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 According to the U.S. Bureau of Labor Statistics, during 2013 employed Americans 

“worked an average of 7.6 hours on the days they worked”, and “83 percent did some or all of 

their work at their workplace” [1]. Understanding processes in the workplace has been the 

subject of disciplines like organizational psychology and management for decades. In particular, 

the study of nonverbal communication at work is fundamental as “face-to-face interaction with 

superiors, subordinates, and peers consume much of our time and energy” [2] and a variety of 

phenomena including job stress, rapport, and leadership can be revealed by and perceived from 

the tone of voice, gaze, facial expressions, and body cues of co-workers and managers [2]. 

In parallel to these developments, progress in audio-visual sensing and machine 

perception is making the extraction of several of these nonverbal cues feasible and scalable. 

This trend creates opportunities towards improving the scientific understanding of phenomena 

in organizations and to develop technology that supports individuals and groups at work. 

Furthermore, it defines a domain where signal processing researchers can find new problems 

while working with social scientists. 

In this column, we describe a framework developed with collaborators in organizational 

psychology, aimed at inferring high-level constructs of interest in the workplace from nonverbal 

behavior. We summarize our experience tackling two tasks: identifying emergent leaders in 

small groups, and assessing hirability of candidates in employment interviews. The examples 

discussed in this column have been recorded in a standard lab setting [9], in which sensors are 

fixed in a specific environment that volunteer participants have to visit, but also in moderately 

in-the-wild settings, where a portable sensing solution has been used to bring participants to 

quiet indoor environments for recordings [5], which gives flexibility for recruitment of 

volunteers. Sensors have included webcams and commercial microphone arrays for the 

portable case, and high-resolution cameras and Microsoft Kinect for the lab case.  As the 

interactions take place around a table in real workplaces, we have exploited this setting for 

sensor placement. One specific goal of our work with psychologists has been the deployment of 



the sensing lab in their institution, with the goal of promoting a wider and more frequent use of 

the technology in their discipline. 

The material of this column is adapted from [5, 9] and the reader is referred to the 

original papers for details. We close with a few thoughts on what the future could bring in this 

domain. 

 

A framework for social inference from nonverbal behavior 

The computational framework we have developed is shown as a diagram in Figure 1 [5, 

9]. It follows a supervised machine learning approach, where training and test phases are 

defined to automatically infer variables of interest (hirability in job interviews or emergent 

leadership in small groups) from dyadic or group interactions. At the onset, experiments are 

designed jointly by psychologists and engineers, and involve the selection and deployment of 

sensing technology, the design of the specific interaction to be recorded, a battery of 

questionnaires to be completed by study participants, and human coding tasks to be completed 

by external observers. 

Questionnaire data completed by participants and additional coding data provided by 

external observers are used both for psychology research and as ground-truth data for 

computational analysis. Questionnaires, designed and validated by psychologists, are often 

adapted from previous literature and administered to participants in the experiments. 

Additional coding data can be produced by trained psychology students or experts. The manual 

annotation process in Fig. 1 involves the post-processing of the above data to define ground-

truth in amenable form for machine learning tasks. Concretely, hirability scores in job interviews 

provided by trained coders can be used to define a regression task (e.g. estimate the actual 

score) or a classification task (e.g. high vs. low score levels); furthermore, questionnaire data 

provided by the participants in a group discussion about the perceived leadership of each team 

member can be aggregated to define the ground-truth in a task whose goal is to identify one 

person in each group. 

The nonverbal feature extraction process has involved both the development of new 

techniques to extract cues from audio and video and the use of existing modules. Cues related 



to speaking activity, prosody, body and head activity, and gaze have been used in the work 

described here (facial expressions have been used in other instances of our work.) The bi-

disciplinary approach has influenced our choices regarding the extraction of behavioral cues 

previously documented in psychology research with respect to their predictive value for the 

variables of interest (hirability or emergent leadership.) This has facilitated placing the results of 

our studies in the context of previous literature. At the same time, machine learning gives the 

possibility to extract new features, some of which might not be readily interpretable but 

effective for automatic inference. Moreover, the use of machine learning methods (Support 

Vector Machines as an example) can spur constructive dialog with psychologists, who are less 

familiar with these methods and in contrast are more acquainted with classical statistical 

methods and especially interested in interpretable approaches. 

 

 

Figure 1. Computational framework to study work-related tasks 

 

Emergent Leadership in Small Groups 

In the context of groups, the so-called vertical dimension of social relations includes 

constructs like dominance, status, and leadership, all referring to the position that members 

occupy in a group [3]. In particular, research on leadership in organizational psychology and 



management has characterized leadership styles used to direct groups as well as emerging 

phenomena. Emergent leaders are individuals who rise among the members of a group and gain 

power from the group members themselves, instead of doing so from external entities (e.g. 

upper management) [4]. As much work nowadays gets done in groups, identifying emergent 

leaders is relevant in practice for recruitment, training, and development in organizations. 

Connections between nonverbal behavior and emergent leadership have been studied 

for several decades [4]. While an extensive discussion cannot be provided here, different studies 

have found connections between ratings of perceived emergent leadership and manually coded 

cues like speaking time, arm movements and gaze (including given and received gaze and joint 

patterns of looking/speaking.)  Some of these cues have also been linked to dominance, a 

related but not identical concept related to a tendency to control others via observable acts [3]. 

 In [5], we followed the approach described in Figure 1 to identify the emergent leader in 

three- to four-person groups. We used two webcams and a Dev-Audio Microcone microphone 

array as sensors.  Each camera covers two people, and the Microcone provides audio for 

prosody feature extraction while generating a segmentation of the speech of each person 

(Figure 2.) Groups of unacquainted people were asked to play the Winter Survival Task, a 

commonly used exercise to study group decision making and performance. In the task, 

participants need to rank a list of items according to their relevance for survival in a 

hypothetical plane crash in winter. Individuals first generate their own rankings, and then 

discuss and collectively agree on a final list, the interaction eliciting the possible emergence of a 

leader. After concluding the list, participants were asked to fill out questionnaires to 

characterize the other group members, including variables like perceived leadership, perceived 

dominance, and perceived competence. The resulting Emergent LEAdership (ELEA) corpus 

includes audio, video, and questionnaire data for 40 groups (148 individuals), and is publicly 

available for academic research. 

 Standard speech processing and computer vision methods were used to extract a variety 

of nonverbal cues. From the audio track for each participant, this included the amount of 

speaking time, number and average length of speaking turns, number of interruptions, speech 

spectral flatness, energy variation, and pitch variation. From video, features included a head 



activity measure obtained from a head tracker and optical flow estimates, and a body activity 

measure based on an improvement of classic motion templates (Motion Energy Images).   

Details can be found in [5]. In subsequent work [6], head pose (as a proxy for gaze) and joint 

looking/speaking patterns were also extracted using visual trackers based on particle filtering.  

 

Figure 2. A snapshot from the Emergent LEAdership (ELEA) corpus (taken from [5]).  

A correlation analysis of the perceived variables from the questionnaires first showed 

that the emergent leader was significantly perceived as a dominant person, with a second, less 

strong correlation effect between perceived leadership and competence. This is an interesting 

finding that relates different organizational constructs with one another. Furthermore, a 

correlation analysis between the perceived questionnaire variables and the nonverbal features 

showed that emergent leadership is linked to participants who talk more, take more turns, 

interrupt more, and move their body more. This motivated the automatic recognition approach 

from these cues. Using standard classification techniques (SVMs or ranked feature fusion), the 

method identified the emergent leader in a group with accuracy between 70-85% depending on 

the modalities and classifiers used. Two results relevant for signal processing are that the cues 

derived from the audio track were more discriminant than the visual cues, and when combined, 

visual cues can bring a slight performance improvement. 

 

Hirability in Job Interviews 

Interviews are an integral part of the recruitment process, and as such they have been 

extensively studied in organizational psychology and management [7, 8]. From the social 



computing perspective, employment interviews are an important subject of study because of 

their impact in people’s life, their expressiveness, and the volume with which they are 

generated. Automatic analysis could be used to provide feedback to candidates, to support 

training programs, or to summarize large volumes of data in big organizations. 

Previous literature on nonverbal communication has studied links between a number of 

features and job interview perceptions and outcomes. Interviewers most often do not meet the 

applicants in person before the interview; they interact on the basis of previous information 

provided by the applicant (CV, reference letters, LinkedIn profiles) and the behavior during the 

interview itself. Interviewers make impressions about a number of attributes of the candidate, 

hirability being one of them, and use these impressions and other available information to make 

decisions. Studies based on manually coded cues have found that candidates who are perceived 

as more hirable and competent (or who are actually hired) display an array of cues including 

smiling, eye contact, nodding, reduced interpersonal distance, body posture (oriented towards 

the interviewer), and specific speaking patterns [7,8]. Taken together, this so-called immediacy 

behavior might convey a sense of larger availability or closeness, which as some literature 

suggests can lead to positive impressions on interviewers and, as a consequence, more positive 

assessments of candidates. 

 In [9], we analyzed job interviews following the approach in Figure 1. We first collected a 

corpus of 62 interviews where candidates applied for a real (albeit short) paid job, related to 

recruiting volunteers on the street for future psychology experiments. The job itself had 

therefore connections to a sales position. We used Microsoft Kinect and high-resolution 

cameras to collect video, and the Microcone to collect audio (Figure 3). The interviews were 

structured (i.e., they consisted of a fixed number of questions, asked in the same order to each 

candidate) and behavioral (i.e., the questions were designed to elicit behavioral responses from 

the candidates). Interviews lasted 11 minutes on average. Among a variety of questionnaire and 

manual coding data that were collected, a hirability measure was provided by a psychology 

student who watched the interview using audio and video from both the candidate and the 

interviewer and who was trained at the task. 

 



 

Figure 3. Interviewer and candidate in a job interview (taken from [9]).  

 Regarding nonverbal cues, in addition to audio features similar to the ones described in 

the previous section, we developed methods to extract head nods [10] and body cues [11]. In 

[10], we demonstrated the advantages in terms of performance of a multimodal approach for 

nodding recognition, in which the observation of the (self) speaking state of a person (speaking 

or silent) is used to learn two separate nodding/non-nodding classifiers, one for each speaking 

state.  In [11], we developed a method to extract body cues from RGB video, by first detecting  a 

person’s face and hands, then inferring an approximation of the 3-D pose of the upper body, 

and finally using this representation to do recognition of basic conversational cues like self-

touch and gestures (see Figure 4). These approaches have been later extended to use the depth 

information from Kinect. 

 The suite of nonverbal cues was used in [9] both for correlation analysis and a regression 

task, where the hirability measure provided by the trained student was the variable to be 

predicted. Regarding correlation, the results showed that candidates who spoke longer and 

faster, and who took longer speaking turns received higher hirability scores. Visual features 

related to the amount of head motion also showed positive effects with hirability.  For the 

regression task, using the coefficient of determination (R2) as performance measure, the 

approach achieved a best result of R2= 0.36 using ridge regression and all features extracted 

from a candidate. This initial result shows promise, but overall the problem is challenging. As in 

the case of emergent leadership, cues from the audio track were more discriminative compared 



to video cues. Finally, some of the cues of the interviewer turned out to be predictive of 

hirability, which suggests that the behavior of the interacting partner can also be informative 

about the self, and highlights the importance to think about this problem in contextual terms.  

 

 

Figure 4. Interview frames with face and hands detection outputs, recognized activity, and 

estimated 3-D upper body pose (taken from [11]).  

 

Perspectives  

This column summarized our experience studying two research problems in 

organizational psychology using automatically measured nonverbal behavior and machine 

learning. More generally, how can research at the boundaries between signal processing and 

organizational psychology be expanded? Three possible directions are the following. 

First, we need to communicate the possibilities of multimodal signal processing and 

machine learning methods within the social and organizational psychology communities, 

creating further partnerships where common goals can be defined and pursued. In their 

discipline, our collaborators have advocated for the benefits of this approach in their specific 

research, and have shared experiences on how similar work could be incorporated into other 

research lines [12]. As with other examples of multidisciplinary work, there are important issues 

of language, methodology, expectations, and practices that need to be sorted out.  Should 

engineers only be service providers for psychology labs? What is the level at which automation 

should stop? What is the value (and the place) of computational approaches for recognition that 



are high performing but less interpretable? What is the level of experimental control that a 

discipline is willing to lose in order to conduct experiments in the wild? These are a few 

questions that we have encountered in our own work. 

Second, from the perspective of ubiquitous applications, interactivity is key. Some 

aspects of the methodology presented here could be embedded in real-time awareness tools to 

support sectors in industry where privacy-sensitive feedback at work would be positive. This 

includes hospitality, sales, and public communication. Another relevant dimension is training 

[13]. In addition to smartphones, the current surge of wearable devices including wristbands, 

smart watches, and glasses are opening new ways to sense and interact. Ethics and privacy need 

to be a fundamental part of future designs. 

Finally, as new studies from the lab towards real workplaces become possible, 

computational models to handle longitudinal and relational data are needed. While lab studies 

are intrinsically localized in time, future work that aims at understanding teams in the 

workplace over days, weeks, or months require of thinking about time and relations in a 

different way (for example, dynamic graphs with multidimensional attributes at multiple time 

scales.) This is a direction where signal processing methods could be especially useful, both via 

adaptation of existing techniques and through the development of new frameworks. 

 

References 

[1] American Time Use Survey Summary, June 18, 2014, 
http://www.bls.gov/news.release/atus.nr0.htm 
[2] M. Remland, “Uses and consequences of nonverbal communication in the context of 
organizational life,” In V. Manusov, & M. Patterson (Eds.), The SAGE Handbook of Nonverbal 

Communication, SAGE Publications, 2006. 
[3] J. A. Hall, E. J. Coats, and L. Smith, “Nonverbal behavior and the vertical dimension of social 
relations: A meta-analysis,” Psychological Bulletin, 131(6):898–924, 2005. 
[4] R. T. Stein, “Identifying emergent leaders from verbal and nonverbal communications,” 
Personality and Social Psychology, 32(1):125–135, 1975. 
[5] D. Sanchez Cortes, O. Aran, M. Schmid Mast, and D. Gatica-Perez, ``A Nonverbal Behavior 
Approach to Identify Emergent Leaders in Small Groups,'' IEEE Trans. on Multimedia, Vol. 14, 
No. 3-2, pp. 816-832, Jun. 2012. 
[6]  D. Sanchez Cortes, O. Aran, D. Jayagopi, M. Schmid Mast, and D. Gatica-Perez, "Emergent 
Leaders through Looking and Speaking: from Audio-Visual Data to Multimodal Recognition,'' 



Journal of Multimodal User Interfaces, Special Issue on Multimodal Corpora, Vol. 7, Issue 1-2, 
pp. 39-53, Mar. 2013. 
[7] A. S. Imada and M. D. Hakel, “Influence of nonverbal communication and rater proximity on 
impressions and decisions in simulated employment interviews,” Applied Psychology, 
62(3):295–300, 1977. 
[8] R. J. Forbes and P. R. Jackson, “Non-verbal behaviour and the outcome of selection 
interviews” Occupational Psychology, 53(1):65–72, 1980. 
[9] L. S. Nguyen, D. Frauendorfer, M. Schmid Mast, and D. Gatica-Perez, "Hire Me: 
Computational Inference of Hirability in Employment Interviews based on Nonverbal Behavior," 
IEEE Trans. on Multimedia, Vol. 16, No. 4, Jun. 2014. 
[10] L. S. Nguyen, J.-M. Odobez, and D. Gatica-Perez,``Using Self-Context for Multimodal 
Detection of Head Nods in Face-to-Face Interaction,'' in Proc.  ACM Int. Conf. on Multimodal 

Interaction (ICMI), Santa Monica, Oct. 2012. 
[11] A. Marcos-Ramiro, D. Pizarro-Perez, M. Marron-Romera, L. S. Nguyen, and D. Gatica-Perez, 
``Body Communicative Cue Extraction for Conversational Analysis,'' in Proc. IEEE Int. Conf. on 

Face and Gesture Recognition (FG), Shanghai, Apr. 2013. 
 [12] D. Frauendorfer, M. Schmid Mast, L. S. Nguyen, and D. Gatica-Perez, ``Nonverbal Social 
Sensing in Action: Unobtrusive Recording and Extracting of Nonverbal Behavior in Social 
Interactions Illustrated with a Research Example,'' Journal of Nonverbal Behavior, Special Issue 
on Contemporary Perspectives in Nonverbal Research, Vol. 38, Issue 2, pp. 231-245, Jun. 2014. 
[13] M. E. Hoque, R. W. Picard, “Rich Nonverbal Sensing To Enable New Possibilities in Social 
Skills Training,” IEEE Computer, Vol. 47, no. 4, April, 2014. 
 
Acknowledgments 

The research discussed here is joint work with colleagues at the University of Lausanne, 

Switzerland (Marianne Schmid Mast and Denise Frauendorfer), Idiap (Dairazalia Sanchez-Cortes, 

Oya Aran, Laurent Nguyen, Alvaro Marcos, Dinesh Babu Jayagopi, and Jean-Marc Odobez), and 

other institutions (Tanzeem Choudhury, Cornell University; Marta Marron, University of Alcala, 

Spain, and Daniel Pizarro, University of Auvergne, France.) The author thanks all of them, and 

acknowledges the support by the Swiss National Science Foundation (SONVB and UBImpressed 

projects) and the European Commission (NOVICOM project). 

Author 

Daniel Gatica-Perez (gatica@idiap.ch) is Head of the Social Computing Group at Idiap Research 

Institute and Maître d’Enseignement et de Recherche at the École Polytechnique Fédérale de 

Lausanne (EPFL) in Switzerland. 


