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Abstract

In this report we study and compare particular integration methods to solve
ordinary differential equations, which are separable in solvable parts. The main
source for this work is the article of Blanes and Casas: "On the necessity of
negative coefficient for operator splitting schemes of order higher than two",
which was published by ELSEVIER in 2004. After a brief introduction and some
preliminaries on fundamental aknownledged, namely the flow of a differential
equation which will allow to construct splitting schemes, we start the third
part of this work with some definitions and fundamental theorems for general
splitting schemes. At the end of this section, we will look more carefully on some
special schemes, with modified potentials. In the fourth part, we study and
compare some of the different methods seen in the third part of this report on
an ordinary separable differential equation. In fifth part, we use these splitting
schemes on the damped wave equation and look at the conservation of the
Energy. Finally, you will find the main MATLAB code in the annexe.

1 Introduction
Splitting methods are particular numerical schemes applied to ordinary and par-
tial differential equations, which are separable in solvable parts. These methods
are always studied nowadays. More precisely, we consider the ordinary differential
equation (ODE)

y(t)′ = f(y(t)), y0 = y(0) ∈ Rn,

with f : Rn → Rn a smooth function and the associated vector field

F =
n∑
i=1

fi(y) ∂

∂yi
.

If we assume that f(y) can be written as f(y) = fA(y) +fB(y), then the vector field
F is split accordingly as F = FA + FB and the flows ϕ[A]

h and ϕ
[B]
h corresponding

to FA and FB can be computed. A splitting scheme is then a composition of these
flows with fractionnal time steps. More precisely, a general splitting method is

ψh = ϕ
[B]
bmh
◦ ϕ[A]

amh
◦ · · · ◦ ϕ[B]

b1h
◦ ϕ[A]

a1h
. (1)

We will see that a scheme of order p ≥ 3 on the form (1) must have some of his
coefficients negative [2]. Sometimes it is possible to build higher order methods by
modifie potential. These splitting methods have positive coefficients and we can for
example obtain a method of order four from second order schemes.

In the second part of this work, we will carefully look at two examples. The first
one will be an ordinary differential equation that is non linear but separable. By
computing the numerical error of these methods, we will see that we obtain schemes
of order four on this example.

A more interesting example will be the damped wave equation, which is a hyper-
bolic partial differential equation. It has a computable exact solution by using the
method of separation of variables. For the numerical approximation, we transforme
this PDE into a system of ODE, and then we will be able to apply on it the different
splitting schemes studied in this report. Finally, we study the conservation of energy
of the system.
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2 Preliminaries
In the following section we give main results about Lie Bracket, flows of an ordi-
nay differential equation and the BCH formula, that will be fundamental for the
comprehension of splitting schemes.

2.1 Lie Bracket

The Lie Bracket is a very usefull operator that we mainly see in Lie Algebra or in
the study of smooth manifolds. But it will be very useful for this analysis context
too. We will use it for the paticular case of matrix and vector fields.

Definition 2.1 (Lie Algebra)
Let K be a field and V a vector space of finite dimension on K. A lie Bracket is a
bilinear application

[·, ·] : V × V → V,

such that the following properies are verified:

1. [x, y] = −[y, x] for all x, y ∈ V (skew-symmetry)

2. [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ V (Jacobi identity)

The vector space V together with [·, ·] is called a Lie Algebra and is denoted by L(V ).

Remark 2.2
Skew-symmetry of the Lie Bracket implies directly that

[x, x] = 0 ∀x ∈ V.

Example 2.3
If V = Mn(K), for two matrices A,B ∈ V the Lie Bracket is

[A,B] = AB −BA.

We easily see that V with [·, ·] is a Lie Algebra, denoted by gln(K).

Definition 2.4 (Graded Free Lie-Algebra)
A free Lie Algebra over a given field K is a Lie algebra generated by a set X. A
graded free Lie Algebra L is a free lie algebra when X is a set of vector spaces:

L =
⊕
i∈Z
Li,

such that the Lie-Bracket respects this gradation:

[Li,Lj ] ⊂ Li+j .

Definition 2.5 (Lie Bracket for vector fields)
Let X and Y ∈ χ(Rn), the set of smooth vectors fields on Rn. Given a smooth
function f : Rn → R, we can apply X to f to obtain another smooth function Xf .
In turn, we can apply Y to this function, and yet obtain another smooth function
Y X(f) = Y (Xf). But the operation f 7→ Y X(f) in general does not satisfies
the derivation rules. However, we can also apply the same two vector fields in the
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opposite order. Applying both of these operators to f and substrating, we obtain an
operator

[X,Y ] : C∞(Rn) 7→ C∞(Rn)
called the Lie Bracket of X and Y , which is similarly defined as before:

[X,Y ]f = XY f − Y Xf.

This Lie Bracket verifies skew-symmetry and Jacobi identity, which implies that
χ(Rn) is a Lie Algebra. Moroever we have for X,Y ∈ χ(Rn) and f, g ∈ C∞(Rn):

[fX, gY ] = fg[X,Y ] + (fXg)Y − (gY f)X.

Example 2.6
Let g : R 7→ R be a smooth function and consider the vector fields

FA ≡ x2
∂

∂x1
and FB ≡ g(x1) ∂

∂x2
.

Then, the Lie Bracket of this two fields is computing as follows:

[FA, FB] = x2
∂

∂x1

(
g(x1) ∂

∂x2

)
− g(x1) ∂

∂x2

(
x2

∂

∂x1

)
= x2

(
g′(x1) ∂

∂x2
+ g(x1) ∂2

∂x1∂x2

)
− g(x1)

(
∂

∂x1
+ x2

∂2

∂x2∂x1

)

= x2g
′(x1) ∂

∂x2
− g(x1) ∂

∂x1
.

where in the last step we used the fact that we always compute Lie Bracket on smooth
function, which mixed partial derivatives can be taken in any order.

2.2 Flows

Flow are the most important elements of our work, because they allow to construct
Splitting methods. The main result to remember here is the fact that the set of
flows is a group for the composition of application.

Definition 2.7 (Flow of an ordinary differential equation (ODE))
Suppose f : Rn → Rn is a smooth function. Then, for any initial condition y0 ∈ Rn,
the ODE

y′(t) = f(y(t), t) (2)
has a unique solution on [0, T [, T ∈]0,∞[, by the theorem of Cauchy-Lipschitz. We
denote this solution by y(t). Consequently, y(0) = y0 and y′(t) = f(y(t), t). We
suppose that T →∞ and then we define the flow of (2), which is a map

ϕ : R× Rn → Rn

defined by
ϕ(h, y0) = y(h).

We often abuse the terminology and call the map

ϕh : Rn → Rn

defined by
ϕh(y) = ϕ(h, y)

the h-flow of (2).
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Theorem 2.8
For any s, t ∈ R:

1. ϕ0(y0) = y0;

2. ϕt+s(y) = ϕt ◦ ϕs(y);

3. ϕ−1
t (y) = ϕ−t(y).

Proof. 1. ϕ0(y0) = ϕ(0, y0) = y0.

2. First of all, we remark that the composition ϕt ◦ ϕs(y) and the flow ϕt+s(y)
have the same initial condition y(s). In addition,

∂

∂t
(ϕt+s(y0)) = f(ϕt+s(y0))∂(t+ s)

∂t
= f(ϕt+s(y0)),

∂

∂t
(ϕt ◦ ϕs(y0)) = f(ϕt(ϕs(y0))).

Consequently, ϕt ◦ϕs(y) and ϕt+s(y) are both flows of (2). But they have the
same initial condition, so

ϕt(ϕs(y0)) = ϕt+s(y0).

We have then, by the uniqueness of solutions,

ϕt+s(y) = ϕt ◦ ϕs(y).

3. As shown in the precedent point, ϕt−t(y) = ϕt ◦ ϕ−t(y) = ϕ−t ◦ ϕt(y) = y,
which clearly implies that ϕ−1

t (y) = ϕ−t(y).

Remark 2.9
The theorem (2.8) signifies that the set of all h-flow of (2) is in fact a group for the
composition of map.

Remark 2.10
Sometimes, we can define the flow of an partial differential equation in a similar
way.

The next result will be very useful to define splitting schemes with modified
potentials.

Theorem 2.11
Let X and Y be smooth vector fields on Rn, with ϕ and ψ the respective flows. The
following properties are equivalent:

1. [X,Y ] = 0;

2. ϕt ◦ ψs = ψs ◦ ϕt.

Proof. See proposition 18.5 on page 489 of [5]. The proof use some applications
defined for the study of Smooth Manifold, called pushforward, that we will not
introduce here.
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2.3 Baker-Campell-Hausdorff (BCH) formula

This formula will be very usefull when we will look on the order of a splitting method.
For example, two matrix A,B ∈ gln(R)., we have hardly ever [A,B] = 0, and then

eAeB 6= eA+B.

The BCH formula will complete the lack.

Definition 2.12
Let F ∈ χ(Rn) a smooth vector field. The application exp : χ(Rn) → χ(Rn) is the
serie

exp(F ) =
∞∑
k=0

F k

k!

where
F k = F ◦ · · · ◦ F k times.

When F is a linear, it can be designed as a matrix A, and we obtain

exp(A) =
∞∑
k=0

Ak

k!

for the product of matrix.

Proposition 2.13
Let n ∈ N and g : Rn → Rn. For any ε > 0 we have

eg(x)+ε = eg(x) +O(ε)

Proof. We simply use the Taylor Development of f(g(x) + ε) = eg(x)+ε around g(x)
and we have

eg(x)+ε = eg(x) + ε

2(g′(x)eg(x) + ε2

6 (eg(x)(g′(x) + g′′(x)) + · · · = eg(x) +O(ε).

Proposition 2.14 (Baker-Campell-Hausdorff Formula (BCH))
We consider A, B ∈ gln(R) and h ∈ R. Then, we have the following approximation
up to order three:

ehAehB = exp
(
h(A+B) + h2

2 [A,B] + h3

12[A, [A,B]]− h3

12[B, [A,B]] +O(h4)
)
.

(3)

Proof. First, we develop ehAehB up to order three:

=
(
I + hA+ h2

2 A
2 + h3

6 A
3 +O(h4)

)(
I + hB + h2

2 B
2 + h3

6 B
3 +O(h4)

)

= I + h(A+B) + h2

2 (A2 +B2 + 2AB)

+ h3

6 (A3 +B3 + 3AB2 + 3A2B) +O(h4).
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On the other hand, we obtain:

exp
(
h(A+B) + h2

2 [A,B] + h3

12[A, [A,B]]− h3

12[B, [A,B]] +O(h4)
)

= I + h(A+B) + h2

2 [A,B] + h3

12[A, [A,B]]− h3

12[B, [A,B]]

+ 1
2

(
h(A+B) + h2

2 [A,B] + h3

12[A, [A,B]]− h3

12[B, [A,B]]
)2

+ 1
6 (h(A+B))3 +O(h4)

= I + h(A+B) + h2

2 (AB −BA+A2 +B2 +AB +BA)

+ h3

6 ((A3 +B3 +ABA+BA2 +A2B +AB2 +BAB +B2A)

+ 1
2 ([A, [A,B]]− [B, [A,B]])) + 3

2 ((A+B)[A,B] + [A,B](A+B)) +O(h4)

= I + h(A+B) + h2

2 (A2 +B2 + 2AB)

+ h3

6 (A3 +B3 + 3A2B + 3AB2) +O(h4)

As we compare the two developments, the proposition follows.

3 Splitting Schemes
Splitting methods are numerical schemes constructed by a composition of flows.
We first give results when the coefficients can be negative and we will see how to
construct method up to order three. Then we will look particulary on symmetric
methods and so called "effective order" schemes, which are useful to obtain for exam-
ple a scheme of order four avoiding too much compute. Finally, when the potential
is modified, we can obtain high order method with positive coefficients and we will
give examples of schemes of order and effective order four.

3.1 Scheme with Positive and Negative Coefficients

Consider n ∈ N and the following separable ODE

y′(t) = f(y(t), t),
y(0) = y0

(4)

for y ∈ Rn, h ∈ I ⊂ R and f : Rn → Rn a function. We can associate to f a vector
field F, called the "Lie Operator" which is defined by

F =
n∑
i=1

fi(x) ∂

∂xi
.

We denote by ϕh the h-flow of the ODE, and the exact solution is given by

y(h) = ϕh(y0).

Now let assume that f(y) can be written f(y) = fA(y)+fB(y) so that the equations
y′ = fA(y) and y′ = fB(y) are solvable. Then the vector field F is split as F =
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FA +FB and the h-flows corresponding to FA and FB can be exactly computed and
we note them ϕ

[A]
h and ϕ[B]

h .
For the major theorical part of this report, we only consider linear problem. It

means that problem (4) becomes

y′(h) = My(h),
y(0) = y0

(5)

for y ∈ Rn, h ∈ I ⊂ R and M ∈Mn(R). In this case, the flow, easy to find, is noted
ϕ

[M ]
h (y) = yehM . When M = A + B, it motivates to use splitting methods, which

are compositions of the two flows associated to (5). Here, the two flows are

ϕ
[A]
h (y) = ehAy and ϕ

[B]
h (y) = ehBy.

Example 3.1
One of the easiest splitting flow you can do with (5) is called the "Lie-Trotting
scheme" and this is just a composition of the two flows:

ψh(y) = ϕ
[B]
h ◦ ϕ

[A]
h (y) = yehAehB.

Later we will see later more difficult examples.

Definition 3.2 (Order of a scheme)
Let M = A+B ∈Mn(R) and ϕ[A]

h , ϕ
[B]
h the two flows of the ODE (5) and consider

the following scheme:

ψh = ϕ
[B]
bmh
◦ ϕ[A]

amh
◦ · · · ◦ ϕ[B]

b1h
◦ ϕ[A]

a1h
= eha1Aehb1B . . . ehamAehbmB, (6)

with (a1, b1, . . . , am, bm) ∈ R2m. We say that the scheme (6) is of order p if

ψh = φh +O(hp+1)

for a proper choice of m and the coefficient ai, bi.

Theorem 3.3
[2, p.27] We consider the scheme (6):

ψh = eha1Aehb1B . . . ehamAehbmB.

This scheme is of order p if, in terms of the coefficient ai, bi, it corresponds to the
following order conditions:

p = 1 :
∑m
i=1 ai = 1,

∑m
i=1 bi = 1;

p = 2 :
∑m
i=1 bi

(∑i
j=1 aj

)
= 1

2 ;

p = 3 :
∑m−1
i=1 bi

(∑m
j=i+1 aj

)2
= 1

3 ,
∑m
i=1 ai

(∑m
j=i bj

)2
= 1

3 .

Proof. As it is a very long compute, we will not show the result for p = 3. For the
proof of p = 1, 2 we must compute the general term: using the BCH formula and
proceding by recurrence on m, we find the following expression for the scheme (6)

ψh = e
h

(∑m

i=1 aiA+
∑m

j=1 bjB

)
+h2

2

(∑m

i=1 bi

(∑i

j=1 ai

)
−
∑m−1

i=1 bi

(∑m

j=i+1 aj

))
[A,B]+O(h3)

(7)
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Now, we could easily see the two conditions: if we want a scheme of order p = 1, it
means that

ψh = eh(A+B) +O(h2),

and this is verified if
∑m
i=1 ai = 1 and

∑m
i=1 bi = 1 and by proposition 2.

When p = 2, we want to show that

ψh = eh(A+B) +O(h3).

In others words, we want that the coefficient of h2 vanishes:

m∑
i=1

bi

 i∑
j=1

ai

− m−1∑
i=1

bi

 m∑
j=i+1

aj

 = 0. (8)

But, if
m∑
i=1

bi

 i∑
j=1

aj

 = 1
2 ,

m∑
i=1

ai = 1,
m∑
i=1

bi = 1

then we have

m−1∑
i=1

bi

 m∑
j=i+1

aj

 =
m−1∑
i=1

bi

1−
i∑

j=1
aj

 =
m−1∑
i=1

bi −
m−1∑
i=1

bi

 i∑
j=1

aj


= 1− bm −

m−1∑
i=1

bi

 i∑
j=1

aj


= 1−

m∑
i=1

bi

 i∑
j=1

aj


= 1− 1

2 = 1
2

Consequently, the relation (8) is verified and the scheme (6) is of order 2.

Example 3.4
The Lie Scheme has only the coefficient a1 = b1 = 1. The first condition is evident,
but the second one is not verified, because a1b1 = 1 6= 1

2 . So, it is of order 1.
The Strang scheme has the coefficients a1 = a2 = 1

2 and b1 = 1, b2 = 0 and
conditions (1) and (2) are verified:

a1 + a2 = b1 + b2 = 1 and b1a1 + b2(a1 + a2) = 1
2 .

This implies that the Strang scheme is of order two. It is not of order three because
for example, b1(a2)2 = 1

4 6=
1
3 .

Definition 3.5
For a scheme ψh, we define his adjoint scheme by ψ∗h = ψ−1

−h.

Theorem 3.6
[2, theorem 2, p.27 − 28] If p is a positive integer such as p ≥ 3 and m any finite
positive integer, then, for every pth-order method of the form (6), one has

min1≤i≤mai < 0 and min1≤j≤mbj < 0.
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Proof. This theorem tells us precisely that a scheme of the form (6) with m any pos-
itive integer and all the coefficients ai, bi being positive cannot satisfy the equations
from theorem (3.3):

m−1∑
i=1

bi

 m∑
j=i+1

aj

2

= 1
3 ,

m∑
i=1

ai

 m∑
j=i

bj

2

= 1
3 .

Consider the first order method φh = ehBehA, its adjoint φ∗h = ehAehB and the
splitting method

ψh = ebmBeamA . . . ea2Aeb1Bea1A. (9)

There exists a connection between this three schemes. Indeed, by composing φh and
φ∗h with different time steps we obtain:

ψh = φ∗β2mh ◦ φβ2m−1h ◦ · · · ◦ φ∗β2h ◦ φβ1h ◦ φ∗β0h (10)

Now, by inserting the explicit form of φβih and φ∗βih in (10) we have

ψ = eβ2mhAeβ2mhBeβ2m−1hBeβ2m−1hA . . . eβ2hAeβ2hBeβ1hBeβ1hAeβ0hAeβ0hB

= eβ2mhAe(β2m+β2m−1)hBe(β2m+β2m−1)hA . . . e(β2+β1)hBe(β1+β0)hAeβ0hB

when we use the property of the group of the exact flow in the last equality. If we
take β2m = β0 = 0, then the last scheme is equivalent to the scheme (19), with

ai = β2i−1 + β2i−2 and bi = β2i + β2i−1.

Then
m∑
i=1

ai =
m∑
j=1

bj =
2m∑
k=0

βk

and the consistency of both schemes requirs in fact that
m∑
i=1

ai =
m∑
j=1

bj =
2m∑
k=0

βk = 1.

It has been shown that the order conditions for the coefficients ai, bj to get a method
of order p ≥ 1 are equivalent to the order conditions for the βi. In this case, the
scheme ψh (6) can be expressed as

ψh = exp(−X−β0h)exp(Xβ1h)exp(−X−β2h) . . . exp(Xβ2m−1h)exp(−X−β2mh).

By repeting application of the BCH formula, we have

ψh = exp(hf1,1X1 + h2f2,1X2 + h3(f3,1X3 + f3,2[X1, X2]) +O(h4)) (11)

where the coefficients fk,j are polynomials of degree k in the variable βi and the Xk

are the Lie Brackets of the three order BCH formula:

X1 = A+B,X2 = 1
2[A,B], X3 = 1

12([A, [A,B]]− [B, [A,B]]).

The first terms are

f1,1 =
2m∑
i=0

βi, f2,1 =
2m∑
i=0

(−1)i+1β2
i , f3,1 =

2m∑
i=0

β3
i . (12)
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Then, f1,1 = 1 and fi,j = 0 for all i ≤ p are sufficient for the method to be of order
p. From (12) it is clear that

f3,1 =
2m∑
i=0

β3
i = 0

is a necessary condition to be satisfied by any method of order p ≥ 3. We suppose
that more than two βi are differents from zero, because β3

1 + β3
2 = 0 together with

the consistency condition β1 + β2 = 1 have no real solutions. On the other hand,
for all positive integers m,

f3,1 =
2m∑
i=0

β3
i = β3

0 + β3
1 + · · ·+ β3

2m−2 + β3
2m−1 + β3

2m

= (β3
0 + β3

1) + · · ·+ (β3
2m−2 + β3

2m−1) + β3
2m =

m∑
i=0

(β3
2i−2 + β3

2i−1) + β3
2m

=
m∑
i=0

(β3
2i−2 + β3

2i−1),

because β2m = 0. Consequently, β3
2j−1+β3

2j−2 has to be negative for some 1 ≤ j ≤ m.
But we can verify that sign(x3 + y3) =sign(x + y) for any x, y ∈ R, which implies
that

aj = β2j−2 + β2j−1 < 0

for some j so that 1 ≤ j ≤ m. Similarly, we can also write

f3,1 = β3
0 +

m∑
i=0

(β3
2i−1 + β3

2i) =
m∑
i=0

(β3
2i−1 + β3

2i) = 0

so that bk = β2k−1 + β2k < 0.

Remark 3.7
In general, for a splitting method of order p ≥ 3 of the form (6), the negative
coefficients are in consecutive places. See [2] for further informations.

Definition 3.8
We say that a numerical method yn+1 = ψh(yn) is symmetric if it satisfies

ψh ◦ ψ−h = Id.

Consequently, ψh is symmetric if and only if ψh = ψ∗h.

Proposition 3.9
Let us consider a symmetric method φh of odd order p. Then, φh is of order p+ 1.

Proof. Because φh is of order p, we can write

φh(y) = ϕh(y) + hp+1C(y) +O(hp+2) (13)

where C(y) only depends of y. Now we will show that we can write φ∗h as

φ∗h(y) = ϕh(y) + (−1)php+1C(y) +O(hp+2).

First of all, by replacing h by −h in (13), we obtain

φ−h(y) = ϕ−h(y) + (−1)p+1hp+1C(y) +O(hp+2).
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Then, using the group property of the flow, a right composition with ϕh gives

φ−h(ϕh(y)) = y + (−1)p+1hp+1C(ϕh(y)) +O(hp+2).

We compose now with φ∗h = φ−1
−h and we apply its Taylor development:

φ−1
−h ◦ φ−h ◦ ϕh(y) = ϕh(y) = φ−1

−h(y + (−1)p+1hp+1C(ϕh(y)) +O(hp+2)

= φ−1
−h(y) + φ

′−1
−h (y)((−1)p+1hp+1C(ϕh(y))) +O(hp+2)

= φ−1
−h(y)− (−1)php+1C(ϕh(y))φ′−1

−h (y) +O(hp+2).

We remark that
ϕh(y) = y +O(h)

and a small compute gives
φ
′−1
−h (y) = 1 +O(h)

These two affirmations lead us to

C(ϕh(y))φ′−1
−h (y) = C(y +O(h))(1 +O(h)) = C(y) +O(h)

and consequently to

φ∗h(y) = ϕh(y) + (−1)php+1C(y) +O(hp+2). (14)

Comparing (13) and (14) we must have

(−1)p = 1 or C(y) = 0.

But, as p is odd, the first condition is not verified. Consequently, C(y) = 0 and then

φh(y) = ϕh(y) +O(hp+2).

So the method is of order p+ 1.

3.2 Composition Methods of Effective Order p ≥ 3
This is a particular kind of schemes. The advantage is two-fold: these methods are
not so difficult to construct and we can obtain high order method without too much
compute.

Definition 3.10
We say that the scheme

ψh = ebmhBeamhA . . . eb1hBea1hA

is of effective order p if a parametric map πh : RD → RD exists for which the method
ψ̂h = πh ◦ ψh ◦ π−1

h is of order p, that is

πh ◦ ψh ◦ π−1
h = ϕh +O(hp+1).

The map πh is called the post-processor.

Example 3.11
Consider problem (5) with Lie-Trotting scheme ψh = ehAehB and the Strang splitting
scheme φh = e

h
2AehBe

h
2A. Then ψh is of effective order two with the post-processor

πh = e−
h
2A because

φh = e−
h
2A ◦ ψh ◦ e

h
2A.
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Remark 3.12
Because of:

yn = ψ̂h(yn−1) = (ψ̂h)n(y0) = (πh ◦ ψh ◦ π−1
h )n(y0) = πh ◦ (ψh)n ◦ π−1

h (y0),

an implementation of yn over n steps with constant step size h has the same com-
putational efficiency as ψ̂h. Indeed, the compute of π−1

h has only to be done at the
beginning of the integration, and πh has to be evalued only at output points.

Theorem 3.13
[2, pp 30-31] Consider the scheme

ψh = eb1hBea1hA . . . ebmhBeamhA.

At least one of the ai as well as one of the bi have to be negative in the scheme if
ψh is of effective order p ≥ 3.

Proof. Suppose that ψh is a scheme of effective order p ≥ 3 with all ai positive. Let
us consider a post-processor πh formally as the exact 1-flow of a vector field Ph. It
is natural to choose the vector field as an element of the graded free Lie Algebra
generated by A and B. We consider then

Ph = h(c1A+ c2B) + h2

2 c3[A,B] +O(h3). (15)

On the other hand, since

c1A+ c2B = (c2 − c1)B + c1(A+B) = (c1 − c2)A+ c2(A+B),

from (15), we can write

πh = ePh = ehc1(A+B)ehcBe
h2
2 d1[A,B] +O(h3) (16)

and
πh = ePh = ehc2(A+B)e−hcAe

h2
2 d2[A,B] +O(h3), (17)

where c = c2− c1 and d1, d2 are parameters depending on c1, c2, c3. Then, from (16)
with c1 = 0, we have

πh = ePh = ehcBe
h2
2 d1[A,B] +O(h3).

Consider ψ̂h the scheme of order 3 such as

ψ̂h = πh ◦ ψh ◦ π−1
h .

This last relation leads us to

e−
h2
2 d1[A,B]e−hcBψhe

hcBe
h2
2 d1[A,B] = ψ̂h = eh(A+B) +O(h4),

or equivalently

ψ̄h = e−hcBψhe
hcB = e

h2
2 d1[A,B]eh(A+B)e−

h2
2 d1[A,B] +O(h4). (18)
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We can notice that all coefficients ai are positive, since ψ̄h is associated with the
composition map

ψ̄h = e−chBea1hAeb1hBea2hA . . . eamhAebmBhAechB

which can be written as a composition of the first order method and its adjoint with
coefficient β̄i.

ψ̄h = eβ̄0hAe(β̄0+β̄1)hBe(β̄1+β̄2)hA . . . e(β̄2k−2+β̄2k−1)hBe(β̄2k−1+β̄2k)hAeβ̄2khB

with β̄0 = β̄2k = 0. As previously, we obtained from (11) that a necessary condition
for the scheme ψ̂h to be of order p ≥ 3 is

ˆf3,1 :=
2k∑
i=0

β̂3
i = 0

But, as we know from the proof of the theorem (3.6), this condition cannot be
satisfied with all ai positive. If we assume that all positive bi, the same argument
leads to the same condradiction.

3.3 Composition Methods with all Coefficients Being Positive

[2, p.35] In this subsection, we will see that we can construct high order splitting
scheme, but with all coefficient begin positive. It it not a contradiction with theorem
(3.6) because we will compute flows with modified vector field, by applying lie bracket
between them: splitting methods with modified potential.

3.3.1 A Method of Order Four

Consider now the second order differential equation

y′′ = g(y, y′)

which can be written in the form (4) by taking x = (x1, x2) = (y, y′) and

fA(x) = (x2, 0), fB(x) = (0, g(x1, x2))

Equivalently, we can also consider the vector fields

FA ≡ x2
∂

∂x2
and FB ≡ g(x1, x2) ∂

∂x2
.

When g(y, y′) = g(y), this equation frequently appears in relevant problems arising
in classical and quantum mechanics: there the operator FA is related to the kinetic
energy and FB is associated with the potential energy. It is then possible to compute
the flow corresponding to FC ≡ [FB, [FA, FB]]. Moroever, if [FB, FC ] = 0, we know
by theorem (2.11) that the corresponding flows commutes. Consequently, it makes
sense to compute the flow ϕ

[B,C]
bh,ch3 associated with the vector field hbFB + ch3FC .

A composition of this flow with the standard flows of the problem can give a high
order method, which is constructed with positive coefficients. A general method is
given by

ψh = ϕ
[B,C]
bmh,cmh3 ◦ ϕ[A]

am ◦ · · · ◦ ϕ
[B,C]
b1h,c1h3 ◦ ϕ[A]

a1 , (19)
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and a particular case is the method

ψh = ϕ
[B|
h/6 ◦ ϕ

[A]
h/2 ◦

[B,C]
2h/3,h3/72 ◦ϕ

[A]
h/2 ◦ ϕ

[B]
h/6. (20)

Using BCH formula, we can see that this scheme is of order three, and it is not very
difficult to observe that it is also symmetric. Proposition (3.9) implies then that it
is of order four.

3.3.2 A Method of Effective Order Four

Let us consider the following scheme:

ψh = ϕ
[A]
h/2 ◦ ϕ

[B,C]
h,h3/24 ◦ ϕ

[A]
h/2

We still suppose that we stay in a linear problem. It implies that ψh is given by

ψh = e
h
2AehB+h3

24 [B,[A,B]]e
h
2A

This is a symmetric method of order two, because his development with BCH formula
gives:

ψh = e

h

2Ae
hB + h3

24[B, [A,B]]
e

h

2A

= e

h

2Ae
hB + h

2A+ h2

4 [B,A]− h3

48[A, [B,A]] +O(h4)

= e
h(A+B) + h3

24[A, [B,A]]− h3

24[B, [A,B]]
+O(h4).

We want to show that this scheme is of effective order four. Consequently, we must
find a post-processor πh so that the method

Φh = πh ◦ ψh ◦ π−1
h

becomes of order four. In order to avoid too much compute, we take a post processor
such that the method Φh is symmetric:

πh ◦ ψh ◦ π−1
h = Φh = Φ−1

−h = (π−h ◦ ψ−h ◦ π−1
−h)−1 = π−h ◦ ψh ◦ π−1

−h

which implies that the processor verifies πh = π−h for all h. Consequently, if we
show that Φh is a method of order three, then proposition (3.9) implies order four
because it is symmetric. Suppose that πh = exp{ah2[A,B]}. We develop now Φh

with BCH formula:

Φh = πh ◦ ψh ◦ π−1
h

= eah
2[A,B] ◦ e

h(A+B) + h3

24[A, [B,A]]− h3

24[B, [A,B]]
◦ e−ah2[A,B]

= eah
2[A,B] ◦ e

h(A+B)− ah2[A,B] + h3
(12a+ 1

24

)
([A, [B,A]]− [B, [A,B]])

= e
h(A+B) + h3

(24a+ 1
24

)
([A, [B,A]]− [B, [A,B]])

+O(h4)
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In order to the coefficient of h3 vanishes, we must choose a = − 1
24 and the post

processor is finally given by
πh = ϕ

[A,B]
h2
24

However, when in practice we compute the Lie Bracket [A,B], this is often costly.
So we must find a good approximation of this post processor, in other words we
search for a1, a2, a3, b1 and for b2 some constants such that the scheme

κh = ea1Aeb1Bea2Aeb2Bea3A

approximes the post-processor πh with order three and so that the method

Ψh = κh ◦ ψh ◦ κ−1
h

stay symmetric up to order four. Using the BCH formula, we see that the coefficients
must verify the following conditions:

1. a1 + a2 + a3 = 0;

2. b1 = −b2;

3. a1b1 + a2b2 − a3b2 + a1b2 − (a2 + a3)b1 = − 1
24 ;

4. a
2
1b2a

2
2b2 + a2

1b1
12 + a1a2b2 − a3a2b2 − 2a1a3b2

4 = 0;

5. b
2
2a3 − b22a2 + b1(a2 + a3)

12 + b1a2b2 − b1a3b2 − b22a2
4 = 0.

This is a system of five equation with five variable. It is possible to solve it with
for example MAPPLE or MATHEMATICA, and it gives a method of effective order
four, with a post processor that is not so costly for the compute.

4 Application to Separable ODE
We will now study splitting methods and their orders on different separable equation.
We begin in this section with a one order problem.

4.1 A Non-Linear Problem

Consider the following equation:

y′(t) = −y2(t)− y(t) t ∈ [0, 1],
y(0) = −1

2 .
(21)

This is a non linear ordinary separable differential equation and its exact solution is
given by

y(t) = − e−t

1 + e−t
.
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4.2 Splitting

We split the function f : [0, 1]×R→ R, f(t, y(t)) = −y2(t)− y(t) into two functions:

y′(t) = fA(t) + fB(t),

y(0) = −1
2 .

(22)

where fA(t) = −y2(t) and fB(t) = −y(t). We have then the associated vector fields

FA(y) = −y2 ∂

∂y
and FB(y) = −y ∂

∂y
.

In order to find the flow corresponding to each vector field, we solve the following
differential equation

y′(t) = −y2(t),

and
y′(t) = −y(t).

We obtain then the flows
ϕ

[A]
h (y) = y

1 + hy
,

and
ϕ

[B]
h (y) = ye−h.

We see that these two flows are well defined when h become small.

4.3 Implementation of Four Schemes

We will now construct the different schemes studied in the precedent section for the
problem (22). Because we know explicit the flow for each solvable part, we will be
able to obtain the well known schemes (Lie and Strang) and two high order methods.

4.3.1 Lie

The first order method (Lie-Trotter Splitting) applicated to equation (21) is

ψh(y) = ϕ
[B]
h ◦ ϕ

[A]
h (y) = y

hy + 1e
−h. (23)

4.3.2 Strang

Similarly, the Strang scheme is written as

ψh(y) = ϕ
[A]
h
2
◦ ϕ[B]

h ◦ ϕ
[A]
h
2

(y). (24)

4.3.3 The Method of Order Four

Problem (21) is not a second order differential equation, but we want to try the
scheme studied in section 3.3.1 to see of which order it is applied to this problem.
Remember, this scheme is given by

ψh = ϕ
[B|
h/6 ◦ ϕ

[A]
h/2 ◦

[B,C]
2h/3,h3/72 ◦ϕ

[A]
h/2 ◦ ϕ

[B]
h/6 (25)
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where FA and FB are two vector fields well chosen such that the flow associated to
FC = [FB, [FA, FB]] is computable and [FB, FC ] = 0. We can consider the precedent
splittings:

FA(y) = −y2 ∂

∂y
FB(y) = −y ∂

∂y
,

but this one gives FC = [FA, [FB, FA]] = −y2 ∂
∂y and

[FB, FC ] =
[
− y ∂

∂y
,−y2 ∂

∂y

]
= y2 ∂

∂y
6= 0. (26)

Therefore, (25) is not applicable. Nevertheless, if we permute the vector field FA
and FB,

FA(y) = −y ∂
∂y
, FB(y) = −y2 ∂

∂y
(27)

we have FC = 0 and consequently [FB, FC ] = 0. In this case, (25) becomes

ψh = ϕ
[B]
h/6 ◦ ϕ

[A]
h/2 ◦ ϕ

[B]
2h/3 ◦ ϕ

[A]
h/2 ◦ ϕ

[B]
h/6. (28)

where now, because of the permutation of the vector field,

ϕ
[B]
h (y) = y

1 + hy
, ϕ

[A]
h (y) = ye−h.

This method is at least of order two because it satisfies the first and the second
order conditions of theorem (3.3). We will study later the real order of this method
applied for this problem.

4.3.4 The Method of Effective Order Four

Taking the precedent splitting, we have FC = 0, and then the scheme studied in
section 2.3.4 becomes

ψh = ϕ
[A]
h/2 ◦ ϕ

[B]
h ◦ ϕ

[A]
h/2.

which is nothing else than the Strang Scheme. To see if the Strang method is of
effective order four, we will compute the post-processor πh found in section 3.3.2,
given by

πh = ϕ
[A,B]
h2
24

.

Taking FA and FB define in (27), we find

[FA, FB] = −FB = y2 ∂

∂y
.

Consequently, we obtain

ϕ
[A,B]
h2
24

(y) = ϕ
−[B]
h2
24

(y) = y

−y h2

24 + 1
.

and then the method is given by

Φh = πh ◦ ψh ◦ π−1
h = ϕ

[−B]
h2
24
◦ ϕ[A]

h
2
◦ ϕ[B]

h ◦ ϕ
[A]
h
2
◦ ϕ[−B]

−h2
24
.
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4.4 Numerical Approximation and Order Comparison

We numerically solve the problem (21) with the different methods. By splitting the
interval [0, 1] in N parts, the Lie scheme becomes for example the following iterative
method:

y0 = −1
2

yk+1 = ψh(yk) = 1
h+ 1

yk

e−h.

where h = 1
N + 1 is the time step. We resolve the Lie scheme on MATLAB and the

result can be seen on figure 1.

Figure 1: Lie scheme applicated to the separable differential equation y′ = −y− y2,
with initial condition y(0) = −1

2 and two different value for h.

We see that the numerical solution converge quickly to the exact solution when h
become smaller, as wanted. Nevertheless, what is the speed of convergence? In other
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words, what is the numerical order for the Lie method? To look at this interesting
point, we compute the error

e(N) = yN − y(1)

where y(1) is the value of the exact solution at t = 1 and where yN is the approx-
imation of the solution at this point. For each N ∈ N, N ∈ [1, 100], we will look
at the evolution of the error against the time step. On figure 2, we see that the
Strang’s error is clearly better than the Lie’s one:

Figure 2: Plot of the the time step against the error for the Lie and Strang Schemes,
applicated to the differential equation y′ = −y−y2, with initial condition y(0) = −1

2 .

But actually we are interested in the order of such methods, and this plot is not
sufficient to conclude. Remember, a method is of order p if

e(N) = yN − y(1) = O((1/N)p+1).

Taking the logarithm on the two sides, we obtain

log(e(N)) = O((p+ 1)(log(1/N))) ≈ p log(1/N) + b

where the error b verifies
b ≈ c 1

Np
.

Then the plot of n against the logarithm of the error will give a line. The slope of
this line will gives us the order of our scheme. In figure 3, we can see the four lines
corresponding to each of the studied methods.
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Figure 3: For the time step N increasing between 1 and 100: a logarithm plot of
the error yN − y(1) for the Lie and Strang schemes and two high order methods on
the differential equation , y′ = −y − y2, with initial condition y(0) = −1

2

By a linear regression on all the points, we compute on MATLAB the equations
of these lines, which are on the form

y = ax+ b

where a is the slope that represents the order of the method, and b is the error. All
the results are summarized in the following array:

Methods Equation of the line Order

Lie 0.9638 log
( 1
n

)
− 2.9299 1

Strang 1.9972 log
( 1
n

)
− 5.2743 2

Efforder4 3.9988 log
( 1
n

)
− 8.8039 4

Order4 3.9985 log
( 1
n

)
− 10.0568 4

Figure 4: Equation of the line of the error of the precedent numerical schemes,
applied to the differential problem y′ = −y − y2, y(0) = −0.5

We then see that the Lie, Strang and respectively Efforder4 schemes are of order
one, two and respectively four, as wanted. We finally see that method (28), applied
to this problem, is of order four too.
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5 Application to the Damped Wave Equation

5.1 The Damped Wave Equation

Let us consider the following Partial Differential Equation (PDE): we search u =
u(x, t) : [0, 1]× R+ → R such that, for constant c and λ given,

∂2

∂t2
u(x, t) = c2 ∂

2

∂x2u(x, t)− λ ∂
∂t
u(x, t) (29)

with the boundary condition (Dirichlet conditions),

u(0, t) = u(1, t) = 0, t > 0

and the initial conditions:
u(x, 0) = h(x)
∂

∂t
u(x, 0) = 0,

where h is a sufficiently smooth function. This second order hyperbolic partial differ-
ential equation can describe the vibration of a string, which is fixed at its extremities
and has a null speed at time t = 0. The constant c equal to the propagation speed
of the wave and parameter λ is the damping coefficient.

5.2 Exact Solution of the Damped Wave Equation

If λ < 4πc and in order to compute the exact solution of problem (29), we use
separation of variable and Fourier series: suppose that u can be written as

u(x, t) = f(x)g(t).

Inserting this into the PDE we obtain

f ′′(x)
f(x) = −p2

n = g′′(t) + λg′(t)
c2g(t) (30)

for some constants pn. With the boundary conditions f(0) = f(1) = 0, by resolving
the ODE

f ′′(x) + p2
nf(x) = 0

we find pn = nπ and fn(x) = sin(nπx). Left part of (30) gives

g′′(t) + λg′(t) + c2n2π2g(t) = 0,

which is a second order homogeneous differential equation with constant coefficients.
Because λ2 − 4c2π2 < 0, it implies that for all n ∈ N, λ2 − 4n2c2π2 < 0 and then
the solution is

gn(t) = e
−λt

2 (an sin(µnt) + bn cos(µnt))

where
µn =

√
4n2π2c2 − λ2

2 .

Consequently, a solution for problem (29) is given by

un(x, t) = sin(nπx)e
−λt

2 (an sin(µnt) + bn cos(µnt)).
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By using the fact that a sum of solutions is still a solution and Fourier series, it can
be shown that a candidate is the function

u(x, t) = e
−λt

2

∞∑
n=1

(sin(nπx))(an sin(µnt) + bn cos(µnt)) (31)

where

1. bn = 2
∫ 1

0
sin(nπx)h(x)dx;

2. an = λ

µn

∫ 1

0
sin(nπx)h(x)dx = bn

2µn
.

In fact, if we suppose that the function h ∈ C3([0, 1]), h(4) is piecewise continuous
and h(0) = h(1) = h′′(0) = h′′(1) = 0, then the sequence

uN (x, t) = e
−λt

2

N∑
n=1

(sin(nπx))(an sin(µnt) + bn cos(µnt))

converges to the solution u(x, t) of the problem for all (x, t) ∈ [0, 1]× R+ and

lim
t→0

u(x, t) = h(x)

uniformly. Consequently, this stamped wave equation problem is well posed because
it has a unique solution given by (31). Moreover, if λ > 0, we easily see that

lim
t→∞

u(x, t) = 0.

We consider now the smooth function h(x) = sin(πx). A small compute gives
an = bn = 0 for all n 6= 1 which implies that the unique solution of the wave
problem (29) for this initial periodic condition h is given by

u(x, t) = sin(πx)e
−λt

2

(
λ√

4π2c2 − λ2
sin
(√

4π2c2 − λ2

2 t

)
+ cos

(√
4π2c2 − λ2

2 t

))
.

5.3 Numerical Approximation of the Damped Wave Equation

Let us take u = u(x, t) and v = v(x, t) with

v = ∂u

∂t
.

We write U = (u, v) and define F : R2 → R2 by

F (U) = F (u, v) =
(

v

c2 ∂2

∂x2u− λv

)
.

The problem (29) can be now rewritten as

∂U

∂t
= F (U),

in others words:
∂u

∂t
= v

∂2u

∂t2
= c2 ∂

2

∂x2u− λv.
(32)
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with the boundary conditions

u(0, t) = u(1, t) = v(0, t) = v(1, t) = 0

and the initial conditions

u(x, 0) = sin(πx), v(x, 0) = 0.

This partial differential equation can be transformed into a system of ordinary dif-
ferential equation by discretizing the space. Indeed, we split [0, 1] into Nx + 1
subintervals of length

δx = 1
Nx + 1 .

Then, xi = i
Nx+1 and u(xi, t) ≈ ui(t), 0 ≤ i ≤ Nx + 1. Since u0(t) and uNx+1(t) are

already known from the boundary conditions, the unknown functions becomes the
vectors of size Nx:

u(t) = (u1(t), . . . , uNx(t))T and ∂u
∂t

= v(t) = (v1(t), . . . , vNx(t))T .

Moreover, if we use the finite difference for the approximation of the first and second
derivative:

u′(xi) ≈
u(xi + δx)− u(xi − δx)

δx

u′′(xi) ≈
u′(xi + δx

2 )− u′(xi − δx
2 )

δx
,

then
∂2

∂x2u(xi, t) ≈ (Au(t))i,

where the matrix A of size Nx ×Nx is given by

A = 1
δ2
x


−2 1
1 −2 1

1 . . . . . .
. . .

 .

Consequently, the numerical approximation of the damped wave equation is given
by the following system of ODE:

U′(t) = G(U(t)) (33)

where U’(t)=(u’(t),v’(t)) and G : R2Nx → R2Nx is the function defined by

G(U) = G(u,v) =
(

v
c2Au− λv

)
.
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5.4 Splitting the Damped Wave Equation

We now split the problem in order to apply the different schemes from the first
chapter of this paper. We separe the function G into two function fA and fB as
follows:

G(u,v) = fA(u,v) + fB(u,v). (34)

where fA(u,v) =
(

v
−λv.

)
and fB(u,v) =

(
0

c2Au

)
. The first subproblem

U′(h) = fA(U)

has the flow

ψ
[A]
h (u,v) =

(
u + v

(
1−e−λh

λ

)
ve−λh

)
.

and the one from the second subproblem

U′(t) = fB(U)

is
ψ

[B]
h (u,v) =

(
u

c2Auh+ v

)
.

5.5 Implementation of the Different Schemes

Similarly to first order problem, we construct the four schemes studies in the thrid
section of this report. Nevertheless, we will see that for high order methods this is
a little more difficult.

5.5.1 Lie and Strang methods

The Lie Scheme for problem (33) is given by

ψh(u,v) = ψ
[B]
h ◦ ψ

[A]
h (u,v) =

(
u + v

(
1−e−λh

λ

)
(c2Auh+ v)e−λh

)
, (35)

and the strang method is given by

φh(u,v) = ψ
[A]
h
2
◦ ψ[B]

h ◦ ψ
[A]
h
2

(u,v), (36)

which is in fact the Leap-Frog method.

5.5.2 A method of Order Four

Which splitting must we choose to apply the scheme studied in section 3.2 given by

ψh = ϕ
[B|
h/6 ◦ ϕ

[A]
h/2 ◦

[B,C]
2h/3,h3/72 ◦ϕ

[A]
h/2 ◦ ϕ

[B]
h/6? (37)

We take
FA = y2

∂

∂y1
− λy2

∂

∂y2
and FB = c2Ay1

∂

∂y2
.
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These vectors fields mean that for all 1 ≤ i ≤ Nx

∂ui
∂t

= vi

∂vi
∂t

= c2(Au)i − λvi
(38)

and then the vector fields FA and FB become in composantes:

FAi = y2i
∂

∂y1i
− λy2i

∂

∂y2i
and FBi = c2(Ay1)i

∂

∂y2i
.

We compute now the vector field

FCi = [FBi, [FAi, FBi]].

Notice that
∂(Ay1)j
∂y1i

=
∂
(∑Nx

k=1Ajky1k
)

∂y1i
= Aji.

Then, the compute gives:

[FAi, FBi] =
[
y2i

∂

∂y1i
− λy2i

∂

∂y2i
, c2(Ay1)i

∂

∂y2i

]
= y2i

∂

∂y1i

(
c2(Ay1)i

∂

∂y2i

)
− c2(Ay1)i

∂

∂y2i

(
y2i

∂

∂y1i

)
− λy2i

∂

∂y2i

(
c2(Ay1)i

∂

∂y2i

)
+ c2(Ay1)i

∂

∂y2i

(
λy2i

∂

∂y2i

)
= y2ic

2Aii
∂

∂y2i
− c2(Ay1)i

∂

∂y1i
+ λc2(Ay1)i

∂

∂y2i

=
(
λc2(Ay1)i + y2ic

2Aii
) ∂

∂y2i
− c2(Ay1)i

∂

∂y1i

FCi = [FBi, [FAi, FBi]] =
[
c2(Ay1)i

∂

∂y2i
,
(
λc2(Ay1)i + y2ic

2Aii
) ∂

∂y2i

]
−

[
c2(Ay1)i

∂

∂y2i
, c2(Ay1)i

∂

∂y1i

]
= 2c4Aii(Ay1)i

∂

∂y2i
= 2c2AiiFBi

Consequently [FBi , FCi ] = 0 and then it makes sense to compute the flow associated
to the vector field (2

3h+ 2c2diag(A) 1
72h

3)FB, which is given by

ϕ
[B,C]
2
3h,

h3
72

(u,v) =
(

u
c2Au(2h

3 + 2c2diag(A)h3

72 ) + v

)
.
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5.5.3 A Method of Effective Order Four

Let us again have a look on the method we define in section 3.3.2:

ψh = ϕ
[A]
h/2 ◦ ϕ

[B,C]
h,h3/24 ◦ ϕ

[A]
h/2

We have seen that it is of effective order four if we compose it with the post-processor
found in the section 3.2 given by

πh = ψ
[A,B]
h2
24

and its inverse
π−1
h = ψ

[A,B]
−h2

24
.

The precedent compute gives

[FA, FB] =
(
λc2(Ay1) + y2c

2diag(A)
) ∂

∂y2
− c2(Ay1) ∂

∂y1

Then, in order to find the flow associated to the vector field −h2

24 [FA, FB], we must
first solve the following system of ODE:

∂u
∂t

= −c2Au

∂v
∂t

= λc2Au + 2c2diag(A)v.
(39)

This system has the general solution

u = C1e
−c2At

v = C2e
2c2diag(A)t +

∫ t

e2c2diag(A)xλc2AC1e
−c2Axdx

We obtain then the following flow:

ϕ
[A,B]
−h2

24
(u,v) =

 e
c2h2

24 Au
2e
−c2h2

24 diag(A)v + u
∫ t e2c2diag(A)xλc2Ae−c

2Axdx

 .
But in general, it is difficult to compute the exponential of a matrix. On MATLAB,
we can make it quite well, but the approximation of the integral is not easy. We do
not have time for that, and consequently we stop here for the effective order four
method.
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5.5.4 Solving the Damped Wave Equation with the Lie Scheme and
Different Values for the Damping Coeffficient

We look now at the approximation of the solution with the Lie method on MATLAB.
On the following figures, we can see the computed solution on the time interval [0, 10],
split in Nt parts, which gives the time step

h = 10
Nt + 1 .

To have more precision and good plots, we take a high value for the parameters Nt

and Nx. For the physical coefficient, we take c = 0.8 and different values for λ. We
fortunately see on figure 5,6,7 that the solution is periodic if λ = 0 and on the other
hand, the waves come to zero in a more speeder way when the value of λ increases, as
desired. We remark that, for a T fixed, we could not take all the value of Nx and Nt

we want. Indeed, the Lie method is of effective order two with the Strang method,
which is a Leap Frog method. But these methods are not absolutely stable, and
once we choose the value of Nx, we must take a high value for Nt. More precisely,
when T = 1, we must choose Nt ≥ Nx, when T = 10, the stability condition is about
Nt > 10Nx. Nevertheless, we will not go into details here.

Figure 5: Lie Scheme for the damped wave equation on [0, 10], with Nx = 50,
Nt = 500, λ = 0 and c = 0.8. This is a periodic function because there is no
damping effect.
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Figure 6: Lie Scheme for the damped wave equation on [0, 10], with Nx = 50,
Nt = 500, and c = 0.8. The waves become more smaller and the function goes faster
to zero when the value of λ is increasing, here for λ = 0.3 and 0.8
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5.5.5 Error of the schemes

We now look at the errors for the different schemes. We consider two ways. The
first one is to compute the error with the L2 norm: for a space step n ∈ N given, we
have

E2(t, n) = 1
n

 n∑
j=1

(u(xj , t)− uj(xj , t))2

 1
2

The second way is to use the L∞ norm, which for a space step n ∈ N given is defined
by

E∞(t, n) = max
1≤j≤n

|u(xj , t)− uj(xj , t)|

We similarly procede to the section 4.4. For all nt ∈ [1, Nt], we take T = 1 and
nt = nx, because we know that the schemes are stable in this case. Then, we
compute for all nt the L∞ error between exact and numerical approximation at
time T = 1. We plot the logarithm of nt against

log(E∞(nx, 1)) = log( max
1≤j≤nx

|u(xj , 1)− uj(xj , nt)|)

The result can be seen on figure for the Lie and Strang Scheme. The error is not as
good as the precedent example, but nevertheless acceptable.

Figure 7: Error for the Strang and Lie Scheme applied to the damped wave equation,
with Nx = Nt, Nt goes from 11 to 100, λ = 0.3 and c = 0.8

We compute the slope of these lines with help of a linear regression and we obtain
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Methods Equation of the line Order

Lie 0.9525 log
( 1
n

)
− 0.3379 1

Strang 1.8772 log
( 1
n

)
− 2.4617 2

Figure 8: Equation of the line of the error of the precedent numerical schemes,
applied to the damped wave equation

We obtain the good order for the Lie and Strang method, as desired.

5.5.6 Conservation of Energy

The energy of the damped wave equation is given by

E(t) = 1
2
( ∫

Ω

((∂u
∂t

)2
+ c2

(∂u
∂x

)2)
dx
)

For our problem, we have Ω = [0, 1]. When λ = 0, a compute shows that

d

dt
E(t) = 0.

and then E(t) = E(0) = π2c2

4 .Nevertheless, if we take a positive value for λ, we
remark that

lim
t→∞

∂u

∂t
= lim

t→∞

∂u

∂x
= 0

because the function e−
λt
2 from the exact solution that goes to zero and the other

one are all bounded. And then, using the fact that the above functions are smooth,
we obtain

lim
t→∞

E(t) = lim
t→∞

1
2
( ∫

Ω

((∂u
∂t

)2
+ c2

(∂u
∂x

)2)
dx
)

= 1
2
( ∫

Ω

((
lim
t→∞

∂u

∂t

)2
+ c2

(
lim
t→∞

∂u

∂x

)2)
dx
)

= 0

because we can permute limit and integral in this case. Consequently, the energy is
conserved when λ = 0 and is decreasing in the other cases. We will verifie now the
conservation on our numerical solutions. In order to compute the energy, we will
use the trapezoidal method to integrate the functions(

∂u

∂t

)2
,

(
∂u

∂x

)2
: [0, 1]→ R.

Recall that the interval [0, 1] is split in Nx + 1 parts and

δx = 1
Nx + 1

We take the first order interpolation polynome from these functions, with nodes
f(xi), where xi = δxi, 1 ≤ i ≤ Nx + 1. For any fixed t ∈ [0, T ], the nodes for the
function ∂u

∂t

2 are given by

v(t) = (v0(t), v1(t), . . . , vNx(t), vNx+1(t))
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which is nothing else than the vector defined in the space discretization of the prob-
lem. For the approximation of

(
∂u
∂x

)2
, we will use the finite center difference: for all

2 ≤ i ≤ Nx − 1
∂ui
∂x
≈ ui+1 − ui−1

2δx
.

For the missing values (because, for example, we cannot use the above approximation
for ∂uNx+1

∂x as uNx+2 is not defined), we simply use the first order finite difference
approximation:

∂ui
∂x
≈ ui+1 − ui

δx
, i = 0, 1 and ∂uj

∂x
≈ uj − uj−1

δx
, j = Nx, Nx + 1.

This is a second order approximation. Consequently, we can now compute the
integrals with the trapezoidal method:∫

Ω

(∂u
∂t

)2
dx ≈ δx

(1
2v

2
0 + v2

1 + · · ·+ v2
Nx + 1

2v
2
Nx+1

)
∫

Ω

(∂u
∂x

)2
dx ≈ 1

δx

(
1
2(u1 − u0)2 + (u3 − u1)2

4 + . . .

)

+ 1
δx

(
(uNx − uNx−2)2

4 + 1
2(uNx+1 − uNx)2

)

and obtain then a numerical way to compute the Energy for this system:

E(tn) = 1
2
( ∫

Ω

((∂u(x, tn)
∂t

)2
+ c2

(∂u(x, tn)
∂x

)2)
dx
)

≈ 1
2δx

(1
2v

2
0 + v2

1 + · · ·+ v2
Nx + 1

2v
2
Nx+1

)
+ c2

2
1
δx

(
1
2(u1 − u0)2 + (u3 − u1)2

4 + . . .

)

+ c2

2
1
δx

(
(uNx − uNx−2)2

4 + 1
2(uNx+1 − uNx)2

)
.

We can see results on the following figure:
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Figure 9: Energy for the damped wave equation, computed by the Order4 method
on [0, 10], with Nx = 1000, Nt = 10000, c = 0.8 and different values of λ. We see
that the energy is conserved near the initial value for λ = 0 and goes to 0 when
λ = 0.3.

We clearly see that we have a conservation of the Energy when λ = 0. When
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c = 0.8, the small oscillations that stay around E(0) = c2π2

4 ≈ 1.579 are the error
of the numerical methods, but they are reasonnable. On the other hand, the energy
of the system is clearly decreasing when λ > 0, which is not a surprise because this
is the damping coefficient. The value of c will influence the number of waves. On
figure 10, we see that if we increase the value of c and λ, we obtain a curve that has
less waves than before but goes more faster to zero than the precedent one:

Figure 10: Energy for the damped wave equation, with Nx = 50, Nt = 1000, λ = 0.8
and c = 1.5. The Energy goes to zero in a more faster way than the precedent
examples

6 Conclusion
In these two examples, we have seen that Splitting Methods are very useful schemes
to solve numerically ordinary and partial differential equation. For the non linear
ordinary equation we have studied, it was not so difficult to obtain method of order
four and effective order four. Nevertheless, for the damped wave equation, Lie and
Strang Schemes are quickly constructed but high order method are more difficult to
develop, because we sometimes need to make a lot of compute. But in all the cases,
this is an elegant way of doing numerical analysis!
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7 MATLAB code for tests on the Damped Wave Equa-
tion

The following code is portion of what you can see in the fifth part of this work.
All the text preceded by "%" explain what made the code (functions, plots) with
reference to the third part of this work for the construction of the Splitting Methods.

7.1 The different flows used to construct Splitting Methods

%Compute the f low a s s o c i a t ed to the vec to r f i e l d
%F_A= (v,− lambda v ) f o r the
%damped wave equat ion
func t i on [ fu , fv ]=flowA (u , v , lambda , h)

f o r i =1: l ength (u)
i f lambda > 0

%we l l de f in ed because the l im i t e x i s t when
%lambda become sma l l e r .

fu ( i )=u( i )+v ( i )∗h∗(1−exp(−lambda∗h ) ) . / ( lambda∗h ) ;
fv ( i )=v ( i )∗ exp(−lambda∗h ) ;
e l s e

%Lambda=0 case
fu ( i )=u( i )+v ( i )∗h ;
fv ( i )=v ( i )∗ exp(−lambda∗h ) ;
end

end

%Compute the f low a s s o c i a t ed to the vec to r f i e l d
%F_B= (0 , c^2Au) f o r the
%damped wave equat ion
func t i on [ fu , fv ]=flowB (u , v , c , h )
n=length (u ) ;
%De f i n i t i o n o f the Laplac i en matrix
A=(n+1)^2∗(−1∗2∗ diag ( ones (n ,1) ,0)+ diag ( ones (n−1 ,1) ,1)
+ diag ( ones (n−1 ,1) ,−1));
fu=ze ro s (1 , n ) ;
fv=ze ro s (1 , n ) ;

fu=u ’ ;
fv=(c∗c )∗h∗A∗(u ’)+v ’ ;

%Compute the f low a s s o c i a t ed to the vec to r f i e l d
%[F_B,F_C]= (2/3h+2c^2

%diag (A) 1/72 h^3)F_B f o r the
%damped wave equat ion
func t i on [ fu , fv ]=flowBC(u , v , c , h1 , h2 )
n=length (u ) ;
%Laplac i en Matrix
A=((n+1)^2)∗(−1∗2∗ diag ( ones (n ,1) ,0)+ diag ( ones (n−1 ,1) ,1)
+ diag ( ones (n−1 ,1) ,−1));
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fu=ze ro s (1 , n ) ;
fv=ze ro s (1 , n ) ;
f o r i =1:n

fu ( i )=u( i ) ;
fv ( i )=( c∗c )∗A( i , 1 : n)∗u ’∗ h1

+2∗c^4∗h2∗A( i , i )∗A( i , 1 : n)∗u’+v( i ) ;
end

7.2 Implementation of Order4 Scheme

%This func t i on r e tu rn s two matrix computed with the
%Order_4 Scheme .
%The f i r s t i s the approximation o f
%the s o l u t i o n and the second one i s the approximation
%of the d e r i v a t i v e o f the
%so l u t i o n by t .
f unc t i on [ vecu , vecv ]= so l e x a c t (T,Nx, Nt , lambda , c )
%Because we s p l i t [ 0 , 1 ] in N_x+1 parts , we have
%N_x+2 nodes f o r the space
n=Nx+2;
%Because we s p l i t [ 0 ,T] in N_t parts , we have
%N_t+2 nodes f o r the time
m=Nt+1;
%Time Step
h=T. / ( Nt ) ;

%De f i n i t i o n o f the two matrix
Mv=ze ro s (n ,m) ; % Approximation o f the So lu t i on
Mu=ze ro s (n ,m) ; % Approximation o f the d e r i v a t i v e o f the
%so l u t i o n by t

%I n i t i a l c ond i t i on s f o r u : u (0 , t )=u (1 , t )=0
Mu(1 , 1 :m)=0;
Mu(n , 1 :m)=0;

%I n i t i a l c ond i t i on s f o r du/dt : du/dt (0 , t )=du/dt (1 , t )=0
Mv(1 , 1 :m)=0;
Mv(n , 1 :m)=0;

%Condit ion . u(x ,0)= s i n ( p i ∗x ) and du/dt (x ,0 )=0 ;
f o r i =1:n
Mu( i ,1)= s i n ( p i ∗( i −1) ./(Nx+1)) ;
Mv( i , 1 )=0 ;
%The f i r s t columns o f the two matrix Mu and Mv
%correspond to the i n i t i a l c o n d i t i o n s . The second
%columns correspond to the s o l u t i o n at time t=h . The
%th i rd correspond to the s o l u t i o n at time t=2h , e t c .
%We compute each column o f these matrix
%with the Order_4 Scheme .
f o r j =1:m−1
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[ fuB1 , fvB1]=flowB (Mu( 2 : n−1, j ) ’ ,Mv( 2 : n−1, j ) ’ , c , h . / 6 ) ;
[ fuA1 , fvA1]=flowA ( fuB1 , fvB1 , lambda , h . / 2 ) ;
[ fuBC , fvBC]=flowBC( fuA1 , fvA1 , c , 2∗h/3 , ( h ^3 ) . / 7 2 ) ;
[ fuA2 , fvA2]=flowA (fuBC , fvBC , lambda , h . / 2 ) ;
[Mu( 2 : n−1, j +1) ,Mv( 2 : n−1, j +1)]=flowB ( fuA2 , fvA2 , c , h . / 6 ) ;

end
end
%Def ine s the matrix with nodes o f [ 0 , 1 ] t imes [ 0 ,T ] .
x=l i n s p a c e (0 , 1 ,Nx+2);
t=l i n s p a c e (0 ,T, Nt+1);
Mx=repmat (x ’ , 1 , Nt+1);
Mt=repmat ( t ,Nx+2 ,1) ;
x1=l i n s p a c e ( 0 , 1 , 1 0 2 ) ;
t1=l i n s p a c e (0 ,T, 1 0 1 ) ;
Mx1=repmat ( x1 ’ , 1 , 1 0 1 ) ;
Mt1=repmat ( t1 , 1 0 2 , 1 ) ;
%We eva lue the exact s o l u t i o n on these nodes .
Mexact=so l e x a c t ( c , lambda , x1 , t1 ) ;
%Plot o f the approximation and the exact s o l u t i o n .
s u r f (Mx1,Mt1 , Mexact ) ;
hold on
su r f (Mx,Mt,Mu) ;

7.3 Compute of the Error for the Strang Method

%This func t i on r e tu rn s the L^2 e r r o r o f the Strang
%Scheme when computed on the damped wave equat ion .
func t i on [ e ]=ErrorL2Strang (N,M,T, lambda , c )
%We compute f o r the chosen time and
%space s t ep s N r e s p e c t i v e l y M.
[Mu,Mv]=strangwave (T,N,M, lambda , c ) ;
%We de f i n e the nodes to compute
%the exact s o l u t i o n on them .
x1=l i n s p a c e (0 , 1 ,N+2);
t1=l i n s p a c e (0 ,T,M+1);
%Compute o f the exact s o l u t i o n
[ fu ]= so l e x a c t ( c , lambda , x1 , t1 ) ;
%The e r r o r vec to r
e1=ze ro s (1 ,N+1);
%We compute the e r r o r with the (L2 norm)^2
f o r i =1:N+2
e1 (1 , i )=1/(N+2)∗(Mu( i ,M+1)− fu ( i ,M+1))^2;
end
%After having add i t i oned a l l the terms o f e1 ,
%we f i n a l l y take the root square
e2=sum( e1 ) ;
e=sq r t ( e2 ) ;

%This func t i on r e tu rn s the L_in f tye r ro r o f the Strang
%Scheme when computed on the damped wave equat ion .
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func t i on [ e ]=ErrorL in fSt rang (N, lambda , c )
%Compute o f the exact s o l u t i o n on some nodes
x=l i n s p a c e (0 , 1 ,N+2);
t=l i n s p a c e (0 , 1 ,N+1);
[ fu ]= so l e x a c t ( c , lambda , x , t ) ;
%Approximation o f the s o l u t i o n with Strang Scheme
[Mu,Mv]=strangwave (1 ,N,N, lambda , c ) ;
%De f i n i t i o n o f the Error
e1=ze ro s (1 ,N+2);
%We take the L^ i n f t y norm
f o r i =1:N+2
e1 ( i )= sq r t ( (Mu( i ,N+1)− fu ( i ,N+1))^2) ;
end
double e ;
e=e1 ( 1 ) ;
%I t choose the b i gg e s t element o f e1
f o r i =1:N+2
i f e1 ( i )>e

e=e1 ( i ) ;
end
end

% We compute the L^2 or L^{ i n f t y } Error
%f o r the three Schemes
%f o r a time step N_t \ in [ 11 ,M] .
f unc t i on ErrorPDE(T,M, lambda , c )
%De f i n i t i o n o f the three e r r o r v e c t o r s
e1=ze ro s (1 ,M) ;
e2=ze ro s (1 ,M) ;
e3=ze ro s (1 ,M) ;
%COmpute o f the e r r o r with the d i f f e r e n t norm
%and the d i f f e r e n t schemes
f o r m=1:M

% e1 (1 ,m)=ErrorL2Lie (m,m,T, lambda , c ) ;
%e2 (1 ,m)=ErrorL2Strang (m,m,T, lambda , c ) ;
%e3 (1 ,m)=ErrorL2order_4 (m,m,T, lambda , c ) ;
e1 (1 ,m)=Erro rL in fL i e (m, lambda , c ) ;
e2 (1 ,m)=ErrorL in fSt rang (m, lambda , c ) ;
e3 (1 ,m)=ErrorLinfOrder_4 (m, lambda , c ) ;

end ;
%Def ine the nodes between [ 11 ,M] .
b=l i n s p a c e (11 ,M−10,M−10)
%Plot o f the logar i thm o f the Error f o r each methods .
l o g l o g (b , e1 ( 1 1 :M) ) ;
s e t ( l o g l o g (b , e1 ( 1 1 :M) ) , ’ Color ’ , ’ red ’ , ’ LineWidth ’ , 2 )
hold on
l o g l o g (b , e2 ( 1 1 :M) ) ;
s e t ( l o g l o g (b , e2 ( 1 1 :M) ) , ’ Color ’ , ’ blue ’ , ’ LineWidth ’ , 2 )
hold on
l o g l o g (b , e3 ( 1 1 :M) ) ;
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s e t ( l o g l o g (b , e3 ( 1 1 :M) ) , ’ Color ’ , ’ green ’ , ’ LineWidth ’ , 2 )
legend ( ’ Lie ’ , ’ Strang ’ )
%Put a g r id on the p l o t
g r id on

%COmpute the s l ope o f each l i n e with a l i n e a r r e g r e s s i o n
p o l y f i t ( l og (b ) , l og ( e1 ( 1 1 :M) ) , 1 )
p o l y f i t ( l og (b ) , l og ( e2 ( 1 1 :M) ) , 1 )
p o l y f i t ( l og (b ) , l og ( e3 ( 1 1 :M) ) , 1 )

7.4 Conservation of the Energy

%This func t i on r e tu rn s a vec to r o f Energy , where
%elements are the energy at the f i x ed t .
f unc t i on [ Energ ]=Energy (N, lambda , c )
%De f i n i t i o n o f the vec to r Energy
Energ=ze ro s (1 ,10∗N−1);
%Vector to approxime part o f the f i r s t i n t e g r a l
int1_1=ze ro s (1 ,N−2);
%Approximation o f the f i r s t i n t e g r a l
i n t1=ze ro s (1 ,10∗N−1);
%Vector to approxime part o f the second i n t e g r a l
int2_1=ze ro s (1 ,N−2);
%Approximation o f the second i n t e g r a l
i n t2=ze ro s (1 ,10∗N−1);
%Computation o f a numerica l s o l u t i o n with the order_4
%method and a time s t ep s about ten t imes the space s tep .
[Mu,Mv]=order_4 (10 ,N,10∗N−1,lambda , c ) ;

% For each j , we compute the nodes o f the func t i on s
%(du/dt )^2 and (du/dx)^2 as seen in s e c t i o n 5 . 5 . 6 ,
%and then compute an approximation o f
% the i n t e g r a l with t r ap e z o i d a l method .
f o r j =1:10∗N−1
f o r i =2:N−1
int1_1 ( i )=Mv( i , j )^2 ;
int2_2 ( i )=(Mu( i +1, j )−Mu( i −1, j ) ) ^ 2 ;
end
in t1 ( j )=sum( int1_1 )+0.5∗Mv(1 , j )^2
+Mv(N+1, j )^2+0.5∗Mv(N+2, j )^2 ;
i n t2 ( j )=0.25∗sum( int2_2 )
+0.5∗(Mu(2 , j )−Mu(1 , j ))^2+0.5∗(Mu(N+2, j )−Mu(N+1, j ) ) ^ 2 ;
%Compute the Energy f o r each j
Energ ( j )=0.5∗ c∗c ∗(N+1)∗ i n t 2 ( j )+0.5∗(1/(N+1))∗ i n t 1 ( j ) ;
end
%Plot o f the Energy aga in s t the time
b=l i n s p a c e (1 ,10∗N−1 ,10∗N−1);
p l o t (b , Energ ) ;

N=1000;
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%We compute the Energy with lambda=0
[A]=Energy (N, 0 , 0 . 8 ) ;
%We compute the Energy with lambda>0
[B]=Energy (N, 0 . 3 , 0 . 8 ) ;
%We s p l i t [ 1 , 1 0000 ]
b=l i n s p a c e (1 ,10∗N−1 ,10∗N−1);
%Plot o f the two Energy aga in s t the time s t ep s
p l o t (b ,A) ;
s e t ( p l o t (b ,A) , ’ Color ’ , ’ red ’ , ’ LineWidth ’ , 2 )
hold on
p lo t (b ,B) ;
s e t ( p l o t (b ,B) , ’ Color ’ , ’ blue ’ , ’ LineWidth ’ , 2 )
legend ( ’ Order4 with lambda=0 ’ , ’ Order4 with lambda=0.3 ’)
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