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Abstract— This paper deals with the problem of fixed-order
controller design of LTI continuous-time and discrete-time
polytopic systems via homogeneous polynomially parameter-
dependent Lyapunov matrices. The proposed method is based
on the concept of Strictly Positive Realness (SPRness) of a
transfer function depending on a parameter-dependent gain. To
convert the problem to a set of LMI conditions, the parameter-
dependent gain is determined a priori by means of a parameter-
dependent state feedback controller. Simulation results and
a comparison with recent existing methods demonstrate the
effectiveness of the proposed approach.

I. INTRODUCTION

The problem of fixed-order controller design is a the-
oretically challenging issue in control theory and it has
attracted remarkable attention due to its great importance
in practice. The non-convexity of the set of all fixed-order
stabilizing controllers for a given plant is the main source
of difficulty in solving such problem [1]. To address the
problem, various approaches have been developed, e.g. non-
smooth non-convex-based [2]–[4] and LMI-based methods
[5]–[7].

The problem of fixed-order controller design becomes
more challenging in case of uncertainties in the plant model
due to parameter drifting, unmodeled dynamics, modeling
errors, etc. In this case, the main objective is to design a
fixed-order controller which guarantees the robust stability
as well as the robust performance of the uncertain system.
To solve the problem, several LMI-based methods have
emerged in the literature, e.g. the methods of [8]–[11] in
polynomial framework and the methods of [12]–[22] in state
space framework. In the state space approaches, some slack
variables are used as a tool to decouple the product of closed-
loop matrices and Lyapunov matrices leading to a sequence
of sufficient LMI conditions.

Recently, several slack variable-based approaches to fixed-
order controller design of polytopic systems, which rely
on the concept of Strictly Positive Realness (SPRness) of
transfer functions, have been developed, e.g. [8]–[11], [20]–
[22]. Moreover, it can be shown that most of the existing
slack variable-based methods, e.g. [6], [12]–[19], implicitly
rely on the concept of SPRness [23]. The main idea behind
these approaches is to fix the slack variables a priori using
some methods, e.g. initial output feedback controllers or
a desired closed-loop characteristics polynomial. Therefore,
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the SPRness of the transfer functions is parameterized by
some LMIs thanks to KYP Lemma [24]. The way the
slack variables are fixed is very crucial and affects the
performance as well as the conservatism of the fixed-order
control approach.

In this paper, necessary and sufficient conditions for
fixed-order controller design of both continuous-time and
discrete-time systems by means of homogeneous polynomi-
ally parameter-dependent Lyapunov matrices are presented.
The focus of this paper is on systems subject to polytopic
uncertainty. The proposed approach relies on the concept of
SPRness of a special transfer function in which the slack
matrices are determined a priori using an initial parameter-
dependent state feedback controller. Continuous-time and
discrete-time fixed-order controller synthesis is treated in a
unified manner. Furthermore, it is theoretically and numeri-
cally demonstrated that the proposed approach allows fixed-
order stabilizing (H∞) controller synthesis which potentially
use less decision variables than some existing approaches,
e.g. [18].

The organization of the paper is as follows. The problem
formulation and preliminaries are given in Section II. Section
III proposes the main results of the problem of fixed-order
H∞ controller design of LTI continuous-time and discrete-
time systems with polytopic uncertainty. Simulation results
are presented in Section IV. Finally, Section V concludes the
paper.

Throughout the paper, matrices I and 0 are the iden-
tity matrix and the zero matrix of appropriate dimensions,
respectively. The symbol T and ! are used to show the
matrix transpose and the symmetric blocks, respectively. For
symmetric matrices, P > 0 (P < 0) indicates the positive-
definiteness (the negative-definiteness).

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a linear time-invariant (LTI) system described by
the following dynamical equations:

δ[xg(t)] = Agxg(t) +Bgu(t) +Bww(t)

z(t) = Czxg(t) +Dzuu(t)

y(t) = Cgxg(t)

(1)

where xg ∈ Rn, u ∈ Rni , w ∈ Rr, y ∈ Rno , and z ∈
Rs are the state, the control input, the exogenous input, the
measured output, and the controlled output, respectively. The
symbol δ[·] presents the derivative term for continuous-time
(δ[x(t)] = dx/dt) and the forward operator for discrete-time
systems (δ[x(t)] = x(t+1)). Matrices Ag , Bg , Bw, Cz , Cg ,
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and Dzu belong to the following uncertainty domain:

Ω = {(Ag(λ),Bg(λ),Bw(λ), Cz(λ), Cg(λ), Dzu(λ))

=
q∑

i=1

λi(Agi , Bgi , Bwi , Czi , Cgi , Dzui)}
(2)

where λ = [λ1, . . . ,λq] belongs to the following unit
simplex:

Λq =

{
λ1, . . . ,λq

∣∣∣∣∣

q∑

i=1

λi = 1, λi ≥ 0

}
(3)

and matrices Agi , Bgi , Bwi , Czi , Cgi , and Dzui are the i-th
vertex of the polytope. The main objective of this paper is
to design a robust fixed-order stabilizing (H∞) controller for
the polytopic system given by:

δ[xc(t)] = Acxc(t) +Bcy(t)

u(t) = Ccxc(t) +Dcy(t)
(4)

where Ac ∈ Rm×m and Bc, Cc, and Dc are of appropriate
dimensions.

The problem of dynamic output-feedback controller syn-
thesis can be equivalently transformed to a static output
feedback one by introducing an augmented plant as follows
[25]:

δ[x̄g(t)] = Āg(λ)x̄g(t) + B̄g(λ)u(t) + B̄w(λ)w(t)

z(t) = C̄z(λ)x̄g(t) + D̄zu(λ)u(t)

y(t) = C̄g(λ)x̄g(t)

(5)

where

Āg(λ) =

[
Ag(λ) 0

0 0m

]
, B̄g(λ) =

[
0 Bg(λ)
Im 0

]

B̄w(λ) =

[
Bw(λ)

0

]
, C̄g(λ) =

[
0 Im

Cg(λ) 0

]

C̄z(λ) =
[
Cz(λ) 0

]
, D̄zu(λ) =

[
0 Dzu(λ)

]

Closed-loop system Hzw(λ), transfer function from w to z,
has the following state space realization:

δ[x(t)] = A(λ)x(t) +B(λ)w(t)

z(t) = C(λ)x(t)
(6)

where x = x̄g and

K =

[
Ac Bc

Cc Dc

]
(7)

A(λ) = Āg(λ) + B̄g(λ)KC̄g(λ)

B(λ) = B̄w(λ)

C(λ) = C̄z(λ) + D̄zu(λ)KC̄g(λ)

(8)

The remains of this section provide basic lemmas which
will be used throughout this paper.

Lemma 1: (Kalman-Yakubovich-Popov (KYP) Lemma

[24]) A square transfer function H =

[
A B
C D

]
is SPR

if and only if there exists a Lyapunov matrix P > 0 such
that

For continuous-time systems:
[

ATP + PA PB −CT

BTP − C −D −DT

]
< 0 (9)

For discrete-time systems:
[

ATPA− P ATPB − CT

BTPA− C BTPB −D −DT

]
< 0 (10)

Lemma 2: The following statements are equivalent [20],
[21]:

1) A square transfer function H =

[
A B
C D

]
is SPR

with Lyapunov matrix P > 0.

2) H−1 =

[
A−BD−1C −BD−1

D−1C D−1

]
is SPR with Lya-

punov matrix P > 0.
As a result, the following inequalities are equivalent:

Continuous-time systems:
[

ATP + PA #
BTP −C −D −DT

]
< 0

[
A∗TP + PA∗ #

−D−TBTP −D−1C −D−1 −D−T

]
< 0

(11)

Discrete-time systems:
[

ATPA− P #
BTPA− C BTPB −D −DT

]
< 0




A∗TPA∗ − P #

−(BD−1)TPA∗ −D−1C
(BD−1)TPBD−1−

(D−1 +D−T )



 < 0

(12)

where A∗ = A−BD−1C.

III. MAIN RESULTS

The following theorems present necessary and sufficient
conditions for stabilizing (H∞) static output feedback con-
troller synthesis.

A. Fixed-order Stabilizing Controller Design
Theorem 1: The static output feedback controller K =

X−1L stabilizes the augmented polytopic system in (5) if
and only if there exist a parameter-dependent gain Ksf (λ),
a Lyapunov matrix P (λ) > 0, and two matrices X and L
such that

For continuous-time systems:
[

MT (λ)P (λ) + P (λ)M(λ) #
B̄T

g (λ)P (λ)−N(λ) −X −XT

]
< 0 (13)

For discrete-time systems:



MT (λ)P (λ)M(λ)− P (λ) #

B̄T
g (λ)P (λ)M(λ)−N(λ)

(B̄T
g (λ)P (λ)B̄g(λ)
−X −XT )



 < 0

(14)
where

M(λ) = Āg(λ) + B̄g(λ)Ksf (λ)

N(λ) = XKsf (λ)− LC̄g(λ)
(15)

Proof:

Sufficiency: According to KYP Lemma, the inequality
(13)/(14) indicates that the following transfer function is SPR
with Lyapunov matrix P (λ):

H =

[
M(λ) B̄g(λ)

X(Ksf (λ)−KC̄g(λ)) X

]
(16)
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According to Lemma 2, the SPRness of H implies that H−1

with the following realization is also SPR with the same
Lyapunov matrix P (λ).

H−1 =

[
A(λ) −B̄g(λ)X

−1

Ksf (λ)−KC̄g(λ) X−1

]
(17)

The SPRness of H−1 with P (λ) implies that the closed-loop
state matrix A(λ) is stable with the parameter-dependent
Lyapunov matrix P (λ).

Necessity: Assume that K stabilizes the closed loop poly-
topic system in (6)-(8). Let’s choose X = I (X +XT > 0),
L = K , and Ksf (λ) = KC̄g(λ). Then, the following
transfer function matrix H is SPR and (13)/(14) is satisfied.

H =

[
M(λ) B̄g(λ)
0 I

]

= 0× (xI −M(λ))−1 × B̄g(λ) + I

= I > 0

(18)

where x = s and x = z for continuous-time and discrete-
time case, respectively. Thus, this completes the proof.

B. Relation between the Proposed Stabilizing Static Output
Feedback Controller Design Method in [18] and Theorem 1

In this subsection, we show that the proposed approach in
[18] relies on the concept of SPRness of a transfer function
where A-matrix is fixed by a parameter-dependent gain.

Lemma 3: Let Ksf (λ) be a stabilizing parameter-
dependent gain for the continuous-time augmented system
subject to polytopic uncertainty described by (5). Then, the
following statements are equivalent:
(a) If there exist two matrices X and L such that the

following transfer function is SPR:

H(s) =

[
Āg(λ) + B̄g(λ)Ksf (λ) B̄g(λ)
XKsf(λ)− LC̄g(λ) X

]
(19)

(b) If there exist a Lyapunov matrix P (λ) > 0, and two
matrices X and L such that the following inequality
holds:

[
MT (λ)P (λ) + P (λ)M(λ) #

B̄T
g (λ)P (λ)− (XKsf (λ)− LC̄g(λ)) −X −XT

]
< 0

(20)
where M(λ) = Āg(λ) + B̄g(λ)Ksf (λ).

(c) If there are a Lyapunov matrix P (λ) and matrices
F (λ), V (λ), X , and L such that (21) holds [18].

Then, K = X−1L is a robust static output feedback
controller which stabilizes the augmented continuous-time
system given in (5).

Proof: The statements (a) and (b) directly results from
KYP Lemma. Therefore, it is enough to show that (21) is
equivalent to (20). Post-multiplying (21) by Q(λ)

Q(λ) =




I 0

Āg + B̄gKsf B̄g

0 I



 (22)

and pre-multiplying by QT (λ), the inequality given in (20)
is obtained.

As a result, the parameter-dependent slack matrices F (λ)
and V (λ) in (21) can be eliminated without conservatism.
In fact, these matrices do not affect the final static output
feedback controller; however, elimination of them leads to
less computation time.

C. Fixed-order H∞ Controller Design
Theorem 2: (Continuous-time case) The H∞ static out-

put feedback K = X−1L stabilizes the augmented poly-
topic system in (5) and ensures the robust performance
‖Hzw(λ)‖2∞ < µ, for all λ ∈ Λq , if and only if there exist
a stabilizing parameter-dependent gain Ksf (λ), a Lyapunov
matrix P (λ) > 0, and two auxiliary matrices X and L such
that




MT (λ)P (λ) + P (λ)M(λ) # # #
B̄T

g (λ)P (λ)−N(λ) −X −XT # #
BT (λ)P (λ) 0 −µI #

C̄z(λ) + D̄zu(λ)Ksf D̄zu(λ) 0 −I



 < 0

(23)
where M(λ) and N(λ) are defined in (15).

Theorem 3: (Discrete-time case) The H∞ static output
feedback K = X−1L stabilizes the augmented discrete-time
polytopic system in (5) and guarantees ‖Hzw(λ)‖2∞ < µ, for
all λ ∈ Λq , if and only if there exist a stabilizing parameter-
dependent gain Ksf (λ), a Lyapunov matrix P (λ) > 0, and
two auxiliary matrices X and L such that (24) with M(λ)
and N(λ) defined in (15) holds.

Remark: If the parameter-dependent gain Ksf (λ) is given
a priori and P (λ) is considered as a homogeneous polyno-
mial w.r.t. λ, the parameter dependent conditions in Theorem
1-3 can be handled by a sequence of LMI relaxations.
Based on the results mentioned in [26], parameter-dependent
LMIs with parameters in the unit simplex always have
homogenous polynomially parameter-dependent solutions of
sufficiently high degree. Moreover, they can be solved with
no conservatism by a set of LMI relaxations. Therefore,
we assume that the gain Ksf (λ) is initialized by means
of a parameter-dependent stabilizing (H∞) state feedback
controller.

In following, two new theorems for parameter-dependent
H∞ state feedback controller design of both continuous-time
and discrete-time augmented polytopic systems described by
(5) are given.

D. Parameter-dependent State Feedback Control Design
A parameter-dependent H∞ state feedback controller

Ksf (λ) for the continuous-time and discrete-time augmented
systems in (5) can be determined by the following theorems.

Theorem 4: (Continuous-time case) The parameter-
dependent state feedback controller Ksf (λ) = Z(λ)F−1(λ)
stabilizes the augmented continuous-time polytopic
systems in (5) and guarantees the desired performance
‖Hzw(λ)‖∞ < γ, for all λ ∈ Λq, if and only if there exist a
parameter-dependent Lyapunov matrix P (λ) > 0, matrices
F (λ), and Z(λ) and a positive scalar δ > 0 such that (25)
is satisfied.

Theorem 5: (Discrete-time case) The parameter-
dependent state feedback Ksf (λ) = Z(λ)F−1(λ) guarantees
the stability and closed-loop performance ‖Hzw(λ)‖2∞ < µ
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


(Āg(λ) + B̄g(λ)Ksf (λ))

TF T (λ) + F (λ)(Āg(λ) + B̄g(λ)Ksf (λ)) # #
P (λ)− F T (λ) + V (λ)(Āg(λ) + B̄g(λ)Ksf (λ)) −V (λ)− V T (λ) #

B̄T
g (λ)F

T (λ) + LC̄g(λ)−XKsf (λ) B̄T
g (λ)V

T (λ) −X −XT



 < 0 (21)





MT (λ)P (λ)M(λ)− P (λ) # # #
B̄T

g (λ)P (λ)M(λ)−N(λ) B̄T
g (λ)P (λ)B̄g(λ)−X −XT # #

BT (λ)P (λ)M(λ) BT (λ)P (λ)B̄g(λ) −µI +BT (λ)P (λ)B(λ) #
C̄z(λ) + D̄zu(λ)Ksf (λ) D̄zu(λ) 0 −I



 < 0 (24)





Āg(λ)F (λ) + F T (λ)ĀT
g (λ) + B̄g(λ)Z(λ) + ZT (λ)B̄T

g (λ) # # #
P (λ)− F (λ) + δ(F T (λ)ĀT

g (λ) + ZT (λ)B̄T
g (λ)) −δ(F (λ) + F T (λ)) # #

C̄w(λ)F (λ) + D̄zu(λ)Z(λ) δ(C̄w(λ)F (λ) + D̄zu(λ)Z(λ)) −γI #
BT (λ) 0 0 −γI



 < 0 (25)

of the augmented discrete-time polytopic systems in (5), for
all λ ∈ Λq, if and only if there exist parameter-dependent
matrices P (λ) > 0, F (λ), and Z(λ) such that (26) holds.

Remark: Theorem 4 and Theorem 5 can be used for
the design of stabilizing parameter-dependent state feedback
controllers for continuous-time and discrete-time systems by
removing the third and forth rows and columns of matrices
in (25) and (26), respectively.

E. Controller Design Procedure
The robust fixed-order H∞ controller design procedure

includes the following steps:
Step 1: Choose the order of controller (m) and construct

the augmented system in (5).
Step 2: Set j = 1 and design the parameter-dependent

gain K [1]
sf (λ) for the augmented system using Theo-

rem 4/Theorem 5.
Step 3: Choose the degree of the homogenous Lyapunov

matrix P (λ) and solve the convex optimization problem
proposed in Theorem 2/Theorem 3 by constructing the LMI
constraints in (23)/(24) (using e.g. ROLMIP [27]) to obtain
the static output feedback controller K [j].

Step 4: If µ[j−1] − µ[j] > ε, update the parameter-
dependent gain Ksf (λ), i.e. K [j+1]

sf (λ) = K [j]C̄g(λ), and
go to Step 3 with j ←− j + 1, else stop.

Theorem 6: The iterative algorithm leads to monotonic
convergence of the upper bound on the H∞ norm.

Remark: It should be mentioned that the set of LMI
constraints from parameter-dependent LMIs in Theorem 1-
5 with parameters in the unit simplex are constructed using
ROLMIP (Robust LMI Parser) [27]. ROLMIP is a compu-
tational MATLAB package which provides an interface for
the users to construct a finite set of LMIs from parameter-
dependent LMIs with parameters in the unit simplex [27].

IV. SIMULATION RESULTS

In this section, several examples from the literature are
given to evaluate the effectiveness of the proposed fixed-
order control approach. A comparison with the recent ex-
isting methods is made. It should be noted that in all
tables, the set {dZ , dF , dPsf , dP }, respectively, denotes the
degrees of the homogeneous polynomials Z(λ), F (λ), and

TABLE I
MAXIMUM INTERVAL OF PARAMETER a IN EXAMPLE 1

Method {dZ , dF , dPsf
, dP } a

Theorem 1 {1, 0, 1, 1} [−17.8 122.2]
[19] {−,−,−, 1} [3.6 82.2]
[18] {1, 0, 1, 1} [−17.8 122.2]
[30] — Non-applicable
[31] — Non-applicable

P (λ) in Theorem 4 and 5 and the degree of homogeneous
polynomially parameter-dependent Lyapunov matrix P (λ)
in Theorem 1-31 To solve the LMI problems in MATLAB,
YALMIP [28] as the interface and SeDuMi [29]/MOSEK2

as the solver are used.
Example 1: Consider a third-order continuous-time poly-

topic system, borrowed from [19], with the following ver-
tices:

Ag1 =




−1 4 0
0 0 1
a 6 −1



 ; Ag2 =




−1 1 0
0 −5 1
10 1 −1





Bg1 =




0
0
1



 ; Bg2 =




0
0
1





Cg1 =

[
1 1 0
0 1 0

]
; Cg2 =

[
1 1 0
0 0 0

]

(27)

The main objective is to design a stabilizing static output
feedback controller which leads to the largest interval of
parameter a. Therefore, the system can be modeled with a
polytope with three vertices, i.e. Ag1 |a=amin , Ag1 |a=amax ,
and Ag2 . The minimum and maximum values of a can
be determined by a bisection algorithm. The results of
Theorem 1 are compared with ones of [18], [19], [30], [31]
in Table I. The proposed methods in Theorem 1 and [18]
are both initialized with the same parameter-dependent state
feedback Ksf (λ).

As it is reported in [19], since matrix C(λ) is not full
row rank, the approaches of [30], [31] are not applicable.
Results given in Table I indicate that the proposed method

1In this paper, the degree of the other slack variables of [18] is considered
equal to one.

2Available online in http://www.mosek.com
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



P (λ) # # #
F T (λ)ĀT

g (λ) + ZT (λ)B̄T
g (λ) F (λ) + F T (λ)− P (λ) # #

0 C̄w(λ)F (λ) + D̄zu(λ)Z(λ) I #
BT (λ) 0 0 µI



 > 0 (26)

TABLE II
UPPER BOUND OF ‖Hzw(λ)‖∞ IN EXAMPLE 2

Method Iterations γ =
√
µ K

[12] 1 9.73 [0.56 5.08]
[32] 1 6.80 [0.054 0.64]
[19] 1 2.33 [0.45 4.19]
[20] 5 1.79 [77.16 608.87]
[33] 30 1.66 [130.35 939.37]

Theorem 2 5 1.78 [9.36 69.57]

in this paper and [18] lead to the best results among the
others.

Example 2: Consider the following continuous-time poly-
topic system with two vertices [19]:

Ag1 =




−0.9896 17.41 96.15
0.2648 −0.8512 −11.39

0 0 −30





Ag2 =




−1.702 50.72 263.5
0.2201 −1.418 −31.99

0 0 −30





Bg1 =




−97.78

0
30



 ;Bg2 =




−85.09

0
30



 ;Bw =




0
1
1





Cg =

[
1 0 0
0 1 0

]
;Cw =




1 0 0
0 1 0
0 0 1



 ;Dzu =




0
0
0





The objective here is to design a static output feedback
H∞ controller with linearly parameter-dependent Lyapunov
matrices. To this end, an optimization problem, which is
the minimization of the upper bound of H∞ norm (γ)
subject to a sequence of LMI constraints is solved. Resulting
static output feedback initialized by parameter-dependent
state feedback controller with dZ = 1, dF = 0, and dPsf = 2
is given in Table II. The results are compared with the LMI-
based methods in [12], [19], [20], [32] and the BMI-based
method in [33]. For all cases, the degree of Lyapunov matrix
P is one.

Example 3: As the third example, consider the modified
version of the pitch control of F4E, given in [34], described
by the following state space matrices:

Ag =





a11 a12 a13 b1
a21 a22 a23 0
0 0 −30 30
0 0 0 −104



 ; Bg =





0
0
0
104





Cg =

[
c 0 0 0
0 c 0 0

]
; Bw =





1 0 0
0 1 0
0 0 1
0 0 0





Cw =




1 0 0 0
0 1 0 0
0 0 1 0



 ; Dzu =




0
0
1





(28)

TABLE III
PARAMETERS OF FOUR OPERATING POINTS IN EXAMPLE 3

Operating points 1 2 3 4
Mach number 0.5 0.9 0.85 1.5

Altitude(ft) 5000 35000 5000 35000
a11 -0.9896 -0.6607 -1.0702 -0.5162
a12 17.41 18.11 50.72 29.96
a13 96.15 84.34 263.5 178.9
a21 0.2648 0.08201 0.2201 -0.6896
a22 -0.8512 -0.6587 -1.418 -1.225
a23 -11.39 -10.81 -31.99 -30.38
b1 -97.78 -272.2 -85.09 -175.6

TABLE IV
UPPER BOUND OF ‖Hzw(λ)‖∞ IN EXAMPLE 3

Initialization Theorem 4 HIFOO
controller order m = 0 m = 1 m = 0 m = 1
degree of P (dP ) 1 1 1 2

Iterations 4 2 30 30
γ 3.0780 3.1026 3.3378 2.2818

where 0.5 ≤ c ≤ 1 and parameters aij , i = 1, 2; j = 1, 2, 3,
and b1 for four operating points are given in Table III.

The uncertainty of the system in (28) is in the form of a
polytope with q = 8 vertices. The proposed approach in [34]
as well as the full-order controller design method of [35] are
employed for the comparison purposes. It should be noted
since the main assumption of [19] is that CT

wDzu = 0, it
cannot be applied to Example 3.

Theorem 2 is initialized by two different parameter-
dependent gain Ksf (λ). In the first case, an initial parameter-
dependent state feedback controller is designed using Theo-
rem 4 with dZ = 0, dF = 0, and dPsf = 1. In the second
case, Ksf (λ) = Km

0 Cg(λ) is considered, where Km
0 is a

simultaneously stabilizing controller of order m designed by
HIFOO [3]. The results of both cases are then summarized
in Table IV.

Theorem 2 initialized by the parameter-dependent state
feedback controller Ksf (λ) of Theorem 4 results in the
following reduced-order H∞ controllers:

Km=0 =
[
1.9407 12.3911

]

Km=1 =

[
−4.3979 0 0

0 2.2321 14.3543

] (29)

For the second case, the following HIFOO controllers are
used to initialize Ksf (λ):

Km=0
0 =

[
0.0958 0.7670

]

Km=1
0 =

[
−1.1754 0.2729 −1.8780
0.6998 0.3876 0.24434

] (30)

Theorem 2 initialized by Ksf (λ) obtained by the above
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initial controllers leads to the following H∞ controllers:

Km=0 =
[
0.0965 0.8012

]

Km=1 =

[
−1.8044 0.1048 −3.1589
0.9039 0.3921 3.1998

] (31)

As mentioned in [18], the proposed approach of [34] leads
to the lowest H∞ upper bound 37.20 for m = 0, 1 and the
full-order control design method in [35] does not find any
feasible solution.

V. CONCLUSIONS

In this paper, the problem of fixed-order H∞ controller
design of LTI systems subject to polytopic uncertainty is
considered. To this end, necessary and sufficient conditions
based on the concept of strictly positive realness (SPRness)
of a special transfer function are developed. The proposed
conditions depend on a parameter-dependent gain determined
through a parameter-dependent state feedback controller. The
robust stability and robust H∞ performance of the closed-
loop polytopic systems are guaranteed via homogeneous
polynomially parameter-dependent Lyapunov matrices. Sim-
ulation examples show the efficiency of the proposed fixed-
order H∞ controller design approach.
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