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What does “Verification & Validation” (V&V) mean?	


What V&V methodology did we use? 	

A practical example: GBS code and TORPEX experiment	


What have we learned?	
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The TORPEX device	


Fasoli et al., PoP 2006; PPCF 2010	




The TORPEX device	




The TORPEX device	




The TORPEX device	




The TORPEX device	




Key elements of the TORPEX device	


Parallel 
losses	


Magnetic 
curvature	


Source (EC and UH 
resonance)	


Plasma 
gradients	




TORPEX: an ideal verification & validation testbed	


	

-  Parameter scan,  N – number 

of field line turns	


Example: N=2	


	

-  Complete set of diagnostics, full 

plasma imaging possible	
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Properties of TORPEX turbulence 	


! 

Leq ~ Lfluc

L >> "i

! 

n fluc ~ neq

Collisional	




The model	

ρi << L, ω << 
Ωci, β << 1 Braginskii 

model	


Electrostatic 	

Drift-reduced 

Braginskii 
equations	


Collisional	

Plasma	


Te, Ω (vorticity)        similar equations	


V||e, V||i                parallel momentum balance	

!"
2! =#

Quasi steady state – balance between: 	

plasma source, perpendicular transport, and parallel losses 	


Parallel dynamics	
Magnetic curvature	
 Source	


ExB 
Convection	


∂n

∂t
+ [φ, n] = Ĉ(nTe)− nĈ(φ)−∇�(nV�e) + S
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LAPD, 	

UCLA	


HelCat, UNM	


Helimak, UTexas	


TORPEX,	

CRPP	


ITER-like	

SOL	
Limited	


SOL	


Motivation
The plasma-wall transition
GBS turbulence simulations
Sheath effects on turbulence

Conclusions

The GBS code
Examples of 3D simulations

The GBS code, a tool to simulate open field line turbulence

� Developed by steps of increasing complexity

� Drift-reduced Braginskii equations

� Global, 3D, Flux-driven, Full-n [Ricci et al PPCF 2012]
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Limited	

SOL	


GBS: simulation of plasma turbulence in edge conditions 	


Ricci et al., PPCF 2012	
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Code verification, the techniques	


1)  Simple tests	


2)  Code-to-code comparisons (benchmarking)	


3)  Discretization error quantification	


4)  Convergence tests	


5)  Order-of-accuracy tests	


NOT 
RIGOROUS	


RIGOROUS, 	

requires	

analytical 
solution	


Only verification ensuring 
convergence and correct 
numerical implementation	


Riva et al., PoP 2014	




Order-of-accuracy tests, method of manufactured solution	


Our model:                  ,        unknown	

	


We solve                      ,   but	


A(f) = 0 f

An(fn) = 0 ?

100 101
10 10

10 5

h = ∆x/∆x0 = ∆y/∆y0 = (∆t/∆t0)2

||ε
|| ∞

n
T
v‖,i
v‖,e
ω
Φ

For GBS:	
 � ∼ h2

�n = fn − f =

1) we choose    ,  then  	
g

2) we solve: 	
An(gn)− S = 0

Method of manufactured solution: 	


S = A(g)
�n = gn − g
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3D and 2D GBS simulations	

2D version (k||=0 hypothesis) 	
Fully 3D version	


z	


r	


r	

z	
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Solution verification, numerical error estimate	


1.  Calculate f on standard grid,	


	

	


fs

pe

r

Riva et al., PoP 2014	
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Solution verification, numerical error estimate	


1.  Calculate f on standard grid,	


2.  Calculate f on a grid coarsened by α, 	


	


	

	


fc

fs

pe

r

Riva et al., PoP 2014	
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Solution verification, numerical error estimate	


1.  Calculate f on standard grid,	


2.  Calculate f on a grid coarsened by α, 	

3.  Compute Richardson extrapolation	


	

	


	

	


fc

fs

pe

r

Riva et al., PoP 2014	


f = fs + (fs − fc)/(α
p − 1)
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Solution verification, numerical error estimate	


1.  Calculate f on standard grid,	


2.  Calculate f on a grid coarsened by α, 	

3.  Compute Richardson extrapolation	


	

4.  Compute 	


	

	


fc

fs

pe

r

Riva et al., PoP 2014	


� = |(fs − fc)/(α
p − 1)|

f = fs + (fs − fc)/(α
p − 1)
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Solution verification, numerical error estimate	


1.  Calculate f on standard grid,	


2.  Calculate f on a grid coarsened by α, 	

3.  Compute Richardson extrapolation	


	

4.  Compute 	


5.  Calculate f on a grid even coarser, by 
α2,      , and evaluate	


	

	


fc

fs

fcc

pe

r

Riva et al., PoP 2014	


� = |(fs − fc)/(α
p − 1)|

p̂ =
ln[(fcc − fc)/(fc − fs)]

ln(α)

f = fs + (fs − fc)/(α
p − 1)
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Solution verification, numerical error estimate	


1.  Calculate f on standard grid,	


2.  Calculate f on a grid coarsened by α, 	

3.  Compute Richardson extrapolation	


	

4.  Compute 	


5.  Calculate f on a grid even coarser, by 
α2,      , and evaluate	


	

	


6.  Compute the GCI error estimate	


fc

fs

fcc

pe

r

Riva et al., PoP 2014	


f = fs + (fs − fc)/(α
p − 1)

� = |(fs − fc)/(α
p − 1)|

p̂ =
ln[(fcc − fc)/(fc − fs)]

ln(α)

GCI =
Fs |fs − fc|
(αp̃ − 1) |fs|
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Validation goals	


-  Make progress in physics understanding	


-  Compare experiments and simulations to assess 
physics of the model	


-  Consider different models and parameter scans to 
guide us to key physics	

	


	

-  Avoid fortuitous agreement	


-  Rigorous tool, but easy to use	




  3D GBS model	


2D reduced model	


TORPEX	


Our project, paradigm of 
turbulence code validation	


?	

For the 2 codes, what is the agreement of experiment and 

simulations as a function of N? 	


Are 3D effects important? 	


Our physics progress: role of 3D in TORPEX physics?	




The validation methodology	

[Based on ideas of Terry et al., PoP 2008; Greenwald, PoP 

2010]	

	

	
What quantities can we use for validation? The more, the better…	

-  Definition & evaluation of the validation observables	


What are the uncertainties affecting measured and simulation data?	

-  Uncertainty analysis	


For one observable, within its uncertainties, what is the level of agreement?	

-  Level of agreement for an individual observable	


How directly can an observable be extracted from simulation and experimental 
data? How worthy is it, i.e. what should be its weight in a composite metric?	


-  The observable hierarchy	


How to evaluate the global agreement and how to interpret it	

- Composite metric 	




Definition of the validation observables	


Isat 
	


Vfloat 
	


I-V 
	


n 

Te 

ϕ 

V||i 

V||e 

Validation 	

observables	


Probe 
model, 

assumptions 	


Probe 
model, 

assumptions 	
?	

Common quantities	


to be compared	

-  Examples:   
-  A validation observable should not be a function of the others	

	


- 11 observables for our validation: 	


�Isat�t , �n�t , Γ, ...

�n(r)�t , �Te(r)�t , �Isat(r)�t , δIsat/Isat, kv, PDF(Isat), ...



Uncertainty analysis	


I-V 
Fitting	


Probe 
properties, 

measurement 
uncertainties 	


Plasma 
reproducibility	


Finite 
statistics	


Experiment	


Simulation	


Numerics	


Input parameters -	

scan in resistivity 

and boundary 
conditions	


Finite 
statistics	


∆y2 = ∆y2num +∆y2inp +∆y2fin

∆x2 = ∆x2
fit +∆x2

prb +∆x2
rep +∆x2

fin



d =

���� 1

G

G�

i=1

(xi − yi)2

∆x2
i +∆y2i

Agreement with respect to an individual observable	


Average over 
all points	


Experimental 
measurements	
 Simulation 

results	


Normalization 
to uncertainties	


0 1 2 3
0

0.2

0.4

0.6

0.8

1

d

R

Level of agreement:	


R =
tanh[(d− d0)/λ] + 1

2
AGREEMENT 
WITHIN 
UNCERTAINTY 

R

d

d0 = 1.5

λ = 0.5

DISAGREEMENT 

AGREEMENT 

Distance:	




Observable hierarchy	

Not all the observables are equally worthy…	


The hierarchy assesses the assumptions used for their deduction 	


# of assumptions to get 
the observable from 
experimental data	


same for simulation 
results	


hexp :

hsim :

h = hexp + hsim

Examples:   -          : hexp = 1, hsim = 0, h = 1 

                   -           : hexp = 2, hsim = 1, h = 3 

�n�t
ΓIsat



Composite metric	


36 

Normalization:	

 - χ = 0: perfect agreement	

 - χ = 0.5: agreement within uncertainty	

 - χ = 1: total disagreement	

 

Sum over all the 
observables	


 

Rj =
tanh[(dj − d0)/λ] + 1

2

Level of agreement	

Hj = 1/(hj + 1)
Hierarchy level	


Sensitivity	




The validation results	
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3D simulations	


2D simulations	


Complete disagreement	


Perfect agreement	


Agreement within 
uncertainty	


Why 2D and 3D work equally well at low N and 2D fails at high N?	

What can we learn on the TORPEX physics?	


Ricci et al., PoP 2009, PoP 2011	




Flute instabilities - ideal interchange mode	


∂∇2
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∂t
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cmiRn
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∂z
→ j̃� = −ik�φ̃/η�

These give :

γ2 = γ2
I − γ

4πV 2
Ak

2
�

η�c2k2y
, γI = cs

�
2/(RLp)
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only choice if η� = 0

�
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k� = 0

γ = γI γI = cs

�
2

LpR

Vorticity eq. 	


n + Te eqs. 	


Compressibility stabilizes the mode at	
kvρs > 0.3γIR/cs



Anatomy of a            perturbation	


∆ = Lv/N

Lv

N = 2

longest possible vertical wavelength of a perturbation	
λv :

If               then  	
k� = 0 λv = ∆=
Lv

N

k� = 0
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TORPEX shows             turbulence at low N!

Lv

λv

N

Ideal interchange regime	


Lv

λv
= N

k� = 0 (λv = Lv/N)

k� = 0



  !
!

 !
For N~1-6, ideal             interchange modes dominant	


!
   !

N=2!

k� = 0
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 Turbulence changes character at N>7!

Lv

λv

N

λv = Lv

k� = 0

k� �= 0

WHY?	


(λv = Lv)



 At  high N>7, Resistive Interchange Mode turbulence	


λv ∼ Lv

stabilization, requires high N and    	
k� η� �= 0

γ2 = γ2
I − γ

4πV 2
Ak2

�

η�c2k2
y

, γI = cs

�
2

RLp

Introducing 
modes	


k� �= 0

Toroidally symmetric  	
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Interpretation of the validation results	


-  Ideal interchange 
turbulence	


-  2D model appropriate	


k� = 0

-  Compressibility stabilizes ideal 
interchange	


-  Resistive interchange turbulence	

-  2D model not appropriate	


k� �= 0

Ricci & Rogers, PRL 2010	
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Where can a Verification & Validation exercise help?	


3. Let the physics emerge	

	

	

	

	


Two turbulent regimes: ideal interchange mode at low N 
and non-flute modes at high N.	


Global 3D simulations are needed to describe the plasma 
dynamics at high N.	


2. Compare codes	

 
 
 
 

2D and 3D simulations agree with experimental 
measurements similarly at low N.	


Parameter scans have a crucial role	


1. Make sure that the code works correctly, and asses the	

   numerical error 	


 
 

The correct implementation of GBS rigorously shown, the 
discretization error estimate for the quantity of interest estimated	



