Self-Organized Mixed Canonic-Dissipative Dynamics for Brownian
Planar Agents

Guillaume Sartoretti and Max-Olivier Hongler
EPFL - STI/IMT/LPM
CH -1015 Lausanne (Switzerland).

July 29, 2014

Abstract

We consider a collection of N homogeneous interacting Brownian agents evolving on the plane. The time
continuous individual dynamics is jointly driven by mixed canonical-dissipative (MCD) type dynamics
and White Gaussian noise sources. Each agent is permanently at the center of a finite size observation
disk D,. Steadily with time, agents count the number of their fellows located in D,. This information
is then used to re-actualize control parameters entering into the MCD. Dissipation mechanisms together
with the noise sources ultimately drive the dynamics towards a consensus stationary regime characterized
by an invariant measure Ps on an appropriate probability space. Assuming propagation of chaos, a mean
field approach enables to analytically calculate Ps. For each agent, our dynamics naturally implements:
i) a tendency to not be isolated, ii) a tendency to avoid strong promiscuity, and iii) an overall tendency
to be attracted to a polar point. The MCD drift is derived from an Hamiltonian function H and it
incites the agents to follow one consensual orbit which coincides with a level curve of H. When H is the
harmonic oscillator Hamiltonian, we are able to analytically derive the corresponding consensual circular
orbit as a function of the size of the observation disk V,. Generalizations involving more complex #H are
explicitly worked out. Among these illustrations, we study an Hamiltonian for which the level curves are
the Cassini’s ovals. This enables to generate consensus trajectories exhibiting different topologies which
only depend on the observation range of the agents. A selection of simulations experiments corroborating
the theoretical findings are presented.

Keywords: homogeneous Brownian agents - limited-range mutual interactions - consensus orbit generation
- mixed canonical-dissipative dynamics - mean-field description - analytical results.

1 Introduction

The emergence of structured collective dynamical patterns from simple agent level behaviors as observed
in nature for fishes, birds, insects and the like inspires a sustained research activity in management and
control of complex systems, and particularly in the domain of swarm robotics. The capability of agents to
act asynchronously to determine specific trajectories by relying only on local sensing is definitely attractive
when a centralized control becomes unfeasible - for example to coordinate large assemblies of autonomous
robots or other agents. One possibility to address these global control difficult issues, is to try to implement
dynamic strategies where identical robots are programmed with elementary features requiring limited on-
board real time sensing and computational resources. This general and truly simple idea triggers a strong
interdisciplinary research activity which, as emphasized in the recent review [3], encompasses a relatively wide
spectrum of perspectives ranging from ethology to swarm robotics. Focusing here on the dynamic system
and control perspectives, we study a collection of asynchronously interacting point Brownian agents obeying
elementary coordination algorithms. The basic ingredients of our modeling are: i) an Hamiltonian function
‘H which provides a parametric family of non-intersecting level curves defining closed orbits, ii) a mixed



conservative and gradient vector field constructed from # involving one (or several) control parameters,
ili) a stochastic driving stylized by WGN’s sources and iv) for each agent, a circular observation range V,
with radius p, centered at each agent location. Agents mutual interactions directly depend on the size
of V,. Interactions produce an adaptive mechanism which drive the agents to ultimately adopt one (or
several) consensus value(s) of the control parameter(s). The emerging consensus parameter(s) value selects
one specific orbits among the Hamiltonian parametric family. For such mixed canonic-dissipative stochastic
dynamics, connected with models discussed in [6], we are able to explicitly write the resulting invariant
probability measure solving the associated time-independent NLFP. We therefore can investigate analytically
the influence of the radius p of observation range V, on the emerging consensus dynamic achieved by the
agents. While our class of dynamics presents similarities with potential-ruled algorithms as those used for
example in [4, 3, 7, 11], it however keeps a decentralized mechanism stylized in the basic agents models
pioneered by [9, 12] and more recently by [1].

Mathematically speaking, our modeling relies on a set of N continuous time, coupled nonlinear stochas-
tic differential equation (SDE) driven by White Gaussian noise (WGN). In this context, the basic formal
question, first raised first by H. McKean [8], is to calculate the limit of the probability distribution which
describes a large agent collection (i.e. formally the thermodynamic limit N — oo) and then fluctuations
around this limit for finite N. Considering that all agent have identical independent initial conditions, one
mathematically expect (this can be rigorously proved under somehow restricting technical hypothesis) that
in the thermodynamic limit, all finite number of agents behaves independently of the other ones and they
all can be described by the same probability distribution (this is known as propagation of chaos). The com-
mon probability distribution solves a Markovian evolution described by a nonlinear Chapman-Kolmogorov
type partial differential equation. Accordingly, when propagation of chaos holds, we may characterize the
dynamic behavior of the global population by only studying the dynamics of a single, randomly chosen,
agent subject to an effective external mean-field generated by its surrounding fellows. In presence of WGN’s
sources, the single representative agent is a diffusion process and its probability measure obeys to a non-linear
Fokker-Planck equation (NLFP), [2].

2 Interacting Brownian agents driven by canonic-dissipative dy-
namics and White Gaussian Noise

We consider a swarm of N mutually interacting dynamical agents ay for k = 1,2,--- , N evolving on the
plane R? with state variables X (£) = (X1 (t), Xa(t), -+ , Xn(t)). In this section, we assume the homogeneous
situation in which all individual isolated agents aj are dynamically identical. The collective dynamics is
assumed to obey an N-dimensional diffusion process on R? given by a set of stochastic differential equations
(SDE):

dX(t) = Ap(t) - Xp(t) dt + [L3 ,(t) — Xk (@) ]15] Xi(t) dt + 0 dW(t), k=1,2,---,N,

Cr(Xk (1) (1)
X(0) = Xo ks and Xk (t) € R%

In Eq.(1), the following notations are used: Xy (t) = (z1(t), zk2(t)) € R?, the usual norm | Xy (¢)||3 =
(w%l(t) + x%g(t)), ~v and o are positive constants common to all a (i.e. homogeneity assumption) and
Wi(t) = (Wi, Wi2) are independent standard Brownian Motions (BM) and hence the formal differen-
tials dWp,(t) are White Gaussian Noise (WGN) processes. The agents interactions will be defined via the
scalars L}, ,(t) and the matrices Ay (t) which both will depend on Vi ,(t) the set of instantaneous neighboring

fellows surrounding agent ay at time ¢. For a given observation range p, the ag-instantaneous observation
neighborhood Dy, ,(t) is the disk:

Drp(t) = {X € R? | | X = Xy (t)l|2 < p} (2)



and we define the indices set

Vip(t) = {i [ Xi(t) € D p(t)} - (3)

which identifies the ap-neighboring agents present in the disk Dy ,(t). We shall write Ny ,(t) := Vi ,(t)]
the cardinality of the set Vj, ,(t). The dynamic elements contained in Eq.(2) and Eq.(3) are now used to
characterize the agents’ mutual interactions via a couple of contributions:

i) Canonic-dissipative matrix Ay(¢). The dynamic matrix Ay(t) associated with agent aj can now
be defined as:

Ni,p(t) 1 Ni,p(t)
A (t) N M N (4)
k = )
Ni,o(t) Nk,p(t) 1
TN N M

with 1 < M < N and Ny, ,(t)/N is the fraction of the total swarm that agent a; detects in Dy, ,(t) (we
shall adopt the convention that agent a; systematically detects itself implying that Vj , (t) > 1, Vt).
As X}, = 0 is a singular point of the deterministic dynamics (i.e. obtained for ¢ = 0 in Eq.(1)) the
matrix Ay (t) formally stands for the linear mapping of the dynamics in the vicinity of the origin. The
associated couple of eigenvalues of Ag(t) read:

Ak (t) = [M]Qi(t) — ]\14] +(V-1) [Nk}\’}(t)] =Ry + i Ty (5)

Hence, at a given time ¢, the real part in Eq.(5) expresses the non-conservative character of the dynamics
(i.e. the divergence part of the VF). The singular point 0 € R? is an attractive (respectively repulsive)
node when Ry < 0 (resp. Ry > 0). In parallel, the component Zj, expresses the rotational nature of the
VF. In particular when Ry = 0, the dynamics is conservative; it expresses the Hamiltonian component
of the ag-VF.

ii) Adaptive limit cycle radius. The scalar quantity

2ot =— Y X0l (6)

Vo] o=,

defines the (square) of the radial position of the set-barycenter formed by agents belonging to Vi ,.

By construction, the generalized force Cp(Xy(t)) in Eq.(1) drives any agent aj towards a circle of radius
Ly ,(t) and the component Zi(t) in Eq.(5) sets agents into circulation on this circle. The noise sources
dWy(t) in the dissipative dynamics Eq.(1), progressively with time erase information regarding the initial
configuration. The Fokker-Planck equation associated with the multi-variate diffusion process Eq.(1) evolving
in R2V reads:

PR M%0) = =7 { [Ar(t) - xi(0) + 7 [£2,,(0) — Ixu () I3] xu(6)] P, t1%0) } + 5 AP, t%0), .

P(i,ﬂio) ZR2N4)R+, iI: (Xl,X27"' ,XN)7 X = (Ik71,$k72), k:1,27 ,N.

Note that Eq.(7) is so far merely formal. Indeed, due to the agents’ interactions, both Ag(t) and L} (t)
depend themselves on P(X,t|Xy). Let us now assume that for N large, we can approximately adopt the
mean-field (MF) view point. The MF approach assumes that the dynamic behavior of a single and randomly



chosen agent a; will provide a representative picture on the global dynamic. For identically and independently
distributed initial conditions, the MF approach enables to write:

P(,t[%0) = [P(x, t}x0)]" = [P(x,t]0)]"  x = (21,22), (8)

a property often referred in the literature as propagation of chaos. When the MF approach holds, one can
state:

Proposition 1. Consider the mixed-canonical dissipative diffusive dynamics FEq.(1). Asymptotically
with times, the dynamics can be factorized as in Eq.(8) and the MF representative agent obeys to the couple
of diffusion equations :
dX1(t) = + 5 Xo(t) + 7 [£2, — (X2(t) + X3(1))] X1(t) dt + odWy(2), o
9
dXo(t) = — 37 X1(t) + v [£2, — (XE(t) + X3(t))] Xa(t) dt + odWa(t).
For weak noise (i.e. large values of v/c?), the radius approzimately reads Ls , =~ m and the
associated stationary probability density Ps(x) reads:

2
P, (x)dz1dze = Z lexp {UZ [ﬁg,p - (ﬁ + x%)] } dzidzo, x = (z1,22) € R?, (10)

with Z being the probability normalization factor.

Guidelines to prove Proposition 1.
The MF assumption and Eq.(8) lead us to focus on a single representative planar agent X(¢t) = (z1(t), z2(t)),
and we write:

0P (x,10) = = {[A() x + 7 [C2(t) — |x(t)|I3] x] P(x.t|0)} + & AP(x,t0), )
P(x,t)0) : R? — R*,

where we have dropped the (agent’s identity) k-index, that is to say we wrote:

Nip(t) N, (t) /
: — = P(x,t]0) dzy dxs (12)
N N (x)eD,
and similarly:
Eﬁ_’p(t) — Ef}(t) = /( - (23 + 23) P(x,t|0) dzq dz» (13)
T1,T2 o

and D, is the representative agent’s neighborhood. Asymptotically with time, the stochastic dissipative
dynamics reaches a stationary regime will, due to symmetry, will be characterized by rotationally invariant
probability measure. In this stationary regime, a time-independent probability current circulates with the
angular velocity M ! around the origin. The invariant probability density solves the stationary Fokker-
Planck equation:

0= v {[Aux+7[2, ~ IxI3]x] P(x)} + 5 AP(), (14)

where the MF approach implies:

. N Nsp 1 . 204 _ 2
]\;gnoo{tli)rgoN = N =M and tll}IIolo,Cp(t)—L:s’p,

and therefore,

=~



. 0 M1
tlggo Alt) = A, = <—M1 0 ) . (16)
From a uniformly rotating coordinates’ frame with angular velocity M ~!, the stationary regime dynam-
ics becomes purely gradient and the resulting stationary probability density Ps(x) solving Eq.(14) enjoys
microscopic reversibility (i.e. detailed balance). It explicitly reads, [6]:

Py(x)dwidzs = Py(r)drdf = N(L, ) el =72 L2001 a(r2) do. (17)
with /71 = /m302/y Erfc( f( Y ——spe )) being the normalization factor.

Figure 1: The cylindrical symmetry characterizing the stationary regime implies that the agents probability distribution is
rotationally invariant with respect to O. Accordingly, there will be on average N/M agents located in a sector with an opening
angle 2m/M. For large v/02, these agents will be confined in the direct proximity of the circle of radius Ls,,. Consider an
arbitrary agent located at A with a stationary observation range Vs , with radius p = AC. The set Vs , exactly encompasses
the circular arc with aperture 2w /M thus ensuring that the agent at A has M/N neighboring fellows. The cosine theorem in
the triangle OAC implies that £Z , = 2p?/[1 — cos(w/M))].

In this stationary regime, the stationary observation neighborhood V; , := lim;_, o V,(t) exactly encompasses
a circular sector with aperture (M) and radius £Z ,(M). Both p(M) and Ly ,(M) are adjusted to ensure
that N/M agents are located in V; ,. For large ratio J; (i.e. essentially a large signal-to-noise ratio), Eq.(17)
exhibits a sharply peaked ”Mexican hat” shape with its maximum on the circle r = £, , (i.e. almost all
agents stay confined in the direct neighborhood of the circle r = L, ,). As detailed in Figure 1’s caption, an
elementary trigonometric argument enables to derive the compact relation:

_ P
Lop = 2 — 2cos(m/M)’ (18)

O



Figure 2: For a collection of N = 100 agents with M = 4 and p = 1. The observation range V), encompasses exactly the sector
of aperture 7/4 to determine the size of the self-generated limit cycle (see the construction given in Figure 1). We explicitly
draw the trajectory of a randomly chosen agent and observe that this agent indeed follows the consensual limit cycling orbit
with analytically predicted radius L5, = \/ip =2.

Figure 3: Left: For a collection of N = 100 agents with M = 50 and p = 1. The observation range V), encompasses exactly the
narrow sector of aperture 7/50 to determine the size of the self-generated limit cycle (see the construction given in Figure 1).
We explicitly draw the trajectory of a randomly chosen agent and observe that this agent indeed follows the consensual limit
cycling orbit with analytically predicted radius Lg,p =2/[1 — cos(n/50)] = (50/m)% ~ (17)2.

Right: Another orbit realization for conditions fully similar.

Additional remarks. Observe that besides v and ¢ which define an overall time scale, there are two
additional control parameters in the dynamics Eq.(1):

a) Hamiltonian parameter M. The sector angle M into the canonic-dissipative matrix A(t). This
parameter fixes the angular velocity w = M ! of the swarm and adjusts the size of the consensus limit
cycle radius L, ,. For a given size of the observation disk with radius p and for large M, we have
Ls., >~ pM/m and the angular velocity tends to vanish.

b) Interaction range parameter p. The radius of the observation disk p which directly determines
the consensus size of the limit cycle radius £, .



Numerical experiments. In all numerical experiments performed, we observe a truly remarkable agreement
with the theoretical predictions (see Figure 2 for a specific illustration). According to Eq.(18), by reducing
the sector opening angle (i.e by increasing the values of the M), the resulting limit cycle radius £, , increases
and the number of agents present in V; , is reduced thus somehow invalidating the large population required
for MF to be used. Even when M = 50, the couple of orbits realizations shown in Figure 3 show that
analytical results, in particular Eq.(18), remain valid in this large M limit.

Generalization. By using the class of mixed-canonical dissipative dynamics [6] and following the same lines
as those given in Proposition 1, we now can relax the cylindrical symmetry and write:

Proposition 2. Consider the class of functions H(x1,x2) : R?2 — RT for which the family of planar curves
defined by [H(x1,22) — R] = 0 are closed V R > 0 and do not intersect for different values of R’s. Introduce
the functional V(H) : RT — R with limy_,oc V(H) = oo. Assume in addition that the values of the H-
deriwatives V'(0) < 0 and V'(H) |y=c= 0 and C is the unique value for which it holds. Then FEqs.(1) and
(9) can be respectively generalized as:

dX (1) = Ap(X) dt — v {V (H(X))0x, H(Xp) dt + 0 dWi(t), k=1,2,--- N,
(19)
Xk(()) = Xo’k, and Xk(t) S R2,
where
NG bt B O, H(Xe)
Ap(X) = : ( : (20)
N (t Ni (¢
— ,JC\S I;V ) % aX‘zkH(Xk)
and
AX1(8) = [+ 3705, HX) — 7 {1V (HX)] 03, KX de + od Wi (1),
(21)
AXa(t) = [ 0%, HX) — 7 {1V (H(X)] 0, H(X)}] de + od (o)
The stationary measure Eq.(10) here reads:
2
Py(H)dH = 2~  exp {O_Z [V(H)]} i, (22)

where Z is the normalization constant.

Figure 4: Typical shapes of the Cassini’s ovals determined by the equation H(z1,z2) = [(ml —1)2+ mg] [(xl +1)%+ x%} = bt

for b-values ranging from b = 0.1 to 1.5.
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Figure 5: Left: Selection of a couple of limit cycling orbits obtained from the Cassini Hamiltonian Eq.(23) when the control
parameters are set to M =4 and p = 0.4.

Right: Single limit cycling trajectory for the Cassini Hamiltonian Eq.(23) but here with the control parameters set to M = 4
and p = 0.8.

Additional remarks.

a) Observe that Proposition 1 follows from the Proposition 2 in the rotationally symmetric case resulting
when H(X) = (1/2) [X? + X3].

b) Contrary to Proposition 1, in Proposition 2 , neither the limit cycle nor the invariant measure Ps(H)
generally have a cylindrical symmetry. This precludes the possibility to analytically determine the

selected consensus limit cycle (i.e we do not have in the general case a simple expression like the one
given by Eq.(18)).

Figure 6: Left: Orbit generated by the (%)—symmetric Hamiltonian  function: H(z1,x2) =
[(z1 — 1)2 + (z2)?] [(aﬁl +3)2 + (22 — ?)2] [(x1 + 32+ (z2+ @)Q] Here we have N = 100 and the control param-
eters are set to M =4 and p = 0.5.

Right: Here, all parameters are identical, except for the interaction range which is p = 1.
¢) As an illustration of Proposition 2, we may consider the Cassini Hamiltonian function given by

H(X) = [(ml — 1)+ x%] [(azl +1)% + xg} = b, (23)

with the level orbits sketched in Figure 4. According to the values of M and p which ultimately will
fix the size of the parameter b, we are in this case able to generate two different regimes. For large b
a single closed consensus limit cycle is generated. Alternatively, for small b, the agents are shared into
two clusters and evolve on two separated consensus limit cycles (see Figure 6.

d) Generalizing the previous Cassini ovals construction, one may construct Hamiltonian generating
agents circulation on even more complex orbits. We provide an additional example in Figure 6.
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Conclusions and perspectives

While agents with behavior-based interactions are relatively easy to implement, it is widely recognized that
the underlying mathematical analysis of such models is generally difficult and often even impossible to perform
completely. It is therefore quite remarkable that very simple analytical results can be derived for a whole class
of dynamics which, due to its simplicity, offers potential for applications. Despite that for limited number of
agents, typically one hundred in our present study, the mean-field approach can only be approximative, we
nevertheless emphasize that all our numerical investigations still closely match the theoretical predictions.
The resilience of our modeling approach opens several perspectives for implementations on actual agents.
Several further research directions are naturally suggested by this contribution, among them:

a) Extended MCD dynamics to higher dimensional spaces. The role played here by the Hamiltonian
function leading to a canonical motion on the plane can be extended. In particular one may consider,
along the lines explained in [10], integrable canonical systems exhibiting additional constants of the
motions. Using these extra constants of the motion, one will be able to stabilize the swarm motion
along orbits in higher dimensions.

b) Heterogeneity in agents and soft control of swarms. Instead of focusing on homogeneous agents and
by following the work [5], we intend to use the context of MCD to study the possibility to influence
(i.e. soft controlling), the behavior by the introduction into the society of a single ”fake” agent (i.e. a
shill) playing the role of a leader which can be externally controlled.

c) Resilience of the modeling. In Eq.(2), we used the Euclidean norm to define V4, ,(¢), the instantaneous
neighboring agents in Eq.(3). To match specific applications, other type of norms could be used to
redefine the interactions.
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