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Abstract. We consider the situation of a homogeneous swarm of agents following a partially observable leader agent.
The resulting, slightly heterogeneous swarm of agents is softly controlled by the leader. We study the swarm dynamics
using a recently established connection existing between multi-agents dynamics and nonlinear optimal state estimation.
For a whole class of nonlinear agents interactions, we are able to explicitly calculate the resulting swarm dynamics. We
interpret the leader-follower dynamics as a nonlinear scalar feedback particle filtering problem which is closely related
to the class of non-linear filters initially studied by V. E. Beneš. Despite its nonlinear character, the state estimation
problem remains finite dimensional; it merely results from a change of measure in an underlying Ornstein-Uhlenbeck
process. The agents interactions, which are driven by common observations of the randomly corrupted position of
the leader, can be interpreted as the innovation kernel that underlies any Bayesian filtering issues. Numerical results
fully corroborate our theoretical findings and intuition.
Keywords: Heterogeneous swarm, Multi-agent dynamics, Leader-based model, Nonlinear filtering, Feedback Particle
Filter, Exact Results, Numerical Simulations.

1 Introduction

Among the vast and steadily increasing literature devoted to the dynamics of large number of mutually
interacting autonomous agents, analytically solvable models able to stylize reality, or at least some aspect of
it, are definitely welcome [1–4]. Despite features necessary for an analytical approach, these contributions
strongly enhance our understanding of the emergence of collective phenomena like synchronization, aggre-
gation, pattern formation, behavioral phase transitions, fashion and others. Most analytical studies focus
on the dynamics of homogenous swarms of (identical) agents. Either the agents local rules are given and
the ultimate goal is to analytically derive the emerging collective patterns or inversely, given a collective
behavior, the goal is to unveil the agents local rules and their interactions. Purely homogeneous swarms are
however rather uncommon.
In this paper, we focus our attention on slightly heterogeneous swarms in which one infiltrated agent (we
call it the leader) is ultimately able to drive the whole swarm to adopt a desired objective [5]. Several types
of leaders can be considered depending on the ways they interact with their fellows. Either the leader is
external and hence is explicitly recognized by ordinary agents of the swarm [6,7], or it acts as a shill who
purposely gives the impression to be independent while in fact obeying to a hidden master [8–10]. Besides
very particular configurations [11,12], there is generally little hope for an analytical investigation of the
collective behavior of a shill- or leader-infiltrated (and hence heterogeneous) swarm. It is the objective of
this paper, to unveil a class of dynamical models for which this can be achieved.
Our source of inspiration for analytical models is taken from the realm of stochastic filtering. Roughly
speaking, the evolution of a stochastically driven system S is monitored by an observer O which itself
delivers noisy information. The filtering goal at time instant t is to construct a best possible estimation of the
state S by processing information gained from O up to time t. The filtering process is achieved via sequential
Bayesian steps. Specifically, one has a prediction step where one estimates the relevant conditional probability
density function (pdf) based on the S-dynamics and an updating step based on the O-dynamics. For linear S-
evolutions driven by White Gaussian Noise (WGN) and simultaneously O-measurements corrupted by WGN,
the filtering problem is completely solvable and its solution is known as the Kalman-Bucy filter. Indeed, due
to linearity and Gaussian noise, both the prediction and the updating steps conserve the Gaussian character of
the relevant pdf’s. Therefore the underlying filtering problem remains finitely dimensional as all operations
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are expressible via means and covariances only. For nonlinear evolution, the Gaussian character is lost
thus most likely leading to infinite dimensional problems. Analytical treatments are then precluded and in
general only numerical approaches are feasible. In this context, particle filters methods and very recently
feedback particles algorithms (FPA) are directly relevant for our present goal as they naturally allow to
interpret particles as agents [13]. The FPA prediction step is achieved by attributing to an homogeneous
swarm of agents the S dynamics. The updating processes, realized via mutual interactions of the agents
with a mean field variable, will globally minimize, in real time, the Kullback-Leibler distance between the
S- and the observation updated probability density functions. In this paper, we view the S-dynamics as
playing the role of a leader evolving among an homogeneous swarm of N ordinary agents. When N → ∞,
this dynamics reduces to a mean-field game, [14,15] with infinitesimally short time horizon, (as real time
updating – excluding smoothing – is realized). The FPA for stochastic filtering offers therefore a natural
framework to construct leader driven swarms of agents. As a natural consequence, solvable filtering problems,
like the Kalman-Bucy case, provide directly solvable heterogeneous swarms dynamics. Here, our intention is
to construct a class of multi-agents models which simultaneously keep the associated FPA finitely dimensional
and yet escape from the pure Gaussian world. The idea on which we base our construction, is to consider
a class of “Girsanov-changes” of probability measures applied on Ornstein-Uhlenbeck dynamics (i.e. linear
dynamics with Gaussian noise sources). The classical change of measure operation which is detailed in many
places (see [16–18] for related applications) conserves the finite dimensional character of the filtering problem
and provides another access to results obtained in [19,20].
We organize the paper as follows: in section 2, the explicit connection between the filtering problem and the
driving of a swarm of agents infiltrated by a leader will be precised. In section 3, we introduce a specific
example of swarms of non-Gaussian agents which are softly controlled by a leader and for which the associated
FPA is analytically solvable. Section 4 is devoted to numerical experiments to comfort our analytical findings.

2 Multi-agent dynamics

Consider a swarm of N Brownian agentsAi, i = 1, 2, · · · , N, and one additional leader agentA with dynamics:
dXi(t) = f (Xi(t)) dt+K (Xi(t),X(t), dZ(t)) + σdWi(t),

leader dynamics

dY (t) = f (Y (t)) dt+ σdW (t),

dZ(t) = hY (t)dt+ σodWy(t),

(1)

where h > 0 is a constant, f : R → R is a function, dWi(t), dW (t) and dWy(t) are mutually independent
WGN processes and the vector X(t) = (X1(t), X2(t), · · · , XN (t)) describes the dynamic state of the N
homogenous agents. The leader agent Y (t) affects the dynamics of the Xi(t) via the interaction kernel
K (Xi(t),X(t), dZ(t)). We emphasize that the leader’s dynamics Y (t) itself is not affected by the behavior of
the swarm X(t). The leader can be thought of as hiding its real position Y (t) from its fellows agents, only
allowing them access to the noisy value Z(t) (the unveiled position). Agent Ai – trying to follow the noisy
impression of the leaders position displacement dZ(t) – will, in order to make a meaningful next step towards
the most likely position of the leader, also take into account the displacements of all other agents (which in
turn try also to undertake the best step towards the most likely position of the leader). To achieve this, let
us now specifically consider an interaction kernel of the form:

K [Xi(t),X(t), dZ(t)] = ν (Xi(t), t)⊗

dZ(t)− h

2

[
Xi(t) +

1

N

N∑
k=1

Xk(t)

]
︸ ︷︷ ︸

G[Xi(t),X(t)]

dt

 , (2)

where the coupling strength ν(Xi(t), t) is a positive convex function in Xi(t) and where, due to the presence
of multiplicative WGN processes, we define ⊗ to denote the Stratonovich interpretation of the underlying
stochastic integrals. In Eq.(2), G [Xi(t),X(t)] is a consensual position given by the average between agentAi’s
position and the whole swarm barycenter. The interaction kernel compares the position increment Gdt with
the leader’s unveiled position increment dZ(t) and weights this stimulus with the coupling strength ν. The
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assumptions on ν imply that K [Xi(t),X(t), dZ(t)] tends, in real time, to steadily reduce the distance between
G [Xi(t),X(t)] dt and dZ(t). While the multiplicative factor ν(Xi(t), t) in Eq.(2) remains yet undetermined,
its complete specification can be fixed by introducing a cost structure. In general, one could require that for
some running cost functional J [K, Xi(t),X(t),Z(t), t] and final cost Ψ (Xi(T ),X(T ), dZ(T )) at time horizon
T , the interaction K is a minimizer of the associated optimization problem. More formally, the interaction
kernel (and hence ν) would be the unique minimizer over a set K of admissible controls, namely:

K [Xi(t),X(t), dZ(t)]

= minK∈K

{(∫ T
t
J [K,Xi(s),X(s), dZ(s), s] ds

)
+ Ψ (Xi(T ),X(T ), dZ(T ))

}
.

(3)

The coupled set of Eqs.(1) and (3) can be interpreted as a multi-players differential game [21]. For large
populations one can use the empirical density P (N)(x, t) to approximate the mean field posterior density
P (x, t | Z(t), x0) :

P (N)(x, t)dx =
1

N

N∑
n=1

1 {Xn(t) ∈ [x, x+ dx]} ≈ P (x, t | Z(t), x0)dx, (4)

where the condition Z(t) is the information history of the process Z until time t and x0 the initial location
of the agents. In the N →∞ limit, we have:

lim
N→∞

1

N

N∑
k=1

Xk(t) =

∫
R
x′P (x′, t | Z(t), x0)dx′ = E {X(t) | Z(t)} (5)

where X(t) is the mean field variable associated to the mean field posterior density P (x, t | Z(t), x0). The
Fokker-Planck equation which governs this mean field posterior density reads (with a slight but self explaining
abuse of notation for K):

∂
∂tP (x, t | Z(t), x0) = − ∂

∂x {[a(x) +K (x,E {X(t) | Z(t)})]P (x, t | Z(t), x0)}+ σ2

2
∂2

∂x2P (x, t | Z(t), x0). (6)

Note that Eqs.(6) and (3) define in a forward/backward coupling a so called differential mean-field game
problem.

Feedback particles filters. For vanishing time horizon T = t in Eq.(3), a simpler situation arises (the
backward-coupling gets trivial) and the minimization is reduced to solving an Euler-Lagrange variational
problem (ELP) for Ψ (x,E {X(t) | Z(t)}). Choosing the objective criterion Ψ to be the Kullback-Leibler
distance dK :

Ψ (x,E {X(t)} , dZ(t)) := dK {P (x′, t | Z(t), x0);Q(x, t | x0)} ,

dK {P (x′, t | Z(t), x0);Q(x, t | x0)} :=
∫
R P (x′, t | Z(t), x0)

{
ln
[
P (x′,t|Z(t),x0)
Q(x′,t|x0)

]}
dx′,

(7)

with Q(x, t | x0) being the transition probability density of the diffusion process Y (t) defined in Eq.(1) we
find the ELP: 

− ∂
∂x

{
1

P (x,t|Z(t),x0)
∂
∂x [P (x, t | Z(t), x0)ν(x, t)]

}
= h

σ2 ,

lim|x|→∞ P (x, t | Z(t), x0)ν(x, t) = 0,

(8)

which leads to:
ν(x, t) = h

σ2P (x,t|Z(t),x0)

{∫ x
−∞ [E {X(t) | Z(t)} − x′]P (x′, t | Z(t), x0)dx′

}
,

E {X(t) | Z(t)} =
∫ +∞
−∞ x′P (x′, t | Z(t), x0)dx′.

(9)
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Eqs.(1), (2) together with ν(x, t) given in Eq.(9) produce a nonlinear continuous time feedback particle filter.
This realizes a direct reinterpretation of the leader-based dynamics in terms of a stochastic filtering problem.
An example is detailed in the next section.
It is worthwhile noting that the leader influences the swarm through the variance σ (and the parameter h),
and not only through its position. As σ grows, the agents uncertainties on the actual leader position increase.
Consequently the coupling strength ν(x, t) decreases, the agents variances increase and the swarm will form
a very widespread group of agents around the leader. Alternatively, small values for σ will allow for very
compact swarm formation.

3 Finite dimensional filtering with Weber parabolic functions

Let us now introduce a specific filtering problem which will be related to the soft control of the multi-agents
dynamics. The nonlinear filtering problem is to estimate the value of the one-dimensional state Y (t), at time
t, given a set of measurements prior to t: Z(t) = {Z(s) | 0 ≤ s ≤ t}. We will treat hereafter time-continuous
measurements and assume that the leader state Y (t) – starting at position y0 – evolves in time according to
the stochastic differential equation:

dY (t) =

:=fB [Y (t)]︷ ︸︸ ︷{
d

dy
[logYB(y)]

∣∣∣
y=Y (t)

}
dt+ dW (t),

Y (0) = y0

(10)

in which W is standard Brownian motion and where YB(y) is the Weber parabolic function, solution to the
ordinary differential equation

d2

dy2
YB(y) =

[
y2

4
+

(
B − 1

2

)]
YB(y) (11)

with B being a control parameter. From the definition of fB [Y (t)], we easily see that

d

dy
fB(y) + f2B(y) =

d2

dy2YB(y)

YB(y)
=
y2

4
+

(
B − 1

2

)
, (12)

thus leading to a Beneš type filtering problem (a fully analytical approach to filtering problems in the Beneš
class can be found in [20]) which can be solved optimally using only a finite number of statistics. In the
sequel, we shall impose the parameter range B ∈ R+ which ensures the positivity of YB(y) (∀ y ∈ R). For
B ∈ [0, 1/2], we further observe that the potential − log [YB(y)] is locally attractive near the origin and
asymptotically repulsive for |y| → ∞. In the parameter range B > 1/2, the potential is systematically
repulsive ∀y ∈ R. Figure 1 shows the shape of YB(y) and fB(y) for different values of the control parameter
B.
We observe the appealing possibility to obtain the couple of linear limiting cases:Y0(y) = e−

1
4y

2 ⇒ f0(y) = − 1
2y

Y1(y) = e+
1
4y

2 ⇒ f1(y) = +1
2y

(13)

and note that these linear cases are stable for B = 0 and unstable for B = 1. We now suppose that the linear
measurement process Z(t) ∈ R (the leader’s unveiled position) from Eq.(1) follows the dynamic

dZ(t) = hY (t)dt+ σdW1(t), (14)

with W1(t) a standard Brownian motion independent of W and y0, h > 0 a known scalar quantity and σ > 0
a constant diffusion coefficient.
Using the framework introduced in [20], the continuous time filter is given by the normalized probability
density P (y, t|Zt) of observing Y (t) := y conditioned on the set of measurements up to time t, Z(t), and can
be written in the form (computational details are given in the Appendix):
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Fig. 1. Shape of YB(y) (left) and fB(y) (right) for B = 0 (plain line), B = 0.01 (stripped line), B = 0.5 (stripped-
dotted line) and B = 1 (dotted line). For B = 0 the filtering problem is linear and the dynamics stable. For B = 1 the
filtering problem is again linear but with unstable dynamics. In between, we have a non-linear filtering problem and
the conditional probability density changes – with increasing B – from unimodal to bimodal and back to unimodal.

P (y, t) := P (y, t | Z(t)) =
YB(y) · e−

(y−m)2

2s

J0(m, s,B)
(15)

with J0(m, s,B) the normalization function:

J0(m, s,B) = 2

√
πs

2 + s

[√
2 + s

2− s

]B
e

m2s
2(4−s2)YB

(
2m√
4− s2

)
. (16)

The measurement dependent quantities m := m(Z(t); t) are given by

m = m(Z(t); t) =
tanh(pt)

p

[
h

∫ t

0

sinh(ps)

sinh(pt)
dZ(s) +

py0
sinh(pt)

]
(17)

and similarly, the measurement independent quantities s := s(t) read as:

s = s(t) =
1

p
tanh(pt) (18)

with the definition p =
√
h2 + 1

4 . With this expression for P (y, t), we have for the conditional mean:

〈Yt〉 := E(Yt|Z(t)) =
4m

4− s2
+

2s√
4− s2

fB

[
2m√
4− s2

]
(19)

and after lengthy but elementary manipulations the conditional variance:

var(Yt) := E((Yt − 〈Yt〉)2|Z(t)) =
2s

2 + s
+

4s2

4− s2
{ m2

4− s2
+B − f2B

( 2m√
4− s2

)}
. (20)

Remark: For the couple of linear cases B = 0 and B = 1 from Eq.(13), we consistently find the following
classical results:

P (y, t) =

{
− ((2+s)y−2m)2

4s(2+s)

}
√

2π 2s
2+s

, 〈Yt〉 =
2

2 + s
m, var(Yt) =

2

2 + s
s (21)

for B = 0 and

P (y, t) =

{
− ((2−s)y−2m)2

4s(2−s)

}
√

2π 2s
2−s

, 〈Yt〉 =
2

2− s
m, var(Yt) =

2

2− s
s (22)
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for B = 1. Moreover, the coupling strength ν(x, t) reduces – as predicted by the linear version of the feedback
filter – in both cases B = 0 and B = 1 to the standard, state independent Kalman gain:

ν(x, t) = ν(t) =
h

σ2
var(Yt). (23)

4 Numerical results

Numerical results are obtained by simulating (1) for a finite swarm with N < ∞ agents and one leader.
Thanks to the consistency of the estimator (see [13]), one can still use the results from the mean field
analysis for large enough N . In this case P (y, t) must be fitted against the empirical histogram of agents’
position at time t, to find the values for m and s. The control ν(x, t) can then be numerically computed
from its integral expression Eq.(9), while 〈Y 〉t can be computed from Eqs.(19). The quantity d

dxν(x, t) is

computed by noting the relation
d
dxP (x,t)

P (x,t) = fB(x) + x−m
s , which can be written as:

d

dx
ν(x, t) =

h

σ2
(〈Y 〉t − x)− ν(x, t) ·

(
fB(x)− x−m

s

)
. (24)

Note that this straightforward fitting strategy to estimate P (y, t) is – computationally – very costly. Extensive
numerical computations have shown that ν(x, t) can safely be computed from Eq.(9) when using directly the
empirical histogram of the agents’ position instead of the fitted function in (15). d

dxν(x, t) can then be

numerically computed as ν(x+h,t)−ν(x,t)
h , by selecting a reasonably small value h.

Numerical results in linear cases. Figures 2 and 3 show in red the time evolution of the noisy leader’s un-
veiled position. Standard Kalman-Bucy filtering techniques – with perfect knowledge on the initial condition
and discrete time-step dt = 2 · 10−3 – will deliver the green line; which is the best estimate (i.e., minimiz-
ing the error covariance) for the leader’s position. The mean value from the swarm of agents (likewise the
output of the feedback particle filter) produces the much smoother blue curve. Both filtering methods can
be quantitatively seen to produce the same average error through time (underlying the excellent accuracy
performance of the agents based estimator).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−2

0

2

4

Fig. 2. Leader’s position Y (t) from Eq.(10) (black), along with its unveiled position Z(t) (red), for B = 0, σ = h = 1
and t ∈ [0; 5]. In green, the output of the linear Kalman approach, and in blue the mean value 〈Y 〉t measured from a
swarm of N = 1000 agents. The particles start with Yi(0) = x0 = 1 ∀i, while Z(0) = Y (0) = x0.

Numerical results in nonlinear cases. We now concentrate on the parameter range 0 < B < 0.5 as for
B ≥ 0.5 the swarms dynamics is similar to a repulsive- and for B = 0 equivalent to an attractive Ornstein-
Uhlenbeck process (see Figure 1). For 0 < B < 0.5 the dynamics of the leader is non-linear and shows
an attractive potential in the central region (i.e., around the origin), and a repulsive potential for |x| � 0.
Between these two regions the potential changes from attractive to repulsive and the leader undergoes strong
nonlinear dynamics. Note that the attractive region is meta-stable and a leader starting within this region
will finally escape.
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Fig. 3. Leader’s position Y (t) from Eq.(10) (black), along with its unveiled position Z(t) (red), for B = 1, σ = h = 1
and t ∈ [0; 5]. In green, the output of the linear Kalman approach, and in blue the value 〈Y 〉t measured from a swarm
of N = 1000 agents. The particles start with Yi(0) = x0 = 0.1 ∀i, while Z(0) = Y (0) = x0.

During the sojourn time of the leader in the attractive region, the close by agents undergo quasi linear
dynamics. They too will remain in this attractive region, arrange in the vicinity of the leader’s position and
empirically realize the a posteriori distribution P (y, t). As soon as the leader escapes from the attractive
region, the other agents will start feeling the effect of their barycentric control kernel and ultimately follow
the leader outside the meta-stable region. For an infinite swarm of agents, the conditional barycenter of the
swarm will follow the leader’s position with nearly no delay; but in our case with N <∞ agents, a delay will
be seen between the exit times of the leader and the agents. Figure 4 shows the result of a representative
numerical simulation for N = 1000 agents, with a very narrow and shallow attractive region for B = 0.49.

0 5 10 15 20 25
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0
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20

Fig. 4. Leader’s position Y (t) from Eq.(10) (black), along with its unveiled position Z(t) (red), for B = 0.49,
σ = h = 1 and t ∈ [0; 30]. In blue the value 〈Y 〉t measured from a swarm of N = 1000 agents. The particles start
with Yi(0) = x0 = 0.2 ∀i, while Z(0) = Y (0) = x0.

If we zoom into the region where the leader exits the attractive domain, we see how its action affects the
rest of the swarm. Indeed, as the leader goes away from the swarm, the control ν(x, t) will grow larger and
drive agents away from the attractive region. This process takes some time, and enhances the variance of
the swarm. This can be seen in Figure 5, where we zoom on the period in which the leader and the agents
escape from the attractive region in Figure 4. After the agents have successfully escaped from the attractive
region, the variance of the swarm decreases again, as the agents more closely match the leader’s position.
To illustrate the last remark of Sect. 2, Figure 6 shows the influence of the choice of σ on the delay between
the exit times of the leader and the barycenter of the swarm. Note that the empirical barycenter of the
swarm is always contained ”within” the measures, meaning that the barycenter of the swarms always gives
a better filtered value than the position dZ(t) unveiled by the leader.

5 Conclusion

Heterogeneous multi agent systems are notoriously difficult to describe analytically. As proposed in this
article, the simple idea of adding a “linearly” hidden leader agent, already offers the possibility to influence
the swarm in many ways. The leader can for example softly control the spreading factor of the agents around
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Fig. 5. Leader’s position Y (t) from Eq.(10) (black), along with its unveiled position Z(t) (red), for B = 0.49, σ = h = 1
and t ∈ [0; 30]. In yellow the value 〈Y 〉t measured from a swarm of N = 1000 agents, and in blue the position of
random agents (to visually show the variance of the swarm) through time. The particles start with Yi(0) = x0 = 0.2 ∀i,
while Z(0) = Y (0) = x0.
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Fig. 6. Leader’s position Y (t) from Eq.(10) (black), along with its unveiled position Z(t) (red), for B = 0.49, h = 1,
t ∈ [0; 30] and σ = 0.3, 2 (left, right). In blue the value 〈Y 〉t measured from a swarm of N = 1000 agents. The
particles start with Yi(0) = x0 = 0.2 ∀i, while Z(0) = Y (0) = x0.

its position, by tuning its hiding parameter σ. This leader-based dynamic also exhibits the property that
all agents know which of their fellow is the leader, but an external observer cannot discover this information
from the observation of the swarm’s behavior. The leader is seen from the outside as one of the regular
agents, but effectively pilots the swarm from the inside.
Inspired from current techniques in optimal state estimation, analytical insight is made possible by restricting
the agents dynamics to the Beneš class of finite dimensional filtering problems and to construct agents
interaction kernels amenable, in the mean field approximation, to the classical innovations kernels of sequential
optimal filtering. In future work we will explore the potentialities of mean field games where the interaction
kernels result from an optimization procedure with finite time horizon T . It is prospected that analytical
insight is still possible if the kernels are amenable to innovation kernels of sequential optimal smoothing
problems.
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Appendix - Details of calculations

For the readers ease we introduce notations and collect formulae useful for the computation of the conditional
probability density.

5.1 Collection of useful formulae

sinh(x+ y) = sinh(x) cosh(y) + cosh(x) sinh(y),

cosh(x+ y) = cosh(x) cosh(y) + sinh(x) sinh(y).∫
R
e−ax

2−2bx−cdx =

√
π

a
e
b2−ac
a , a > 0∫

R
cosh[xα]e−

(x−µ)2
γ dx =

√
πγ cosh[µα]e

1
4γα

2

(25)∫
R
x cosh[xα]e−

(x−µ)2
γ dx =

√
πγ
[αγ

2
sinh(µα) + µ cosh(µα)

]
e

1
4γα

2

(26)∫
R
x sinh[xα]e−

(x−µ)2
γ dx =

√
πγ
[αγ

2
cosh(µα) + µ sinh(µα)

]
e

1
4γα

2

(27)

From sections 9.24 and 9.25 of [22], we extract:

D−B(x) =
e−

x2

4

Γ (B)

∫
R+

e−x ζ−
ζ2

2 ζB−1dζ, (R(B) > 0) (see [22], 9.241/2) (28)
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YB(x) := 1

2 [D−B(x) +D−B(−x)] =
√

2
π
e−

x2

4

Γ (B)

∫
R+ cosh(x ζ)e−

ζ2

2 ζB−1 dζ,

d2

dx2 {YB(x)} =
[
x2

4 +
(
B − 1

2

)]
YB(x), (B ≥ 0), (see [22], 9.255/1)

(29)

5.2 Quadratures

Let us define the couple of quadratures:

Ji(m, s,B) =

∫
R
xiYB(x)e−

(x−m)2

2s dx, i = 0, 1. (30)

0th-order moment - J0(m,B) Using the integral representation given in Eq.(29), we can write:

J0(m, s,B) =
∫
R

{
YB(x)e−

(x−m)2

2s

}
dx

=
√

2
π

1
Γ (B)

∫
R+ ζ

[B−1]e−
ζ2

2

{∫
R cosh(ζx)e−

(x−m)2

2s − x24 dx
}
dζ

J0(m, s,B) =
√

2
π
e
− m2

2(2+s)

Γ (B)

∫
R+ ζ

[B−1]e−
ζ2

2

{∫
R cosh(ζx)e−

(2+s)
4s (x− 2m

2+s )
2

dx
}
dζ

Now we use Eq.(25) with γ = 4s/(2 + s) and µ = 2m/(2 + s) to get

J0(m, s,B) = 2

√
2

π

√
πs

(2 + s)

e−
m2

2(2+s)

Γ (B)

∫
R+

ζ [B−1]e−
ζ2

2 [ 2−s
2+s ] cosh

[
2mζ

2 + s

]
dζ

Let us introduce the renormalization η := ζ
√

2−s
2+s , which implies

J0(m, s,B) =

√
2

π
2

√
πs

2 + s

e−
m2

2(2+s)

Γ (B)

[√
2 + s

2− s

]B
e
+ m2

(4−s2) e
− m2

(4−s2)︸ ︷︷ ︸
=1

∫
R+

η[B−1] cosh

[
2mη√
4− s2

]
e−

η2

2 dη. (31)

Finally, using the definition Eq.(29), we end up with:

J0(m, s,B) = 2

√
πs

2 + s

[√
2 + s

2− s

]B
e

m2s
2(4−s2)YB

(
2m√
4− s2

)
. (32)

First order moment - J1(m, s,B) From the definitions Eqs.(28) and (30), we observe that one can write:

J1(m, s,B) :=

∫
R

{
xYB(x)e−

(x−m)2

2s

}
dx

From the previous equation and the definition of J0(m, s,B) given in Eq.(30), let us observe that we can
write:

d
dmJ0(m, s,B) =

∫
R

{[
(x−m)
s

]
YB(x)e−

(x−m)2

2s

}
dx = 1

sJ1(m, s,B)− m
s J0(m, s,B).

This is equivalent to the relation:

J1(m, s,B) = mJ0(m, s,B) + s

[
d

dm
J0(m, s,B)

]
. (33)

Using Eqs.(32) and (33), the conditioned expectation reads:

E(x|Zt) = J1(m.b,B)
J0(m,s,B)

∣∣∣
t

= m+ s
[
d
dm (log {J0(m, s,B)})

] ∣∣∣
t

= 4
4−s2m(z) + 2s√

4−s2 fB

(
2m(z)√
4−s2

)
(34)


