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Abstract

We analyze individual travel discomfort-time tradeoffs in Paris
subway using stated choice experiments. The survey design allows
to set up in a willingness-to-pay space to estimate the distributions of
elasticities of values of travel time savings to crowd density and time
multipliers. Several formulations of a generalized travel cost function
are tested. Accounting for heterogeneity in preferences, the economet-
ric models all take the form of an ordered Probit with known bounds.
We derive several estimates that could be used for fine-tuning of traffic
simulation systems and more general transportation policy analysis.

Key words: travel discomfort-time tradeoff, stated choice survey,
interval regression model
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1 Introduction

Any transport policy that favors the use of public transportation (PT)
has to account for related capacity constraints as they offset its expected
benefits. Current overcrowding of PT systems in dense urbanized areas,
i.e. lack of individual space in carriages1, is downscaling attractiveness
of such ways of traveling, especially during peak hours: long stand-up
position, reluctance to close proximity with other people and agoraphobia,
sanitary issues, unsafety and insecurity feelings, stress, etc. (Cox et al.,
2006, Evans and Wener, 2007, Mohd Mahudin et al., 2012, Wener et al.,
2005 or CRCFRI, 2012). All of these may restrain individual behavioral
shifts that would support sustainable transport policies.

Also, as discussed by Parry and Small (2009) and estimated by Tirachini
et al. (2010) in a different context, not accounting for existing capacity con-
straints introduces an upward bias in forecasting PT traffic, hence biasing
optimal subsidies and pricing schemes. As a result (domino effect), road
congestion is then underestimated and the bias propagates throughout the
whole economic assessment of any considered transport policy.

Over the last decades, research on modeling travel demand considered
budget, time, schedule, and more recently reliability, as the most prevailing
determinants of individual choices. One typically observes that crowding
costs in PT systems are often ignored when it comes to quantitative model-
ing of the different aspects of urban travel demand. It is currently changing.
Li and Hensher (2011), Wardman and Whelan (2011), recently reviewed ex-
isting evidence on PT crowding costs. It is shown that such studies date
back to the 80’s. Most are reports produced for UK and Australian railways
operators, thus difficult to access because not in the public domain. OECD-
ITF (OECD-ITF, 2014) also coordinated a roundtable about valuation of

1Crowding in PT systems can be estimated according to different metrics. Load factors
correspond to the ratio between the number of users in the trains and the number of
seats proposed. Because this measure does not consider the varying in-vehicle design of
the rolling-stock, passenger density is generally preferred. This will be our measure of
crowding in this article. Note also that, in Japan, crowding is measured through the
“Japan Industrial Standard” that merges together the seat and the standing capacities
of the vehicles (see Kato, 2014).
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“convenience” in mass transit. Crowding was a central theme.
From an academic point of view, Kraus (1991) initiated the analysis of

discomfort externalities in PT. He introduced a dummy for standing vs.
seated positions, assuming relative dislike for standing position as com-
pared to seated position Haywood and Koning (2013), Kroes et al. (2013),
recently proposed empirical estimates of crowding costs for Île-de-France
(Paris region). They defined crowding as a discrete class variable, also
distinguishing seated or standing positions (see also Hensher et al., 2011).
Jara-Diaz and Gschwender (2003), Tirachini et al. (2010), de Palma et al.
(2011), extended the framework to continuous variations of crowd den-
sity, be they monotonic or not. The latter developed a strictly theoretical
framework of analysis whereas the others were more interested in using their
approaches for empirical analyses. Parry and Small (2009) laid in between:
they theoretically considered crowding costs when assessing the optimal
level of PT subsidies but they did not incorporate them in their empirical
application. Whelan and Crockett (2009) highlighted how sensitive could
be the results along with the way crowding costs are modeled.

These formulations have behavioral implications. It is typically assumed
that discomfort and travel time interact. Precisely, discomfort affects the
value of travel time savings (VTTS). It is defined as a VTTS “multiplier”:
the more crowd, the larger the VTTS (see Wardman and Whelan, 2011).
In the present article, as we are definitely oriented on empirical valuation
of PT crowding costs, we keep in line with earlier studies in that we adapt,
and test, some of the existing generalized traveling cost functions. We also
propose a simple variant of the generalized traveling cost function where
discomfort enters additively and independently from travel time: crowding
is evaluated per se and does not affect the VTTS.

Methods that are used for empirical estimation of such crowding effects
mostly rely on a combination of stated preference (SP) surveys (Hensher
et al., 2005) and random utility maximization (RUM) discrete choice mod-
els (Ben-Akiva and Lerman, 1985, Train, 2009). We differ from the existing
crowding valuation studies by proposing an interval regression approach
(Maddala, 1986, Long, 1997) in “willingness-to-pay” space.

We use data on stated choices of 667 travelers that were collected in late
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2010 on platforms of the Paris subway using face-to-face interviews. The
survey design is based on a double bounded contingent valuation method
with follow up question (Hanemann et al., 1991). We take advantage of
the underlying bracketing procedure to estimate distributions of elasticities
of the VTTS with respect to crowd density, and travel time multipliers.
Whichever the formulation of the generalized traveling cost function that we
use, the resulting econometric specification is an ordered Probit model with
known bounds. Whereas our approach is fairly standard in experimental
economics, it differs from what is usually done in transportation economics.
In addition of testing several specifications of a generalized cost function, we
believe it is important to show that experimental procedures could be used
to assess various dimensions of travel activities. We also are convinced
that such an approach is relevant to structurally model heterogeneity of
preferences.

The rest of the article is organized as follows. Section 2 develops our
framework of analysis and the specific functional forms we use. Section 3
describes the survey design, how data were collected, and some descriptive
statistics. Section 4 develops our econometric methodology. Section 4.2
discusses the estimation results. Conclusion is drawn in a last section.

2 Model

2.1 Framework

We assume that a traveler i associates a real-valued generalized cost func-
tion to a trip alternative m:

Ci (pm, tm, dm) , (1)

where pm > 0 models the trip cost, tm > 0 models travel time, and dm ≥ 0
models crowd density. Ci : R3 → R is continuously increasing with pm,
tm, and dm. For the sake of simplicity, we here focus on a public mode of
transport and we consider that traveler i is captive: there is no change in
destination, mode, route, and time of the day. Price pm does not change:
∀m,pm ≡ p. Only tm and dm may vary. We also assume that there is no
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other attribute affecting the generalized cost function (such as scheduling
costs, reliability, etc.) and that there is no distinction between different
dimensions of travel time (in-vehicle time, waiting time, connection time,
etc.). We also do not distinguish the path links used by travelers within a
full journey, as done for instance in Kato et al. (2010). We actually consider
a situation where it is asked the traveller how much he is willing to spend
additional total travel time for less crowd density on the path link starting
from the node he was surveyed.

Two alternatives are proposed. One of these is the current one. We agree
that this “anchor point” might be problematic (see Tversky and Kahneman,
1991 for an analysis in riskless choice situations). The second alternative
systematically proposes less crowd density in carriage, d ≥ 0, ∆d ≥ 0, d −

∆d ≥ 0, but a larger travel time t+∆t, t > 0,∆t > 0. This is an important
point in that we only consider a decrease in crowd density compensated by
an increase in travel time with respect to an actual travel condition. As a
consequence, our approach is designed to infer “willingness-to-pay” for lesser
crowd density but not “willingness-to-accept” a larger one. We are aware
that Tversky and Kahneman (1991) highlighted existence of asymmetry
between willingness-to-pay and willingness-to-accept. Given our data, we
cannot deal with such an issue.

Traveler i prefers her current alternative if and only if the associated
generalized travel cost is strictly lesser than the generalized travel cost of
the proposed alternative. The proposed (stated) alternative is preferred
if and only if the associated generalized cost is strictly lower than the
generalized cost of the current alternative. There is indifference between
both if and only if the generalized travel costs are equal:

Ci (p, t, d) = Ci (p, t+ dt, d− dd) . (2)

It is straightforward that there exists an unique balancing point under our
assumptions, independently of the exact structure of the generalized cost
function:

∂Ci(p,t,d)
∂t

∂Ci(p,t,d)
∂d

= −
dd
dt
. (3)

The left-hand side of the equation defines the MRS between travel time
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and crowd density. The right-hand side of the equation defines the ratio
of the variations of crowd density and travel time. If this MRS is larger
then the traveler i prefers the current travel alternative. If it is strictly
lower then the proposed one is preferred. Because of a presumed retentive
behavior, there is no reason why traveler i would change if it was strictly
equal although there is indifference.

The explicit formulation of Ci leads to particular characterization of the
problem as, structurally, one specific functional form models one specific
interpretation. We now turn to some of those and their implications.

2.2 Functional forms

We consider a menagerie made of 5 formulations of the generalized cost
function. These are built up on earlier work of Whelan and Crockett (2009),
Jara-Diaz and Gschwender (2003):

Ci,m = pm + αi (1+ φidm) tm, (4)

Ci,m = pm + αi exp (φidm) tm, (5)

Ci,m = pm + αi (1+ dm)
φi tm, (6)

Ci,m = pm + αi exp (−φi (exp (−dm) − 1)) tm, (7)

and
Ci,m = pm + γitm,+δidm. (8)

As already stated, these functions strictly increase with price, travel time,
and crowd density: αi > 0, φi > 0, γi > 0, δi > 0. We agree that, under
some circumstances, it would be acceptable that individuals prefer crowd
to nobody while traveling by PT, for instance in the late evening on some
specific routes in order to feel more secure. We here consider it is not the
case since the survey was carried out during peak hours.

The functional forms are of two types. The first assumes that crowd
density affects the generalized cost of traveling through the VTTS (specifi-
cations in equations 4 to 7). αi > 0 models the VTTS when crowd density
is equal to 0. When crowd density is strictly positive, dm > 0, the VTTS is
multiplied by a strictly positive factor. The 4 formulations are driven by a
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parameter φi > 0. They model different sensitivity of the VTTS to crowd
density.

The second assumes that crowd density affects the generalized cost of
traveling independently of the VTTS (specification in equation 8). As
contrary to the other specifications, travel time and crowd density do not
interact. No matter crowd density in the carriage, the shadow price of
travel time is unique. It is always equal to γi > 0. But crowd density still
appears as a determinant of the generalized cost of traveling. Its weight is
defined as γi > 0.

Table 1 reports some key properties of the functional forms.

Table 1 here

Specifications 4 to 7 interact crowd density with travel time in different
ways. Elasticity of the VTTS with respect to crowd density differs along
with them. Specifications 4 and 6 assume that elasticity of the VTTS with
respect to crowd density is increasing and concave. The slopes of their
response functions are different. Specification 5 assumes that it is linearly
increasing with crowd density. Specification 7 assumes that it has a S-
shape. The inflexion point is defined at dm = 1. Increase is convex when
d ≤ 1 and concave when d > 1. Specification 8 is the additive extension
of the standard linear generalized cost function in which crowd density
independently just adds to the other determinants. As a result, the VTTS
is not sensitive to it.

3 Survey design and data collection

3.1 Experimental procedure

Our stated choice survey is designed to quantify “willingness to spend travel
time to save for discomfort”. “discomfort” is here defined as crowd density in
carriage. The design of the survey is based on a double bounded contingent
valuation method with follow up question (Hanemann et al., 1991,Haab and
McConnel, 2003).
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For a traveler i, it relies on a series of two nested questions. They are
generated from an actual traveling situation. As compared to the latter, it
is first proposed a decrease in crowd density, say ∆d ≤ 0. To compensate for
this presumed gain, it is proposed an increase in travel time, say ∆1t > 0.
If traveler i accepts the alternative, it is proposed a second trade-off with
an even larger variation of travel time ∆2t > ∆1t. If traveler i sticks to
her actual travel condition, it is rather proposed a second trade-off with a
lesser variation of travel time 0 < ∆3t < ∆1t.

We use time bids to reduce propensity of travelers to free-ride on choices
of other travelers (strategic bias) and to reduce existence of a hypothetical
bias (as pricing in Paris subway is flat, it is easier for travelers to express
their preferences for comfort in time units). PT users also let sometimes
pass a train or change route because of overcrowding (Kato et al., 2010),
thereby showing relevance of trade-off between time and crowd density.

It was deliberately chosen to propose only two trade-offs. Whereas
“first bid biases” may pollute individuals’ answers (Flachaire and Hollard,
2007), lengthening sequences of choices might magnify these problems. Sort
of “fatigue” phenomenon may appear, making answers less reliable (see
also Bradley and Daly, 1994). We also wanted the survey to be short to
minimize sample selection bias, assuming that people would easily accept
to participate and quickly answer to it.

Given our formulations of the generalized travel cost functions, observ-
ing outcomes of such series of nested questions allows to directly bracket
φi or δi/γi. To make things clear, let us consider specification 8 of the
generalized travel cost function. If traveler i prefers t+ ∆1t, then:

pm + γitm + δidm > pm + γi (tm + ∆1t) + δi (dm − ∆d) . (9)

A simple manipulation of the equation just states that:

δi

γi
>
∆1t

∆d
. (10)

By construction, the second alternative then proposes a larger (∆2t) in-
crease in travel time for the same decrease in crowd density (∆d). If traveler
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i rejects this new alternative, then:

∆2t

∆d
>
δi

γi
>
∆1t

∆d
. (11)

Table 2 summarizes the relation between observed outcomes and intervals
to which may belong φi or δi/γi under a cost minimization assumption.
These thresholds will serve in econometric estimation.

Table 2 here

The SP experiments were built up on an actual situation. Travelers had
initially to estimate their current travelling conditions in terms of travel
time and crowd density they were expecting to face using subway lines 1
or 4. They were first proposed to visualize and to tick 1 out of 7 possible
crowd density situations: 0, 1, 2, 2.5, 3, 4 or 6 passengers per square meter,
see figure 1. We assume that these revealed expected crowd density levels
are these that travelers think to usually face. We build up on these to
propose variations.

As contrary to Kroes et al. (2013) and Whelan and Crockett (2009)
who proposed a “from the top” representation of carriages, we used “quasi-
perspective” showcards to better describe the physical pressure character-
izing crowding. Because in-vehicle design may differ across subway ser-
vices, it was chosen to retain the simplest representation2. Door-to-door
travel times were self-reported by subway users. In-vehicle travel times
were drawn from both timetables and empirical measures.

Figure 1 here

For each traveler, starting from the “reference” point, a decrease in crowd
density (∆d < 0) at the cost of an increase in travel time (∆t > 0) was
proposed. The decrease in crowd density was randomly drawn from all
the possible alleviating situations conditional on the revealed point. The

2We here recognize there is an important shortfall in the survey design. Because the
showcards only represents the central part of the carriages where the doors are located,
we are not able to study the value of seat-crowding, as done by Kroes et al. (2013) or
Whelan and Crockett (2009) who present the whole vehicle to users.
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following question was asked: “In order to travel with this hypothetical
level of comfort, instead of your current one, would you agree to use a
subway which takes X additional minutes to reach your destination?”
The increase in travel time was “quasi-randomly” drawn from 6 possible
values: 3, 6, 9, 12, 15, and 18 minutes. We “forced” large variations of travel
time for only about 1 out of 20 travelers. It was otherwise variations below
12 minutes. It is not reported but data show consistent answers in that the
larger increase of travel time (wrt current one), the larger rate of rejection
of such a travel alternative independently of crowding. Depending on the
answer to the first stated choice situation, the second question considered
the same diminution of crowd density but either increased or decreased
travel time by 25%. We assumed that travelers understood that they had to
trade increased in-vehicle travel time against decreased in-vehicle crowding,
i.e. slower subways rather than a lower service frequency.

3.2 Data collection

On-site data were collected in late 2010 on platforms of 11 subway stations,
some being transportation hubs, all directly connected to lines 1 and 4
of Paris subway. Lines 1 and 4 are diagrammatically going from West
to East and North to South. They cross at the center of Paris. They
potentially offer important differences in crowd density and socioeconomic
characteristics of travelers.

About 800 travelers were surveyed during peak morning and peak evening
periods (07:30 - 10:00 AM and 05:00 - 07:30 PM) while they were waiting
for their trains3. As already stated, the face-to-face questionnaire was pur-
posely short to characterize the best possible individual time-discomfort
trade-offs without introducing excessive sample selection, yet at the cost of
lesser collected information. It was designed in two small parts to quickly
focus on our problem. The first part was about collecting few information
on individual characteristics of travelers. The second part proposed them
stated choice experiments.

3Of course, we would have preferred a larger sample. As compared to the few existing
studies, it however seems that the sample size is not that small (Li and Hensher, 2011)

9



3.3 Descriptive statistics

Once data are cleaned, the final sample contains observations of 667 subway
users. Table 3 reports descriptive statistics. They pertain to some char-
acteristics of the observed respondents and their choices about the stated
travel scenarios.

Table 3 here

Gender is equally distributed. The average net monthly income is 2,444
AC4. 57% of individuals live in Paris, 25% in its inner suburbs, and 18% in
its outer suburbs and outside of the “Île-de-France” region. About 70% of
trips are carried out for home to work purpose. Also, 64% of travelers use
subway lines 1 and 4 on a daily basis.

The average door-to-door travel time is about 46 minutes and the aver-
age trip duration using the subway line on which travelers were surveyed
is about 9.6 minutes.

The average “expected crowd density”, i.e. estimated by travelers prior
to train arrival, is 3.1 passengers per square meter. The full distribution is
described in Table 4.

Table 4 here

A discussion point is whether expected crowd density (ex ante) matches
observed one (ex post). Actual crowd in carriages was estimated on sites
during the survey. We also had count data from the PT operator (for whole
trains). Correlation between ex ante and ex post crowding is about 0.40.
Expected crowding is what traveller was anticipating whereas actual crowd-
ing is what was really experienced after the interview. The latter is one
outcome of an actual distribution whereas the former is an anticipated out-
come of a perceived distribution. Low correlation between both shows that
there is big difference between anticipated and actual crowding. Haywood
and Koning (2013) analyzed such difference. They showed that expected
crowding is positively driven by monthly net incomes of individuals, by the
subway service as measured by frequency of trains (higher for line 1) and
by the time of the day (higher during evening peaks). We however think
that using an ex ante measure of crowd density as a “reference point” is

4We used color cards to incite travelers to report their net monthly incomes.
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not that much a problem. What really matter here are the variations of
crowd densities between declared and hypothetical states of nature.

The hypothetical crowd density proposed to travelers was on average
1.3 passengers per square meter (an average decrease of 58%, see the dis-
tribution of proposed crowd densities in Table 4). To compensate, it was
proposed to increase travel time by 8.7 minutes on average. We observe
that 25% of the travelers accepted both increases in travel time to benefit
from lesser crowd density. 41% of them rejected both offers. 17% accepted
the first increase in travel time but not the second and larger one. 17%
rejected the first increase but accepted the second and lesser one.

4 Empirical modeling

4.1 Econometric specification

What is modeled is a sequence of decisions yi:

yi =


1 iif traveler i answers No to all stated alternatives
2 iif traveler i answers No-Yes to these
3 iif traveler i answers Yes-No to these
4 iif traveler i answers Yes-Yes to these

. (12)

Given the structure of the stated choice experiments and the presumed
theoretical framework of decision (minimizing a generalized cost function),
it means that either φi or δi/γi lies in between some values bi that are
determined by the levels of attributes of both the actual travel situation
and the proposed (stated) ones. These values are computable and bound
some parameters of the generalized cost functions, as reported in Table 2.

For the sake of clarity, let θi ≡ φi or θi ≡ δi/γi. Given one case s out
of the 5 presented in subsection 2.2, we assume that:

ln (θi,s) = x′
iβs + εi,s (13)

where xi is a (column) vector of independent (exogenous) variables, βs is
a (column) vector of unknown parameters we want to estimate, and εi,s is
an additive random term. The error terms are, conditional on the case s,
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the known thresholds bi, the observed variables xi, and the parameters βs,
independently and identically distributed with distribution Fεs with a scale
parameter σs. Because of data, we here limit to distributions that are fully
characterized by their location and scale parameters:

∀s, εi,s
iid→ Fεs (ai,s|bi,s,xi;βs, σs) , ai,s ∈ R. (14)

The parameters βs weigh the (observable) independent variables. They
affect the (conditional) expectation of ln (θi,s). The individual contribution
to the likelihood function may therefore be written as:

Pr (yi|xi,bi,s;βs, σs) =
Pr (bi,k−1,s ≤ ln (θi,s) ≤ bi,k,s|xi,bi,s;βs, σs) =∏4

k=1

(
F
(

ln(bi,k,s)−x′
iβs

σs

)
− F

(
ln(bi,k−1,s)−x′

iβs
σs

))I(yi=k)
(15)

where, by convention, ∀s, ln (bi,0,s) ≡ −∞ and ln (bi,4,s) ≡ +∞, and where
I (yi = k) is equal to 1 if the observed outcome is k ∈ {1, 2, 3, 4} and 0
otherwise.

In doing so, we actually stick to the “Interval Data Model” (IDM) as
introduced by Hanemann et al. (1991). In specifying a model using con-
tingent valuation data from “following-up dichotomous choices” question-
naires, Cameron and Quiggin (1994), Bradley and Daly (2000), however
argued that the second offered threshold may not be independent of valu-
ation information which the respondent has revealed in answering the first
question. We actually use a restricted approach in exogenously constrain-
ing the mean to be identical across individual responses and assuming zero
covariance to assure independence of the response equations. We obviously
recognize that further work is needed to be sure that, given data, IDM is the
right approach in WTP space. We here build up on this latter, comparing
different functional forms.

The log-likelihood function of a sample of n individuals is defined as:∑n
i=1

∑4
k=1 I (yi = k) ln (Pr (yi = k|xi,bi,s;βs, σs)) . (16)

It takes the form of a standard ordered discrete choice model with known
thresholds (Maddala, 1986). The choice of F is up to the modeler. We here
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choose a Normal distribution, i.e. an ordered Probit model with known
bounds. We may have chosen another probability distribution, such as
the more conventional Logistic one in transportation analysis. We actually
fitted the models also assuming a Logistic distribution5. We have just made
the choice to present the results using a Normal distribution. Both are very
similar despite asymmetry of the Logistic distribution. We acknowledge
that choice of a distribution of the error terms characterizes what is not
observed by the modeler and how the latter envision it. This is another
issue on which there is further research to carry out in our context.

Note that the thresholds being known and variable across respondents,
there is no further need to normalize the scale of the presumed distribution
for identification purpose: all the parameters are identified.

4.2 Results

We estimated the parameters related to some variables that might play
roles on distributions of φ (specifications 4 to 7) and δ/γ (specification
8). We remind that, given data, we are not able to isolate the distribu-
tion of the “baseline” VTTS (we should have proposed additional time vs.
money tradeoffs). Tables 5 and 6 report estimation results. The latter gives
estimates of the models using only significant variables.

Tables 5 and 6 here

It is found that the conditional mean of φ and δ/γ depend on a limited set
of factors.

The role of income is robust to specification of the model. The results
show that the larger income, the lesser sensitivity to crowd density. For
specifications 4 to 7, VTTS increases with crowd density but less for high-
income people as compared to low-income people. It is however known
that the total effect of income on VTTS is positive: high-income people
have larger VTTS than low-income people. We here only quantify the
indirect effect of income on VTTS considering that it affects sensitivity to
crowd density. Assuming that the αi term, the “baseline VTTS” in our

5Results are available on request
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approach, may also be function of income, the total sensitivity of VTTS
to income would then be the sum of two partial effects: one that affects
the baseline VTTS and one that affect sensitivity to crowd. As the sum
of these two effects has to be positive to comply with earlier findings, it
means that sensitivity of the “baseline VTTS” has to overcompensate the
effect of income on crowd density. Such a conjecture should be tested
with appropriate data that make it possible to simultaneously estimate the
baseline VTTS and its crowd density related part.

Traveling during morning peak is significant but only for some of the
specifications. When it is so, it is negative: there is lesser sensitivity to
crowd during morning peak. It just means that PT travelers anticipates
larger crowd density during morning peak hours because of work-related
daily trips during these periods. They accept more discomfort.

The results also show that there is difference between the two surveyed
subway lines. There is larger sensitivity to crowd when traveling on line
1 (West-East both ways) as compared to traveling on line 4 (North-South
both ways). According to the PT operator, it is reported that there was
more crowd density on line 1 as compared to line 4 in 2010. Line 1 carried
about 207 millions passengers in 2010, with an average headway of 105
seconds in between two trains during peak hours during peak hours. Line
4 carried about 171 millions passengers in 2010, with the same average
peak headway. Both subway lines have similar passenger capacities. It is
also reported that the increase in traffic was by far the largest on line 1
since 1992. The results show that increase in crowd density is less accepted
when the initial level is already large.

Dispersion of the distribution of parameters is larger for specifications
4 and 7. This is not surprising for specification 4 as sample size strongly
matters in estimation efficiency: lesser observations were actually admissi-
ble for our analysis. Specification 4 actually involves a further constraint
that directly affects the admissible values of ∆t and ∆d that should be used
for generation of our SP scenarios in the present approach6. We did not
initially account for them in generation of stated choice situations, prefer-
ring to keep less specific in our approach, i.e. we did not initially have

6This is why the sample size is different as compared to the other specifications
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in mind testing this specific functional form. Actually, one of the author
in Haywood and Koning (2013) had in mind specifying a random utility
maximizing model with linear utility functions, interacting crowd density
(defined as a class variable)) with travel time, to compute time multipliers.
As it regards specification 7, the S-shape seems to be at stake.

One important point is about the “preferred” specification that we may
use for policy implications. Specification 8 appears to statistically perform
better. Specification 7 is the one where gains in adding explanatory vari-
ables are the best. Specification 4 is not directly comparable but, using
a Schwartz criterion, it appears as a good competitor. Given our results,
there should be no reason to interact the VTTS with crowding for pure
statistical performance. We however keep in line with Wilkinson (1999):
modelers must think about what the models mean, regardless of fit. One
must not strictly stick to goodness of fit but also to the meaning of the
model or one might promulgate nonsense: theory should also drive model
selection, not only data. We have to account for this in search of an appro-
priate functional form. Despite our statistical results showing that crowd
density does not affect travel time, we would prefer a model that accounts
for such interaction in that it is “a priori” a “more intuitive” representation
of choice behaviors. In addition, as stated by Kroes et al. (2013), “crowd-
ing penalties that are proportional to travel time can easily be added
to the models that are used for appraisal purposes, whereas constant
penalties are much more difficult to apply in practice”. Based on this,
specifications 4 and 5 thus may appear to be appropriate.

4.3 Elasticities and time multipliers

Given our specifications, it is virtually possible to compute any distribution
quantiles of our estimates or any function of these. We here report some
using median estimates of the (point) elasticities of the VTTS to crowd
density and of the time multipliers for some predetermined values of the
following independent variables: subway line, morning/evening peak peri-
ods, and crowd density. We refer the reader to table 1 as it regards the

15



formulas that we used. Elasticities are reported in tables 7 and 8.

Tables 7, 8 here

For levels of crowd density in between 1 and 5, the values of elasticity
spans from 0.02 to 1.93. For specifications 4 and 6, the results show that
VTTS is somewhat inelastic (i.e. absolute value ≤ 1) to crowd density.
We notice some exception as it pertains to low income travelers on line 1
during peak evening hours when crowd density is equal to 5 persons per
square meters. Elasticities above 1 mostly come from specification 5 that
considers a strictly convex relation between the VTTS and crowd density
d. The results show that VTTS becomes elastic to crowd density for large
levels of crowd density in this case. Elasticity values are rather low for case
4 (specification 7) due to the double exponential formulation and the fact
that the relation between the VTTS and crowding is a decreasing function
when crowd density is ≥ 1 person per square meter.

As Whelan and Crockett (2009) suggested, it is also interesting to eval-
uate by how much is varying the VTTS with crowd density by defining a
multiplicative factor between a target situation and a reference one. These
“time multipliers” are reported in tables 9, 10, 11, and 12. We here chose
a reference situation of 1 person per square meter.

Tables 9, 10, 11, 12 here

Considering specification 4, the time multipliers go up to 2.5 when crowd
density increase from 1 to 5 passengers per square meters. In case of very
high congestion in carriage, the value of travel time is multiplied by 2.5
as compared to a very comfortable situation. Our results are in line with
those of Haywood and Koning, 2013. They seem to overestimate a little
time multipliers as compared to those found by Kroes et al. (2013). Note
that we here have opportunity to distinguish thee time multipliers along
with different types of travelers.

Another series of interesting results comes from specification 5. In our
view, this is an intuitive specification as it allows for a convexly increasing
relation between the VTTS and crowd density, i.e. cost of having more
people in the carriage when it is already overcrowded is valued far more
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than having more people in the carriage when it is initially almost empty.
The results show that there is an inflexion point around 3 persons per
square meter. VTTS can be multiplied by up to 4.7 when crowd density
increase from 1 to 5 passengers per square meters. We agree that it might
exaggerate. We think that there may exist an upper bound on crowd
density above which time multipliers are constant.

To make things easier to understand, we depict some time multipliers
of specifications 4 and 5 them in figures 2 and 3.

Figures 2, 3 here

5 Conclusion

Studying crowding costs in Paris subway appears illustrative of modern
urban challenges. Promoting the use of PT networks needs to be accompa-
nied by guarantees about supply capacity. Even if the latter was improved,
the corresponding modal shift and 20% growth of the PT patronage has
led to a 10% increase of the passenger density in Paris subways (Observa-
toire des déplacements à Paris, 2008). Uncomfortable travel conditions are
logically highlighted as disruptive factors (crowding and unreliability) that
minimize the success of such sustainable policies.

Our results show that sensitivity to crowding mostly depends on income,
time of the day, and the specific PT infrastructure that is used for traveling.
Also, computing point estimates about elasticities of VTTS, MRS, and time
multipliers show that PT users are significantly accounting for discomfort.
Sensitivity appears to be varying in line with presumed behavior they may
have but the results show that it never can be ignored.

We recognize that our analysis may be extended in several ways. First,
data collection should be extended to disentangle the distributions of the
different structural parameters of the generalized cost functions. The pur-
pose is to simultaneously characterize both the VTTS, schedule delays, and
crowding effects in a consistent framework of analysis. Ideally, to also ac-
count for recent work on risky travel choice models, data collection should
be adapted. We think it should be rather easy to adapt our strategy to
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generate and to assign proper stated choice experiments.
Second, the generalized cost functions may also be extended in several

ways. It may be accounted for nonlinearities in either travel costs and
travel times. We here presented a simple menagerie of functional forms
where the generalized travel cost function is linear with travel time and
travel cost. There might also exist other functional forms to test, and
these also should be implemented. There is still a gap to fill as search for
an optimal formulation of the problem is not yet solved.

Finally, having a larger sample size and a greater spatial coverage may
lead to an accurate characterization of how is affected PT demand by crowd-
ing.

We are convinced that individual travel demand modeling would clearly
improve in systematically considering in-vehicle discomfort. Results of pol-
icy scenarios would of course change. Future research can not ignore crowd-
ing in public transport in economic evaluation of transport policies.
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Figure 1: Cards shown during the survey

24



T
ab

le
3:

Sa
m
pl
e
st
at
is
ti
cs

L
ab

el
of

va
ri
ab

le
s

Fr
eq
ue

nc
y

M
ea
n

T
ot
al

sa
m
pl
e
si
ze

66
7

C
ur
re
nt

cr
ow

d
de

ns
it
y
(i
n
pa

ss
./
m
2
)

3.
1

H
yp

ot
he

ti
ca
lc

ro
w
d
de

ns
it
y
(i
n
pa

ss
./
m
2
)

1.
3

C
ur
re
nt

in
-v
eh

ic
le

ti
m
e
(i
n
m
in
.)

9.
6

C
ur
re
nt

"d
oo

r-
to
-d
oo

r"
ti
m
e
(i
n
m
in
.)

46
F
ir
st

ti
m
e
bi
d
(i
n
m
in
.)

8.
7

Se
co
nd

ti
m
e
bi
d

8.
0

C
ho

ic
e:

(r
ej
ec
t-
re
je
ct
)

27
5

C
ho

ic
e:

(r
ej
ec
t-
ac
ce
pt
)

11
5

C
ho

ic
e:

(a
cc
ep

t-
re
je
ct
)

11
5

C
ho

ic
e:

(a
cc
ep

t-
ac
ce
pt
)

16
2

M
or
ni
ng

pe
ak

33
7

T
ra
ve
le
r
is

a
m
an

33
3

W
or
k
pu

rp
os
e

46
7

D
ai
ly

us
e
of

su
bw

ay
lin

e
42
6

M
on

th
ly

in
co
m
e
(i
n
00
0’
s
AC
)

2.
44

H
om

e
lo
ca
te
d
in

P
ar
is

41
7

H
om

e
lo
ca
te
d
in

in
ne

r
su
bu

rb
s

16
6

H
om

e
lo
ca
te
d
in

ou
te
r
su
bu

rb
s

84
T
ra
ve
le
r
sa
m
pl
e
on

lin
e
1

32
9

T
ra
ve
le
r
sa
m
pl
e
on

lin
e
4

33
8

25



T
ab

le
4:

C
ur
re
nt

an
d
hy

po
th
et
ic
al

le
ve
ls

of
cr
ow

di
ng

E
xp

ec
te
d
cr
ow

di
ng

(p
as
s/
m
2
)

0
1

2
2.
5

3
4

6
D
is
tr
ib
ut
io
n
(p
ct

in
te
rv
ie
w
s)

0.
0

2.
3

16
.6

27
.8

23
.9

20
.5

8.
8

H
yp

ot
he

ti
ca
lc

ro
w
di
ng

:
0
pa

ss
/m

2
(p
ct

in
te
rv
ie
w
ee
s)

n.
a.

10
0.
0

51
.3

30
.0

26
.4

19
.4

16
.7

1
pa

ss
/m

2
48
.7

31
.4

21
.6

20
.9

8.
3

2
pa

ss
/m

2
38
.6

31
.1

21
.6

16
.7

2.
5
pa

ss
/m

2
21
.0

20
.1

18
.3

3
pa

ss
/m

2
18
.0

13
.3

4
pa

ss
/m

2
26
.7

26



T
ab

le
5:

M
ax

im
um

L
ik
el
ih
oo

d
es
ti
m
at
es
,f
ul
ls

pe
ci
fic

at
io
ns

C
as
e
1

C
as
e
2

C
as
e
3

C
as
e
4

C
as
e
5

L
ab

el
E
st
.

T
-s
ta
t

E
st
.

T
-s
ta
t

E
st
.

T
-s
ta
t.

E
st
.

T
-s
ta
t.

E
st
.

T
-s
ta
t

In
te
rc
ep

t
-0
.8
4

-3
.3
0

-1
.0
8

-6
.6
2

-0
.1
0

-0
.5
4

0.
68

2.
75

1.
55

11
.0
5

M
or
ni
ng

pe
ak

-0
.0
7

-0
.3
8

-0
.1
1

-0
.9
8

-0
.2
6

-2
.0
6

-0
.5
9

-3
.3
8

-0
.2
0

-1
.9
9

In
co
m
e
in

00
0’
s
AC

-0
.2
0

-3
.6
7

-0
.1
0

-3
.0
4

-0
.1
1

-3
.0
3

-0
.1
5

-3
.0
2

-0
.0
9

-3
.3
4

T
ra
ve
le
r
is

a
m
an

0.
04

0.
21

0.
03

0.
25

0.
04

0.
35

0.
08

0.
47

0.
07

0.
67

W
or
k
pu

rp
os
e

0.
09

0.
45

0.
06

0.
42

0.
13

0.
90

0.
30

1.
49

0.
10

0.
89

L
in
e
us
ed

ev
er
y
da

y
0.
00

-0
.0
1

-0
.0
9

-0
.7
2

-0
.1
1

-0
.8
3

-0
.1
8

-0
.9
6

-0
.1
5

-1
.4
8

H
om

e
lo
ca
te
d
in

in
ne

r
su
bu

rb
s

0.
16

0.
74

0.
01

0.
09

0.
02

0.
14

0.
07

0.
36

-0
.0
9

-0
.7
7

H
om

e
lo
ca
te
d
in

ou
te
r
su
bu

rb
s

-0
.0
5

-0
.1
7

0.
18

0.
99

0.
13

0.
68

0.
06

0.
22

-0
.1
4

-0
.9
1

Su
bw

ay
lin

e
1

0.
53

2.
68

0.
31

2.
57

0.
52

3.
99

0.
99

5.
55

0.
22

2.
18

V
ar
ia
nc

e
2.
32

8.
76

1.
52

11
.0
5

1.
85

11
.0
3

3.
45

11
.0
0

1.
10

11
.1
3

G
oo

dn
es
s-
of
-fi
t
st
at
is
ti
cs

L
og
-li
ke
lih

oo
d
at

co
nv

er
ge
nc

e
-5
42
.1
2

-9
96
.3
1

-1
02
0.
29

-1
09
5.
57

-8
74
.5
7

L
og
-li
ke
lih

oo
d.

in
te
rc
ep

t
on

ly
-5
51
.5
3

-1
00
4.
87

-1
03
4.
51

-1
12
0.
25

-8
84
.4
8

Sa
m
pl
e
si
ze

40
1

66
7

66
7

66
7

66
7

27



T
ab

le
6:

M
ax

im
um

L
ik
el
ih
oo

d
es
ti
m
at
es
,s

pe
ci
fic

at
io
ns

w
it
h
on

ly
si
gn

ifi
ca
nt

va
ri
ab

le
s

C
as
e
1

C
as
e
2

C
as
e
3

C
as
e
4

C
as
e
5

L
ab

el
E
st
.

T
-s
ta
t

E
st
.

T
-s
ta
t

E
st
.

T
-s
ta
t.

E
st
.

T
-s
ta
t.

E
st
.

T
-s
ta
t

In
te
rc
ep

t
-0
.7
7

-4
.8
4

-1
.1
2

-1
0.
84

ns
0.
77

4.
47

1.
49

14
.9
9

M
or
ni
ng

pe
ak

ns
ns

-0
.2
7

-2
.3
9

-0
.5
5

-3
.1
8

-0
.1
8

-1
.8
7

In
co
m
e
in

00
0’
s
AC

-0
.2
0

-3
.7
5

-0
.1
0

-3
.1
6

-0
.1
1

-3
.8
4

-0
.1
4

-2
.8
7

-0
.0
8

-3
.0
5

T
ra
ve
le
r
is

a
m
an

ns
ns

ns
ns

ns
W
or
k
pu

rp
os
e

ns
ns

ns
ns

ns
L
in
e
us
ed

ev
er
y
da

y
ns

ns
ns

ns
ns

H
om

e
lo
ca
te
d
in

in
ne

r
su
bu

rb
s

ns
ns

ns
ns

ns
H
om

e
lo
ca
te
d
in

ou
te
r
su
bu

rb
s

ns
ns

ns
ns

ns
Su

bw
ay

lin
e
1

0.
54

2.
80

0.
32

2.
71

0.
52

4.
31

1.
02

5.
82

0.
21

2.
09

V
ar
ia
nc

e
2.
32

8.
79

1.
51

11
.0
6

1.
85

11
.0
6

3.
47

11
.0
0

1.
11

11
.1
3

G
oo

dn
es
s-
of
-fi
t
st
at
is
ti
cs

L
og
-li
ke
lih

oo
d
at

co
nv

er
ge
nc

e
-5
42
.6
3

-9
97
.6
0

-1
02
1.
40

-1
09
7.
13

-8
76
.5
1

L
og
-li
ke
lih

oo
d.

in
te
rc
ep

t
on

ly
-5
51
.5
3

-1
00
4.
87

-1
03
4.
51

-1
12
0.
25

-8
84
.4
8

Sa
m
pl
e
si
ze

40
1

66
7

66
7

66
7

66
7

28



T
ab

le
7:

P
oi
nt

es
ti
m
at
es
:
el
as
ti
ci
ti
es

of
th
e
V
T
T
S
to

cr
ow

d
de

ns
it
y,

lin
e
1,

co
m
pu

te
d
at

m
ed

ia
n
va
lu
es

of
pa

ra
m
et
er
s

C
ro
w
d
de

ns
it
y,

pe
rs
on

s
/
sq
m

m
or
ni
ng

lin
e
1

in
co
m
e
(’
00

0s
AC
)

C
as
e
1

C
as
e
2

C
as
e
3

C
as
e
4

C
as
e
5

1
N
o

Y
es

1.
5

0.
37

0.
39

0.
71

1.
79

0
1

N
o

Y
es

3
0.
30

0.
33

0.
60

1.
45

0
1

N
o

Y
es

5
0.
23

0.
27

0.
49

1.
09

0
1

Y
es

Y
es

1.
5

0.
37

0.
39

0.
54

1.
03

0
1

Y
es

Y
es

3
0.
30

0.
33

0.
46

0.
84

0
1

Y
es

Y
es

5
0.
23

0.
27

0.
37

0.
63

0
3

N
o

Y
es

1.
5

0.
64

1.
16

1.
07

0.
73

0
3

N
o

Y
es

3
0.
57

1.
00

0.
91

0.
59

0
3

N
o

Y
es

5
0.
47

0.
82

0.
73

0.
44

0
3

Y
es

Y
es

1.
5

0.
64

1.
16

0.
82

0.
42

0
3

Y
es

Y
es

3
0.
57

1.
00

0.
69

0.
34

0
3

Y
es

Y
es

5
0.
47

0.
82

0.
56

0.
26

0
5

N
o

Y
es

1.
5

0.
75

1.
93

1.
19

0.
16

0
5

N
o

Y
es

3
0.
69

1.
66

1.
01

0.
13

0
5

N
o

Y
es

5
0.
59

1.
36

0.
81

0.
10

0
5

Y
es

Y
es

1.
5

0.
75

1.
93

0.
91

0.
09

0
5

Y
es

Y
es

3
0.
69

1.
66

0.
77

0.
08

0
5

Y
es

Y
es

5
0.
59

1.
36

0.
62

0.
06

0

29



T
ab

le
8:

P
oi
nt

es
ti
m
at
es
:
el
as
ti
ci
ti
es

of
th
e
V
T
T
S
to

cr
ow

d
de

ns
it
y,

lin
e
4,

co
m
pu

te
d
at

m
ed

ia
n
va
lu
es

of
pa

ra
m
et
er
s

C
ro
w
d
de

ns
it
y,

pe
rs
on

s
/
sq
m

m
or
ni
ng

lin
e
1

in
co
m
e
(’
00

0s
AC
)

C
as
e
1

C
as
e
2

C
as
e
3

C
as
e
4

C
as
e
5

1
N
o

N
o

1.
5

0.
26

0.
28

0.
42

0.
64

0
1

N
o

N
o

3
0.
20

0.
24

0.
36

0.
52

0
1

N
o

N
o

5
0.
15

0.
20

0.
29

0.
39

0
1

Y
es

N
o

1.
5

0.
26

0.
28

0.
32

0.
37

0
1

Y
es

N
o

3
0.
20

0.
24

0.
27

0.
30

0
1

Y
es

N
o

5
0.
15

0.
20

0.
22

0.
23

0
3

N
o

N
o

1.
5

0.
51

0.
84

0.
64

0.
26

0
3

N
o

N
o

3
0.
43

0.
73

0.
54

0.
21

0
3

N
o

N
o

5
0.
34

0.
59

0.
43

0.
16

0
3

Y
es

N
o

1.
5

0.
51

0.
84

0.
49

0.
15

0
3

Y
es

N
o

3
0.
43

0.
73

0.
41

0.
12

0
3

Y
es

N
o

5
0.
34

0.
59

0.
33

0.
09

0
5

N
o

N
o

1.
5

0.
63

1.
40

0.
71

0.
06

0
5

N
o

N
o

3
0.
56

1.
21

0.
60

0.
05

0
5

N
o

N
o

5
0.
46

0.
99

0.
48

0.
04

0
5

Y
es

N
o

1.
5

0.
63

1.
40

0.
54

0.
03

0
5

Y
es

N
o

3
0.
56

1.
21

0.
46

0.
03

0
5

Y
es

N
o

5
0.
46

0.
99

0.
37

0.
02

0

30



T
ab

le
9:

P
oi
nt

es
ti
m
at
es
:
ti
m
e
m
ul
ti
pl
ie
rs
,m

or
ni
ng

pe
ak

,l
in
e
1,

co
m
pu

te
d
at

m
ed

ia
n
va
lu
es

of
pa

ra
m
et
er
s

an
d
fo
r
re
fe
re
nc

e
de

ns
it
y
d
?
=
1

cr
ow

d
de

ns
it
y,

pe
rs
on

s
/
sq
m

m
or
ni
ng

lin
e
1

in
co
m
e
(’
00
0
AC
)

C
as
e
1

C
as
e
2

C
as
e
3

C
as
e
4

C
as
e
5

0
Y
es

Y
es

1.
5

0.
63

0.
68

0.
47

0.
17

0
0

Y
es

Y
es

3
0.
70

0.
72

0.
53

0.
24

0
0

Y
es

Y
es

5
0.
77

0.
76

0.
60

0.
34

0
1

Y
es

Y
es

1.
5

1.
00

1.
00

1.
00

1.
00

0
1

Y
es

Y
es

3
1.
00

1.
00

1.
00

1.
00

0
1

Y
es

Y
es

5
1.
00

1.
00

1.
00

1.
00

0
2

Y
es

Y
es

1.
5

1.
37

1.
47

1.
55

1.
92

0
2

Y
es

Y
es

3
1.
30

1.
39

1.
45

1.
70

0
2

Y
es

Y
es

5
1.
23

1.
31

1.
35

1.
49

0
3

Y
es

Y
es

1.
5

1.
74

2.
17

2.
13

2.
44

0
3

Y
es

Y
es

3
1.
61

1.
95

1.
90

2.
06

0
3

Y
es

Y
es

5
1.
45

1.
72

1.
67

1.
73

0
4

Y
es

Y
es

1.
5

2.
11

3.
19

2.
71

2.
66

0
4

Y
es

Y
es

3
1.
91

2.
71

2.
33

2.
21

0
4

Y
es

Y
es

5
1.
68

2.
27

1.
97

1.
82

0
5

Y
es

Y
es

1.
5

2.
48

4.
70

3.
31

2.
75

0
5

Y
es

Y
es

3
2.
21

3.
79

2.
76

2.
27

0
5

Y
es

Y
es

5
1.
90

2.
97

2.
26

1.
86

0

31



T
ab

le
10

:
P
oi
nt

es
ti
m
at
es
:
ti
m
e
m
ul
ti
pl
ie
rs
,e
ve
ni
ng

pe
ak

,l
in
e
1,

co
m
pu

te
d
at

m
ed

ia
n
va
lu
es

of
pa

ra
m
et
er
s

an
d
fo
r
re
fe
re
nc

e
de

ns
it
y
d
?
=
1

cr
ow

d
de

ns
it
y,

pe
rs
on

s
/
sq
m

m
or
ni
ng

lin
e
1

in
co
m
e
(’
00
0
AC
)

C
as
e
1

C
as
e
2

C
as
e
3

C
as
e
4

C
as
e
5

0
Y
es

N
o

1.
5

0.
74

0.
76

0.
64

0.
53

0
0

Y
es

N
o

3
0.
80

0.
79

0.
68

0.
60

0
0

Y
es

N
o

5
0.
85

0.
82

0.
74

0.
68

0
1

Y
es

N
o

1.
5

1.
00

1.
00

1.
00

1.
00

0
1

Y
es

N
o

3
1.
00

1.
00

1.
00

1.
00

0
1

Y
es

N
o

5
1.
00

1.
00

1.
00

1.
00

0
2

Y
es

N
o

1.
5

1.
26

1.
32

1.
30

1.
26

0
2

Y
es

N
o

3
1.
20

1.
27

1.
25

1.
21

0
2

Y
es

N
o

5
1.
15

1.
22

1.
20

1.
15

0
3

Y
es

N
o

1.
5

1.
51

1.
75

1.
57

1.
38

0
3

Y
es

N
o

3
1.
41

1.
62

1.
46

1.
30

0
3

Y
es

N
o

5
1.
29

1.
49

1.
36

1.
22

0
4

Y
es

N
o

1.
5

1.
77

2.
32

1.
81

1.
42

0
4

Y
es

N
o

3
1.
61

2.
07

1.
65

1.
33

0
4

Y
es

N
o

5
1.
44

1.
81

1.
50

1.
24

0
5

Y
es

N
o

1.
5

2.
02

3.
08

2.
04

1.
44

0
5

Y
es

N
o

3
1.
81

2.
63

1.
83

1.
34

0
5

Y
es

N
o

5
1.
58

2.
21

1.
62

1.
25

0

32



T
ab

le
11

:
P
oi
nt

es
ti
m
at
es
:
ti
m
e
m
ul
ti
pl
ie
rs
,m

or
ni
ng

pe
ak

,l
in
e
4,

co
m
pu

te
d
at

m
ed

ia
n
va
lu
es

of
pa

ra
m
-

et
er
s
an

d
fo
r
re
fe
re
nc

e
de

ns
it
y
d
?
=
1

cr
ow

d
de

ns
it
y,

pe
rs
on

s
/
sq
m

m
or
ni
ng

lin
e
1

in
co
m
e
(’
00
0
AC
)

C
as
e
1

C
as
e
2

C
as
e
3

C
as
e
4

C
as
e
5

0
N
o

Y
es

1.
5

0.
63

0.
68

0.
37

0.
05

0
0

N
o

Y
es

3
0.
70

0.
72

0.
43

0.
08

0
0

N
o

Y
es

5
0.
77

0.
76

0.
51

0.
15

0
1

N
o

Y
es

1.
5

1.
00

1.
00

1.
00

1.
00

0
1

N
o

Y
es

3
1.
00

1.
00

1.
00

1.
00

0
1

N
o

Y
es

5
1.
00

1.
00

1.
00

1.
00

0
2

N
o

Y
es

1.
5

1.
37

1.
47

1.
78

3.
09

0
2

N
o

Y
es

3
1.
30

1.
39

1.
63

2.
50

0
2

N
o

Y
es

5
1.
23

1.
31

1.
48

2.
00

0
3

N
o

Y
es

1.
5

1.
74

2.
17

2.
69

4.
68

0
3

N
o

Y
es

3
1.
61

1.
95

2.
31

3.
50

0
3

N
o

Y
es

5
1.
45

1.
72

1.
96

2.
58

0
4

N
o

Y
es

1.
5

2.
11

3.
19

3.
69

5.
46

0
4

N
o

Y
es

3
1.
91

2.
71

3.
03

3.
96

0
4

N
o

Y
es

5
1.
68

2.
27

2.
43

2.
83

0
5

N
o

Y
es

1.
5

2.
48

4.
70

4.
79

5.
77

0
5

N
o

Y
es

3
2.
21

3.
79

3.
78

4.
14

0
5

N
o

Y
es

5
1.
90

2.
97

2.
90

2.
93

0

33



T
ab

le
12

:
P
oi
nt

es
ti
m
at
es
:
ti
m
e
m
ul
ti
pl
ie
rs
,e
ve
ni
ng

pe
ak

,l
in
e
4,

co
m
pu

te
d
at

m
ed

ia
n
va
lu
es

of
pa

ra
m
et
er
s

an
d
fo
r
re
fe
re
nc

e
de

ns
it
y
d
?
=
1

cr
ow

d
de

ns
it
y,

pe
rs
on

s
/
sq
m

m
or
ni
ng

lin
e
1

in
co
m
e
(’
00
0
AC
)

C
as
e
1

C
as
e
2

C
as
e
3

C
as
e
4

C
as
e
5

0
N
o

N
o

1.
5

0.
74

0.
76

0.
56

0.
33

0
0

N
o

N
o

3
0.
80

0.
79

0.
61

0.
41

0
0

N
o

N
o

5
0.
85

0.
82

0.
67

0.
51

0
1

N
o

N
o

1.
5

1.
00

1.
00

1.
00

1.
00

0
1

N
o

N
o

3
1.
00

1.
00

1.
00

1.
00

0
1

N
o

N
o

5
1.
00

1.
00

1.
00

1.
00

0
2

N
o

N
o

1.
5

1.
26

1.
32

1.
41

1.
50

0
2

N
o

N
o

3
1.
20

1.
27

1.
34

1.
39

0
2

N
o

N
o

5
1.
15

1.
22

1.
26

1.
28

0
3

N
o

N
o

1.
5

1.
51

1.
75

1.
80

1.
75

0
3

N
o

N
o

3
1.
41

1.
62

1.
65

1.
57

0
3

N
o

N
o

5
1.
29

1.
49

1.
49

1.
41

0
4

N
o

N
o

1.
5

1.
77

2.
32

2.
17

1.
84

0
4

N
o

N
o

3
1.
61

2.
07

1.
93

1.
64

0
4

N
o

N
o

5
1.
44

1.
81

1.
70

1.
45

0
5

N
o

N
o

1.
5

2.
02

3.
08

2.
54

1.
88

0
5

N
o

N
o

3
1.
81

2.
63

2.
20

1.
67

0
5

N
o

N
o

5
1.
58

2.
21

1.
88

1.
47

0

34



Figure 2: Time multipliers, morning peak, case 1

Figure 3: Time multipliers, morning peak, case 2
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