTrace() >10 >10 7 47
23 is file “text.txt” directory new File(“text.txt”).isDirectory() >10 >10 2 46
24 get thread stack trace Thread.currentThread().getStackTrace() >10 1 1 47
25 read line by line file “text.txt” FileUtils.readLines(new File(“text.txt”)) >10 >10 2 94
26 set time zone to “GMT” Calendar.getInstance().setTimeZone(TimeZone.getTimeZone(“GMT”)) >10 >10 1 47
27 pi Math.PI 2 1 1 15
28 split “EPFL-2015” with “-” “EPFL-2015”.split(“-”) >10 >10 1 16
29 memory Runtime.getRuntime().freeMemory() 2 2 1 15
30 free memory Runtime.getRuntime().freeMemory() 3 4 1 16
31 total memory Runtime.getRuntime().totalMemory() 2 2 1 31
32 exec “javac.exe MyClass.java” Runtime.getRuntime().exec(“javac.exe MyClass.java”) >10 1 1 16

Table 3.1: The table that shows the results of the comparison of the different anyCode configurations with and without unigram and PCFG
models (part 1).

54

3.4.
E

valu
atio

n

Input Output Rank Time
NoPU NoP All [ms]

33 new data stream “text.txt” new DataInputStream(new FileInputStream(“text.txt”)) >10 >10 4 47
34 rename file fname1 to fname2 new File(fname1).renameTo(new File(fname2)) >10 >10 1 31
35 move file fname1 to fname2 FileUtils.moveFile(new File(fname1), new File(fname2)) >10 >10 1 62
36 concat “EPFL” “2015” “EPFL”.concat(“2015”) >10 3 1 16
37 read utf from the file “text.txt” new DataInputStream(new FileInputStream(“text.txt”)).readUTF() >10 >10 10 47
38 java home SystemUtils.getJavaHome() 2 1 1 15
39 upper(text) text.toUpperCase() >10 2 1 31
40 compare x y x.compareTo(y) >10 >10 1 32
41 BufferedInput “text.txt” new BufferedInputStream(new FileInputStream(“text.txt”)) >10 >10 1 15
42 set thread min priority Thread.currentThread().setPriority(Thread.MIN_PRIORITY) >10 1 1 78
43 create panel and set layout to border new Panel().setLayout(new BorderLayout()) >10 1 1 172
44 sort array Arrays.sort(array) >10 >10 1 15
45 add label “names” to panel new Panel().add(new Label(“names”)) >10 >10 1 78
46 write 2015 to data ouput stream “t” new DataOutputStream(new FileOutputStream(“t”)).write(2015) >10 >10 >10 70
47 get date when file “t” was last time modified new Date(new File(“t”).lastModified()).getTime() >10 >10 3 240
48 check file “t1” “t2” permission AccessController.checkPermission(new FilePermission(“t1”, “t2”)) >10 >10 1 50
49 read lines with numbers from file “t” new LineNumberReader(new InputStreamReader(>10 >10 5 80

new FileInputStream(“t”))).readLine()
50 StreamTokenizer(“t”) new StreamTokenizer(new BufferedReader(new FileReader(“t”))) >10 >10 6 30
51 read from console new BufferedReader(new InputStreamReader(System.in)).readLine() >10 >10 7 20
52 is file “t” data available new DataInputStream(new FileInputStream(“t”)).available() >10 >10 1 50
53 SequenceInputStream(“t1”, “t2”) new SequenceInputStream(new FileInputStream(“t1”), >10 >10 >10 50

new FileInputStream("t2"))
54 get double value x Double.valueOf(x).doubleValue() >10 >10 >10 40
55 write object x to file “t” new ObjectOutputStream(new ByteArrayOutputStream()) >10 >10 1 60

.writeObject(“t”)
56 1 xor 5 new BitSet(1).xor(new BitSet(5)) >10 >10 >10 30
57 create bit set and set its 5th element to true new BitSet(5) 3 7 1 180
58 accept request on port 80 new ServerSocket(80).accept() >10 >10 6 50
59 ResourceStream(“t”) ClassLoader.getSystemResourceAsStream(“t”) >10 >10 1 33
60 gaussian new Random(System.currentTimeMillis()).nextGaussian() 3 3 3 10

Table 3.2: The table that shows the results of the comparison of the different anyCode configurations with and without unigram and PCFG
models (part 2).

55

Chapter 3. Synthesizing Code from Free-Form Queries

in the corpus. The second reason is that some selected declarations, unrelated to the expected

expressions, are more popular than the expected declarations. Such declarations contribute

to the synthesis of the expressions that are ranked higher that the expected one, and for this

reason the expected expression does not appear among the top ten solutions.

Finally, the column Time shows the times needed to synthesize the top ten expressions for the

anyCode with both models turned on. All times are between 10 and 240 milliseconds, with the

average time of 50.6 milliseconds.

In summary, the results illustrate that our system greatly benefits from the unigram and the

PCFG models. They also show that anyCode can efficiently synthesize the expressions in a

small period of time (in less that 250 milliseconds).

3.4.2 Threats to Validity

The primary threat is to external validity: our set of examples, while fairly large by the standards

of previous literature, may not be representative of general results. This limitation comes

from the two facts: (1) there is no standardized set of benchmarks for the problem that we

examine, and (2) we used the first 45 examples in Tables 3.1 and 3.2 to configure our system.

Later, we used all 60 examples to evaluate our system. The primary purpose of the examples is

to show that our tool is able to produce a set of real-worlds examples when configured. The

parameters that we configure include declaration selection and reward-penalty parameters.

The declaration selection parameters are important for our word-declaration matching. A

parallel corpus with text as input and declarations (expressions) as output would be ideal

for configuring the parameters, however no such corpus exists. Our attempt to create the

corpus from the code and its descriptive comments led to irrelevant examples and the low

quality corpus. The reward-penalty parameters are used to effect the size of the expressions,

the aspect over which PCFG and unigram models have no control. In the rest of the chapter

we take a deeper look at the techniques we employed in anyCode.

3.5 Parsing

We perform parsing both on an input text and API declarations. We use parsing to prepare the

text and the declarations for the search and the matching.

In the sequel, a k-word denotes a chain of k English words connected without a whitespace

between them, as often used in Java identifiers. The words are separated at places where a

small letter meets a capital letter. Usually, declaration names are k-words (e.g. “readFile” is a

2-word that contains words “read” and “file”). A 1-word is a single English word. A token is

either a k-word, a literal or a local variable name. A literal is a number, a string, or a boolean

value. The input text consists of tokens, whereas declarations contain only k-words.

56

3.5. Parsing

3.5.1 Input Text Parsing

The main idea behind input parsing is to group words in the text such that the groups can

be matched to desired declarations. To describe the parsing we use a running example that

shows different phases of the parse method in Table 3.3.

Parsing Example
1 Text Input copy file fname to “C:/user/text2.txt”
2 Decomposition copy file Loc(fname) to L(“C:/user/text2.txt”)
3 Type Substitution copy file String to String
4 POS Tagging copy/Verb file/Noun String/Noun to/To String/Noun

5 Grouping

Words 1 2 3 4 5
Primary copy/Verb file/Noun String/Noun to/To String/Noun
Secondary file/Noun, to/To String/Noun String/Noun
Related duplicate/Verb chain/Noun chain/Noun

Table 3.3: Phases of parsing an example input sentence.

Let us assume a user inserts 'copy �le fname to ``C:/user/text2.txt''', as shown in the first row in

Table 3.3. Each row represent the input to the next phase, but also the output of the previous

phase.

In the input we identify the following tokens: three single words, one local variable and a string

literal. We mark local variables and literals as shown in the second row. In the next phase we

substitute literals and local variables with their types, and produce the output in the third

row. The intuition is that literals and local variables will appear as declaration arguments,

accordingly, we use their types to match potential declaration argument types. To perform

our next parsing step we use the Stanford CoreNLP [29, 67, 92]. The CoreNLP is a pipeline of a

natural language processing tools that takes an English raw text as input and returns tagged

text with deep semantic connections among the words. First, we use the tools to lemmatize

and tag the words. A lemmatizer analyzes a word context to obtain the word’s canonical

form, called lemma (e.g., “good” is the lemma of “better”). The Part-of-Speech (POS) tagger

assigns a part of speech tags (e.g., noun, verb, adjective and etc.) to each word, based on the

context. The tagging is important for two reasons. The first reason is that tagging is a necessary

preprocessing step towards deeper text analysis, which we also perform. The second reason is

that different tags impose different word places in a declaration. For instance, we observe that

verbs appear in method-names, whereas non-verbs can appear almost anywhere. Therefore,

POS-tags can help in assigning different roles and priorities to words. We also tag the words

inside each k-word (if it contains more than one word).

To properly group the words, such that each group corresponds to a single declaration, we

need more information than tags can provide. Thus, we use the parser to identify different

semantical relations among the words. The result is a semantic graph, as show in Figure 3.4.

The graph includes relations like “nsubj” (a nominal subject) or “dobj” (direct object) that

identify a predicate, a subject and an object in a sentence. The relations are important because

they separate the words that are more likely to appear in declaration names from the words

that may appear as arguments. Because we expect that a user will type more often declaration

57

Chapter 3. Synthesizing Code from Free-Form Queries

Figure 3.4: Natural language semantic graph for the input from Table 3.3.

name words to refer to the declaration, we call them primary words. The other words, which

are more likely to appear as arguments, we call secondary words.

In the last phase, we form word groups, such that each group has primary, secondary and

related words (see row five in the table). In our example we form five different groups marked

with numbers 1-5. The group contains all the words below the corresponding number. The

primary words are obtained directly from a k-word from the phase 4. The secondary words

are connected to the primary words via the semantic graph. Namely, the secondary words

are the neighbors (children) of the primary words in the graph. The related words are API

words that are related to the primary words. Those words include synonyms, hypernyms and

hyponyms. We build our own map of related words using set of all API words and WordNet [36],

see Section 3.6. An important constraint that we try to fulfill is that each group contains at

least one non-verb word, because we observe that declarations usually contain at least one

non-verb word.

3.5.2 Declaration Parsing

We also use parsing in the pre-processing stage to create the representation of API declarations.

We next define what we mean by a declaration, then sketch an algorithm that extracts words

from declarations, forming a model suitable for matching.

Declaration Representation

A declaration can be a class method, a constructor, or a field. A declaration has a name and

type, as well as an optional owner. Declaration name is a k-word. Declaration type can be: a

Java primitive type, an API class type or a function type with multiple argument types, built

from class and simple types. A declaration can be static or instance. A static declaration

contains the owner class name. An instance declaration possesses also a receiver type, which

we treat as any argument type.

58

3.6. Related WordMap: Modifying WordNet

Declaration Word Model

To match a declaration with a word group, we extract k-words from a declaration. Then we

decompose complex k-words into single ones. Next, we apply lemmatizer and POS tagger to

the words. In our final step we put the words into the primary or the secondary group based

on the position in the declaration. The words that appear in the declaration name become the

primary words and the word that appear elsewhere become the secondary words. Our goal is

to assign higher priority to the primary words and lower to the secondary words. Section 3.9

shows the framework and the mechanisms to assign such priorities.

The declaration parsing allows us to transform API declaration set into a word-declarations

hash map. This allows us to use an input word to quickly find all declarations that contain it.

This optimization is crucial when searching for declarations.

3.6 Related WordMap: Modifying WordNet

To support inputs that does not strictly follow the actual words of API declarations, we use

WordNet [36], a large lexical database of English words. WordNet groups words into synsets,

which are sets of synonyms. Each synset represents a different meaning of a word. WordNet is

a graph with synsets as the vertices and the relations as edges. The relations between synsets

include antonyms, hypernyms and hyponyms.

API declarations contain only a subset of English words. We refer to this subset the API words.

We build a map from all English words in WordNet to a ranked list of related API word meanings.

A key of the map is an English word and the value is a ranked list of related API word meanings.

The resulting related words are organized into meanings (synsets) to whom we assign scores

(a value between zero and one). This score subsequently becomes the related weight wei g htr

(see Section 3.9.1) of a particular related word.

We build meanings using WordNet relations. For each English word we first find synsets

(synonyms). Then, we find the synsets’ closest hypernyms and hyponyms. We filter out all

non-API words. Finally, we assign scores using textual descriptions assign to each synset in

WordNet. We use Stanford POS-tagger to tag each word in a description. Then, we calculate a

percentage of API words in the description. We assign a description score to each synonym

synset. However, to a hypernym (hyponym) synset we assign a score that is a product of

its description score and the score of the synonym synset that input word uses to reach

the hypernym (hyponym). This way we give an advantage to synonyms over their closest

hypernyms and hyponyms.

59

Chapter 3. Synthesizing Code from Free-Form Queries

3.7 Declaration Search

We expect that the developer will often insert a short text (two to ten words), omitting many

details of a desired expression. The advantages of such an approach for developer are faster

coding, with more time to focus on other development aspects. Such use, however, brings

further challenges for generating expressions. A typical short and ambiguous input does not

make it clear which declarations the expression should use, nor how to compose them. To

solve this difficulty, our first step is to use the words as a starting point in identifying the

desired declarations.

Recall from Figure 3.3 that the parsing phase returns word groups, making use of relations in

the parse tree. Recall also that these word groups are enriched with related words based on

WordNet. We use such word groups to find candidate declarations. The declarative description

of this algorithm is simple: we match a word group with all declarations, calculate the matching

score for each declaration, and find N−bestDecl declarations with the top score. We apply the

same procedure to each group. To make the solution practical, we split the algorithm into

two steps. First, we use a word group and the word-declaration API map to select a set of

declarations that match with at least one word in the word group. In practice, the selected set

is far smaller that the entire API collection. As a consequence, we will have far fewer calls to

the expensive scoring procedure in the second step. The second step calculates the score for

each selected declaration using the matching procedure from Section 3.9.1 and the unigram

model. From the unigram model we obtain the declaration probability. We apply the two steps

to each group in a list of word groups.

3.8 Synthesis

In this section we describe the algorithm that synthesizes the expressions using PCFG model.

Because the algorithm relays on PCFG we first explain the model and later the expression

synthesis.

3.8.1 Probabilistic Context Free Grammar Model

The idea is to use the information on declaration compositions to synthesize expressions. In

general, a declaration has multiple arguments, meaning that it simultaneously composes with

multiple declarations. We decide to treat the simultaneous compositions as one inseparable

multi-composition. We collect from the corpus API multi-compositions and form the PCFG

model.

Let us formally define our PCFG model. Let SType be a set of all simple types, that include Java

primitive and all public API types (including classes and interfaces). Next, let Names be a set of

declaration names, simple type names and the local variable names from the context. Finally,

let Literals be the set of all literals from the textual input. Then, the production rules of our

60

3.8. Synthesis

PCFG can be described by the following grammar:

production ::= decl−production | localvar−production | literal−production

decl−production ::= ?Decl(name)
p−→ [rec.] name [(hole, ..., hole)]

hole :: = ?Decl(name) | ?LocalVar(type) | ?Literal(type)

rec :: = owner−name | hole

localvar−production ::= ?LocalVar(type)
p−→ localvar−name

literal−production ::= ?Literal(type)
p−→ literal

type ∈ STypes owner−name, name, localvar−name ∈ Names literal ∈ Literals

There are three kinds of production rules: a declaration, a local variable and a literal pro-

duction rule. A declaration production rule encodes how a declaration with a name name is

simultaneously composed with holes. Intuitively, each declaration production rule encodes

one multi-composition. Before we describe declaration production rules in more details, let

us introduce holes. There are three kinds of holes: a declaration (?Decl(name)), a local variable

(?LocalVar(type)) and a literal (?Literal(name)) hole. Each hole is a nonterminal, which at the

same time contains additional information. For a declaration it stores a name, for a local

variable and a literal it stores a type.

Now, we can describe declaration production rules. First, note that name appears at the both

sides of a declaration production rule decl−production. On the left-hand side it appears as a

part of the hole and nonterminal ?Decl(name). On the right-hand side the same name appears

as a terminal. It is preceded by rec that is either a hole or an owner class name. The declaration

name is followed by the holes. The holes keep the information on declaration arguments and

thus encode compositions.

We treat literals and local variables differently from declarations. During PCFG extraction, we

abstract away literal and local variable names and leave only type information. Moreover, we

do not build production rules for literal and local variable holes from the corpus, but from

the user context. This means that our PCFG model collected from a corpus is incomplete. We

complete it once we have the textual input and the context of the partial program where a user

invoked anyCode. From the context and the textual input we build the missing production

rules, localvar−production and literal−production, and expand PCFG model. These rules allow us

to synthesize expressions with the local variables from the context and literals from the textual

input.

Finally, for the remaining nonterminals without production rules we add the rules:

localvar−production ::= ?LocalVar(type)
1−→ 〈arg〉

literal−production ::= ?Literal(type)
1−→ default−literal

default−literal ::= "?" | 0 | false

type ∈ STypes

61

Chapter 3. Synthesizing Code from Free-Form Queries

The symbols 〈arg〉, "?", 0 and f al se are special termination symbols that represent missing

arguments.

The reason why we call the non-terminals, holes, is that, during synthesis, they appear as holes

in partial expressions. We use holes to access production rules that unfold them. We also keep

a probability p for each rule, which is based on the rule frequency in the corpus. Also, note

that a single hole can have a several different productions, e.g., denoting a several different

multi-compositions for a single declaration.

3.8.2 Partial Expression Synthesis

A partial expression denotes an intermediate result arising in the construction of expressions

of interest. A complete expression would be made up of variables, literals, and declaration

applications. A partial expression may additionally contain different kinds of holes, as well

as connectors. Holes denote places where a partial expression may expand using the rules of

PCFG. A connector denotes a place in a partial expression that can expand by substituting

another synthesized partial expression.

Our algorithm proceeds in two following phases:

First phase turns every declaration group into a partial expression group. For each declaration

in a declaration group:

1. We wrap a declaration name in a hole, creating the initial partial expression.

2. We use production rules of PCFG to unfold holes in partial expressions. This creates new

partial expression(s). Gradually, partial expressions grow, and we continue unfolding

them until we reach some maximum number of steps. When we can, we insert a

connector at the place where partial expressions may merge. This way, we leave the

merging until the next phase. At each step, the arguments are unfolded using the PCFG

score with the highest probability.

3. We calculate a partial expression score, based on the PCFG model and the declaration

scores.

4. The expressions without holes form a partial expression group. (The expressions may

have connectors.)

Second phase tries to connect as many as possible expressions that belong to the different

partial expression groups. For each partial expression in a partial expression group:

1. We find connectors in the partial expression and substitute them with the appropriate

expressions from another group. Again, this creates more partial expressions. They

gradually grow and we keep substituting connectors until some maximum number of

steps is reached.

62

3.9. Declaration Score

2. The score of a new partial expression is calculated using PCFG model, declaration

scores, the text input coverage and expression repetition parameters as explained in

Section 3.10.

3. We keep and present to a user some maximal number of expressions.

The algorithm synthesizes expressions using eager selection that does not guarantee always

the optimal solution, in terms of the PCFG probability and the expression score. Therefore,

to make the algorithm more effective, we use the practical approach that synthesizes more

expressions than specified by a user, then it sorts them by the score, and finally selects and

outputs the required smaller number of the expressions.

3.9 Declaration Score

WordGroup-Declaration matching score and declaration unigram score influence total decla-

ration score. More precisely the declaration score is equal to the product of the two scores.

3.9.1 WordGroup-Declaration Matching Score

We next present a word group and a declaration matching algorithm. Recall that the word

group contains primary, secondary and related words. We further split them based on their

input origin. Namely, each word has a word in input to which it belongs. We call this word

an origin; a group can have a several origins. Our goal is to maximize the matching score

between group origins and declaration words. However, we do not match an origin with a

declaration word. Instead, we split the group into disjoint subgroups based on origins, and

match subgroups with declaration words. A word matches with a subgroup if a subgroup

contains the lexically identical word with the same tag. Let us create the bipartite graph such

that one set, SGS, of vertices is a set of subgroups, and the other, W, is the set of declaration

words. Also, we create edges between subgroups and declaration words that match. Each

edge has a weight, a value between zero and one. Now, calculating the maximum matching

score turns into finding a maximum weight matching in a weighted bipartite graph. This is

the well-known assignment problem [19]. To solve it, we choose the Hungarian method [56],

with the following optimizations. We observed that many vertices remain without edges, so

we remove all such vertices. We also observe that the bipartite graph is usually disconnected.

We identify its connected components, and decompose it into smaller bipartite graphs. We

calculate the score of each component and sum them up. The final score is the word group-

declaration matching score. Another optimization is that, if we need to calculate matching

1 to n, we simply find the maximum among the weights. This is an important optimization

because this sort of matching and its special case (1 to 1 matching) often occur. We define a

total match weight between a group word wg and a declaration word wd as follows:

wei g htmatch(wg , wd) = wei g hti (wg) * wei g hti (wd) * wei g htk(wg , wd)* wei g htr (wg)

63

Chapter 3. Synthesizing Code from Free-Form Queries

Word Importance Weight. Primary words are more important than secondary and related

words. To encode this, we introduce word importance weight, wei g hti , which is a real value

between one and zero and assigns a higher value to a primary than to the secondary and

related words.

Kind Weight. We reward more a matching between primary input and primary declaration

words (a primary-primary match) than a primary-secondary and a secondary-secondary

matching. (Related words are treated same as primary words in this context.) We use a

quantitative function, called kind weight, wei g htk , that returns a real value between one

and zero. It assigns a higher value to a primary-primary than to a secondary-primary and a

secondary-secondary matching.

Related Word Weight. We use WordNet and collection of API words to calculate wei g htr (see

also Section 3.6). We penalize related words that are far from the primary words. To measure

a primary-related word distance we introduce a quantitative function, called related word

weight, wei g htr , that returns a real value between one and zero. Synonyms are closer to a

word than hyponyms and hypernyms.

To apply the matching algorithm, we take the maximum weight between a subgroup SG and a

declaration word w, to be the edge (SG, w) weight:

wei g htmatch(SG, w)= max({wei g htmatch(wg , w) | wg ∈ SG})

3.9.2 Declaration Unigram Score

The unigram model [51, Chapter 4] assigns a probability to each declaration based on call

frequency in a corpus. The higher the declaration frequency, the higher the probability. We

smooth the model by assigning the minimal frequency value (collected in the corpus) to a

declaration that does not appear in the corpus. The declaration unigram score is equal to the

declaration probability.

3.10 Partial Expression Score

To rank the (partial) expressions, expr , and to guide the synthesis algorithm we use the score

scor e(expr) that is computed by the following formula:

scor e(expr) = log(scor e(expr)pc f g) + log(scor e(expr)decl) + scor e(expr)cov − scor e(expr)r ep

The PCFG score, scor e(expr)pc f g , is equal to the product of all composition probabilities used

in the (partial) expression. The declaration score, scor e(expr)decl , is equal to the product of

all declaration scores whose declarations appear in expr . The coverage score, scor e(expr)cov

, estimates and favors the higher coverage of the input text words. We say that the word

is covered if it selects a declaration in expr . Finally, the repetition score, scor e(expr)r ep , is

proportional to the number of extra partial expressions used in scor e(expr)r ep . We say that a

64

3.11. Constructing PCFG and Unigram Models

partial expression is extra if another partial expression from the same partial expression group

is also used in scor e(expr)r ep . Preferably, we would like to use a single partial expression per

each partial expression group.

3.11 Constructing PCFG and Unigram Models

We build both unigram and probabilistic context-free grammar models by analyzing the

corpus of projects from GitHub.

Java Code Corpus. We use the GitHub Java corpus [11] that contains over 14’500 Java projects.

The corpus includes only projects from GitHub that were forked at least once, to select more

popular repositories. We decide to analyze each Java source file individually to reduce analysis

time and avoid the need to execute essentially arbitrary build processes of various projects.

Whereas this reduces the quality of the data we can extract from corpus, it is compensated by

the fact that we can analyze many more projects: we were able to analyze 14’500 Java projects

containing over 1.8 million files.

Model Extraction. We use Eclipse JDT parser [2] to parse each file. To improve the model we

build our own symbol table and type-checker. The symbol table keeps track of all imported

API declarations (of our interest). We analyze an expression using the symbol table and the

type-checker. The symbol table identifies API declarations in an expression and the type-

checker checks if the expression type-checks against them. Using those methods we extract

a declaration multi-composition along with its occurrence frequency. We also extract the

declaration occurrence frequency. Then, we use them to calculate the composition’s and

the declaration occurrence probabilities. Finally, we use the composition and its probability

to build PCFG model, and the declaration and its probability to build Unigram model. The

models are formed once we extract the information for all compositions and declarations in

the corpus. In general, an expression contains user-defined declarations. We reduce their

number to improve the quality of the analysis. In particular, where suitable, we inline local

variables. The rest we mark with a special symbols and encode them in the PCFG model.

3.12 Related Work

We mention related work that combine NLP and program synthesis techniques, as well as

program synthesis tools with similar goals as our work.

SmartSynth [60] generates smartphone automation scripts from natural language descriptions.

It uses NLP techniques to infer components and their partial dataflow from NL description.

Then, it uses type based synthesis to constructs the scripts. Macho [25] transforms natural

language descriptions into a simple programs using a natural language parser, a database of

corpus and input-output examples. It maps English into database queries, then selects them,

combines them and test them using examples. The queries are based on variables names. Little

65

Chapter 3. Synthesizing Code from Free-Form Queries

and Miller [62] built a system that translates a small number of keywords, provided by the user,

into a valid expression. It extracts words from a declaration in the context, and tries to match

them using explanatory vectors. The system tries to cover as many as possible words from

the input, using declaration words. It also penalizes the unmatched words. NaturalJava [79]

allows a user to create and manipulate Java programs using an NL input. It uses a restricted

form of NL, based on Java‘s programming concepts, and translates it to Java statements. It

requires the user to think and explicitly describe commands at the syntactical level of Java.

Also, Metafor [63] transforms a story (in NL form) into a program template. It tries to obtain

program structure by interpreting nouns as program objects, verbs as functions and adjectives

as properties.

Unlike all mentioned tools, anyCode uses code corpus, PCFG and unigram model to synthesize

and rank the expressions. We also automatically infer the set of words that map to declaration

(components). Finally, those tools usually relay on the mapping model, where verbs are

mapped to actions (methods), and nouns to objects (arguments). As discussed in Section 3.9.1,

we introduce a more sophisticated model and its framework that maps an input text to

declarations, resolves complex declaration names and takes into account related words (e.g.

synonyms). We also show how to encoded the mapping into the assignment problem and

solve it using Hungarian method.

SLANG [80] takes a program with holes and produces the most likely completions, sequences

of method calls. It uses an N-gram language model to predict and synthesize a likely method

invocation sequence, as well as method arguments. SNIFF [22] uses natural language to

search for code examples. It collects a corpus, code examples, and uses API documentation

to annotate the examples, and method calls, with keywords. As mentioned before in Chap-

ter 2, InSynth asks user to specify the desired type and produces a set of ranked expressions,

instances of the desired type. InSynth ranks the solutions based on the declaration unigram

model. In this chapter, we change the input interface to the textual one, giving a user more

freedom in specifying his wishes. We additionally use more sophisticated PCFG model, ex-

tracted from a far bigger corpus than the one used in InSynth. CodeHint [41] is a dynamic

synthesis tool that uses a runtime information to generate and filter candidate expressions. A

user provides tests and a specification, and tool generate candidates and checks them against

the tests and specification. To guide a generation, the tool uses only a declaration unigram

model. XSnippet [82] takes a user query to extract Java code from the sample repository. It

offers a range of queries from generalized to specialized. XSnippet ranks solutions based

on their length, frequency, and context-sensitive as well as context-independent heuristics.

The user needs to initiate additional queries to fill in the method arguments. Strathcona [47]

automatically extracts a query based on the structure of the developed code. It does not allow

a user to explicitly describe their needs. PARSEWeb [88] uses the Google code search engine to

get relevant code examples. The solutions are ranked by length and frequency. The advanced

code completions tools [8, 18], proposes declarations and code templates. Both systems use

API declaration call statistics from the existing code examples to present a solutions with

appropriate statistical confidence value.

66

3.13. Conclusions

3.13 Conclusions

We presented anyCode, to the best of our knowledge the first tool for code synthesis that

combines unique flexibility in both its input and its output. On the one hand, anyCode

performs parsing of the free-form text input that may contain a mixture of English and code

fragments. On the other hand, anyCode automatically constructs valid Java expressions for

a given program point and is able to generate combinations of methods not encountered

previously in the corpus. Ensuring this flexibility required a new combination of techniques

from natural language processing, code synthesis, and statistical inference. Our experience

with the tool, as reported on 60 diverse examples, suggests that there is a number of scenarios

where such functionality can be useful for the developer.

67

4 Test Generation through Program-
ming in UDITA

We present an approach for describing tests using non-deterministic test generation programs.

To write such programs, we introduce UDITA, a Java-based language with non-deterministic

choice operators and an interface for generating linked structures. We also describe new

algorithms that generate concrete tests by efficiently exploring the space of all executions of

non-deterministic UDITA programs.

Unlike synthesis tools we presented in previous chapters, UDITA requires more intervention

from a user. The reason is that synthesizing automatically complex test inputs, like programs,

is often more challenging than synthesizing code fragments. Therefore, in some cases users

will need to describe as precisely as possible such test inputs in order to help a system to

generate them efficiently. This is where UDITA technique is useful. While less automated, it

can generate many programs quickly and is thus useful for test generation.

We implemented our approach and incorporated it into the official, publicly available repos-

itory of Java PathFinder (JPF), a popular tool for verifying Java programs. We evaluate our

technique by generating tests for data structures, refactoring engines, and JPF itself. Our

experiments show that test generation using UDITA is faster and leads to test descriptions that

are easier to write than in previous frameworks. Moreover, the novel execution mechanism of

UDITA is essential for making test generation feasible. Using UDITA, we have discovered a

number of bugs in Eclipse, NetBeans, Sun javac, and JPF.

4.1 Motivation

Testing is the most widely used method for detecting software bugs in industry, and the

importance of testing is growing as the consequences of software bugs become more severe.

Testing tools such as JUnit are popular as they automate text execution. However, widely

adopted tools offer little support for test generation. Manual test generation is time-consuming

and results in test suites that have poor quality and are difficult to reuse. This is especially the

case for code that requires structurally complex test inputs, for example code that operates on

69

Chapter 4. Test Generation through Programming in UDITA

programs (e.g., compilers, interpreters, model checkers, or refactoring engines) or on complex

data structures (e.g., container libraries).

Consider, for example, testing a feature in a Java compiler. In this case, test inputs are represen-

tations of programs. Our intuition could be that we can expose bugs in the feature under test

using as inputs, say, Java programs with complex inheritance graphs (consisting of classes and

interfaces). The expected properties of the Java inheritance graphs are: there are no directed

cycles, all explicit parents of interfaces are interfaces, and each class has at most one parent

class. It is tedious and error-prone to manually generate tests that cover many “corner cases”

for inheritance graphs: a test with only one class, a test with a subclass and a superclass, a

test with two classes not related by inheritance, a test with an interface, a test with multiple

inheritance through interfaces, a test with multiple paths to a common ancestor, with abstract

classes, etc.

Recent techniques aim to reduce the burden of manual testing using systematic test generation

based on specifications [16, 52] or on symbolic execution [24, 54] and its hybrids with concrete

executions [20, 26, 32, 44, 53, 75, 83, 90]. Modern (hybrid) symbolic execution techniques can

handle advanced constructs of object-oriented programs, but practical application of these

techniques were largely limited to testing units of code much smaller than hundred thousand

lines, or generating input values much simpler than representations of Java programs. The

inherent requirement for not only building path conditions, albeit with partial constraints,

but also determining their feasibility poses a key challenge for scaling to structurally complex

inputs and entire systems. Automatically handling programs of the complexity of a compiler

remains challenging for current systematic approaches. Our approach is to allow testers to

utilize their domain knowledge to scale these systematic approaches.

We propose a new technique to generate a large number of complex test inputs by allowing

the tester to write a test generation program in UDITA, a Java-based language with non-

deterministic choices, including choices used to generate linked data structures. Each execu-

tion of a test generation program generates one test input. Our execution engine systematically

explores all executions to generate inputs for bounded-exhaustive testing [69,87] that validates

the code under test for all test inputs within a given bound (e.g., all trees with up to N nodes).

UDITA thus enables testers to avoid manual generation of individual tests. However, our ap-

proach does not attempt to fully automatically identify tests [20,44], because such approaches

do not provide much control to the tester to encode their intuition. Instead, we provide testers

with an expressive language in which they have sufficient control to define the space of desired

tests.

This chapter makes several contributions:

• New language for describing tests: We present UDITA, a language that enhances Java

with two important extensions. The first extension are non-deterministic choice com-

mands and the assume command that (partially) restricts these choices. These con-

70

4.1. Motivation

structs are familiar to users of model checkers such as Java PathFinder (JPF) [94]. Thanks

to the built-in non-determinism, writing a test generation program (from which many

test inputs can be generated) is often as simple as writing Java code that generates

one particular test input. The second extension is the object pool abstraction that

allows the tester to control generation of linked structures with any desired sharing pat-

terns, including trees but also DAGs, cyclic graphs, and domain-specific data structures.

Due to its expressive power, UDITA enables testers to write test generation programs

using any desirable mixture of two styles—filtering (also previously called declara-

tive) [16, 35, 42, 52, 68, 69] and generating (also previously called imperative) [28, 49]—

whereas previous systems required the use of only one style.

• New test generation algorithms: We present efficient techniques for test generation

by systematic execution of non-deterministic programs. Our techniques build on sys-

tematic exploration performed by explicit-state model checkers to obtain the effect

of bounded-exhaustive testing [69, 87]. The efficiency of our techniques is based on

a general principle of delayed choice [73], i.e., lazy non-deterministic evaluation [38].

The basic delayed choice technique postpones the choices for each variable until it

is first accessed. The more advanced copy propagation technique further postpones

the choices even if the values are being copied. Like lazy evaluation, our techniques

guarantee that each non-deterministic choice is executed at most once.

Our techniques support primitive fields but are particularly well-suited for linked struc-

tures (Section 4.4.2). The techniques use a new object pool abstraction. We postpone

the choice of object identity until object’s first non-copy use, reducing the amount

of search. Furthermore, we avoid isomorphic structures [48, 68] which gives another

source of exponential performance improvement. Finally, to determine the feasibility of

symbolic fresh-object constraints in the current path, we use a new polynomial-time

algorithm (figures 4.10 and 4.11), which is in contrast to NP-hard constraints in tradi-

tional symbolic execution [24,54], and it follows a design choice to shift the burden from

a constraint solver to the optimized execution engine [46].

• Implementation: We describe an implementation of UDITA and our optimizations on

top of JPF [94], a popular model checker for Java, which makes it easy to provide UDITA

as a library. Our code is publicly available [9] and included as an extension (called

delayed) in the (old) JPF repository:

http://javapathfinder.sourceforge.net

• Evaluation: We evaluate our implementation on a number of complex test abstractions.

We show that the new test abstractions can be shorter and lead to faster test generation.

The experiments revealed bugs in Eclipse, NetBeans, and JPF.

We have performed several sets of experiments to evaluate UDITA, mostly for black-box

testing. The first set of experiments, on six data structures, shows that our optimizations

improve the time to generate test inputs up to a given bound.

71

http://javapathfinder.sourceforge.net

Chapter 4. Test Generation through Programming in UDITA

The second set of experiments is on testing refactoring engines, which are software

development tools that take as input program source code and refactor (transform) it

to change its design without changing its behavior [74]. Modern IDEs such as Eclipse

or NetBeans include refactoring engines for Java. A key challenge in testing refactoring

engines is generating input programs. Figures 4.5 and 4.6 show some example programs

with multiple inheritance that revealed bugs in Eclipse. To generate such programs, we

need to both “generate inheritance graphs” and “add methods” in the classes and inter-

faces in the graphs. Our experience with UDITA’s combined filtering/generating style

shows that, compared to our prior approach, ASTGen [28,49], UDITA is more expressive,

resulting in shorter (and easier to write) test generation programs, with sometimes faster

generation (even on a slower JPF virtual machine). Through these experiments, we

revealed four bugs in Eclipse and NetBeans (all four have been confirmed by developers

and assigned to be fixed), and even two bugs in the Sun Java compiler.

The third set of experiments, on testing parts of the UDITA implementation, revealed

several new bugs in JPF, and one bug in our JPF extension that we subsequently corrected.

These results suggest that UDITA is effective in helping detect real bugs in large code

bases.

The fourth set of experiments, for white-box testing, compared UDITA with Pex [90],

a state-of-the-art testing tool based on symbolic execution. Our results found that

object pools are a powerful abstraction for guiding exploration, orthogonal to the path-

bounding approaches used by tools such as Pex. In particular, even a naive imple-

mentation of object pools helped Pex enumerate structures and find bugs faster. Our

experimental results are publicly available [9].

4.2 Example

To illustrate UDITA, we consider generation of inheritance graphs for Java programs. Such

generation helps in testing real-world applications including compilers, interpreters, model

checkers, and refactoring engines (Section 4.5). The example illustrates how UDITA can

describe data structures with non-trivial invariants. Figure 4.1 shows a simple representation

of inheritance graphs in Java. A graph has several nodes. Each node is either a class or an

interface, and has zero or more supertypes that are classes or interfaces. (We do not explicitly

model the java.lang.Object class.)

Specification of inheritance graphs. Each inheritance graph needs to satisfy the following

two properties: 1) DAG (directed acyclic graph): The nodes in the graph should have no directed cycle

along the references in supertypes. 2) JavaInheritance: All supertypes of an interface are interfaces,

and each class has at most one supertype class.

UDITA allows the tester to express these properties using full-fledged Java code extended

with non-deterministic choices. Testers describe properties in UDITA using any desired mix

of filtering and generating style. In a purely filtering style, embodied in techniques such as

72

4.2. Example

class IG {
Node[] nodes;
int size;
static class Node {
Node[] supertypes;
boolean isClass;

}
}

Figure 4.1: A representation of inheritance graphs

boolean isDAG(IG ig) {
Set<Node> visited = new HashSet<Node>();
Set<Node> path = new HashSet<Node>();
if (ig.nodes == null || ig.size != ig.nodes.length) return false;
for (Node n : ig.nodes)
if (!visited.contains(n))
if (!isAcyclic(n, path, visited)) return false;

return true;
}

boolean isAcyclic(Node node, Set<Node> path, Set<Node> visited) {
if (path.contains(node)) return false;
path.add(node);
visited.add(node);
for (int i = 0; i < supertypes.length; i++) {
Node s = supertypes[i];
// two supertypes cannot be the same
for (int j = 0; j < i; j++)
if (s == supertypes[j]) return false;

// check property on every supertype of this node
if (!isAcyclic(s, path, visited)) return false;

}
path.remove(node);
return true;

}

boolean isJavaInheritance(IG ig) {
for (Node n : ig.nodes) {
boolean doesExtend = false;
for (Node s : n.supertypes)
if (s.isClass) {
// interface must not extend any class
if (!n.isClass) return false;
if (!doesExtend) {
doesExtend = true;
// class must not extend more than one class

} else { return false; }
}

}
}

Figure 4.2: Filtering approach for inheritance graphs

73

Chapter 4. Test Generation through Programming in UDITA

TestEra [52] and Korat [16, 35, 42, 68, 69], the tester writes the predicates—what the test inputs

should satisfy; then the tool searches for valid tests. In contrast, in a purely generating style,

embodied in techniques such as ASTGen [28, 49], the tester directly writes generators—how to

generate valid inputs; then the tool executes these generators to generate the inputs. We first

present these two pure approaches, then discuss how UDITA allows freely combining them,

and finally how UDITA efficiently generates inputs.

IG initialize(int N) {
IG ig = new IG();
ig.size = N;
ObjectPool〈Node〉 pool = new ObjectPool〈Node〉(N);
ig.nodes = new Node[N];
for (int i = 0; i < N; i++) ig.nodes[i] = pool.getNew();
for (Node n : nodes) {
// next 3 lines unnecessary when using generateDAGBackbone
int num = getInt(0, N − 1);
n.supertypes = new Node[num];
for (int j = 0; j < num; j++) n.supertypes[j] = pool.getAny();
// next line unnecessary when using generateJavaInheritance
n.isClass = getBoolean();

}
return ig;

}

static void mainFilt(int N) {
IG ig = initialize(N);
assume(isDAG(ig));
assume(isJavaInheritance(ig));
println(ig);

}

static void mainGen(int N) {
IG ig = initialize(N);
generateDAGBackbone(ig);
generateJavaInheritance(ig);
println(ig);

}

Figure 4.3: Examples of bounded-exhaustive generation

Filtering approach. To generate complex test inputs such as inheritance graphs, one ap-

proach [16] is to use arbitrary (Java) code to write predicates that encode properties of test

inputs. We call this style filtering as it only specifies what the inputs look like, although the

specification itself is written in an imperative language [68]. Figure 4.2 shows Java predicates

that return true when the above inheritance graph properties hold. Among the advantages of

such test abstractions is that the developers need not learn an entirely new specification lan-

guage and can choose to hand-optimize the checks using property-specific algorithms (such

as the recursive algorithm for DAG in Figure 4.2), while the compiler can also use standard

techniques to optimize the code.

To generate all test inputs from predicates, the tester needs to specify bounds on possible

values for input elements, which in our example are the nodes, array sizes, and isClass

fields. For this purpose, UDITA uses non-deterministic choices. JPF already has choices for

primitive values. For example, the assignment k=getInt(1, N) introduces N branches in

a non-deterministic execution, where in branch i (for 1 ≤ i ≤ N) the variable k has value

i . JPF can systematically explore all (combinations) of non-deterministic choices. UDITA

74

4.2. Example

additionally provides non-deterministic choices for pointers/objects through the notion of

object pools (described in detail in Section 4.4.2). Figure 4.3 shows the non-deterministic

initialization of an inheritance graph data structure. The method initialize proceeds in

several steps: (1) sets the graph size (the number of nodes), (2) creates a pool of Node objects

of this size, and (3) iterates over all objects in the pool to non-deterministically initialize their

supertypes to point to other objects in the pool. The getNew and getAny methods pick a fresh

object and an arbitrary object from the pool, respectively. Running mainFilt on JPF/UDITA

generates all inheritance graphs of size N .

void generateDAGBackbone(IG ig) {
for (int i = 0; i < ig.nodes.length; i++) {
int num = getInt(0, i); // pick number of supertypes
ig.nodes[i].supertypes = new Node[num];
for (int j = 0, k = −1; j < num; j++) {
k = getInt(k + 1, i − (num − j));
// supertypes of "i" can be only those "k" generated before
ig.nodes[i].supertypes[j] = ig.nodes[k];

}
}

}

void generateJavaInheritance(IG ig) {
// not shown imperatively because it is complex:
// topologically sorts "ig" to �nd what nodes can be classes or interfaces
}

Figure 4.4: Generating approach for inheritance graphs

Generating approach. Instead of generating possible graphs in Figure 4.3 and then filtering

those that are not inheritance graphs, Figure 4.4 shows a simpler and a faster alternative

that directly generates DAGs of size N with the generateDAGBackbone method. We say that

Figure 4.4 presents a generator for DAGs, which is in contrast to the predicate isDAG in Fig-

ure 4.2. The generator establishes by construction that there are no directed cycles (because

supertypes of a node i can only be nodes k that were generated before i).

Writing generators instead of predicates can dramatically speed up generation. However,

using generators alone is fairly involved. Although it is relatively easy to write a generator

for all arbitrary DAGs, it is non-trivial to eliminate isomorphic graphs (Section 4.4.2) or to

properly label nodes as classes and interfaces (generateJavaInheritance). Properties of other

data structures can be even harder to express as generators. For example, an entire research

paper was devoted to efficient generation of red-black trees [13]. In comparison, filtering is

often easier, anecdotally confirmed by the fact that even undergraduate students are able

to write appropriate checks [69]. This trade-off justifies the need for optimized execution

for predicate-based exploration but also asks for an approach to combine predicates and

generators.

Unifying predicates and generators. UDITA makes combination of predicates and genera-

75

Chapter 4. Test Generation through Programming in UDITA

import java.util.List;
class A implements B, D {
public List m(){
List l=null;
A a=null;
l.add(a.m());
return l;

}
}

interface D { public List m(); }
interface B extends C { public List m(); }
interface C { public List m(); }

import java.util.List;
class A implements B, D {
public List<List> m() {
List<List<List>> l=null; //bug
A a=null;
l.add(a.m());
return l;

}
}

interface D { public List<List> m(); }
interface B extends C { public List<List> m(); }
interface C { public List<List> m(); }

Figure 4.5: InferGenericType bug in Eclipse: when the refactoring is applied on the input program
(left), Eclipse incorrectly infers the type of A.m.l as List<List<List>>, which does not match the
return type of A.m

tors possible because they are both expressed in a unified framework: systematic execution of

non-deterministic choices. Consider the properties in our running example. For the DAG prop-

erty, comparing Figure 4.4 and Figure 4.2, one could argue it is easier to write a generator than

a predicate. However, for the JavaInheritance property, it is much easier to write a predicate

than a generator. UDITA allows the tester to combine, for example, a generator for DAG with

a predicate for JavaInheritance: one would write a new main that uses generateDAGBackbone

and assume(isJavaInheritance).

Test generation. After the tester writes some predicates and/or generators, it is necessary to

execute them to generate the tests. JPF already provides an execution engine for getInt and

getBoolean non-deterministic choices. Naive implementations of the object pool’s getNew

and getAny choices (whose use is shown in Figure 4.3) can be simply done with getInt (as

discussed in Section 4.4.2). However, these naive implementations, which we call eager as they

immediately return a value, result in a combinatorial explosion, e.g., mainFilt from Figure 4.3

for N = 4 does not terminate in an hour!

We provide more efficient implementations, which we call delayed as they postpone choices

of primitive values (getInt and getBoolean) and additionally optimize exploration for object

pools (getAny and getNew). For example, mainFilt from Figure 4.3 for N = 4 terminates in just

5.5 seconds with our delayed choice. Generating approach can be even faster than filtering

search. Section 4.5.1 shows our experimental results for data structures. We evaluate mostly

the combined filtering/generating style, since test programs are much easier to write than for

purely generating style, and generation for purely filtering style is several orders of magnitude

slower on basic JPF without delayed choice.

Section 4.5.1 shows our results for testing refactoring engines, where we built on the inheri-

tance graph generator to produce Java programs as test inputs. Figures 4.5 and 4.6 show two

example input programs, generated by UDITA, which found bugs in Eclipse, specifically in the

InferGenericType and UseSupertypeWherePossible refactorings.

76

4.3. UDITA Language

class A implements B {
public A m() {
A a = null;
return a;

}
}

interface B extends C { public B m(); }
interface C { public C m(); }

class A implements B {
public C m() { // bug
C a = null;
return a;

}
}

interface B extends C { public B m(); }
interface C { public C m(); }

Figure 4.6: UseSupertypeWherePossible bug in Eclipse: when the refactoring is applied on A, the
return type of A.m is incorrectly changed to C instead of displaying a warning or suggesting changing
the return type to B

class ObjectPool〈T〉 {
public ObjectPool〈T〉(int size, boolean includeNull) { ... }
public T getAny() { ... }
public T getNew() { ... }

}

Figure 4.7: Basic operations for object pools

interface IGenerator〈T〉 { T generate(); }

class IntGenerator implements IGenerator〈int〉 {
int lo, hi;
IntGenerator(int lo, int hi) { this.lo = lo; this.hi = hi; }
int generate() { return getInt(lo, hi); }

}

class IGGenerator implements IGenerator〈IG〉 {
IG ig;
IGGenerator(int N) { ig = initialize(N); }
IG generate() {
assume(isDAG(ig) && isJavaInheritance(ig));
return ig;

}
}

class PairGenerator〈L, R〉 implements IGenerator〈Pair〈L, R〉〉 {
IGenerator〈L〉 lg;
IGenerator〈R〉 rg;
PairGenerator(IGenerator〈L〉 lg, IGenerator〈R rg) { ... }
Pair〈L, R〉 generate() {
return new Pair〈L, R〉(lg.generate(), rg.generate());

}
}

Figure 4.8: UDITA interface for generators and some example generators

4.3 UDITA Language

UDITA language makes it easy to develop generic, reusable, and composable generators. The

key aspects of the UDITA are: (1) constructs for generating primitive values and objects; (2) the

77

Chapter 4. Test Generation through Programming in UDITA

ability to encapsulate UDITA generators into reusable components using interfaces; and

(3) the ability to compose these components.

Basic Generators. The generators for UDITA borrow from JPF non-deterministic choices for

primitive values. For example, getInt(int lo, int hi) returns an integer between lo and

hi, inclusively; and getBoolean() returns a boolean value. UDITA also provides a new notion,

object pools, for non-deterministic choices of objects. Figure 4.7 shows the interface for object

pools. The constructor can create finite (if size > 0) and infinite (if size < 0) pools, which

may or may not include the value null. The method getAny non-deterministically returns any

value from the pool (including optionally null), whereas getNew returns an object that was

not returned by previous calls (and never null). Section 4.4.2 describes the implementation of

these operations.

Generator Interface. UDITA provides IGenerator interface for encapsulating generators,

as shown in Figure 4.8. The only method, generate, produces one object of the generic

type T. During the execution on JPF, this method will be systematically explored for all non-

deterministic choices, and will generate many objects of the type T. The figure also shows an

example IntGenerator for primitive values (ignoring any boxing of primitive values needed

in Java) and an example IGGenerator that encapsulates filtering style predicates (isDAG and

isJavaInheritance).

The design of UDITA generators is influenced by ASTGen [28] (which provides Java generators

for abstract syntax trees for testing refactoring engines) and QuickCheck [23] (which provides

a Haskell framework for generators). UDITA provides a much simpler interface than ASTGen:

instead of one method, the basic IGenerator for ASTGen has five methods [28, Sec. 3.2].

The cause of that complexity is that ASTGen runs on a deterministic language; to obtain

bounded-exhaustive generation, the implementor of the interface must manually manipulate

the generator state (to reset it, advance it, store/restore it). In contrast, UDITA supports non-

determinism, with program execution enumerating all non-deterministic choices. Compared

to QuickCheck [23], which supports only random generation, UDITA focuses on bounded-

exhaustive generation, obtaining random generation for free as one of the possible exploration

strategies of non-deterministic choices (where additional strategies include depth-first and

breadth-first).

Composing generators. An important feature of frameworks such as ASTGen, QuickCheck, or

UDITA is to allow reuse and composition of basic generators into more complex generators [23,

28]. UDITA again offers a substantially simpler solution than ASTGen. Figure 4.8 shows

an example generator that produces pairs of values based on generators for left and right

pair elements. Note that the generate method of PairGenerator has only one line of code.

In contrast, the corresponding ASTGen generator has ten lines of code [28, Sec. 3.3]. The

reason is, again, that ASTGen needs to explicitly iterate over possible values to produce their

combinations for bounded-exhaustive generation. QuickCheck provides composition through

higher-order functional combinators [23] but is designed for the purely functional language

78

4.4. Test Generation in UDITA

Haskell and has no support for generating non-isomorphic graph structures. Neither ASTGen

nor QuickCheck provide unified filtering/generating style like UDITA.

4.4 Test Generation in UDITA

We next describe our test generation algorithms, which rely on the notion of delayed (lazy)

execution of non-deterministic choices.

4.4.1 Test Generation for Primitive Values

Eager choice execution. We could, in principle, use a straightforward implementation of

getInt that immediately chooses a concrete value and returns it. When the execution back-

tracks, the implementation picks a different value. This approach allows us to easily ob-

tain a baseline implementation on top of JPF. Unfortunately, the combinatorial explosion

in typical test generation programs (e.g., the initialize method in Figure 4.3) causes this

baseline implementation to explicitly consider a large number of unnecessary possibilities.

We therefore use a more efficient and more complex approach that still preserves the simple

non-deterministic semantics on which testers can rely.

Delayed choice execution. UDITA provides efficient test generation by extending JPF with

lazy evaluation of non-deterministic choices [38, 73]. The key idea of delayed execution

strategy is to delay the non-deterministic choices of values to the point where the values are

used for the first time. Consequently, the order in which the values are used for the first time

creates a dynamic ordering of the variables in the search space.

Algorithm for getInt. Our algorithm for delayed execution of getInt can be expressed as a

program transformation that postpones branching in the computation tree generated by the

program. The transformation extends the domain of variables so that it stores a pointer to

a mutable cell c where c contains either 1) a concrete value as before, or 2) an expression of

the form Susp(a,b), denoting the set of values {x | a ≤ x ≤ b} from which a concrete value may

be chosen in the future. A reference to Susp(a,b) corresponds to representations of delayed

expressions in implementations of non-strict functional languages [38]. The transformation

changes the meaning of x=getInt(a,b) to be lazy, storing only a symbolic representation (a,b)

of possible values. We use statement force(x) to denote making an actual non-deterministic

choice of the stored symbolic value of x. The algorithm inserts force(x) before the first non-

copy use of the variable x, treating all variable uses other than copying as strict operations.

Although in general both delayed and eager choice could explore exponentially many paths,

in experiments we found exponential speedup when using delayed choice instead of eager

choice (figures 4.12 and 4.17). Delayed choice provides speedup because it avoids exploring

the values of variables not used in an execution that evaluates assume(false).

79

Chapter 4. Test Generation through Programming in UDITA

class ObjectPool〈T〉 {
ArrayList〈T〉 allocated;
int maxSize;
ObjectPool〈T〉(int size) {
allocated = new ArrayList〈T〉();
maxSize = size;

}
T getAny() {
int i = getInt(0, allocated.size());
if (i < allocated.size()) return allocated.get(i);
else return getNew();

}
T getNew() {
assume(allocated.size() < maxSize);
T res = new T();
allocated.add(res);
return res;

}
}

Figure 4.9: Eager implementation of object pools

4.4.2 Test Generation for Linked Structures

Eager implementation. Figure 4.9 presents a Java-like pseudo code for an eager implementa-

tion of object pools. We focus here on implementation of object pools of finite size that return

non-null objects only. Our implementation also handles the (straightforward) extensions

with unbounded object pools and possibly-null objects.

Isomorphism avoidance. An important issue in generating object graphs is to avoid struc-

tures that are isomorphic due to the abstract nature of Java references [16, 48]. For instance,

DAGs that have the same structure but differ in the identity of nodes are isomorphic. In a

purely generating approach, the control of isomorphism is up to the tester and not UDITA.

(Indeed, the code in Figure 4.4 generates isomorphic DAGs.) In a filtering approach that uses

the getAny method from object pools, UDITA automatically avoids isomorphic structures, like

Korat [16]. The implementation in Figure 4.9 avoids isomorphism by returning only the first

fresh object (rather than several different fresh objects).

Delayed execution implementation. The eager implementation in Figure 4.9 serves as a

reference for our delayed choice implementation. The delayed choice implementation results

in exploring the equivalent set of states as the reference implementation but does so much

more efficiently. The high-level idea of delayed execution is the same as for getInt, but the

implementation for object pools is more complex because getNew is a command that changes

the state (the allocated set). As a result, simply creating a suspension around the methods

from Figure 4.9 would not preserve the semantics because the side effects on the allocated

set would occur in a different order.

To preserve the set of reachable states of the eager implementation, our implementation intro-

80

4.4. Test Generation in UDITA

duces symbolic values at each call to getNew or getAny and also accumulates the constraints

imposed by the requirement that getNew returns objects distinct from previously returned

objects. When the program uses symbolic objects (doing a force of the value), UDITA assigns

a concrete object to the symbolic object, ensuring that the accumulated constraints on distinct

objects are satisfied. UDITA also ensures that it will be possible to instantiate the remaining

symbolic objects while satisfying all the constraints. In the terminology of symbolic execu-

tion [54], UDITA maintains an efficient representation of the path condition, which expresses

that certain symbolic objects are distinct, and ensures that the path condition is satisfiable. To

see the non-triviality of our path conditions, consider this example with an object pool of size

3:

p = new ObjectPool<Node>(3);
n1 = p.getNew();
a1 = p.getAny();
a2 = p.getAny();
a3 = p.getAny();
n2 = p.getNew();
n3 = p.getNew();
use(a1);
use(a2);
use(a3);

The delayed execution will pick the concrete values of a1, a2, a3 only at their use points. When

it picks the values, it must have enough information to deduce that all values a1, a2, a3 must

be equal; otherwise, it will be impossible, in the pool of size 3, to assign values n2, n3 such that

n2∉ {n1, a1, a2, a3} and n3∉ {n1, a1, a2, a3, n2}.

Figures 4.10 and 4.11 show the pseudo-code of the desired delayed execution algorithm for

object pools, implemented in UDITA. Type List〈C〉 denotes an indexable linked list (such as

Java ArrayList) storing objects of type C . Type Sym〈T 〉 denotes a symbolic variable, whose

chosen field denotes concrete field (and is null if the concrete object is not chosen yet). The

methods getAny and getNew from Figure 4.10 introduce a new symbolic variable and store

it into the appropriate position in the two-dimensional levels data structure; getAny stores

the symbolic variable at the current level, whereas getNew starts a new level. This structure

encodes, for j < i and for all applicable k, that

levels.get(i).get(0).chosen != levels.get(j).get(k).chosen.

The force method from Figure 4.11 picks a concrete value for a given symbolic variable by

respecting the recorded constraints. After selecting in the candidate variable the set of objects

to which the symbolic variable could be made equal to, it either 1) selects one of these objects

or 2) introduces a new concrete object. Finally, it recomputes the minimal size of the model

under the current constraints, ensuring that the current choice of variables is satisfiable in

the pool of the given size. Note that, although the problem has the flavor of the NP-complete

graph coloring problem, the structure of our constraints (building levels in layers) allowed us

to design the efficient test in the findMinModelSize method.

81

Chapter 4. Test Generation through Programming in UDITA

class Sym〈T〉 { // symbolic variable
T chosen;
int level;
boolean isGetNew;
Sym〈T〉(int level, boolean isGetNew) { ... }

}

class ObjectPool〈T〉 {
List〈T〉 allChosen;
List〈List〈Sym〈T〉〉〉 levels;
int maxSize, lastLevel, minModelSize;
ObjectPool(int size) {
allChosen = new List〈T〉();
levels = new List〈List〈Sym〈T〉〉〉();
maxSize = size;
lastLevel = −1;
minModelSize = 0;

}
Sym〈T〉 getAny() {
if (lastLevel < 0) return getNew();
sym = new Sym〈T〉(lastLevel, false);
levels.get(lastLevel).add(sym);

}
Sym〈T〉 getNew() {
lastLevel++;
newLevel = new List〈Sym〈T〉〉();
levels.add(newLevel);
sym = new Sym〈T〉(lastLevel, true);
newLevel.add(sym);
minModelSize++;
assume(minModelSize <= maxSize);

}
}

Figure 4.10: Delayed execution for object pools: data structures, getAny, getNew

Correctness proof. The correctness of our algorithm can be shown by viewing it as an

efficient implementation of a symbolic execution with disequality constraints. The only subtle

part is showing that the findMinModelSize method from Figure 4.11 correctly computes the

size of the smallest model of the equality and disequality constraints imposed by current

symbolic variables and any concrete values assigned to them. The correctness can be shown

by considering the iteration I in which minModelSize reaches its maximum. The concrete

nodes at levels up to I together with any getNew nodes at higher levels must all be distinct, so

each model is at least of size minModelSize. Conversely, by a greedy assignment that favors

previously chosen concrete objects, we can construct a model of size minModelSize.

The levels data structure encoding a path condition of the form ∧i (xi 6= x ′
i). The non-

null chosen fields encode the condition xi = ok for concrete objects ok . Each object pools

also has an implicit condition |{x1, . . . , xn}| ≤ maxSize where x1, . . . , xn are all symbolic vari-

ables. Our implementation ensures this implicit condition by computing, in To show the

correctness of this method, note that levelModelSize in iteration i computes the size of the

82

4.4. Test Generation in UDITA

void force(Sym〈T〉 x) {
if (x.chosen == null) {
List〈T〉 candidates;
if (x.isGetNew) {
candidates = new List〈T〉();
for (int i = x.level; i ≤ lastLevel; i++) {
List〈T〉 currentLevel = levels.get(i);
for (int j = 1; j < currentLevel.size(); j++)
Sym〈T〉 s = currentLevel.get(j);
if (s.chosen != null && !candidates.contains(s.chosen))
candidates.add(s.chosen);

}
} else { // x created by g et Any
candidates = new List〈T〉(allChosen);
for (int i = x.level+1; i ≤ lastLevel; i++) {
Sym〈T〉 s = levels.get(i).get(0); // g et New
if (s.chosen != null) candidates.remove(s.chosen);

}
}
int choice = getInt(0, candidates.size());
if (choice < candidates.size())
x.chosen = candidates.get(choice);

else {
x.chosen = new T();
allChosen.add(x.chosen);

}
�ndMinModelSize();
assume(minModelSize <= maxSize);

}
}

void �ndMinModelSize() {
List〈T〉 chi = new List〈T〉();
minModelSize = lastLevel;
for (int i = 0; i ≤ lastLevel; i++) {
foreach (Sym〈T〉 s in levels.get(i))
if (s.chosen != null && !chi.contains(s.chosen))
chi.add(s.chosen);

int levelModelSize = chi.size() + lastLevel − i;
minModelSize = max(minModelSize, levelModelSize);

}
}

Figure 4.11: Picking a concrete object for symbolic variable of object pool in delayed execution

model consisting of 1) the chi.size() already allocated objects in levels up to i, and 2) the

lastLevel-i objects that need to be chosen as values of getNew variables at levels strictly

above i. All of these objects must be distinct, so the smallest model must have at least the sum

of minModelSize elements, for each value of variable i.

Having shown that the computed value is the lower bound on the minimal model size, we next

show the converse, by describing a construction of a model of size minModelSize. It suffices to

specify the choice of concrete objects for getNew variables (stored in levels.get(i).get(0))

83

Chapter 4. Test Generation through Programming in UDITA

that are not yet chosen: the remaining getAny variables can always be chosen equal to the

getNew variables at the same level. Let us remove from the constraints all concrete objects

already chosen by a getNew variable, and remove all getAny variables to which they are as-

signed. We use a greedy algorithm to choose the remaining getNew variables from level 0 to

lastLevel. We choose either 1) a concrete getAny object at a higher or equal level, or, if there

are not sufficiently many of those, 2) an additional fresh object. Let I be the largest level at

which levelModelSize reaches maximum greater than lastLevel, and let C be the value of

chi.size() at this step. Then for all levels below I the assignment process had sufficiently

many objects already assigned to getAny variables and did not need to use any fresh objects.

The number of concrete objects assigned to variables up to level I is therefore C . When the as-

signment process continues at levels above I , then all getAny objects are used up (if there were

some left, the value I would not be the point of maximal levelModelSize). Consequently, the

number of additional distinct objects at levels above I is exactly lastLevel−I. The total num-

ber of objects is therefore C +lastLevel−I, which is exactly the value of levelModelSize

when it reaches maximum. This shows that the constructed model has the size minModelSize

computed by findMinModelSize.

4.4.3 Benefits of Object Pools

Specification advantage. Previous work on symbolic execution (e.g., CUTE [83]) uses equality

and disequality constraints on individual object references (== and !=). Our work introduces

the new object pool abstraction, which allows testers to conveniently express “freshness”

disequality constraints of one reference against all references from a given user-defined set.

Algorithmic advantage. Note that an attempt to encode object pool constraints using equali-

ties and disequalities over individual symbolic variables typically results in constraints whose

satisfiability is NP-hard. In particular, consider a straightforward encoding of the constraint

|{x1, . . . , xn}| ≤ maxSize on the maximal size of object pool. The encoding would introduce

maxSize fresh constants a1, . . . , amaxSize denoting distinct references and require

n∧
i=1

maxSize∨
j=1

xi = a j

Such encoding thus introduces non-trivial disjunctions into the problem. In contrast, we

developed a polynomial-time algorithm to test the satisfiability of object pool constraints.

4.5 Evaluation

We implemented UDITA by modifying Java PathFinder (JPF) version 4. The key changes

were our delayed choice algorithms and object pools. We implemented them using JPF’s

attribute mechanism [75] to store non-deterministic values that have not been read yet. We

correspondingly modified the implementation of getInt to generate such delayed values. We

84

4.5. Evaluation

JPF Baseline Delayed Choice
program N structs time [s] explored time [s] expl.

DAG 3 34 11.14 4802 2.19 321
4 2352 o.o.m. - 12.42 21196
5 769894 o.o.m. - 1673.91 4997210

HeapArray 6 13139 29.00 160132 12.50 27664
7 117562 407.45 2739136 49.20 227494
8 1005075 7892.88 54481005 417.70 2325069

NQueens 6 4 13.81 46656 1.82 746
7 40 170.82 823543 3.60 3073
8 92 3416.38 16777216 6.50 13756

RBTree 6 20 5.91 8448 5.79 3588
7 35 21.76 54912 8.20 16983
8 64 107.49 366080 22.27 80470

SearchTree 4 490 5.00 3584 2.26 1484
5 5292 27.49 131250 8.29 21210
6 60984 1810.93 6158592 60.67 305052

SortedList 6 924 11.70 55987 5.10 3967
7 3432 126.14 960800 6.92 18026
8 12870 2495.49 19173961 17.87 80089

Figure 4.12: Enumeration of structures satisfying their invariants (“o.o.m.” means “out of memory”)

also implemented object pools as described in Section 4.4.2. Our code is publicly available [9].

We performed several experiments to evaluate UDITA. UDITA is most applicable for black-box

testing. The first set of experiments, on six data structures, compares delayed choice with

base JPF for bounded-exhaustive test generation. The second set of experiments, on testing

refactoring engines, compares UDITA with ASTGen [28]. The third set of experiments uses

UDITA to test parts of the UDITA implementation itself. UDITA can be also used for white-box

testing. The fourth set of experiments compares UDITA with symbolic execution in Pex [90].

We ran the experiments on an AMD Turion 1.80GHz laptop with Sun JVM 1.6.0_12, Eclipse

3.3.2, NetBeans 6.5, and Pex 0.19.41110.1.

4.5.1 Black-Box Testing

Generating Data Structures

We present an evaluation of delayed choice using a variety of data structure implementa-

tions: DAG represents directed acyclic graphs related to the example introduced in Section 4.2;

HeapArray is an array-based heap data structure; RBTree is red-black tree; SearchTree is binary

search tree; and SortedList is a doubly-linked list containing sorted elements. Additionally,

NQueens is the traditional problem from constraint solving [12]. For each structure, we wrote

its representation invariant using our combined filtering/generating style. Our experimental

setup compares base JPF against JPF extended with our delayed choice execution, using the

same test generation program. We turn off JPF state hashing in our experiments, because

duplicate states rarely arise in executions of our examples [42].

Enumerating structures. Figure 4.12 shows the efficiency of our approach for structure enu-

meration. For each program and several bounds N , we tabulate the total number of successful

85

Chapter 4. Test Generation through Programming in UDITA

paths in the exploration tree (i.e., the number of structures generated), the exploration time,

and the total number of explored paths. JPF generates the same number of structures with and

without delayed choice, but delayed choice explores fewer paths than the base JPF, providing

significant speed-ups, from 2x up to 500x as size increases.

Summary. The results show that delayed choice significantly improves the time to enumerate

test inputs up to a given bound.

Testing Refactoring Engines

We applied UDITA to generate Java input programs for testing refactoring engines as briefly

described in Section 4.2 and as previously done with ASTGen [28, Sec. 5]. Since the inputs

are generated automatically, the outputs are validated using programmatic oracles such

as checking for refactoring engine crashes, obtaining non-compilable output programs, or

getting different outputs for Eclipse and NetBeans (known as differential testing [70]). We

perform two kinds of experiments: (1) rewriting some existing ASTGen generators in UDITA to

compare the ease of writing generators and the efficiency of generation, and (2) writing new

generators that would be very difficult to express in ASTGen.

Rewriting ASTGen generators. We rewrote five (randomly chosen, advanced) ASTGen gener-

ators in UDITA. Figure 4.13 shows the results. The generators in UDITA have fewer lines of

code (“LOC”, which includes the top-level generator and the library it uses) and are, in our

experience, often easier to write. UDITA conceptually subsumes ASTGen, so we could not

find a case where UDITA code would be more complex than ASTGen code. UDITA generators

are about as efficient as ASTGen generators—sometimes a bit faster, and sometimes a bit

slower—which was quite surprising to us at first: ASTGen runs on top of a regular JVM, while

UDITA runs on top of JPF, and JPF can be two orders of magnitude slower than JVM. We did

expect UDITA generators to be easier to write but not to be faster, at least not without special

optimizations [42]. Our investigation shows that UDITA can be faster for two reasons: (1) it has

a faster backtracking due to JPF’s storing and restoring of states rather than the re-execution

of code in ASTGen, and (2) combined filtering/generating style for iteration/generation allows

more efficient positioning of backtracking points (UDITA need not build an entire input before

realizing that backtracking is required).

Writing new generators. We wrote three new generators in UDITA that would be extremely

difficult to write in ASTGen. All these generators use inheritance graphs which, as discussed

in Section 4.2, are much easier to express by combining filtering and generating styles. UDITA

is more expressive than ASTGen since UDITA allows natural mixing of these two styles. These

generators allowed us to test some refactorings we did not test with ASTGen (UseSupertype-

WherePossible, which replaces one class/interface with its superclass/superinterface where

possible, and InferGenericType, which finds the most appropriate generic type parameters

for raw types [91]) and to more thoroughly test a refactoring we did test (RenameMethod).

86

4.5. Evaluation

ASTGen UDITA
generator inputs time [s] LOC time [s] LOC

2ClsMethParent 2160 492.87 1316 117.92 835
3ClsMethChild 1152 265.19 1342 89.17 848
2ClsMethChild 576 135.34 1320 44.01 822
2Cls2FldChild 540 1.13 713 36.96 389
2Cls2FldRef 240 2.62 714 27.96 430

Figure 4.13: Comparing ASTGen and UDITA
Eclipse NetBeans

refactoring time [s] inputs fail bug fail bug

RenameMethod 105.15 207 0 0 75 1
UseSupertypeWP 85.80 402 59 1 7 1
InferGenericType 258.55 414 171 1 n/a n/a

Figure 4.14: Refactorings tested and bugs found

Figure 4.14 shows the results. We revealed four bugs in Eclipse and NetBeans, two of which

are shown in figures 4.5 and 4.6. As can be seen from the table, the number of failing tests

is much larger than the number of (unique) bugs; we used our oracle-based test clustering

technique [49] to inspect the failures.

Differential testing of compilers. While testing the refactoring engines, we effectively used

the same input programs to also perform differential testing of the Sun javac (version 1.6.0_10)

and Eclipse (version 3.3.2) Java compilers. This revealed two differences, which are likely

bugs in the Sun javac compiler as it incorrectly rejects valid programs accepted by the Eclipse

compiler. We had reported these bugs to Sun, but they were not confirmed as of this writing.

Summary. The combined filtering/generating style in UDITA is better than purely generating

style in ASTGen: UDITA is more expressive, results in shorter (and easier to write) test genera-

tion programs, and, in some cases, even provides faster generation (despite running on JPF,

which is much slower than JVM). We found several new bugs with UDITA; details of all the

bugs are online [9].

Testing JPF and UDITA

We also applied UDITA to generate Java input programs for testing parts of UDITA itself. Specif-

ically, we used differential testing [70] to check (1) whether (base) JPF correctly implements a

JVM, and (2) whether our delayed choice implementation behaves as non-delayed choice.

Testing JPF. JPF is implemented as a specialized JVM that provides support for state ex-

ploration of programs with non-deterministic choices [94]. For programs without non-

deterministic choices, JPF should behave as a regular JVM. We knew from our experience with

JPF that it does not always behave as JVM, especially for some standard libraries (e.g., related

to reflection or native methods) or for the latest Java language features (e.g., annotations or

enums). We wrote generators to produce small Java programs that exercise these libraries/fea-

tures. We also wrote a generic driver that would compile each generated program, run it on JPF

87

Chapter 4. Test Generation through Programming in UDITA

generator time [s] inputs failures bugs

AnnotatedMethod 31.28 1280 0 0 (2)
ReflectionGet 23.71 160 80 1
DeclaredMethods 7.91 64 0 0
DeclaredMethodReturn 41.07 288 32 1
ReflectionSet 26.97 160 32 1
NotDefaultAnnotatedField 48.53 1760 0 0
Enum 1.67 78 0 0
ConstructorClass 12.01 387 27 1 (4)
DeclaredFieldTest 14.38 180 12 1
ClassCastMethod 27.96 102 75 1

Figure 4.15: Generators for testing JPF; bugs in parentheses were found in an older JPF version
(revision 954)

and JVM, and compare the outputs from the two. Figure 4.15 shows the results. Through this

process, we found eleven unique bugs in an older version of JPF (five of which were corrected

in a more recent revision, 1829, from the JPF repository). Detailed results are online [9].

Testing delayed choice implementation. Although we proved that our delayed choice algo-

rithm is correct, we still need to test its implementation, especially the challenging part of

object pools (Section 4.4.2). We wrote a generator that produces Java programs with various

sequences of getAny and getNew calls on an object pool (and then reads the returned values

in various orders). We also wrote a script to compile each program and run it on JPF both

with and without delayed choice. This process found a bug in our implementation (related

to the computation of levels from Section 4.4.2) which occurred only for some sequences

that mix between getNew calls a number of getAny calls exactly equal to the pool size. We

subsequently corrected the bug and used the generator to increase our confidence in the

corrected implementation.

Summary. The use of UDITA helped us identify a number of bugs in parts of the UDITA

implementation.

4.5.2 White-Box Testing

UDITA is primarily designed for black-box testing [95]: UDITA executes test generation pro-

grams to create test inputs, and then those inputs are run on the code under test as usual,

without UDITA. However, UDITA can be also applied for a limited form of white-box test-

ing [95] by executing the code under test itself on UDITA. Note that UDITA does not use the

information about the code under test, e.g., to increase syntactic coverage. Instead, UDITA

executes the code just to speed up the full coverage of the specified, bounded region of the

input space. Consider, for instance, using the following code, in Figure 4.16, to test the remove

method from a red-black tree [9]. Generating any tree that fails the assertion reveals a bug.

Figure 4.17 shows the effectiveness of our approach for revealing bugs. Eight bugs of omission

were manually inserted into an implementation of RBTree by students not familiar with our

work. For each bug, the first row is for Pex (Section 4.5.2). The second row is for purely filtering

88

4.5. Evaluation

static void main(int N) {
RBTree t = new RBTree();
t. initialize (N); // Pick a graph
assume(t.isRBT()); // satisfying invariant ,
int v = getInt(0, N); // and pick a value .
t. remove(v); // Run code under test,
assert(t. isRBT()); // and check invariant .

}

Figure 4.16: Testing the remove method

UDITA Eager UDITA Delayed Pex
bug# style N time [s] expl. time expl. time

filter 1-* 22.05
1 filter 1–4 timeout - 1.89 799 14.49

f/g 1–4 1.61 168 1.59 132 8.13
filter 1-* timeout

2 filter 1–6 timeout - 12.37 16620 137.66
f/g 1–6 10.26 7166 8.20 3163 89.34

filter 1-* 21.53
3 filter 1–2 9.20 10710 0.70 27 9.83

f/g 1–2 0.61 9 0.62 9 5.14
filter 1-* 8.93

4 filter 1–3 timeout - 0.84 136 7.10
f/g 1–3 0.75 30 0.80 27 5.03

filter 1-* 24.65
5 filter 1–3 timeout - 1.12 151 12.45

f/g 1–3 1.08 31 1.09 28 5.59
filter 1-* 4.55

6 filter 1–1 0.50 1 0.47 1 4.69
f/g 1–1 0.36 1 0.39 1 4.19

filter 1-* 2.72
7 filter 1–1 0.53 1 0.53 1 4.99

f/g 1–1 0.47 1 0.49 1 4.27
filter 1-* 12.50

8 filter 1–4 timeout - 1.58 676 22.95
f/g 1–4 1.22 145 1.36 120 7.87

Figure 4.17: Time taken and structures explored to find the first bug in remove/put methods of red-
black tree. “timeout” denotes time over 1 hour. “filter” denotes using purely filtering; “f/g” denotes
combined filtering/generating style. UDITA requires bounds; “1–s” for N denotes the generation of all
trees of sizes from 1 to s, where s is the smallest size that reveals the bug. Pex can also work without
bounds (denoted “filter 1-*”).

style (as in figures 4.2 and 4.3, with initialize using getInt/getAny/getNew), in which base

JPF is extremely slow. The third row is for combined filtering/generating style, and delayed

choice again outperforms base JPF for larger sizes.

Comparison with Symbolic Execution

Symbolic execution is a very active area of research, with a number of recent testing tools

including Crest, CUTE, DART, DySy, EGT, EXE, KLEE, Pex, SAGE, Splat, JPF’s Symbc. However,

many of these tools are not publicly available and/or do not support symbolic references (ei-

ther not at all or not with isomorphism avoidance). Pex [90] is a publicly available, state-of-the

89

Chapter 4. Test Generation through Programming in UDITA

art tool from Microsoft Research that supports symbolic references and avoids isomorphism.

Pex is used for testing C#/.NET code. To solve path conditions, Pex uses Z3 [30], one of the

very best constraint solvers (see http://www.smtexec.org).

We compared UDITA with Pex. To enable this comparison, we translated buggy red-black tree

code from Java into C#. We also translated the (filtering) predicates and (generating) generators

for red-black tree to C#. We used Pex, as UDITA, to test one method in isolation, remove or put.

(An alternative is to test several methods at once through method sequences [27, 89, 96]). The

predicate is required to specify pre- and post-condition for the method under test, in both Pex

and UDITA. Note that Pex, unlike UDITA, does not require specifying bounds on the input

size, but we wrote a simple, eager implementation of object pools in Pex/C# to be able to limit

the search space for Pex.

Figure 4.17 shows the results. Pex times are averaged over five runs, because the results can

differ as objects get allocated at different locations in different runs. Pex is able to quickly

find all the bugs except that none of the five runs found bug2 in filtering mode with no object

pools. Pex, like other tools based on symbolic execution, aims at exploring paths of the code

under test (with the goal of increasing coverage to find bugs), unlike UDITA that is designed for

generating all test inputs of a given size (bounded-exhaustive testing). We hypothesized that

Pex misses bug2 because it requires a path with several repeated branches (resulting from loop

unrolling) for a tree of size 6, while Pex aims at increasing branch coverage, thus giving less

priority to repeated branches. Pex developers investigated bug2 and found that it is indeed

missed because Pex’s default exploration strategy does not give priority to paths that could

find this bug.

However, when we ran Pex with object pools (even a simple, eager implementation), Pex was

able to find bug2 in about 137 seconds. Despite these results, we do not expect UDITA by

itself (concrete execution with object pools) to be better than Pex for white-box testing. Our

view is that object pools are a powerful abstraction for guiding exploration, orthogonal to

the path-bounding approaches used by tools such as Pex. We therefore expect tools like Pex

to integrate object pools into their symbolic engines in the future, effectively implementing

delayed choice for object pools. In addition to the current JPF implementation, UDITA can be

implemented on top of other platforms, with similar costs and benefits: if the tester spends

more time guiding the exploration, the tool may find some bugs faster.

4.6 Related Work

There is a large body of work on automated test generation. This chapter focuses on test

generation programs, combining filtering [16, 35, 42, 52, 68, 69] and generating [28, 49] styles

in a general-purpose programming language. Related work on topics such as specification-,

constraint-, and grammar-based testing [59] is reviewed in more detail in a previous paper [28]

and a PhD thesis [68]. The key technique that enables efficient test generation for UDITA is

delayed execution, so we review here related work on that topic.

90

http://www.smtexec.org

4.6. Related Work

Noll and Schlich [73] proposed delayed non-deterministic execution for model checking

assembly code. While their and our approaches share the name, the algorithms differ: UDITA

precisely shares non-deterministic values that are copied, using lazy evaluation, whereas their

approach [73] copies non-deterministic values, effectively using call-by-name semantics and

over-approximating state space, possibly exploring executions that are infeasible in regular

execution. Further differences stem from different abstraction levels, with UDITA modeling

each non-deterministic integer as one symbolic value as opposed to a set of bits, and UDITA

handling graph isomorphism for allocated objects.

Techniques similar to delayed choice execution are common in constraint solving—for con-

straints written in both imperative and declarative languages. For example, Korat [16] implicitly

uses delayed choice by monitoring field accesses and using them in field initializations for the

new candidates it explores. Generalized symbolic execution [53] uses “lazy initialization” to

make non-deterministic field assignments on first access. Deng et al.’s [32] “lazier initialization”

builds on generalized symbolic execution and makes non-deterministic field assignments

on first use. Visser et al. [95] use preconditions written in Java for checking satisfiability but

require the users to provide “conservative preconditions” which are hard to provide manually

or generate automatically. A key difference between previous work and work in this chapter is

that we provide a generic framework that supports delayed choice execution for arbitrary Java

code extended with non-deterministic choices for primitive values and objects. We also apply

UDITA on testing much larger code bases, finding bugs in Eclipse, NetBeans, Sun javac, and

JPF.

The ECLiPSe constraint solver [12] provides a constraint logic programming (CLP) interface

for writing declarative constraints. ECLiPSe provides suspensions that delay testing of predi-

cates until more information is available. Researchers have proposed translating imperative

programs into CLP engines [39] but faced limitations of current CLP implementations. We

believe that non-deterministic extensions of popular programming languages such as Java

can lead both to advances of software model checking and to scalable implementations of

constraint solvers.

Approaches to automated test generation includes those based on exploration of method

sequences for generation of object-oriented unit tests [27, 89, 96]. Such exploration cannot

be used to generate complex test inputs when there are no appropriate methods, e.g., for

building inheritance graphs. UDITA can directly generate complex test inputs, and generators

in UDITA can even use method sequences.

Unlike symbolic execution [24, 54], UDITA relies mostly on concrete execution to generate

test inputs, and uses a polynomial-time algorithm (Section 4.4.2) to ensure the feasibility

of the currently explored path. This is in contrast to traditional symbolic execution where

path conditions belong to NP-hard logics (often containing propositional logic, uninterpreted

functions, and bitvector arithmetic). Several recent approaches show promising results by

combining symbolic with concrete execution [20, 26, 44, 45, 75, 83, 90] or with grammar-based

91

Chapter 4. Test Generation through Programming in UDITA

input generation [43]. In contrast to combination of concrete executions with abstraction [14,

76], UDITA focuses on test generation by efficiently covering a set of concrete executions,

without approximation. UDITA is most applicable for black-box testing as shown by finding

bugs in Eclipse, NetBeans, Sun javac, and JPF. However, UDITA requires/allows the tester to

manually guide the exploration. Tools based on symbolic execution are more automated and

better than UDITA for white-box testing. Our experience with Pex suggests that other tools

can benefit by incorporating object pools from UDITA.

4.7 Conclusions

We have found UDITA to be an expressive and convenient framework for specifying complex

test inputs. Because it extends Java, it has the expressive power and the appeal of a full-fledged

programming language. Because it contains non-deterministic constructs, it is appropriate

for describing tests in a wide range of styles, from predicates that indicate properties, to

generators that create only desired structures. To describe linked structures, we have found

the new object pool abstraction to be particularly helpful. We have found UDITA easier to use

than previous frameworks.

UDITA quickly revealed bugs in data structure implementations, and was effective in system-

atically generating structures up to a given size. The effectiveness of UDITA was in large part

due to our lazy evaluation technique for non-deterministic choices, and the algorithms for

delayed execution of object pool operations without solving NP-hard constraints. We have

applied UDITA to real-world software and uncovered previously unknown bugs in Eclipse,

NetBeans, Sun javac, and Java PathFinder.

92

5 Conclusions

In this dissertation we have presented three systems (InSynth, PolySynth and anyCode) that

synthesize program fragments, and the system (UDITA) that consists of a Java-like language

that helps a user to describe a set of test inputs and the algorithm that efficiently generates test

inputs. All systems incorporate a set of techniques that help them efficiently and effectively

traverse large search space:

• For InSynth these techniques include: a succinct type representation that avoids unnec-

essary explorations for the same argument types; a backwards search that explores and

uses only declarations reachable from a desired type; and a weights mechanism that

guides the search and help rank the expressions.

• For PolySynth these techniques include: a resolution algorithm that systematically

traverses the search space; the same weight mechanism used in InSynth; and filtering

based on test case execution that filters out irrelevant expressions.

• For anyCode these techniques include: natural language processing techniques that

reduce the textual input ambiguity; a declaration selection model that identifies a set of

most likely declarations to appear in the final expressions; and unigram and probabilistic

context free grammar statistical models that, like the weights mechanism in InSynth

and PolySynth, steer the synthesis and help rank the generated expressions.

• For UDITA algorithm these techniques include: a delayed choice technique that re-

duces exploration (generation) time by delaying non-deterministic variable choices

(assignments) as much as possible; and a technique that reduces a number of generated

isomorphic structures.

We have also presented evaluation results that show effectiveness of our tools and techniques.

The results show that InSynth can be used in an interactive setting to help developers syn-

thesize desired expressions. The evaluation is conducted using 50 benchmarks based on the

real-word examples that demonstrate proper usage of API. The results show that InSynth

93

Chapter 5. Conclusions

returns the expected expression in 96% of the examples, in a short period of time. The eval-

uation results for anyCode, based on 60 examples, show that anyCode can generate 93% of

expected expressions in a short period of time and that it greatly benefits from statistical

models. Finally, we use evaluation to demonstrate that UDITA can efficiently and effectively

generate test programs for Java compilers, refactoring engines (in Eclipse and NetBeans) and

an early implementation of our UDITA algorithm. Using the generated programs we managed

to discover numerous bugs in these tools, including some previously unknown.

We conclude this dissertation by highlighting future research directions of interest.

Complete synthesis algorithm for the system F. In the Chapter 2 we proposed two synthesis

algorithms: the InSynth algorithm considers ground and function types and the PolySynth

algorithm considers polymorphic types, and has limited support for function types. It would

be interesting to combine the two algorithms and build a complete algorithm that supports the

type system F [78, Section 23.8]. This is also important because modern program languages

like Java, Scala and C# rely on type systems that support polymorphic and functional types.

Advanced code repair. It would be also interesting to build a more sophisticated algorithm

that repairs broken expressions than the algorithm proposed in Chapter 3. Such an algorithm

should use programming language symbols from a broken expression to build additional set

of constraints. The constraints will encode declaration positions in the broken expression.

We believe that combining such an algorithm with statistical models may lead to more useful

solutions.

Program synthesis beyond expressions. We would also like to explore synthesis of code

fragments that include programming language constructs beyond declarations, like local

variable assignments, conditional statements, and loop statements. Primarily, we would like to

use approaches, similar to ones proposed by A. Mishne et al. [72], that suggest temporal order

among declarations, and combine them with our expression synthesis algorithm. We believe

that such an approach may lead to efficient synthesis of code fragments whose complexity

and size go up to complexity and size of method bodies.

Recommender system for program synthesis. To make the program synthesis systems more

effective we would like to implement an engine that will learn directly from a user and her code.

This includes collecting and reasoning about recently used snippets and other properties we

can automatically extract from the user’s code.

Compiler for the UDITA language. To speed up UDITA test input generation, it would be

interesting to build a compiler for UDITA language. At the moment, UDITA test generation

programs run on top of Java PathFinder (JPF), an interpreter that runs on top of a Java virtual

machine (JVM). This slows down the execution of the UDITA code. To overcome this problem,

we can build a compiler and translate UDITA code to a code, of an existing programming

language, which can be executed fast. The challenge is to translate correctly non-deterministic

choices, which appear in test generation programs, and which rely on backtracking mecha-

94

nism.

UDITA combined with symbolic execution. In Section 4.5.2 we built an eager UDITA support

for Pex. The constrains that are built over variables with non-deterministic values are eagerly

assigned to the variables. It would be interesting to further track the constrains along the

execution path and simplify them when possible. We believe that this might lead to early

search space pruning, and thus it can lead to faster test input generation.

The main goal of the systems, we have presented, is to automate processes developers and

testers often perform during software development. They aim to improve users productivity

during implementation, testing and software maintenance.

95

A Appendix

A.1 InSynth Algorithm Completeness Proof

In theorems and lemmas that follow we will assume that the listed statements below hold. Let

Γo be lambda environment, Γ and Γ′ succinct environments, x1, . . . , xn (fresh) variables with

lambda types τ1, . . . ,τn , S a set of succinct types, τ and v lambda types and t a succinct type,

then:

• Γ=σ(Γo)

• S =σ({x1 : τ1, . . . , xn : τn}) = {σ(τ1), . . . ,σ(τn)}

• τ= τ1→ . . .→τn→v

• t =σ(τ) =σ(τ1→ . . .→τn→v) = S→v

• Γ′o = Γo ∪ {x1 : τ1, . . . , xn : τn}

• Γ′ =σ(Γ′o) =σ(Γo)∪σ({x1 : τ1, . . . , xn : τn}) = Γ∪S.

Theorem 2.3.3 Let Γo be an original environment, e an lambda expression, τ ∈ τλ(B) and

functions RCN and D defined as above, then:

Γo `λ e : τ⇔ e ∈RCN(Γo ,τ,D(e))

Proof Let us first show the ⇒ direction. We do this by induction on D(e).

Base case [D(e) = 1]: then e ≡λx1 . . . xn .a and τ≡ τ1→ . . .→τn→v . We have to proveλx1 . . . xn .a

∈RCN(Γo ,τ1→···→τn→v,1). Let us follow the RCN algorithm with corresponding arguments.

First, we take the else branch because d = 1.

97

Appendix A. Appendix

Our first goal is to show that ((Γ∪S)@; : v) ∈ CL(Γ,S→v). By the CL definition this is equiv-

alent to proving that (;→v) ∈ (Γ∪S) and ∀t ′ ∈ ;.Γ∪S `c t ′. The second statement is triv-

ially true, and the first we reduce to v ∈ (Γ∪S) by the convention. From Γo `λ λx1 . . . xn .a :

τ1→ . . .→τn→v it follows that Γo ∪ {x1 : τ1, . . . , xn : τn} `λ a : v by the Abs (LNF) rule. Using the

App (LNF) rule we conclude that a : v ∈ (Γo ∪{x1 : τ1, . . . , xn : τn}) = (Γo ∪S) = Γ′o . Now we apply

σ and get σ(a : v) ∈σ(Γo ∪S), i.e., v ∈ (Γ∪S). This shows that ((Γ∪S)@; : v) ∈ CL(Γ,S→v).

Our next goal is to show that (a : v) ∈ Select(Γ′o , a). By the Select definition this is equal to

proving that (a : v) ∈ Γ′o and v =σ(v) hold. We have previously proved the first statement, and

the second statement follows from the σ definition.

From the previous we can conclude that the body of the second foreach statement in RCN will

be executed. We select a : v to be the type declaration f : to . Therefore, m = 0 andλx1 . . . xn .a is

put intoTERMS. Note that the fresh variablesλx1 . . . xn we can choose exactly to match lambda

variables of our e expression. This proves that λx1 . . . xn .a ∈RCN(Γo ,τ1→···→τn→v,1).

Inductive hypothesis [D(e) ≤ k]: Let Γo be an original environment, e an lambda expression,

τ ∈ τλ(B) and functions RCN and D defined as above, then:

Γo `λ e : τ⇒ e ∈RCN(Γo ,τ,D(e))

Inductive step [D(e) = k +1]: then e ≡ λx1 . . . xn .h e1 . . .em and τ ≡ τ1→ . . .→τn→v . It also

holds that ei are terms in LNF and D(ei) ≤ k. We assume that each ei has a type ρi . We have

to prove that λx1 . . . xn .he1 . . .em ∈ RCN(Γo ,τ1→···→τn→v,k +1). We again follow the else

branch in RCN.

Our first goal is to show that ((Γ∪S)@{σ(ρ1), . . . ,σ(ρm)} : v) ∈ CL(Γ,S→v). By the CL definition

this is equivalent to proving that ({σ(ρ1), . . . ,σ(ρm)}→v) ∈ (Γ∪S) and∀t ′ ∈ {σ(ρ1), . . . ,σ(ρm)}.(Γ∪
S) `c t ′.

Let us prove the statements. From Γo `λ λx1 . . . xn .h e1 . . .em : τ1→···→τn→v it follows that

Γ′o `λ h e1 . . .em : v , by the Abs (LNF) rule. Using the App (LNF) rule we conclude that

(h : ρ1→···→ρm→v) ∈ Γ′o . After we apply σ, we have σ(h : ρ1→···→ρm→v) ∈ σ(Γ′o), i.e.,

{σ(ρ1), . . . ,σ(ρm)}→v ∈ Γ∪S. From the previous App (LNF) rule application it follows that

Γ′o `λ ei : ρi . Applying Theorem A.1.1 to this we get Γ∪S `c ρi , for i = [1..m]. Thus, by the App

(succinct) rule we conclude that (Γ∪S, @{σ(ρ1), . . . ,σ(ρm)}:v) ∈ CL(Γ,S→v) holds.

Our second goal is to prove (h : ρ1→···→ρm→v) ∈ Select(Γ′o , {σ(ρ1), . . . ,σ(ρm)}→v). Using

Selectdefinition we can see that this is equivalent to proving that (h : ρ1→···→ρm→v) ∈ Γ′o and

{σ(ρ1), . . . ,σ(ρm)}→v =σ(ρ1→···→ρm→v) hold. We have previously prove the first statement,

and the second statement follows from the σ definition.

Therefore, we conclude that the body of the second foreach loop will be executed, whereas we

select h : ρ1→···→ρm→v to be f : to . Finally, we have to prove that ei ∈ Ti =RCN(Γ′o ,ρi ,d−1).

98

A.1. InSynth Algorithm Completeness Proof

This follows from the inductive hypothesis and Lemma A.1.4 because d − 1 = k and k ≥
D(ei). Therefore, one iteration in third foreach loop will contain e1, . . . ,em sub-terms in the

correct order. (The argument order is preserved due to the order of argument types in to).

Finally, we use them to construct λx1 . . . xn .h e1 . . .em and put it into TERMS. This proves that

λx1 . . . xn .h e1 . . .em ∈RCN(Γo ,τ1→···→τn→v,k +1). Note that if n is zero then e ≡ h e1 . . .em .

Now, let us show correctness of the ⇐ direction. We do this by induction on D(e).

Base case [D(e) = 1]: then e ≡ λx1 . . . xn .a and τ ≡ τ1→···→τn→v . We have to prove that

Γo `λ λx1 . . . xn .a : τ1→···→τn→v . If there exists λx1 . . . xn .a ∈RCN(Γo ,τ,1) then there is an

execution of the else branch in RCN that produces λx1 . . . xn .a. (Because D(e) = d = 1 we

conclude that the first execution will be the one that will produce e.) Also m must be zero

because only the second then branch produce λx1 . . . xn .a. Also, t0 = v . It follows that there

exist a pattern p and Γ′o such that a : v ∈ Select(Γ′o , p). Note that by the Select definition every

element that belongs to Select(Γ′o , p) also belongs to Γ′o , i.e., a : v ∈ Γ′o . We know that there

exists Γo such that Γ′o = Γo ∪ {x1 : τ1, . . . , xn : τn}, and it will be exactly an environment that

is passed as an argument to RCN(Γo ,τ,1). Moreover, because x1, . . . , xn are fresh they are all

different from a ant therefore a : v ∈ Γo. Also, the types τ j , j = [1..n] are the corresponding

argument types that appear in the right order in τ. Thus we can first apply the App (LNF)

and then the App (LNF) rule to RCN(Γo ,τ,1) and get Γo `λ λx1 . . . xn .a : τ1→···→τn→v , i.e.,

Γo `λ e : τ.

Inductive hypothesis [D(e) ≤ k]: Let Γo be an original environment, e an lambda expression,

τ ∈ τλ(B) and functions RCN and D defined as above, then:

Γo `λ e : τ⇐ e ∈RCN(Γo ,τ,D(e))

Base case [D(e) = k +1]: then e ≡ λx1 . . . xn .h e1 . . .em and τ ≡ τ1→···→τn→v . We have to

prove that Γo `λ λx1 . . . xn .h e1, . . .em : τ1→···→τn→v . If λx1 . . . xn .h e1 . . .em ∈RCN(Γo ,τ,k +
1) then there exist an execution of the else branch in RCN that produces λx1 . . . xn .h e1 . . .em .

(This must be the first execution of RCN because it is the only one that can produce terms

with depth D(e). All others produce smaller terms.) Also m 6= 0 which means that last foreach

is executed, and that to = ρ1→···→ρm→v . It follows that there exist a pattern p and Γ′o such

that h : ρ1→···→ρm→v ∈ Select(Γ′o , p). Note that by the Select definition every element that

belongs to Select(Γ′o , p) also belongs to Γ′o , i.e., h : ρ1→···→ρm→v ∈ Γ′o . We know that there

exists Γo such that Γ′o = Γo ∪ {x1 : τ1, . . . , xn : τn}, and it will be exactly an environment that is

passed as an argument toRCN(Γo ,τ,k+1). Types τ j , j = [1..n] are the corresponding argument

types that appear in the right order in τ. From the inductive hypothesis and Lemma A.1.4 it

follows that Γ′o `λ e j : ρ j , where j = [1..m]. Thus we can first apply the Abs (LNF) and then the

App (LNF) rule and get Γo `λ λx1 . . . xn .h e1 . . .em : ρ1→···→ρn→v , i.e., Γo `λ e : τ.

99

Appendix A. Appendix

Theorem A.1.1 If Γo `λ e : τ is a judgment in long normal form (LNF) then σ(Γo) `c σ(τ).

Proof By induction on D(e).

Base case [D(e) = 1]: then e ≡λx1 . . . xn .a and τ≡ τ1→ . . .→τn→v . From the fact that Γo `λ e :

τ by the Abs (LNF) rule we know that Γ′o = Γo ∪ {x1 : τ1, . . . , xn : τn} `λ a : v . Form this it follows

that a : v is an element of Γ′o . Knowing that a : v ∈ Γ′o by the definition of σ we also know that

v ∈ Γ′. By applying the App (succinct) rule it follows that Γ′ `c Γ
′@; : v . Because Γ′ = Γ∪S,

by applying the Abs (succinct) rule it follows that Γ`c S→v . By simple substitutions we have

σ(Γo) `c σ(τ). This way we proved that for all judgements of the depth one, the theorem claim

holds.

Inductive hypothesis [D(e) = k]: if Γo `λ e : τ is a judgment in long normal form thenσ(Γo) `c

σ(τ).

Inductive step [D(e) = k +1]: Then e ≡ λx1 . . . xn . f e1 . . .em and τ≡ τ1→ . . .→τn→v . Just like

before, by the Abs (LNF) rule we know that Γ′o = Γo ∪ {x1 : τ1, . . . , xn : τn} `λ f e1 . . .em : v .

Each ei must have some type ρi , i = [1..m]. Then f has the type ρ1→ . . .→ρm→v . By the

Abs (LNF) rule we have f : ρ1→ . . .→ρm→v ∈ Γ′o and Γ′o `λ ei : ρi . When we apply σ we get

σ(ρ1→ . . .→ρm→v) ∈ Γ′ i.e {σ(ρ1), . . . ,σ(ρm)}→v ∈ Γ′. Also, from the hypothesis it follows that

Γ′ `c σ(ρi) because the depth of ei is less or equal to k. Now we apply the App (succinct) rule

to {σ(ρ1), . . . ,σ(ρm)}→v ∈ Γ′ and all Γ′ `c σ(ρi) and conclude Γ′ `c Γ
′@{σ(ρ1), . . . ,σ(ρm)} : v .

By simple substitutions we have (Γ∪S) `c (Γ∪S)@S : v Finally, we apply the Abs (succinct)

rule to (Γ∪S) `c (Γ∪S)@S : v and conclude Γ`c S→v . Again, by simple substitutions we have

σ(Γo) `c σ(τ). This way we proved that for all judgements of the depth k +1, the theorem

claim holds.

Lemma A.1.2 Let Γo be a lambda environment and τ be a lambda type. Also let d ≥ 1 be a

number, then:

RCN(Γo ,τ,d) =RCN(Γo ,τ,d −1)]Ter msd

where Ter msd is the set that contains only expressions with depth d.

Proof We prove this by induction on d .

Base case [d = 1]: then we have to prove that RCN(Γo ,τ,1) =RCN(Γo ,τ,0)]Ter ms1. Because

RCN(Γo ,τ,0) is empty set by the RCN definition we have to prove that RCN(Γo ,τ,1) = Ter ms1.

In other words, we need to prove that RCN(Γo ,τ,1) produces only terms with depth one. This

is true because all Ti = RCN(Γo ,ρi ,0) =;. Therefore if there exist at least one expression it

must be created in the then branch of if statement where m = 0. Thus RCN(Γo ,τ,1) may only

contain expressions of the form λx1 . . . xn .a whose depth is 1.

Inductive hypothesis [d = k]: The following holds RCN(Γo ,τ,k) =RCN(Γo ,τ,k −1)]Ter msk .

100

A.1. InSynth Algorithm Completeness Proof

Inductive step [d = k + 1]: then we have to prove that RCN(Γo ,τ,k + 1) = RCN(Γo ,τ,k)]
Ter msk+1. We use the induction hypothesis to substitute RCN(Γ′o ,ρi ,k) with RCN(Γ′o ,ρi ,k −
1)]Ter ms(i)

k . Thus, Ti sets become RCN(Γ′o ,ρi ,k−1)]Ter ms(i)
k . Then from RCN(Γo ,τ,k+1)

function it follows that we can choose each ei either from RCN(Γ′o ,ρi ,k −1) or from Ter ms(i)
k

(the sets are disjoint). Therefore, the Cartesian product (T1×·· ·×Tm) becomes the union of 2m

Cartesian products of the form (T (j)
1 ×·· ·×T (j)

m′), j = [1..2m]. T (j)
i is either RCN(Γ′o ,ρi ,k −1) or

Ter ms(i)
k . Therefore we can split RCN(Γo ,τ,k+1) into 2m+1 subsets. We produced 2m subsets

using function with the same code as the RCN, except that T (j)
i replaces Ti . Let us denote new

functions with RCN′(Γo ,τ,k+1)(j). The last set contains all expressions generated when m = 0,

and we denote it by RCN0. Then RCN(Γo ,τ,k +1) :=RCN0]⊎
j=[1..2m]RCN

′(Γo ,τ,k +1)(j). If

RCN′(Γo ,τ,k +1)(1) is the function where T (j)
i =RCN(Γ′o ,ρi ,k −1), for i = [1..n], then it holds

RCN0]RCN′(Γo ,τ,k +1)(1) = RCN(Γo ,τ,k). In other functions at least one T (j)
i = Ter ms(i)

k .

Such a function synthesizes only terms with depth k +1, because at least one sub-term ei

has depth k. This is the maximal depth of the sub-terms as well. By the definition of D

we have that D(λx1 . . . xn . f e1...en) = 1+max(D(e1), . . . ,D(en)) = 1+ k. Therefore, it holds

that all terms in those functions have depth k +1. We denote the set of all such terms by

Ter msk+1 = ⊎
j=[2..2m]RCN

′(Γo ,τ,k +1)(j). Finally, we can conclude that RCN(Γo ,τ,k +1) =
RCN0]⊎

j=[1..2m]RCN
′(Γo ,τ,k +1)(j) =RCN(Γo ,τ,k)]Ter msk+1.

Lemma A.1.3 Let Γo be a lambda environment and τ be a lambda type. Also let d and m be

numbers, s.t. d ≥ 1 and d ≥ m > 0. Next, let Ter msd−m+1,d be a set that contains terms with

depth from d −m +1 to d then:

RCN(Γo ,τ,d) =RCN(Γo ,τ,d −m)]Ter msd−m+1,d

Proof By applying Lemma A.1.2 m times to RCN(Γo ,τ,d).

Lemma A.1.4 If Γo `λ e : τ is a judgment in long normal form and d ≥D(e) then the following

holds:

e ∈RCN(Γo ,τ,D(e)) ⇔ e ∈RCN(Γo ,τ,d)

Proof If e ∈RCN(Γo ,τ,D(e)) then e ∈RCN(Γo ,τ,d) is true because Lemma A.1.3 states that

RCN(Γo ,τ,D(e)) is a subset of RCN(Γo ,τ,d). On the other hand if e ∈RCN(Γo ,τ,d) then either

e ∈ RCN(Γo ,τ,D(e)) or e ∈ Ter msD(e)+1,d by the same Lemma. However, by the definition

Ter msD(e)+1,d contains only terms with depth greater then D(e). Thus, e cannot be in this set

and must be in RCN(Γo ,τ,D(e)).

101

Bibliography

[1] SourceForge Source Code Repository. http://sourceforge.net/, 1999.

[2] EclipseJDT. http://www.eclipse.org/jdt/, 2004.

[3] The Djinn Theorem Prover. http://www.augustsson.net/Darcs/Djinn/, 2004.

[4] BitBucket Repository Hosting Service. https://bitbucket.org/, 2008.

[5] GitHub Repository Hosting Service. https://github.com/, 2008.

[6] Hayoo! API Search. http://holumbus.fh-wedel.de/hayoo/hayoo.html, 2008.

[7] Hoogle API Search. http://www.haskell.org/hoogle/, 2008.

[8] Eclipse Code Recommenders. http://www.eclipse.org/recommenders/, 2009.

[9] UDITA website. http://mir.cs.illinois.edu/udita, 2010.

[10] Intellij IDEA website. http://www.jetbrains.com/idea/, 2011.

[11] Miltiadis Allamanis and Sutton Charles. Mining Source Code Repositories at Massive

Scale using Language Modeling. In The 10th Working Conference on Mining Software

Repositories, pages 207–216. IEEE, 2013.

[12] K. Apt and M. G. Wallace. Constraint Logic Programming using Eclipse. CUP, 2006.

[13] Thomas Ball, Daniel Hoffman, Frank Ruskey, Richard Webber, and Lee J. White. State

Generation and Automated Class Testing. STVR, 2000.

[14] Nels E. Beckman, Aditya V. Nori, Sriram K. Rajamani, and Robert J. Simmons. Proofs from

Tests. In ISSTA, 2008.

[15] Ana Bove, Peter Dybjer, and Ulf Norell. A Brief Overview of Agda - A Functional Language

with Dependent Types. In TPHOLs, 2009.

[16] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Korat: Automated

Testing Based on Java Predicates. pages 123–133, July 2002.

103

http://sourceforge.net/
http://www.eclipse.org/jdt/
http://www.augustsson.net/Darcs/Djinn/
https://bitbucket.org/
https://github.com/
http://holumbus.fh-wedel.de/hayoo/hayoo.html
http://www.haskell.org/hoogle/
http://www.eclipse.org/recommenders/
http://mir.cs.illinois.edu/udita

Bibliography

[17] Val Breazu-Tannen, Thierry Coquand, Carl A. Gunter, and Andre Scedrov. Inheritance as

Implicit Coercion. Inf. Comput., 93:172–221, July 1991.

[18] Marcel Bruch, Martin Monperrus, and Mira Mezini. Learning from Examples to Improve

Code Completion Systems. In ESEC/SIGSOFT FSE, pages 213–222, 2009.

[19] Rainer Burkard, Mauro Dell’Amico, and Silvano Martello. Assignment Problems. Society

for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2009.

[20] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R. Engler.

EXE: Automatically Generating Inputs of Death. In CCS, 2006.

[21] Aemon Cannon. Ensime. https://github.com/aemoncannon/ensime/, 2010.

[22] Shaunak Chatterjee, Sudeep Juvekar, and Koushik Sen. SNIFF: A Search Engine for Java

Using Free-Form Queries. In FASE, pages 385–400, 2009.

[23] Koen Claessen and John Hughes. QuickCheck: A Lightweight Tool for Random Testing of

Haskell Programs. In ICFP, 2000.

[24] Lori Clarke and Debra Richardson. Symbolic Evaluation Methods for Program Analysis.

In Program Flow Analysis: Theory and Applications, chapter 9. 1981.

[25] Anthony Cozzie and Samuel T. King. Macho: Writing Programs with Natural Language

and Examples. Technical report, University of Illinois at Urbana-Champaign, 2012.

[26] Christoph Csallner, Nikolai Tillmann, and Yannis Smaragdakis. DySy: Dynamic Symbolic

Execution for Invariant Inference. In ICSE, 2008.

[27] Marcelo d’Amorim, Carlos Pacheco, Tao Xie, Darko Marinov, and Michael D. Ernst. An Em-

pirical Comparison of Automated Generation and Classification Techniques for Object-

Oriented Unit Testing. In ASE, 2006.

[28] Brett Daniel, Danny Dig, Kely Garcia, and Darko Marinov. Automated Testing of Refactor-

ing Engines. In ESEC/FSE 2007, Dubrovnik, Croatia, September 2007. (To appear.).

[29] Marie-Catherine de Marneffe, Bill MacCartney, and Christopher D. Manning. Generating

Typed Dependency Parses from Phrase Structure Parses. In LREC, pages 449–454, 2006.

[30] Leonardo de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver. In TACAS, pages

337–340, 2008.

[31] David Delahaye. Information Retrieval in a Coq Proof Library Using Type Isomorphisms.

In TYPES, pages 131–147, 1999.

[32] Xianghua Deng, Jooyong Lee, and Robby. Bogor/Kiasan: A k-bounded Symbolic Execu-

tion for Checking Strong Heap Properties of Open Systems. In ASE, 2006.

104

https://github.com/aemoncannon/ensime/

Bibliography

[33] G. Dowek. Higher-Order Unification and Matching. Handbook of automated reasoning,

II:1009–1062, 2001.

[34] Gilles Dowek and Ying Jiang. Enumerating Proofs of Positive Formulae. Comput. J.,

52(7):799–807, October 2009.

[35] Bassem Elkarablieh, Darko Marinov, and Sarfraz Khurshid. Efficient Solving of Structural

Constraints. In ISSTA, 2008.

[36] Christiane Fellbaum. WordNet: An Electronic Lexical Database. Bradford Books, 1998.

[37] Mauro Ferrari, Camillo Fiorentini, and Guido Fiorino. fCube: An Efficient Prover for

Intuitionistic Propositional Logic. In LPAR (Yogyakarta), 2010.

[38] Sebastian Fischer, Oleg Kiselyov, and Chung-chieh Shan. Purely Functional Lazy Non-

deterministic Programming. In ICFP, 2009.

[39] Cormac Flanagan. Automatic Software Model Checking via Constraint Logic. Sci. Comput.

Program., 50(1-3):253–270, 2004.

[40] The Eclipse Foundation. http://www.eclipse.org/, 2007.

[41] Joel Galenson, Philip Reames, Rastislav Bodík, Björn Hartmann, and Koushik Sen. Code-

Hint: Dynamic and Interactive Synthesis of Code Snippets. In ICSE, pages 653–663,

2014.

[42] Milos Gligoric, Tihomir Gvero, Steven Lauterburg, Darko Marinov, and Sarfraz Khurshid.

Optimizing Generation of Object Graphs in Java PathFinder. In ICST, 2009.

[43] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. Grammar-Based Whitebox

Fuzzing. In PLDI, 2008.

[44] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed Automated Ran-

dom Testing. In 2005 ACM SIGPLAN conference on Programming Language Design and

Implementation, pages 213–223, 2005.

[45] Wolfgang Grieskamp, Xiao Qu, Xiangjun Wei, Nicolas Kicillof, and Myra B. Cohen. In-

teraction Coverage Meets Path Coverage by SMT Constraint Solving. In TestCom/FATES,

2009.

[46] Tihomir Gvero, Milos Gligoric, Steven Lauterburg, Marcelo d’Amorim, Darko Marinov,

and Sarfraz Khurshid. State Extensions for Java PathFinder. In ICSE, 2008.

[47] Reid Holmes and Gail C. Murphy. Using Structural Context to Recommend Source Code

Examples. In ICSE, pages 117–125, 2005.

[48] Radu Iosif. Symmetry Reduction Criteria for Software Model Checking. In SPIN, 2002.

105

http://www.eclipse.org/

Bibliography

[49] Vilas Jagannath, Yun Young Lee, Brett Daniel, and Darko Marinov. Reducing the Costs of

Bounded-Exhaustive Testing. In FASE, 2009.

[50] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. Oracle-Guided

Component-Based Program Synthesis. In ICSE (1), 2010.

[51] Daniel Jurafsky and James H. Martin. Speech and Language Processing. Prentice Hall, 2

edition, 2008.

[52] Sarfraz Khurshid and Darko Marinov. TestEra: Specification-Based Testing of Java Pro-

grams using SAT. Autom. Softw. Eng., 11(4):403–434, 2004.

[53] Sarfraz Khurshid, Corina S. Pasareanu, and Willem Visser. Generalized Symbolic Execu-

tion for Model Checking and Testing. In TACAS, pages 553–568, 2003.

[54] James C. King. Symbolic Execution and Program Testing. Commun. ACM, 19(7):385–394,

1976.

[55] Etienne Kneuss, Viktor Kuncak, Ivan Kuraj, and Philippe Suter. Synthesis Modulo Recur-

sive Functions. In OOPSLA, 2013.

[56] Harold W. Kuhn. The Hungarian Method for the Assignment Problem. Naval Research

Logistics Quarterly, 2:83–97, 1955.

[57] Viktor Kuncak, Mikael Mayer, Ruzica Piskac, and Philippe Suter. Complete Functional

Synthesis. In PLDI, 2010.

[58] Ivan Kuraj. Interactive Code Generation. Master’s thesis, EPFL, February 2013.

[59] Ralf Lämmel and Wolfram Schulte. Controllable Combinatorial Coverage in Grammar-

Based Testing. In TestCom, pages 19–38, 2006.

[60] Vu Le, Sumit Gulwani, and Zhendong Su. SmartSynth: Synthesizing Smartphone Au-

tomation Scripts from Natural Language. In MobiSys, pages 193–206, 2013.

[61] Yun Young Lee, Sam Harwell, Sarfraz Khurshid, and Darko Marinov. Temporal Code

Completion and Navigation. In Proceedings of the 2013 International Conference on

Software Engineering, ICSE ’13, pages 1181–1184, Piscataway, NJ, USA, 2013. IEEE Press.

[62] Greg Little and Robert C. Miller. Keyword Programming in Java. In ASE, pages 84–93,

2007.

[63] Hugo Liu and Henry Lieberman. Metafor: Visualizing Stories as Code. In IUI, pages

305–307, 2005.

[64] Zhaohui Luo. Coercions in a Polymorphic Type System. Mathematical Structures in

Computer Science, 18(4):729–751, 2008.

106

Bibliography

[65] David Mandelin, Lin Xu, Rastislav Bodík, and Doug Kimelman. Jungloid Mining: Helping

to Navigate the API Jungle. In PLDI, 2005.

[66] Zohar Manna and Richard Waldinger. A Deductive Approach to Program Synthesis. ACM

Trans. Program. Lang. Syst., 2(1):90–121, 1980.

[67] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J. Bethard,

and David McClosky. The Stanford CoreNLP Natural Language Processing Toolkit. In

ACL, pages 55–60, 2014.

[68] Darko Marinov. Automatic Testing of Software with Structurally Complex Inputs. PhD

thesis, MIT, 2005.

[69] Darko Marinov, Alexandr Andoni, Dumitru Daniliuc, Sarfraz Khurshid, and Martin Rinard.

An Evaluation of Exhaustive Testing for Data Structures. Technical Report MIT-LCS-TR-

921, MIT CSAIL, Cambridge, MA, September 2003.

[70] William M. McKeeman. Differential Testing for Software. J-DTJ, 10(1), 1998.

[71] Sean McLaughlin and Frank Pfenning. Efficient Intuitionistic Theorem Proving with the

Polarized Inverse Method. In CADE, 2009.

[72] Alon Mishne, Sharon Shoham, and Eran Yahav. Typestate-Based Semantic Code Search

over Partial Programs. In OOPSLA 2012 part of SPLASH, Tucson, AZ, USA, October 21-25,

2012, pages 997–1016, 2012.

[73] Thomas Noll and Bastian Schlich. Delayed Nondeterminism in Model Checking Embed-

ded Systems Assembly Code. In HVC, 2007.

[74] William F. Opdyke and Ralph E. Johnson. Refactoring: an Aid in Designing Application

Frameworks and Evolving Object-Oriented Systems. In SOOPPA, 1990.

[75] Corina S. Pasareanu, Peter C. Mehlitz, David H. Bushnell, Karen Gundy-Burlet, Michael R.

Lowry, Suzette Person, and Mark Pape. Combining Unit-Level Symbolic Execution and

System-Level Concrete Execution for Testing NASA Software. In ISSTA, 2008.

[76] C.S. Pasareanu, R. Pelánek, and W. Visser. Predicate Abstraction with Under-

Approximation Refinement. J-LMCS, 3(1), 2007.

[77] Daniel Perelman, Sumit Gulwani, Thomas Ball, and Dan Grossman. Type-Directed

Completion of Partial Expressions. In PLDI, pages 275–286, 2012.

[78] Benjamin Pierce. Types and Programming Languages. 2001.

[79] David Price, Ellen Riloff, Joseph L. Zachary, and Brandon Harvey. NaturalJava: A Natural

Language Interface for Programming in Java. In IUI, pages 207–211, 2000.

[80] Veselin Raychev, Martin T. Vechev, and Eran Yahav. Code Completion with Statistical

Language Models. In PLDI, page 44, 2014.

107

Bibliography

[81] John C. Reynolds. Using Category Theory to Design Implicit Conversions and Generic

Operators. In Semantics-Directed Compiler Generation, pages 211–258, 1980.

[82] Naiyana Sahavechaphan and Kajal Claypool. XSnippet: Mining for Sample Code. In

OOPSLA, 2006.

[83] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a Concolic Unit Testing Engine for C.

In ESEC/SIGSOFT FSE, pages 263–272, 2005.

[84] Armando Solar-Lezama, Gilad Arnold, Liviu Tancau, Rastislav Bodík, Vijay A. Saraswat,

and Sanjit A. Seshia. Sketching Stencils. In PLDI, 2007.

[85] Armando Solar-Lezama, Rodric Rabbah, Rastislav Bodik, and Kemal Ebcioglu. Program-

ming by Sketching for Bit-Streaming Programs. In PLDI ’05: Proceedings of the 2005 ACM

SIGPLAN conference on Programming language design and implementation, 2005.

[86] Richard Statman. Intuitionistic Propositional Logic is Polynomial-Space Complete. The-

oretical Computer Science, 9(1):67 – 72, 1979.

[87] Kevin Sullivan, Jinlin Yang, David Coppit, Sarfraz Khurshid, and Daniel Jackson. Software

Assurance by Bounded Exhaustive Testing. In ISSTA, 2004.

[88] Suresh Thummalapenta and Tao Xie. PARSEWeb: a Programmer Assistant for Reusing

Open Source Code on the Web. In ASE, 2007.

[89] Suresh Thummalapenta, Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and Wolfram

Schulte. MSeqGen: Object-Oriented Unit-Test Generation via Mining Source Code. In

ESEC/FSE, 2009.

[90] Nikolai Tillmann and Jonathan de Halleux. Pex—White Box Test Generation for .NET. In

TAP, 2008.

[91] Frank Tip. Refactoring using Type Constraints. In SAS, 2007.

[92] Kristina Toutanova, Dan Klein, Christopher D. Manning, and Yoram Singer. Feature-Rich

Part-of-Speech Tagging with a Cyclic Dependency Network. In HLT-NAACL, 2003.

[93] Pawel Urzyczyn. Inhabitation in Typed Lambda-Calculi (a Syntactic Approach). In TLCA,

1997.

[94] Willem Visser, Klaus Havelund, Guillaume P. Brat, Seungjoon Park, and Flavio Lerda.

Model Checking Programs. Autom. Softw. Eng., 10(2):203–232, 2003.

[95] Willem Visser, Corina S. Păsăreanu, and Sarfraz Khurshid. Test Input Generation with

Java PathFinder. In ISSTA, 2004.

[96] Willem Visser, Corina S. Pǎsǎreanu, and Radek Pelánek. Test Input Generation for Java

Containers using State Matching. In ISSTA, 2006.

108

Bibliography

[97] J. B. Wells and Boris Yakobowski. Graph-Based Proof Counting and Enumeration with

Applications for Program Fragment Synthesis. In LOPSTR, pages 262–277, 2004.

109

Tihomir Gvero

Professional Address
EPFL IC IIF LARA BC358, Station 14
1015 Lausanne, Switzerland
(+41) 21 69 31221
tihomir.gvero@epfl.ch

Private Address
Chemin des Rosiers 1
1004 Lausanne, Switzerland
(+41) 76 56 79522
tihomir.gvero@gmail.com

Education PhD in Computer, Communication and Information Sciences 2009 - 2015
Swiss Federal Institute of Technology Lausanne (EPFL)
Switzerland, GPA 5.50/6.00

M.Sc. in Computer Science and Engineering, School of Electrical Engineering 2007 - 2009
University of Belgrade, Serbia, GPA 10.00/10.00

B.Sc. in Computer Science and Engineering, School of Electrical Engineering 2003 - 2007
University of Belgrade, Serbia, GPA 9.44/10.00

Conference
Publications

1 T. Gvero, V. Kuncak, I. Kuraj and R. Piskac 2013
“Complete Completion using Types and Weights”
Conference on Programming Language Design and Implementation (PLDI 2013)
pages 27-38, Seattle, Washington, USA, June 2013

2 T. Gvero, V. Kuncak and R. Piskac, “Interactive Synthesis of Code Snippets” 2011
Computer Aided Verification (CAV Tool Demo 2011), pages 418-423
Snowbird, UT, USA, July 2011.

3 B. Daniel, D. Dig, T. Gvero, V. Jagannath, J. Jiaa, D. Mitchell, J. Nogiec 2011
S.H. Tan and D. Marinov, “ReAssert: A Tool for Repairing Broken Unit Tests”
International Conference on Software Engineering, (ICSE Demo 2011)
pages 1010-1012, Waikiki, Honoulu, Hawaii, USA, May 2011.

4 B. Daniel, T. Gvero, and D. Marinov, “On Test Repair using Symbolic Execution” 2010
International Symposium on Software Testing and Analysis (ISSTA 2010)
pages 207-218, Trento, Italy, July 2010.

5 M. Gligoric, T. Gvero, V. Jagannath, S. Khurshid, V. Kuncak and D. Marinov 2010
“Test generation through programming in UDITA”
32nd International Conference on Software Engineering (ICSE 2010)
pages 225-234, Cape Town, South Africa, May 2010.
(This paper won an ACM SIGSOFT Distinguished Paper Award.)

6 M. Gligoric , T. Gvero, S. Lauteburg, D. Marinov and S. Khurshid 2009
“Optimizing generation of object graphs in Java PathFinder”
2nd IEEE International Conference on Software Testing
Verification and Validation (ICST 2009), Denver, CO, April 2009.

7 T. Gvero, M. Gligoric, S. Lauterburg, M. d’Amorim, D. Marinov and S. Khurshid 2008
“State extensions for Java PathFinder”
Formal research demo at the 30th International Conference
on Software Engineering (ICSE Demo 2008), Leipzig, Germany, May 2008.

111

Technical
Reports

8 T. Gvero and V. Kuncak, “On Synthesizing Code from Free-Form Queries” 2014
IC Technical Report LARA-REPORT-2014-09. 2014.

9 T. Gvero, V. Kuncak and R. Piskac 2011
“Code Completion using Quantitative Type Inhabitation”
IC Technical Report LARA-REPORT-2011-11. 2011.

10 M. Gligoric , T. Gvero, S. Khurshid, V. Kuncak and D. Marinov 2008
“On delayed choice execution for falsification”
IC Technical Report LARA-REPORT-2008-08. 2008.

Research
Experience

PhD fellowship student, Laboratory for Automated Reasoning and Analysis 2009 - Present
(LARA), EPFL. Working with Prof. Viktor Kuncak on:

• Interactive synthesis of Scala and Java code snippets [1, 2, 8, 9]
• Test input generation in UDITA language [5]

Summer intern, Microsoft Research Redmond. Worked with Nikolai Tillmann Summer 2010
on a search strategy and a technique that improves test input generation in Pex,
an automatic white-box test input generation tool.

Summer intern, EPFL, LARA. Worked with Prof. Viktor Kuncak on finding Summer 2008
errors in programs and specifications [10]

Summer intern, University of Illinois at Urbana-Champaign (UIUC), Summer 2007
Information Trust Institute (ITI) Undergraduate Research Internship Program,
Worked with Prof. Darko Marinov on software testing and model checking [6, 7]

Tools &
Extensions

anyCode is a tool that uses natural language input to synthesize code snippets. 2014
It employs a set of natural language processing tools, developed at Stanford, together
with the costume-built related word map, based on WordNet, a large lexical database
of English, to map natural language input to code snippets. To backed up the synthesis
and make it more effective and efficient it uses unigram and probabilistic context free
grammar models. It can also repair broken (ill-typed) expressions.

InSynth is a tool for interactive synthesis of code snippets. It applies theorem 2011 - 2013
proving technology to synthesize code fragments that use given library functions.
The first version of InSynth synthesizes code applying polymorphic type constraints
as well as code behavior. The second version is suitable for synthesizing code that
contains first class functions. Both systems use the weights mechanism, based on
unigrma model, to make synthesis effective and efficient.

Generation based on object invariants is an extension for Pex that: automatically 2010
infers an object (test input) invariant, sends the invariant to a constraint solver to
determine valid object states, and synthesizes code that initializes the object using only
the object’s public API. It is used to aid test input generation, when object’s state is
hard to construct due to access control constraints.

Delayed choice execution is an extension for Java PathFinder (JPF) that postpones 2009
the choices for each variable until it is first accessed. The extension also includes copy
propagation technique that further postpones the choices even if the values are being copied.
The techniques support primitive fields and linked structures.

Undo optimization for backtracking is a JPF extension that speeds up state-space 2008
exploration, focusing on backtracking. The key idea is to incrementally store and restore
states. Our results show an over of magnitude speedup for a number of programs.

Untracked field is an extension for JPF for accumulating values over all paths 2007

112

JPF patches that include 8 bug-fixes in JPF (array element type compatibility, arraycopy 2007
method type compatibility, annotation element types, casting primitive type arrays, output
stream method, enumeration method, reflection method, cloning of primitive type arrays)

Class
Projects

CPUSimulator is a Swing-based visual simulator of a simple processor: Register Transfer 2006
Logic view, per-clock, per-instruction and per-program simulation advance, real-time register
and memory values editing, support for custom program loading (developed using Java,
5000 lines of code)
Multi-threading support for C++ is a Java-like threading model for C++, with the 2005
following features: switching, explicit synchronous preemption, asynchronous preemption
(caused by an interrupt), time sharing, round-robin scheduling; and primitives: semaphores,
events, mutexes, monitors.

Talks &
Presentations

PLDI Conference, Seattle, WA, USA. gave a talk based on paper [1] June 2013
Argo Seminar, Belgrade, Serbia, gave a talk based on paper [2] Feb 2011
Scala Days, Lausanne, Switzerland, presented a poster on UDITA Apr 2010
Argo Seminar, Belgrade, Serbia, gave a talk based on technical report [10] Apr 2009
ICSE Research Demo Track, Leipzig, Germany, gave a talk based on paper [7] May 2008
ICSE, Leipzig, Germany, presented a poster based on paper [7] May 2008

Awards &
Honors

ACM SIGSOFT Distinguished Paper Award for [5] 2010
Selected for Summer Internship at the Information Trust Institute, UIUC 2007
Serbian Ministry of Education Student Scholarship 2004 - 2008

Professional
Activities

Teaching assistant:
• Computer Science 1 (Fall 2013, Fall 2012)
• Information Technology Project (Fall 2011)
• Theoretical Computer Science (Spring 2011)

Paper reviewer: PLDI (2014), VSTTE (2012), POPL (2011), SAS (2011), ESOP (2011)
ASE (2011, 2009, 2007), ICST Student Track (2008)
Student volunteer: ICSE 2008
Student member: ACM, ACM SIGSOFT

Technical
Skills

Testing and Development Tools: Pex, JPF, Eclipse, MS Visual Studio .NET
Rational Rose, MySQL, StarUML
Programming Languages: Java, C#, C++, C, Scala, SQL, 80x86 Assembler, VHDL, Latex

113

	Cover page

	Acknowledgements
	Preface
	Abstract (English/Français)
	List of figures
	List of tables
	Introduction
	Synthesizing and Repairing Code Fragments
	Test Input Generation
	Contributions and Outline

	Complete Completion using Types and Weights
	Motivation
	Motivating Examples
	InSynth: Sequence of Streams
	InSynth: Using Higher-Order Functions
	InSynth: Using Subtyping
	PolySynth: Parametric polymorphism
	PolySynth: Using code behavior
	PolySynth: Applying user preferences

	Type Inhabitation Problem for Succinct Types
	Simply Typed Lambda Calculus for Deriving Terms in Long Normal Form
	Succinct Types
	Succinct Patterns
	Succinct Calculus
	Soundness and Completeness of Succinct Calculus

	Quantitative Type Inhabitation Problem
	Synthesis of All Terms in Long Normal Form
	Backward Search
	Main Algorithm
	Exploration phase
	Pattern generation phase
	Term generation phase
	Responsiveness
	Optimizations

	Subtyping using Coercion Functions
	Evaluation of the Effectiveness of InSynth
	Implementation in Eclipse
	Creating Benchmarks
	Corpus for Computing Symbol Usage Frequencies
	Platform for Experiments
	Measuring Overall Effectiveness

	Quantitative Inhabitation for Generics
	PolySynth Implementation and Evaluation
	Related Work
	Conclusions

	Synthesizing Code from Free-Form Queries
	Motivation
	Examples
	Making a Backup of a File
	Invoking the Class Loader
	Creating a Temporary File
	Writing to a File
	Reading from a File

	System Overview
	Evaluation
	Benchmarks
	Threats to Validity

	Parsing
	Input Text Parsing
	Declaration Parsing

	Related WordMap: Modifying WordNet
	Declaration Search
	Synthesis
	Probabilistic Context Free Grammar Model
	Partial Expression Synthesis

	Declaration Score
	WordGroup-Declaration Matching Score
	Declaration Unigram Score

	Partial Expression Score
	Constructing PCFG and Unigram Models
	Related Work
	Conclusions

	Test Generation through Programming in UDITA
	Motivation
	Example
	UDITA Language
	Test Generation in UDITA
	Test Generation for Primitive Values
	Test Generation for Linked Structures
	Benefits of Object Pools

	Evaluation
	Black-Box Testing
	White-Box Testing

	Related Work
	Conclusions

	Conclusions
	Appendix
	InSynth Algorithm Completeness Proof

	Bibliography
	Curriculum Vitae

