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Abstract
We investigate speaker adaptation in the context of deep neu-
ral network (DNN) based speech synthesis. More specifically,
our current work focuses on the exploitation of auxiliary infor-
mation such as gender, speaker identity or age during the DNN
training process. The proposed technique is compared to stan-
dard acoustic feature transformations such as the feature based
maximum likelihood linear regression (FMLLR) based speaker
adaptation. Objective error measurements as well as perceptual
experiments, performed on the WSJCAM0 database, suggest
that the proposed method is superior to standard feature trans-
formations.
Index Terms: DNN, TTS, speech synthesis, neural network,
fmllr, speaker adaptation

1. Introduction
Deep neural networks (DNN) have recently emerged as one of
the most common machine learning method for speech-based
applications, in particular for Automatic Speech Recognition
(ASR). Paradoxically, even though neural networks were al-
ready applied for speech synthesis at the end of the 80s [1], and
despite a high level of activity in parameter-based speech syn-
thesis based on hidden Markov models (HMM) [2], there is very
little in terms of published research applying DNNs to Text-to-
Speech Synthesis (TTS). In particular, the authors found no ar-
ticle at all applying neural networks to speaker adaptive training
for TTS.

One of the main advantages of using parametric synthesis
methods, as opposed to e.g. unit selection, is their ability to
modify the characteristics of an original voice by adapting it to
another speaker, with very small amounts of data [3]. Exten-
sive research has been conducted on this topic in the context of
HMM-based synthesis: the most commonly used techniques are
maximum a posteriori (MAP) estimation [4, 5] and maximum-
likelihood linear regression (MLLR) [6, 7].

Speaker adaptation is fairly common in HMM-based TTS
or ASR systems, and it is common as well in DNN-based ASR,
by either using speaker adapted transformations on acoustic fea-
tures – generally CMLLR transformations derived from ML-
based optimization in HMM forced alignment [8] – or by re-
training the neural network on acoustic data from the target
speaker [9]. Speaker adaptation has however, to the best of our
knowledge, not yet been applied on DNN-based TTS.

In this paper, we propose to transpose state-of-the-art
speaker adaptation techniques as used in ASR, for DNN-
based speech synthesis; and investigate the speaker adaptation
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schemes that provide the best performances on the WSJCAM0
database.

This paper is structured as follows: Section 2 presents the
neural network framework used, while Section 3 presents gener-
alities about speaker adaptation techniques. Section 4 presents
our experimental framework, anf finally Section 5 presents the
evaluations we conducted.

2. DNN framework
Our DNN-based speech synthesis approach is inspired by Zen
et al. [10].

2.1. Input features

A given text to be synthesized is converted in a sequence of
input features. In our case, the input feature stream employed
for DNN training is a direct mapping of a simplified version of
the HTS “full” labels – which, on top of segmental informa-
tion, contain rich contextual parameters such as lexical stress
and position in syllable.

The labels were simplified in the following way: we used a
triphone context instead of the default quinphone context, and
the feature set was shrunk to only retain information up to the
syllabic level. This is inspired by our previous work [11] which
suggests that higher level information does not provide signifi-
cant improvement for the synthesis of English. To obtain a di-
rect mapping of input labels and acoustic features, the segment-
based labels have to be converted to retain exactly one input la-
bel per acoustic frame. To differentiate the various frames from
the original segment, we incorporate information relative to the
segment duration, and to the frame position within the segment.

For speaker discriminative training, we simply need to add
additional information to the input label. In practice, we incor-
porate either a single binary value for gender-based training, or
a set of binary values (one binary value per speaker) for full
speaker discriminative training.

Mapping to numeric values is relatively straightforward: for
instance, phonemic information is converted to binary arrays –
one binary value per phoneme type – while numeric values such
as relative syllable position remain unmodified.

2.2. Output features

The output acoustic feature stream contain spectral (mel-
cepstrum) and excitation parameters (pitch and aperiodic en-
ergy), as well as their time derivatives of first and second order.
They are generated through publically available scripts from the
EMIME [12] project, using STRAIGHT [13] acoustic analysis.
Each component is normalized per speaker.



2.3. DNN architecture

The goal of the DNN is to learn a mapping between the input
features (labels) and output features (acoustic) on a train set.
We used a slightly modified version of the Kaldi [14] toolkit for
the DNN training.

In our experiments, the DNN comprises three hidden layers.
Subsequent synthesis of the test set can then be performed using
forward propagation of input features through the trained DNN.

Unlike the work of Zen et al., we did not apply any post-
filtering on the acoustic features generated at the output of the
DNN: the raw acoustic features are directly fed to the vocoder
(i.e., their time derivatives are discarded).

3. Speaker adaptation techniques
Similarly to HMM-based synthesis techniques, we wish to cre-
ate, using DNNs, “average voice” models from multiple speak-
ers recordings – which requires compensating for the acous-
tic mismatch across speakers. Using DNN, two classes of
methods can be used for reducing this acoustic mismatch: ex-
plicit transformations of the acoustic features provided to the
DNN for training, e.g. using FMLLR transforms trained sep-
arately, or implicit transformations by providing information
about speaker identity in the DNN input (such as gender, age,
or physiology related factors such as vocal tract length). In this
paper, we compare 3 implicit methods purely relying on DNN,
to 2 explicit features transformations method using fmllr trans-
forms.

3.1. Fmllr transforms

Feature-space adaptation using feature-space MLLR (fmllr),
also known as constrained MLLR [15], was applied in our ex-
periments. Fmllr was used through performing a Speaker Adap-
tive Training (SAT) of an HMM/GMM baseline ASR system.
Resulting feature transforms were estimated in an unsupervised
way from the training and test sets, for either each speaker, or
for speakers grouped by gender. The acoustic features used
were identical to the ones used for training the DNN.

3.2. Average voice models

The average voice approach is based on an idea of using data
from multiple speakers to train HMM/GMM models in a SAT
fashion [3].

For the fmllr-based discriminative training, the input fea-
ture set was not modified (i.e., does not contain any speaker
specific information).

For DNN speaker-based discriminative training, the input
features were modified by adding either a binary value (for
gender-based adaptation), or a set of binary values (for speaker-
based adaptation).

As mentioned in Sect. 3.1, two different classes of fm-
llr transformations were trained: the first trained per speaker
(marked fmllrS), and the second trained per gender (marked
fmllrG).

In total, 5 DNNs were thus trained to create average voice
models:
DNNB: “baseline” DNN system trained without any speaker

information.
DNNG: DNN system trained with gender information.
DNNS: DNN system trained with speaker ID information.
D+FG: DNN system trained on fmllrG transformed acoustic

features.

D+FS: DNN system trained on fmllrS transformed acoustic
features.

Each system can then be further adapted to the target
speaker.

3.3. Adaptation to speaker

We used different adaptation techniques for D+F∗ and DNN∗
systems.

For the DNN∗ systems, an adaptation pass was run by re-
training the DNN using a small amount of data (40 sentences)
from the target speaker. The final layer was not randomized.
Cross validation and testing was run on the remaining 60 sen-
tences.

For the D+F∗ systems, an additional layer initialized with
the fmllr parameters for the target speaker was added to the net-
work: indeed the fmllr transform for a given speaker is sim-
ply an affine transform, which can thus be transposed directly
as a linear layer in the DNN. This was intended to investigate
whether the DNN could “improve” the fmllr transform.

Adapted DNN models will be marked with the suffix “a”,
e.g. DNNGa.

4. Experimental setup
Experiements were performed on the WSJCAM0 database,
which is commonly used in HMM-based speech synthesis.

4.1. Label/acoustic data

As part of the EMIME [12] project, considerable work has been
performed on the WSJCAM0 [16] database. We therefore em-
ployed the same “full” labels as used in EMIME for training
HTS systems (although we adjusted timing of the labels through
a forced alignment with the Kaldi toolkit before using them).
First, the labels were turned into numeric values: phonemic in-
formation was turned into binary arrays, values indicating the
position in syllables, etc. were kept as numeric values. Note
that some of the components of the “full” labels as used in HTS
were discarded, as indicated in [11]. Then, the segments were
expanded so that the input vectors have the same frame-rate as
the acoustic data. Finally, the frame position information was
added to the input vector: duration (in ms) of the original seg-
ment, and the relative position of the frame within the segment
(normalized to be between 0 and 1). Overall, the numeric labels
/ input vectors comprised 176 components for DNNB and both
fmllr-based systems. DNNG and DNNS used respectively 177
and 268 components.

The acoustic data was extracted through the use of the
EMIME feature extraction scripts, with the default settings: 40
mel-cesptrum coefficients, single value for log pitch frequency,
and 21 parameters for aperiodic excitation; plus their respective
first and second order time derivatives. The pitch component
was turned into a continuous pitch by linearly interpolating in
unvoiced segments, and adding a binary value indicating the
voiced / unvoiced status. In total, the acoustic vectors com-
prised 189 components.

4.2. Neural network

In general, the neural networks we used were built with 3 hidden
layers, with 700 nodes in each layer. Each layer comprised an
affine component followed by a sigmoid function. The input
data was normalized for each component to be of zero mean
and unit variance. The output data was normalized to be of



zero mean per speaker, then renormalized globally so that each
component had values between 0.01 and 0.99. Note that apart
from the number of nodes and layers, this setup is similar to the
one described by Zen.

The training set of WSJCAM0 was split into two parts: 82
speakers were kept for DNN training, while 10 were used for
the cross-validation.

Five average voice models were built for the five types of
DNN systems, described in Sect. 3.2. Each of these system
was then adapted to two speakers not present in the training
set: male speaker “c2d” and female speaker “c2j”, using 40
sentences for training, and the remaining for cross-validation.

4.3. HMM models

For comparisons with state-of-the-art parametric systems,
HMM-based synthesis models were built using the same
database, using the HTS v.2.1 toolkit [17].

More specifically, an implementation from the EMIME
project [12] was employed. We used traditional five-state left-
to-right Hidden Semi-Markov Models (HSMM), with no-skip.
The speech data used was sampled at 16 kHz.

As mentioned in Sect. 3.1, an average voice model was first
built using SAT training using the WSJCAM0 [16] database.
The model was then adapted to two test speakers, “c2d” and
“c2j”.

The same 40 sentences from each speaker, previously ap-
plied in DNN adaptation, were also applied for training the
HMM adapted models. As an adaptation, the constrained struc-
tural maximum a posteriori linear regression (CSMAPLR) [3]
approach was used. We exploited STRAIGHT [18] for the anal-
ysis and synthesis phase of the HSMM-based speech synthesis.

5. Evaluation
Several kinds of evaluation measures were run to estimate the
quality of speech synthesized using the DNNs: two different
types of objectives measures, and one subjective listening test.

5.1. Objective measures

First, we applied Perceptual Evaluation of Speech Quality
(PESQ) measure [19] to the whole test recordings related to our
2 reference speakers. PESQ results correspond to the average
user perception of the speech sample under assessment PESQ -
MOS (Mean Opinion Score: 1 - very annoying; 5 - impercepti-
ble impairment).

Second, we used MCD (Mel Cepstral Distortion [20]) as
a measure of synthesis error. Note that the distortion is un-
normalized and lower values indicate smaller distortion.

Table 1 presents the PESQ (MOS)1 - as well as the MCD
results. Scores obtained for the male (“c2d”) and female (“c2j”)
speakers are indicated separately.

PESQ measure should be interpreted as a MOS regarding
the similarity to the original. We can observe that all systems
have relatively low PESQ scores. Note that even the scores
obtained by the vocoder itself are relatively low (i.e., a good

1With the reference implementation of the PESQ tool, the perfor-
mance of HTS samples was extremely bad; this appeared to be due
to the aligner built in the tool, which seemed to be confused by HTS
silence modeling. We disabled the alignment of audio files in “pesq-
main.c” to obtain the presented results. Note that this procedure only
increased the scores of HTS samples, and did not modify the score of
other samples.

Figure 1: Repartition of listeners preference for each system
pair.

vocoder should obtain scores around 4.02). Further, several sys-
tems get decent PESQ scores for the male speaker: DNNG,
DNNGa, DNNBa. HTS samples and both D+Fa systems get
acceptable scores, although slightly lower.

Regarding the female speaker, all systems obtain much
lower PESQ scores. The system that obtain the best scores is
HTS, closely followed by the baseline DNN system adapted to
the speaker (DNNB).

Regarding the MCD, the best system surprisingly appears
to be DNNG. Among systems adapted to the speaker, DNNGa

seems to yield the best results overall, although HTS seems to
perform slightly better for the male speaker.

5.2. Subjective Evaluation

To verify whether the previous objective judgments stand in
front of a real human listener, we conducted a listening test
opposing the best systems of each class: DNN-based system
trained with gender information, opposed to fmllrg-based DNN
system; both systems were adapted to the speaker.

As the objective score differences were rather small, we
conducted an ABX test – as opposed to a MOS test – in the
hope of emphasizing the differences between the systems.

Two sentences for each target speakers were selected, and
generated using each system. An ABX comparison was per-
formed so that listeners were asked to decide which sample
they preferred in terms of overall quality. For each pair of sam-
ples, they were allowed to choose between 5 preference levels:
strong preference for sample A, small preference for sample A,
no preference, small preference for sample B, strong preference
for sample B.

As mentioned above, we only compared two systems:
DNNGa, and D+FGa; the vocoded samples were used as ref-
erence.There were thus 3 systems in total, 3 pairs of systems,
with 4 stimuli in each case. 13 listeners took part in the test.
The order of the tests was randomized for each listener. Figure
1 presents the distribution of replies for each system pair.

The DNN systems appear to not be comparable with
vocoded samples, as 100% of listeners marked a preference for
vocoded speech. One possible explanation is that the DNN sam-
ples were much noisier than the vocoded samples, in particular,
the “silent” parts of samples. Note that contrary to the usual
HTS approach, or to Zen’s DNN approach, we did not perform
any special treatment for silences, and remarkably, the breath-
ing noise at the beginning or end of sentences were correctly

2In particular, the speex voice coder gets better PESQ scores with
bit-rates about 5bkps.



Acoustic training Vocoded HTS DNN D+F
Speaker info None Gender None Gender Spk. ID Gender Spk. ID
Average (m / f) - PESQ - - 1.39 / 1.17 1.50 / 1.21 1.45 / 1.21 1.43 / 1.17 1.29 / 1.19
Adapted (m / f) - PESQ 3.50 / 2.98 1.46 / 1.26 1.48 / 1.25 1.50 / 1.20 1.40 / 1.24 1.46 / 1.21 1.33 / 1.21
Average (m / f) - MCD - - 6.23 / 7.10 5.63 / 6.05 6.04 / 6.98 6.11 / 6.49 5.86 / 5.99
Adapted (m / f) - MCD 0.0 / 0.0 5.91 / 6.50 5.88 / 7.12 6.00 / 6.27 6.70 / 7.40 6.16 / 6.26 8.15 / 6.37

Table 1: PESQ - MOS and MCD objective quality measures of 4 different speech synthesis techniques presented for 2 different
reference speakers from the WSJCAM0 database. For each objective quality metric, the first line (“Average”) indicates the results of
the average voice models, while the second line (“Adapted”) indicates the performance of the adapted voice models.

modeled.
When comparing the two DNN systems, it appears there is

a slight preference for the pure DNN approach, which is con-
sistent with the objective measures. This preference may not
be generalizable however, since the listening and objective tests
were performed on two speakers only.

6. Conclusions
While the subjective listening tests indicate that DNN based
synthesis does not yet provide comparable quality with respect
to the original speech, the objective measurements indicate that
regardless of perceptual quality, the DNN can generate speech
that is more realistic in terms of objective closeness to the origi-
nal, than HTS samples. This indicates a potential suitability for
applications such as very low bit-rate coding.

The adaptation technique that lead to the best results was
the DNN-based approach using gender information, which was
in all cases superior to the fmllr based approaches applied either
per-gender or per-speaker. However, this may be due to the
small amount of data available for each speaker in the given
WSJCAM0 corpus.

Future work will investigate the use of audio smoothing,
such as the Maximum-likelihood distribution optimization usu-
ally used in HTS, as well as the inclusion of additional infor-
mation in the labels, such as the questions used in HTS models
training. Finally, we will also focus on silence modelling, which
seems to be partly responsible for strong noise in DNN-based
synthesis.
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