Abstract

The recent demand for architectural transparency has drastically increased the use of glass material for structural purpose. However, connections between structural glass members represent one of the most critical aspects of glass engineering, due to the fragile behaviour of this material. In that respect, research activities on adhesive point-fixings are currently on-going. The mechanical behaviour of adhesive point-fixings is affected by large nonlinearities, which are usually investigated by nonlinear Finite Element Analysis (FEA). This paper focuses on the geometrical and the material nonlinearities of adhesive point-fixings for glass structures. Firstly, the nonlinear material behaviour of two selected adhesives are investigated by means of uniaxial tension and compression tests on the bulk material. The production of specimens, test methodology and displacement rate dependency are discussed. Secondly, the nonlinear stress distribution occurring in the adhesive and the joint stiffness is investigated by means of nonlinear FEA. The effects of several parameters on the mechanical behaviour of adhesive point-fixings, such as the connection dimensions and adhesive elastic properties, are studied. The adhesive stress-strain curves resulting from the experimental campaign show that the adhesives exhibit a large nonlinear behaviour. The results show that the stress and strain at failure reduce as the displacement rate is reduced. From the numerical investigations it is concluded that large nonlinearity involves the mechanical behaviour of adhesive point-fixing which cannot be neglected. The stress distribution within the adhesive deviates from uniform nominal stresses, even in case of simple load condition, with stress peaks up to four times higher than nominal stresses.

Details

Actions