
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. E. Telatar, président du jury
Prof. D. Floreano, directeur de thèse

Prof. N. Bredeche, rapporteur
Prof. M. Dal Peraro, rapporteur

Prof. J. Timmis, rapporteur

Viability evolutionary algorithms and applications to
neuroscience and biology

THÈSE NO 6360 (2015)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 23 JANVIER 2015

 À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEUR
LABORATOIRE DE SYSTÈMES INTELLIGENTS

PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS

Suisse
2015

PAR

Andrea MAESANI

“ What I cannot create, I do not understand.

—Richard Feynman, 1988 ”

Acknowledgements
This thesis would not be possible without the support and help that I received from many

people. I am truly grateful to my advisor, Prof. Dario Floreano, for having allowed me complete

freedom in choosing my own research directions and for his trust and guidance throughout

this thesis. I would also like to thank the members of my jury Prof. Emre Telatar, Prof. Nicolas

Bredeche, Prof. Jon Timmis, and Prof. Matteo Dal Peraro for the time dedicated reading this

thesis and for their valuable comments on the manuscript.

A special thank you goes to Dr. Pavan Ramdya for the incredibly exciting and productive

times of our research collaboration. I am deeply indebted to Pavan for the many things that I

have come to learn thanks to his huge knowledge of (neuro)science, and for having kept me

constantly motivated with his passion for science. A big thanks goes also to Prof. Roger D.

Hersch for having invited me for a summer research project at EPFL, back in 2009. Probably,

I would not have started my PhD studies without his original invitation. I admire the rigour

and patience with which Roger tackles research in his lab, and I enjoyed a lot my time there

building setups together.

Other wonderful people contributed to the realization of this thesis. Dr. Jürg Germann is

one of them. I’ve shared the office for more than three years with this incredible Sardinian-

Swiss-german man, part-time rock-star/wind-surfer/ski-teacher, and full-time PhD student

(or viceversa at the beginning :-P). We supported each other through all the good and bad

moments that a doctorate involves. Thanks a lot for teaching me about materials and soft

polymers, I had a lot of fun learning it. Thanks also for the daily dose of good mood that you

brought into the office. Dr. Pradeep Fernando and Dr. Steffen Wischmann are two others that

I would like to thank for the good advices and guidance that I received from them during the

first part of my doctoral research. I enjoyed spending my time discussing with you about the

most disparate topics. Also, a big thank goes to Dr. Giovanni Iacca, with whom I collaborated

towards the end of my PhD. Thanks to him I learned a lot more about evolutionary compu-

tation, due to his vast knowledge of the field. Also thanks a lot to Dr. Matteo DeGiacomi,

Giorgio Tamo and Dr. Kyle Gustafson for all the interesting things I came to know during our

collaborations.

There is no PhD student without a lab. I have to thank my labmates both for providing feed-

back on my work and for creating such a liveable atmosphere in the lab. It has been a great

v

Acknowledgements

time, between lab work, cooking battles and lab retreats. I won’t write all your names as you

are too many1, but I want just to mention a few of you. Géraud thanks for being such a funny

guy and teaching me a lot of electronics stuff. I enjoyed spending my time with you. One day I

will also beat you at tennis. Josh (let’s write entirely - Dr. Joshua Evan Auerbach - otherwise

I am sure he will get pissed if I don’t), Krishna and Deniz helped me a lot proofreading my

poor English. With Josh I had tons of interesting discussions and it is really a pity I do not have

enough time in the lab to start some crazy projects on machine learning together. I would

have loved that. Pawel and Ilya gave me a lot of advices during the first part of my PhD. Thanks

also to Meysam, my new office mate, for being so stressed about his thesis: it decreased my

stress about handing in this thesis on time (just kidding Meysam!). Moreover Meysam, hurry,

because we have to work on that side project of ours at some point. Finally, thanks Michelle

for all the help with administrative matters during the PhD and the laughs about all strange

things happening in the lab.

It is now the time to acknowledge the amazing Collocation Zoologique (my flatmates): Goffre

(Marco), Valentina, Matassi (Mattias), Roby and until recently Santillozzo (Sebastian). Thanks

guys for all the laughs we had during these years. I felt part of a (big) family being with you.

Living there really helped me through all the difficult and stressful moments2. A special thank

you goes to Valentina for allowing me to mount some absurd setup at home, including the

bitcoin farm and the tomato hydroponic plantation in the house.

These years would have been very sad without the amazing Italians here in Lausanne: Frenk

(the first one I met in Lausanne and the man that can eat the most amount of food in a

single time) and Daniela (where is Ciocca?), Pool (finally you got a car with head restraints),

Spillo (you should seriously stop smoking in my ski suit) and Martina (there is something

that moves!), Tungo (Madoooooo - thanks for all the interesting discussions!) and Daniela, il

Maresciallo (Aho, l’hai pulita la mela?) and Silvia, Giulio (Andiamo a Gorla?) and Roby, Pana,

Elena, Millans (whenever you want to learn to swim just ask) and Silvia, Ferdinando (now

known as well as Perdinando, please Messi do not spoil me any TV series once you read this)

and Carla, the two Stefano (Mintchev e Varricchio), Enza and Lorenzo (please stop simulating

fouls at soccer), Alice and Gabriele, la Gallina, and least but not last Tortello, Grosso, Betta and

Brizzi. Thanks for all the dinners, nights, football, swimming, hikes and trips that we spent

together. It would have been incredibly boring without you guys. Thanks also to Roberto for

all the coffees and interesting discussions about mountains and life during these years at EPFL.

A number of other people made my years at EPFL amazing, but is impossible to list all of them

here, I will only mention Jonas, Koko, and the lab mates of Marco & Vale which I came to know

during this time.

1 You can find them here http://lis.epfl.ch/people and in the alumni section :-)
2 In fact, sometimes living there increased the stress. I profit of this space to NOT thank Marco for having woken

me up at least 100 times at 4am, and for inviting 20 people at home consistently before I had some deadline :-)

vi

Acknowledgements

Among the crazy italians, Andrea Biasiucci is one of my friends that deserves a full paragraph.

Andrea is feeding me daily with neuroscience stories (to be honest also with stories of another

kind3) and has an inextinguishable drive for trying to help people affected by neurological

disorders. I’m happy to share with him our startup project and to learn continuously from

him about neurotechnology. As I am already writing about our project, thanks also to all the

people that have collaborated with us, including Géraud, Marco, Furio and Stefano.

A well deserved thanks goes also to all my lifetime friends for still being in touch after all these

years. Furio, Capo, and Colu, I think I bothered you enough talking about my research. Also,

special mention to all the friends that come to visit me over the years, Padu and Jessica, Mango,

Antonio, Elena and Claudio (Claudio, please bring better shoes next time we go hiking). We

had great times together.

Finally, I conclude with the most important ones. First, I want to thank my family for having

always supported me in these years. Grazie mamma for the good food at our Sundays lunch

whenever I was in Italy, thanks dad for keeping me updated with all the news regarding

Lausanne, and in particular thanks to my sister for tolerating all my jokes. Special mention to

my grandparents Luigi & Mariuccia for pushing me to study, without them I would not have

taken this path. Last but not least, Roberta, for sure my most important discovery. Thanks

Roby for supporting and encouraging me over all these years without ever4 complaining for

the many weekends spent at work and for always accompanying me, no matter what foolish

idea I’m pursuing.

Lausanne, 9 September 2014 Andrea Maesani

3 They can be found on repubblica.it/biasiucci
4 Editor’s note: almost never

vii

Abstract
Evolutionary algorithms are heuristic methods widely used to solve optimization problems.

Generally, they operate on a population of individuals, representing candidate solutions to

these problems, that improve gradually over several generations. Evolutionary algorithms

select individuals with better quality (fitness), and reproduce them introducing random muta-

tions. Better individuals are reproduced at a higher rate than those with worse fitness. This

process of selection and reproduction, based on the ordering given by the fitness, models

competition between individuals and leads to survival-of-the-fittest. Evolutionary algorithms

repeatedly select and reproduce individuals until a satisfactory solution to the problem is

found.

Although widely adopted, this traditional paradigm for evolutionary algorithms suffers from

few simplistic assumptions made by the pioneers of the field. First, describing the quality of

individuals using a single fitness value can be very challenging when several objectives and

constraints have to be aggregated in the same fitness function. Second, as noted by several

evolutionary biologists, in nature survival-of-the-fittest does not derive uniquely from com-

petition, but it is better seen as the outcome of a process of competition going on in parallel

to a process of elimination of non-fit individuals. Furthermore, in evolutionary algorithms,

fitness is assigned prior to the reproduction of individuals. Conversely, in nature fitness is

generally measured a-posteriori, after an individual has reproduced, and is the result of the

aforementioned process of elimination and competition, not the cause of competition.

To address the mismatch between our understanding of natural evolution and the current

assumptions made in evolutionary algorithms, Mattiussi and Floreano proposed a novel

paradigm called Viability Evolution that does not require to aggregate in the same fitness

function objectives and constraints. This paradigm puts emphasis on the elimination of

(non-viable) individuals that do not meet a set of changing viability criteria, defined by the

problem objectives and constraints. Adapting the viability criteria during evolution leads

to a modification of the traits of the individuals in the population, and gradually drives the

population towards desired solutions. Despite having been proposed on a conceptual level,

the idea of Viability Evolution lacked experimental validation. This thesis complements the

original idea of Viability Evolution proposing and testing viability evolutionary algorithms.

Here, we investigated several viability-based algorithms with the aim of showing potential

advantages that this new paradigm could offer to the field of evolutionary computation.

ix

Abstract

We started our investigation by testing whether or not an algorithm based on Viability Evolu-

tion could produce higher diversity levels in the evolving population compared to traditional

competition-based evolutionary methods, which quickly lose diversity. Experimental results

showed that our viability-based method maintains higher diversity in the evolving population

and generates more unique solutions on the tested set of problems. Then, we tested if the

additional information available to a viability-based algorithm, such as the number of viable or

non-viable individuals for each viability criteria, may be exploited during the search for achiev-

ing better performance in optimization problems. To this purpose, we combined viability

principles into a state-of-the-art evolutionary method for unimodal constrained optimization.

The additional information available during the evolutionary process allows to self-adapt the

algorithm’s parameters and achieve increased performance. Moreover, we extended this latter

method deriving a viability-based algorithm to solve multimodal constrained optimization

problems. Experimental results showed that this method, called mViE, outperforms current

state-of-the-art algorithms on a well-known set of constrained optimization benchmarks.

Successively, we embedded mViE into a novel framework for predicting structures of protein

assemblies at atomic resolution. We showed how this framework performs equally or better

than a previous version of the method, with the advantage that the constraints present in this

problem do not have to be combined into the fitness function, as finding the weights for this

combination is in itself an optimization problem.

Finally, we used evolutionary algorithms to optimize neural networks in the context of a

neuroscience investigation. The optimization of neural networks is a very arduous problem

with sparse and hard-to-find satisfactory solutions, spread over a vast design space. On this

difficult problem, we compared our mViE method with a standard evolutionary computation

method. After collecting large-scale, high-resolution measurements of Drosophila walking of

several isogenic lines of flies, we searched for neural circuit models that could match observed

patterns of spontaneous and odor-induced walking in Drosophila. By combining dynam-

ical systems analysis and simulations, we showed how a noise-mediated memory of odor

exposure accounts for the observed responses. Our results suggested how neural systems

may use neural noise to shape behaviors, producing robust group behavioral responses and

single-individual unpredictability at the same time.

In conclusion, this thesis contributes to evolutionary computation by investigating the Viabil-

ity Evolution paradigm and proposing efficient viability-based evolutionary algorithms for

constrained optimization. Furthermore, this thesis also contributes to biology, by providing a

new viability-based framework for predicting protein assemblies at atomistic resolution and

by elucidating a mechanism through which neural noise may shape animal behaviors.

Keywords: artificial evolution, evolutionary computation, viability evolution, diversity, con-

strained optimization, artificial neural networks, neural noise, animal behavior, spontaneous

behavior, macromolecular assembly.

x

Sommario
Gli algoritmi evolutivi sono largamente impiegati per risolvere problemi di ottimizzazione per

i quali altri approcci non sono applicabili, in cui bisogna trovare soluzioni che massimizzino o

minimizzino uno o più obbiettivi e/o soddisfino dei vincoli. Questi algoritmi operano su una

popolazione di individui (o soluzioni a un dato problema), migliorandone gradualmente la

qualità durante il processo evolutivo simulato. Gli algoritmi evolutivi selezionano, infatti, gli

individui con migliore qualità (o fitness), definita attraverso la cosiddetta funzione di fitness, e

li riproducono introducendo mutazioni; gli individui migliori sono riprodotti maggiormente

rispetto agli individui con peggiore fitness. Questo processo di selezione e riproduzione basato

sull’ordinamento introdotto dalla funzione di fitness modella la competizione tra individui e

cerca di simulare la selezione naturale (survival-of-the-fittest). Diversi biologi evolutivi hanno

tuttavia osservato come in natura la selezione non derivi unicamente dalla competizione tra

gli individui, bensì da un processo di competizione operante in parallelo ad uno di elimina-

zione di individui non abbastanza “fit”. Inoltre, negli algoritmi evolutivi, il valore di fitness di

ogni individuo è assegnato prima della riproduzione. Invece, in natura, il valore di fitness è

normalmente misurato a posteriori, dopo che un individuo si è riprodotto, ed è il risultato dei

già citati processi di eliminazione e competizione, non la causa della competizione tra di essi.

Per risolvere questa mancata corrispondenza tra il paradigma attualmente utilizzato in evolu-

zione artificiale e la nostra conoscenza dell’evoluzione naturale, Mattiussi e Floreano hanno

proposto un nuovo paradigma chiamato Viability Evolution (viability è tradotto in seguito

come fattibilità). Questo nuovo paradigma enfatizza l’eliminazione di individui che non sod-

disfano criteri di fattibilità definiti sugli obbiettivi o i vincoli di un problema. L’adattamento di

questi criteri durante il processo evolutivo si riflette in una modifica dei tratti degli individui

nella popolazione, e permette ad esempio di condurre gradualmente la popolazione verso le

soluzioni al problema considerato. Nonostante il paradigma di Viability Evolution sia stato

proposto a un livello concettuale, l’idea non è mai stata sottoposta a prova sperimentale. Lo

scopo di questa tesi è verificare se una diversa modellazione degli algoritmi evolutivi attraverso

questo nuovo paradigma possa apportare o meno dei vantaggi, e se sì quali. Inizialmente, ab-

biamo verificato se un algoritmo basato su Viability Evolution possa produrre livelli accresciuti

di diversità tra gli individui di una popolazione sotto evoluzione, a differenza di algoritmi

tradizionali basati su competizione che perdono diversità velocemente. I risultati sperimentali

hanno mostrato che il metodo proposto mantiene una diversità maggiore nella popolazione e

genera più soluzioni uniche rispetto a un metodo basato su competizione in una serie di pro-

xi

Sommario

blemi considerati. In secondo luogo, abbiamo ipotizzato che un algoritmo basato su principi

di Viability Evolution possa avere accesso a più informazione durante il processo evolutivo,

ad esempio il rapporto tra gli individui che soddisfano o no ciascun criterio di fattibilità, e

può quindi sfruttare queste informazioni aggiuntive per ottenere migliori prestazioni nella

risoluzione di un problema di ottimizzazione. Abbiamo quindi applicato principi di Viability

Evolution su un metodo stato dell’arte per ottimizzazione unimodale con vincoli. Le infor-

mazioni aggiuntive disponibili permettono di auto-adattare i parametri del metodo durante

l’evoluzione e accrescere le sue prestazioni. Inoltre, abbiamo proposto una versione di un

algoritmo basato su principi di Viability Evolution per risolvere problemi di ottimizzazione

multimodali con vincoli. I risultati sperimentali hanno dimostrato che quest’ultimo metodo,

chiamato mViE, è competitivo con lo stato dell’arte e supera molti metodi sui problemi di test

considerati in questa tesi. Successivamente, abbiamo applicato mViE all’interno di un nuovo

metodo per la predizione di strutture atomiche di assemblaggi di proteine. Abbiamo mostrato

come questo metodo offra prestazioni uguali o migliori a sistemi analoghi, con il vantaggio che,

grazie al paradigma di Viability Evolution, i vincoli di questo problema non debbono più es-

sere pesati nella stessa funzione di fitness, trovare i quali è in se un problema di ottimizzazione.

Infine, abbiamo utilizzato mViE per ottimizzare reti neurali nel contesto di una ricerca in neu-

roscienza sul ruolo del rumore neurale nei comportamenti animali. Ottimizzare reti neurali è

in generale molto difficile, dato che le buone soluzioni sono sparse nello spazio di ricerca e

difficili da trovare. Su questo difficile problema, abbiamo dimostrato che il nostro metodo è in

grado di ottenere prestazioni pressochè equivalenti rispetto a metodi evolutivi tradizionali. Le

reti neurali ottenute grazie ai metodi evolutivi impiegati ci hanno permesso di studiare il ruolo

del rumore neurale sui comportamenti animali. Il rumore è una caratteristica ubiqua dei

sistemi neurali, ma se e come influenzi il comportamento è ancora largamente sconosciuto.

Dopo aver raccolto misure su larga scala ad alta risoluzione temporale sulla camminata di

diverse linee isogeniche di mosche Drosophila (98 linee e più di 20.000 mosche analizzate),

abbiamo cercato reti neurali che riproducessero i motivi osservati nella camminata spontanea

o indotta da stimolazione olfattiva. Combinando l’analisi di sistemi dinamici e simulazioni,

abbiamo dimostrato come una memoria dell’esposizione all’odore mediata dal rumore possa

spiegare i motivi osservati nelle Drosophila. Abbiamo mostrato come i sistemi neurali possano

utilizzare rumore per regolare i comportamenti e garantire allo tempo stesso sia riproducibilità

nelle risposte di gruppo che non predicibilità a livello del singolo individuo.

In conclusione, questa tesi contribuisce sia al campo della computazione evolutiva, con un

investigazione del paradigma di Viability Evolution, sia alla biologia, mostrando un nuovo

meccanismo con cui il rumore neurale può regolare i comportamenti animali e fornendo un

nuovo metodo per predire la struttura di assemblaggi proteici.

Parole chiave: evoluzione artificiale, computazione evolutiva, viability evolution, diversità,

ottimizzazione vincolata, reti neurali artificiali, rumore neurale, comportamento animale,

comportamento spontaneo, assemblaggio macromolecolare.

xii

Contents
Acknowledgements v

Abstract (English, Italian) ix

List of figures xvii

List of tables xx

1 Introduction 1

1.1 A brief historical view of evolutionary computation 2

1.2 The canonical paradigm of evolutionary computation 3

1.3 The Viability Evolution paradigm . 5

1.4 Contributions of this thesis to Viability Evolution 8

1.5 Applications to neuroscience and biology . 9

1.6 Organization of the thesis . 10

2 Artificial evolution by viability rather than competition 13

2.1 Introduction . 14

2.2 A simple Viability Evolution algorithm . 15

2.3 Experimental Setup . 19

2.4 Results . 26

2.4.1 ViE maintains higher diversity in “single-objective” search landscapes . 26

2.4.2 ViE compares favourably in “multi-objective” search landscapes against a

multi-objective method with explicit diversity preservation 29

2.4.3 Comparisons against methods that explicitly encourage diversity 31

2.4.4 Contribution of each component of ViE in the discovery of unique solutions 33

2.5 Discussion . 35

2.6 Conclusion . 37

2.7 Supporting Information . 38

3 Information from viability boundaries to build efficient adaptive algorithms 43

3.1 Introduction . 44

3.2 Related Work . 45

3.3 (1+1)-CMA-ES with active covariance matrix adaptation 46

3.4 Introducing viability principles in CMA-ES . 48

xv

Contents

3.5 Results . 50

3.6 Conclusions . 52

4 Constrained multimodal optimization using viability evolution principles 53

4.1 Introduction . 54

4.2 Related Work . 56

4.2.1 CMA-ES-based methods . 56

4.2.2 Differential Evolution-based methods . 56

4.2.3 Memetic Computing approaches . 57

4.2.4 Viability Evolution . 58

4.3 Memetic Viability Evolution (mViE) . 59

4.3.1 Local search step . 62

4.3.2 Global search step . 64

4.3.3 Scheduler for selection of local/global search operator 65

4.3.4 Termination conditions . 66

4.4 Experimental Setup . 67

4.5 Results . 68

4.5.1 Engineering problems . 70

4.5.2 Sample algorithm runs . 73

4.5.3 Performance dissection . 73

4.6 Discussion and Conclusions . 75

4.7 Supporting Information: Parameter Analysis . 82

4.8 Supporting Information: CEC 2006 problem results - Error values achieved at

different level of NFES . 84

5 Application of evolutionary computation to neuroscience 87

5.1 Introduction . 88

5.2 Analysis of Drosophila walking . 89

5.2.1 A high-resolution, high-throughput assay for measuring Drosophila spon-

taneous and odor-evoked walking patterns 89

5.2.2 Walking patterns are diverse but reproducible across genetically distinct

strains of Drosophila . 91

5.3 An automated circuit model discovery approach 93

5.3.1 Evolutionary Computation for neural circuit discovery 96

5.4 Results . 97

5.4.1 Noise-driven multistable circuit models reproduce Drosophila sponta-

neous walking . 97

5.4.2 Circuit models for spontaneous behavior also reproduce odor-evoked

walking dynamics . 99

5.4.3 Noise creates a circuit memory of odor-evoked dynamics 101

5.4.4 A circuit output threshold determines behavioral sensitivity to neural noise102

5.5 Discussion . 105

5.6 Methods . 106

xvi

Contents

5.6.1 Drosophila strains . 106

5.6.2 Drosophila behavior apparatus . 106

5.6.3 Drosophila behavior experiments . 107

5.6.4 Drosophila behavioral analysis . 107

5.6.5 Dendrogram generation . 108

5.6.6 Genome Wide Association Study . 108

5.6.7 Neural circuit modeling framework . 108

5.6.8 Circuit model parameter optimization . 110

5.6.9 Variable bin-width weighted histogram generation 112

5.6.10 Dynamical systems stability analysis . 112

5.6.11 Trajectory density maps . 113

5.6.12 Testing the role of noise and threshold on spontaneous walking frequency113

5.6.13 2-neuron multistable circuit model classification 114

5.6.14 Lyapunov exponent computation . 114

5.7 Supporting Information . 115

Conclusions 118

5.8 Main contributions . 119

5.9 Future Directions . 120

Appendix 125

A Application of mViE to macromolecular assembly prediction 127

Bibliography 153

Curriculum Vitae 155

xvii

List of Figures
1.1 Artificial Evolution schematic . 4

1.2 Viability Evolution schematic . 6

2.1 The different operations performed by the Viability Evolution Algorithm (ViE) . 16

2.2 Boundary update mechanism used in the Viability Evolution algorithm 17

2.3 Viability boundaries definition on a filter design problem 18

2.4 Fitness landscapes of single-objective problems 21

2.5 Generation of search landscapes for testing diversity and number of unique

solutions discovered . 22

2.6 Low-pass filter design problem . 25

2.7 Genetic diversity maintained during evolution by SSGA and ViE on single-

objective search landscapes . 27

2.8 Number of unique target solutions discovered by SSGA and ViE 28

2.9 Number of iterations before completion of the evolutionary process for SSGA

and ViE . 29

2.10 Number of successful repetitions for SSGA and ViE 30

2.11 Number of disconnected target areas discovered by SSGA and Viability Evolution 30

2.12 Efficiency of SSGA and Viability Evolution . 31

2.13 Number of unique target solutions discovered by SSGA-FS and ViE on single-

objective search landscapes . 32

2.14 Number of unique target solutions discovered by NSGA-II with a diversity objec-

tive (NSGA-II-D) and ViE on single-objective search landscapes 33

2.15 Number of unique target solutions discovered by SSGA, ViE, SSGA equipped

with the family mechanism (SSGA-F) and Viability Evolution without the family

mechanism (ViE-noF) on single- and multi-objective search landscapes 34

2.16 Genetic diversity of unique target solutions discovered by SSGA and ViE on

single-objective search landscapes . 38

2.17 Number of unique target solutions discovered by SSGA and ViE on single-objective

search landscapes . 39

2.18 Average population genetic diversity (and confidence intervals) maintained by

SSGA with truncation selection and Viability Evolution 40

xix

List of Figures

3.1 Schematic representation of an evolutionary process under the Viability Evolu-

tion paradigm . 45

3.2 Possible scenarios encountered during search . 50

4.1 Schematic of mViE on and references to relevant figures and algorithms. 59

4.2 Representation of the main features of mViE on a simplified two-dimensional

search landscape . 60

4.3 Standard engineering problem benchmarks . 69

4.4 Sample execution of mViE on three difficult functions 74

4.5 Performance dissection of mViE’components . 75

4.6 Parameter analysis of mViE . 83

5.1 A high-resolution, high-throughput assay for measuring Drosophila sponta-

neous and odor-evoked walking patterns. (a) Schematic of planar behavioral

arenas . 90

5.2 Arena odor flow kinetics . 91

5.3 Walking patterns are diverse but reproducible across genetically distinct strains

of Drosophila . 92

5.4 Automated circuit model discovery and analysis workflow 94

5.5 Spontaneous walking of Canton-S flies . 95

5.6 Procedure for generating and comparing weighted variable-width histograms . 95

5.7 Comparison of mViE and PSO on noiseless and noisy network models 97

5.8 Noise-driven multistable models reproduce Drosophila spontaneous walking . 98

5.9 A dendrogram of the correlation between odor-evoked walking dynamics across

98 DGRP inbred Drosophila strains . 99

5.10 Circuit models for spontaneous behavior also reproduce odor-evoked walking

dynamics . 100

5.11 Noise creates a circuit memory of odor-evoked dynamics 102

5.12 The effects of noise and reproducibility of odor-evoked walking dynamics in the

best circuit model . 103

5.13 A circuit output threshold determines behavioral sensitivity to neural noise . . 104

5.14 Matching of Drosophila spontaneous walking data using subsets of the data,

noise alone, or noiseless circuit models . 115

5.15 Classification of 2-neuron noise-driven multistable models 116

5.16 Noise creates a circuit memory of odor-evoked dynamics: Strains B & C 117

A.1 Problems of following energy gradients for macromolecular assembly prediction 128

A.2 Cross correlation coefficient and RMSD of predicted structures 128

A.3 Proposed macromolecular assembly prediction pipeline, ePOW 129

A.4 Comparison between the ePOW and old POW pipeline for macromolecular

assembly prediction . 130

A.5 Best assemblies predicted by the ePOW pipeline 131

xx

List of Tables
2.1 Standard benchmark functions used to generate the single-objective fitness

landscapes . 20

2.2 Characteristics of the fitness landscapes generated for the different single-objective

experiments . 23

2.3 Definitions of the multi-objective DTLZ problems 24

2.4 Definitions of the target viability boundaries for the multi-objective benchmark

problems . 25

2.5 Niche-radius values for SSGA with fitness sharing in single-objective bench-

marks. The values are derived from the formula suggested in (Deb and Goldberg,

1989). 41

3.1 Parameter setting for (1+1)-ViE . 48

3.2 Experimental results of the (1+1)-ViE and comparison against the (1+1)-acCMA-

ES proposed in (Arnold and Hansen, 2012) . 51

4.1 Features of the selected CEC 2006 benchmark problems 68

4.2 Summary of mViE results on the selected CEC 2006 benchmark problems . . . 70

4.3 Features of state-of-the-art algorithms against which mViE is compared 71

4.4 Comparison of mViE on the selected CEC 2006 benchmark problems with

state-of-the-art algorithms . 78

4.5 Comparison of mViE against state-of-the-art algorithms on the engineering

problems . 79

4.6 Median NFES to achieve the fixed accuracy level ((f (~x)− f (~x∗)) ≤ 0.0001) and

Success Rate for the selected CEC 2006 problems. 80

4.7 Summary of mViE results on the engineering problems 81

4.8 Error values of mViE at different number of function evaluations on the selected

CEC 2006 benchmark problems . 84

xxi

1 Introduction

Our current understanding of natural evolution has provided remarkable insights to computer

scientists for designing powerful biologically-inspired methods. It is now widely accepted

that a population will undergo evolutionary change when: i) varied phenotypes are present

in the population, ii) different phenotypes have different rates of survival and reproductive

success, and iii) phenotype traits are heritable (Lewontin, 1970). Based on these fundamental

principles, the field of Evolutionary Computation (EC) is devoted to the study of algorithms

inspired by evolutionary processes. Thousands of practitioners apply EC methods to tackle

problems ranging from classical engineering optimization, like the design of power plants

(Koch et al., 2007) or buildings (Kämpf and Robinson, 2010), to the most complex applications

in pharmacology (Neri et al., 2007), disease diagnostics (Smith et al., 2007; Smith and Timmis,

2008) and prediction of molecular structures (Degiacomi and Dal Peraro, 2013). Moreover,

EC simulations are used to test scientific questions in evolutionary biology, for which it is not

possible to perform real experiments due to the large time-scales of natural evolution. For ex-

ample, EC allowed to observe the emergence of strategies for communication between robots

(Mitri et al., 2009; Floreano and Keller, 2010; Wischmann et al., 2012), the evolution of altruism

(Clune et al., 2011; Montanier and Bredeche, 2013) and the emergence of complexity during

an evolutionary process (Lenski et al., 2003). EC methods have also become extraordinary

tools for the investigation of neural systems (Ruppin, 2002) and the automatic discovery of

analytical relations emerging from experimental data (Schmidt and Lipson, 2009).

In this introductory chapter, a short history of the field is provided along with a description

of the main paradigm on which modern Evolutionary Computation is based. Then, a few

limitations of current evolutionary methods are highlighted and an alternative abstraction for

EC, called Viability Evolution, is introduced. The validation of Viability Evolution represents

the main subject of this thesis. In particular, this thesis is concerned with showing some

possible advantages that adopting the Viability Evolution paradigm can offer to the field of

Evolutionary Computation. Finally, a fascinating question from neuroscience is presented and

an attempt is made to tackle it using EC. The chapter ends with an outline of the organization

of this thesis.

1

Chapter 1. Introduction

1.1 A brief historical view of evolutionary computation

The roots of Evolutionary Computation can be traced back to the mid 20th century. At that

time, two of the founders of modern computer science, John von Neumann and Alan Tur-

ing, separately developed the idea of implementing principles inspired by evolution into

computers. The theoretical framework for self-replicating machines that could mutate and

transfer mutations to the offspring was first introduced in a series of lectures by von Neumann,

published posthumously in (Von Neumann, 1966). In parallel, Turing speculated on a ma-

chine learning method that could exploit random mutations and its analogy to mechanisms

behind natural evolution (Turing, 1950). Nevertheless, the first real evolutionary experiment

performed on a computer is due to an Italian-Norwegian mathematician, Niels Barricelli,

working in the group of Von Neumann. Barricelli experimented with simulated organisms

(Barricelli, 1954) defined by discrete sets of rules1, and observed for the first time the reproduc-

tion of what he called “symbiorganisms”, and the emergence of cooperation and parasitism

(Barricelli, 1962; Barricelli, 1963). Several other researchers laid the foundations of the field

experimenting with disparate methods for simulating evolution. For example, Fraser and

Bremermann performed computational experiments for studying biological evolution, Box

developed a method to optimize an industrial process, named “evolutionary operation”, and

Friedman developed the first example of a robot that could automatically design and build

electric circuits to control its own behavior. These and other seminal research articles are

collected in (Fogel, 1998a; Fogel, 1998b).

After the work of these pioneers of EC, the field differentiated among three main avenues of

research. Evolutionary Programming was introduced by Fogel (Fogel, 1962) in an attempt

to evolve automata capable of predicting future events using knowledge of observed events.

From the original ideas of Rechenberg and Schwefel (Schwefel, 1965; Rechenberg, 1965)

for solving engineering optimization problems with real-valued parameters, the paradigm

of Evolution Strategies was born. Finally, Holland’s interest in systems that could adapt

to uncertain and changing environments lead to Genetic Algorithms (Holland, 1975; De

Jong, 1975). The following years were characterized by investigations of the performance

of these algorithms on several abstract and real-world problems and by the cross-breeding

of ideas among these methods. In recent times, several flavors of powerful evolutionary

algorithms for stochastic optimization have been introduced. Among these, Artificial Immune

Systems (Farmer et al., 1986), Ant Colony Optimization (Dorigo et al., 1991), Particle Swarm

Optimization (Eberhart and Kennedy, 1995), Differential Evolution (Storn and Price, 1997),

and more recently Covariance Matrix Adaptation Evolution Strategy (Hansen et al., 2003) are

some of the most used by practitioners worldwide.

1 Barricelli’s simulated organisms probably represent the precursors of what are now known as ‘cellular au-
tomata’.

2

1.2. The canonical paradigm of evolutionary computation

1.2 The canonical paradigm of evolutionary computation

Although important differences exists among the different classes of EC methods, an Evolu-

tionary Algorithm (EA) is generally characterized by the fact that it operates on a population

of individuals. These individuals can represent, for example, the candidate solutions to a

specific optimization problem. The genotype of an individual is encoded into a properly

designed data structure that can be randomly mutated or recombined thanks to ad-hoc op-

erators. To generate offspring, individuals are reproduced proportionally to a measure of

their performance generally referred to as a fitness function, or a cost function when used in

an optimization context. In artificial evolution, as only a limited number of individuals is

maintained in a fixed-size population, competition between individuals arises and leads to

survival-of-the-fittest.

Since its inception, EAs have been developed around this paradigm, illustrated in Figure 1.1.

The principle of survival-of-the-fittest has been implemented by sorting individuals using the

values provided by a fitness function and by selecting the most “fit” of them. For about three

decades, evolutionary methods flourished using this simple abstraction. Multi-objective prob-

lems and constrained optimization problems were tackled by mixing the different objectives

in the same fitness function and by penalizing the fitness by the constraint violations. A shift in

the paradigm used for dealing with multi-objective problems happened around the beginning

of the ’90s. Many researchers started to propose algorithms that independently modelled each

objective and that did not require the aggregation of objectives into a unique fitness function.

The turning point occurred with Goldberg’s suggestion to directly incorporate the concept of

Pareto Optimality2 and domination of solutions3 in evolutionary methods (Goldberg, 1989).

Following his idea, a new class of Multi-Objective Evolutionary Algorithms (MOEA), using

special sorting routines that explicitly adopted Pareto concepts4, have been developed for

multi-objective optimization (see for example (Coello Coello, 2006) for a comprehensive

review).

This fundamental change in the way of tackling multi-objective problems has allowed to

overcome inherent problems of mixing conflicting objectives of different scales and units in

the same fitness function. However, the same problem persists in constrained optimization,

where the solutions to an optimization problem must also satisfy a number of requirements

defined through constraint functions. Although a myriad of techniques have been proposed to

handle constraints5, evolutionary constrained optimization seems lacking a similar unifying

paradigm, and the literature still abounds with methods mixing constraints in the same fitness

function.

2 Introduced by the economist Vilfred Pareto teaching at the University of Lausanne around 1896.
3 A solution of a problem with multiple objectives Pareto-dominates another solution if the first is not inferior

to the second in all objectives and there is at least one objective where it is better. In this context, the aim of an
evolutionary algorithm is to discover the optimal non-dominated set of solutions, or optimal Pareto Front.

4 We refer to non-dominated sorting algorithms that rank solution in non-dominated Pareto fronts.
5 Carlos A. Coello Coello has collected over the years more than 1200 references of constraint-handling tech-

niques used in evolutionary meta-heuristics, available at http://www.cs.cinvestav.mx/~constraint/

3

http://www.cs.cinvestav.mx/~constraint/

Chapter 1. Introduction

. . .

}
 Recombinationc)

}
Mutationd)

. . .

Parent Population

a)

Offspring Population

b) Fitness Evaluation

. . .

168.3

70.2

44.7

32.8

16.5

e)

Figure 1.1: Artificial Evolution schematic. a) The different individuals in a population (colored
rectangles) store information about the solution of a problem or encode a description of a
virtual organism. b) The individuals are evaluated according to the fitness function and ranked
according to this value. The fitness value is directly used to select individuals for reproduction.
During reproduction two mechanisms can introduce variation in the offspring individuals; c)
recombination mixes the information contained in the genotypes of two individuals and d)
random mutations can affect the genotypes of the individuals. e) After undergoing recombina-
tions and mutations, an offspring population is generated. The repeated application of these
operations leads to selective reproduction of the fittest individuals and overall to an increase
in the performance, defined in terms of a fitness function, of the members of the population.

Furthermore, although remarkable examples of “creative solutions” discovered by current

EAs exists, as in the famous case of an evolved radio antenna for a NASA mission that outper-

formed human-designed ones with surprising design choices (Hornby et al., 2011), we are still

unable to simulate open-ended evolution scenarios that could result in the incredible diversity

generated by natural evolution processes. As discussed in (Mattiussi and Floreano, 2003), two

consequences could have derived from embracing the currently widely adopted paradigm

of evolutionary computation. First, due to the use of a single fitness function, this paradigm

may have introduced problems from the start in solving constrained and multi-objective

problems. Second, the current paradigm may still constrain the development of novel and

more powerful evolutionary methods. Thus, the question is: what alternative paradigm one

may adopt to overcome the discussed shortcomings? As seen previously, changes in under-

lying paradigms, for example in the case of multi-objective problems, allowed considerable

advances in evolutionary computation.

Evolutionary algorithms abstract the principle of survival-of-the-fittest by ranking individuals

4

1.3. The Viability Evolution paradigm

according to the value returned by the fitness function6. Thus, current EAs fundamentally

model only competition among individuals. On the contrary, survival-of-the-fittest in nature

does not result uniquely from such competition. Mayr notes that natural evolution can be

better seen in terms of a process of eliminations (Mayr, 2002, p. 130). A mere process of

selection of the fittest in each generation would be highly restrained, whereas eliminations

of less fit permits the survival of a large number of individuals. As remarked by (den Boer,

1999), it is in fact more appropriate to think of natural evolution as, adopting his terminology,

non-survival of the non-fit. According to den Boer, it is the norm that individuals which are

not the “fittest” survive and reproduce, and only in rare cases a total (or partial) ordering

of the individuals determines their reproductive success. Only after many generations the

prevailing properties of surviving individuals result in a set of properties suggesting an overall

survival-of-the-fittest.

Non-survival of the non-fit allows the persistence of temporarily non-favourable genes and

their recombination with other individuals. The opposite is modelled in current EAs. Indi-

viduals compete in each generation according to a pre-established fitness function, whereas

eliminations are totally absent from current EC paradigms. This may have important impli-

cations on the outcome of the evolutionary process (Mayr, 2002, p. 130-131). For example,

the excessive emphasis on competition in current evolutionary algorithms may easily lead

to loss of diversity in the evolving population, and consequently to the convergence of the

population to a local optimum (Eiben and Smith, 2003, p. 29).7 Furthermore, viewing an

artificial evolution process solely under the fitness function paradigm can constrain choices

made during the development of new methods and limit the amount of available information

during the search process, as we hope will become clearer in the following of this thesis.

1.3 The Viability Evolution paradigm

Mattiussi and Floreano proposed an alternative abstraction of artificial evolution named

Viability Evolution (ViE) (Mattiussi and Floreano, 2003) to overcome the inherent mismatch

between our understanding of natural evolution and the current paradigm of EC. In the

following, we briefly describe the ViE paradigm using their original notation.

The main idea behind ViE is to separately model competition and elimination events.8 Both

these events contribute to the reproductive success of the individuals in a population and

eventually determine survival-of-the-fittest. Competition events are modelled through a

competition function9 that defines a partial or total ordering between the individuals of a

6 Also multi-objective evolutionary algorithms, even though they do not require aggregating objectives in the
same fitness, rank solutions according to a partial ordering.

7 In Evolutionary Computation, this phenomenon is generally called “premature convergence"".
8 In the original report competition events are referred to as selection events. However, we deem more appro-

priate to call these events “competition” ones. Selection has the broad meaning of “choosing from a group”, and in
this light elimination as well is an act of “selection”.

9 Originally called selection function.

5

Chapter 1. Introduction

. . .

v
1
=

V
1

v
1
=

v
2
= ...

v
2
= ...

1

a)

V
1
(t)

V
1
(t

c
)

b)

Iterations

V
1
(t

b
)V

1
(t

a
)

t
a

t
b

t
c t

Figure 1.2: Viability Evolution schematic. a) Every individual in the population is viable if
and only if all its viability criteria are satisfied, i.e. they belong to the viability set. a) Viability
space V1 and set V1 for the first viability criteria (thus the subscript 1) of the individuals of
the population (colored rectangles). The current values (small squares) for this criteria that
are viable are only those enclosed within the viability set V1. The individual colored in blue is
non-viable and will be eliminated from the population. b) The viability set can change during
the evolutionary process. The viability viability tube represents the trajectory of the viability
set in the viability time-space V×T . The panel depicts the viability set V1 at different time
steps of evolution ta ≤ tb ≤ tc ≤ t .

population. Assuming that I is the set of possible phenotypes, we can define the competition

function σ : I→S, where S determines a partial or total ordering of the phenotypes, for exam-

ple S=R. The competition function is essentially what has been called until now a “fitness

function” in evolutionary computation. Elimination events, instead, are modelled assuming

that each individual has to satisfy a number of viability criteria to survive. The values of each

of these viability criteria must be maintained within admissible ranges, specified by a viability

set. The viability set does not necessarily have to remain constant along the evolutionary

process but can be adapted by an experimenter or by an evolutionary algorithm itself, causing

non-survival of non-fit individuals, or allowing favourable conditions for individuals that

would not have been deemed viable before.

Viability sets can be modelled by defining a viability function v : I→Vwhere V is the viability

space of all allowed viability criteria values. According to this definition, and given a viability

set V ∈V, we can say that an individual i ∈ I is viable with respect to the current viability set

V if and only if it satisfies all the viability criteria, or equivalently v(i) ∈ V (Fig. 1.2a). If the

viability set changes at each simulated time step t , the set comprising all the viability sets that

are valid at different time steps is referred to as the viability tube θ = {V (t)}t∈T , defined within

the viability space-timeV×T (Fig. 1.2b). An individual surviving across multiple iterations will

cover a trajectory within the viability tube and remain viable as long as its trajectory remains

within the tube.

Viability criteria can be, for example, defined on objectives or constraints of an optimization

problem. To provide a concrete example to the reader, let’s consider the case of a real-valued

constrained optimization problem where each solution i ∈ I has to satisfy m constraints of

the type g j (i) ≤ 0, j ∈ 1, . . . ,m to be considered feasible. These inequalities can be easily

6

1.3. The Viability Evolution paradigm

described under the ViE formalism by defining V = V1 × . . .×Vm ,V j ∈ R. The viability set

V = V1 × . . .×Vm can be relaxed at the beginning of the evolutionary process to equal the

whole viability space V = V and can be subsequently made more stringent to reach the

target viability set VT =VT 1 × . . .×VTm ,VT j ∈ (−∞,0], j = 1, . . . ,m, that corresponds to the g j

inequalities specified above. In the particular case where a component V j of the viability set

can be expressed in terms of a lower and upper bound, we refer to the bounds of this interval

as viability boundaries.

Now that it is clear how competition and elimination events can be modelled, we can intro-

duce the main structure of an algorithm based on the Viability Evolution paradigm, shown

in Algorithm 1. In its simpler form, a Viability Evolution algorithm reproduces surviving

individuals using a selection and reproduction operator r which uses information provided by

the competition function σ. The function σ can be used to determine the level of competition

among individuals and in the simplest case when one wants to implement a scenario without

competition, it can simply return the same value for every individual. After reproduction, non

viable individuals are eliminated by the viability elimination operator ev . As the population

size is not constant, random eliminations performed by a contingency elimination operator ec

can reduce the number of individuals to avoid the unlimited growth of the population. Finally,

the viability set is updated towards a target viability set by the viability set update operator.

Algorithm 1 Pseudo-code of generic structure of an algorithm based on the Viability Evolution
paradigm. Competition and eliminations are modelled by providing appropriate viability func-
tion v , competition function σ, and the r , ev and ec operators for modifying the population.
The operator u is used to modify the viability sets.

1: t ← 0
2: P (0) ← SAMPLEINITIALPOPULATION()
3: V (0) ← ASSIGNINITIALVIABILITYSET()
4: P (0) ← ev

(
P ′(0),v(P ′(0)),V (0)

)
. Eliminate for viability

5: while ¬ TERMINATIONCONDITION() do
6: P ′(t) ← r (P (t),σ(P (t))) . Competition and reproduce
7: P ′′(t) ← ev

(
P ′(t)∪P (t),v(P ′(t)∪P (t)),V (t)

)
. Eliminate for viability

8: P (t +1) ← ec
(
P ′′(t)

)
. Eliminate for contingency

9: V (t +1) ← u (V (t)) . Update viability set
10: t ← t +1
11: end while

The details of the specific operators r , ev , ec and u are not specified, leaving the possibility to

implement a broad variety of algorithms under the Viability Evolution paradigm by providing

different implementations of these operators. For example, by disabling elimination operators

one returns to the original artificial evolution abstraction. On the other hand, by disabling

competition one is left with an algorithm that only employs eliminations. In this second case,

modifying the viability sets is the only way to drive (indirectly) the population towards desired

areas of the search space. Finally, the use of both operators allows one to model competition

and eliminations in the same algorithmic framework.

7

Chapter 1. Introduction

1.4 Contributions of this thesis to Viability Evolution

Although Mattiussi and Floreano laid the conceptual ideas for this novel paradigm of Evolution-

ary Computation in their seminal report (Mattiussi and Floreano, 2003), the Viability Evolution

abstraction remained untested for several years. This thesis provides a first evaluation of these

ideas. Here, our main aim is to study what advantages the adoption of this paradigm can

offer to the field of Evolutionary Computation. Thus, we propose several viability-based evolu-

tionary algorithms, or simply viability evolutionary algorithms, that allow us to investigate

different aspects of the Viability Evolution paradigm.

First, we are particularly interested in understanding the evolutionary dynamics of a process

based on eliminations rather than pure competition. Capitalizing on the views of Mayr (Mayr,

2002) and den Boer (den Boer, 1999) presented previously, we hypothesise that a simulated

evolutionary process based on eliminations may result in a higher level of genetic diversity

in the population throughout evolution. This can potentially lead to innovative solutions

discovered at the end of a simulated evolutionary process. Several mechanisms for main-

taining higher diversity are available in the literature, for example fitness sharing, crowding

and clearing, as reviewed in (Sareni and Krahenbuhl, 1998). Fitness sharing and clearing ap-

proaches modify the fitness of individuals depending on their proximity to other individuals.

In crowding techniques the offspring replaces the most similar individuals that are worst in

terms of fitness. Other approaches include multi-population EAs (Tsutsui et al., 1997; Ursem,

1999; Siarry et al., 2002; Lung, 2004) and methods that maintain explicit diversity information

in each individual (Collard and Escazut, 1995; Kominami and Hamagami, 2007). However,

all the approaches mentioned above still rely on the traditional paradigm of Evolutionary

Computation. Novelty search explicitly promotes diversity by using a diversity measure as an

objective during the search (Lehman and Stanley, 2008; Mouret, 2011). Although in this case

the underlying abstraction is different, i.e. there is an explicit bias (modelled as an objective)

towards increasing diversity, this seems to be very far from simulating a natural evolutionary

process. In brief, the question is: can an algorithm designed according to Viability Evolution

principles maintain higher diversity "for free" during the search?

Second, we already saw that an algorithm based on viability principles models distinctly the

survival criteria of the individuals. In multi-objective or constrained optimization scenarios

these viability criteria can be naturally defined on the objectives or constraints of the problem

at hand, without any need of aggregating them in a fitness function. Although it is now natural

in multi-objective optimization, after the introduction of Pareto optimality concepts, to model

each objective separately, it is less intuitive for constrained optimization, where still a myriad

of methods aggregate constraint violations into the same fitness function. Under the viability

abstraction, a user provides a unified description of objectives and constraints as viability

criteria. Therefore, algorithms modelled on the viability paradigm have access to a new source

of information not available before: the number of individuals that satisfy or not (are viable or

not) each viability criteria. This information, which is not available in approaches that mix

constraints and objectives in the same fitness, can now be used for adapting an algorithm’s

8

1.5. Applications to neuroscience and biology

parameters or dynamically modifying the viability sets to drive the evolutionary search. For

example, when exploring difficult regions of the search space a higher number of unviable

individuals has to be expected and an algorithm having access to such information can adapt

itself to handle the situation. To conclude, a different modelling of evolution provides access to

more information during the search process, which in turn allows for designing more efficient

algorithms.

In this thesis we want to highlight these aspect of the Viability Evolution paradigm by focusing

on constrained optimization scenarios, in which it is still not obvious that constraints should

be modelled separately. Can this additional information be used for producing more effective

algorithms for constrained optimization? Both this and the diversity issue will be addressed

in the first part of this thesis, leading to the development of a very effective method for

constrained optimization, named mViE10.

1.5 Applications to neuroscience and biology

Evolutionary Computation methods are unpaired tools for generating creative solutions of

real-world problems. For this reason they have been used on multiple occasions for tackling

biological questions and have provided novel insights to explain biological phenomenon, from

evolutionary biology to neuroscience. In the second part of the thesis, we use evolutionary

computation methods to approach a scientific question in neuroscience, regarding the role of

neural noise in animal behavior.

Neural noise is a ubiquitous and poorly understood feature arising at different levels of or-

ganization of the brain (Faisal et al., 2008). Although some of its molecular basis have been

understood, its role in higher behaviors and cognitive function is still unknown, with the

exception of few cases11. Is neural noise only a disturbance present in neural systems or does

it have some positive role contributing to behaviors? Neural noise may leave a direct imprint

on spontaneous behaviors (Martin et al., 1999; Flavell et al., 2013), occurring in the absence of

overt external stimulation, where its influence may be greater. However, does neural noise

also affect sensory-driven behaviors and if yes, how?

To tackle these questions we can exploit the power of evolutionary algorithms for automatically

discovering neural circuit models capable of explaining large Drosophila melanogaster walking

behaviors datasets in the absence, i.e. spontaneous behaviors, and presence of sensory

stimulation. After having obtained these models, we can dissect their dynamics to gain insights

into how real circuits may achieve the observed behavioral features 12. In our investigation,

we describe these circuit models in terms of Continous-Time Recurrent Neural Networks

10 We do not enter here in the details, the acronym stands for ‘memetic Viability Evolution’.
11 Stochastic resonance (McDonnell and Abbott, 2009) is a well known phenomenon in sensory neurobiology

where noise helps the detection of weak signals in sensory systems.
12 Of course this does not imply that real neural circuits actually work in the same way our simulated circuits

work. It is however possible to gain novel insights that can drive and inform further research in vivo, or at least
derive new hypothesis on how certain neural computations could be performed

9

Chapter 1. Introduction

(CTRNN) (Beer, 1995). Evolutionary Computation is a naturally apt tool for optimizing neural

network parameters (Beer and Gallagher, 1992), given the complexity of these search spaces13.

The unconstrained optimization problem considered here, i.e. fitting neural circuit models,

while being essential for trying to answer the aforementioned neuroscientific questions,

coincidentally represents a good real-world problem on which to test mVie. This is particularly

interesting as it belongs to a problem class for which it was not designed14, and allows us to

compare its performance with a state-of-the-art EC algorithm.

Furthermore, we apply mViE to a second real-world application, this time in biology, related

to the prediction of atomic structures of protein assemblies. The knowledge of the structure of

an assembly at atomistic resolution is required for studying its function (Ward et al., 2013).

A state-of-the-art framework for structural prediction of symmetric protein assemblies has

been presented in (Degiacomi and Dal Peraro, 2013). This framework models the search for

candidate predictions as an optimization process. The cost function is defined by a weighted

combination of an energy function to be minimized and geometrical constraints on the

assembly, whose violations have to be minimized as well. However, the definition of weights

for the energy and constraints is in itself a time-consuming optimization problem. mViE,

by modelling separately constraints as viability criteria can remove the need for combining

these different constraints and energy into a single fitness function. Thus, we apply the mViE

algorithm, combined with further improvements, on this prediction problem and derive a

more powerful prediction framework15.

1.6 Organization of the thesis

The chapters of this thesis are self-contained to allow an easier access to to the content more

suiting the reader’s own interest. All chapters are based on material submitted or published in

scientific journals and in many aspects follow the same structure of a scientific article.

In the first part of the thesis, we report the main results and contribution regarding the

validation of Viability Evolution principles in Evolutionary Computation. In Chapter 2, we

model a simple Viability Evolution algorithm based on a canonical genetic algorithm. In this

chapter, we are interested in particular in investigating how the diversity of evolving population

may differ in the original genetic algorithm and the one based on Viability Evolution principles.

We show that it is possible to drive the search towards interesting regions of the search space

by adapting the viability boundaries and using eliminations only, eventually discovering more

diverse solution than the ones found by a standard competition-driven algorithm.

13 Search spaces, or “fitness landscapes” in EC jargon, for this problems can be very difficult to explore due to
the high number of “bad” networks that produce trivial responses.

14 We remember that mVie is designed for constrained optimization scenarios, whereas in this case the problem
is unconstrained.

15 We recently applied mViE to the prediction of protein assembly structures, therefore no separate chapter exist
for describing our results. An appendix contains the main experimental results and description of the method
used, but no detailed description is available.

10

1.6. Organization of the thesis

In Chapter 3, we orient our research towards more practical aspects of Evolutionary Com-

putation, in particular to tackle constrained optimization problems. Our aim is to show that

the adoption of the Viability Evolution paradigm provides additional information during the

search, which can be readily used for improving an algorithm’s performance. Specifically,

we enrich a state-of-the-art algorithm, Covariance Matrix Adaptation Evolutionary Strategy

(CMA-ES), with viability boundaries. We show that viability boundaries allow for collecting

additional information about the structure of the search space. This information can then

be used to more effectively adapt the parameters of CMA-ES. This leads to a more efficient

algorithm for unimodal constrained problem solving.

This method is extended in Chapter 4 to solve a broader class of constrained optimization

problems. We show that by using a population composed of distinct search distributions that

use viability boundaries we can solve also multimodal constrained problems more efficiently.

We compare our final proposed method (mViE) with current state-of-the-art constrained

optimization methods, showing its competitiveness. Finally, we recently tested mViE on a

biological problem, the prediction of molecular assemblies. The results of this investigation

are briefly presented in Appendix A.

In the second part of the thesis, composed of Chapter 5, EAs are a fundamental ingredient of

an exciting multidisciplinary research project where we try to elucidate the role of noise in the

neural systems of Drosophila flies. We combine artificial evolution with dynamical systems

analysis and genome-wide association studies to investigate how neural noise may be used by

neural systems to sculpt behaviors. The optimization of neural network parameters that need

to be tackled here represents a good real-world scenario for testing the Viability Evolution

algorithm presented in the previous chapter (mViE). Our findings show that noise can be

employed to construct complex and robust behavioral responses and they also demonstrate

how EAs can be used to tackle neuroscientific problems.

11

2 Artificial evolution by viability rather
than competition

In the traditional Evolutionary Computation paradigm, selective reproduc-

tion of the fittest, inspired by competition-based selection in nature, leads

to loss of diversity within the evolving population. This can cause the pre-

mature convergence of an evolutionary algorithm, hindering the discovery

of many different solutions. In this chapter, we investigate a preliminary

version of a Viability Evolution algorithm that puts emphasis on the elimi-

nation of individuals not meeting a set of changing viability criteria, which

are defined on the problem objectives and constraints. Experimental re-

sults show that this simple version of Viability Evolution maintains higher

diversity in the evolving population and generates more unique solutions

when compared to classical competition-based evolutionary algorithms.

The contents of this chapter are adapted from:

Maesani A, Fernando PR, Floreano D (2014). Artificial Evolution by Viability Rather Than

Competition. PLoS ONE 9(1): e86831. doi:10.1371/journal.pone.0086831

13

http://dx.doi.org/10.1371/journal.pone.0086831

Chapter 2. Artificial evolution by viability rather than competition

DISCLOSURE: The experiments discussed in section 2.4.2 have been performed by a co-

author of this study, Dr. Pradeep Ruben Fernando. We report them here for completeness.

2.1 Introduction

Evolutionary algorithms are heuristic optimization methods inspired by natural evolution

(Goldberg, 1989; Fogel, 1994; Fogel, 1995; Bäck, 1996). They operate by selecting, reproducing,

and mutating the genotypes of individuals with higher performance in a population where

each individual is a candidate solution to the problem. A fitness function is used to score

individuals according to how well they perform on the problem objectives, and a selection

operator allocates higher number of copies with random mutations to individuals with higher

fitness. This process of fitness-based selection models natural competition between organ-

isms of a population for contributing offspring to the next generation. The generational cycle

of fitness assessment, selective reproduction of individuals with higher fitness, and random

mutations is repeated until a satisfactory solution to the problem is found. The simplicity,

effectiveness, and wide applicability of evolutionary algorithms have contributed to their

adoption in a very large number of problem domains, from computer science to engineering,

all the way to pharmacology (Foster, 2001; Eiben and Schoenauer, 2002). Moreover, evolu-

tionary algorithms are widely used to investigate biological questions by conducting in-silico

experiments (Lenski et al., 2003; Clune et al., 2008; Wischmann et al., 2012; Bongard, 2011).

A difficulty of evolutionary algorithms that hinders the discovery of several unique solutions

stems from the gradual loss of diversity caused by the repeated application of competition-

based reproduction of the fittest individuals, which can lead to premature convergence of

the evolving population to a sub-optimal solution (Eiben and Smith, 2003; Mattiussi et al.,

2004). Furthermore, in multi-modal problems, where there are multiple global or local optima,

possibly distributed over the solution space, evolutionary algorithms tend to converge to

only one set of solutions (i.e. one global or local optimum) as population diversity decreases.

Although several techniques have been proposed to delay or reduce premature convergence,

for example see (Park and Ryu, 2010; Adra and Fleming, 2011; Ginley et al., 2011) for a re-

cent review of existing methods, loss of population diversity is intrinsic to the majority of

evolutionary algorithms and is influenced by the selection method employed.

In this chapter, we test the hypothesis that Viability Evolution (Mattiussi and Floreano, 2003),

by modelling separately competition and eliminations, can maintain higher levels of diversity

during evolution than traditional competition-based evolutionary methods. First, as no

practical algorithm has been proposed in (Mattiussi and Floreano, 2003), we have to devise a

simple viability evolution algorithm, that captures the fundamental properties of the viability

paradigm. To make things simple, we do not model competition and only use eliminations

with changing viability boundaries to drive the evolutionary search. Furthermore, to compare

this viability algorithm with traditional competition-based algorithms we directly incorporate

14

2.2. A simple Viability Evolution algorithm

viability principles into a simple genetic algorithm. The resulting method is named ViE in

the rest of this chapter. We show that ViE maintains a higher level of diversity, leading to the

discovery of a larger number of alternative solutions than found by traditional competition-

based evolutionary algorithms.

2.2 A simple Viability Evolution algorithm

The Viability Evolution algorithm presented in this chapter (ViE) consists of defining viability

boundaries, creating an initial population, and repetitively applying reproduction, elimination,

and boundary updates until the boundaries meet the desired values (Figure 2.1). Viability

boundaries are expressed as inequalities on the problem objectives and define the character-

istics of the desired solutions. The algorithm follows as close as possible the structure of a

steady-state genetic algorithm (SSGA), as we deemed important for our investigation to base

our method on a very simple genetic algorithm for facilitating the analysis of the method’s

performance. SSGA is easy to study due to the generation of a single individual per iteration.

15

Chapter 2. Artificial evolution by viability rather than competition

A B

C D E

F

f1

f2

t ← 0

VTARGET ← initTargetBoundaries()

M(0) ← initRandomPopulation()

V(0) ← relaxBoundaries(M(0), VTARGET)

while t ≤ T ˄ ¬boundariesConverged(V(t), VTARGET)

do

 M’(t) ← reproduceIndividual(M(t))

 M(t+1) ← eliminateNonViable(M’(t), V(t))

 V(t+1) ← updateBoundaries(M(t+1), V(t), VTARGET)

 t ← t + 1

end while

G

Figure 2.1: The Viability Evolution (ViE) algorithm. The population under evolution is shown
in a two-dimensional objective space, defined by the f1 and f2 objective functions in this
example. (A) Individuals of the initial population M(0) (black circles) are randomly generated.
The region enclosed by the target viability boundaries (gray stripes) is extremely unlikely to
contain any of the randomly generated individuals in the initial population. (B) The initial
viability boundaries V (0) are set by the algorithm in terms of inequalities on the objectives to
encompass all individuals in the initial population. (C) Viability boundaries are modified to
approach the target boundaries VT ARGET ; as a result, a fraction of the population becomes
non-viable (gray shaded circles) and is marked for elimination. The way in which the bound-
aries are modified depends on the specific viability boundary update procedure implemented
by the user. See Figure 2.2 for further details on the update mechanism used in this chapter. (D)
All viable individuals are allowed to reproduce by making one mutated copy at each iteration
of the algorithm. Mutated copies that fall within the viability boundaries are allowed to stay
along with the parent. Mutated copies that fall outside the viability boundaries are marked for
elimination. (E) Non viable individuals are eliminated from the population. (F) The process
described in (C-E) is repeated for many iterations until the viability boundaries reach the
target values or the maximum number of evaluations t is exhausted. (G) The algorithmic
description of Viability Evolution.

16

2.2. A simple Viability Evolution algorithm

f1

f2

L1 U1

L2 U2

f1

f2

L1 U1

L2 U2

a b c d e f g h i

a b c de fg hi

j

j

f1

f2

L1 U1

L2 U2

a b c d e f g h i

a b c de fg hi

ℓ1

ℓ2

u1

u2

j

j

f1

f2

L1

L2

a b c d e f g h

ae g i

ℓ1

ℓ2

0 1

U1
i

u1

u2

b c df h

U2

1 0

j

j

ℓ’1

ℓ’2

u’1

u’2
k k

f1

f2

L1

L2

b c f g h

g

ℓ1

ℓ2

0 1

U1 u1

u2

b cf h

U2

1 0

j

j

A

C

D

E

B

Figure 2.2: Boundary update mechanism in the Viability Evolution (ViE) algorithm. (A) Let us
assume, without loss of generality, that the problem to be solved is defined by two objectives,
f1 and f2. The target regions of the given problem are defined by the target viability boundaries

- [Li , Ui] for each objective function fi respectively. Thus, the goal is to find solutions which
have values between Li and Ui for each objective function fi respectively. (B) Individuals of
the initial population are randomly generated. Each individual is represented using a circle on
the axis of each objective function. The position of a circle on the axis of an objective function
fi indicates the value of the corresponding individual for that particular objective. In this
example, each individual is represented using 2 circles - one on each axis of the two objective
functions. (C) The initial viability boundaries are set for each objective fi by identifying the
extreme values [`i , ui] on either side of the corresponding target viability boundaries [Li ,
Ui]. The initial viability boundaries thus encompass all individuals in the initial population.
(D) The viability boundaries are then tightened such that at least a minimum fraction k of
individuals become non-viable. To illustrate this clearly, the intervals - [`i , Li], and [ui , Ui]
are both rescaled to [0, 1] here. The new values for the viability boundaries [`′i , u′

i] (shown
as dotted lines) for each objective function fi are computed such that at least a minimum
fraction k of individuals in the population become non-viable (shown as light gray circles).
(E) Non viable individuals are eliminated from the population. The population continues to
evolve with the new viability boundaries until the next boundary update.

17

Chapter 2. Artificial evolution by viability rather than competition

To explain the workings of the Viability Evolution algorithm, let us consider the example

of finding the electronic design of a low-pass filter that meets desired values for the gain-

bandwidth product (GBW), the pass band flatness (PBF) and the stop band attenuation

(SBA). These three parameters represent the viability conditions for the survival of the circuits.

For each viability condition c a lower bound Lc and an upper bound Uc are defined (Fig

2.3). A circuit x is deemed viable only if all its viability boundaries are satisfied, that is

LGBW ≤ GBW (x) ≤ UGBW , LPBF ≤ PBF (x) ≤ UPBF , LSB A ≤ SB A(x) ≤ USB A . Because the

initial population is randomly generated, it is extremely unlikely that any individual can satisfy

all the viability conditions. Therefore, the lower and upper bounds of the viability conditions

are initially set to encompass all individuals, and are gradually modified during evolution to

approximate the desired values.

Pass band Stop band

Frequency (Hz)

A
m

p
lit

u
d

e
 g

a
in

fCUT-OFF

USBA

UGBW

LGBW

LSBA

UPBF

LPBF

GBW

Figure 2.3: Example of viability boundaries definition for a filter design problem. A candidate
filter design being optimized with Viability Evolution must satisfy certain requirements defined
by the user as viability boundaries. Here, the filter gain-bandwidth product (GBW, computed at
the cutoff frequency fCU T−OF F) must satisfy the viability boundary LGBW ≤GBW (x) <UGBW .
The stop-band attenuation (SBA) of the filter is also constrained by the viability boundary
LSB A ≤ SB A(x) < USB A . Finally, a filter must also satisfy a requirement on the pass-band
flatness (PBF), i.e. the deviation of amplitude gain from the gain at cut-off frequency, such that
LPBF ≤ PBF (x) <UPBF . The response for two different filters is depicted in figure. The first
filter (solid line) is viable as it satisfies all viability boundaries, while the second filter (dashed
line response) is non-viable, as it violates the viability boundaries expressed on pass-band
flatness.

18

2.3. Experimental Setup

At each subsequent iteration of the algorithm, each individual can reproduce by adding a

mutated copy to the population (the parent remains in the population). In order to give

each unique individual in the population equal chance of being reproduced, we have to

account for the possibility of clones, resulting for example from individuals that remain viable

for a long time and produce lots of copies. To achieve this, the algorithm keeps track of

the descendants of the initial population by assigning a different family identifier to every

individual in the initial population (note that only mutations are used in reproduction). The

reproduction probability of each individual takes into account the size of its family. This

is done by first selecting a family of individuals inversely proportionally to its size from the

current population and then randomly selecting an individual within that family. Once an

individual has generated an offspring, its family identifier is assigned to the offspring and the

family size is increased by one unit.

After the reproduction phase, individuals that fall outside the current viability boundaries are

eliminated and the size of the families of these individuals is reduced accordingly. The two

events that may lead to elimination of an individual are mutations and modifications of the

viability boundaries. All the viability boundaries are modified simultaneously (Figure 2.2) so

that at least a fraction of individuals (defined by the user) is discarded from the population.

After each boundary update, boundaries are not modified until the population generates a

number of viable individuals equal to at least the number of eliminated individuals. As soon

as this condition is satisfied, the viability boundaries are updated again and this process is

repeated until they reach the target values.

Once the boundaries are converged to the desired values, the algorithm returns the final

population of solutions to the user. Note that all these solutions satisfy the user-defined

criteria of success. Therefore, the user may choose any one of them or use additional criteria

after inspection of the genotypes of the solutions.

2.3 Experimental Setup

We compared the Viability Evolution algorithm with two traditional, competition-based,

evolutionary algorithms: a genetic algorithm with steady-state replacement (Whitley, 1989),

which will be denoted as SSGA in the rest of the chapter, and the Elitist Non-dominated Sorting

Genetic Algorithm, or NSGA-II (Deb et al., 2002a). As mentioned above, SSGA is very similar

to the ViE algorithm. Both SSGA and ViE follow the same cycle of parent selection, offspring

generation, and selection of individuals for the next generation. Both use the same mutation

operators to produce exactly one offspring per generation or iteration. SSGA and ViE differ

in the mechanisms used to select the parent individuals for reproduction and the surviving

individuals for the next generation. While SSGA uses the fitness-based rank of individuals

for both operations, ViE allows all viable individuals to survive and reproduce. ViE was

also compared against NSGA-II in search scenarios generated from standard multi-objective

benchmark functions. NSGA-II is a widely used evolutionary algorithms for multi-objective

19

Chapter 2. Artificial evolution by viability rather than competition

Table 2.1: Standard benchmark functions used to generate the single-objective fitness land-
scapes. The ai j , bi j and ci coefficients defined in the Fletcher-Powell and Langerman func-
tions are the same used in (Eiben and Bäck, 1997). The Hump function was randomly gener-
ated using the multimodal test generator presented in (Rönkkönen et al., 2008). In the table we
report the D-dimensional problem formulation (if available) or a 2-dimensional formulation.
Furthermore, we denote if the functions employed are multi-modal (M) and/or separable (S),
and their original reference (R).

Function Formulation Domain M S R
Sphere f1(x) =∑D

i=1 x2
i xi ∈ [−5.12,5.12] X (Eiben and Bäck, 1997)

Double Sum f2(x) =∑D
i=1

(∑i
j=1 x j

)2
xi ∈ [−65.536,65.536] (Eiben and Bäck, 1997)

Rastrigin f3(x) = 10D +∑D
i=1(x2

i −10 · cos(2πxi)) xi ∈ [−5.12,5.12] X X (Eiben and Bäck, 1997)

Ackley f4(x) = 20+e −20e

(
−0.2

√
1
D

∑D
i=1 x2

i

)
−e

(
1
D

∑D
i=1 cos(2πxi)

)
xi ∈ [−20,30] X (Eiben and Bäck, 1997)

Griewangk f5(x) = 1+∑D
i=1

x2
i

400D −∏D
i=1 cos

(
xip

i

)
xi ∈ [−600,600] X (Eiben and Bäck, 1997)

Fletcher- f6(x) =∑D
i=1 (Ai −Bi)2 xi ∈ [−π,π] X (Eiben and Bäck, 1997)

Powell Ai =∑D
j=1(ai j · si n(α j)+bi j · cos(α j))

Bi =∑D
j=1(ai j · si n(x j)+bi j · cos(x j))

Langerman f7(x) =−∑D
i=1 ci e

(
− 1
π

∑D
j=1(x j−ai j)2

)
· cos

(
π

∑D
j=1(x j −ai j)2

)
xi ∈ [0,10] X (Eiben and Bäck, 1997)

Shubert f8(x) =∑5
i=1 i · cos ((i +1)x1 + i) ·∑5

i=1 i · cos
(
(i +1)y2 + i

)
xi ∈ [−10,10] X (Li et al., 2002)

Vincent f9(x) =− 1
D

∑D
i=1 si n

(
10 · log (xi)

)
xi ∈ [0.25,10] X (Shir and Bäck, 2006)

Hump f10(x) = hk

[
1−

(
d(x,k)

rk

)αk
]

if d(x,k) ≤ rk otherwise f10(x) = 0 xi ∈ [0,1] X (Singh and Deb, 2006)

d(x,k) is the Euclidean distance to the k-th peak
where hk , αk and rk are height, shape and radius of k-th peak

optimization and uses sophisticated techniques to rank individuals and explicitly promote

the maintenance of high diversity in the evolving population. All the three algorithms do not

use crossover to simplify the analysis of the results.

We first compared ViE and SSGA on ten search landscapes 1 generated using standard single-

objective benchmark functions (Eiben and Bäck, 1997; Li et al., 2002; Singh and Deb, 2006;

Shir and Bäck, 2006), as we wanted to start with the simplest scenario as possible with a single

viability criteria. Figure 2.4 shows the search landscapes in two dimensions for these functions,

whereas their mathematical formulations can be found in Table 2.1.

In these search landscapes, the goal for the compared algorithms is to find the highest number

of solutions with at least a score that satisfies the user requirements. This goal is not explicitly

modelled in the SSGA or ViE. SSGA proceeds by optimizing the single objective, and ViE

models the search using a single viability boundary, that is tightened until it reaches the target

objective score. Here, we are interested to understand if different diversity levels emerges

from the different evolutionary dynamics of the two algorithms. Thus, we compared genetic

diversity and number of unique solutions discovered by the two algorithms. The number of

unique solutions was measured as the number of unique individuals found within target areas

defined on these search landscapes.

These target areas were specified by thresholding the original objective function of each se-

lected standard benchmark problems (Figure 2.5A). All solutions with an objective value higher

1 As in the viability abstraction a “fitness function” is not present, we prefer to call what normally is known as a
fitness landscape as search landscape

20

2.3. Experimental Setup

Figure 2.4: Fitness landscapes for single-objective problems. The single-objective functions
include uni-modal, multi-modal and non-separable functions (Table 2.1). We defined fitness-
capping thresholds on the landscapes to obtain a number of disconnected areas containing
solutions at the same fitness level (Figure 2.5). The Griewangk landscape, globally similar to
Sphere, contains a large number of local minima that are indistinguishable in this figure.

21

Chapter 2. Artificial evolution by viability rather than competition

A B

Figure 2.5: Generation of search landscapes for testing diversity and number of unique so-
lutions discovered. (A) We used standard single-objective benchmark functions to define
different search landscapes. A threshold on the objective function of a standard benchmark
function identifies one or more (possibly disjoint) target areas, depicted as gray regions. (B)
In order to prevent competition-based algorithms from reducing diversity after reaching the
target areas, and thus allowing a fair comparison with ViE, a search landscape is reshaped
such that the same objective value is assigned to any solution lying above threshold so that
they all have the same probability of being selected for reproduction.

than the threshold were considered lying in a target area. The threshold value was defined so

that the number of discoverable unique solutions was equal to the constant population size

in SSGA in order to ensure that ViE did not take advantage of its variable population size by

simply increasing the number of viable solutions. By limiting our experiments to two and three

dimensional problems over finite solution spaces (bitstring encoding), we can enumerate the

entire solution space and hence, precisely count the number of solutions in the target regions,

which allows a precise comparison of the three evolutionary algorithms.

Furthermore, to make the comparison fair, we modified the search landscapes by setting for

all solutions contained within the target areas an objective value equal to the threshold, i.e. we

flattened the search landscape in target areas (Figure 2.5B). Therefore, each solution within

the target areas had the same chance of being selected for reproduction, and this prevented

SSGA from further reducing diversity by selective reproduction of above-threshold solutions.

The resulting search landscapes are named “single-objective” in the following, as they were

derived from standard single-objective benchmark functions.

In some cases, the resulting target areas were disjoint and far away from each other (see

Table 2.2 for the characterization of the different single-objective functions and the threshold

values used), which represented some of the most interesting problems for the comparison of

the two algorithms because their search landscapes contain very different target solutions,

i.e., lying in the different target areas. For such problems, we compared the ability of the

algorithms to thoroughly explore the solution space and find as many disjoint target areas as

possible, while also considering the number of evaluations taken by each algorithm to find

the target areas. The ten, single-objective search landscapes included two that were generated

from functions with no local optima and having a single target area (Sphere and DoubleSum),

22

2.3. Experimental Setup

Table 2.2: Characteristics of the fitness landscapes generated for the different single-objective
experiments. In this table, we report the benchmark function used to generate the landscape,
the number of disconnected target areas (T) and the threshold applied on the original function
to discriminate the target areas (A). Additionally, we classify these problems into three main
categories: uni-modal with single target areas (a), multi-modal with single (b) or multiple (c)
target areas, and indicate in the table which group each problem belongs to. The sum of the
number of unique solutions over all the target areas of each problem is 100, except for Ackley
(97).

Benchmark Function Group T A
Sphere f1 a 1 0.00020322
Double Sum f2 a 1 0.032016

Rastrigin f3 b 1 0.040295
Ackley f4 b 1 0.29747
Langerman f7 b 1 −3.0622

Fletcher-Powell f6 c 4 0.13806
Griewangk f5 c 13 0.14654
Shubert f8 c 18 −186.637
Vincent f9 c 36 −0.99998
Hump f10 c 36 −0.99951

three generated from multi-modal functions and having a single target area (Rastrigin, Ackley,

Langerman), and five generated from multi-modal functions and having disjoint target areas

(FletcherPowell, Griewangk, Shubert, Vincent, Hump).

We also generated more complex search landscapes using standard multi-objective problems,

referred in the following as “multi-objective”. ViE, SSGA and NSGA-II were compared on three

search landscapes, obtained using a standard problem generator called DTLZ (Deb et al.,

2002b) (described in Tables 2.3 and 2.4). The multi-objective problems were composed of

three objectives, that have been modelled as three separated viability criteria in ViE. Moreover,

the algorithms were compared on an electronic circuit design problem (Figure 2.6). The

generation of these multi-objective search landscapes followed the method for flattening the

landscapes in target areas, described above in Figure 2.5.

Both SSGA and NSGA-II algorithms were terminated when the objective values of all the

individuals in the population reached the best achievable objective, corresponding to the one

used for generating the target areas. For ViE, this corresponds to terminating the algorithm

when the viability boundaries reach the target boundary values.

Each evolutionary algorithm was assessed N times (N = 50) on each benchmark problem. For

each repetition i of an algorithm, the random number generator used by the probabilistic

functions (i.e., generation of the initial population, reproduction, and mutation) was initialized

using seeds ri , ri ∈ R = {r1,r2, . . . ,rN }, where R was a set of N random numbers generated by

23

Chapter 2. Artificial evolution by viability rather than competition

Table 2.3: The multi-objective DTLZ problem definitions. The DTLZ problems, as originally
introduced in (Deb et al., 2002b), have been specifically designed for multi-objective EA and
allow to control the difficulty of converging to the Pareto-optimal front. Specifically, these
three problems pose different difficulties to the optimization algorithms. The DTLZ1 test
problem requires the optimizer to find solutions on linearly distributed Pareto fronts, while
the DTLZ2 and DTLZ4 test problems contain solutions distributed on spherical Pareto fronts.
The DTLZ4 test problem has an additional problem difficulty as each front in the solution
space contains an uneven distribution of solutions. Using ViE on multi-objective problems
is simple because the experimenter does not have to combine the different objectives into
a single fitness function, but can directly define the target set in terms of constraints on the
different objectives (see Table S4 for the definition of the target viability sets).

Problem Formulation
DTLZ1 mi n f1(x) = 1

2 x1x2...xn−1(1+ g (xn))
. . .
mi n fn−1(x) = 1

2 x1(1−x2)(1+ g (xn))
mi n fn(x) = 1

2 (1−x1)(1+ g (xn))
g (x) = 1+ (x −0.5)2 − cos(20π(x −0.5))

DTLZ2 mi n f1(x) = (1+ g (xn))cos(π2 x1)...cos(π2 xn−1)
mi n f2(x) = (1+ g (xn))cos(π2 x1)...si n(π2 xn−1)
. . .
mi n fn(x) = (1+ g (xn))si n(π2 x1)
g (x) = (x −0.5)2

DTLZ4 mi n f1(x) = (1+ g (xn))cos(π2 xα1)...cos(π2 xαn−1)
mi n f2(x) = (1+ g (xn))cos(π2 xα1)...si n(π2 xαn−1)
. . .
mi n fn(x) = (1+ g (xn))si n(π2 xα1)
g (x) = (x −0.5)2

α= 100

software available at http://www.random.org/integer-sets/.

The initial population size M was set to 100 for the single-objective benchmarks and to 300

for the electronic circuit design problem and the 3-objective benchmark problems, unless

otherwise stated in the Experimental Results section. For each repetition, we allowed each

algorithm to evaluate at most T individuals (T = 10000), if the termination criteria were not

reached earlier.

The genotype of the individuals was a binary string encoding 2 parameters for single-objective

problems and for the electronic circuit problem, and 3 parameters for the multi-objective

problems. Each parameter was encoded by 12 bits for single-objective problems, 10 bits for

the electronic circuit problem, and 8 bits for multi-objective problems. Mutation consisted of

flipping each bit of the genotype with probability 1
l where l was the genotype length. In SSGA,

selective reproduction was performed by means of tournament selection (size k = 2, which

24

2.3. Experimental Setup

Table 2.4: The target viability boundaries for the multi-objective benchmark problems. The
target boundaries for the DTLZ and the filter design problems are described by constraints on
the problem objectives. This table shows the target viability boundaries A and the number of
target solutions M for each problem.

Benchmark A M
DTLZ1 fi (x) ∈ [0,0.30937] 296
DTLZ2 fi (x) ∈ [0,0.58361] 300
DTLZ4 fi (x) ∈ [0,0.67827] 300
Filter design c1 ∈ [9 ·106,10 ·106] 298

c2 ∈ [0,0.22]
c3 ∈ [0,0.2988]

Pass band Stop band

Frequency (Hz)

A
m

p
lit

u
d

e
 g

a
in

f

G
U

L

S

A B

In
p

u
t

Bias-1
Bias-2

O
u

tp
u

t

O
T
A

 1

O
T
A

 2

O
T
A

 3

Figure 2.6: The filter design problem. (A) A low-pass filter was evolved using the circuit
topology derived from (Geiger and Sanchez-Sinencio, 1985) (depicted in figure). This circuit
topology allows the filter functionality to be modified using two bias current inputs (Bias-1 and
Bias-2). The filter functionality is specified using constraints on three frequency response char-
acteristics, namely gain-bandwidth product, pass band flatness and stop band attenuation.
Hence, a solution to this problem is a pair of bias current values and the goal of an evolutionary
algorithm is to find values for these two bias currents, assuming the fixed topology filter circuit,
such that the specified low pass filter functionality is obtained. The three constraints on the
frequency response characteristics of the filter are set such that there are approximately 300
(296, due to the quantization resolution introduced by the fixed bitstring encoding on possible
values) bias current pair values that satisfy all three constraints. The performance of each
candidate solution is obtained from simulations of the filter circuit using the SPICE circuit
simulator. The SPICE models for the operational trans-conductance amplifiers (OTAs) used to
build the filter circuit are available from http://www.ti.com/product/LM13700. (B) A typical
frequency response of a low pass filter. The desired cutoff frequency f and output amplitude
G are shown. The maximum deviation from G is defined by specifying a lower bound L and
upper bound U. Finally, S represents the desired value for the maximum amplitude of any
stop band ripple.

25

Chapter 2. Artificial evolution by viability rather than competition

corresponds to the lowest possible selection pressure). NSGA-II also employs tournament

selection (size k = 2) with the crowded comparison operator as proposed in (Deb et al.,

2002a). Crossover was disabled in all the evolutionary algorithms. SSGA, and ViE generated 1

offspring per iteration while NSGA-II uses its default generational offspring generation and

replacement policies. In the Viability Evolution algorithm, the fraction of killed individuals

at every constraint update was set to 5% of the population size. The computer code, and

all the software needed to reproduce the results presented in this chapter can be found at

http://lis.epfl.ch/VIE.

We used the NSGA-II multi-objective optimizer with constraints for the multi-objective exper-

iments (available at http://www.iitk.ac.in/kangal/codes.shtml). The constraints were set to

the target viability boundaries values. This ensures that the NSGA-II algorithm will attempt to

maintain high diversity as well to reduce constraint violations, and correctly assign maximum

preference to the solutions within the target area of the search space.

2.4 Results

2.4.1 ViE maintains higher diversity in “single-objective” search landscapes

ViE is able to maintain higher genetic diversity, than SSGA on all single-objective search

landscapes (Figure 2.7). Genetic diversity was computed as Hamming distance between all

individuals in the population as in (Wineberg and Oppacher, 2003). Genetic diversity is signifi-

cantly higher (P < 0.001, Wilcoxon rank sum test) over the entire evolutionary time, except for

the initial iterations of the algorithms where diversity is comparable in both algorithms due to

the random initialization of their populations.

Higher genetic diversity in ViE results in a significantly higher number of unique target solu-

tions in the population at the final iteration than in SSGA in all benchmark problems except

Ackley where ViE display similar performance to SSGA (Wilcoxon rank sum test, Rastrigin and

Shubert: P < 0.05; Vincent: P < 0.01; Ackley: P > 0.05, all remaining benchmark functions:

P < 0.001), as shown in Figure 2.8A. This holds also for different values of mutation rates (see

Figure 2.16 for genetic diversity, and Figure 2.17 for number of unique solutions).

However, the better results achieved in terms of number of solutions discovered come at

the cost of a longer evolutionary process for ViE in terms of number of evaluations before

completion (1.42±0.22 SD times longer than SSGA; see Figure 2.9 for non-aggregated results).

The higher diversity maintained throughout evolution enables ViE to be more effective on

multi-modal problems with respect to SSGA by escaping regions of the fitness landscape with

local optima and eventually discovering regions with global optima. ViE always outperforms

SSGA in terms of successful repetitions of the algorithm (Figure 2.10), defined as those repeti-

tions where the algorithm discovers at least one target solution. SSGA prematurely converges

and is not able to discover any target solution in many repetitions even though a low selection

26

2.4. Results

Figure 2.7: Genetic diversity maintained by SSGA and ViE. Average population genetic diver-
sity (and confidence intervals) maintained during evolution for the 50 repetitions of each
experiment.

27

Chapter 2. Artificial evolution by viability rather than competition

0

10

20

30
Sphere DoubleSum Rastrigin Ackley

Langerman FletcherPow. Griewangk Shubert

S
S

G
A

V
iE

Vincent Hump
S

S
G

A

V
iE

S
S

G
A

V
iE

S
S

G
A

V
iE

U
n

iq
u

e
 s

o
lu

ti
o

n
s

U
n

iq
u

e
 s

o
lu

ti
o

n
s

U
n

iq
u

e
 s

o
lu

ti
o

n
s

0

20

40

60

80

S
S

G
A

V
iE

N
S

G
A

-I
I

DTLZ1 DTLZ2 DTLZ4 Filter

U
n

iq
u

e
 s

o
lu

ti
o

n
s

S
S

G
A

V
iE

N
S

G
A

-I
I

S
S

G
A

V
iE

N
S

G
A

-I
I

S
S

G
A

V
iE

N
S

G
A

-I
I

A

B

0

10

20

30

0

10

20

30

*** *** * N.S.

*** *** *** *

** ***

*** *** ****** N.S. ** N.S.***

Figure 2.8: Number of unique target solutions discovered by SSGA and ViE. A) single-objective
and B) multi-objective search landscapes. Each boxplot shows results for 50 repetitions of the
algorithms on each function (∗P < 0.05,∗∗ P < 0.01,∗∗∗ P < 0.001, otherwise P > 0.05, Wilcoxon
rank-sum test; N.S. not significant).

pressure was employed in these experiments (tournament selection with tournament size 2).

The ability of ViE and SSGA to discover solutions in disconnected target areas within a sin-

gle repetition of the algorithm was investigated on search landscapes that feature a high

number of disjoint target areas (> 10, Griewangk, Shubert, Vincent, Hump). Furthermore,

both algorithms were tested with different initial population sizes (M = 100,250,500,750,1000

individuals) in order to assess if the algorithms could benefit from a larger, and potentially

more diverse, initial population. ViE discovered more disconnected target areas than SSGA on

all the search landscapes and for all initial population sizes (P < 0.001, Wilcoxon rank sum

test; Hump: P < 0.01; Figure 2.11).

Additionally, the efficiency of the two algorithms were compared as the average number of

28

2.4. Results

Sphere DoubleSum Rastrigin Ackley

Langerman FletcherPow. Griewangk Shubert

S
S

G
A

V
iE

Vincent Hump

S
S

G
A

V
iE

S
S

G
A

V
iE

S
S

G
A

V
iE

*** ***

*** *** **

*** ***

0

5000

*** ***

0

5000

0

5000

Figure 2.9: Number of iterations before completion of the evolutionary process for SSGA and
ViE. Each box plot presents the results for 50 repetitions of the experiments on a different single-
objective benchmark problem, as indicated by the titles above the boxes (∗P < 0.05,∗∗ P <
0.01,∗∗∗ P < 0.001, otherwise P > 0.05, Wilcoxon rank-sum test; N.S. not significant). The
maximum value of the ViE Rastrigin boxplot (not representable otherwise) is 5478.

evaluations (individuals) necessary to find a single target area. ViE displayed significantly

higher efficiency for all the tested initial population sizes (Wilcoxon rank-sum test, P < 0.001;

Figure 2.12).

2.4.2 ViE compares favourably in “multi-objective” search landscapes against a
multi-objective method with explicit diversity preservation

We compared ViE against the multi-objective optimization algorithm NSGA-II, which includes

specific operators to maintain diversity in the evolving population. For sake of coherence with

the results reported above, we also compared ViE and NSGA-II with SSGA endowed with a

popular multi-objective technique, called weighted-sum approach (Deb, 2001), for combining

multiple objective values into a single value. The three algorithms were assessed by counting

the number of unique solutions that met the specified target performance for three search

landscapes derived from standard multi-objective benchmark problems and for an electronic

circuit design. ViE performed better than SSGA on all the multi-objective search landscapes

(Figure 2.8B; Wilcoxon rank sum test, P < 0.001 for DTLZ benchmarks, and P < 0.01 for the

circuit evolution experiment). ViE performed better than NSGA-II on all the search landscapes

derived from multi-objective problems (Wilcoxon rank sum test, P < 0.001, except for DTLZ1

where P > 0.05) and performed as well as NSGA-II on the electronic circuit design (Wilcoxon

29

Chapter 2. Artificial evolution by viability rather than competition

0

10

20

30

40

50

N
u

m
b

e
r

o
f

s
u

c
c
e

s
s
fu

l
re

p
e

ti
ti
o

n
s

R
a

s
tr

ig
in

A
c
k
le

y

L
a

n
g

e
rm

a
n

F
le

tc
h

e
rP

o
w

e
ll

G
ri
e

w
a

n
g

k

S
h

u
b

e
rt

V
in

c
e

n
t

H
u

m
p

SSGA
ViE

Figure 2.10: Number of successful repetitions for SSGA and ViE. Results for SSGA and ViE on
single-objective, multi-modal problems out of a total of 50 repetitions.

G
ri
e

w
a

n
g

k
S

h
u

b
e

rt
V

in
c
e

n
t

H
u

m
p

S
S

G
A

V
iE

S
S

G
A

V
iE

S
S

G
A

V
iE

S
S

G
A

V
iE

S
S

G
A

V
iE

100 250 500 750 1000

0

4

8

12

0

4

8

12

0

4

8

0

10

20

*** *** *** *** ***

*** *** *** *** ***

*** *** *** *** ***

*** *** ** *** *

Figure 2.11: Number of disconnected target areas discovered by SSGA and Viability Evolution.
Each box plot presents the results for different initial population sizes over 50 repetitions of
the experiments (∗P < 0.05,∗∗ P < 0.01,∗∗∗ P < 0.001, otherwise P > 0.05, Wilcoxon rank-sum
test; N.S. not significant). Viability Evolution can discover significantly more number of target
areas for every initial population size (P < 0.001, except Hump where P < 0.01 for population
size 500 and P < 0.05 for population size 1000, Wilcoxon rank sum test) than SSGA.

30

2.4. Results

G
ri
e

w
a

n
g

k
S

h
u

b
e

rt

S
S

G
A

V
iE

S
S

G
A

V
iE

S
S

G
A

V
iE

S
S

G
A

V
iE

S
S

G
A

V
iE

100 250 500 750 1000

0

2

6

0

4

4
8

x 103

12

16

*** *** *** *** ***

*** *** *** *** ***

Figure 2.12: Efficiency of SSGA and Viability Evolution. Efficiency is measured as num-
ber of evaluations used per target area discovered over 50 repetitions of the experiment
(∗P < 0.05,∗∗ P < 0.01,∗∗∗ P < 0.001, otherwise P > 0.05, Wilcoxon rank-sum test; N.S. not
significant). A repetition of the evolutionary experiment lasts a higher number of evaluations
in Viability Evolution. However, Viability Evolution is able to discover more target areas per
repetition than SSGA. Its efficiency is significantly better than SSGA (P < 0.001, Wilcoxon
rank sum test). To enhance readability of the box plots, we removed two outlier data points:
Griewangk SSGA (500), Value 8676 and Griewangk SSGA (750), Value 12984. The computa-
tion of efficiency was performed only on Griewangk and Shubert, since the target areas in
these benchmarks are regularly distributed in the search space and therefore have the same
probability of being discovered.

rank sum test, P > 0.05).

2.4.3 Comparisons against methods that explicitly encourage diversity

Fitness sharing

One may argue that SSGA was not designed for the specific problem domain considered here,

i.e., maximize the number of unique solutions discovered at completion of the evolutionary

process, and that diversity preservation techniques might help SSGA achieve a higher number

of unique final solutions. Thus, we compared Viability Evolution against SSGA endowed

with a well-known diversity preservation technique, namely fitness sharing (Goldberg and

Richardson, 1987), referred to as SSGA-FS.

We set the niche-radius parameter σ as suggested in (Deb and Goldberg, 1989). The niche-

radius is computed using

σ=
√∑p

k=1 (xk,max −xk,mi n)

2 p
p

q

where p is the number of parameters, xk,mi n e xk,max are the decision space boundaries of

31

Chapter 2. Artificial evolution by viability rather than competition

S
S

G
A

 -
F

S

V
iE

S
S

G
A

 -
F

S

V
iE

S
S

G
A

 -
F

S

V
iE

S
S

G
A

 -
F

S

V
iE

S
S

G
A

 -
F

S

V
iE

Sphere DoubleSum Rastrigin Ackley Langerman

FletcherPowell Griewangk Shubert Vincent Hump

U
n

iq
u

e
 s

o
lu

ti
o

n
s

U
n

iq
u

e
 s

o
lu

ti
o

n
s

0

5

10

15

20

25

0

5

10

15

20

25

*** *** N.S. ***

*** *** * *** ***

Figure 2.13: Number of unique target solutions discovered by SSGA-FS and ViE on single-
objective search landscapes. Each plot shows results for 50 repetitions of the experiments
on each function (∗P < 0.05,∗∗ P < 0.01,∗∗∗ P < 0.001, otherwise P > 0.05, Wilcoxon rank-sum
test; N.S. not significant). As SSGA was originally designed to discover optimal solutions
and not to maximize the number of unique solutions discovered at the final generation, we
equipped it with a traditional diversity preservation mechanism, fitness sharing (Goldberg and
Richardson, 1987), obtaining a modified version of SSGA named SSGA-FS. ViE can discover
more unique solution than SSGA-FS in all benchmarks (P < 0.001; Shubert: P < 0.01, Wilcoxon
rank sum test) except for Rastrigin, where results are not significantly different.

each parameter and q is the number of peaks (in our case disconnected target areas) in the

fitness landscape. Niche-radius values for each benchmark problems are reported in Table

2.5.

Viability Evolution can discover more unique solution than SSGA with fitness sharing on all

single-objective search landscapes (P < 0.001; Shubert: P < 0.05, Wilcoxon rank sum test,

Figure 2.13) except for Rastrigin, where results are not significantly different.

Multi-objective methods with explicit diversity measure as objective

Also, we tested viability Evolution against another technique which adds an explicit objective to

foster diversity. The multi-objective method NSGA-II was modified to optimize two objectives:

minimize the distance to the target areas, and maximize the diversity of the current population.

This resulting method is named NSGA-II-D. This second objective was computed for each

individual as the average Hamming distance between the individual and the other individuals

in the population. Viability Evolution can discover a higher number of unique target solutions

than NSGA-II with a diversity objective on all the single-objective search landscapes (P < 0.001,

Wilcoxon rank sum test, Figure 2.14).

32

2.4. Results

N
S

G
A

-I
I-

D

V
iE

Sphere DoubleSum Rastrigin Ackley Langerman

FletcherPowell Griewangk Shubert Vincent Hump

U
n

iq
u

e
 s

o
lu

ti
o

n
s

U
n

iq
u

e
 s

o
lu

ti
o

n
s

0

5

10

15

20

25

0

5

10

15

20

25

N
S

G
A

-I
I-

D

V
iE

N
S

G
A

-I
I-

D

V
iE

N
S

G
A

-I
I-

D

V
iE

N
S

G
A

-I
I-

D

V
iE

*** *** *** ***

*** *** *** *** ***

Figure 2.14: Number of unique target solutions discovered by NSGA-II with a diversity objective
(NSGA-II-D) and ViE on single-objective search landscapes. Each plot shows results for 50
repetitions of the experiments on each function (∗P < 0.05,∗∗ P < 0.01,∗∗∗ P < 0.001, otherwise
P > 0.05, Wilcoxon rank-sum test; N.S. not significant). ViE can discover a higher number of
unique target solutions than NSGA-II-D on all the benchmark problems (P < 0.001, Wilcoxon
rank sum test).

2.4.4 Contribution of each component of ViE in the discovery of unique solutions

The family mechanism employed by ViE to prevent the dominance of clonal individuals may

contribute to diversity preservation. To disambiguate the contribution given by the family

mechanism we performed additional control experiments where we compared the number of

unique target solutions discovered by SSGA, ViE, SSGA equipped with the family mechanism

(SSGA-F) and Viability Evolution without the family mechanism (ViE-noF) on single-objective

(Figure 2.15A) and multi-objective search landscapes (Figure 2.15B).

Both SSGA-F and ViE equipped with the family mechanism obtain equal or better perfor-

mance than their versions without it (ViE-noF and SSGA). However, ViE can discover more

unique target solutions than SSGA-F in four benchmark problems (Langerman and Fletcher-

Powell: P < 0.05; Hump and DTLZ2: P < 0.01, Wilcoxon rank sum test, Figure 2.15), and

display performance similar to SSGA-F in the other benchmark problems. Also, ViE without

family mechanism can discover more unique target solutions than SSGA on four benchmarks

(FletcherPowell and DTLZ2: P < 0.001; Griewangk: P < 0.01; Rastrigin: P < 0.05, Wilcoxon

rank sum test, Figure 2.15), and displays performance similar to SSGA in the other benchmark

problems.

33

Chapter 2. Artificial evolution by viability rather than competition

V
iE

-n
o

F

V
iE

S
S

G
A

S
S

G
A

-F

Sphere DoubleSum Rastrigin Ackley Langerman

FletcherPowell Griewangk Shubert Vincent Hump

U
n

iq
u

e
 s

o
lu

ti
o

n
s

U
n

iq
u

e
 s

o
lu

ti
o

n
s

0

5

10

15

20

25

0

5

10

15

20

25

N.S.

N.S.

N.S.

**

N.S.

*

N.S.

N.S.

N.S.

N.S.

N.S.

N.S.

**

*

N.S.

*

**

*

N.S.

N.S.

N.S.

N.S.

N.S.

*

N.S.

N.S.
**

**

V
iE

-n
o

F

V
iE

S
S

G
A

S
S

G
A

-F

V
iE

-n
o

F

V
iE

S
S

G
A

S
S

G
A

-F

V
iE

-n
o

F

V
iE

S
S

G
A

S
S

G
A

-F

V
iE

-n
o

F

V
iE

S
S

G
A

S
S

G
A

-F

A

U
n

iq
u

e
 s

o
lu

ti
o

n
s

0

20

40

60

80

100

B

N.S.
**

N.S.

V
iE

-n
o

F

V
iE

S
S

G
A

S
S

G
A

-F

DTLZ1

**

V
iE

-n
o

F

V
iE

S
S

G
A

S
S

G
A

-F

DTLZ2

N.S.

N.S.

V
iE

-n
o

F

V
iE

S
S

G
A

S
S

G
A

-F

DTLZ4

*** *** *** N.S. N.S.

** *** ** * N.S.

N.S.
N.S.

N.S.

V
iE

-n
o

F

V
iE

S
S

G
A

S
S

G
A

-F

Filter

Figure 2.15: Number of unique target solutions discovered by SSGA, ViE, SSGA equipped
with the family mechanism (SSGA-F) and Viability Evolution without the family mechanism
(ViE-noF) on single- and multi-objective search landscapes. Each plot shows results for 50
repetitions of the experiments on each function (∗P < 0.05,∗∗ P < 0.01,∗∗∗ P < 0.001, otherwise
P > 0.05, Wilcoxon rank-sum test; N.S. not significant). A) Single-objective search landscapes
results. ViE can discover more unique target solutions than SSGA-F in three benchmark
problems (Langerman and FletcherPowell: P < 0.05; Hump: P < 0.01, Wilcoxon rank sum
test), displaying similar performance in the other benchmark problems. ViE-noF can discover
more unique target solutions than SSGA on three benchmarks (FletcherPowell: P < 0.001;
Griewangk: P < 0.01; Rastrigin: P < 0.05, Wilcoxon rank sum test), displaying similar per-
formance in the other benchmark problems. B) Multi-objective search landscapes results.
The contribution of the family mechanism always increases the performance of both SSGA
and ViE respect to their versions without family mechanism (P < 0.001, except when compar-
ing ViE and ViE-noF in DTLZ1: P < 0.01, Wilcoxon rank sum test). Moreover, in the DTLZ2
problem, Viability Evolution can obtain better performance than SSGA both when comparing
SSGA against ViE-noF (P < 0.001, Wilcoxon rank sum test) and SSGA-F against ViE (P < 0.01,
Wilcoxon rank sum test).

34

2.5. Discussion

2.5 Discussion

In nature reproductive success depends on several factors that influence the probability of

survival and reproduction of individuals. Two primary factors, as pointed out by Darwin (Dar-

win, 1859, p. 116), are the competition among individuals for scarce resources (selection of the

fittest) and the ability of individuals to withstand current environmental conditions (elimina-

tion of the non-viable). Traditional evolutionary algorithms are inspired by competition-based

reproductive success by ranking individuals according to their fitness and selecting only the

best for reproduction.

Whenever elimination is considered in Evolutionary Computation (Atmar, 1994; Baum et al.,

2001; Marín and Solé, 1999), individuals are eliminated according to their fitness score, thus

falling into the competitive scenario of reproductive success. Viability Evolution, instead,

models reproductive success as the ability of individuals to withstand current environmental

conditions and eliminates individuals that are not viable due to the effect of random mutations

or changing environmental conditions (viability boundaries). The use of boundaries had been

previously advocated to constrain evolutionary search in specific regions of the search space

(Storn, 1999), but boundary update was based on competition among individuals rather

than elimination. Viability boundaries can be seen as a set of binary fitness functions with

adaptive thresholds (Lässig and Hoffmann, 2009), and in this perspective, here we provide a

self adaptive procedure for threshold selection. It had also been suggested (Juric, 1994) that

giving equal chance of reproduction to individuals satisfying a minimal fitness level could

result in higher variability of the evolved solutions, but no practical algorithm was proposed. A

threshold defining the survival of individuals was used in (Lehman and Stanley, 2010), but the

threshold was always fixed to a constant value. This method was later extended (Gomes et al.,

2012), by progressively modifying the threshold. However, in both cases, the search was driven

mainly by an objective promoting novelty of the solutions and the threshold was defined on

a single objective. ViE does not use measures of novelty and drives the search by modifying

viability boundaries on all problem objectives or constraints.

Viability Evolution can be used both for problem solving by defining target viability boundaries

and for open-ended evolution by identifying viability boundaries that model the interactions

between the evolving individuals and their environment (as in digital evolutionary ecosystems

such as Tierra (Ray, 1991) and Avida (Adami, 2006; Ofria and Wilke, 2004)). Novel environmen-

tal conditions could be easily introduced by adding or deleting viability boundaries at any

time during the process of artificial evolution.

Even though the elimination step of the Viability Evolution algorithm resembles at first sight

existing survivor selection methods employed in genetic algorithms (Culling Method (Baum

et al., 2001), Truncation Selection (Mühlenbein and Schlierkamp-Voosen, 1993), Extinctive

Selection (Bäck, 1996)) the resulting evolutionary dynamics of ViE are different (see Figure

2.18 for a practical example comparing SSGA with Truncation Selection to ViE) and are due to

the interplay of eliminations, varying size populations, changing viability boundaries and the

35

Chapter 2. Artificial evolution by viability rather than competition

family mechanism. Although the family mechanism effectively contributes in some cases to

the better performance in ViE, as shown in section 2.4.4, it is unavoidable in this simple version

of ViE with fixed population size where “more fit” solutions discovered from the beginning

of the evolutionary process can bias the search towards them by having more “evolutionary

time” to generate similar solutions than other less fit individuals. More advanced versions

of a viability algorithm that could exploit dynamic populations and “aging” mechanisms of

solutions may get rid of this algorithmic procedure and keep a truly unbiased reproduction.

To illustrate the advantages of the novel operational principle, we compared ViE to a canonical

competition-based Evolutionary Algorithm, namely SSGA, without any state-of-the-art ex-

plicit diversity preservation techniques such as niching, maintenance of sub-populations, etc.

However, one may argue that SSGA was not been designed for the specific problems domain

considered here, i.e., maximize the number of unique solutions discovered at completion of

the evolutionary process. Therefore, we also compared Viability Evolution with two genetic

algorithms with diversity preservation techniques: SSGA endowed with fitness sharing (Gold-

berg and Richardson, 1987) and NSGA-II with an explicit objective for diversity. In both cases

however, ViE could discover on almost all problems a higher number of unique and more

diverse solutions.

Moreover, when using diversity preservation methods, one should consider that instrumenting

an evolutionary method with such techniques usually requires the definition of additional

parameters (for example a niching radius (Deb and Goldberg, 1989), or a niche capacity

(Petrowski, 1996)), which are difficult to identify because the search landscape is unknown, or

depends on measures of diversity in genotypic or phenotypic space (Deb and Goldberg, 1989;

Petrowski, 1996; Lehman and Stanley, 2008; Toffolo and Benini, 2003; Lehman and Stanley,

2011), or requires keeping an archive of “diverse” solutions (Lehman and Stanley, 2008; Lehman

and Stanley, 2011). Viability Evolution does not require the definition of additional niching

parameters, diversity measures or the maintenance of an additional archive of solutions.

Nonetheless, these explicit diversity preservation techniques are also applicable to ViE, and

could possibly increase its performance too.

Although the dimensions of the problems in this study were kept small to make clear conclu-

sions about the effectiveness of the EAs, the SSGA already fails to find target solutions in many

runs (see Figure 2.10). Even though the scalability of the proposed approach to problems of

higher dimensionality remains to be investigated, it must be considered that we presented

here one of the possible procedures to update the boundaries (indeed a very simple one, to

ease the comparison with respect to existing algorithms). The boundary update procedure

presented here modifies all the boundaries together. This however is not a necessity as some

boundaries may be harder to satisfy than others and may benefit from a differential update

speed of each boundary.

For example, each boundary update could be made proportional to the ratio of viable/unviable

individuals for the corresponding objectives. In the future, more sophisticated procedures

36

2.6. Conclusion

might be introduced, taking into account multiple factors to define which and by how much a

viability boundary should be tightened (or relaxed), possibly enhancing the performance of

ViE to address large-scale optimization problems.

2.6 Conclusion

Beside the better results in terms of number of unique solutions discovered by ViE on multi-

modal and multi-objective problems (with the exception of the Ackley function and the

electronic circuit design where ViE and NSGA-II reported the same performance), in Viability

Evolution it is not necessary to aggregate multiple objectives or constraints into a single

fitness function. Considering the well-known difficulty of designing fitness functions for

multi-objective problems, this is a significant advantage even when ViE performs as well as

other traditional evolutionary algorithms that require the formulation of an aggregated fitness

function. When compared to multi-objective methods that also do not aggregate fitness,

ViE offers a different approach that does not use partial ordering between individuals, as

non-dominated sorting does in current multi-objective methods. Incidentally, the definition

of viability boundaries in ViE is similar to the engineering practice of designing artefacts that

meet desired operating ranges, such as temperature, voltage, frequency output, etc., which

can be found in the specification list of any electronic or mechanical product on the market.

Although one the main purpose of this chapter is to show that artificial evolution can be

performed with the sole use of viability based eliminations, ViE is compatible with the

competition-based approaches and could be extended to encompass forms of competition-

driven reproduction by introducing higher reproduction rates of viable individuals whose

fitness could be computed while keeping unchanged all other aspects of the algorithm. A

suitable combination of viability-based elimination and competition-based reproduction

would allow a user to preferentially select for individuals with specific features within a diverse

population of viable individuals and would provide a comprehensive evolutionary framework

that models both competition and viability in natural evolution.

The investigation performed in this chapter suggests one possible advantage deriving from

adopting Viability Evolution principles: increased genetic diversity in the evolving population.

However, the algorithm presented here is far from being applicable to real-world problems,

as it is based on a simple genetic algorithm. In the next chapter, we try to show a second

advantage that the adoption of the viability paradigm can bring: additional information is

made available during the search process by monitoring the generation of viable and non-

viable individuals. This additional information will be used in the next chapters to derive

efficient viability-based evolutionary algorithms able to compete with state-of-the-art EC

methods.

37

Chapter 2. Artificial evolution by viability rather than competition

2.7 Supporting Information

Mutation Rate Mutation Rate

Vincent Hump

2x 3x 4x 5x 6x 7x 8x 9x 10x1x

G
e

n
e

ti
c
 d

iv
e

rs
it
y

0

0.2

0.4

0.6

0.8

1

2x 3x 4x 5x 6x 7x 8x 9x 10x1x

G
e

n
e

ti
c
 d

iv
e

rs
it
y

0

0.2

0.4

0.6

0.8

1

FletcherPowell Shubert

2x 3x 4x 5x 6x 7x 8x 9x 10x1x

G
e

n
e

ti
c
 d

iv
e

rs
it
y

0

0.2

0.4

0.6

0.8

1

2x 3x 4x 5x 6x 7x 8x 9x 10x1x

G
e

n
e

ti
c
 d

iv
e

rs
it
y

0

0.2

0.4

0.6

0.8

1

Langerman Griewangk

2x 3x 4x 5x 6x 7x 8x 9x 10x1x

G
e

n
e

ti
c
 d

iv
e

rs
it
y

0

0.2

0.4

0.6

0.8

1

2x 3x 4x 5x 6x 7x 8x 9x 10x1x

G
e

n
e

ti
c
 d

iv
e

rs
it
y

0

0.2

0.4

0.6

0.8

1

Rastrigin Ackley

2x 3x 4x 5x 6x 7x 8x 9x 10x1x

G
e

n
e

ti
c
 d

iv
e

rs
it
y

0

0.2

0.4

0.6

0.8

1

2x 3x 4x 5x 6x 7x 8x 9x 10x1x

G
e

n
e

ti
c
 d

iv
e

rs
it
y

0

0.2

0.4

0.6

0.8

1

Sphere DoubleSum

2x 3x 4x 5x 6x 7x 8x 9x 10x1x

G
e

n
e

ti
c
 d

iv
e

rs
it
y

0

0.2

0.4

0.6

0.8

1

SSGA
ViE

SSGA
ViE

SSGA
ViE

SSGA
ViE

SSGA
ViE

SSGA
ViE

SSGA
ViE

SSGA
ViE

SSGA
ViE

SSGA
ViE

2x 3x 4x 5x 6x 7x 8x 9x 10x1x

G
e

n
e

ti
c
 d

iv
e

rs
it
y

0

0.2

0.4

0.6

0.8

1

Figure 2.16: Genetic diversity of unique target solutions discovered by SSGA and ViE on
single-objective search landscapes, varying the mutation rate up to 10 times its original value.
Mutation, in the original configuration (1x), consisted of flipping each bit of the genotype
with probability 1

l where l is the genome length. Each plot shows results for 25 repetitions of
the experiments on each function. In general, genetic diversity increases with mutation rates.
However, high genetic diversity obtained using high mutation rate does not always result into
a higher number of discovered target solutions (Figure 2.17).

38

2.7. Supporting Information

Mutation Rate Mutation Rate

Sphere DoubleSum

U
ni

qu
e

S
ol

ut
io

ns

0

20

40

60

80

2x 3x 4x 5x 6x 7x 8x 9x 10x1x

U
ni

qu
e

S
ol

ut
io

ns

2x 3x 4x 5x 6x 7x 8x 9x 10x1x

Rastrigin Ackley

U
ni

qu
e

S
ol

ut
io

ns

2x 3x 4x 5x 6x 7x 8x 9x 10x1x

U
ni

qu
e

S
ol

ut
io

ns

2x 3x 4x 5x 6x 7x 8x 9x 10x1x

Langerman Griewangk

U
ni

qu
e

S
ol

ut
io

ns

2x 3x 4x 5x 6x 7x 8x 9x 10x1x

U
ni

qu
e

S
ol

ut
io

ns

2x 3x 4x 5x 6x 7x 8x 9x 10x1x

FletcherPowell Shubert

U
ni

qu
e

S
ol

ut
io

ns

2x 3x 4x 5x 6x 7x 8x 9x 10x1x

U
ni

qu
e

S
ol

ut
io

ns

2x 3x 4x 5x 6x 7x 8x 9x 10x1x

Vincent Hump

SSGA
ViE

SSGA
ViE

SSGA
ViE

SSGA
ViE

SSGA
ViE

SSGA
ViE

SSGA
ViE

SSGA
ViE

SSGA
ViE

SSGA
ViE

U
ni

qu
e

S
ol

ut
io

ns

2x 3x 4x 5x 6x 7x 8x 9x 10x1x

U
ni

qu
e

S
ol

ut
io

ns

2x 3x 4x 5x 6x 7x 8x 9x 10x1x

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

Figure 2.17: Number of unique target solutions discovered by SSGA and ViE on single-objective
search landscapes, varying the mutation rate up to 10 times its original value. Each plot shows
results for 25 repetitions of the experiments on each function. Mutation, in the original
configuration (1x), consisted of flipping each bit of the genotype with probability 1

l where l is
the genotype length. Each plot shows results for 50 repetitions of the experiments on each
function.

39

Chapter 2. Artificial evolution by viability rather than competition

Figure 2.18: Average population genetic diversity (and confidence intervals) maintained by
SSGA (with truncation selection) and Viability Evolution over 50 repetitions of the experiments.
Even though at first sight the update method we used in ViE to tighten the viability boundaries
may seem similar to SSGA with truncation selection (with an unusual high level of selection of
95% of the population), the evolutionary dynamics of these two algorithms are remarkably
different).

40

2.7. Supporting Information

Table 2.5: Niche-radius values for SSGA with fitness sharing in single-objective benchmarks.
The values are derived from the formula suggested in (Deb and Goldberg, 1989).

Benchmark Niching radius
Sphere 7.240773
Double Sum 92.681900
Rastrigin 7.240773
Ackley 35.355339
Langerman 7.071068
Fletcher-Powell 2.221440
Griewangk 235.339362
Shubert 3.333333
Vincent 1.149049
Hump 0.117851

41

3 Information from viability boundaries
to build efficient adaptive algorithms

In the previous chapter we introduced a simple version of a Viability Evo-

lution algorithm and tested its feasibility as an evolutionary method. We

wanted to highlight one of the advantages that can derive from adopting

the Viability Evolution paradigm: the increased diversity in the population

during evolution. Here, we suggest a second advantage that the viability

paradigm could provide: viability boundaries can also be used as an addi-

tional source of information for evolutionary algorithms. Furthermore, in

the previous chapter our purpose was not to provide a competitive version

of Viability Evolution with the state-of-the-art. Instead, in this chapter, we

focus our attention on a more applied field of Evolutionary Computation,

constrained optimization, with the explicit purpose of deriving more effi-

cient evolutionary methods. We embed Viability Evolution principles on a

state-of-the-art algorithm for constrained optimization and we show how

additional information gathered from viability boundaries can be used

for self-adapting the algorithm’s parameters. The resulting method dis-

plays competitive performance when tested on unimodal problems from a

well-known constrained optimization benchmark set.

The contents of this chapter are adapted from:

Maesani A, Floreano D (2014). Viability Principles for Constrained Optimization Using

a (1+1)-CMA-ES. Proc. of the 13th Int. Conf. on Parallel Problem Solving from Nature,

Lubjana, 2014

43

Chapter 3. Information from viability boundaries to build efficient adaptive algorithms

3.1 Introduction

Evolutionary computation methods are often used to solve real-valued black-box optimization

problems, a large number of which require satisfying constraints. Without loss of generality,

solving a real-valued constrained optimization problem in Rn means minimizing the objective

function f (x), x ∈Rn , subject to inequalities1 defined on m constraints function gi (x) ≤ 0, i =
1, . . . ,m.

Several approaches have been proposed to solve constrained problems using evolutionary

algorithms (Mezura-Montes and Coello Coello, 2011), ranging from rejecting solutions that

violate constraints (infeasible solutions) to more sophisticated strategies that modify the rank-

ing of individuals by penalizing the fitness using a function of constraint violations (penalty

functions). Other popular approaches include stochastic ranking of solutions (Runarsson

and Yao, 2000), ε-constrained optimization (Takahama and Sakai, 2010), feasibility rules to

rank solutions (Deb, 2000), and transformation of constraints into objectives. Although these

methods are necessary to handle infeasible solutions and constraints, an efficient optimizer is

essential to progress during the search.

Currently, many state-of-the-art algorithms for unconstrained optimization are based on

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen et al., 2003). In CMA-ES,

a covariance matrix describing correlations between decision variables is learned and adapted

during the search to maximize the likelihood of generating successful solutions. Although

CMA-ES is a powerful optimizer in unconstrained settings (Hansen et al., 2010), it may suffer

from premature convergence in presence of constraints, a common problem in strategies

with adaptive step-size control (Kramer and Schwefel, 2006). Furthermore, methods for

constrained optimization based on CMA-ES often require providing a feasible solution as a

starting point.

A different modelling of objectives and constraints in CMA-ES may offer novel possibilities for

handling constraints and allow the initialization of the algorithm from infeasible solutions.

Viability Evolution (Mattiussi and Floreano, 2003; Maesani et al., 2014) is an abstraction of

artificial evolution that models an optimization process using viability boundaries, which are

modified over time to drive the search towards desirable regions of a search space, as shown

in Figure 3.1. Under this abstraction, mutations can produce viable solutions, which survive,

or non-viable solutions, which are eliminated from the population. Viability boundaries are

generally defined as admissible ranges of problem objectives and constraints. At the beginning

of the search the boundaries are relaxed to encompass all randomly generated initial solutions

and then gradually tightened. Once viability boundaries reach the desired target boundaries

they are not tightened further, and the evolutionary process is considered complete.

In this chapter, we borrow concepts from Viability Evolution, and combine them with active

covariance updates for CMA-ES (Arnold and Hansen, 2012), to derive a novel algorithm for

1Equality constraints can always be rewritten as inequalities by using a tolerance value on the equality.

44

3.2. Related Work

generations

Viable Region

Viable Solution

Viability Boundaries

Figure 3.1: Viability boundaries initially encompass all randomly generated solutions. We rep-
resent the viable region as a projection on a two-dimensional plane of the viability boundaries
(shaded area). During the search, the boundaries are made more stringent. Viable solutions
are retained in the population (dots in the shaded area), whereas solutions that do not satisfy
viability boundaries are eliminated. Mutations can generate solutions (circled dots) that fall
outside or inside the viable region.

constrained optimization. Here, we restrict ourselves to testing our method only in the case

where it is started from a feasible solution, as done in (Arnold and Hansen, 2012) which reports

current state-of-the-art performance on a set of eight unimodal functions.

The chapter is structured as follows. In Section 3.2 we discuss the state-of-the-art on con-

straint handling in evolution strategies and we elucidate the workings of a (1+1)-CMA-ES

with constraint handling proposed in (Arnold and Hansen, 2012). In Section 3.4 we discuss

Viability Evolution principles and the proposed approach for constrained optimization. Ex-

perimental setup and results of the proposed approach are presented in Section 3.5. Finally,

we conclude with a brief discussion of the proposed approach in Section 3.6, and we propose

future continuations of the work.

3.2 Related Work

Classical approaches to handle constraints in evolution strategies consist of simply discarding

and resampling infeasible solutions (Schwefel, 1993) or using penalty functions. Penalty func-

tions usually depend on the amount of constraints violation or number of violated constraints

(Hoffmeister and Sprave, 1996), and in some cases also on the fitness of selected feasible

solutions (Oyman et al., 1999). The penalty functions can also be adaptive: for example the

relative weight of each constraint in the penalty can be modified according to the number of

iterations where infeasible solutions are discovered (Collange et al., 2010), or according to the

ratio between feasible and infeasible individuals (Kramer et al., 2013).

Other methods do not use penalty functions. An approach performs selection based on

three feasibility rules (Mezura-Montes and Coello Coello, 2005): feasible individuals are

45

Chapter 3. Information from viability boundaries to build efficient adaptive algorithms

compared on objectives, infeasible ones are compared on total constraint violations, and

feasible individuals are always ranked before infeasible ones. Similarly, a recently proposed

method modifies the ranking of individuals based on three independent rankings: by objective

function, by constraint violation amount, and by number of violated constraints depending

on if the solution is feasible or infeasible (Kusakci and Can, 2013b). Other approaches reduce

the probability of generating infeasible solutions when in the proximity of the constraint, by

moving the mean of the population (Kramer et al., 2005) or by explicitly controlling the step

size using a lower bound (Kramer and Schwefel, 2006).

Another way in which constraints can be handled is learning surrogate models for linear

constraints. One of these methods has been shown to be a promising approach to reduce the

number of constraint function evaluations by predicting if solutions are feasible or infeasible,

adapting directly the covariance matrix using the learned information, and repairing solutions

that turn out to be infeasible (Kramer et al., 2009). The work has been recently extended to

non-linear constraints, learning models using support vector machines (Gieseke and Kramer,

2013). Another recently proposed variant of CMA-ES (Beyer and Finck, 2012) makes use of

repair mechanisms, but the algorithm is very specific to the problem being solved (financial

portfolio optimization).

3.3 (1+1)-CMA-ES with active covariance matrix adaptation

Among the various methods proposed for handling constraints in CMA-ES, Arnold and Hansen

(Arnold and Hansen, 2012) recently proposed a modification of a (1+1)-CMA-ES that has

displayed great performance improvements with respect to other methods on unimodal

constrained problems when started from a feasible solution. The method maintains a (low-

pass filtered) vector representing the direction of violations of steps with respect to each

constraint. These vectors are used to update the covariance matrix such that the variance

in the direction of violation is reduced. A (1+1)-CMA-ES combines (1+1) selection (Beyer

and Schwefel, 2002) with covariance matrix adaptation (Hansen et al., 2003). Given a parent

solution x ∈Rn , an offspring solution y is sampled according to y ← x +σAz where A is the

Choleski decomposition of the covariance matrix C = AT A and z ∼N (0,I) is sampled from a

normal distribution. The global step size σ ∈R+ is changed according to a modified 1/5 rule

proposed in (Igel et al., 2006). The probability Psucc ∈ [0,1] of generating successful solutions

and σ are updated at each iteration

Psucc ← (1− cp)Psucc + cp1 f (y)≤ f (x) (3.1)

σ←σe

(
1
d

(
Psucc− Pt ar g et

1−Pt ar g et
(1−Psucc)

))
(3.2)

46

3.3. (1+1)-CMA-ES with active covariance matrix adaptation

where 1 f (y)≤ f (x) is 1 if the condition is true or 0 otherwise, the learning rate cp ∈ (0,1] deter-

mines the fading of Psucc and the damping factor d controls the step size variation. Pt ar g et

determines the probability threshold that decreases or increases σ. The covariance matrix

is adapted using the original rank-one update rule of CMA-ES, C (g+1) = αC (g) +βv (g)v (g)T
,

which increases the variance in the direction of the provided vector v from one iteration g

to the following one. Using a vector of fading successful steps s, called the evolution path, in

place of vector v , allows the strategy to increase the likelihood of sampling new solutions in

the direction of already successful steps. In fact, there is no need to maintain the covariance

matrix C , as updates can be performed directly on the Choleski factor A as proved in (Igel

et al., 2006) according to

A ←p
αA +

p
α

‖w‖2

√
1+ β

α
‖w‖2 −1

 sw T (3.3)

where w = A−1s and β = c+cov ∈ Rn . In practice the evolution path s and α are updated

depending on Psucc . If the probability of success is small (Psucc < Pthr esh) then the covariance

matrix is updated considering the current step Az , such that s ← (1− c)s +p
c(2− c)Az and

α= 1−c+cov . Otherwise (Psucc ≥ Pthr esh), the update does not consider the current step in order

to avoid the variance increasing too much in the direction of already successful mutations. In

this case the covariance matrix is always updated using Equation 3.3 but the evolution path is

set to s ← (1− c)s and α= 1− c+cov + c+cov c(2− c).

An alternative “active" covariance matrix update that also considers particularly unsuccessful

steps worse than the fifth ancestor of the current solution was proposed in (Arnold and Hansen,

2010). In this case, the covariance matrix is updated using the current unsuccessful step Az

and the following rule that decreases the variance in the direction of that step2

A ←p
αA +

p
α

‖z‖2

√
1− β

α
‖z‖2 −1

 Az z T (3.4)

where α=√
1+ c−cov and β= c−cov .

Interestingly, the same rule can be used to decrease variance in the direction of constraint

violations. Similarly to what is done with the evolution path, Arnold and Hansen (Arnold and

Hansen, 2012) proposed to use fading vectors of steps that violate constraints in combination

with active covariance updates. Specifically, for each constraint i that is violated by step Az ,

the vector vi ← (1−cc)vi +cc Az is updated. Whenever even a single constraint is violated, the

covariance matrix is updated according to

A ← A − B∑m
i=11gi (y)>0

m∑
i=1

1gi (y)>0
vi w T

i

wi w T
i

(3.5)

2Note that the sign in the parenthesis is inverted. Furthermore, if ‖z‖2 ≥ 1+c−cov
2c−cov

then c−cov = 1
2‖z‖2−1

.

47

Chapter 3. Information from viability boundaries to build efficient adaptive algorithms

where wi = A−1vi . The parameters used in the algorithm are set to the following (Arnold

and Hansen, 2010). We will refer to this method in the following as (1+1)-acCMA-ES (active

constrained CMA-ES).

Table 3.1: Parameter setting for the (1+1)-ViE. Parameters are set as in the original Arnold’s
paper (Arnold and Hansen, 2010)

c = 2
n+2 cc = 1

n+2 cp = 1
12

d = 1+ n
2 B = 0.1

n+2 Pt ar g et = 2
11

c+cov = 2
n2+6 c−cov = 0.4

n1.6+1 σ= 0.1

3.4 Introducing viability principles in CMA-ES

Modelling an evolutionary algorithm using the Viability Evolution abstraction offers novel

possibilities. For example, in the case of constrained optimization viability boundaries can

be defined to relax problem constraints at the beginning of the search, and be made more

stringent over time to lead solutions into the feasible regions. The key idea proposed here

is to use changing viability boundaries that define admissible regions of the search space

(viable regions) in combination with the active covariance matrix updates proposed by Arnold

and Hansen (Arnold and Hansen, 2012). Active covariance updates are used to decrease the

variance in the direction of boundary violations. As the boundaries defined on constraint

functions values can be relaxed, the algorithm is compatible with infeasible starting solutions.

On the other hand, whenever a viable solution is generated, the standard covariance matrix

update rule of (1+1)-CMA-ES is employed to increase the variance in the direction that gen-

erated the viable solution. Because different boundaries may affect the global probability

of generating viable solutions Psucc , we maintain a vector of probability of success psucc ,

that tracks which boundary is more likely to cause the generation of non viable solutions.

As depicted in Figure 3.2A, when the covariance matrix is well adapted to a boundary, the

probability of generating a new viable solution is greater or equal to 50%. Otherwise, when the

probability of success is lower than 50% for at least one boundary, as shown in Figure 3.2B, the

covariance matrix should be modified and the global step size reduced. To achieve this, we

reduce the global Psucc probability. Conversely, the overall Psucc probability and all elements

of the psucc vector are increased whenever a viable solution is generated. Note that in the

method presented in (Arnold and Hansen, 2012) not adapting Psucc on failure may lead to the

use of outdated information for step-size adaptation.

The pseudo-code of our method, referred to as (1+1)-ViE, is presented in Algorithm 2. The user

48

3.4. Introducing viability principles in CMA-ES

Algorithm 2 (1+1)-VIE-CMA-ES pseudo-code. Problem objectives and constraints are mod-
elled using the viability boundaries abstraction. Parameters d ,c,cc ,cp ,B ,Pt ar g et ,c+cov and c−cov

are defined as in (Arnold and Hansen, 2010).

Require: σ ∈R+ initial global step size
1: α← 1− c+cov , β← c+ccov , s ← 0
2: A ← I
3: for i = 1. . .m +1 do
4: vi ← [0, . . . , 0]n×1 . The last vi and bi correspond to the objective
5: end for
6: b ← [max(0, g1(x)), . . . , max(0, gm(x)), ∞]
7: psucc ← [1

2 , . . . , 1
2]

8: x ← randomly generate solution
9: while ¬ termination condition do

10: z ∼N (0,I)
11: y ← x +σAz
12: V ← [1g1(y)>b1 , . . . ,1gm (y)>bm ,1 f (y)>bm+1] . Boundary violations
13: if ∃ i : Vi = 1 then
14: for all i : Vi = 1 do
15: vi ← (1− cc)vi + cc Az
16: wi ← A−1vi

17: end for
18: A ← A −B

∑m
i=11gi (y)>0

vi w T
i

wi w T
i

. Decrease variance

19: psucc ← (1− cp)psucc + cp [1V1=0, . . . ,1Vm+1=0] . Update success probability
20: if ∃ i : psucc i < 1

2 then
21: Psucc ← (1− cp)Psucc . Decrease global Psucc

22: end if
23: else
24: Psucc ← (1− cp)Psucc + cp . Increase success probabilities
25: psucc ← (1− cp)psucc + cp

26: σ←σexp
(

1
d

(
Psucc − Pt ar g et

1−Pt ar g et
(1−Psucc)

))
27: s ← (1− c)s +p

c(2− c)Az
28: w ← A−1s

29: A ←p
αA +

p
α

‖w‖2

(√
1+ β

α‖w‖2 −1

)
sw T

30: b1..m ←
[

max
(
0,mi n

(
b1, g1(y)+ b1−g1(y)

2

))
, . . . ,

31: max
(
0,mi n

(
bm , gm(y)+ bm−gm (y)

2

))]
32: if Vi :1,...,m = 0 then . Update boundary on objective when feasible
33: bm+1 ← f (y)+ f (x)− f (y)

2
34: end if
35: x ← y
36: end if
37: end while

49

Chapter 3. Information from viability boundaries to build efficient adaptive algorithms

A B C

Infeasible

Region

Figure 3.2: Possible scenarios encountered during a search. A) The covariance matrix (ellipsoid
in solid line) is well adapted with respect to a boundary (dashed line). The probability of
generating a successful solution in the viability region (shaded area) is greater than 50%.
Isocline of the objective function are shown as thin dotted lines and the gradient direction
is shown by the arrow. The mean of the search distribution is represented as a dot. B) The
covariance matrix should be adapted. Probability of generating successful solutions is lower
than 50%. C) The method encounters difficulties when the direction to reach the optimum
(shown as a cross) is the same that generates infeasible solutions that violate the constraint
(thick dotted line).

must only provide an initial step size σ. The algorithm sets the initial viability boundaries b as

either the target boundary (0 for the constraints) or a relaxed value if an infeasible solution

is provided. The initial boundary for the objective is set to ∞. At each iteration, boundary

violations V are checked. The active covariance matrix update for feasible solutions (Equation

3.4) and the stall of updates of the original method in presence of high probability of success

are not used. A single update rule is applied whenever a viable solution (that does not violates

the boundaries b) is generated. When this happens, the mean of the population is updated to

the new viable solution and the boundaries are tightened.

3.5 Results

The proposed method was tested on all the eight benchmark functions used in (Arnold and

Hansen, 2012). These benchmark functions include problems from two to ten dimensions with

up to eight non-linear constraints. The experimental setup is identical to the one reported in

(Arnold and Hansen, 2012), including the same number of repetitions, equivalent generation

of initial solutions, the same termination condition, and the same parameter settings for the

(1+1)-CMA-ES (reported in Table 3.1). For each benchmark function we counted the total

number of objective function and constraints function evaluations. We tested the method

starting it 99 times from different initial solutions, uniformly sampled from the solution space

until a feasible solution is found. Iterations needed to obtain the starting feasible solution are

not counted in the results, as in (Arnold and Hansen, 2012).

Results are reported in Table 3.2. The method is competitive on seven out of eight problem.

Our method has medians lower than what were reported by Arnold and Hansen (Arnold and

Hansen, 2012) for constraint function calls by a factor of 0.15, 0.33, 0.11, 0.56, 0.49, 0.57 on g06,

50

3.5. Results

g06 g07 g09 g10

(1+1)-ViE acCMA (1+1)-ViE acCMA (1+1)-ViE acCMA (1+1)-ViE acCMA
Function Evaluations

10th 282 272 1578 1939 1305 1430 1387 2794
50th 333 308 1794 2211 1452 1674 1697 3976
90th 385 364 2049 2703 1595 2074 2554 5369

Constraint Evaluations
10th 797 827 7184 10435 3474 3626 7360 15621
50th 900 1060 7545 11283 3660 4106 8295 18781
90th 986 1223 8032 12704 3913 5075 11322 23088

TR2 2.40 2.41 HB

(1+1)-ViE acCMA (1+1)-ViE acCMA (1+1)-ViE acCMA (1+1)-ViE acCMA
Function Evaluations

10th 465 376 863 1326 820 1483 638 623
50th 520 443 1023 1990 954 2271 734 768
90th 561 510 1209 3326 1100 3581 841 1150

Constraint Evaluations
10th 751 616 3166 4551 3183 5235 2659 2338
50th 812 708 3570 6994 3449 8108 2893 2912
90th 884 839 3899 11114 3801 12056 3185 3970

Table 3.2: Experimental results of the (1+1)-ViE and comparison against the (1+1)-acCMA-ES
proposed in (Arnold and Hansen, 2012)

g07, g09, g10, 2.40, 2.41 respectively and almost identical performance on HB 3. In the linear

constrained sphere function problem TR2, our method exceeds values reported by Arnold

and Hansen (Arnold and Hansen, 2012) by a factor 0.15. In one problem, g06, our method,

while being better on the overall number of constraint evaluations, performs slightly worse on

number of objective function evaluations.

In our view, one of the reasons of decreased performance in the TR2 problem probably lies

in the specific orientation of the constraint. From experimental investigation, we observed

that the mean of the search distribution tends to align to the normal direction to the optimum

(a situation similar to the one depicted in Figure 3.2C), which in this case is also the same

direction that is most likely to violate the constraint. Probably, in cases like this one when the

direction of constraint violation is very close to the direction of viable solutions generation,

the covariance matrix update should be stalled, or the variance should be decreased along the

other axis.

3It must be noted that although the reported function evaluations are consistently lower than the method of
Arnold (compare 10th, 90th percentiles and medians), the extent of the analysis performed here does not allow to
draw conclusions on the statistical significance of the results, as no hypothesis testing was performed.

51

Chapter 3. Information from viability boundaries to build efficient adaptive algorithms

3.6 Conclusions

In this chapter, we proposed (1+1)-ViE, a method that combines viability boundaries and

active covariance matrix updates in a (1+1)-CMA-ES. Our algorithm showed competitive

performance with respect to state-of-the-art methods on all the benchmark problems except

on the constrained sphere function problem TR2. Further investigations are needed to solve

the lower performance experienced on TR2. Here, we tested the method only when starting

from feasible initial solutions, but our algorithm is also compatible with infeasible starting

solutions. In the next chapter, we extend this method to deal with multi-modal constrained

problems and we test it also when started from infeasible starting solutions.

52

4 Constrained multimodal optimization
using viability evolution principles

In the previous chapter we introduced a viability-based algorithm that

displayed promising performance on a set of unimodal problems. In this

chapter, we devise a novel memetic computing approach, based on pre-

vious chapter’s algorithm, for solving constrained optimization problems

with inequality constraints. Our framework embeds several design choices

from the Viability Evolution paradigm. Viability boundaries are adapted

during the search to drive an evolving population of local search units to-

wards desired regions of search space. The local units can be recombined

by means of global Differential Evolution operators. An adaptive scheduler

toggles between the exploitative and explorative regimes, selecting at each

iteration wether to advance one of the local optimizers, apply the evolu-

tionary operators, or do both. The proposed algorithm, named mViE, was

tested on a diverse set of benchmark functions and engineering problems.

mViE outperforms several state-of-the-art methods in terms of quality of

solutions and computational resources needed.

The contents of this chapter are adapted from:

Maesani A, Iacca G, Floreano D (2014). Adopting Viability Evolution Principles in a Memetic

Framework for Constrained Optimization. Submitted to IEEE Transactions on Evolutionary

Computation, in review.

53

Chapter 4. Constrained multimodal optimization using viability evolution principles

4.1 Introduction

Several real-world optimization problems are characterized by the presence of one or more

inequality constraints that limit the feasible region of the search space. When defined in a

continuous domain, such problems can be formulated as:

min f (x), s.t. :

 li ≤ xi ≤ ui , i = 1,2, . . . ,n

g j (x) ≤ 0, j = 1,2, . . . ,m
(4.1)

where f (x) is the objective (fitness) function to be optimized and x ∈Rn is a vector of design

variables [x1, x2, . . . , xn].

The search space is delimited by box constraints that define the admissible range [li ,ui], li ∈
R,ui ∈ R of each variable xi . Moreover, the feasible space is determined by inequality con-

straints g j (x)1. Examples of constrained optimization problems can be found in many fields

where physical, geometrical or resource requirements may limit the feasibility of the solutions.

Due to the vast range of applications, constrained optimization has attracted over the past few

decades the interest of a large part of the Computational Intelligence research community2.

Pioneering studies can be traced back to research on Genetic Algorithms (GA) (Michalewicz

et al., 1996; Rasheed, 1998; Coello Coello, 2000; Coello Coello and Mezura-Montes, 2002) and

Evolution Strategies (ES) (Mezura-Montes and Coello Coello, 2005). More recently, Particle

Swarm Optimization (PSO) has also attracted a growing interest (Hu et al., 2003; Aguirre et al.,

2007; He and Wang, 2007a; Cagnina et al., 2008; Pant et al., 2009; Coelho, 2010), together with

other variously inspired Swarm Intelligence techniques (Leguizamón and Coello Coello, 2009;

Yang and Deb, 2010; Brajevic et al., 2011; Cuevas and Cienfuegos, 2014; Zhang et al., 2014).

Increasingly sophisticated techniques for managing the number of feasible or unfeasible

individuals retained in the population have been investigated in (Cai and Wang, 2006) and

(Wang et al., 2008). Parallel research lines have explored the use of specific constraint handling

techniques (Michalewicz, 1995; Coello Coello, 2002; Mezura-Montes and Coello Coello, 2011),

adaptive penalty functions (Tessema and Yen, 2009; Kramer et al., 2013), repair mechanisms

for infeasible solutions (Salcedo-Sanz, 2009; Wessing, 2013), stochastic ranking of solutions

(Runarsson and Yao, 2000), ε-constrained optimization (Takahama and Sakai, 2010), feasibility

rules to rank solutions (Deb, 2000), and surrogate models (Jin, 2011). Recent empirical studies

analyzed the utility of retaining infeasible solutions during evolution (While and Hingston,

2013), whereas others have considered the use of multi-objective techniques where the con-

straint violations are minimized as separate objectives together with the problem objective

function (Angantyr et al., 2003; Mezura-Montes and Coello, 2008; Clevenger et al., 2005; Cai

and Wang, 2006). Competitions for constrained optimization, as those organized in the context

1Constrained optimization problems can also include equality constraints defined as hk (x) = 0,k = 1,2, . . . , p,
that can reduce the feasible areas down to zero-volume regions. Dedicated literature covers this class of problems
proposing specific techniques for handling them. Handling equality constraints is out of the scope of this chapter.

2A constantly updated list of references on the topic, maintained by Carlos A. Coello Coello, is available at:
http://www.cs.cinvestav.mx/~constraint/

54

http://www.cs.cinvestav.mx/~constraint/

4.1. Introduction

of the IEEE Congress on Evolutionary Computation (CEC) (Liang et al., 2006; R. Mallipeddi,

2010), have finally provided standard benchmarks for comparing the performance of the

various algorithms in the field.

Despite these advances, the increasing number of computationally-intensive applications

still needs to be matched by computationally-efficient algorithms, capable of delivering high

performance in terms of quality of discovered solutions using a limited amount of function

evaluations. In contexts where each evaluation is computationally expensive, as in the case

of complex simulations, or where the optimization process has to be run in a limited time,

as in the case of hardware-in-the-loop evolution, there is indeed a strong need for efficient

meta-heuristics for constrained optimization.

Here, we describe a novel memetic computing approach based on Viability Evolution princi-

ples (Mattiussi and Floreano, 2003; Maesani et al., 2014), an alternative abstraction of artificial

evolution that operates by eliminating individuals not satisfying a set of criteria, defined on

problem objectives or constraints, which are adapted during evolution. We call our proposed

method memetic Viability Evolution (mViE). The algorithm is composed of multiple local

search units constituted by (1+1) Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

(Igel et al., 2006), coordinated by a Differential Evolution (DE) (Storn and Price, 1997) global

search kernel. The local search units are based on our previous algorithm (Maesani and Flore-

ano, 2014), where we modified a variant of a (1+1)-CMA-ES proposed in (Arnold and Hansen,

2012) by adding Viability Evolution principles (Mattiussi and Floreano, 2003; Maesani et al.,

2014) to dynamically relax the constraints and drive the local search units towards feasible

areas of the search space; furthermore, we have introduced a mechanism to adapt the step

size based on information collected at each constraint violation. Here, in mViE, on top of

these independent local search units, locally-learned information is recombined in a memetic

fashion by applying the evolutionary operators typical of DE for global search. The efficiency

of our method is made possible thanks to an adaptive scheduler that selects the advancement

of local search units versus global search steps.

We tested mViE on thirteen on the CEC 2006 benchmark problems with inequality constraints

(Liang et al., 2006) as well as four classical mechanical engineering design problems(Coello

Coello, 2000; Gandomi and Yang, 2011). mViE was compared against an extensive collection

of state-of-the-art algorithms for constrained optimization. Our method shows consistent

performance gains in terms of function evaluations needed to reach the optima on almost all

tested CEC 2006 problems and three mechanical engineering design problems.

The chapter is organized as follows. Section 4.2 surveys the literature related to constrained

optimization and presents viability evolution principles. Section 4.3 describes the details of

the proposed method. The experimental setup and the algorithmic parameter setting are

discussed in section 4.4, while the numerical results are presented in section 4.5. Finally,

discussion and conclusions are presented in section 4.6.

55

Chapter 4. Constrained multimodal optimization using viability evolution principles

4.2 Related Work

In the following, we start with a literature review on methods based on CMA-ES and DE for

constrained optimization, as these are the two building blocks of mViE for local and global

search, respectively. We also recapitulate recently proposed memetic computing approaches.

We then provide a brief introduction to Viability Evolution principles.

4.2.1 CMA-ES-based methods

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen et al., 2003) is considered

nowadays the state-of-the-art in unconstrained single-objective optimization. In the presence

of constraints, however, the step-size control used by CMA-ES to refine the search does not

work properly (Beyer and Finck, 2012), an effect known also in standard ES. To overcome

this difficulty, research has been recently devoted to improve the effectiveness of CMA-ES in

constrained optimization problems. The use of adaptive penalty functions was investigated

in (Collange et al., 2010), where the weight of each constraint in the penalty function was

modified according to the number of iterations during which that constraint was violated.

Another penalty function has been proposed in (de Melo and Iacca, 2014), where the con-

straint violation of all the solutions in the population is used to scale the relative violation

of each solution. CMA-ES has been also integrated (Kusakci and Can, 2013a) with ASCHEA,

an approach proposed in (Hamida and Schoenauer, 2002) to adapt the tolerances on the

equality constraints. Other approaches considered to rank individuals based on three inde-

pendent rankings (Kusakci and Can, 2013b), namely objective function, constraint violation,

and number of violated constraints, or the use of surrogate models to learn information about

constraints (Kramer et al., 2009; Gieseke and Kramer, 2013). A repair mechanisms was used in

a problem-specific variant of CMA-ES for financial portfolio optimization (Beyer and Finck,

2012).

Among the most effective approaches to date for CMA-ES, (Arnold and Hansen, 2012) pro-

posed a modification of (1+1)-CMA-ES (Igel et al., 2006) specifically designed for unimodal

constrained problems. Starting from a feasible solution, the algorithm maintains a low-pass

filtered vector representing the direction of violations of each constraint and consequently use

this information to reduce the variance of the search ellipsoid along the detected direction of

violation. In our previous study (Maesani and Floreano, 2014) we improved the performance

of this (1+1)-CMA-ES scheme even further, by collecting information on single constraint

violations and using it to adapt the step-size.

4.2.2 Differential Evolution-based methods

Earlier research on DE considered the use of feasibility rules and diversity preservation mech-

anisms (Mezura-Montes et al., 2004; Mezura-Montes et al., 2006) and the incorporation of

domain knowledge (Becerra and Coello Coello, 2006) for constrained optimization. With

56

4.2. Related Work

the introduction of the CEC benchmarks on constrained optimization (Liang et al., 2006;

R. Mallipeddi, 2010), that created a common environment for assessing the performance

of novel constrained optimization algorithms, DE became a popular choice for solving con-

strained problems. A number of DE-based methods proposed for solving these benchmarks

are now considered the state-of-the-art in evolutionary constrained optimization. Among

these methods, ε-DE (Takahama and Sakai, 2006) ranks solutions that are feasible or violate

at most by an ε-value the constraints by objective value, and prefers them over unfeasible

solutions that are compared by the amount of constraint violation. Notably, ε-DE won both

the CEC 2006 and 2010 competitions for constrained optimization. Competitive results were

also obtained by two other variants of DE, namely MDE (Mezura-Montes et al., 2006), which

uses an ad-hoc mutation that incorporates both information from best and parent individual,

and SADE (Huang et al., 2006), a self-adaptive version of DE. Both algorithms employ the

three feasibility rules presented in (Deb, 2000) for handling constraints. In a comparative

study (Mezura-Montes and Lopez-Ramirez, 2007), DE was shown to outperform PSO, GA,

and ES also on various numerical and engineering problems. Later research on optimal DE

parameter control (Mezura-Montes and Palomeque-Ortiz, 2009; Mezura-Montes et al., 2010)

lead to devise robust self-adapting schemes, such as those presented in (Mezura-Montes and

Palomeque-Ortiz, 2009) and (Zou et al., 2011). Furthermore, specific mutation operators were

introduced in (Mohamed and Sabry, 2012; Kong et al., 2013). Also, DE was combined with

(adaptive) penalty functions in (de Melo and Carosio, 2012; Ali and Zhu, 2013), Lagrangian

methods for handling equality constraints in (Long et al., 2013), or even ensembles of con-

straint handling techniques (Mallipeddi and Suganthan, 2010). More recently, ε-DE was

further extended introducing ranking (Takahama and Sakai, 2012) and surrogate models by

using kernel regression (Takahama and Sakai, 2013).

4.2.3 Memetic Computing approaches

Lastly, it is worth mentioning recent research on constrained optimization by Memetic Com-

puting approaches, i.e. schemes composed of multiple interacting search operators, or

“memes”, whose dynamics is inspired by the diffusion of ideas (Neri et al., 2011). A typi-

cal example are Memetic Algorithms, that combine an Evolutionary Algorithm with one or

more units of individual learning. For example, in the agent-based memetic algorithm (Ullah

et al., 2007; Ullah et al., 2008; Ullah et al., 2009b; Ullah et al., 2009a; Barkat Ullah et al., 2011)

a society of agents co-evolves and shares individual information for solving constrained op-

timization problems. Another co-evolutionary agent-based algorithm has been presented

in (Pescador Rojas and Coello Coello, 2012). Similar ideas can be found in some hybrid al-

gorithms combining, for instance, GA and Artificial Immune System (AIS) (Bernardino et al.,

2007), PSO and Simulated Annealing (SA) (He and Wang, 2007b), PSO and GA (Takahama et al.,

2005), PSO and DE (Liu et al., 2010). In two (µ+λ)-DE approaches (Jia et al., 2013; Wang and

Cai, 2011), multiple mutation operators are applied while the algorithms modify at run-time

the policy used for ranking solutions, according to the composition of the population in terms

of feasible/infeasible solutions.

57

Chapter 4. Constrained multimodal optimization using viability evolution principles

Other powerful memetic algorithms make use of gradient-based information, either on the

fitness or on the constraints, thus making an implicit assumption of continuous and differen-

tiable functions. An example of such methods is given in (Sun and Garibaldi, 2010), where an

Estimation of Distribution Algorithm (EDA) is combined with a classic gradient-based local

optimizer. Similarly, in (Hamza et al., 2014) a consensus-based GA is combined with sequen-

tial quadratic programming, but in this case the algorithm uses gradient information on the

constraints. More recently, a hybrid algorithm combining PSO, DE, CMA-ES, gradient-based

mutation and constraint handling with ε-level comparison was presented in (Bonyadi et al.,

2013).

4.2.4 Viability Evolution

Viability Evolution (Mattiussi and Floreano, 2003; Maesani et al., 2014) abstracts artificial evo-

lutionary processes as a set of individuals, or candidate solutions, that must satisfy a number

of viability criteria for surviving ever-changing environmental conditions. Viability criteria are

defined as ranges of admissible values on problem objectives and constraints, the so-called

viability boundaries. These boundaries, representing environmental conditions, are adapted

during the evolutionary process to drive the evolving population towards desired regions of

search space. At the beginning of the search the boundaries are relaxed to encompass all

randomly generated initial solutions. Then, the boundaries are gradually tightened. Once

viability boundaries reach the desired target, boundaries are not tightened further, and the

evolutionary process is considered complete.

Although in its simplest implementation the Viability Evolution paradigm operates by eliminat-

ing non-viable individuals, the abstraction is fully compatible with classical competition-based

evolutionary algorithms. Elimination by viability and competition by objective functions can

be modelled at the same time in the viability framework to determine the fitness of individuals.

However, it is important to note that here fitness is intended as a-posteriori reproduction capa-

bility and not as an a-priori measurable function as currently implemented in the evolutionary

computation practice.

Interestingly, some of the methods for constrained optimization, such as ε-DE(Takahama

and Sakai, 2006) and ASCHEA(Hamida and Schoenauer, 2002), can be loosely seen under

the Viability Evolution abstraction. For example, ε-DE defines a tolerance ε for comparing

individuals by objective or constraints. Somehow, such a threshold could be seen as a viability

boundary defined on the constraint violation. However, to be fully compatible with the

viability paradigm, ε-DE should discard solutions violating the ε tolerance on the constraint

violations. Similarly, ASCHEA dynamically changes a tolerance on equality constraints for

driving solutions towards the feasibility region determined by the equality constraint. In a

similar way, the constraint adaptation approach (Storn, 1999) progressively shrinks the feasible

region during the evolutionary process.

58

4.3. Memetic Viability Evolution (mViE)

4.3 Memetic Viability Evolution (mViE)

The proposed method mViE is based on two key components that act at different levels

(local and global search) to perform efficient constrained optimization. To search locally, we

use multiple units that independently explore the constrained landscape, as shown in Fig.

4.2a. Objective and constraints are modelled as viability criteria under the viability paradigm

(Maesani et al., 2014). Viability boundaries, i.e. admissible ranges on viability criteria, are

relaxed at the beginning of the evolutionary process and tightened during the search as

proposed in (Maesani and Floreano, 2014) for each of the local search units. The local search

units are implemented as (1+1)-CMA-ES, which are modified to learn information about the

constraints and use such information to adapt the covariance matrix, as proposed in (Arnold

and Hansen, 2012), and the step size, as in our previous work (Maesani and Floreano, 2014).

When local search units sample solutions that violate viability boundaries, the search unit

learns the direction of violation of the boundary (Arnold and Hansen, 2012) and adapts

covariance matrix and step size, as shown in Fig. 4.2b. Viability boundaries are adjusted

during the search towards the actual constraints, thus activating covariance matrix and step

size adaptation and pushing the local search towards feasible areas (Fig. 4.2c).

To foster global search, we combine local search units by using operators inherited from

Differential Evolution, comprising rand/1 mutation and exponential crossover (Price et al.,

2005). In this way, the information obtained by multiple local search units is combined to

generate new units. Search parameters are inherited from the closest of the search units, as

can be seen in Fig. 4.2d. Finally, an adaptive scheduler chooses the allocation of function

evaluations to local search units or global search operators (Fig. 4.2e).

Main Loop

(Algorithm 3)

COMPONENTSCHEDULER()

Adaptively selects between
local and global search

(Algorithm 6)
(Figure 4.2e)

STEPUNIT()

Steps a local search unit

(Algorithm 4)
(Figure 4.2a-c)

SELECTUNITTOREPLACE()
SELECTRANDOMUNITS()

RECOMBINEUNITS()

Global search

(Figure 4.2d)

mViE

Figure 4.1: Schematic of mViE on and references to
relevant figures and algorithms.

In the following sections we provide a

detailed description of the method’s op-

erations described in Figure 4.2. The

mapping of these operations with rel-

evant algorithmic pseudo-code pre-

sented in the chapter is show in Fig-

ure 4.1. The main loop of our method

is shown in Algorithm 3. The parame-

ters of the various local search units are

stored in the pop data structure appo-

sitely initialized (INITIALIZEUNITS, rou-

tine not reported, performs memory al-

location) to contain data for popsi ze

units. For each local search unit, the

corresponding mean x is sampled ran-

domly (SAMPLERANDOMSOLUTION, rou-

tine not reported, performs uniform random sampling of a solution within the search space)

59

Chapter 4. Constrained multimodal optimization using viability evolution principles

a b

c d

e

Collect Success
Probabity

?

Lo
ca

l S
ea

rc
h

G
lo

ba
l S

ea
rc

h

Figure 4.2: Graphical representation of the main features of mViE on a simplified two-
dimensional search landscape. Non-linear constraints on the search domain are represented
as solid black lines, which outline the boundaries of the infeasible area marked with oblique
gray hatching. Objective function contour lines are represented in the feasible areas as thin
gray lines. Panels a, b and c represents the local search component of mViE, while panel d
the global search one. a) Multiple search units (cyan ellipsoids) sample solutions from differ-
ent areas of the search landscape. A single search distribution is represented as an ellipsoid
with its mean shown as a dot. b) Constraints can be described as viability boundaries (olive
green dashed lines) and can be relaxed. By progressively tightening the boundaries, while
adapting the search distribution to the viability boundary violations, it is possible to drive
the search units within the feasible areas. c) When a search distribution samples a solution
which violates the viability boundaries (left), the most-likely direction of boundary violation
is learned and used to adapt the search distribution to reduce the likelihood of searching in
that direction (right). d) Global search component. A new local unit (red ellipsoid) is created
by applying Differential Evolution mutation and crossover operators (solid red arrows) on
multiple search distributions. The parameters of the new distribution are inherited from the
closest of the recombined search units (dashed red arrow). e) The probability of improving
solutions generated by local or global search operators are collected and used to adapt the
activation frequencies of global or local search, either stepping a local search unit (left) or
recombining information using a global search operator (right).

60

4.3. Memetic Viability Evolution (mViE)

and its parameters are initialized (INITUNIT, explained in detail in section 4.3.1 and shown in

Algorithm 5).

Algorithm 3 Main loop

Require: Teval s : maximum number of evaluation

Require: popsi ze : population size

1: while ¬ TERMINATIONCONDITION() do

2: Psucc,local ← 0.5,Psucc,g l obal ← 0.5

3: Cacti ve,local ← popsi ze

4: pop ← INITIALIZEUNITS(popsi ze)

5: for i = 1 : popsi ze do . Sample initial population

6: x ← SAMPLERANDOMSOLUTION()

7: popi ← INITUNIT(x)

8: end for

9: Neval s,local ← 0, Neval s,g l obal ← 0

10: Nsucc,local ← 0, Nsucc,g l obal ← 0

11: while ¬ RESTARTORTERMCONDITION() do

12: [Elocal ,Eg l obal] ←COMPONENTSCHEDULER() . Choose component(s) to execute

13: if Elocal then . Perform local search

14: Neval ,l ocal ← Neval ,local +1

15: R ← RANKBYFITNESS(pop)

16: if m > 0 then

17: R ← R + RANKBYVIOLATION(pop)

18: end if

19: i ← GETACTIVEUNIT(pop,R)

20: popi ← STEPUNIT(popi)

21: if BETTER(popi , best) then

22: best ← popi

23: Psucc,local ← (1−α) ·Psucc,local +α
24: Nsucc,local ← Nsucc,l ocal +1

25: else

26: if ¬ VIOLATEBOUNDARIES(popi) then

27: Psucc,local ← (1−α) ·Psucc,local

28: else

29: Psucc,local ← (1−β) ·Psucc,local

30: end if

31: end if

32: end if

61

Chapter 4. Constrained multimodal optimization using viability evolution principles

33: if Eg l obal then . Perform global search
34: Neval ,g l obal ← Neval ,g l obal +1
35: r ← SELECTUNITTOREPLACE(pop)
36: [i1, i2, i3] ← SELECTRANDOMUNITS(pop, r)
37: tr i al ← RECOMBINEUNITS(pop, i1, i2, i3,r)
38: if BETTER(popr , tr i al) then
39: popr ← tr i al
40: if BETTER(popr , best) then
41: best ← popr

42: Psucc,g l obal ← (1−α) ·Psucc,g l obal +α
43: Psucc,local ← Psucc,g l obal

44: Nsucc,g l obal ← Nsucc,g l obal +1
45: else
46: Psucc,g l obal ← (1−α) ·Psucc,g l obal +β
47: end if
48: else
49: Psucc,g l obal ← (1−α) ·Psucc,g l obal

50: end if
51: end if
52: end while
53: end while

Until a restart or termination condition is met (RESTARTORTERMCONDITION, see section 4.3.4),

the scheduler is run to decide if allocating or not a function evaluation to global or local search

(COMPONENTSCHEDULER, explained in section 4.3.3 and shown in Figure 4.2e, Algorithm 6).

4.3.1 Local search step

If a local search step is executed (Elocal = tr ue), the most promising unit is selected by ranking

local search units by fitness and constraints violation (RANKBYFITNES, RANKBYVIOLATION,

routines not reported) and selecting the first active (non-converged) top-ranking search unit

(GETACTIVEUNIT, routine not reported). The local search unit is then allowed to perform

a single function evaluation (STEPUNIT, shown in Figure 4.2a-c and Algorithm 4). Finally,

the moving average Psucc,local on the success probability of improving the global optima is

updated. To compare solutions with the current global best solution found we employ the

three feasibility rules presented in (Deb, 2000) and implemented in the function BETTER.

Local search units (Figure 4.2a-c) are basically (1+1)-CMA-ES with the modifications for

adapting the covariance matrix presented in (Arnold and Hansen, 2012). Each (1+1)-CMA-ES

maintains its viability boundaries and adapts them every time a better solution is sampled.

The boundary on the objective is updated only when operating in the feasible area. Addi-

tional information on the probability of generating solutions that satisfy each constraints is

maintained by each local unit and used for updating the step size (Maesani and Floreano,

2014). At the end of the execution of a local search unit, the unit is checked for convergence,

as explained later in Section 4.3.4.

62

4.3. Memetic Viability Evolution (mViE)

Algorithm 4 Local search stepping

1: function STEPUNIT(l s)
2: z ∼N (0, l s.I) . Sample new solution
3: l s.y ← l s.x + l s.σ · l s.A · z
4:

5: V ← [1g1(y)>l s.b1 , . . . ,1gm (y)>l s.bm ,1 f (y)>l s.bm+1] . Check current boundary violations
6: VT ← [1g1(y)>B1 , . . . ,1gm (y)>Bm ,1 f (y)>Bm+1] . Check target boundary violations
7:

8: if ∃ i : Vi = 1 then . Update search distribution on boundary violations
9:

10: for all i : Vi = 1 do . Adapt algorithm parameters
11: l s.vi ← (1− cc) · l s.vi + cc · l s.A · z
12: l s.wi ← l s.A−1 · l s.vi

13: end for
14: l s.A ← l s.A −B

∑m
i=11gi (y)>0

l s.vi ·l s.w T
i

l s.wi ·l s.w T
i

15: l s.p ← (1− cp) · l s.p + cp [1V1=0, . . . ,1Vm+1=0] . Boundary satisfaction probability
16: if ∃ i : l s.pi < 1

2 then
17: l s.Psucc ← (1− cp) · l s.Psucc

18: end if
19: if ∀i : VT i = 0 then . only when target boundaries are satisfied

20: l s.σ← l s.σ ·exp
(

1
d

l s.Psucc−Pt ar g et

1−Pt ar g et

)
21: end if
22:

23: else
24:

25: l s.Psucc ← (1− cp) · l s.Psucc + cp . Increase probability of success
26: l s.p ← (1− cp) ·p + cp

27: l s.σ← l s.σ ·exp
(

1
d

l s.Psucc−Pt ar g et

1−Pt ar g et

)
. Adapt search distribution parameters

28: l s.s ← (1− c) · l s.s +p
c(2− c) · l s.A · z

29: l s.w ← l s.A−1 · l s.s
30: l s.A ←

√
1− c+cov · l s.A +

31:

p
1−c+

cov

‖l s.w‖2

(√
1+ c+

ccov

1−c+
cov

‖l s.w‖2 −1

)
l s.s · l s.w T

32: l s.b1..m ←
[

. Adapt boundaries

33: max
(
B1,mi n

(
l s.b1, g1(y)+ l s.b1−g1(l s.y)

2

))
, . . .

34: max
(
Bm ,mi n

(
l s.bm , gm(y)+ l s.bm−gm (l s.y)

2

))]
35: if ∀i : 1, . . . ,mVT i = 0 then . Update boundary on objective only in feasible area

36: l s.bm+1 ← f (l s.y)+ f (l s.x)− f (l s.y)
2

37: end if
38: l s.x ← l s.y . Update mean and check for local convergence
39:

40: end if
41:

42: l s.acti ve ← CHECKCONVERGENCE(l s)
43: return l s
44: end function

63

Chapter 4. Constrained multimodal optimization using viability evolution principles

The pseudo codes for initialization and stepping of local search are listed in Algorithms 5

and 4. Each unit stores information on the viability boundaries in the b vector for each unit.

This is initialized relaxing the bondaries to either the target values B1, . . . ,Bm or the sampled

solution constraint value for each constraint. Note that for the problems selected in this

chapter, Bi = 0, i = 1, . . . ,m. Information on constraint violations is saved in the v and p

vectors, respectively containing the running average of the violation vector for each constraint

and the probability of violating each constraint.

Algorithm 5 Local search initialization

1: function INITUNIT(x)
2: l s ← []
3: l s.acti ve ← tr ue
4: l s.s ← 0
5: l s.A ← I
6: for i = 1. . .m +1 do
7: l s.vi ← [0, . . . , 0]n×1 . The last vi and bi correspond to the objective
8: end for
9: l s.b ← [max(B1, g1(x)), . . . , max(Bm , gm(x)), ∞]

10: l s.p ← [1
2 , . . . , 1

2]
11: l s.x ← x
12: return l s
13: end function

4.3.2 Global search step

On the other hand, when the global search step is executed (Eg l obal = tr ue), the search

unit to replace is selected by picking two search units at random and choosing the worst

one (SELECTUNITTOREPLACE, routine not reported). The selected local search unit is then

replaced if a better one is generated by means of Differential Evolution rand/1 mutation and

exponential crossover (SELECTRANDOMUNITS selects the parents, RECOMBINEUNITS performs

mutation and crossover, both routines are not reported).

After the local or global search steps are executed, the method collects some statistics on the

performance of the steps. Namely, it collects the number of function evaluations Neval s,{local ,g l obal }

and the number of improvements to the global optima Nsucc,{local ,g l obal } of each search step.

Furthermore, the collection of the moving averaged probability of success of local and global

search components is performed to accommodate different meaning of “success" for the local

and global search steps. In particular, the local probability of success is increased according

to:

Psucc,local ← (1−α) ·Psucc,local +α (4.2)

when a solution better than the global best is found by a local search unit. On the contrary, the

probability is decreased when a local search unit samples a solution that does not improve the

64

4.3. Memetic Viability Evolution (mViE)

global best according to:

Psucc,local ← (1−α) ·Psucc,l ocal . (4.3)

However, if the solution violates boundaries defined on some constraints, to account for the

function evaluations needed for adapting to the current boundaries, we discount the original

α coefficient by a factor βR , replacing it with a reduced coefficient β=βR ·α.

Instead, after the global search step the probability Psucc,g l obal is increased in two conditions.

When a solution better than the overall best solution is found, the probability is modified with

a rule similar to Equation 4.2:

Psucc,g l obal ← (1−α) ·Psucc,g l obal +α. (4.4)

The probability is also increased when a local search unit better than the parent unit is

discovered, although this second increase is lower (we use the same coefficient β). In the other

cases, the probability is decreased similarly to Equation 4.3:

Psucc,g l obal ← (1−α) ·Psucc,g l obal . (4.5)

4.3.3 Scheduler for selection of local/global search operator

The efficient allocation of function evaluations to local (Figure 4.2a-c) or global (Figure 4.2d)

search is ensured by the scheduler presented in Algorithm 6 (Figure 4.2e). The scheduler

uses information collected during the search process, i.e. the moving averaged probability of

success Psucc,{local ,g l obal }, the total number of global optima improvements Nsucc,{local ,g l obal }

and the total number of function evaluations Neval s,{l ocal ,g l obal } allocated to the local and

global search component.

During the first 100×n function evaluations (empirically set during preliminary experiments)

both components are always used to ensure an initial learning phase and avoid unbalanc-

ing the search towards local or global search because of initial evaluations. Then, the total

probability of success PHi st ,{local ,g l obal } = Nsucc,{local ,g l obal }

Neval s,{local ,g l obal }
is computed. We aggregate infor-

mation about current success probability and total probability of success by multiplication.

To prevent the frequency of execution of one of the two components from falling to zero,

therefore disabling the component until the end of the search process, we limit the minimum

frequency of execution of one component to a relative fraction L of the other component’s

frequency. Finally, the two components are scheduled according to the computed frequency

of execution Psel ,{l ocal ,g l obal }. In the case all the local search units converged, the local search

step is disabled and only global search is performed.

65

Chapter 4. Constrained multimodal optimization using viability evolution principles

Algorithm 6 Selection of local/global search operator

Require: Pcur r,local and Pcur r,g l obal : moving averaged probability of success of local and global search

components

Require: Neval s,local and Neval s,g l obal : total number of function evaluations assigned to each compo-

nent

Require: Nsucc,local and Nsucc,g l obal : total number of success evaluations for each component

Require: L : minimum relative limit of selection frequency

1: function COMPONENTSCHEDULER

2: El ocal ← f al se

3: Eg l obal ← f al se

4: if (Neval s,l ocal +Neval s,g l obal) < 100 ·n then

5: El ocal ← tr ue

6: Eg l obal ← tr ue

7: else

8: if Neval s,local = 0 then

9: PHi st ,local ← 0

10: else

11: PHi st ,local ← Nsucc,local

Neval s,l ocal

12: end if

13: if Neval s,g l obal = 0 then

14: PHi st ,g l obal ← 0

15: else

16: PHi st ,g l obal ← Nsucc,g l obal

Neval s,g l obal

17: end if

18: P1 ← PH ,local ·Pcur r,local

19: P2 ← PH ,g l obal ·Pcur r,g l obal

20: Psel ,local ← max(P1,L ·P2)

21: Psel ,g l obal ← max(P2,L ·P1)

22: r ← RAND

23: if r < Psel ,local

Psel ,g l obal+Psel ,local
∧Cacti ve,local > 0 then

24: El ocal ← tr ue

25: else

26: Eg l obal ← tr ue

27: end if

28: return [Elocal ,Eg l obal]

29: end if

30: end function

4.3.4 Termination conditions

Our method uses both local convergence conditions to disable local units, and global conver-

gence conditions to restart the algorithm. We disable a local search unit according to standard

66

4.4. Experimental Setup

stopping criteria for (1+1)-CMA-ES, namely when:

1. the evolution path s multiplied by the step size σ is smaller than 10−12

2. the maximum element on the covariance matrix diagonal multiplied by the step size σ

is larger than 108

3. the condition number of the covariance matrix is larger than 1014

After a local search unit has been disabled, it can only be substituted with another active chain

by the global search operator. The algorithm is restarted when the local units are converged to

the same solution. This check is performed by measuring the difference between the mean

of the objective and constraint violations of the local units and the best constraint violation

objective of the best solution.

4.4 Experimental Setup

We selected the algorithm’s main parameters by performing a preliminary parameter analysis,

reported in Appendix 4.7. The identified parameter values, used in the rest of this chapter,

are α= 0.1,βR = 0.05,L = 0.18,F = 0.5,C R = 0.9,Psi ze = 40. The parameters of the local search

component, based on (1+1)-CMA-ES, are instead set as in (Arnold and Hansen, 2012): d = 1+ n
2 ,

c = 2
n+2 , cc = 1

n+2 , cp = 1
12 , B = 0.1

n+2 , Pt ar g et = 2
11 , c+cov = 2

n2+6 , and c−cov = 0.4
n1.6+1 .

To assess the performance of the method, we selected all the constrained optimization prob-

lems with inequalities3 from the CEC 2006 benchmark(Liang et al., 2006). We executed the

CEC 2006 benchmark as specified in (Liang et al., 2006) for 500.000 function evaluations on the

functions containing inequalities only4, reported in Table 4.1. For each function, we measured

success rate (SR) over 25 runs and number of function evaluations (NFES) needed for solving

the problem at the desired accuracy (set to 10−4). Furthermore, we tested the method on a set

of four engineering problems reported in Fig. 4.3. The engineering problems were run for a

maximum of 200.000 function evaluations.

All the experiments were performed on Intel® machines with Core™ i7-2600 CPU @ 3.40GHz

and 8GB of RAM.

3Although a newer CEC benchmark is available (R. Mallipeddi, 2010), with some interesting features such as
scalable functions, the CEC 2006 benchmark still represents the most popular tool for testing new constrained
optimization algorithms, given the availability of results for several methods from the literature

4Our algorithm is specifically designed for handling optimization problems with inequality constraints only. A
more detailed analysis of the behaviour of mViE on problems including (also) equality constraints, together with
the original MATLAB® source code of all our experiments, is available at http://lis.epfl.ch/files/content/users/
195419/files/mvie/index.html.

67

http://lis.epfl.ch/files/content/users/195419/files/mvie/index.html
http://lis.epfl.ch/files/content/users/195419/files/mvie/index.html

Chapter 4. Constrained multimodal optimization using viability evolution principles

Table 4.1: Problems with inequality constraints from the CEC 2006 competition on constrained
optimization. We show the number of dimensions (n), linear (LI), non-linear (NI) and active
constraints at the optimum (a).

Problem n LI NI a

g01 13 9 0 6

g02 20 0 2 1

g04 5 0 6 2

g06 2 0 2 2

g07 10 3 5 6

g08 2 0 2 0

g09 7 0 4 2

g10 8 3 3 6

g12 3 0 1 0

g16 5 4 34 4

g18 9 0 13 6

g19 15 0 5 0

g24 2 0 2 2

4.5 Results

The proposed method was first tested on problems containing only inequalities taken from the

CEC 2006 benchmark (Liang et al., 2006). On all the 25 runs of every test problem, our method

exhibited 100% success rate, i.e. it could reach in every run the target fitness difference from

the optimum (10−4). The number of function evaluations (NFES) needed for reaching success

are reported in Table 4.2. Furthermore, in Appendix 4.8 we report the statistics on the error

values, according to the CEC 2006 format (Liang et al., 2006).

We compared the median NFES needed to solve the CEC 2006 inequality problems against

representative algorithms from the state-of-the art in constrained optimization. The main

features of the compared algorithms are detailed in Table 4.3. Table 4.4 shows the comparison

of median NFES to reach the optimum with several algorithms presented in the literature,

grouped by underlying meta-heuristic (DE, CMA-ES, PSO, and others) for convenience. The

bold face indicates the lowest NFES for each problem, and “-” indicates that the result for that

problem is not available.

A closer examination at the comparison between mViE and the group of algorithms derived

from DE reveals a strong performance advantage of mViE in finding optimal solutions. In only

one problem out of the thirteen considered, g12, mViE needs about 3.18 times more function

evaluations to reach the optimum. In all the other problems mViE needs between 0.21 (g09)

and 0.80 (g01) evaluations (mean factor: 0.43 ± 0.18 SD) with respect to the other methods.

Comparing mViE with the algorithms derived from CMA-ES highlights an even stronger

68

4.5. Results

h
l

t

b

a b

h1

w1

h2 h3 h4

h5

w2 w3 w4 w5

P

P

R

Th Ts

c d

d

D

n

L

Figure 4.3: Standard engineering problem benchmarks (Coello Coello, 2000; Gandomi and
Yang, 2011). a) Welded beam design optimization to minimize fabrication cost. The beam is
fabricated out of carbon steel and welded on a rigid supporting structure. The shear force P is
loading the free tip of the beam. The dimensions of the beam (width t and thickness b) and
the width h and length l of the welded joint have to be optimized subject to constraints on
shear stress, bending stress, buckling load on the bar, deflection and geometric constraints. b)
Minimization of volume of a stepped cantilever. The cantilever is composed of five segments
having variable cross-section, defined by the design variables wi and hi . The design is subject
to constraints limiting the bending stress and aspect ratio of each beam segment, and the
total deflection of the cantilever at the tip. c) Minimization of fabrication cost of a pressure
vessel. The thickness of the spherical head Th , the thickness of the spherical skin Ts , and the
inner radius of the vessel have to be designed to comply with constraints derived from the
ASME (American Society of Mechanical Engineers) standards on pressure vessels. d) Design
of a tension compression spring. The weight of the spring must be minimized optimizing
mean coil diameter D , wire diameter d and number of active coils n, subject to constraints on
deflection, shear stress, surge frequency, and maximum size on the outside diameter.

performance gain. mViE is slower only in three problems g06, g08 and g10. It must be noted

however that for g06 and g10 (both unimodal problems) the fastest algorithm is (1+1)-ViE,

i.e. the same employed by our local search units, presented in our previous work (Maesani

and Floreano, 2014). It is therefore to be expected a somehow higher number of function

evaluations, as in the method proposed here the global search component is also at work and

may slow down the search for the optimum when the landscape is unimodal. On g 08, mViE is

also 1.38 times slower than APM-CMA-ES(Kusakci and Can, 2013a), but given the already low

number of function evaluations needed to solve this problem the performance decay in this

case is not particularly relevant.

mViE outperforms, on all problems, also all the PSO-based methods, as well as other al-

69

Chapter 4. Constrained multimodal optimization using viability evolution principles

Table 4.2: Best, Median, Worst, Mean and Std. Dev. of NFES to achieve the fixed accuracy level
((f (~x)− f (~x∗)) ≤ 0.0001), and Success Rate over 25 runs of the selected CEC 2006 problems.

Prob. Best Median Worst Mean Std SR
g01 15032 20304 26301 20645.8 2757.39 100
g02 42462 61072 200394 67972.4 30770.3 100
g04 3089 3945 12461 4540.88 2154.32 100
g06 1072 1901 7222 2782.84 1884.95 100
g07 5954 7281 44035 10511.9 8732.84 100
g08 185 482 812 504.2 183.513 100
g09 2586 3436 26837 5193.68 5064.41 100
g10 10995 14734 99587 23884.3 22860.9 100
g12 187 3809 12607 3967.32 2371.44 100
g16 2415 3128 10214 3843.12 2100.47 100
g18 4683 7272 73350 13916.9 17785.5 100
g19 22658 25914 35753 26770.1 3029.09 100
g24 492 718 2511 838.68 400.114 100

gorithms not classifiable in any of the aforementioned groups (PCX(Sinha et al., 2006), AS-

RES(Runarsson, 2006), and two DE-based memetic algorithms using an adaptive policy to

rank solutions depending on the population composition, namely (µ+λ)-DE (Wang and Cai,

2011) and ICDE (Jia et al., 2013)).

Finally, we compared our method with algorithms that make use of traditional non-linear

programming techniques which: i) assume that the objective and constraint functions are

differentiable and ii) compute and use the gradient on constraints or objectives. Although evo-

lutionary algorithms cannot be directly compared with such techniques, as they assume that

no gradient information is available and are typically derivative-free, we deemed interesting

to relate our method also with this part of the literature. Results of these comparisons can be

found in Table 4.6. It is remarkable that our method, despite the lack of any information about

the gradient, outperforms SADE (Huang et al., 2006) and DMS-PSO (Liang and Suganthan,

2006) on all problems but two (g12 and g19, respectively) and can exceed the performance

of GB-MA (Sun and Garibaldi, 2010) in four problems, namely g08, g10, g16, and g18. In the

other cases, using gradient information is clearly beneficial.

4.5.1 Engineering problems

Given the particularly favorable results obtained by mViE on the CEC 2006 benchmark, we

decided to test the method also on a group of well-known engineering problems. Specifically,

we tested mViE on a welded beam design problem, the design of a stepped cantilever, the

optimization of a pressure vessel (reference formulations for these three problems can be

found in (Coello Coello, 2000)) and the design of a tension compression spring (Gandomi and

70

4.5. Results

Table 4.3: mViE was compared against multiple algorithms selected from the literature. We
report below the main features of each algorithm, together with the method used to compare
solutions and handle constraints.

Algorithm Heuristic Ranking method Notes

Eps-DE (Taka-
hama and Sakai,
2006)

DE ε-ranking Gradient based mutations

Eps-RDE (Taka-
hama and Sakai,
2012)

DE ε-ranking
Surrogate function is used in ε-ranking
comparisons

MPDE (Tas-
getiren and
Suganthan, 2006)

DE
Penalty Function (Near
Feasibility Threshold
(Smith and Tate, 1993))

Use multiple sub-populations to maintain
diversity

GDE (Kukkonen
and Lampinen,
2006)

DE Non dominated sorting
Problem reformulated as multi-objective
problem using sum of constraint viola-
tions as objective

MDE (Mezura-
Montes et al.,
2006)

DE 3 feasibility ruleA

Modified DE mutation operator that con-
sider the best and three other randomly
selected individuals. Uses a diversity pro-
cedure based on stochastic ranking with
probability modified during search

JDE-2 (Brest et al.,
2006)

DE 3 feasibility ruleB Adapts the F and CR parameters of DE dur-
ing search

(1+1)-aCMA
(Arnold and
Hansen, 2012)

CMA-
ES

If offspring violates con-
straints, adapt covari-
ance matrix, otherwise
substitute parent if bet-
ter fitness

(1+1)-ViE (Mae-
sani and Flore-
ano, 2014)

CMA-
ES

As in (1+1)-aCMA

Includes a mechanism for adapt the step
size based on information gathered on
constraint violations. Relax constraints
and uses them to drive the search towards
feasible area

APM-CMA-ES
(Kusakci and Can,
2013a)

CMA-
ES

Penalty function (adap-
tive)

Adapts tolerances on equality constraints
during the search

AP-CMA-ES
(de Melo and
Iacca, 2014)

CMA-
ES

Adaptive penalty func-
tion

PSO (Zielinski
and Laur, 2006)

PSO 3 feasibility ruleA

COPSO (Aguirre
et al., 2007)

PSO 3 feasibility ruleA

Adapts tolerances on equality constraints
during the search. Maintains an archive
of solutions that are estimated to be close
to constraint boundary. Applies local per-
turbation of best solutions found.

DMS-PSO (Liang
and Suganthan,
2006)

PSO +
Local
Search
(SQP)

Use one constraint
(adaptively chosen) for
each sub-population as
objective

Maintains multiple sub-populations

71

Chapter 4. Constrained multimodal optimization using viability evolution principles

PESO+ (Munoz-
Zavala et al.,
2006)

PSO 3 feasibility ruleA

Adapts tolerances on equality constraints
during the search. Mantains an archive
of solutions close to constraint boundary.
Applies local perturbation of best solu-
tions found.

ASRES (Runars-
son, 2006)

ES

Stochastic ranking per-
formed using surrogate
models of constraints
and objectives

(µ+λ)-CDE
(Wang and Cai,
2011)

DE

Adaptive trade-off
model to select offspring
for next generation that
depends on population
composition (only fea-
sible, only infeasible or
mixed)

ICDE (Jia et al.,
2013)

DE As in (µ+λ)-CDE
Uses an archiving strategy in the infeasible
population case

PCX (Sinha et al.,
2006)

GA 3 feasibility ruleC

Adapts tolerances on equality constraints
during the search. Steady state optimiza-
tion procedure. PCX recombination oper-
ator.

SADE (Huang
et al., 2006)

DE +
SQP

3 feasibility ruleD Select probabilistically among various DE
mutation strategies

DMS-PSO (Liang
and Suganthan,
2006)

PSO +
SQP

Use one constraint
(adaptively chosen) for
each sub-population as
objective

Maintains multiple sub-populations

GB-MA (Sun and
Garibaldi, 2010)

EDA +
DONLP2

Over-penalize approach
(Runarsson and Y.,
2005): rank first feasible
solutions by objective,
then infeasible ones
by sum of constraint
violations.

A the error for infeasible solutions is computed as the sum of constraint violations
B the error for infeasible solutions is computed as the mean of the constraint violations
C the error for infeasible solutions is computed as the sum of constraint violations, the fitness is rescaled
according to special rules
D the error for infeasible solutions is computed as the mean of constraint violations, normalized by the
maximum violation observed for each constraint

72

4.5. Results

Yang, 2011).

For each engineering problem, we compared the median number of function evaluations

needed by mViE to reach the optimum solution against the results reported in literature, as

shown in Table 4.5 (also in this case the bold face indicates the lowest NFES and “-” indicates

that the result is not available). We selected algorithms from the literature considering only

those reporting the values for the best solution found. Furthermore, algorithms whose perfor-

mance is completely dominated by other reported ones were ignored. Notably, the number of

function evaluations needed to reach on average the best solution fitness value is normally

not reported in papers dealing with engineering optimization. Therefore, in those cases we

report the full budget of function evaluations given to the algorithm. On three out of four

problems mViE is capable of discovering the best known solution in the lowest number of

function evaluations. Interestingly, in one problem, namely the design of a cantilever beam,

mViE discovered a solution which is better than the known optimum reported in the literature.

On the other hand, on the tension spring design problem mViE converges to the optimal

known solution but is 2.79 times slower than the fastest algorithm, MBA (Sadollah et al., 2013).

For completeness, we report in Table 4.7 the fitness value, the constraint violation, and the

values of the design variables of the best solutions found, together with the median NFES to

reach them (over 25 runs).

4.5.2 Sample algorithm runs

Overall, mViE compared very favorably on both the CEC 2006 benchmark problems and the

four selected engineering problems. To provide an idea of the algorithm dynamics, we show in

Fig. 4.4 the sample execution of our method on three selected problems, respectively g01, g02

and g10, where the latter one is unimodal. The convergence plots (Fig. 4.4a) and the variables

used by the scheduler (Fig. 4.4b-c) to make informed decisions on the frequency of selection

of local versus global search are shown. We also display the actual probability of executing

local/global search (Fig. 4.4d) and the total number of function evaluations performed by

local and global search (Fig. 4.4e). It is noticeable how on the unimodal problem (g10) a

higher number of function evaluations are allocated to the local search units. Furthermore,

problems characterized by the presence of distinct local optima (g02) present periods in which

mViE tries to locally optimize a local optimum intertwined with phases of global exploration

during which the algorithm is capable to overcome local optima. The limits imposed on the

frequency of selection are necessary to avoid that the algorithm falls in a phase where only

global or local search are used, without the possibility to switch.

4.5.3 Performance dissection

To show the contribution of the algorithmic components (local search, global search and

scheduler) we performed three separated experiments. First, in the condition mViE-L we

73

Chapter 4. Constrained multimodal optimization using viability evolution principles

f(x
*)
−f
(x
)

g01

O
ve

ra
ll

pr
ob

ab
ili

ty
of

 s
uc

ce
ss

C
ur

re
nt

 p
ro

ba
bi

lit
y

of
 s

uc
ce

s
P

ro
ba

bi
lit

y
of

lo

ca
l/g

lo
ba

l s
ea

rc
h

Function Evaluations

g02

Function Evaluations

0

1

0
0.1
0.2
0.3
0.4

0

0.1

0.2

10−5

100

105

10
−5

10
0

2 4 6 8 x 104

to
ta

l %
 o

f
lo

ca
l/g

lo
ba

l s
ea

rc
h

0.5 1 1.5 2 x 10
4

local search
global search

62%

38%

69%

31%

g10

Function Evaluations

76%

24%

2 4 6 12 x 1038 10 14

a

b

c

d

e

10−5

10

10

0

5

Figure 4.4: Sample execution of the method on three difficult functions taken from the CEC
2006 benchmark, namely g01, g02, and g10. We show a) the distance from the optima, b)
the overall probability of success of local and global search, c) the moving average of the
probability of success of the two components, and d) their resulting frequency of execution.
Finally, panel e) shows the resulting allocation of function evaluations to local and global
search.

enabled only the local search component. Multiple units (with restart) were still used, but

without applying global search operators. Second, in the condition mViE-G no local search

unit was stepped, and only the global search component (DE operators) was used to explore

the search space. Finally, in the third condition mViE-R both local and global components

were used, coordinated by a trivial scheduler that randomly chooses the execution of global

or local search at each iteration. We executed the algorithms corresponding to the three

conditions for 25 runs on the selected CEC 2006 benchmark problems. Results are reported

in Figure 4.5, that shows the comparison of the three conditions against the fully-featured

algorithm mViE.

A rather evident result is that the success rate of the local and global search component alone

is greatly lower than that of the algorithms using the two components together, as expected.

Furthermore, the amount of function evaluations used to discover the optima is very high

74

4.6. Discussion and Conclusions

in the mViE-L condition due to the high number of restarts used by the algorithm before

discovering a successful solution. Remarkably, the use of the two components allows to

discover almost always the optima also using a random scheduler (mViE-R). However, the

introduction of the adaptive scheduler allows a further ∼ 25% improvement on the number of

function evaluations used.

0

0.2

0.4

0.6

0.8

1

S
uc

ce
ss

 R
at

e

5

6

7

To
ta

l f
un

ct
io

n
ev

al
ua

tio
ns

mViE-L

mViE-R

mViE-G
mViE

x 10
5

mViE-L

mViE-R

mViE-G
mViE

S
ca

le
d

N
FE

S

1
1.25

0

**

}

a b

Figure 4.5: Performance dissection over 25 runs of each of the selected CEC 2006 problems
for the four experimental conditions. a) Total number of function evaluations (aggregate
over all runs and problems) to reach for each problem the target fitness difference from the
optimum (10−4). If the target is not reached, the maximum budget (250000 NFES) is added.
The inset shows the scaled NFES, calculated as mean (over all problems) of the median NFES
(calculated independently for each problem, considering only successful runs), scaled by
the corresponding median NFES of mViE. mViE results ∼ 25% more efficient than mViE-R
(Wilcoxon Rank-Sum test, α = 0.05, p = 0.0015). b) Average success rate over all runs and
problems.

4.6 Discussion and Conclusions

In this chapter we presented mViE, a novel method for constrained optimization based on

Viability Evolution principles. The proposed method is composed of multiple (1+1)-CMA-ES

acting as local optimizers, that are combined with a Differential Evolution scheme to perform

global search.

In numerical experiments, our method displayed a particularly robust performance, solving a

broad number of test functions (Tables 4.2-4.4) and engineering design problems (Tables 4.5-

4.7) more efficiently than the state-of-the-art compared methods, both in terms of success

rate and number of function evaluations needed to reach the optimum. mViE outperformed

in all the comparisons all the DE-based methods (except for one case, g12), as well as the

CMA-ES-based algorithms (except for three cases, g06, g08 and g10), the variants of PSO

(except in one case, g19) and all the other algorithms.

Interestingly, the few cases in which mViE was outperformed correspond to problems where

either strongly explorative algorithms (favoring global search only) or strongly exploitative

75

Chapter 4. Constrained multimodal optimization using viability evolution principles

ones (favoring local search) perform well enough. For example, the comparison with the

algorithm we proposed in our previous work (Maesani and Floreano, 2014) revealed that on

fitness landscapes such as g06 and g10 a single local search unit performs more efficiently than

multiple ones coordinated by DE (as in mViE). We believe that in these cases the additional

overhead introduced by the initial learning phase is the cause of this performance decay. On

the other hand, under the general assumption that there is no prior knowledge on the features

of the landscape, a learning phase might be necessary. Also, most of the problems are actually

characterized by fitness landscapes where a proper trade-off between global and local search

has to be found, and these are the cases where mViE excel.

The reason for the success of mViE is twofold. First, the modelling of independent constraints

as viability boundaries in the local search CMA-ES units allows to drive smoothly the search

towards the feasible space and its most promising areas. As the local search units define

viability boundaries separately on every constraint, they can collect additional information on

each constraint. This information is therefore beneficial for a more fruitful and faster search,

for example for adapting step size and covariance matrix. On the contrary, approaches that

combine constraints into the objective function or as a single constraint violation measure

loose a potential source of information. Second, the global recombination of multiple pieces

of local information enables a synergistic exploration of the constrained search space. On

top of that, a heuristic scheduler adaptively activates the local and global search, providing a

proper balance between the two regimes.

Dealing with constrained optimization problems without aggregating the constraints in the

fitness function or in an aggregate constraint violation function unlocks additional information

that is readily available to an evolutionary algorithm. Still, the large majority of approaches in

the literature make use of some form of aggregation of constraints5.

We therefore deem useful to ask the question whether or not the current abstraction under

which evolutionary algorithms operate is the most appropriate for optimization problems

different from unconstrained ones. The logic behind most of the available constraint handling

techniques, such as penalty functions, is in our view symptomatic of how the current evo-

lutionary algorithms paradigm may be misleading in the design of novel algorithms. Under

this traditional paradigm, algorithms are designed for having solutions in competition with

each other based on their fitness function value. Solutions are therefore ranked and compared

uniquely using this single value. Intuitively modelled on a very high-level abstraction of

natural evolution, this paradigm may hinder the development of the field itself towards more

comprehensive paradigms and thus more powerful algorithms. In fact, the current abstraction

forces researchers and adopters into thinking an evolutionary process as naturally modelled

using a single fitness function.

On the other hand, Viability Evolution models an evolutionary process as elimination of

5We also aggregate the constraints into a single constraint violation function when applying global search
operators and when comparing against the global best solution in the main algorithmic loop. In a future version of
mViE it may be beneficial to remove as well this form of aggregation.

76

4.6. Discussion and Conclusions

solutions that do not comply with certain viability criteria, defined on both problem objectives

and constraints. By adapting these criteria during the search, it is possible to drive the solutions

towards desired areas of search space, for example global optima or feasible areas.

A first direct implication of the Viability Evolution paradigm is that constraints and objectives

are kept implicitly separated6. Also, the “fitness” of individuals is in this case a property

measured a-posteriori and not defined a-priori as done by using a fitness function in the classic

sense. Furthermore, the availability of statistics on the viability of solutions made possible by

this different abstraction, e.g. the number of individuals satisfying specific viability criteria

or the number of viable/non-viable individuals, leads to increased information available for

evolutionary methods. Third, more emphasis on elimination of non-viable solutions rather

than competition of solutions by a unique fitness score may lead to enhanced diversity in the

evolving population (Maesani et al., 2014).

Here, we showed that by following the design principles of Viability Evolution it is possible

to derive a very efficient method for constrained optimization. Overall our method models

constraints separately and more importantly uses information about constraint violations

(non-viability of individuals) for adapting the algorithm parameters during the search, without

requiring a user to aggregate them.

The present work contributes to the field of constrained optimization and suggests a wide

spectrum of possible research lines that are worth following, going in the direction of: 1)

extending the viability concept to different classes of problems, such as large-scale, multi-

objective, and dynamic optimization; 2) testing alternative recombination schemes, based

for instance of swarm intelligence, to coordinate the multiple local search operators; and

3) applying the proposed method to real-world applications where a resource-efficient con-

strained optimization solver might be needed, for instance in various domains of engineering

or computational biology.

6A similar shift in paradigm was observed in multi-objective evolutionary algorithms (MOEAs), when classic
aggregation methods such as weighted summing of objectives were replaced by the use of Pareto optimality
concepts. Such a shift led to radically novel MOEAs, eventually obtaining dramatic performance improvements.

77

Chapter 4. Constrained multimodal optimization using viability evolution principles

Tab
le

4.4:M
ed

ian
N

F
E

S
to

ach
ieve

th
e

fi
xed

accu
racy

level((f(~x
)−

f(~x∗
))≤

0.0001)
an

d
Su

ccess
R

ate
fo

r
th

e
selected

C
E

C
2006

p
ro

b
lem

s.A
ll

th
e

co
m

p
ared

resu
lts

are
o

b
tain

ed
fro

m
th

e
co

rresp
o

n
d

in
g

p
ap

ers.P
lease

n
o

te
th

atB
E

ST
C

E
C

06
aggregates

th
e

b
estresu

lts
o

b
tain

ed
o

n
each

p
ro

b
lem

b
y

allth
e

algo
rith

m
s

p
resen

ted
at

C
E

C
2006.R

esu
lts

rep
o

rted
fo

r
P

C
X

(Sin
h

a
etal.,2006)

an
d

E
p

s-R
D

E
(Takah

am
a

an
d

Sakai,2012)
sh

ow
,resp

ectively,25
th

p
ercen

tile
an

d
m

ean
,rath

er
th

an
m

ed
ian

N
F

E
S.

P
ro

b
.

m
V

iE
B

E
ST

C
E

C
06

N
F

E
S

SR
N

F
E

S
SR

g01
20304

100%
25115

100%
g02

61072
100%

96222
100%

g04
3945

100%
15281

100%
g06

1901
100%

5202
100%

g07
7281

100%
26578

100%
g08

482
100%

918
100%

g09
3436

100%
16152

100%
g10

14734
100%

25520
100%

g12
3809

100%
1308

100%
g16

3128
100%

8730
100%

g18
7272

100%
28261

100%
g19

25914
100%

21830
100%

g24
718

100%
1794

100%

D
E

E
p

s-D
E

E
p

s-R
D

E
M

P
D

E
G

D
E

M
D

E
jD

E
-2

N
F

E
S

SR
N

F
E

S
SR

N
F

E
S

SR
N

F
E

S
SR

N
F

E
S

SR
N

F
E

S
SR

59345
100%

56508
100%

43794
100%

40200
100%

75000
100%

50354
100%

146911
100%

99742
100%

280272
100%

106332
72%

71100
16%

138102
92%

26098
100%

51614
100%

20823
100%

15157
100%

39300
100%

40958
100%

7316
100%

10152
100%

10550
100%

6431
100%

5250
100%

29844
100%

74476
100%

99830
100%

57079
100%

112969
100%

176400
100%

126637
100%

1182
100%

4063
100%

1632
100%

1486
100%

900
100%

3564
100%

23172
100%

42266
100%

20814
100%

30784
100%

15000
100%

55515
100%

105799
100%

99820
100%

48508
100%

81827
100%

163500
100%

144247
100%

4155
100%

7873
100%

4227
100%

3016
100%

1200
100%

6684
100%

13001
100%

-
-

13135
100%

13307
100%

8700
100%

261549
100%

59232
100%

-
-

42550
100%

377732
76%

118050
100%

449306
100%

354060
100%

-
-

115054
100%

206556
88%

-
-

101076
100%

2928
100%

-
-

4371
100%

3059
100%

1650
100%

319611
100%

C
M

A
-E

S
P

ro
b

.
m

V
iE

(1+
1)-aC

M
A

(1+
1)-V

IE
A

P
M

-C
M

A
-E

S
A

P
-C

M
A

-E
S

N
F

E
S

SR
N

F
E

S
SR

N
F

E
S

SR
N

F
E

S
SR

N
F

E
S

SR
g01

20304
100%

-
-

-
-

51400
100%

184778
52%

g02
61072

100%
-

-
-

-
1328100

30%
-

-
g04

3945
100%

-
-

-
-

25700
100%

4896
100%

g06
1901

100%
1060

100%
900

100%
7300

100%
2424

100%
g07

7281
100%

11283
100%

7545
100%

116800
100%

14420
100%

g08
482

100%
-

-
-

-
1500

100%
348

100%
g09

3436
100%

4106
100%

3660
100%

77400
100%

5346
100%

g10
14734

100%
18781

100%
8295

100%
407400

100%
23780

100%
g12

3809
100%

-
-

-
-

7500
100%

26278
100%

g16
3128

100%
-

-
-

-
-

-
5648

100%
g18

7272
100%

-
-

-
-

-
-

57430
100%

g19
25914

100%
-

-
-

-
-

-
74472

100%
g24

718
100%

-
-

-
-

-
-

996
100%

P
SO

P
SO

C
O

P
SO

P
E

SO
+

N
F

E
S

SR
N

F
E

S
SR

N
F

E
S

SR
46405

52%
95000

30%
102100

100%
-

-
175800

22%
219400

56%
19681

100%
65100

30%
79300

100%
20007

100%
54200

30%
56800

100%
327283

8%
227600

30%
358600

96%
2311

100%
6850

30%
6100

100%
57690

100%
78500

30%
96400

100%
461422

32%
221300

30%
468350

16%
3933

100%
6900

30%
8100

100%
33021

100%
41000

30%
48700

100%
177989

80%
153600

27%
211800

92%
365284

8%
259650

14%
-

-
7487

100%
19350

30%
19900

100%

O
T

H
E

R
S

P
ro

b
.

m
V

IE
A

SR
E

S
(µ

+
λ

)-C
D

E
IC

D
E

P
C

X
N

F
E

S
SR

N
F

E
S

SR
N

F
E

S
SR

N
F

E
S

SR
N

F
E

S
SR

g01
20304

100%
62800

100%
89320

100%
106540

100%
62026

100%
g02

61072
100%

321200
12%

272860
100%

281470
100%

500000
64%

g04
3945

100%
57600

100%
30130

100%
36820

100%
40140

100%
g06

1901
100%

48400
100%

11200
100%

12880
100%

36180
100%

g07
7281

100%
135600

100%
139720

100%
135730

100%
258840

100%
g08

482
100%

4800
100%

2170
100%

1960
100%

3510
100%

g09
3436

100%
72000

100%
39550

100%
37870

100%
58700

100%
g10

14734
100%

276000
100%

188860
100%

325570
100%

109970
100%

g12
3809

100%
15600

100%
5110

100%
6580

100%
11940

100%
g16

3128
100%

39200
100%

18970
100%

25060
100%

36790
100%

g18
7272

100%
119600

96%
218050

100%
134680

100%
96180

100%
g19

25914
100%

212000
92%

265930
100%

297640
100%

187734
100%

g24
718

100%
14000

100%
5110

100%
5740

100%
13690

100%

R
eferen

ces
E

p
s-D

E
:

(Takah
am

a
an

d
Sakai,

2006),
E

p
s-R

D
E

:
(Taka-

h
am

a
an

d
Sakai,

2012),
M

P
D

E
:

(Tasgetiren
an

d
Su

gan
-

th
an

,2006),G
D

E
:(K

u
kko

n
en

an
d

Lam
p

in
en

,2006),M
D

E
:(M

ezu
ra-M

o
n

tes
et

al.,2006),SA
D

E
:(H

u
an

g
et

al.,2006),
jD

E
-2:

(B
rest

et
al.,

2006),
(1+

1)-aC
M

A
:

(A
rn

o
ld

an
d

H
an

sen
,2012),(1+

1)-V
IE

:(M
aesan

i
an

d
Flo

rean
o,2014),

A
P

M
-C

M
A

-E
S:

(K
u

sakci
an

d
C

an
,

2013a),
A

P
-C

M
A

-E
S:

(d
e

M
elo

an
d

Iacca,2014),P
SO

:(Z
ielin

skian
d

Lau
r,2006),

C
O

P
SO

:
(A

gu
irre

et
al.,

2007),
D

M
S-P

SO
:

(Lian
g

an
d

Su
gan

th
an

,
2006),

P
E

SO
+

:
(M

u
n

oz-Z
avala

et
al.,

2006),
A

SR
E

S:
(R

u
n

arsso
n

,
2006),

(µ
+
λ

)-C
D

E
:

(W
an

g
an

d
C

ai,
2011),IC

D
E

:(Jia
etal.,2013),P

C
X

:(Sin
h

a
etal.,2006),G

B
-

M
A

:(Su
n

an
d

G
arib

ald
i,2010)

A
lgo

rith
m

s
m

arked
w

ith
(**)

in
th

e
tab

les
u

se
grad

ien
t

in
-

fo
rm

atio
n

.

78

4.6. Discussion and Conclusions

Table 4.5: Median NFES and best fitness achieved for the engineering problems. All the
compared results are obtained from the corresponding papers. Please note that if the median
NFES to reach the optimum is not reported we show the full budget.

Prob. mViE DEs1 DETPS
NFES Fitness NFES Fitness NFES Fitness

W. Beam 6568 1.724852 - 1.724852 66600 1.724852
Vessel 14087 5850.38306 8000 6059.714337 10000 5885.3336
Spring 21413 0.012665 8000 0.012665 10000 0.012665

C. Beam 66894 63893.490839 - - - -
MBA COPSO SiC-PSO

W. Beam 47340 1.724853 30000 1.724852 24000 1.724852
Vessel 70650 5889.3216 30000 6059.714335 24000 6059.714335
Spring 7650 0.012665 30000 0.012665 24000 0.012665

C. Beam - - - - - -
PSO-DE FA

W. Beam - 10000 50000 1.731210
Vessel 42100 6059.714335 25000 5850.38306
Spring 42100 0.012665 - -

C. Beam - - 50000 63893.52
References
DEs1: (de Melo and Carosio, 2012), DETPS: (Zhang et al., 2013), PSO-DE: (Liu et al.,
2010), MBA: (Sadollah et al., 2013), COPSO: (Aguirre et al., 2007), SiC-PSO: (Cagnina
et al., 2008), FA: (Gandomi et al., 2011)

79

Chapter 4. Constrained multimodal optimization using viability evolution principles

Table 4.6: Median NFES to achieve the fixed accuracy level ((f (~x)− f (~x∗)) ≤ 0.0001) and Suc-
cess Rate for the selected CEC 2006 problems. Comparison with methods that use traditional
non-linear programming techniques that access gradient information. All the compared
results are obtained from the corresponding papers. Results reported for GB-MA (Sun and
Garibaldi, 2010) show the mean, rather than median NFES.

EA + NLP TECHNIQUES
Prob. mVIE SADE DMS-PSO GB-MA

NFES SR NFES SR NFES SR NFES SR
g01 20304 100% 25115 100% 25816 100% 7859 100%
g02 61072 100% 128970 84% 87107 84% 45555 100%
g04 3945 100% 25107 100% 25443 100% 1201 100%
g06 1901 100% 14404 100% 27636 100% 489 100%
g07 7281 100% 101240 100% 26685 100% 3588 100%
g08 482 100% 1272 100% 3892 100% 1068 100%
g09 3436 100% 16787 100% 29410 100% 1632 100%
g10 14734 100% 52000 100% 25500 100% 17319 100%
g12 3809 100% 1717 100% 6826 100% 348 100%
g16 3128 100% 14433 100% 28433 100% 7092 100%
g18 7272 100% 26000 92% 28000 100% 11095 100%
g19 25914 100% 51588 100% 21587 100% 13355 100%
g24 718 100% 4843 100% 18729 100% 425 100%

References
SADE: (Huang et al., 2006), DMS-PSO: (Liang and Suganthan, 2006),
GB-MA: (Sun and Garibaldi, 2010)

80

4.6. Discussion and Conclusions

Table 4.7: Fitness, constraint violation (E), and design variables (x∗∗∗) of the best solutions
discovered for the engineering problems.

Problem Best Fitness
(Median
NFES)

E x∗

Welded Beam 1.724852
(6568)

0 h = 0.205729627974134
l = 3.470488964774360
t = 9.036623829898325
b = 0.205729643534243

Pressure Vessel 5850.383060
(14087)

0 Ts = 0.75
Th = 0.375
R = 38.8601036269430
L = 221.3654713560083

Helical Spring 0.012665
(21413)

0 d = 0.051699916331388
D = 0.356978944672547
n = 11.273668588601133

Stepped Cantilever 63893.490839
(66894)

0 w1 = 3
h1 = 60
w2 = 3.1
h2 = 55
w3 = 2.6
h3 = 50
w4 = 2.204553242032800
h4 = 44.091064840656017
w5 = 1.749768676906988
h5 = 34.995373538139674

81

Chapter 4. Constrained multimodal optimization using viability evolution principles

4.7 Supporting Information: Parameter Analysis

Given the impossibility of performing a full combinatorial exploration of the parameter space,

we executed a preliminary tuning of the main parameters by following an iterative procedure.

First, we set the initial parameters by empirical experimenting with the algorithm. We then

analyzed the influence on the algorithmic performance varying each parameter, fixing identi-

fied optimal parameter values in several steps. We first investigated independently α and βR ,

secondly L, F and C R, and finally Psi ze .

We evaluated the algorithm’s performance by testing it on the full CEC 2006 benchmark for

25 runs. We allowed the algorithm to run for 150.000 function evaluations. We measured

the success rate for each function and the factor of function evaluations with respect to

the ones achieved by the best algorithm of the CEC 2006 competition to reach the optima

at the accuracy of 10−4. To obtain a more robust evaluation of the success rate, we tested

each parameter combinations 5 times, for a total of 5 repetitions × 25 runs × 13 benchmark

problems. We aggregated the success rate and the factor of function evaluations across all

problems. We combined this information by ranking it separately and summing the rank of

each parameter combination to select the (potentially) optimal parameters.

The results of this parameter tuning procedure is shown in Figure 4.6. Success rate, mean

factor of FES and rank of a parameter combination is shown when varying α and βR (Figure

4.6a), the minimum relative execution frequency limit L (Figure 4.6b), F and C R (Figure 4.6c),

and the population size (Figure 4.6d). The final identified parameter values are α= 0.1,βR =
0.05,L = 0.18,F = 0.5,C R = 0.9,Psi ze = 40. Although this may be a locally optimal combination

of parameters and better parameter tuning may be achieved by a more thorough parameter

exploration, we considered this procedure sufficient for our purposes. Also, we obtained an

initial idea of how the method’s performance is affected by changing its parameters.

82

4.7. Supporting Information: Parameter Analysis

a

b

c

Success Rate

Beta
Alpha

0

0.2

0.4

0.6

0.8

0

0.4

0.8

1.2

1.6

2

0.7

1

0

0.2

0.4

0.6

0.8

0

0.4

0.8

1.2

1.6

2

0.5

1.5

1

0

0.2

0.4

0.6

0.8

0

0.4

0.8

1.2

1.6

2

Mean FES Factor
(w.r.t. Best CEC 2006)

Combined Rank

Beta
Alpha

Beta
Alpha

0.97

0.98

0.99

1

0 0.1 0.2 0.3 0.4

Limits

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4

Limits

10

20

30

40

0 0.1 0.2 0.3 0.4

Limits

0.2

0.3

0.4

0.5
0.6

0.7

0.2

0.4

0.6

0.8

1

0.7

1

F
CR

0.2

0.3

0.4

0.5
0.6

0.7

0.2

0.4

0.6

0.8

1

0

3

0.2

0.3

0.4

0.5
0.6

0.7

0.2

0.4

0.6

0.8

1

F
CR F

CR

d

0.4

0.6

0.8

1

0 20 40 60 80 100

Pop Size

1

2

3

0 20 40 60 80 100

Pop Size
0 20 40 60 80 100

Pop Size

4

8

12

16

20

0

200

0

200

Figure 4.6: Parameter analysis: each reported result is the aggregation obtained by repeating
25 times each function (with inequalities only) of the CEC 2006 benchmark for 5 independent
repetitions (i.e. 13 benchmark functions × 25 runs × 5 repetitions). The standard deviation
across the 5 repetitions is reported as a black bar. We show mean success rate across the
13 benchmark functions and mean factor of function evaluations computed with respect to
the best algorithm in the CEC 2006 competition. To select the best parameter combination
for each of the parameters, we independently rank each parameter combination by success
rate and mean factor of function evaluations. In the third column, we show the combined
(summation) rank for each parameter combination. We report four parameter studies for a) α
and β, b) minimum global/local search execution frequency limit L, c) F and C R parameters
for the global search operator and d) population size Psi ze .

83

Chapter 4. Constrained multimodal optimization using viability evolution principles

4.8 Supporting Information: CEC 2006 problem results - Error val-

ues achieved at different level of NFES

Table 4.8: Error values (difference between the known optimum fitness and the best fitness
value) achieved when NFES= 5×103, NFES= 5×104, and NFES= 5×105 for the selected CEC
2006 problems. Best, median, worst and mean error values are reported in the table, together
with the number of violated constraints c and the average sum of constraint violation v̄ of the
median solution.

NFES g01 g02 g04 g06 g07

Best 0.695563 (0) 0.132752 (0) 0 (0) 0 (0) 0.001159 (0)

Median 1.91028 (0) 0.302738 (0) 1e-06 (0) 0 (0) 0.015729 (0)

Worst 3.7779 (0) 0.418978 (0) 0.202275 (0) 0.02595 (0) 1.47459 (0)

5×103 c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

v 2.429400e-02 0 0 6.130000e-04 2.052570e-01

Mean 2.1593 0.287957 0.00825104 0.00141272 0.110063

Std 0.822658 0.0663392 0.0404259 0.00529882 0.307058

Best 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Median 0 (0) 0.011011 (0) 0 (0) 0 (0) 0 (0)

Worst 7.6e-05 (0) 0.132974 (0) 0 (0) 0 (0) 0.0001 (0)

5×104 c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

v 4.013410e-01 0 0 1.375290e-01 3.400200e-01

Mean 1.968e-05 0.0228126 0 0 4e-06

Std 2.7308e-05 0.0296265 0 0 2e-05

Best 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Median 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Worst 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

5×105 c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

v 4.964673e+00 0 6.900000e-05 8.971150e+00 4.285058e+00

Mean 0 0 0 0 0

Std 0 0 0 0 0

84

4.8. Supporting Information: CEC 2006 problem results - Error values achieved at
different level of NFES

NFES g08 g09 g10 g12 g16

Best 0 (0) 0 (0) 10.0031 (0) 0 (0) 0 (0)

Median 0 (0) 0 (0) 216.449 (0) 0 (0) 0 (0)

Worst 0 (0) 0.410366 (0) 4434.49 (0) 0.005625 (0) 0.000864 (0)

5×103 c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

v 9.640000e-04 0 1.444769e+03 0 1.902000e-03

Mean 0 0.0224805 922.665 0.00116472 8.572e-05

Std 0 0.0833781 1447.02 0.00227881 0.000239219

Best 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Median 0 (0) 0 (0) 3e-06 (0) 0 (0) 0 (0)

Worst 0 (0) 0 (0) 0.265618 (0) 0 (0) 0 (0)

5×104 c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

v 1.057000e-03 0 2.776000e-03 2.800000e-05 1.864644e+01

Mean 0 0 0.01235 0 0

Std 0 0 0.0530731 0 0

Best 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Median 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Worst 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

5×105 c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

v 1.057000e-03 9.073334e+00 3.134842e+03 2.800000e-05 1.082927e+02

Mean 0 0 0 0 0

Std 0 0 0 0 0

NFES g18 g19 g24

Best 5e-05 (0) 13.4913 (0) 0 (0)

Median 0.010392 (0) 43.6379 (0) 0 (0)

Worst 0.595968 (3) 107.837 (0) 0 (0)

5×103 c 0, 0, 0 0, 0, 0 0, 0, 0

v 4.908650e-01 0 0

Mean 0.095619 46.6881 0

Std 0.154321 19.8156 0

Best 0 (0) 0 (0) 0 (0)

Median 0 (0) 0 (0) 0 (0)

Worst 0.191044 (0) 2e-06 (0) 0 (0)

5×104 c 0, 0, 0 0, 0, 0 0, 0, 0

v 4.561900e-01 0 1.494000e-03

Mean 0.0152835 8e-08 0

Std 0.0528977 4e-07 0

Best 0 (0) 0 (0) 0 (0)

Median 0 (0) 0 (0) 0 (0)

Worst 0 (0) 0 (0) 0 (0)

5×105 c 0, 0, 0 0, 0, 0 0, 0, 0

v 7.948723e+00 0 4.546000e-03

Mean 0 0 0

Std 0 0 0

85

5 Application of evolutionary computa-
tion to neuroscience

In this final chapter, we use evolutionary computation to shed some light

onto a real neuroscientific problem: the role of neural noise in animal be-

haviors. Although stochastic neural activity is present throughout nervous

systems, the influence of noise on behavior is yet far to be fully understood.

Here, we addressed this question by pairing high-resolution measurements

of walking dynamics across genetically diverse Drosophila strains with

an unbiased circuit model discovery approach. This discovery approach

used evolutionary computation for fitting the weights and parameters of

neural network models. Coincidentally, this investigation represents a

good playground for testing the mViE algorithm, devised previously, on a

real problem. After presenting the results of this comparison we move on

to describe the outcome of this exciting investigation. We show that noise

is required by discovered models to reproduce Drosophila spontaneous

walking patterns. Mechanistically, noise switches neural activity between

stable equilibrium levels reflecting walking and rest. We validated these

noise-driven models in two ways. First, these models reproduced the com-

plex dynamics of odor-evoked walking for diverse Drosophila strains due

to a noise-mediated circuit memory of odor stimulation. Second, we con-

firmed in vivo a predicted effect of circuit output threshold on behavioral

noise sensitivity, implicating a presynaptic voltage-gated calcium channel

in threshold determination. Our data-driven, model discovery approach

uncovers an important role for noise in animal behavior: stochastic neural

activity can regulate spontaneous exploration and shape sensory response

dynamics.

The contents of this chapter are taken from:

Maesani A*, Ramdya P*, Cruchet S, Gustafson K, Massouras A, Deplancke B, Benton R‡

and Floreano D‡ (2014). Neural noise shapes Drosophila behavior. In revision.
*, ‡ These authors contributed equally.

87

Chapter 5. Application of evolutionary computation to neuroscience

DISCLOSURE: This chapter is the outcome of an exciting collaboration that required the

competences of many people. We report for completeness all the results of the whole

investigation. The contents of this chapter are taken from a journal paper in revision

authored by Andrea Maesani*, Pavan Ramdya*, Steeve Cruchet, Kyle Gustafson, Andreas

Massouras, Bart Deplancke, Richard Benton‡ and Dario Floreano‡. *, ‡ These authors

contributed equally. I designed and developed the system for automatic neural network

discovery. I used this system to automatically derive models for explaining spontaneous

and odor-evoked behaviors. I analyzed Drosophila data and carried out the dynamical

system analysis of the best neural models. I designed, performed and analyzed the compu-

tational experiments.

5.1 Introduction

Noisy neural activity – arising, for example, from the stochastic opening and closing of ion

channels – is widely documented throughout animal nervous systems (Faisal et al., 2008).

Nevertheless, its role remains controversial: does noise simply muddle meaningful neural

activity evoked by sensory stimuli, representing a barrier to be overcome (Faisal et al., 2005),

or can noise contribute effectively to neural signaling and behavior (McDonnell and Ward,

2011)? Noise may have a particularly important effect on neural circuits driving spontaneous

behaviors, which occur in the absence of external stimuli (Martin et al., 1999; Flavell et al.,

2013). However, how noise in neural circuits can produce and/or influence spontaneous

behaviors, and how it impacts sensory-evoked actions are unknown.

Drosophila Melanogaster is an attractive model organism for studying the role of neural noise

in behavior due to the numerical simplicity of its nervous system, with a relatively small num-

ber of synapses separating the sensory and motor peripheries (Ruta et al., 2010; Gordon and

Scott, 2009). Additionally, powerful genetic tools are available and Drosophila spontaneous

and sensory behaviors are increasingly well-described (Sorribes et al., 2011; Martin et al., 2001;

Martin, 2004; Maye et al., 2007; Proekt et al., 2012; Censi et al., 2013; Coen et al., 2014). Studies

of spontaneous behavior in flies have focused primarily on walking because this behavior has

reproducible statistics and can be measured at high-throughput (Martin et al., 1999; Sorribes

et al., 2011; Martin et al., 2001). The neural circuits that control walking patterns are only

beginning to be understood: two brain regions (the mushroom body and ellipsoid body) have

been implicated in spontaneous walking patterns (Sorribes et al., 2011; Martin et al., 2001) and

a set of command neurons that drive backwards walking have been identified (Bidaye et al.,

2014). However, whether and how neural noise regulates the activity of walking circuits, with

potentially profound consequences on the timing and duration of walking, remains unknown.

Investigating the role of noise in behavior is challenging for several reasons. First, a noise-

dependent behavior would be expected to be largely unpredictable, independent of environ-

mental features, and variable even for single individuals. Therefore, uncovering consistent

88

5.2. Analysis of Drosophila walking

behavioral patterns requires averaging across individuals from large-scale, high-resolution

datasets. Second, because noise in the nervous system likely emerges from molecular pro-

cesses fundamental to neuronal signaling and viability (Faisal et al., 2008), the subtle manip-

ulation of these processes required to reveal a relationship between noise and behavior is

technically difficult. In this light, computational experiments can be instructive to inform and

complement in vivo studies. Effective modeling approaches are often grounded in biological

data both at conception and during validation. However, model derivation has typically de-

pended on human intuition (Reichardt, 1961), an approach that is very difficult to apply to

inherently complex noise-driven processes.

Here, we overcome this limitation by exploiting the power of unbiased computational dis-

covery to generate and study noise-driven circuit models. Unlike previous circuit discovery

studies (Beer and Gallagher, 1992; Dunn et al., 2004; Izquierdo and Lockery, 2010), our ap-

proach is data-driven, building neural circuit models to best reproduce measurements of

Drosophila spontaneous walking. Using this model discovery framework, we first examined

the potential role of noise in Drosophila spontaneous walking by testing if noise-driven neural

circuit models, rather than models relying only on circuit dynamics, could better reproduce

measured walking patterns. We validated the resulting circuit models in two ways. First, we

tested if models for spontaneous walking could also explain the time-course of sensory-evoked

walking in genetically distinct Drosophila strains. Second, we tested predictions made by the

model using Drosophila gene discovery and genetic perturbations in vivo.

5.2 Analysis of Drosophila walking

5.2.1 A high-resolution, high-throughput assay for measuring Drosophila spon-
taneous and odor-evoked walking patterns

A substantial amount of high-resolution behavioral data is required to permit detection of

patterns in largely probabilistic behaviors of individuals and to uncover a role for noise in the

timing of walking bouts. We acquired data of the required scale by combining synchronized

video-capture and odor delivery (Ramdya et al., 2012) (Fig. 5.1a) with behavioral tracking

(Branson et al., 2009) (Fig. 5.1b) to measure the position and orientation of flies in a planar

arena. We studied three conditions: first, during 60 seconds of spontaneous behavior (in the

absence of an odor stimulus), second, during and after 30-seconds of uniform exposure to the

aversive odorant 10% acetic acid (Ai et al., 2010), and third, during a two-minute odor aversion

assay in which the odor was presented on either side of the arena in an alternating fashion

(Fig. 5.1c).

While much information can be extracted from our measurements, we focused in this work on

the presence or absence of walking. Spontaneous walking is characterized by bursts of activity

separated by longer intervening sedentary periods (Martin et al., 1999; Sorribes et al., 2011).

As for previous studies (Valente et al., 2007; Wolf et al., 2002), we applied a cutoff on speed

89

Chapter 5. Application of evolutionary computation to neuroscience

b

a

f

e

d

F
ly

 (
#

)

W
a

lk
in

g

Canton-S strain

S
p

e
e

d

(m
m

/s
)

Walking

Stationary
1600 40 80 120

0

20

Time (s)

Odor

1

2

 3

225

4

}

0 3

Time (min)

Average

Fly 1 Fly 2 Fly 3 Fly 4 Fly 5

1 2

0 3

Time (min)
1 2

0.2

0.4

0.6

0.8

W
a

lk
in

g
 f
re

q
u

e
n

c
y

1

0 S
p

o
n

ta
n

e
o

u
s

w
a

lk
in

g

Odor

D
e

c
a

y

R
e

d
u

c
e

d

s
p

o
n

ta
n

e
o

u
s

w
a

lk
in

g

} }

c

5.5

Odor impulse Odor aversion

7.5

Air

Odor

Time (min)

1 2 2.5

Air or Odor (10% Acetic acid)

Figure 5.1: A high-resolution, high-throughput assay for measuring Drosophila spontaneous
and odor-evoked walking patterns. (a) Schematic of planar behavioral arenas. Laminar flow of
odor or air can be presented to either or both halves of the arena. Colored arrows indicate flow
inlets and outlets (green/blue and red, respectively). (b) Camera-view of five experimental
arenas demonstrating behavior tracking with Ctrax. Each fly is represented by a colored
triangle and a colored line represents its position over the previous ten seconds. (c) Schematic
time-course of the behavioral experiment. We studied spontaneous and odor impulse evoked
walking as well as odor aversion for each fly. (d) Speed time-series (black) were transformed
into binary ‘Walking’ or ‘Stationary’ time-series (red). (e) Representative walking traces for
five flies from the Canton-S strain during the odor impulse experiment. Flies were exposed
to 60s of airflow, 30s of an odor throughout the arena, and 90s of airflow. Behavior for each
fly is shown in red. High values indicate walking and low values indicate stationary periods.
(f) Walking frequency averaged across 225 Canton-S strain flies during the odor impulse
experiment. Prior to odor stimulation (grey bar) there is spontaneous walking (green) followed
by decay in walking frequency (cyan) to a reduced spontaneous walking frequency (magenta).

measurements to classify flies as either walking or stationary at each time point (Fig. 5.1d).

Even after this simplification, the time-courses of walking for individual Drosophila were

unpredictable (Fig. 5.1e). To reveal patterns behind these seemingly probabilistic behaviors,

we averaged walking/stationary time-series across 225 genetically identical flies of a single,

Canton-S strain. We found that, prior to odor stimulation, flies exhibit a high basal, spon-

taneous walking frequency (Fig. 5.1f, green). Upon odor presentation, walking frequency

increased rapidly (Fig. 5.1f, black). Although odor disappeared from the arena within one

second of valve switching (Fig. 5.2a), walking did not immediately decrease to its previous

spontaneous frequency but decayed more slowly (Fig. 5.1f, cyan). Surprisingly, it did not

return to the pre-odor spontaneous walking frequency but rather to a substantially lower rate

90

5.2. Analysis of Drosophila walking

(Fig. 5.1f, magenta).

Time (s)
0 10

P
h

o
to

io
n

iz
a

ti
o

n
 d

e
te

c
to

r

re
s
p

o
n

s
e

 (
a

u
)

Odor

Air

Odor

Trial

number

Odor on

Odor off

1 10

Air

5

Figure 5.2: Arena odor flow kinetics. Photoionization detector measurements (arbitrary units
[au]) of odor flow (10% acetic acid). A grey line indicates odor flow (high) or airflow (low). Each
colored trace represents one of ten trials. Odor onset (top) and removal (bottom) are shown.

5.2.2 Walking patterns are diverse but reproducible across genetically distinct
strains of Drosophila

To examine the variation in spontaneous and sensory-evoked walking behaviors across

genetically-distinct Drosophila strains, we tracked groups of approximately 200 flies from

each of 98 different inbred Drosophila strains of the Drosophila Genetic Reference Panel

(DGRP) (Mackay et al., 2012). These experiments resulted in a high-resolution behavioral

dataset comprising 20,223 flies. Across all 98 inbred strains (Fig. 5.3a, see Table S1 for corre-

sponding RAL numbers) we observed spontaneous walking, prolonged walking decay after

odor termination (Fig. 5.3b), and reduced post-odor spontaneous walking (Fig. 5.3c) as seen

in Canton-S. However, the duration of these behavioral features varied dramatically across

strains (Fig. 5.3a).

This rich behavioral diversity might arise from random experimental variation or, alternatively,

it might reflect intrinsic biological differences between each strain. To distinguish between

these possibilities, we examined the reproducibility of walking behaviors within each strain.

We found that average spontaneous walking was highly reproducible for each strain (Fig. 5.3d).

Similarly, while the reproducibility of odor-evoked and post-odor walking could differ sub-

stantially across strains (Fig. 5.3e), the time-course of this behavior was more similar between

flies of the same strain (Fig. 5.3e, red) than flies of different strains (Fig. 5.3e, blue). Taken

together, these data imply that inter-strain behavioral differences are genetically encoded,

perhaps through the tuning of neural circuits that regulate the timing and duration of walking.

Circuits that determine walking patterns (Fig. 5.1f, green) are likely to lie just upstream of

rhythmically active central pattern generators (CPGs) that coordinate leg movements during

locomotion (Grillner and Jessell, 2009). Given this proximity to output motor circuits, the

same circuits are probably responsible for both spontaneous and sensory-evoked walking. To

test this possibility, we examined whether spontaneous walking might predict the intensity of

odor aversion. For each fly, we calculated odor aversion as the time spent in the air minus time

91

Chapter 5. Application of evolutionary computation to neuroscience

a Odor

D
G

R
P

 s
tr

a
in

 (
#

)

1

20

40

60

80

98

Time (min)

30 1 2

W
a

lk
in

g
 f
re

q
u

e
n

c
y

1

0

d

C
o

rr
e

la
ti
o

n
 b

e
tw

e
e

n

o
d

o
r-

re
s
p

o
n

s
e

s
 (

R
2
)

S
p

o
n

ta
n

e
o

u
s
 w

a
lk

in
g

fr
e

q
u

e
n

c
y
 (

g
ro

u
p

 B
)

Spontaneous walking

frequency (group A)

0.8 10.60.40.20
0

0.2

0.4

0.6

0.8

1

e

DGRP strain (#)

1 20 40 60 80 98

Other strain
Same strain

0

0.2

0.4

0.6

0.8

1
g

f

0 0.2 0.4 0.6 0.8
0

0.3

0.2

0.1

1

Spontaneous

walking frequency

M
e

d
ia

n
 o

d
o

r
a

v
e

rs
io

n

b

c

Time (min)

Y
 (

c
m

)

Odor

Odor aversion

DGRP strain 78 (RAL85)

F
li

e
s

(#
)

-1 -0.5 0.50
0

0
0

5

21 1.5

median

0.5

25

1

W
a

lk
in

g
 d

e
c
a

y
 t
im

e

a
ft
e

r
o

d
o

r
re

m
o

v
a

l
(s

)

0

20

40

60

80

100

120

1 20 40 60 80 98

DGRP strain (#)
P

o
s
t/
p

re
-

s
p

o
n

ta
n

e
o

u
s

w
a

lk
in

g
 f
re

q
u

e
n

c
y

1 20 40 60 80 98

DGRP strain (#)

0.4

0.6

0.8

1

1.2

1.4

Figure 5.3: Walking patterns are diverse but reproducible across genetically distinct strains of
Drosophila. (a) Walking frequency for 98 distinct inbred fly strains from the Drosophila Ge-
netic Reference Panel (DGRP) during the odor impulse experiment. Strains are sorted by
mean pre-odor spontaneous walking frequency. (b) The duration of walking frequency de-
cay after odor removal for all DGRP Drosophila strains. Strains are ordered as in panel a.
(c) The ratio between post-odor and pre-odor spontaneous walking frequency for all DGRP
Drosophila strains. Strains are ordered as in panel a. A black dashed line indicates no change
in spontaneous walking frequency. (d) A scatter plot showing the correlation between spon-
taneous walking for two groups of 65 flies taken from a single DGRP strain. 100 randomly
sampled groups (A and B) were tested for each strain. Each DGRP strain is color-coded. (e)
The correlation (R2) between odor-evoked walking time-series for groups of 65 randomly
sampled flies from either the same strain (red) or from different Drosophila strains (blue).
Strains are ordered as in panel a. The mean of 100 correlation tests is shown. (f) Walking
trajectories (black lines) along the y-axis during the odor aversion experiment for 201 flies from
DGRP strain 78 (RAL85). Red bars indicate the half of the arena with odor flow. A histogram
of odor aversion for these flies is shown below. For each fly, odor aversion was calculated
as the time spent in odor subtracted from the time spent in air, divided by the total time of
the odor aversion experiment. The median for this population of flies is indicated (black
arrowhead). (g) A scatter plot showing the correlation between mean pre-odor spontaneous
walking frequency and median odor aversion across all 98 inbred strains (Pearson’s correlation
coefficient R = 0.65, P < 10−5). The black dashed line indicates the best linear fit.

spent in the odor, divided by the total time of the odor aversion experiment. We characterized

each strain by the median odor aversion of the entire fly population (Fig. 5.3f). Median odor

aversion varied substantially across 98 inbred strains and this variation correlated significantly

with spontaneous walking frequency (Fig. 5.3g, Pearson’s correlation coefficient R = 0.64,

P<10-4). This suggests that the same circuits might be responsible for regulating the timing

and duration of spontaneous and sensory-evoked walking. We therefore set out to generate

models for Drosophila walking circuits that can explain both spontaneous walking patterns

92

5.3. An automated circuit model discovery approach

and the time-course of odor-evoked walking in order to ask what role noise plays, if any, in

each of these behavioral processes.

5.3 An automated circuit model discovery approach

Since spontaneous walking arises in the apparent absence of external sensory stimulation,

it best reflects the basal ongoing activity of neural circuits that regulate Drosophila walking.

Therefore, we used spontaneous walking as a target behavior for our model discovery approach

(Fig. 5.4a). In our initial experiments, we observed that some flies could remain stationary for

over 20 minutes (data not shown). In order to capture the full range of behavioral intervals,

we therefore acquired 5 hours of spontaneous walking sequences from Canton-S strain flies

(Fig. 5.4b, top). We confirmed the spontaneous nature of these walking events: although flies

had a tendency to walk near arena edges (Fig.5.5a), the duration of stationary intervals did not

depend on arena location (Fig. 5.5b-c, P > 0.05 Bonferroni corrected Wilcoxon test).

The exact time-courses of individual fly behaviors depend on many, often unknown, factors.

Therefore, we aimed to discover circuit models that reproduce the duration of walking bout

and stationary period intervals. Our model discovery method is based on evolutionary opti-

mization and therefore requires well-defined quantitative metrics for comparing candidate

circuit models with Drosophila behavior (i.e., a cost function for guiding the search for mod-

els). Additionally, to efficiently search for models, small changes of model parameters should

result in similarly incremental changes in these quantitative metrics (i.e., a smooth fitness

landscape) (Nelson et al., 2009). Therefore we normalized behavioral histograms in two ways.

First, each histogram bin was multiplied by its own interval duration to ensure that frequent,

short duration walking bouts were not over-valued. Second, empty bins were removed from

each histogram by using variable bin-widths (Fig. 5.6a; see Methods). The resulting histograms

provide a quantitative measure reflecting Drosophila spontaneous walking patterns (Fig. 5.4b,

bottom).

To generate models for Drosophila spontaneous walking circuits we employed a well-established

neural network modeling framework, the Continuous Time Recurrent Neural Network (CTRNN)

(Beer and Gallagher, 1992). CTRNNs are an intermediate representation of neural circuits

that do not model precise ionic conductances or action potential generation but still retain

the dynamical characteristics of neurons. Interpretations of these phenomenological circuit

models range from a one-to-one correspondence, where each model neuron represents an

identified in vivo neuron, to more abstract representations where each model neuron repre-

sents an in vivo neural circuit. In both cases, but particularly in the latter case, the dynamical

properties of discovered circuit models, rather than their precise connectivity, are the in-

structive features (Marder and Taylor, 2011). Our CTRNN models had recurrent or reciprocal

connections between neurons and could, depending on the experiment, have a Gaussian

noise input representing neural noise (Fig. 5.4c). For each model, one neuron was randomly

selected as the model’s output neuron (NOU T) driving a downstream CPG for walking. If this

93

Chapter 5. Application of evolutionary computation to neuroscience

1

10
F

ly
 (

#
)

V
ir
tu

a
l
fl
y
 (

#
)

D
if
fe

re
n

c
e

 f
ro

m

D
ro

s
o

p
h

ila
 d

a
ta

Time (min)

ba Generate target Drosophila Canton-S

spontaneous walking data

c
Develop neural circuit model framework

d Discover circuit models that best reproduce Drosophila spontaneous walking

e
Analyze best models

Weighted

counts

Weighted

counts

}0 5

1

230

0 1

230

0 1

230

0

10 15 20 25 30

{Stationary interval {Stationary interval

Aggregate

intervals

Aggregate

intervals

1

100

W
a

lk
in

g

W
a

lk
in

g

Adjust model

parameters to better

match Drosophila data

best

models

initial

models

Compare

model to

Drosophila

Activity
Model

Trajectory

density

State-space

diagram

Time (min)

0 5 10 15 20 25 30

Walking

interval (min)

Stationary

interval (min)

Walking

interval (min)

Stationary

interval (min)

Threshold

Noise
Noise

Walking

Neural noise

level

Neuron(s)

Firing rate required to

activate CPGs for walking

Output

Neuron(s)

Feedback

connection

Model Drosophila

N
OUT

N
1

Parameter 2

Parameter 1

Drosophila

brain

Neural

circuit

model

Drosophila

walking

patterns

Walking

circuits

???

Walking

interval (min)

Stationary

interval (min)

Time (min)

0 10 20 30

N
OUT

N
OUT

N
1

N
1

N
OUT

N
1

Stable

Unstable
Trajectory

density

HighLow

Walking

Stationary

T
h

re
s

h
o

ld

Figure 5.4: Automated circuit model discovery and analysis workflow. (a) The Drosophila ner-
vous system generates walking patterns (red). In silico circuit models that reproduce these
walking patterns (purple) can provide insights into Drosophila neural circuits for walking. (b)
Spontaneous walking patterns (filtered as in Fig. 1d) are shown for two of ten Canton-S strain
flies recorded for 30 minutes each. A stationary interval is highlighted for fly number ten. From
these data, walking and stationary interval durations are aggregated and represented using
weighted variable-width histograms for walking (top) and stationary (bottom) behaviors (see
Fig. S3). (c) Continuous-time Recurrent Neural Network (CTRNN) models used to reproduce
Drosophilaspontaneous walking. Circuit models include up to five neurons, Gaussian noise,
reciprocal and recurrent connections, and an output threshold to define the walking state
of the virtual fly. (d) An iterative heuristic approach to identify model parameters that best
reproduce spontaneous walking patterns. Virtual fly walking patterns were compared to
Drosophila data and the parameters for models in the next iteration were adjusted to more
closely approximate the best performing models of previous iterations (left), in a manner
resembling gradient descent through a fitness landscape (right). (e) 50 ‘best models’ were
discovered for each model size. Noise input, neural activity, and walking for a single 2-neuron
model are shown. This, and other, models were characterized by the number of times specific
levels of neural activity were observed (‘Trajectory density’) color-coded from very frequent
(dark red) to very rare (dark blue). Models were also characterized by the tendency of neural
activity, in the absence of noise, to move toward (‘Stable’, cyan) or away from (‘Unstable’,
orange) equilibrium levels of activity (‘State-space diagram’).

output neuron’s activity level, or mean firing rate, exceeded a threshold value, the virtual fly

was walking. Otherwise, the virtual fly was stationary.

Specifically, we used an evolutionary optimization algorithm to discover the best circuit model

parameters (Fig. 5.4d). To find these ‘best’ circuit models, we first generated a population

of 50 models with randomly chosen parameter values for each network size (1-5 neurons).

94

5.3. An automated circuit model discovery approach

ba c

−5 0 5
10

−1

10
0

10
1

10
2

10
3

X-axis arena position (mm)X-axis

arena position

(mm)

S
ta

ti
o

n
a

ry
 d

u
ra

ti
o

n
 (

lo
g

1
0
(s

))

10
−1

10
0

10
1

10
2

10
3

S
ta

ti
o

n
a

ry
 d

u
ra

ti
o

n
 (

lo
g

1
0
(s

))

−30 −20 −10 0 10 20 30

Y-axis arena position (mm)

Y
-a

x
is

 a
re

n
a

 p
o

s
it
io

n
 (

m
m

)

−5
−25

25

50

0

Figure 5.5: Spontaneous walking of Canton-S flies. (a) Spontaneous walking of ten Canton-S
strain flies within the experimental arena across five hours. Each black circle represents the
location of one fly at one time-point. (b-c) The relationship between x-axis (b) or y-axis (c)
arena position and the duration of each stationary interval. Grey circles represent single
stationary events. Red boxplots summarize data over 2 mm (b) or 10 mm (c) sections of the
arena.

b Compute interval durations

on Drosophila data

Sort durations

Compute bin limits

for histograms

Count events in each bin

and weight by duration

Compute interval durations

on circuit model data

Sort durations

Count events in each bin

using precomputed bin limits

Weight each bin by duration

Interval

 duration

Interval

 duration Compare bin heights:

(RMSE)

a
Duration

0

1

2

3

end

..
.

Stop because

minimum

number of elements

Stop because

minimum bin duration

Iteration

New bin limit

Interval not

divided further

Walking event

Figure 5.6: Procedure for generating and comparing weighted variable-width histograms. (a)
The procedure for determining bin-width sizes for variable bin-width histograms of Drosophila
Canton-S strain walking and stationary interval durations. (b) The workflow for generating
weighted, variable bin-width histograms for Drosophila Canton-S data (left) to compare with
circuit model data (right). Histograms were compared using a Root-Mean-Square Error (RMSE)
to determine the cost function or ‘Difference from Drosophila data’.

We simulated each model 100 times. An output threshold was then applied to the activity of

the model’s output neuron (NOU T), resulting in a binary (walking or stationary) time-series.

We then aggregated the walking and stationary interval durations from this time-series and

compared these histograms to the target Drosophila Canton-S strain spontaneous behavior

histograms. By comparing the performance of each model, we identified the best models

and iteratively adjusted the population of models towards the best models’ parameters. This

process was repeated a predetermined number of times to discover model parameters that

95

Chapter 5. Application of evolutionary computation to neuroscience

minimize the difference between virtual fly walking and Drosophila spontaneous walking

patterns. This cost function, ‘Difference from Drosophila data’, is a non-linear measure and

may be intuitively understood based on the percent of the Drosophila data reproduced. To

derive this relationship, we measured the difference between the full Drosophila dataset and

subsets of the same data (Fig. 5.14a).

We performed circuit model discovery 50 times for each network size (1-5 neurons) in the

absence or presence of noise. This resulted in 500 candidate circuit models. We analyzed the

best of these models in two ways (Fig. 5.4e). First, we identified the most common neural

activity levels for each model using a trajectory density representation. This allowed us to

study the effect of noise on circuit activity. We complemented this with dynamical systems

analysis of each model in the absence of noise. This allowed us to identify equilibrium points

in neural state-space: activity levels that model neurons tended to settle towards (‘Stable’) or

move away from (‘Unstable’). For example, a single stable equilibrium point could represent a

neuron’s spontaneous firing rate. This dynamical systems approach allows useful conceptual

links to be drawn between biological and in silico neural circuits that have very different or

even unknown topologies (Mante et al., 2013).

5.3.1 Evolutionary Computation for neural circuit discovery

The optimization of neural network weights and parameters is a very difficult problem, due

to the large amount of networks with equally bad or trivial behaviors present in the search

landscape. This creates large plateaus in the fitness landscape, making the search very compli-

cated. Although the mViE algorithm presented in the previous chapter has been developed for

constrained optimization, we decided to test it on this network discovery problem against a

well-known evolutionary method: Particle Swarm Optimization (Eberhart and Kennedy, 1995).

We tested each method repeating 50 independent runs evolving networks with 1 or 2 neurons

with or without noise inputs. The results of this comparison are shown in Figure 5.7.

PSO and mViE perform as badly in the noiseless network evolution scenario. No networks

with sufficiently good fitness can be discovered. In the noisy network evolution scenario,

the methods compare almost equivalently in the one neuron case, while PSO has a slight

advantage in the two neuron case. However, although the two methods produce solutions

of about the same quality, we decided to use particle swarm for the rest of this neuroscience

investigation, due to the fact that it is an established method in the literature and is already

used in many fields of science and engineering. The presentation to a broader audience of this

neuroscience investigation can be less problematic if an established method is used, rather

than the new method presented in this thesis.

96

5.4. Results

a b

0.1

0.2

0.3

0.4

0.5

0.5

0.6

0.7

0.8

0.9

1

D
if
fe

re
n

c
e

 f
ro

m

D
ro

s
o

p
h

ila
 d

a
ta

D
if
fe

re
n

c
e

 f
ro

m

D
ro

s
o

p
h

ila
 d

a
ta

PSO mViE PSO mViE

1 Neuron 2 Neurons

PSO mViE PSO mViE

1 Neuron 2 Neurons

Noiseless Networks Noisy Networks

Figure 5.7: Comparison of mViE and PSO on noiseless and noisy network models. Due to the
high computational cost of our simulations, PSO and mViE were compared on 1 and 2 neurons
networks. a) Comparison between PSO and mVeE on the noiseless networks. Both mViE and
PSO cannot discover good network models using one or two neurons. b) Comparison between
PSO and mViE on the noisy networks.

5.4 Results

5.4.1 Noise-driven multistable circuit models reproduce Drosophila spontaneous
walking

Using this circuit model discovery approach, we first asked whether neural noise is required by

models to best reproduce Drosophila spontaneous walking patterns. We found that noiseless

circuit models perform very poorly compared to noise-driven circuit models (Fig. 5.8a, n =

250 models with 1-5 neurons, P < 0.001,Wilcoxon Rank Sum Test). Noiseless models could

only capture 40% of Drosophila spontaneous walking data (Fig. 5.14a,c-e) while noise-driven

circuit models could match up to 90% of Drosophila walking patterns (Fig. 5.14a). Although

2-neuron noise-driven models were the minimum size that most effectively reproduced

Drosophila spontaneous walking (Fig. 5.8b), even noise-driven models with only one neuron

could successfully match fly behavior (Fig. 5.8b), suggesting that simple noise-driven neural

circuit dynamics can explain Drosophila spontaneous walking patterns. Importantly, a

threshold applied to Gaussian noise in the absence of any circuit model could at best only

match 30% of fly data (Fig. 5.14a-b). This shows that a coupling between noise and circuit

dynamics – and not simply the statistics of noise – is required to reproduce Drosophila walking.

Since the best noise-driven circuit models exhibited a wide range of parameter values, we

asked whether they shared common dynamical properties. Across all noise-driven models, we

observed two distinct groups (Fig. 5.8c; and data not shown for >2 neurons). Models in the

first group generally had lower agreement with Drosophila data (Fig. 5.8c, grey, ‘Monostable’).

These models exhibited neural activity that fluctuated around a single stable activity level

97

Chapter 5. Application of evolutionary computation to neuroscience

Walking

Best 1-neuron

noise-driven

models
N

OUT

N
OUT

Walking

Threshold

Threshold

0 5 10 15 20 25 30

0 5 10 15 20 25 30

d

{

{

Time (min)

N
OUT

N
OUT

N
OUT

N
OUT

Stable

Up state

Down state

Unstable

e f

Trajectory

density

High

Low

Circuit

(1-5 neurons)

Noise

a b

0.2

0.4

0.6

0.8

1

D
if
fe

re
n

c
e

 f
ro

m

D
ro

s
o

p
h

ila
 d

a
ta

Monostable

Multistable

c

Monostable

Multistable{

{

1 2Neurons (#)

D
if
fe

re
n

c
e

 f
ro

m

D
ro

s
o

p
h

ila
 d

a
ta

0.2

0.25

0.3

0.35

0.4

0.45

Best noise-driven

circuit models

1 2 3 4 5Neurons (#)

0.2

0.4

0.6

0.8

1

D
if
fe

re
n

c
e

 f
ro

m

D
ro

s
o

p
h

ila
 d

a
ta

Figure 5.8: Noise-driven multistable models reproduce Drosophila spontaneous walking. (a)
The difference between spontaneous walking patterns for Drosophila and circuit models with-
out (left) or with (right) noise inputs (n = 250 models for each condition with 50 models for each
circuit size). (b) The difference between spontaneous walking patterns for Drosophila and
noise-driven circuit models of a given size (n = 50 models for each circuit size). (c) The best
1-neuron and 2-neuron noise-driven circuit models are ‘Monostable’ (grey) or ‘Multistable’
(black) (see Fig. S5 for further subdivision of 2-neuron noise-driven multistable models). (d)
The time-course of output neural activity (NOU T), and walking/stationary periods (purple)
from a ‘Monostable’ (top) or a ‘Multistable’ (bottom) 1-neuron noise-driven circuit model.
(e) Trajectory densities for the models shown in panel d. The ‘Multistable’ model shows two
frequent activity levels labeled ‘Up-state’ or ‘Down-state’. The threshold between walking and
stationary is shown (white dashed line). (f) State-space diagrams for the models in panel d.
Stable (cyan) and unstable (orange) equilibrium points are indicated.

(Fig. 5.8c, top). By contrast, models of the second group matched fly data more closely (Fig.

5.8c, black, ‘Multistable’) and exhibited neural activity that fluctuated between two levels,

commonly referred to as ‘Up’ and ‘Down’ states (Cossart et al., 2003) (Fig. 5.8d-e, bottom).

These levels represent stable equilibrium points in neural activity state-space (Fig. 5.8f).

The best 2-neuron noise-driven multistable models could be further subdivided into three

classes based on the number of times that their neural activity switched between Up and

Down states (Fig. 5.15a). This diversity of classes demonstrates that our automated approach

for generating circuit models could effectively explore the landscape of possible solutions.

Nevertheless, all of these model classes shared common dynamical properties (Fig. 5.15c-d).

98

5.4. Results

First, neural noise allowed them to switch between two stable levels of neural activity. Second,

their output threshold, determining the behavioral state (walking or stationary), intersected

the region representing high neural activity. In sum, the best circuit models reproduced

Drosophila spontaneous walking patterns through noise-driven fluctuations around an Up-

state to produce bursts of walking, and excursions into a Down-state to produce long sedentary

periods.

5.4.2 Circuit models for spontaneous behavior also reproduce odor-evoked walk-
ing dynamics

As a first validation of our best circuit models, we tested the hypothesis that common neural

circuit dynamics underlie both spontaneous and sensory-evoked walking patterns. Specif-

ically, we asked whether circuit models generated to reproduce Drosophila spontaneous

walking also replicate the time-course of odor-evoked walking (Fig. 5.1g, ‘Decay’ and ‘Reduced

spontaneous walking’). Due to computational time constraints, we randomly selected three

Drosophila DGRP strains that represent a large proportion of the behavioral variation across

the 98 analyzed fly strains (Figs. 5.3a & 5.9) and attempted to match the time-course of their

odor-evoked walking responses using the best 1-neuron noise-driven multistable model (Fig.

5.8c) and the best 2-neuron noise-driven multistable models from each class (Fig. 5.15b-c). To

mimic sensory stimulation, for each model we added a virtual olfactory input to each neuron

(Fig. 5.10a, top). While keeping all other model parameters fixed as for spontaneous walking,

we iteratively tuned the odor input strength and circuit output threshold to best match a given

Drosophila strain’s odor-evoked walking response (Fig. 5.10a, bottom).

Correlation coefficient

0
.7

0

0
.7

5

0
.8

0

0
.8

5

0
.9

0

0
.9

5

1
.0

D
G

R
P

 s
tr

a
in

s

Strain A

Strain B

Strain C

Figure 5.9: A dendrogram of the correlation between odor-evoked walking dynamics across
98 DGRP inbred Drosophila strains. Hierarchical clustering distance based on the Pearson’s
correlation coefficient between odor-response time-series for each strain. Three strains
chosen for further analysis are indicated. Strains A (RAL57), B (RAL790), and C (RAL707) are
color-coded cyan, orange, and red, respectively.

Noise-driven models of spontaneous walking could reproduce the time-course of Drosophila odor-

evoked walking remarkably well (Fig. 5.10b). Successful models produced an increase in

99

Chapter 5. Application of evolutionary computation to neuroscience

Odor

Threshold

a b Best noise-driven multistable model (Collapsed class)

1 or 2-neuron noise-driven

multistable model

Strain B

Time (min)
0 1 2 3

Strain A

W
a

lk
in

g
 f
re

q
u

e
n

c
y

0.2

0.4

0.6

0

0.2

0.4

0.6

0.8

0

Time (min)
0 1 2 3

Strain C

Time (min)
0 1 2 3

Sensory

Walking

circuits

Virtual odor

1

200 0 3.5
Time (min)

W
a

lk
in

g

fr
e

q
u

e
n

c
y

0.6

0
0 3.5

Time (min)

Average

Test if spontaneous walking models

can also reproduce odor-evoked walking

Strain AModel

Adjust

odor inputs

& threshold to

better match

Drosophila

Compare

(RMSE)

W
a

lk
in

g

fr
e

q
u

e
n

c
y

0.6

0
0 3.5

Time (min)

W
a

lk
in

g

V
ir
tu

a
l
fl
y
 (

#
)

Best noise-driven multistable model (Linked class)

W
a

lk
in

g
 f
re

q
u

e
n

c
y

0.2

0.4

0.6

Odor

Odor

Strain A

0

0.2

0.4

0.6

0.8

0

Strain B

Time (min)
0 1 2 3

Time (min)
0 1 2 3

Strain C

Time (min)
0 1 2 3

c

Best noise-driven multistable models (class)

Strain B

Strain A

Strain C

d

2-neurons

Collapsed1-neuron Linked Separated

0.04

0

0.08

0.12

R
o

o
t-

m
e

a
n

-s
q

u
a

re
 e

rr
o

r

(R
M

S
E

)

Figure 5.10: Circuit models for spontaneous behavior also reproduce odor-evoked walking
dynamics. (a) Odor inputs were added to the best model for each noise-driven multistable 1 or
2-neuron class. The strength of odor inputs and the output threshold were adjusted iteratively
to reduce the Root-Mean-Square Error (RMSE) between the model’s odor-response dynamics
averaged across 200 virtual flies and a Drosophila strain’s odor-response dynamics averaged
across 198 flies (e.g., Strain A, cyan). (b-c) Odor-response dynamics of the best ‘Collapsed’
(b) or ‘Linked’ (c) noise-driven 2-neuron model (purple) matching odor-response dynamics
for three different Drosophila DGRP strains A (RAL57), B (RAL790), and C (RAL707). Traces
for each strain are color-coded cyan, orange, and red, respectively. (d) Root-Mean-Square
Error (RMSE) between odor-response dynamics for the best circuit model of each multistable
class and odor-response dynamics for Drosophila Strains A, B, and C (cyan, orange, and red
boxplots, respectively). The dashed line separates 1-neuron and 2-neuron model classes. N =
5 comparisons each.

walking during odor presentation and decay in walking frequency after odor removal that

settled to a reduced rate of spontaneous walking. Importantly, some models failed to replicate

odor-response dynamics (Fig. 5.10c; Root-Mean-Square Error or RMSE > 0.08) but the ability

of a given model to match odor responses was consistent across all three Drosophila strains

(Fig. 5.10d). These data support the hypothesis that common neural circuits orchestrate both

Drosophila spontaneous and sensory-evoked walking and show that specific noise-driven

multistable models capture their dynamics.

100

5.4. Results

5.4.3 Noise creates a circuit memory of odor-evoked dynamics

We next asked how noise shapes the dynamics of odor-evoked walking in our models. To

do this we examined each period of the odor-impulse experiment (Fig. 5.11a) for our most

successful circuit model (Fig. 5.15b, ‘Best Collapsed’). Although odor stimulation initially

increased the output neuron’s neural activity and the average walking frequency across a

virtual fly population (Fig. 5.11b, ‘Odor impulse, white arrowhead), shortly afterwards walking

frequency began to decay. This was due to an odor-evoked change in the circuit model’s

dynamics: odor stimulation caused the appearance of a single stable equilibrium point below

the output threshold for walking (Fig. 5.11c, ‘Odor impulse’, cyan circle) to which neural

activity levels were attracted (Fig. 5.11b, ‘Odor impulse’, red arrowhead).

When the odor was removed, the circuit model’s dynamics returned to that for spontaneous

walking (Fig. 5.11c, ‘Decay’). However, the behavior of virtual flies did not immediately match

the pre-odor spontaneous walking frequency. Instead there was a prolonged decay in walking

frequency (Fig. 5.11a, cyan). Close analysis of this post-odor period reveals that for some

virtual flies output neural activity remained as high as during odor stimulation (Fig. 5.11b,

‘Decay’, white arrowhead) while for other virtual flies, output neural activity remained near

the odor-induced low stable equilibrium level (Fig. 5.11b, ‘Decay’, red arrowhead). Over time,

walking virtual flies became sedentary as output neural activity tended towards the two stable

equilibrium levels (Fig. 5.11c, ‘Reduced spontaneous walking’). However, there remained a

subpopulation of flies whose output neural activity remained below the threshold for walking

(Fig. 5.11b, ‘Reduced spontaneous walking’, red arrowhead), resulting in a reduced post-odor

spontaneous walking frequency (Fig. 5.11a, magenta).

In our models, noise was largely responsible for these delayed changes in neural activity

following odor removal. Rather than returning rapidly to stable equilibrium levels (Fig. 5.11d,

0% noise, ‘Individual circuit activity’), noise caused neural activity to randomly diffuse more

slowly to these levels (Fig. 5.11d, 100% noise, ‘Individual circuit activity’). This in turn made

individual walking less predictable and less stimulus-locked than would otherwise be expected

(Fig. 5.11d, compare 0% and 100% noise, ‘Individual walking’). When averaged across many

individuals, the walking frequency of virtual flies therefore exhibited complex dynamics

including pre-odor spontaneous walking, post-odor walking decay, and reduced spontaneous

walking after odor stimulation (Fig. 5.11d, 100% noise, ‘Population average’; Fig. S8a). Counter-

intuitively, while noise increased behavioral variability across individuals, the time-course of

sensory responses across virtual fly populations was remarkably consistent across different

initial conditions and using different noise patterns (Fig. 5.12b). Therefore, the reproducibility

of walking that we observed for Drosophila populations of the same strain (Fig. 5.3d-e) does

not preclude shaping by neural noise.

101

Chapter 5. Application of evolutionary computation to neuroscience

a b

c

N
OUT

Walking

Stationary

Stationary

Walking

T
h

re
s

h
o

ld
T

h
re

s
h

o
ld

Spontaneous walking Odor impulse Decay Reduced spontaneous

walking

Time (min)
0 1 2 3

W
a

lk
in

g
 f
re

q
u

e
n

c
y

0.2

0.4

0.6

0

T
ra

je
c
to

ry

d
e

n
s
it
y

High

Low

Stable

Unstable
N

OUT

N
1

N
1

N
1

N
1

d

100% noise

Time (min)

Time (min)

0 1 2 3

0% noise

0 1 2 3

W
a

lk
in

g
 f
re

q
u

e
n

c
y

0.2

0.4

0.6

0

W
a

lk
in

g
 f
re

q
u

e
n

c
y

0.2

0.4

0.6

0

N
OUT

N
OUT

N
1

N
1

Odor

Odor

T
h

re
s
h

o
ld

T
h

re
s
h

o
ld

Virtual odor

Virtual odor

0 21

21

3

Time (min)

Average

individuals

W
a

lk
in

g

0 3

Time (min)

W
a

lk
in

g

1

200

V
ir
tu

a
l
fl
y
 (

#
)

1

200

V
ir
tu

a
l
fl
y
 (

#
)

Simulate

network

Threshold

output

Average

individuals

Simulate

network

Threshold

output

Individual circuit activity Individual walking Population average

Walking

Stationary

Walking

Stationary

Best noise-driven

multistable model (Collapsed)

Drosophila Strain A match

Figure 5.11: Noise creates a circuit memory of odor-evoked dynamics. (a) Odor-response
dynamics for the best noise-driven multistable model (‘Collapsed’ class) matching Strain A
from Figure 5.10b (see Fig. 5.16 for Strains B and C). Pre-odor spontaneous walking (green),
odor impulse (blue), walking decay (cyan) and post-odor reduced spontaneous walking (ma-
genta) periods are color-coded. (b) Trajectory density plots and (c) state-space diagrams for
this model during each time period in panel a. In all trajectory density diagrams, arrowheads
highlight frequent neural activity levels not observed during pre-odor spontaneous walking
that are either above (white) or below (red) the threshold for walking. (d) Circuit activity, indi-
vidual and population-averaged walking patterns in the absence (top, ‘0% noise’) or presence
(bottom, ‘100% noise’) of neural noise. ‘Individual circuit activity’ plots show neural activity
trajectories during odor stimulation starting from ten color-coded initial conditions. A solid
circle indicates the start point for each trajectory. ‘Individual walking’ plots show walking
for two representative virtual flies in the absence (top) or presence (bottom) of neural noise.
‘Population average’ shows the average walking across 200 virtual flies in the absence (top) or
presence (bottom) of neural noise.

5.4.4 A circuit output threshold determines behavioral sensitivity to neural noise

This observed role of noise in spontaneous and sensory-evoked walking suggests that the

effects of stochastic neural activity might be tuned to modify behavior. In support of this

possibility, we observed a large range of spontaneous walking frequencies across 98 genetically

distinct Drosophila strains (Fig. 5.11a). We wondered if these differences might arise from

102

5.4. Results

W
a

lk
in

g
 f
re

q
u

e
n

c
y

Time (min)
0 1 2 3

0.2

0.4

0.6

0

ba

0% noise 25% noise 50% noise 75% noise 100% noise

Time (min)
0 1 2 3

W
a

lk
in

g
 f
re

q
u

e
n

c
y

0.2

0.4

0.6

0

Time (min)
0 1 2 3

Time (min)
0 1 2 3

Time (min)
0 1 2 3

Time (min)
0 1 2 3

Figure 5.12: The effects of noise and reproducibility of odor-evoked walking dynamics in the
best circuit model. (a) Odor-evoked walking dynamics for the best circuit model (‘Collapsed’
class) with noise amplitudes varying between 0% (no noise) to 100% (standard) noise. A grey
box represents the period of odor presentation. (b) Odor-evoked walking dynamics across 20
repetitions of the 100% noise model in panel a. In each trace different initial conditions and
noise time-series were used. Each experimental replicate is color-coded.

differences in the levels of noise or the output threshold for walking circuits. To test this, we

measured the effects on spontaneous walking of varying the amplitude of noise or the output

threshold for our best circuit model (Fig. 5.13a, Collapsed class). Reducing the amplitude of

noise lowered spontaneous walking frequency since neural activity was predominantly below

the circuit output threshold. However, increasing the noise strength did not substantially

increase walking frequency (Fig. 5.13a-b, blue). By contrast, varying the circuit model’s output

threshold – biologically equivalent to the sensitivity of downstream CPGs to walking circuit

activity - could account for the full range of spontaneous walking frequencies observed across

all 98 strains (Fig. 5.13a-b, red).

Interestingly, beyond simply changing the level of spontaneous walking, shifting the model’s

output threshold also had a strong effect on the post-odor reduction in spontaneous walking

frequency (Fig. 5.13c-d). A low output threshold resulted in high levels of pre-odor sponta-

neous walking and considerably reduced post-odor spontaneous walking. By contrast, when

the output threshold was high, spontaneous walking was infrequent and almost no reduction

in post-odor spontaneous walking was observed. These data suggest that the circuit output

threshold can tune the sensitivity of walking dynamics to the effects of neural noise (Fig.

5.11d).

As an additional validation of our model, we tested this prediction in Drosophila . To do this,

we first sought a molecular component that could regulate walking circuit output threshold by

genome-wide association study of the behavioral phenotypes from our 98 inbred, sequenced

strains (Mackay et al., 2009). Many different distributions of spontaneous walking across a

population of flies can give rise to the same average spontaneous walking frequency. Therefore,

we studied these population distributions directly. We examined the correlation between

spontaneous walking distribution statistics (e.g., 25th percentile, median, 75th percentile)

and naturally occurring genetic variations across the entire genome of all inbred strains.

We identified a Single Nucleotide Polymorphism (SNP) with a significant correlation to the

spontaneous walking frequency of the most active flies (97.5 percentile) of each strain (Fig.

103

Chapter 5. Application of evolutionary computation to neuroscience

g

X chromosome

e

-l
o

g
1

0
(P

-v
a

lu
e

)

0

2

4

6

SNPf

cac-RA

*

cacophony **

Coding region

Noncoding region

0.6

0.5

0.4

0.7

0.8

0.9

1
S

p
o

n
ta

n
e

o
u

s
 w

a
lk

in
g

fr
e

q
u

e
n

c
y
 (

9
7

.5
%

ile
)

cacophony

SNP allele

GA

c d

Canton-S strain

T
h

re
s
h

o
ld

cacTS3 strain

Time (min)
0 1 2 3

W
a

lk
in

g
 f
re

q
u

e
n

c
y

0.2

0.4

0.6

0.8

1

0.9

0.1

0.5

0

h i

Time (min) Threshold
0 1 2 3

W
a

lk
in

g
 f
re

q
u

e
n

c
y

0.2

0.4

0.6

0.8

1

0

Cacophony...

Noise-driven

multistable

dynamics

Drosophila Circuit

model

Walking

circuits

N
OUT

N
1

N
1

a b

Walking

Stationary

S
p

o
n

ta
n

e
o

u
s

w
a

lk
in

g
 f
re

q
u

e
n

c
y

Before odor

After odor
T

h
re

s
h

o
ld

Best noise-driven

multistable model (Collapsed)

0.2

0

0.4

0.6

0.8

1

Noise level (fold change)

Noise level

8 106420

S
p

o
n

ta
n

e
o

u
s

w
a

lk
in

g
 f
re

q
u

e
n

c
y

Threshold

Threshold

0.8 10.60.40.20

Noise 0.5

(50%)

Virtual odor

0

0.2

0.1

0.4

0.3

0.5

0.6

0.7

0.3 0.40.20.1

Figure 5.13: A circuit output threshold determines behavioral sensitivity to neural noise.
(a) A schematic of varying the output threshold (left) or the noise level (right) of the best
noise-driven multistable circuit model (‘Collapsed’ class). A white dashed line indicates the
model’s output threshold. Trajectory density plots of the model with 100% noise and variable
thresholds (left) or 50% noise and the original threshold (right) are shown. (b) Spontaneous
walking frequency for the best 2-neuron noise-driven multistable model as a function of
output threshold level (red) or noise amplitude (blue, up to 10x original level). Shown are
the mean (solid line) and standard deviation (transparency) of 10 experiments measuring
the mean pre-odor spontaneous walking frequency for a group of 100 flies. (c) Odor-evoked
walking dynamics for the best model with output thresholds ranging from 0.1 (black) to 0.9
(blue). (d) Mean spontaneous walking frequencies before (blue) or after odor presentation
(green) for the model as a function of output threshold. (e) Manhattan plot for a genome-wide
association study of spontaneous walking frequency using 98 inbred DGRP fly strains. Each
point represents a single single-nucleotide polymorphism (SNP). An arrow indicates a SNP
in the cacophony gene. (f) A schematic of the cacophony gene, cac-RA variant: one of 15
potential splice forms. The identified SNP (asterisk) is within an intron of the gene. Scale bar
is 4 kb. (g) The 97.5 percentile of spontaneous walking across 98 DGRP inbred strains with
either an ‘A’ or ‘G’ allele at the cac SNP locus. ** P<0.01 for a Mann-Whitney U-test. (h) Odor-
evoked walking dynamics for the Canton-S strain of flies (black) or the cacTS3 mutant strain
of flies (red). (i) Noise-driven multistable circuit models best reproduce Drosophila circuits
for walking. Cacophony and other proteins may be biological representations of the model’s
output threshold.

5.13e). This SNP was located within an intron of the cacophony (cac) gene (Fig. 5.13f) and

fly strains with the ‘G’ allele had a markedly lower level of basal walking than those with an

‘A’ allele (Fig. 5.13g, Kruskal-Wallis test, P < 2×10−7; Permutation test of 10,000 trials False

Discovery Rate = 0%). Cacophony is a plausible biological output threshold for walking circuits

since it is a presynaptic voltage-gated calcium channel subunit (Smith et al., 1996) that is

104

5.5. Discussion

present in the adult Drosophila central nervous system where it has been shown to regulate

synaptic transmission (Kawasaki et al., 2000; Gu et al., 2008).

Loss-of-function mutations in cac would be expected to impair neural transmission (Rieckhof

et al., 2003) between Drosophila walking circuits and downstream CPGs: an equivalent to a

high output threshold in our model. Thus our model predicted that while wild-type animals

should show a higher pre-odor spontaneous walking frequency with a pronounced depression

of spontaneous walking frequency following odor stimulation, cac mutant animals should

exhibit a relatively low pre-odor spontaneous walking frequency and a smaller depression

of post-odor spontaneous walking. Remarkably, we confirmed these predictions: Canton-S

strain control flies had high pre-odor spontaneous walking and greatly reduced post-odor

spontaneous walking, while cacophony mutant animals (cacTS3, in the same Canton-S genetic

background) had low pre-odor spontaneous walking and a similar post-odor spontaneous

walking frequency (Fig. 5.13h).

5.5 Discussion

Despite the long-appreciated presence of stochastic activity in the nervous system (Fatt and

Katz, 1952), how neural noise influences animal behavior has remained unknown. Here,

we have demonstrated a role for noise in Drosophila behavior by pairing high-resolution

behavioral measurements with unbiased computational discovery to identify circuit models

that faithfully reproduce Drosophila spontaneous walking patterns. Importantly, these models

require noise. During spontaneous walking, noise allows the neural activity of circuit models

to switch between high and low stable levels that lead to walking and stationary behaviors,

respectively. During odor-evoked walking averaged across populations of flies, noise slows

the tendency of neural activity to reach equilibrium levels, resulting in a prolonged circuit

memory of odor-evoked shifts in neural dynamics.

Across all of our discovered noise-driven circuit models, we observed that those with multi-

stable dynamics most effectively reproduced the bursty nature of Drosophila spontaneous

walking. When the activity level of the model’s output neuron fluctuated around a high,

Up-state it generated bursts of walking. Conversely, when the output neuron’s activity level

fluctuated around a low, Down-state it produced long sedentary periods. Multistable neural

activity has been observed in biological contexts, for example in Drosophila visual neurons

(Maimon et al., 2010) and in vertebrate neostriatal and neocortical neurons (Cossart et al.,

2003; Wilson and Groves, 1981).

Our noise-driven multistable circuit models, although abstracted from biology, can serve to

guide the study of walking circuits in the relatively small nervous system of Drosophila. One

might systematically identify walking circuit neurons by finding those whose activity correlates

with the time course of spontaneous tethered walking (Seelig et al., 2010; Portugues et al., 2014).

Our models make several predictions about the dynamics of these in vivo walking circuits. First,

their firing rates should switch between high and low stable levels of activity. Second, the rate

105

Chapter 5. Application of evolutionary computation to neuroscience

of switching should depend in part on the amplitude of neural noise. Finally, the frequency of

spontaneous walking and the degree to which odor-evoked walking is stimulus-locked should

depend on circuit noise and the efficacy of circuit output.

In addition to identifying relevant circuits in the Drosophila brain, it is also interesting to un-

derstand how noise-driven circuit function can be tuned to shape behavior. Taking advantage

of natural phenotypic variation, we identified a role for the voltage-gated calcium channel

subunit, Cacophony, in spontaneous walking frequency. An intronic SNP in the cac gene

correlates with the frequency of spontaneous walking, suggesting a regulatory change in ion

channel expression. However, the complexity of the locus and lack of knowledge of relevant

cis-regulatory sequences preclude facile determination of the influence of this polymorphism.

Still, as for the lobster stomatogastric ganglion (Marder, 2011), tuning circuit dynamics through

ion channel expression patterns may be a simpler alternative to developmental neural cir-

cuit ‘rewiring’ (Ramdya and Engert, 2008; Ramdya and Benton, 2010) for regulating animal

behavior.

In conclusion, we have shown that Drosophila walking patterns are best explained by multi-

stable circuit dynamics driven by neural noise. We predict that our implication of noise in the

time-course of Drosophila walking reflects a widespread influence of stochastic neural activity

on animal behavior. These results also highlight how coupling large-scale biological data

with unbiased computational discovery can provide an important complement to anatomical,

physiological, and genetic studies for understanding how neural circuits orchestrate behavior.

5.6 Methods

5.6.1 Drosophila strains

Drosophila Canton-S strains were used in odor-impulse (Figs. 5.1, 5.13h) and spontaneous

walking experiments (Fig. 5.4b). Drosophila Genetic Reference Panel (DGRP) 25 strains were

used in odor-impulse experiments (Figs. 5.3 and 5.10) and the genome-wide association study

(Fig. 5.13e). cacTS3 mutant animals were used for testing the role of cacophony in spontaneous

walking (Fig. 5.13h).

5.6.2 Drosophila behavior apparatus

Experimental arenas (50 mm × 10 mm enclosures with a height of 1.3 mm (Fig. 5.1a-b)) were

designed using the 3D CAD software, SolidWorks (Dassault Systemes, Waltham, Massachusetts,

USA) and CNC machined from polyoxymethylene and acrylic glass. To backlight the arenas,

we used a white LED panel (Lumitronix, LED-Technik GmbH, Hechingen) filtered with far-red

semitransparent film (Eastman Kodak, Rochester, NY USA), a color for which fruit flies are

visually insensitive. For olfactory stimulation, air (Messer Schweiz AG, Lenzburg, Switzer-

land) was bubbled through either water or 10% acetic acid and controlled using Mass Flow

106

5.6. Methods

controllers (PKM SA, www.pkmsa.ch) at a regulated flow rate of 500 mL/min via computer

controlled solenoid valves (The Lee Company, Westbrook, CT, USA). A custom-fabricated

circuit board and software 20 (sQuid, http://lis.epfl.squid/) simultaneously controlled valves

and acquisition cameras (Allied Vision Technologies, Stadtroda, Germany). We measured the

flow of odor using a miniPID (Aurora Scientific Inc. Aurora, Ontario, Canada).

5.6.3 Drosophila behavior experiments

We performed experiments on adult female Drosophila raised at 25degC on a 12h light:12h

dark cycle at 2-5 days post-eclosion. Experiments occurred either the morning or late after-

noon Zeitgeber Time. Prior to experiments, flies were starved for 4-6 hours in humidified

25degC incubators. For odor stimulation experiments, we measured the walking behaviors

of between 131 and 242 flies (median 205 flies). 98 DGRP strains were screened over the

course of approximately 1 year. To minimize the effects of weekly and seasonal variation, we

randomly selected and simultaneously screened groups of 2̃0 strains at a time. We repeated

measurements for a single strain (RAL208) four times over the course of the screen to confirm

season-independent behavioral reproducibility.

For spontaneous walking behavior experiments, we recorded ten Canton-S strain flies for

30 min each, 5 h in total in a temperature-controlled room at 25degC under low red light

illumination without airflow. During the odor pulse experiment, flies were first exposed to air

throughout the arena for 1 min, then 10% acetic acid for 30 s, and finally, air for 2 min. During

the odor aversion experiment, 10% acetic acid was present on one side of the arena for 30s

and air on the other. This pattern alternated for an additional three cycles (Fig. 5.1c, ‘Odor

aversion’).

5.6.4 Drosophila behavioral analysis

Following each experiment, we measured each fly’s position over time using Ctrax and Matlab

(The Mathworks, Natick, Massachusetts, USA) Behavioral Microarray software scripts (Branson

et al., 2009). Afterwards we discretized the speed of a fly into a binary time-series using a

hysteresis threshold. Based on previous studies (Martin et al., 1999; Sorribes et al., 2011;

Valente et al., 2007; Wolf et al., 2002) and confirmed by our own measurements, we considered

a fly to have begun walking when its speed exceeded 1 mm/s. For walking flies, we considered

walking to have terminated when the speed decreased below 0.5 mm/s (a conservative value

chosen to reduce the effects of measurement noise). We could thus classify speed in a binary

fashion: walking or stationary (Fig. 5.1d). When averaged over a population of flies, we

obtained a ‘Walking frequency’: the proportion of active flies at a given time point ranging

from 0 when no flies are walking, to 1 when all flies are walking (Fig. 5.1f).

To calculate the correlation between spontaneous walking frequencies for genetically identical

groups of flies, we randomly sampled two populations (groups A and B) of 65 flies (0.5*

107

www.pkmsa.ch
http://lis.epfl.squid/

Chapter 5. Application of evolutionary computation to neuroscience

the minimum population size) from the same strain. We then compared the mean walking

frequency during the first minute of the odor-impulse experiment for each of these groups.

We performed these measurements 100 times per strain (Fig. 5.3d).

To calculate the correlation between odor-response time-courses for fly strains, we randomly

sampled two populations (groups A and B) of 65 flies (0.5* the minimum population size) from

each strain. Odor-impulse traces (58th – 200th s of the odor impulse experiment) were then

normalized between 0 and 1. Comparisons were performed either between groups from the

same strain or between groups from different strains. Each comparison was performed 100

times and the mean R2 value is shown (Fig. 5.3e). To calculate odor aversion, for each fly we

measured the proportion of time spent in the air zone minus the time spent in the odor zone

over the course of the odor aversion experiment. This was divided by the total time of the

aversion experiment yielding a value between -1 (always in the odor) and 1 (never in the odor)

(Fig. 5.3f-g).

5.6.5 Dendrogram generation

We generated a dendrogram representation of the correlation between odor-response time-

series across all 98 DGRP Drosophila strains (Fig. 5.9). The length of each branch represents

the correlation between the odor-response time-series of two inbred strains of flies. For subse-

quent circuit model matching we selected at random one strain from each of the following

correlation intervals: ρ ≤ 0.9, 0.9 ≤ ρleq0.95, ρ > 0.95 (Fig. 5.10).

5.6.6 Genome Wide Association Study

Genome wide association analyses were performed using a non-parametric Kruskal-Wallis

test. In brief, we created a list of genetic loci with two or more alleles in the population

with a minimum allele count of 3 strains. We then grouped each spontaneous walking trait

(e.g., 97.5th percentile of spontaneous walking distributions) according to the allele of its

strain and performed a Kruskal-Wallis test. For each genetic locus, 1000 permutations of the

phenotype data were performed to generate an initial estimate of the False Discovery Rate

(FDR). Subsequently, for our candidate locus (cacophony, X chromosome, position 11836142)

we performed a second FDR analysis using 10,000 permutations of the Kruskal-Wallis test.

5.6.7 Neural circuit modeling framework

For neural circuit models we used Continuous Time Recurrent Neural Networks (CTRNNs).

This modeling framework was chosen for its ability to mimic biological neural circuits 45. A

Continuous Time Recurrent Neural Network (CTRNN) model with M neurons N1, N2, . . . , NM

108

5.6. Methods

is defined by a system of ordinary differential equations (ODE):

d xi

d t
= Fi (t , x1, x2, . . . , xN) = 1

τ

(
−xi +

M∑
j=1

w j i ·σ(x j +b j)+ Ii

)
, i = 1, . . . , M (5.1)

The state of a neuron Ni is defined by the variable xi and is updated by an increment d xi

inversely proportional to the time constant τi ∈ [0.05,50]. The output of a neuron Ni is

obtained by evaluating a sigmoid transfer function σ(x) = 1
1+e−x on the state xi added to a

constant bias bi ∈ [−10,10]. Neurons N j and Ni are connected with synaptic links of weight

w j i ∈ [−20,20]. Furthermore, each neuron can receive an optional input Ii (e.g., odor input).

We tested models up to five neurons in size since even three neurons are sufficient to exhibit a

wide variety of dynamical behaviors (including chaos) (Beer, 1995).

To investigate the capacity of noise alone to match Drosophila spontaneous walking, we opti-

mized a threshold ranging from −4σ to 4σ directly upon a Gaussian noise source representing

stochastic activity in biological circuits (Faisal et al., 2008; Destexhe and Rudolph-Lilith, 2012).

For noiseless circuit models, the input is set to zero (Ii = 0). For noise-driven models, each

neuron receives Gaussian noise with standard deviation wNOI SE ,i (Ii = wNOI SE ,i ·G , where

G N (0,1) follows a Normal distribution).

CTRNNs were simulated using a custom high-performance C++ implementation. Our im-

plementation used an approximation of the sigmoid function σ(x) (Schraudolph, 1999) to

speed-up simulations. Furthermore, to decrease the computational load of the simulations

the noise value G was generated every TNOI SE ∈ [0.01,1] seconds. For intermediate time-steps

the noise value G was interpolated. Although this introduced correlations in the noise, the

time-scale at which the noise value changed was orders of magnitude smaller than the time-

scale at which the slowest dynamics happened (hundreds of seconds). The ODEs regulating

the evolution of the CTRNN were integrated using ODEINT (Ahnert and Mulansky, 2011), a

publicly available solver for ODE. We used a Runge-Kutta 4th-order method at a constant

integration time-step of 10 ms (five times smaller than the smallest time constant of a neuron)

to integrate the system of ODE.

During the simulation of a circuit model, the trajectory of a model’s neural activity evolves

over time from an initial condition, represented by the neuron states xi (t0), to eventually

reside within the dynamical regime of the model (an equilibrium point, a limit cycle, etc.).

In our experiments, we took two precautions to discard the long transients that sometimes

occurred as trajectories passed from their initial positions into the model’s dynamical regime.

First, we identified the equilibrium points of the model (finding d xi
d t = 0). Then we generated

initial conditions in the neighborhood of identified equilibrium points by sampling from

a multivariate Gaussian distribution having an identity covariance matrix centered at the

equilibrium points. Second, at the beginning of each simulation, we integrated the model for

109

Chapter 5. Application of evolutionary computation to neuroscience

5 minutes of real time (3×104 time-steps) to discard dynamics during transit from the initial

condition.

To generate a binary time-series equivalent to walking and stationary periods for Drosophila,

we applied a threshold to the output of a neuron, arbitrarily chosen to be N0 (referred to in the

text as NOU T), with a value T HR ∈ (0,1). Whenever the output of this neuron was greater than

the threshold (), the virtual fly was walking and otherwise it was stationary.

5.6.8 Circuit model parameter optimization

We optimized circuit model parameters using a stochastic optimization method for tuning

model parameters in an iterative manner (Clerc, 2010). First, we generated a population of

circuit models of a given size (e.g., three neurons). Next, we measured the activity of these

models and transformed these into binary time-series comprising walking and stationary

periods using a threshold. Finally, walking and stationary period durations were measured and

aggregated into weighted variable bin-width histograms for walking or stationary intervals.

Bin-widths were derived from the Drosophila target dataset. We compared these histograms

to target histograms measured from Canton-S flies. After assessing this population of circuit

models, model parameters were adjusted towards those of the best performing models in this

and previous iterations. This process was repeated until model performance converged. We

then studied the topological and dynamical properties of the best circuit models found.

In more detail, the Np = wi j ,τi ,bi , wNOI SE ,i ,T HR,TNOI SE |i ,h ∈ 1, . . . , M parameters of the

CTRNN models were optimized using Particle Swarm Optimization (PSO) (Poli et al., 2007).

We used standard parameter settings c1 = c2 = 2. The inertia parameter ω of the algorithm was

modified during an optimization run, following an update rule ω(t) = 0.9− 0.7t
T to favor global

search at the beginning of the optimization process and local search towards the end, where

t is the current iteration and T = 200 is the maximum number of iterations. PSO operated

concurrently on a set of M = 50 solutions. Therefore, a total of 104 solutions were evaluated

during each optimization run. Each function evaluation required between 11 and 30 seconds

of computational time. The optimization of the CTRNN models was performed on a cluster

(http://hpc.epfl.ch), using two nodes with 48 cores AMD Opteron 6176 (Magny-Cours) 2.3

GHz and 192 GB of memory.

To optimize the odor input strength and output threshold of best models for matching

Drosophila odor-evoked walking dynamics, we measured the activity of the circuit model’s

output during 60s of no stimulation (spontaneous walking), 30s of odor stimulation, and

then 120s of no stimulation. We repeated this experiment while iteratively optimizing the

few free parameters (odor input strength per neuron, and output threshold) to minimize

the Root-Mean-Square Error (RMSE) between the target Drosophila odor-response time-

series (average of 2̃00 flies) and the model’s odor-response time-series (average of 200 vir-

tual flies). The code for Automatic Neural Circuit Discovery can be downloaded at: http:

//lis.epfl.ch/files/content/sites/lis/files/research/index.html

110

http://hpc.epfl.ch
http://lis.epfl.ch/files/content/sites/lis/files/research/index.html
http://lis.epfl.ch/files/content/sites/lis/files/research/index.html

5.6. Methods

Cost function or ‘Difference from Drosophila data’ The cost function assigns a score to each

model evaluating how well it captures Drosophila walking by comparing histograms generated

by the model with the histograms generated by the Canton-S strain. The comparison of these

histograms represents a crucial aspect of cost function design. While it is possible to use

standard statistical tests such as distance measures between empirical cumulative distribu-

tions of data (for example the Kolmogorov-Smirnov test), these statistical tests can mislead

the optimization process by assigning reduced importance to rare events. For distributions

of time durations, it is evident that these approaches would fail, since rare events (e.g., long

walking or stationary periods) would be effectively ignored when comparing distributions.

Therefore, we generated “weighted” histograms in which each bin was weighted by the dura-

tion it represents. For example, 10 walking events of 1 s duration and 1 event of 10s duration,

would classically be represented as two bins of different “height” (10 and 1 respectively). In

our weighted histograms these two bins have the same height (1s · 10 = 10s · 1).

We also wanted to remove empty bins. Thus, we generated variable bin-width histograms.

The boundaries of each bin for walking and stationary interval histograms were determined

using Drosophila Canton-S spontaneous walking data (see Fig. 5.6a). We used the same bin

boundaries when evaluating each model.

For each cost function evaluation, we simulated a model K = 100 times. The model was started

from K different initial conditions and simulated for 60 minutes of real time. For each of the

K simulations, we selected at random with equal probability either the first or second 30

minutes of simulation, to mitigate overfitting of model behavior to the same trajectory and to

foster model unpredictability. Each simulation produced a binary time-series representing

walking (1) or stationary (0) behavior in the virtual fly. Thus, we computed the histogram

for walking and for stationary periods using the data from all the selected K chunks. The

generated histograms HS,W for walking and HS,I for stationary were compared respectively

to the target Drosophila histograms HT,W and HT,I obtaining the distance between the

histograms dW = d(HT,W , HS,W) and dI = d(HT,I , HS,I).

The distance measure between a target and simulated histogram is defined as:

d(HT , HS) =
B∑

i=1
|R ·hS(i)−hT (i)|tB (i) (5.2)

B is the number of bins in the histograms, hS(i) and hT (i) returns the count for bin i in the

synthetic HS and target histogram HT and tB (i) returns the interval duration represented

by bin i , here corresponding to the lower boundary of the bin. The scale factor R reconciles

data obtained from simulations to available fly data. In our experiments we tested K = 100

simulated initial conditions per cost function evaluation, therefore R = 0.1 as we used data

from 10 real flies.

111

Chapter 5. Application of evolutionary computation to neuroscience

The cost function f maps a model m to a cost function value in [0,∞], For the sake of simplicity,

we presented a normalized cost function value F . F is obtained by normalizing the cost

function using the value FNORM that a virtual fly would have if always walking or always

stationary such that F(m) = F (m)
FNORM

= dW +dI
FNORM

. A value of 0 corresponds to a perfect match, a value

of 1 to the same score an always walking or always stationary virtual fly would get. Intermediate

values ranging between 0 and 1 correspond to plausible distributions. Even higher values

generally represent circuit models with periodic dynamics at very high frequencies.

To produce an intuitive scale for the cost function, we evaluated the cost function resulting

from comparing subsets of Drosophila data with the full dataset (Fig. 5.14a). We generated

subsets of data by selecting at random the desired number of flies F and replicating the data

from each selected fly 10/F times, rounded to the closest larger integer. In cases where we

generated too much data (F is not a divisor of 10), we randomly removed walking or stationary

events until we obtained a dataset with the same length as the full Drosophila spontaneous

walking dataset.

5.6.9 Variable bin-width weighted histogram generation

Given a vector v containing walking or stationary interval durations for 5 h of Canton-S

fly spontaneous walking, we computed the boundaries of the variable bin-width weighted

histograms. This routine took as inputs the minimum resolution r of a bin (the minimum

separation between boundaries) and the minimum count c of events to generate a bin. Next it

tried to generate histogram boundaries by recursively splitting the initial single-bin boundaries

[0,max(v)] into smaller bins containing a minimum of c events and having minimum duration

of r seconds (Fig. 5.6a).

We applied this procedure to get the boundaries of the bins of the histograms of walking and

stationary period durations of Drosophila. We then used these same boundaries to compute

both real (HT,W and HT,I) and simulated histograms (HS,W and HS,I).

5.6.10 Dynamical systems stability analysis

Since a variety of diverse circuit model topologies can generate identical output we classified

models not only by their topologies but also by their dynamics (Strogatz, 2001; Funahashi and

Nakamura, 1993; Tsuda, 2001). In this manner the behavior of a model with n neurons can be

understood by observing the time evolution of its trajectory through an n-dimensional neural

activity state-space. By studying the unfolding of state-space trajectories, one can identify

common behavioral motifs among circuit models with widely different parameters. Using this

formalism, features in a state-space landscape (e.g., attractors, limit cycles, and deterministic

chaos) provide a clear language with which to interpret and compare different circuit models

(Strogatz, 2001). This dynamical systems perspective has been successful in classifying both

artificial neural networks and biological neural populations (Mante et al., 2013).

112

5.6. Methods

To analyze the global dynamical behavior of our circuit models and to classify closely related

ones, we performed stability analysis on our models in the absence of noise in the following

manner. First, the m equilibrium points x̄1, x̄2, . . . , x̄M of the CTRNN were identified by numeri-

cally finding the roots of the system of differential equations F (x̄) using the multi-dimensional

root finder provided by the Gnu Scientific Library (http://www.gnu.org/software/gsl/). The

Jacobian matrix J of a CTRNN is defined as:

J (x) =


∂F1(x)
∂x1

. . . ∂F1(x)
∂xM

...
. . .

...
∂FM (x)
∂x1

. . . ∂FM (x)
∂xM

 (5.3)

where

∂Fi (x)

∂x j
=


w j i

τi

ex j +b j(
1+ex j +b j

)2 if i 6= j

−1
τi

+ w j i

τi

ex j +b j(
1+ex j +b j

)2 if i = j
(5.4)

We studied the stability of the CTRNN by linearizing the system in the neighborhood of each

equilibrium point and computing the eigenvalues of the Jacobian matrix J of the CTRNN

for each equilibrium point x̄ by solving det(J(x̄)−λI) = 0. For a classification of stability of

state-spaces given the equilibrium points eigenvalues refer to (Strogatz, 2001).

5.6.11 Trajectory density maps

Density maps for circuit model trajectories were obtained by discretizing a plane described by

two neuron states (xi , x j) into a grid of 103 ×103 cells ranging over the state values [−50,50].

Then we counted how many times a trajectory (its projection onto (xi , x j)) enters each cell.

Density maps were generated by initializing the models from 104 random initial conditions.

The color of the density plot is related to the logarithm of the probability of a neural activity

trajectory to step into each cell.

5.6.12 Testing the role of noise and threshold on spontaneous walking frequency

We assessed the effect of output threshold variation on spontaneous walking frequency by

varying the threshold in [0,1] in increments of 0.001, evaluating our models for 30 minutes, and

then measuring the spontaneous walking frequency. To assess the effect of noise amplitude,

we varied the noise amplitude in [0, 10] times the original amplitude in increments of 0.05. In

both experiments, we tested each model 10 times and averaged the observed spontaneous

113

http://www.gnu.org/software/gsl/

Chapter 5. Application of evolutionary computation to neuroscience

walking frequency.

5.6.13 2-neuron multistable circuit model classification

To quantify differences in the dynamical behavior of 2-neuron noise-driven circuit models and

to classify them, we generated 1000 initial conditions around each stable equilibrium point

and let the trajectories evolve for 30 minutes. We then counted how many times a trajectory

switched from one equilibrium point to the other. Trajectories of Collapsed Multistable circuit

models switched many times during each 30-minutes period while Linked Multistable circuit

model switched more rarely. Trajectories of Separated Multistable circuit models did not

switch equilibrium points.

5.6.14 Lyapunov exponent computation

We computed Lyapunov exponents for noiseless circuit models by integrating the variational

equations dδ
d t of the CTRNN together with the original system.

dδ

d t
=


dδ11

d t . . . dδ1M
d t

...
. . .

...
dδM1

d t . . . dδM M
d t

= J


δ11 . . . δ1M

...
. . .

...

δM1 . . . δM M

 (5.5)

Following a standard procedure (Benettin et al., 1980), we integrated the original system

together with the variational equations for 1000 time-steps. Then, we orthonormalized the

perturbations using the Gram-Schmidt algorithm and computed the full spectrum of M

Lyapunov exponents λ1 ≥ λ2 ≥ . . . ≥ λM . The Kaplan-Yorke dimension (Kaplan and Yorke,

1979) was then computed as DK Y = k +∑k
i=1

λi
|λk+1| , where k is the largest integer such that∑

i = 1kλi ≥ 0.

114

5.7. Supporting Information

5.7 Supporting Information

b

D
if
fe

re
n

c
e

 f
ro

m

D
ro

s
o

p
h

ila
 d

a
ta

D
if
fe

re
n

c
e

 f
ro

m

D
ro

s
o

p
h

ila
 d

a
ta

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

Threshold

Noise

time-step (s)

Best

result

0.1

1

Edge/Bias

weight

1-1

N
1

N
2

N
3

N
4

N
OUT

Time (min)

Walking

Stationary
0 5 10 15

0

1
N

OUT

d ec

Tau

weight

10

0.2

0.4

0.6

0.8

1

Noiseless

circuits

1 2 3 4 5Neurons (#)

a

Best

results:

Circuit

Noise-driven

circuit

Noise

Drosophila data used (%)

D
if
fe

re
n

c
e

 f
ro

m

D
ro

s
o

p
h

ila
 d

a
ta

1

0.8

0.6

0.4

0.2

0

10 20 30 40 50 60 70 80 90 100

Figure 5.14: Matching of Drosophila spontaneous walking data using subsets of the data, noise
alone, or noiseless circuit models. (a) Canton-S spontaneous walking data reproduced by time-
normalized subsets of the same dataset. ‘Drosophila data used’ indicates the percent of flies
selected and time-normalized to allow comparison with the full 5-hour dataset of 10 flies. N =
1000 datasets per boxplot. Dashed lines indicate the best cost function value for noise alone
(‘Noise’, cost function = 0.5), noiseless circuit models (‘Circuit’, cost function = 0.41), or noise-
driven circuit models (‘Noise-driven circuit’, cost function = 0.19). (b) The ability of a threshold
applied to a Gaussian noise source (µ = 0,σ = 1) to reproduce Drosophila spontaneous walking
data. The noise generation time-step (i.e., noise correlation) is color-coded. Each data point
is the lowest/best cost function value for a given threshold on a given noise source. (c) The
ability of noiseless circuit models to reproduce Drosophila spontaneous walking data. N = 50
circuit models for each size (1-5 neurons). A black arrow indicates the best noiseless circuit
model found. (d) A graph representation of the best noiseless circuit model. Recurrent and
reciprocal connection strengths are color-coded. The tau value for each neuron is shown in
grey-scale. (e) Neural output activity (NOU T) and walking for the model in panel d. This model
exhibits chaotic behavior (Largest Lyapunov Exponent = 0.011).

115

Chapter 5. Application of evolutionary computation to neuroscience

b

0.2

0.25

0.3

Stable

Unstable

c

a

d

SeparatedLinkedCollapsed

N
OUT

Trajectory

density

High

Best

Collapsed

Best

Linked
Best

Separated

Low

Walking

Stationary

T
h

re
s

h
o

ld

N
1

N
1

N
1

N
OUT

N
1

N
1

N
1

Best 2-neuron

noise-driven

multistable models

1

36

Separated

Multistable

Mean state switches (#)
0 90 180

Linked

Multistable

Collapsed

Multistable

D
if
fe

re
n

c
e

 f
ro

m

D
ro

s
o

p
h

ila
 d

a
ta

Figure 5.15: Classification of 2-neuron noise-driven multistable models. (a) The number of
equilibrium points that neural activity trajectories visited over the course of 30 simulated
minutes for 36 multistable best models. N = 1000 simulations per model. ‘Collapsed’ mod-
els visited each stable equilibrium point with high frequency. ‘Linked’ models visited each
equilibrium point a few times. ‘Separated’ models visited one equilibrium point. (b) The cost
function for each model sorted by class. The best model for each class is indicated (black
arrow). (c) Neural activity trajectory density plots for the best model in each class indicated in
panel b. The threshold between walking and stationary behavior is indicated (white dashed
line). (d) State-space diagrams for the best model in each class indicated in panel b. Stable
(cyan) and unstable (orange) equilibrium points are shown.

116

5.7. Supporting Information

b

c

N
OUT

Walking

Stationary

Stationary

Walking

T
h

re
s

h
o

ld
T

h
re

s
h

o
ld

T
h

re
s
h

o
ld

Spontaneous walking Odor impulse Decay Reduced spontaneous

walking

W
a

lk
in

g
 f
re

q
u

e
n

c
y

0.2

0.4

0.6

0

Trajectory

density

High

Low

Stable

Unstable
N

OUT

N
1

N
1

N
1

N
1

d e

f

N
OUT

Walking

Stationary

Stationary

Walking

T
h

re
s
h

o
ld

Spontaneous walking Odor impulse Decay Reduced spontaneous

walking

W
a

lk
in

g
 f
re

q
u

e
n

c
y

0.2

0.4

0.6

0.8

0

Trajectory

density

High

Low

Stable

Unstable
N

OUT

N
1

N
1

N
1

N
1

Time (min)
0 1 2 3

Time (min)
0 1 2 3

a

Drosophila Strain C match

Drosophila Strain B match

Best noise-driven

multistable model (Collapsed)

Best noise-driven

multistable model (Collapsed)

Figure 5.16: Noise creates a circuit memory of odor-evoked dynamics: Strains B & C. (a,d)
Odor-response dynamics for the best 2-neuron noise-driven multistable model (‘Collapsed’
class) matching Drosophila DGRP Strains B (a) or C (d). Pre-odor spontaneous walking (green),
odor impulse (blue), walking decay (cyan) and post-odor reduced spontaneous walking (ma-
genta) periods are color-coded. (b,e) Trajectory densities (top) and (c,f) state-space diagrams
(bottom) for this model during each period. In all trajectory density diagrams, arrowheads
highlight frequent neural activity levels not observed during pre-odor spontaneous walking
that are either above (white) or below (red) the threshold for walking.

117

Conclusions

5.8 Main contributions

This thesis has investigated potential advantages of the Viability Evolution paradigm, first

introduced in (Mattiussi and Floreano, 2003). To this aim, we proposed several viability

evolutionary algorithms. We began by sketching a first implementation of a viability-based

evolutionary algorithm that used only eliminations and viability boundary adaptation to drive

the search (See Chapter 2). We used this algorithm to test the hypothesis that a viability-

based method could maintain higher diversity during evolutionary search with respect to a

traditional competition-based method. We showed how the increased diversity eventually

helps to discover more diverse solutions at the end of the evolutionary process. This result

suggests that viability-based algorithms could be used for simulating open-ended scenarios,

generating creative solutions and could help in avoiding convergence during evolution.

We then moved on to show a second advantage of designing evolutionary algorithms with

viability principles. When viability boundaries are used to model different constraints or

objectives, a greater amount of information is available during the search (see Chapter 3). In

particular, we observed the amount of viable and non-viable offspring with respect to each

viability criteria. We showed how this information can be used to enhance the performance of

a state-of-the-art method for constrained optimization, by proposing a novel mechanism to

adapt the step size. Furthermore, by incorporating viability boundaries the method is now

compatible with starting the evolutionary search from infeasible solutions. The proposed

method displayed competitive performance on unimodal constrained optimization problems.

Building on this, we proposed a novel evolutionary method for solving a broader class of

constrained optimization problems (see Chapter 4). This algorithm, that we called mViE,

maintains a population of distinct local search units based on the method presented in

Chapter 3 and recombines locally learned information using global search operators. By

allocating the available function evaluations to local or global search depending on their

previous performance, we could obtain a method that is also competitive on multimodal

constrained optimization problems. This method has also been recently applied in a protein

assembly prediction framework, briefly presented in Appendix A.

Finally, we applied evolutionary computation methods to a neuroscience investigation regard-

119

Chapter 5. Application of evolutionary computation to neuroscience

ing the role of neural noise in animal behavior (see Chapter 5). We developed a neural circuit

discovery method that employed evolutionary algorithms for optimizing the parameters of

neural networks. We then used it to search for neural circuit models capable of reproduc-

ing observed dynamics of spontaneous behavior in Drosophila. Our best discovered circuit

models provided us unprecedented insights on the role of noise as a force shaping animal be-

haviors, even in the presence of sensory stimulation. Moreover, thanks to a multidisciplinary

collaboration with neuroscientists and biologists, the prediction of our models were validated

in vivo.

5.9 Future Directions

Given the variety of topics covered in this thesis several research directions can be pointed

out for future work. Many of them were outlined in the discussion and conclusion sections of

each chapter. Here we briefly highlight new ones.

In this thesis, we provided a first evaluation of the Viability Evolution paradigm. We specifi-

cally focused on the design of viability evolutionary algorithms for constrained optimization.

Although constraints can be directly modelled as viability criteria, the paradigm does not

easily lend itself to model multi-objective optimization problems, where conflicting objectives

are present. In this case, tightening the viability boundaries defined on these conflicting

objectives most probably leads to a stall of the search in a small area of the Pareto front. Apart

from the trivial solution of using a competition function that returns a partial ordering (non-

dominated sorting), thus reducing a viability algorithm back to a classical multi-objective

method, it is unclear how to use tightening viability boundaries to drive the search in multi-

objective problems to the optimal Pareto front. One possible solution could be to define a

“virtual” viability boundary that approximates the Pareto front. This virtual boundary could be

tightened to drive the search towards the optimal Pareto front. Once a convincing solution

for dealing with multi-objective problems is found, the viability paradigm may represent a

truly unifying abstraction for unconstrained, constrained and multi-objective optimization

in evolutionary computation. This could lead to the development of a new class of methods

that could automatically adapt to the problem at hand, relieving the EC user from selecting an

appropriate (specific) algorithm for the problem being tackled.

The viability paradigm naturally incorporates the concept of dynamic population sizes. The

viability algorithms presented in this thesis for constrained optimization used only fixed-size

populations. Interesting avenues of research may consider exploring dynamic population-size

viability algorithms, which may be especially useful in multimodal optimization scenarios.

Also, the method for constrained optimization presented in Chapter 4, mViE, can be improved

in several ways. Currently, we exploited multiple independent local search units to tackle

multimodal constrained problems. To improve its robustness on multimodal landscapes one

could extend the algorithm used by each search unit (presented in Chapter 3) to generate

120

5.9. Future Directions

multiple solutions per iteration, conversely to the single offspring sampled at the moment1.

However, the self-adaptation of this algorithm’s parameters in the presence of constraints and

multiple sampled offspring could be an arduous task.

Furthermore, all algorithms considered in this thesis used fairly simple update policies for

changing the viability boundaries. Other improvements to the efficiency of the presented

algorithms can derive from considering more advanced update rules for adapting the viability

boundaries, taking into account other information extracted from the boundaries. Another

idea that could be tested is the use of a second set of viability boundaries, defining the viability

of the local search units. This may be useful to drive the whole population of local search units

towards desired areas of search space. Thus, this method would use viability boundaries at

two levels: at the level of the single search unit, to locally adapt to constraints, and at the level

of the population of search units, to drive them towards feasible areas. The introduction of

this second set of viability boundaries may as well have the effect of improving the diversity of

the population of local search units (similarly to what showed in Chapter 2).

Finally, our method for constrained optimization was tested only on inequality constraints.

The modelling of constraints as viability boundaries offers the advantage of being able to add

or remove them dynamically during the search. This may represent a new way for tackling

problems with equality constraints. The presence of equalities makes the search very difficult

for an evolutionary method, given the very limited size of the feasible space, which often

reduces to zero-volume regions. In many cases an evolutionary algorithm can converge to

sub-optimal region of search space, due to the shape of an equality constraint which creates

locally optimal areas. Temporarily removing the viability boundary defined on an equality

may allow solutions to ignore the equality and follow the gradient provided by other objectives

or constraints and overcome local optima.

In this thesis, we also applied EC to tackle a neuroscientific question. The neural circuit

discovery method for investigating the role of neural noise in Drosophila behavior (presented

in Chapter 5) is on itself a very important contribution. Our tools and methodology can be

readily used for deriving neural circuit models starting from behavioral data of other animals.

Our results contribute in many ways to our understanding of the implications of noise in

neural systems. Intriguingly, they suggest the possibility that animal behavior can be modified

or tuned by regulating the noise levels present in a neural system. Although at the present

moment no technological solution appears to be available for testing this hypothesis, we

speculate that further investigation into the role of noise in neural systems could provide

powerful tools to neuroscientist for controlling behaviors.

Moreover, it is also interesting to look at our results under an evolutionary perspective. We

demonstrated how, although important levels of noise influences the operations of single sim-

ulated Drosophila neural circuits introducing variability at the single fly level, the behavioral

1 This corresponds, in technical jargon, to extending the (1+1)-CMA-ES method for adapting covariance
matrix(Arnold and Hansen, 2012) and step size (presented in this thesis) in presence of constraints to a (µ,λ)-CMA-
ES

121

Chapter 5. Application of evolutionary computation to neuroscience

response of the simulated group of flies is consistent and repeatable. In short, noise could

provide evolution a substrate for fine-tuning behaviors, without modifying the underlying

neural topologies. We hypothesize that the emergence of noise in a neural system is directly

tied with the necessity of fine-tuning animal behaviors, when physiological or environmental

constraints impedes the modification of underlying neural topologies. We believe that further

investigations on the role of noise in neural systems will provide important insight into our

understanding of complex behaviors.

122

Appendix

125

A Application of mViE to macromolecu-
lar assembly prediction

In this appendix we show recent results of the application of mViE on a

biological problem. Often, deciphering the three dimensional structure

of protein or other macromolecular assemblies can be hard when using

traditional techniques like X-ray crystallography. Computational methods

can ease the work of an experimenter by providing good approximate pre-

dictions of macromolecular assemblies starting from the precise structure

of a single monomer composing the assembly. Here, we present a software

pipeline for macromolecular assembly prediction that builds upon the

mViE method presented in Chapter 4. The method uses multiple search

units to identify assemblies satisfying a number of geometrical constraints

provided by the user, information that can be obtained from widely avail-

able low-resolution imagery techniques. Our method shows competitive

performance with respect to a previously available pipeline for assembly

prediction, without requiring to compose the geometrical constraints in a

single fitness function and tuning the fitness coefficients.

The content of this appendix derives from a recent collaboration with the Laboratory for

Biomolecular Modelling at EPFL (Giorgio Tamo, Matteo De Giacomi and Prof. Matteo Dal

Peraro) and will be used for an article in preparation.

127

Appendix A. Application of mViE to macromolecular assembly prediction

In this appendix we present recent results of the application of a modified version of mViE to a

molecular assembly prediction problem.

0 1 2 3 4 5 6 7

−60

−50

−40

−30

−20

−10

0

10

RMSD [Å]

E
n

e
rg

y

Lymphokine YJGF Gene Product

0 1 2 3 4 5 6 7

RMSD [Å]

Figure A.1: The majority of current algorithms for predicting macromolecular assemblies
evaluate an energy function on each candidate assembly and try to minimize this energy. We
show sampled candidate solutions for two assembly prediction problems: Lymphokine and
the YJGF gene product. Following the energy gradient in many problems helps discovering
solutions with minimal RMSD distance from the true structure (left, Lymphokine, black arrow).
However, the presence of multiple wells of energy (left, Lymphokine, red arrows) can hinder
the ability of an algorithm in discovering the RMSD optimal solutions. Predicting certain
assembly structures is particularly hard, as energy wells associated with bad (large) RMSD
values (right, YJGF gene product, red arrow) can have lower energy than wells associated to
minimal RMSD values.

RMSD [Å]

Lymphokine YJGF Gene Product

RMSD [Å]

0 2 4 6 8 10

0

1

0.8

0.6

0.4

0.2

0 2 4 6 8 10

C
C

C

Figure A.2: Cross-correlation coefficient versus RMSD of assembly candidate predictions for
the Lymphokine and YJGF gene product. the cross-correlation coefficient is computed against
a user-provided density map. Following the CCC gradient can be more effective than following
an energy gradient for reaching minimal RMSD assemblies.

128

c
1

c
m

Iteration

c
2

Local Search Unit 1
e

n
e

rg
y

0

C
o

n
s
tr

a
in

ts

M
e

a
n

 D
iv

e
rs

it
y

0

c
1

c
m

Iteration

c
2

Local Search Unit N

e
n

e
rg

y

0

C
o

n
s
tr

a
in

ts

M
e

a
n

 D
iv

e
rs

it
y

0

Stage 1: Energy used as constraint

Stage 2: Energy is NOT used

Local Search Unit 1 Local Search Unit N

Discovery of plausible assemblies

Monomeric structure Definition of geometric or

physical constraints
 structur Cyro-EM density map

90°

a)

b)

c) Clustering

d) Compute

Cross-Correlation

vs density map

and rank results

1.

2.

K.

ccc = 0.96

ccc = 0.92

ccc = 0.64

c
1

c
m

c
2

S
ta

g
e

s
 a

re
 e

x
e

c
u

te
d

 i
n

 p
a

ra
lle

l

Figure A.3: We propose a two stage protocol for predicting macromolecular assemblies. (a) The ePOW
protocol requires the definition of spatial constraints that limit the possible configurations of predicted
assembly. Furthermore, the user provides a density map and a crystal structure of a subunit of the
assembly. (b) The ePOW protocol employ a two-stages structure prediction pipeline. Both stages
uses a stochastic search algorithm, mVIE, presented in Chapter 4 to search for candidate assemblies.
mVIE uses a population of multiple search units that try to discover assembly structures satisfying all
the constraints. Once a search unit discovers assemblies that do not violate any constraint, it tries to
discover assemblies that maximize the diversity with respect to the assemblies predicted by other search
units. In the first stage of the protocol, the energy is used as a constraint, looking for assemblies with
negative energy levels, i.e. clash free assemblies. In the second stage, however, no energy constraint is
used. Candidate assemblies out of the two stages (colored points) that do not violate the constraints are
selected and (c) are clustered within a RMSD distance of 1A to remove duplicate sampled assemblies.
The clusters’ centroids (colored stars) are extracted. (d) The assemblies corresponding to the cluster’s
centroids are ranked based on their cross-correlation coefficient computed against the density map
provided by the user. Finally, the ranked predicted assemblies are returned to the user.

129

Appendix A. Application of mViE to macromolecular assembly prediction

0

2

4

6

8

10

R
M

S
D

*

*

* ***

** **

n.s.
n.s. n.s. n.s.

n.s.

n.s. n.s.

n.s.

n.s.

n.s.

A

B

0.9
1

1.2

1.4

1.6

1.8

Im
p

ro
v
e

m
e

n
t

F
a

c
to

r

Acyl Carrier

Archael SM

Chorismate Mutase

Groel

GTP Cyclohydrolase I

Lumazine Syntase

Tobacco Virus

YJGF Gene Product

Alpha Hemolysin

10 KDA Chaperonin

GP 41, Trans. Glycoprotein

Lymphokine

Protective Antigen (PA7)

snRNP SM-like Protein

11S Regulator

Transcriptional Regulator

Epimerase

Malporine Sucrose

Best RMSD

POW [XX] ePOW

1.50

1.34

1.61

1.89

0.94

1.72

1.17

1.45

1.05

0.74

2.75

1.45

0.86

0.91

1.89

2.67

2

7.23

1.51

1.09

1.49

1.86

1.02

1.61

0.95

1.27

0.75

0.57

2.39

1.41

0.84

0.70

1.92

2.34

1.56

0.64

A
cy

l C
ar

rie
r

A
rc

ha
el
 S

M

C
ho

ris
m

at
e

M
ut

as
e

G
ro

el

G
TP C

yc
lo
hy

dr
ol
as

e
I

Lu
m

az
in
e

S
yn

ta
se

To
ba

cc
o

Viru
s

Y
JG

F G
en

e
P
ro

du
ct

A
lp
ha

 H
em

ol
ys

in

10
 K

D
A C

ha
pe

ro
ni
n

G
P 4

1,
 T

ra
ns

. G
ly
co

pr
ot

ei
n

Ly
m

ph
ok

in
e

P
ro

te
ct
iv
e
A
nt

ig
en

 (P
A
7)

sn
R
N
P S

M
-li
ke

 P
ro

te
in

11
S
 R

eg
ul
at

or

Tr
an

sc
rip

tio
na

l R
eg

ul
at

or

E
pi
m

er
as

e

M
al
po

rin
e

S
uc

ro
se

C

11.3

Figure A.4: (A) RMSD mean and standard error of top five candidate assemblies returned by
the POW (white bars) and ePOW (grey bars) protocols, computed over 10 repetitions of the
protocols for each tested assembly. The superscripts above the error bars indicate * P < 0.05, **
P < 0.01, *** P < 0.001 using a Wilcoxon rank sum test, n.s. no statistical significance. (B) Factor
of improvement of the ePOW protocol over POW for each tested assembly. (C) Backbone
RMSDs of the best predictions found POW and ePOW, for each tested assembly. We highlight
in bold the best RMSD value across the two methods.

130

GTP Cyclohydrolase I

Alpha Hemolysin

10 KDA Chaperonin

Protective Antigen (PA7)

snRNP SM-like Protein

11S Regulator

RMSD = 0.70 RMSD = 0.57

RMSD = 0.84 RMSD = 1.02

RMSD = 1.92 RMSD = 0.75

Figure A.5: Best assemblies obtained from the ePOW assembly protocol (in color) superim-
posed to known bound crystal structures (in transparent white), and RMSD difference between
the assemblies.

131

Bibliography

Adami, C. (2006). Digital genetics: unravelling the genetic basis of evolution. Nature Review

Genetics, 7(2):109–118, doi:10.1038/nrg1771.

Adra, S. and Fleming, P. J. (2011). Diversity management in evolutionary many-

objective optimization. IEEE Transactions on Evolutionary Computation, 15(2):183–195,

doi:10.1109/TEVC.2010.2058117.

Aguirre, A., Muñoz Zavala, A., Villa Diharce, E., and Botello Rionda, S. (2007). COPSO: Con-

strained optimization via PSO algorithm. Technical Report I-07-04, Center of Research in

Mathematics (CIMAT), Guanajuato, México.

Ahnert, K. and Mulansky, M. (2011). Odeint - solving ordinary differential equations in

c++. In Proceedings of the International Conference on Numerical Analysis and Applied

Mathematics, ICNAAM 2011, pages 1586–1589. AIP.

Ai, M., Min, S., Grosjean, Y., Leblanc, C., Bell, R., Benton, R., and Suh, S. B. (2010). Acid sensing

by the drosophila olfactory system. Nature, 468(7324):691–695, doi:10.1038/nature09537.

Ali, M. and Zhu, W. (2013). A penalty function-based differential evolution algorithm for con-

strained global optimization. Computational Optimization and Applications, 54(3):707–

739, doi:10.1007/s10589-012-9498-3.

Angantyr, A., Andersson, J., and Aidanpaa, J.-O. (2003). Constrained optimization based

on a multiobjective evolutionary algorithms. In Proceedings of the IEEE Congress on

Evolutionary Computation, volume 3 of CEC 2003, pages 1560–1567, Piscataway, NJ, USA.

IEEE.

Arnold, D. V. and Hansen, N. (2010). Active covariance matrix adaptation for the (1+1)-cma-es.

In Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation,

GECCO ’10, pages 385–392, New York, NY, USA. ACM.

Arnold, D. V. and Hansen, N. (2012). A (1+1)-cma-es for constrained optimisation. In Proceed-

ings of the 14th Annual Conference on Genetic and Evolutionary Computation, GECCO

’12, pages 297–304, New York, NY, USA. ACM.

133

http://dx.doi.org/10.1038/nrg1771
http://dx.doi.org/10.1109/TEVC.2010.2058117
http://dx.doi.org/10.1038/nature09537
http://dx.doi.org/10.1007/s10589-012-9498-3

Bibliography

Atmar, W. (1994). Notes on the simulation of evolution. IEEE Transactions on Neural Networks,

5(1):130–147, doi:10.1109/72.265967.

Bäck, T. (1996). Evolutionary algorithms in theory and practice: evolution strategies, evolution-

ary programming, genetic algorithms. Oxford University Press, New York, NY, USA.

Barkat Ullah, A., Sarker, R., and Lokan, C. (2011). Handling equality constraints with agent-

based memetic algorithms. Memetic Computing, 3(1):51–72, doi:10.1007/s12293-010-

0051-6.

Barricelli, N. A. (1954). Esempi numerici di processi di evoluzione. Methodos, pages 45–68.

Barricelli, N. A. (1962). Numerical testing of evolution theories. part i: Theoretical introduction

and basic tests. Acta Biotheoretica, 16(1–2):69–98.

Barricelli, N. A. (1963). Numerical testing of evolution theories. part ii: Preliminary tests of

performance. symbiogenesis and terrestrial life. Acta Biotheoretica, 16(3–4):99–126.

Baum, E. B., Boneh, D., and Garrett, C. (2001). Where genetic algorithms excel. Evolutionary

Computation, 9(1):93–124, doi:10.1162/1063656015107513.

Becerra, R. L. and Coello Coello, C. A. (2006). Cultured differential evolution for constrained

optimization. Computer Methods in Applied Mechanics and Engineering, 195(33-36):4303–

4322, doi:10.1016/j.cma.2005.09.006.

Beer, R. D. (1995). On the dynamics of small continuous-time recurrent neural networks.

Adaptive Behavior, 3(4):469–509, doi:0.1177/105971239500300405.

Beer, R. D. and Gallagher, J. C. (1992). Evolving dynamical neural networks for adaptive

behavior. Adaptive Behavior, 1(1):91–122, doi:10.1177/105971239200100105.

Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, J.-M. (1980). Lyapunov characteristic

exponents for smooth dynamical systems and for hamiltonian systems; a method for

computing all of them. part 1: Theory. Meccanica, 15(1):9–20, doi:10.1007/BF02128236.

Bernardino, H., Barbosa, H., and Lemong, A. (2007). A hybrid genetic algorithm for constrained

optimization problems in mechanical engineering. In Proceedings of the IEEE Congress

on Evolutionary Computation, CEC 2007, pages 646–653. IEEE.

Beyer, H.-G. and Finck, S. (2012). On the design of constraint covariance matrix self-adaptation

evolution strategies including a cardinality constraint. IEEE Transactions on Evolutionary

Computation, 16(4):578–596, doi:10.1109/TEVC.2011.2169967.

Beyer, H.-G. and Schwefel, H.-P. (2002). Evolution strategies – a comprehensive introduction.

Natural Computing, 1(1):3–52, doi:10.1023/A:1015059928466.

Bidaye, S. S., Machacek, C., Wu, Y., and Dickson, B. J. (2014). Neuronal control of drosophila

walking direction. Science, 344(6179):97–101, doi:10.1126/science.1249964.

134

http://dx.doi.org/10.1109/72.265967
http://dx.doi.org/10.1007/s12293-010-0051-6
http://dx.doi.org/10.1007/s12293-010-0051-6
http://dx.doi.org/10.1162/1063656015107513
http://dx.doi.org/10.1016/j.cma.2005.09.006
http://dx.doi.org/0.1177/105971239500300405
http://dx.doi.org/10.1177/105971239200100105
http://dx.doi.org/10.1007/BF02128236
http://dx.doi.org/10.1109/TEVC.2011.2169967
http://dx.doi.org/10.1023/A:1015059928466
http://dx.doi.org/10.1126/science.1249964

Bibliography

Bongard, J. (2011). Morphological change in machines accelerates the evolution of robust

behavior. PNAS, 108(4):1234–1239, doi:10.1073/pnas.1015390108.

Bonyadi, M., Li, X., and Michalewicz, Z. (2013). A hybrid particle swarm with velocity mutation

for constraint optimization problems. In Proceedings of the 15th Annual Conference on

Genetic and Evolutionary Computation, GECCO ’13, pages 1–8. ACM.

Brajevic, I., Tuba, M., and Subotic, M. (2011). Performance of the improved artificial bee

colony algorithm on standard engineering constrained problems. International Journal

of Mathematics And Computers In Simulation, 5(1):135–143.

Branson, K., Robie, A. A., Bender, J., Perona, P., and Dickinson, M. H. (2009). High-

throughput ethomics in large groups of drosophila. Nature Methods, 6:451–457,

doi:10.1038/nmeth.1328.

Brest, J., Zumer, V., and Maucec, M. (2006). Self-adaptive differential evolution algorithm in

constrained real-parameter optimization. In Yen, G. G., Lucas, S. M., Fogel, G., Kendall,

G., Salomon, R., Zhang, B., Coello Coello, C. A., and Runarsson, T. D., editors, 2006 IEEE

Congress on Evolutionary Computation, CEC 2006, pages 215–222. IEEE.

Cagnina, L. C., Esquivel, S. C., and Coello, C. A. C. (2008). Solving engineering optimization

problems with the simple constrained particle swarm optimizer. Informatica, 32(3):319–

326.

Cai, Z. and Wang, Y. (2006). A multiobjective optimization-based evolutionary algorithm for

constrained optimization. IEEE Transactions on Evolutionary Computation, 10(6):658–

675, doi:10.1109/TEVC.2006.872344.

Censi, A., Straw, A. D., Sayaman, R. W., Murray, R. M., and Dickinson, M. H. (2013). Discrimi-

nating external and internal causes for heading changes in freely flying drosophila. PLoS

Computational Biology, 9(2):e1002891, doi:10.1371/journal.pcbi.1002891.

Clerc, M. (2010). Particle Swarm Optimization. John Wiley & Sons, New Your, NY, USA.

Clevenger, L., Ferguson, L., and Hart, W. E. (2005). A filter-based evolutionary al-

gorithm for constrained optimization. Evolutionary Computation, 13(3):329–352,

doi:10.1162/1063656054794789.

Clune, J., Goldsby, H. J., Ofria, C., and Pennock, R. T. (2011). Selective pressures for ac-

curate altruism targeting: evidence from digital evolution for difficult-to-test aspects

of inclusive fitness theory. Proceedings of the Royal Society B, 278(1706):666–674,

doi:10.1098/rspb.2010.1557.

Clune, J., Misevic, D., Ofria, C., Lenski, R. E., Elena, S. F., and Sanjuán, R. (2008). Natural

selection fails to optimize mutation rates for long-term adaptation on rugged fitness land-

scapes. PLoS Computational Biology, 4(9):e1000187, doi:10.1371/journal.pcbi.1000187.

135

http://dx.doi.org/10.1073/pnas.1015390108
http://dx.doi.org/10.1038/nmeth.1328
http://dx.doi.org/10.1109/TEVC.2006.872344
http://dx.doi.org/10.1371/journal.pcbi.1002891
http://dx.doi.org/10.1162/1063656054794789
http://dx.doi.org/10.1098/rspb.2010.1557
http://dx.doi.org/10.1371/journal.pcbi.1000187

Bibliography

Coelho, L. d. S. (2010). Gaussian quantum-behaved particle swarm optimization ap-

proaches for constrained engineering design problems. Expert Systems with Applications,

37(2):1676–1683, doi:10.1016/j.eswa.2009.06.044.

Coello Coello, C. A. (2000). Use of a self-adaptive penalty approach for engineering optimiza-

tion problems. Computers in Industry, 41(2):113–127, doi:10.1016/S0166-3615(99)00046-

9.

Coello Coello, C. A. (2002). Theoretical and numerical constraint-handling techniques used

with evolutionary algorithms: a survey of the state of the art. Computer methods in applied

mechanics and engineering, 191(11-12):1245–1287, doi:10.1016/S0045-7825(01)00323-1.

Coello Coello, C. A. (2006). Evolutionary multi-objective optimization: a histori-

cal view of the field. IEEE Computational Intelligence Magazine, 1(1):28–36,

doi:10.1109/MCI.2006.1597059.

Coello Coello, C. A. and Mezura-Montes, E. (2002). Constraint-handling in genetic algorithms

through the use of dominance-based tournament selection. Advanced Engineering

Informatics, 16(3):193–203, doi:10.1016/S1474-0346(02)00011-3.

Coen, P., Clemens, J., Weinstein, A. J., Pacheco, D. A., Deng, Y., and Murthy, M. (2014). Dy-

namic sensory cues shape song structure in drosophila. Nature, 507(7491):223–227,

doi:10.1038/nature13131.

Collange, G., Delattre, N., Hansen, N., Quinquis, I., and Schoenauer, M. (2010). Multidisci-

plinary optimization in the design of future space launchers. In Multidisciplinary Design

Optimization in Computational Mechanics, pages 459–468. John Wiley & Sons, Inc.

Collard, P. and Escazut, C. (1995). Genetic operators in a dual genetic algorithm. In Proceedings

of the Seventh International Conference on Tools with Artificial Intelligence, pages 12–19.

Cossart, R., Aronov, D., and Yuste, R. (2003). Attractor dynamics of network up states in the

neocortex. Nature, 423(6937):283–288, doi:10.1038/nature01614;.

Cuevas, E. and Cienfuegos, M. (2014). A new algorithm inspired in the behavior of the social-

spider for constrained optimization. Expert Systems with Applications, 41(2):412–425,

doi:10.1016/j.eswa.2013.07.067.

Darwin, C. (1859). On the origin of species by means of natural selection. Murray, London, UK.

De Jong, K. A. (1975). Analysis of the behavior of a class of genetic adaptive systems. PhD thesis,

University of Michigan.

de Melo, V. V. and Carosio, G. L. C. (2012). Evaluating differential evolution with penalty

function to solve constrained engineering problems. Expert Systems with Applications,

39(9):7860–7863, doi:10.1016/j.eswa.2012.01.123.

136

http://dx.doi.org/10.1016/j.eswa.2009.06.044
http://dx.doi.org/10.1016/S0166-3615(99)00046-9
http://dx.doi.org/10.1016/S0166-3615(99)00046-9
http://dx.doi.org/10.1016/S0045-7825(01)00323-1
http://dx.doi.org/10.1109/MCI.2006.1597059
http://dx.doi.org/10.1016/S1474-0346(02)00011-3
http://dx.doi.org/10.1038/nature13131
http://dx.doi.org/10.1038/nature01614;
http://dx.doi.org/10.1016/j.eswa.2013.07.067
http://dx.doi.org/10.1016/j.eswa.2012.01.123

Bibliography

de Melo, V. V. and Iacca, G. (2014). A modified covariance matrix adaptation evolution strategy

with adaptive penalty function and restart for constrained optimization. Expert Systems

with Applications, 41(16):7077–7094, doi:10.1016/j.eswa.2014.06.032.

Deb, K. (2000). An efficient constraint handling method for genetic algorithms. Computer

methods in applied mechanics and engineering, 186(2-4):311–338, doi:10.1016/S0045-

7825(99)00389-8.

Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. John Wiley & Sons,

Inc., New York, NY, USA.

Deb, K. and Goldberg, D. E. (1989). An investigation of niche and species formation in genetic

function optimization. In Proceedings of the 3rd International Conference on Genetic

Algorithms, pages 42–50, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002a). A fast and elitist multiobjective

genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation, 6(2):182–197,

doi:10.1109/4235.996017.

Deb, K., Thiele, L., Laumanns, M., and Zitzler, E. (2002b). Scalable multi-objective optimization

test problems. In Proceedings of the 2002 Congress on Evolutionary Computation, volume 1

of CEC 2002, pages 825–830. IEEE.

Degiacomi, M. T. and Dal Peraro, M. (2013). Macromolecular symmetric assembly pre-

diction using swarm intelligence dynamic modeling. Structure, 21(7):1097–1106,

doi:10.1016/j.str.2013.05.014.

den Boer, P. J. (1999). Natural selection or the non-survival of the non-fit. Acta Biotheoretica,

47(2):83–97, doi:10.1023/A:1002053820381.

Destexhe, A. and Rudolph-Lilith, M. (2012). Neuronal noise. Springer US, New York, NY, USA.

Dorigo, M., Maniezzo, V., and Colorni, A. (1991). Positive feedback as a search strategy.

Technical report, Politecnico di Milano.

Dunn, N. A., Lockery, S. R., Pierce-Shimomura, J. T., and Conery, J. S. (2004). A neural

network model of chemotaxis predicts functions of synaptic connections in the ne-

matode caenorhabditis elegans. Journal of Computational Neuroscience, 17(2):137–147,

doi:10.1023/B:JCNS.0000037679.42570.d5.

Eberhart, R. C. and Kennedy, J. (1995). A new optimizer using particle swarm theory. In

Proceedings of the sixth international symposium on micro machine and human science,

volume 1, pages 39–43. IEEE.

Eiben, A. and Bäck, T. (1997). Empirical investigation of multiparent recombina-

tion operators in evolution strategies. Evolutionary Computation, 5(3):347–365,

doi:10.1162/evco.1997.5.3.347.

137

http://dx.doi.org/10.1016/j.eswa.2014.06.032
http://dx.doi.org/10.1016/S0045-7825(99)00389-8
http://dx.doi.org/10.1016/S0045-7825(99)00389-8
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1016/j.str.2013.05.014
http://dx.doi.org/10.1023/A:1002053820381
http://dx.doi.org/10.1023/B:JCNS.0000037679.42570.d5
http://dx.doi.org/10.1162/evco.1997.5.3.347

Bibliography

Eiben, A. and Schoenauer, M. (2002). Evolutionary computing. Information Processing Letters,

82(1):1–6, doi:10.1016/S0020-0190(02)00204-1.

Eiben, A. E. and Smith, J. E. (2003). Introduction to Evolutionary Computing. Springer, Berlin,

Germany.

Faisal, A. A., Selen, L. P. J., and Wolpert, D. M. (2008). Noise in the nervous system. Nature

Reviews Neuroscience, 9:292–303, doi:10.1038/nrn2258.

Faisal, A. A., White, J. A., and Laughlin, S. B. (2005). Ion-channel noise places lim-

its on the miniaturization of the brain’s wiring. Current Biology, 15(12):1143–1149,

doi:10.1016/j.cub.2005.05.056.

Farmer, J. D., Packard, N. H., and Perelson, A. S. (1986). The immune system, adaptation, and

machine learning. Phys. D, 2(1-3):187–204, doi:10.1016/0167-2789(81)90072-5.

Fatt, P. and Katz, B. (1952). Spontaneous subthreshold activity at motor nerve endings. Journal

of Physiology, 117(1):109–128.

Flavell, S. W., Pokala, N., Macosko, E. Z., Albrecht, D. R., Larsch, J., and Bargmann, C. I. (2013).

Serotonin and the neuropeptide pdf initiate and extend opposing behavioral states in c.

elegans. Cell, 154(5):1023–1035, doi:10.1016/j.cell.2013.08.001.

Floreano, D. and Keller, L. (2010). Evolution of adaptive behaviour in robots by means of

darwinian selection. PLoS Biology, 8(1):e1000292, doi:10.1371/journal.pbio.1000292.

Fogel, D. B. (1994). An introduction to simulated evolutionary optimization. IEEE Transactions

on Neural Networks, 5(1):3–14, doi:10.1109/72.265956.

Fogel, D. B. (1995). Evolutionary computation: toward a new philosophy of machine intelligence.

IEEE Press, Piscataway, NJ, USA.

Fogel, D. B. (1998a). Evolutionary computation: The Fossil Record. Wiley-IEEE Press, Piscataway,

NJ, USA.

Fogel, D. B. (1998b). Unearthing a fossil from the history of evolutionary computation. Funda-

menta Informaticae, 35(1–4):1–16.

Fogel, L. J. (1962). Autonomous automata. Industrial Research, 4(2):14–19.

Foster, J. A. (2001). Evolutionary computation. Nature Review Genetics, 2(6):428–36,

doi:10.1038/35076523.

Funahashi, K.-I. and Nakamura, Y. (1993). Approximation of dynamical systems by continuous

time recurrent neural networks. Neural Networks, 6(6):801–806, doi:10.1016/S0893-

6080(05)80125-X.

138

http://dx.doi.org/10.1016/S0020-0190(02)00204-1
http://dx.doi.org/10.1038/nrn2258
http://dx.doi.org/10.1016/j.cub.2005.05.056
http://dx.doi.org/10.1016/0167-2789(81)90072-5
http://dx.doi.org/10.1016/j.cell.2013.08.001
http://dx.doi.org/10.1371/journal.pbio.1000292
http://dx.doi.org/10.1109/72.265956
http://dx.doi.org/10.1038/35076523
http://dx.doi.org/10.1016/S0893-6080(05)80125-X
http://dx.doi.org/10.1016/S0893-6080(05)80125-X

Bibliography

Gandomi, A. H. and Yang, X.-S. (2011). Benchmark problems in structural optimization. In

Koziel, S. and Yang, X.-S., editors, Computational Optimization, Methods and Algorithms,

chapter 12, pages 259–281. Springer, Berlin, Germany.

Gandomi, A. H., Yang, X.-S., and Alavi, A. H. (2011). Mixed variable structural

optimization using firefly algorithm. Computers & Structures, 89(23):2325–2336,

doi:10.1016/j.compstruc.2011.08.002.

Geiger, R. and Sanchez-Sinencio, E. (1985). Active filter design using operational transcon-

ductance amplifiers: A tutorial. IEEE Circuits and Devices Magazine, 1(2):20–32,

doi:10.1109/MCD.1985.6311946.

Gieseke, F. and Kramer, O. (2013). Towards non-linear constraint estimation for expensive

optimization. In Esparcia-Alcázar, A., editor, Applications of Evolutionary Computation,

pages 459–468. Springer Berlin Heidelberg.

Ginley, B. M., Maher, J., Riordan, C. O., and Morgan, F. (2011). Maintaining healthy popula-

tion diversity using adaptive crossover, mutation and selection. IEEE Transactions on

Evolutionary Computation, 15(5):692–714, doi:10.1109/TEVC.2010.2046173.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning.

Addison-Wesley Longman Publishing Co., Inc, Boston, MA, USA.

Goldberg, D. E. and Richardson, J. (1987). Genetic algorithms with sharing for multimodal

function optimization. In Genetic Algorithms and Their Applications: Proceedings of the

Second International Conference on Genetic Algorithms, pages 41–49, Hillsdale, NJ, USA.

L. Erlbaum Associates Inc.

Gomes, J., Urbano, P., and Christensen, A. (2012). Progressive minimal criteria novelty search.

In Pavón, J., Duque-Méndez, N., and Fuentes-Fernández, R., editors, Advances in Artificial

Intelligence – IBERAMIA 2012, volume 7637 of Lecture Notes in Computer Science, pages

281–290. Springer Berlin Heidelberg.

Gordon, M. D. and Scott, K. (2009). Motor control in a drosophila taste circuit. Neuron,

61(3):373–384, doi:10.1016/j.neuron.2008.12.033.

Grillner, S. and Jessell, T. (2009). Measured motion: searching for simplicity in

spinal locomotor networks. Current Opinion in Neurobiology, 19(6):572–586,

doi:10.1016/j.conb.2009.10.011.

Gu, H., Jiang, S., Campusano, J., Iniguez, J., Su, H., Hoang, A., Lavian, M., Sun, X., and O’Dowd,

D. (2008). Ca22-type calcium channels encoded by cac regulate ap-independent neuro-

transmitter release at cholinergic synapses in adult drosophila brain. Journal of Neuro-

physiology, 101(1):42–53, doi:10.1152/jn.91103.2008.

Hamida, S. B. and Schoenauer, M. (2002). ASCHEA: New Results Using Adaptive Segregational

Constraint Handling. In Proceedings of the IEEE Congress on Evolutionary Computation,

volume 1 of CEC 2002, pages 884–889. IEEE.

139

http://dx.doi.org/10.1016/j.compstruc.2011.08.002
http://dx.doi.org/10.1109/MCD.1985.6311946
http://dx.doi.org/10.1109/TEVC.2010.2046173
http://dx.doi.org/10.1016/j.neuron.2008.12.033
http://dx.doi.org/10.1016/j.conb.2009.10.011
http://dx.doi.org/10.1152/jn.91103.2008

Bibliography

Hamza, N. M., Sarker, R. A., Essam, D. L., Deb, K., and Elsayed, S. M. (2014). A constraint con-

sensus memetic algorithm for solving constrained optimization problems. Engineering

Optimization, 46(11):1447–1464, doi:10.1080/0305215X.2013.846336.

Hansen, N., Auger, A., Ros, R., Finck, S., and Pošík, P. (2010). Comparing results of 31 algorithms

from the black-box optimization benchmarking bbob-2009. In Proceedings of the 12th

Annual Conference Companion on Genetic and Evolutionary Computation, GECCO ’10,

pages 1689–1696, New York, NY, USA. ACM.

Hansen, N., Muller, S., and Koumoutsakos, P. (2003). Reducing the time complexity of the

derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evolu-

tionary Computation, 11(1):1–18, doi:10.1162/106365603321828970.

He, Q. and Wang, L. (2007a). An effective co-evolutionary particle swarm optimization for con-

strained engineering design problems. Engineering Applications of Artificial Intelligence,

20(1):89–99, doi:10.1016/j.engappai.2006.03.003.

He, Q. and Wang, L. (2007b). A hybrid particle swarm optimization with a feasibility-based rule

for constrained optimization. Applied Mathematics and Computation, 186(2):1407–1422,

doi:10.1016/j.amc.2006.07.134.

Hoffmeister, F. and Sprave, J. (1996). Problem-independent handling of constraints by use of

metric penalty functions. In Proceedings of the Fifth Annual Conference on Evolutionary

Programming, pages 289–294. MIT Press.

Holland, J. H. (1975). Adaptation in natural and artificial systems: An introductory analysis

with applications to biology, control, and artificial intelligence. University of Michigan

Press.

Hornby, G., Lohn, J., and Linden, D. (2011). Computer-automated evolution of an x-band

antenna for nasa’s space technology 5 mission. Evolutionary computation, 19(1):1–23,

doi:10.1162/EVCO_a_00005.

Hu, X., Eberhart, R., and Shi, Y. (2003). Engineering optimization with particle swarm. In

Proceedings of the IEEE Swarm Intelligence Symposium, SIS 2003, pages 53–57.

Huang, V., Qin, A., and Suganthan, P. (2006). Self-adaptive differential evolution algorithm for

constrained real-parameter optimization. In Yen, G. G., Lucas, S. M., Fogel, G., Kendall,

G., Salomon, R., Zhang, B., Coello Coello, C. A., and Runarsson, T. D., editors, Proceedings

of the IEEE Congress on Evolutionary Computation, CEC 2006, pages 17–24. IEEE.

Igel, C., Suttorp, T., and Hansen, N. (2006). A computational efficient covariance matrix update

and a (1+1)-cma for evolution strategies. In Proceedings of the 8th Annual Conference on

Genetic and Evolutionary Computation, GECCO ’06, pages 453–460, New York, NY, USA.

ACM.

140

http://dx.doi.org/10.1080/0305215X.2013.846336
http://dx.doi.org/10.1162/106365603321828970
http://dx.doi.org/10.1016/j.engappai.2006.03.003
http://dx.doi.org/10.1016/j.amc.2006.07.134
http://dx.doi.org/10.1162/EVCO_a_00005

Bibliography

Izquierdo, E. and Lockery, S. (2010). Evolution and analysis of minimal neural circuits for

klinotaxis in caenorhabditis elegans. The Journal of Neuroscience, 30(39):12908–12917,

doi:10.1523/JNEUROSCI.2606-10.2010.

Jia, G., Wang, Y., Cai, Z., and Jin, Y. (2013). An improved (µ + λ)-constrained differ-

ential evolution for constrained optimization. Information Sciences, 222:302–322,

doi:10.1016/j.ins.2012.01.017.

Jin, Y. (2011). Surrogate-assisted evolutionary computation: Recent advances

and future challenges. Swarm and Evolutionary Computation, 1(2):61–70,

doi:10.1016/j.swevo.2011.05.001.

Juric, M. (1994). An anti-adaptationist approach to genetic algorithms. In Proceedings of the

First IEEE Conference on Evolutionary Computation, volume 2, pages 619–623.

Kämpf, J. H. and Robinson, D. (2010). Optimisation of building form for solar energy utilisa-

tion using constrained evolutionary algorithms. Energy and Buildings, 42(6):807–814,

doi:10.1016/j.enbuild.2009.11.019.

Kaplan, J. and Yorke, J. (1979). Chaotic behavior of multidimensional difference equations.

In Peitgen, H.-O. and Walther, H.-O., editors, Functional Differential Equations and

Approximation of Fixed Points, volume 730 of Lecture Notes in Mathematics, pages 204–

227. Springer Berlin Heidelberg.

Kawasaki, F., Felling, R., and Ordway, R. W. (2000). A temperature-sensitive paralytic mutant

defines a primary synaptic calcium channel in drosophila. The Journal of Neuroscience,

20(13):4885–4889.

Koch, C., Cziesla, F., and Tsatsaronis, G. (2007). Optimization of combined cycle power

plants using evolutionary algorithms. Chemical Engineering and Processing: Process

Intensification, 46(11):1151–1159, doi:10.1016/j.cep.2006.06.025.

Kominami, M. and Hamagami, T. (2007). A new genetic algorithm with diploid chromo-

somes by using probability decoding for non-stationary function optimization. In IEEE

International Conference on Systems, Man and Cybernetics, ISIC 2007, pages 1268–1273.

Kong, X., Ouyang, H., and Piao, X. (2013). A prediction-based adaptive grouping differ-

ential evolution algorithm for constrained numerical optimization. Soft Computing,

17(12):2293–2309, doi:10.1007/s00500-013-1090-y.

Kramer, O., Barthelmes, A., and Rudolph, G. (2009). Surrogate constraint functions for cma

evolution strategies. In KI 2009: Advances in Artificial Intelligence, volume 5803, pages

169–176. Springer Berlin Heidelberg.

Kramer, O., Schlachter, U., and Spreckels, V. (2013). An adaptive penalty function with meta-

modeling for constrained problems. In Proceedings of the IEEE Congress on Evolutionary

Computation, CEC 2013, pages 1350–1354. IEEE.

141

http://dx.doi.org/10.1523/JNEUROSCI.2606-10.2010
http://dx.doi.org/10.1016/j.ins.2012.01.017
http://dx.doi.org/10.1016/j.swevo.2011.05.001
http://dx.doi.org/10.1016/j.enbuild.2009.11.019
http://dx.doi.org/10.1016/j.cep.2006.06.025
http://dx.doi.org/10.1007/s00500-013-1090-y

Bibliography

Kramer, O. and Schwefel, H. (2006). On three new approaches to handle constraints within

evolution strategies. Natural Computing, 5(4):1–22, doi:10.1007/s11047-006-0001-x.

Kramer, O., Ting, C.-K., and Büning, H. K. (2005). A new mutation operator for evolution

strategies for constrained problems. In Proceedings of the IEEE Congress on Evolutionary

Computation, volume 3 of CEC 2005, pages 2600–2606. IEEE.

Kukkonen, S. and Lampinen, J. (2006). Constrained real-parameter optimization with gen-

eralized differential evolution. In Proceedings of the IEEE Congress on Evolutionary

Computation, CEC 2006, pages 911–918, Vancouver, BC, Canada. IEEE.

Kusakci, A. O. and Can, M. (2013a). An adaptive penalty based covariance matrix

adaptation–evolution strategy. Computers & Operations Research, 40(10):2398–2417,

doi:10.1016/j.cor.2013.03.013.

Kusakci, A. O. and Can, M. (2013b). A novel evolution strategy for constrained optimization in

engineering design. In XXIV International Symposium on Information, Communication

and Automation Technologies (ICAT), pages 1–6. IEEE.

Lässig, J. and Hoffmann, K. H. (2009). Threshold-selecting strategy for best possible ground

state detection with genetic algorithms. Physical Review E: Statistical, Nonlinear, and Soft

Matter Physics, 79(4):046702, doi:10.1103/PhysRevE.79.046702.

Leguizamón, G. and Coello Coello, C. A. (2009). Boundary search for constrained numerical op-

timization problems with an algorithm inspired on the ant colony metaphor. IEEE Trans-

actions on Evolutionary Computation, 13(2):350–368, doi:10.1109/TEVC.2008.926731.

Lehman, J. and Stanley, K. O. (2008). Exploiting open-endedness to solve problems through

the search for novelty. In ALIFE, pages 329–336.

Lehman, J. and Stanley, K. O. (2010). Revising the evolutionary computation abstraction:

Minimal criteria novelty search. In Proceedings of the 12th Annual Conference on Genetic

and Evolutionary Computation, GECCO ’10, pages 103–110, New York, NY, USA. ACM.

Lehman, J. and Stanley, K. O. (2011). Evolving a diversity of virtual creatures through novelty

search and local competition. In Proceedings of the 13th Annual Conference on Genetic

and Evolutionary Computation, GECCO ’11, pages 211–218, New York, NY, USA. ACM.

Lenski, R. E., Ofria, C., Pennock, R., and Adami, C. (2003). Evolutionary origin of complex

features. Nature, 423:139–144, doi:10.1038/nature01568.

Lewontin, R. C. (1970). The units of selection. Annual Review of Ecology and Systematics,

1(1):1–18, doi:10.1146/annurev.es.01.110170.000245.

Li, J.-P., Balazs, M. E., Parks, G. T., and Clarkson, P. J. (2002). A species conserving genetic

algorithm for multimodal function optimization. Evolutionary Computation, 10(3):207–

34, doi:10.1162/106365602760234081.

142

http://dx.doi.org/10.1007/s11047-006-0001-x
http://dx.doi.org/10.1016/j.cor.2013.03.013
http://dx.doi.org/10.1103/PhysRevE.79.046702
http://dx.doi.org/10.1109/TEVC.2008.926731
http://dx.doi.org/10.1038/nature01568
http://dx.doi.org/10.1146/annurev.es.01.110170.000245
http://dx.doi.org/10.1162/106365602760234081

Bibliography

Liang, J., Runarsson, T., Mezura-Montes, E., Clerc, M., Suganthan, P., Coello Coello, C. A., and

Deb, K. (2006). Problem definitions and evaluation criteria for the cec 2006 special session

on constrained real-parameter optimization. Technical report, Nanyang Technological

University, Singapore.

Liang, J. and Suganthan, P. (2006). Dynamic multi-swarm particle swarm optimizer with a

novel constraint-handling mechanism. In Yen, G. G., Lucas, S. M., Fogel, G., Kendall, G.,

Salomon, R., Zhang, B., Coello Coello, C. A., and Runarsson, T. D., editors, Proceedings of

the IEEE Congress on Evolutionary Computation, CEC 2006, pages 9–16. IEEE.

Liu, H., Cai, Z., and Wang, Y. (2010). Hybridizing particle swarm optimization with differ-

ential evolution for constrained numerical and engineering optimization. Applied Soft

Computing, 10(2):629–640, doi:10.1016/j.asoc.2009.08.031.

Long, W., Liang, X., Huang, Y., and Chen, Y. (2013). A hybrid differential evolution augmented

lagrangian method for constrained numerical and engineering optimization. Computer-

Aided Design, 45(12):1562–1574, doi:10.1016/j.cad.2013.07.007.

Lung, R. I. (2004). A subpopulation stability based evolutionary technique for multimodal

optimization. In Proceedings of the Genetic and Evolutionary Computation Conference,

GECCO ’04, pages 26–30.

Mackay, T. F. C., Richards, S., Stone, E. A., Barbadilla, A., Ayroles, J., Zhu, D., Casillas, S.,

Han, Y., Magwire, M. M., Cridland, J. M., Richardson, M. F., Anholt, R. R. H., Barrón, M.,

Bess, C., Blankeburg, K. P., Carbone, M. A., Castellano, D., Chaboub, L., Duncan, L., Har-

ris, Z., Javaid, M., Jayaseelan, J. C., Jhangiani, S. N., Jordan, K. W., Lara, F., Lawrence,

F., Lee, S. L., Librado, P., Linheiro, R. S., Lyman, R. F., Mackey, A. J., Munidasa, M.,

Muzny, D. M., Nazareth, L., Newsham, I., Perales, L., Pu, L., Qu, C., Ramia, M., Reid,

J. G., Rollmann, S. M., Rozas, J., Saada, N., Turlapati, L., Worley, K. C., Wu, Y., Ya-

mamoto, A., Zhu, Y., Bergman, C. M., Thornton, K. R., Mittelman, D., and Gibbs, R. A.

(2012). The drosophila melanogaster genetic reference panel. Nature, 482(7384):173–178,

doi:10.1038/nature10811.

Mackay, T. F. C., Stone, E. A., and Ayroles, J. F. (2009). The genetics of quantitative traits:

challenges and prospects. Nature Reviews Genetics, 10:565–577, doi:10.1038/nrg2612.

Maesani, A., Fernando, P. R., and Floreano, D. (2014). Artificial evolution by viability rather

than competition. PLoS ONE, 9(1):e86831, doi:10.1371/journal.pone.0086831.

Maesani, A. and Floreano, D. (2014). Viability principles for constrained optimization using a

(1+1)-cma-es. In Parallel Problem Solving from Nature, PPSN 14. To appear.

Maimon, G., Straw, A. D., and Dickinson, M. H. (2010). Active flight increases the

gain of visual motion processing in drosophila. Nature Neuroscience, 13(3):393–399,

doi:10.1038/nn.2492.

143

http://dx.doi.org/10.1016/j.asoc.2009.08.031
http://dx.doi.org/10.1016/j.cad.2013.07.007
http://dx.doi.org/10.1038/nature10811
http://dx.doi.org/10.1038/nrg2612
http://dx.doi.org/10.1371/journal.pone.0086831
http://dx.doi.org/10.1038/nn.2492

Bibliography

Mallipeddi, R. and Suganthan, P. N. (2010). Ensemble of constraint handling

techniques. IEEE Transactions on Evolutionary Computation, 14(4):561–579,

doi:10.1109/TEVC.2009.2033582.

Mante, V., Sussillo, D., Shenoy, K. V., and Newsome, W. T. (2013). Context-dependent

computation by recurrent dynamics in prefrontal cortex. Nature, 503(7474):78–84,

doi:10.1038/nature12742.

Marder, E. (2011). Variability, compensation, and modulation in neurons and circuits.

Proceedings of the National Academy of Science USA, 108(SUPPL. 3):15542–15548,

doi:10.1073/pnas.1010674108.

Marder, E. and Taylor, A. L. (2011). Multiple models to capture the variability in biological

neurons and networks. Nature Neuroscience, 14:133–138, doi:10.1038/nn.2735.

Marín, J. and Solé, R. (1999). Macroevolutionary algorithms: A new optimization method

on fitness landscapes. IEEE Transactions on Evolutionary Computation, 3(4):272–286,

doi:10.1109/4235.797970.

Martin, J. R. (2004). A portrait of locomotor behaviour in drosophila deter-

mined by a video-tracking paradigm. Behavioural processes, 67(2):207–219,

doi:10.1016/j.beproc.2004.04.003.

Martin, J. R., Ernst, R., and Heisenberg, M. (1999). Temporal pattern of locomotor activ-

ity in drosophila melanogaster. Journal of Computational Physiology A, 184(1):73–84,

doi:10.1007/s003590050307.

Martin, J. R., Faure, P., and Ernst, R. (2001). The power law distribution for walking-time

intervals correlates with the ellipsoid-body in drosophila. Journal of Neurogenetics, 15(3-

4):205–219, doi:10.3109/01677060109167377.

Mattiussi, C. and Floreano, D. (2003). Viability evolution: Elimination and extinction in

evolutionary computation. Technical report, EPFL. EPFL-REPORT-177577, Available

from: http://infoscience.epfl.ch/record/177577.

Mattiussi, C., Waibel, M., and Floreano, D. (2004). Measures of diversity for populations

and distances between individuals with highly reorganizable genomes. Evolutionary

Computation, 12(4):495–515, doi:10.1162/1063656043138923.

Maye, A., Hsieh, C., Sugihara, G., and Brembs, B. (2007). Order in spontaneous behavior. PLoS

ONE, 2(5):e443, doi:10.1371/journal.pone.0000443.

Mayr, E. (2002). What Evolution Is. Orion Books Ltd., London, UK.

McDonnell, M. D. and Abbott, D. (2009). What is stochastic resonance? definitions, misconcep-

tions, debates, and its relevance to biology. PLoS Computational Biology, 5(5):e1000348,

doi:10.1371/journal.pcbi.1000348.

144

http://dx.doi.org/10.1109/TEVC.2009.2033582
http://dx.doi.org/10.1038/nature12742
http://dx.doi.org/10.1073/pnas.1010674108
http://dx.doi.org/10.1038/nn.2735
http://dx.doi.org/10.1109/4235.797970
http://dx.doi.org/10.1016/j.beproc.2004.04.003
http://dx.doi.org/10.1007/s003590050307
http://dx.doi.org/10.3109/01677060109167377
http://infoscience.epfl.ch/record/177577
http://dx.doi.org/10.1162/1063656043138923
http://dx.doi.org/10.1371/journal.pone.0000443
http://dx.doi.org/10.1371/journal.pcbi.1000348

Bibliography

McDonnell, M. D. and Ward, L. M. (2011). The benefits of noise in neural systems: bridging

theory and experiment. Nature Reviews Neuroscience, 12:415–426, doi:10.1038/nrn3061.

Mezura-Montes, E. and Coello, C. A. C. (2008). Constrained optimization via multiobjective

evolutionary algorithms. In Knowles, J., Corne, D., Deb, K., and Chair, D., editors, Multi-

objective Problem Solving from Nature, Natural Computing Series, pages 53–75. Springer

Berlin Heidelberg.

Mezura-Montes, E., Coello Coello, C., and Tun-Morales, E. (2004). Simple feasibility rules and

differential evolution for constrained optimization. In Monroy, R., Arroyo-Figueroa, G.,

Sucar, L., and Sossa, H., editors, MICAI 2004: Advances in Artificial Intelligence, volume

2972 of Lecture Notes in Computer Science, pages 707–716. Springer Berlin Heidelberg.

Mezura-Montes, E. and Coello Coello, C. A. (2005). A simple multimembered evolution

strategy to solve constrained optimization problems. IEEE Transactions on Evolutionary

Computation, 9(1):1–17, doi:10.1109/TEVC.2004.836819.

Mezura-Montes, E. and Coello Coello, C. A. (2011). Constraint-handling in nature-inspired

numerical optimization: past, present and future. Swarm and Evolutionary Computation,

1(4):173–194, doi:10.1016/j.swevo.2011.10.001.

Mezura-Montes, E., Coello Coello, C. A., and Velázquez-Reyes, J. (2006). Increasing successful

offspring and diversity in differential evolution for engineering design. In Proceedings

of the 7th International Conference on Adaptive Computing in Design and Manufacture,

ACDM 2006, pages 131–139.

Mezura-Montes, E. and Lopez-Ramirez, B. C. (2007). Comparing bio-inspired algorithms in

constrained optimization problems. In Proceedings of the IEEE Congress on Evolutionary

Computation, CEC 2007, pages 662–669. IEEE.

Mezura-Montes, E., Miranda-Varela, M. E., and del Carmen Gomez-Ramon, R. (2010). Differ-

ential evolution in constrained numerical optimization: An empirical study. Information

Sciences, 180(22):4223–4262, doi:10.1016/j.ins.2010.07.023.

Mezura-Montes, E. and Palomeque-Ortiz, A. (2009). Self-adaptive and deterministic parameter

control in differential evolution for constrained optimization. In Mezura-Montes, E.,

editor, Constraint-Handling in Evolutionary Optimization, volume 198 of Studies in

Computational Intelligence, pages 95–120. Springer Berlin Heidelberg.

Mezura-Montes, E. and Palomeque-Ortiz, A. G. (2009). Parameter control in differential evolu-

tion for constrained optimization. In Proceedings of the IEEE Congress on Evolutionary

Computation, CEC 2009, pages 1375–1382. IEEE.

Mezura-Montes, E., Velazquez-Reyes, H., and Coello Coello, C. A. (2006). Modified differ-

ential evolution for constrained optimization. In Proceedings of the IEEE Congress on

Evolutionary Computation, CEC 2006, pages 25–32. IEEE.

145

http://dx.doi.org/10.1038/nrn3061
http://dx.doi.org/10.1109/TEVC.2004.836819
http://dx.doi.org/10.1016/j.swevo.2011.10.001
http://dx.doi.org/10.1016/j.ins.2010.07.023

Bibliography

Michalewicz, Z. (1995). A survey of constraint handling techniques in evolutionary computa-

tion methods. In Proceedings of the 4th Annual Conference on Evolutionary Programming,

pages 135–155, Cambridge, MA, USA. MIT Press.

Michalewicz, Z., Dasgupta, D., Riche, R. L., and Schoenauer, M. (1996). Evolutionary algorithms

for constrained engineering problems. Computers & Industrial Engineering Journal,

30(4):851–870, doi:10.1016/0360-8352(96)00037-X.

Mitri, S., Floreano, D., and Keller, L. (2009). The evolution of information suppres-

sion in communicating robots with conflicting interests. PNAS, 106(37):15786–14790,

doi:10.1073/pnas.0903152106.

Mohamed, A. W. and Sabry, H. Z. (2012). Constrained optimization based on modified differen-

tial evolution algorithm. Information Sciences, 194:171–208, doi:10.1016/j.ins.2012.01.008.

Montanier, J.-M. and Bredeche, N. (2013). Evolution of altruism and spatial dispersion: an

artificial evolutionary ecology approach. In Advances in Artificial Life, volume 12 of ECAL

2013, pages 260–267.

Mouret, J.-B. (2011). Novelty-based multiobjectivization. In New Horizons in Evolutionary

Robotics, volume 341, pages 139–154. Springer Berlin Heidelberg.

Mühlenbein, H. and Schlierkamp-Voosen, D. (1993). The science of breeding and its ap-

plication to the breeder genetic algorithm. Evolutionary Computation, 1(4):335–360,

doi:10.1162/evco.1993.1.4.335.

Munoz-Zavala, A., Hernandez-Aguirre, A., Villa-Diharce, E., and Botello-Rionda, S. (2006).

Peso+ for constrained optimization. In Yen, G. G., Lucas, S. M., Fogel, G., Kendall, G.,

Salomon, R., Zhang, B.-T., Coello Coello, C. A., and Runarsson, T. P., editors, Proceedings

of the IEEE Congress on Evolutionary Computation, CEC 2006, pages 231–238. IEEE.

Nelson, A. L., Barlow, G. J., and Doitsidis, L. (2009). Fitness functions in evolutionary

robotics: A survey and analysis. Robotics and Autonomous Systems, 57(4):345–370,

doi:10.1016/j.robot.2008.09.009.

Neri, F., Cotta, C., and Moscato, P., editors (2011). Handbook of Memetic Algorithms, volume

379 of Studies in Computational Intelligence. Springer.

Neri, F., Toivanen, J., Cascella, G. L., and Ong, Y.-S. (2007). An adaptive multimeme algorithm

for designing hiv multidrug therapies. IEEE/ACM Transactions on Computational Biology

and Bioinformatics, 4(2):264–278, doi:10.1109/TCBB.2007.070202.

Ofria, C. and Wilke, C. O. (2004). Avida: a software platform for research in computational

evolutionary biology. Artificial Life, 10(2):191–229, doi:10.1162/106454604773563612.

Oyman, A., Deb, K., and Beyer, H.-G. (1999). An alternative constraint handling method for evo-

lution strategies. In Proceedings of the 1999 IEEE Congress on Evolutionary Computation,

volume 1 of CEC 1999, pages 612–619. IEEE.

146

http://dx.doi.org/10.1016/0360-8352(96)00037-X
http://dx.doi.org/10.1073/pnas.0903152106
http://dx.doi.org/10.1016/j.ins.2012.01.008
http://dx.doi.org/10.1162/evco.1993.1.4.335
http://dx.doi.org/10.1016/j.robot.2008.09.009
http://dx.doi.org/10.1109/TCBB.2007.070202
http://dx.doi.org/10.1162/106454604773563612

Bibliography

Pant, M., Thangaraj, R., and Abraha, A. (2009). Low discrepancy initialized particle swarm

optimization for solving constrained optimization problems. Fundamenta Informaticae,

95(4):511–531, doi:10.3233/FI-2009-162.

Park, T. and Ryu, K. R. (2010). A dual-population genetic algorithm for adaptive di-

versity control. IEEE Transactions on Evolutionary Computation, 14(6):865–884,

doi:10.1109/TEVC.2010.2043362.

Pescador Rojas, M. and Coello Coello, C. A. (2012). A memetic algorithm with simplex crossover

for solving constrained optimization problems. In World Automation Congress, WAC

2012, pages 1–6. IEEE.

Petrowski, A. (1996). A clearing procedure as a niching method for genetic algorithms. In

Proceedings of IEEE International Conference on Evolutionary Computation, pages 798–

803.

Poli, R., Kennedy, J., and Blackwell, T. (2007). Particle swarm optimization. Swarm Intelligence,

1(1):33–57, doi:10.1007/s11721-007-0002-0.

Portugues, R., Feierstein, C. E., Engert, F., and Orger, M. B. (2014). Whole-brain activity maps

reveal stereotyped, distributed networks for visuomotor behavior. Neuron, 81(6):1328–

1343, doi:10.1016/j.neuron.2014.01.019.

Price, K. V., Storn, R. M., and Lampinen, J. A. (2005). Differential Evolution: A Practical

Approach to Global Optimization. Springer Berlin Heidelberg, Berlin, Germany.

Proekt, A., Banavar, J. R., Maritan, A., and Pfaff, D. W. (2012). Scale invariance in the dy-

namics of spontaneous behavior. Proceedings of the National Academy of Science USA,

109(26):10564–10569, doi:10.1073/pnas.1206894109.

R. Mallipeddi, P. S. (2010). Problem definitions and evaluation criteria for the cec 2010 compe-

tition on constrained real-parameter optimization. Technical report, Nanyang Techno-

logical University, Singapore.

Ramdya, P. and Benton, R. (2010). Evolving olfactory systems on the fly. Trends in Genetics,

26(7):307–316, doi:10.1016/j.tig.2010.04.004.

Ramdya, P. and Engert, F. (2008). Emergence of binocular functional properties in a monocular

neural circuit. Nature Neuroscience, 11(9):1083–1090, doi:10.1038/nn.2166.

Ramdya, P., Schaffter, T., Floreano, D., and Benton, R. (2012). Fluorescence behavioral imaging

(fbi) tracks identity in heterogeneous groups of drosophila. PLoS ONE, 7(11):e48381,

doi:10.1371/journal.pone.0048381.

Rasheed, K. (1998). An adaptive penalty approach for constrained genetic-algorithm optimiza-

tion. In Proceedings of the Third Annual Genetic Programming Conference, pages 584–590.

Morgan Kaufmann Publishers.

147

http://dx.doi.org/10.3233/FI-2009-162
http://dx.doi.org/10.1109/TEVC.2010.2043362
http://dx.doi.org/10.1007/s11721-007-0002-0
http://dx.doi.org/10.1016/j.neuron.2014.01.019
http://dx.doi.org/10.1073/pnas.1206894109
http://dx.doi.org/10.1016/j.tig.2010.04.004
http://dx.doi.org/10.1038/nn.2166
http://dx.doi.org/10.1371/journal.pone.0048381

Bibliography

Ray, T. (1991). Evolution and optimization of digital organisms. In R., B. K., Derohanes, E., and

H. Brown, I., editors, Scientific Excellence in Supercomputing: The IBM 1990 Contest Prize

Papers, pages 489–531. The Baldwin Press.

Rechenberg, I. (1965). Cybernetic solution path of an experimental problem. In Royal Aircraft

Establishment Translation No. 1122, B. F. Toms, Trans. Ministry of Aviation, Royal Aircraft

Establishment, Farnborough Hants.

Reichardt, W. (1961). Autocorrelation, a principle for the evaluation of sensory information by

the central nervous system. Sensory Communication, pages 303–317.

Rieckhof, G. E., Yoshinara, M., Guan, Z., and Littleton, J. (2003). Presynaptic n-type calcium

channels regulate synaptic growth. Journal of Biological Chemistry, 278(42):41099–41108,

doi:10.1074/jbc.M306417200.

Rönkkönen, J., Li, X., Kyrki, V., and Lampinen, J. (2008). A generator for multimodal test

functions with multiple global optima. In Li, X., Kirley, M., Zhang, M., Green, D., Ciesielski,

V., Abbass, H., Michalewicz, Z., Hendtlass, T., Deb, K., Tan, K., Branke, J., and Shi, Y.,

editors, Simulated Evolution and Learning, volume 5361 of Lecture Notes in Computer

Science, pages 239–248. Springer Berlin Heidelberg.

Runarsson, T. (2006). Approximate evolution strategy using stochastic ranking. In Yen, G. G.,

Lucas, S. M., Fogel, G., Kendall, G., Salomon, R., Zhang, B., Coello Coello, C. A., and

Runarsson, T. D., editors, Proceedings of the IEEE Congress on Evolutionary Computation,

CEC 2006, pages 745–752. IEEE.

Runarsson, T. P. and Y., X. (2005). Search biases in constrained evolutionary optimization. IEEE

Transactions on Systems, Man, and Cybernetics. C, Applications Review, 35(2):233–243,

doi:10.1109/TSMCC.2004.841906.

Runarsson, T. P. and Yao, X. (2000). Stochastic ranking for constrained evolution-

ary optimization. IEEE Transactions on Evolutionary Computation, 4(3):284–294,

doi:10.1109/4235.873238.

Ruppin, E. (2002). Evolutionary autonomous agents: A neuroscience perspective. Nature

Reviews Neuroscience, 3(2):132–141, doi:10.1038/nrn729.

Ruta, V., Datta, S. R., Vasconcelos, M. L., Freeland, J., Looger, L. L., and Axel, R. (2010). A

dimorphic pheromone circuit in drosophila from sensory input to descending output.

Nature, 468(7324):686–690, doi:10.1038/nature09554.

Sadollah, A., Bahreininejad, A., Eskandar, H., and Hamdi, M. (2013). Mine blast algorithm:

A new population based algorithm for solving constrained engineering optimization

problems. Applied Soft Computing, 13(5):2592–2612, doi:10.1016/j.asoc.2012.11.026.

Salcedo-Sanz, S. (2009). A survey of repair methods used as constraint handling

techniques in evolutionary algorithms. Computer Science Review, 3(3):175–192,

doi:10.1016/j.cosrev.2009.07.001.

148

http://dx.doi.org/10.1074/jbc.M306417200
http://dx.doi.org/10.1109/TSMCC.2004.841906
http://dx.doi.org/10.1109/4235.873238
http://dx.doi.org/10.1038/nrn729
http://dx.doi.org/10.1038/nature09554
http://dx.doi.org/10.1016/j.asoc.2012.11.026
http://dx.doi.org/10.1016/j.cosrev.2009.07.001

Bibliography

Sareni, B. and Krahenbuhl, L. (1998). Fitness sharing and niching methods revisited. IEEE

Transactions on Evolutionary Computation, 2(3):97–106, doi:10.1109/4235.735432.

Schmidt, M. and Lipson, H. (2009). Distilling free-form natural laws from experimental data.

Science, 324(5923):81–85, doi:10.1126/science.1165893.

Schraudolph, N. N. (1999). A fast, compact approximation of the exponential function. Neural

Computation, 11(4):853–862.

Schwefel, H.-P. (1965). Kybernetische evolution als strategie der experimentellen forschung in

der strömungstechnik. Master’s thesis, Technische Universität, Berlin, Germany.

Schwefel, H.-P. P. (1993). Evolution and optimum seeking: the sixth generation. John Wiley &

Sons, Inc., New York, NY, USA.

Seelig, J., Chiappe, M., Lott, G., Dutta, A., Osborne, J., Reiser, M., and Jayaraman, V. (2010).

Two-photon calcium imaging from head-fixed drosophila during optomotor walking

behavior. Nature Methods, 7(7):535–540, doi:10.1038/nmeth.1468.

Shir, O. and Bäck, T. (2006). Niche radius adaptation in the cma-es niching algorithm. In

Runarsson, T., Beyer, H.-G., Burke, E., Merelo-Guervós, J., Whitley, L., and Yao, X., editors,

Parallel Problem Solving from Nature - PPSN IX, volume 4193 of Lecture Notes in Computer

Science, pages 142–151. Springer Berlin Heidelberg.

Siarry, P., Pétrowski, A., and Bessaou, M. (2002). A multipopulation genetic algorithm

aimed at multimodal optimization. Advances in Engineering Software, 33(4):207–213,

doi:http://dx.doi.org/10.1016/S0965-9978(02)00010-8.

Singh, G. and Deb, K. (2006). Comparison of multi-modal optimization algorithms based

on evolutionary algorithms. In Proceedings of the 8th annual conference on Genetic and

evolutionary computation, GECCO ’06, pages 1305–1312, New York, NY, USA. ACM.

Sinha, A., Srinivasan, A., and Deb, K. (2006). A population-based, parent centric procedure for

constrained real-parameter optimization. In Yen, G. G., Lucas, S. M., Fogel, G., Kendall,

G., Salomon, R., Zhang, B., Coello Coello, C. A., and Runarsson, T. D., editors, Proceedings

of the IEEE Congress on Evolutionary Computation, CEC 2006, pages 239–245. IEEE.

Smith, A. E. and Tate, D. (1993). Genetic optimization using a penalty function. In Proc. 5th

Int. Conf. Genetic Algorithms, pages 499–505.

Smith, L. A., Wang, X., Peixoto, A. A., Neumann, E., Hall, L. M., and Hall, J. C. (1996). A

drosophila calcium channel α1 subunit gene maps to a genetic locus associated with

behavioral and visual defects. The Journal of Neuroscience, 16(24):7868–7879.

Smith, S. L., Gaughan, P., Halliday, D. M., Ju, Q., Aly, N. M., and Playfer, J. R. (2007). Diagnosis of

parkinson’s disease using evolutionary algorithms. Genetic Programming and Evolvable

Machines, 8(4):433–447, doi:10.1007/s10710-007-9043-9.

149

http://dx.doi.org/10.1109/4235.735432
http://dx.doi.org/10.1126/science.1165893
http://dx.doi.org/10.1038/nmeth.1468
http://dx.doi.org/http://dx.doi.org/10.1016/S0965-9978(02)00010-8
http://dx.doi.org/10.1007/s10710-007-9043-9

Bibliography

Smith, S. L. and Timmis, J. (2008). An immune network inspired evolutionary

algorithm for the diagnosis of parkinson’s disease. Biosystems, 94(1-2):34–46,

doi:10.1016/j.biosystems.2008.05.024.

Sorribes, A., Armendariz, B. G., Lopez-Pigozzi, D., Murga, C., and de Polavieja, G. G. (2011). The

origin of behavioral bursts in decision-making circuitry. PLoS Comput Biol, 7(6):e1002075,

doi:10.1371/journal.pcbi.1002075.

Storn, R. (1999). System design by constraint adaptation and differential evolution. IEEE

Transactions on Evolutionary Computation, 3(1):22–34, doi:10.1109/4235.752918.

Storn, R. and Price, K. (1997). Differential evolution - a simple and efficient heuristic for global

optimization over continuous spaces. Journal of Global Optimization, 11(4):341–359,

doi:10.1023/A:1008202821328.

Strogatz, S. (2001). Nonlinear dynamics and chaos: with applications to physics, biology,

chemistry and engineering. Westview Press, Boulder, CO, USA.

Sun, J. and Garibaldi, J. M. (2010). A novel memetic algorithm for constrained optimization. In

Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2010, pages 549–556.

Takahama, T. and Sakai, S. (2006). Constrained optimization by the ε constrained differential

evolution with gradient-based mutation and feasible elites. In Yen, G. G., Lucas, S. M.,

Fogel, G., Kendall, G., Salomon, R., Zhang, B., Coello Coello, C. A., and Runarsson, T. D.,

editors, Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2006, pages

1–8. IEEE.

Takahama, T. and Sakai, S. (2010). Constrained optimization by the ε constrained differential

evolution with an archive and gradient-based mutation. In Proceedings of the IEEE

Congress on Evolutionary Computation, CEC 2010, pages 1–9. IEEE.

Takahama, T. and Sakai, S. (2012). Efficient constrained optimization by the ε constrained

rank-based differential evolution. In Proceedings of the IEEE Congress on Evolutionary

Computation, CEC 2012, pages 1–8. IEEE.

Takahama, T. and Sakai, S. (2013). Efficient constrained optimization by the ε constrained

differential evolution with rough approximation using kernel regression. In Proceedings

of the IEEE Congress on Evolutionary Computation, CEC 2013, pages 1334–1341. IEEE.

Takahama, T., Sakai, S., and Iwane, N. (2005). Constrained optimization by the ε constrained

hybrid algorithm of particle swarm optimization and genetic algorithm. In Zhang, S. and

Jarvis, R., editors, AI 2005: Advances in Artificial Intelligence, volume 3809 of Lecture Notes

in Computer Science, pages 389–400. Springer Berlin Heidelberg.

Tasgetiren, M. and Suganthan, P. (2006). A multi-populated differential evolution algorithm for

solving constrained optimization problem. In Yen, G. G., Lucas, S. M., Fogel, G., Kendall,

G., Salomon, R., Zhang, B., Coello Coello, C. A., and Runarsson, T. D., editors, Proceedings

of the IEEE Congress on Evolutionary Computation, CEC 2006, pages 33–40. IEEE.

150

http://dx.doi.org/10.1016/j.biosystems.2008.05.024
http://dx.doi.org/10.1371/journal.pcbi.1002075
http://dx.doi.org/10.1109/4235.752918
http://dx.doi.org/10.1023/A:1008202821328

Bibliography

Tessema, B. and Yen, G. G. (2009). An adaptive penalty formulation for constrained evolution-

ary optimization. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems

and Humans, 39(3):565–578, doi:10.1109/TSMCA.2009.2013333.

Toffolo, A. and Benini, E. (2003). Genetic diversity as an objective in multi-

objective evolutionary algorithms. Evolutionary Computation, 11(2):151–167,

doi:10.1162/106365603766646816.

Tsuda, I. (2001). Toward an interpretation of dynamic neural activity in terms of chaotic dynam-

ical systems. Behavioral Brain Sciences, 24(5):793–809, doi:10.1017/S0140525X01000097.

Tsutsui, S., Fujimoto, Y., and Ghosh, A. (1997). Forking genetic algorithms: Gas

with search space division schemes. Evolutionary Computation, 5(1):61–80,

doi:10.1162/evco.1997.5.1.61.

Turing, A. M. (1950). Computing machinery and intelligence. Mind, 49:e433–460.

Ullah, A. S. S. M. B., Sarker, R., and Cornforth, D. (2008). Search space reduction technique

for constrained optimization with tiny feasible space. In Proceedings of the Genetic and

Evolutionary Computation Conference, GECCO ’08, pages 881–888. ACM.

Ullah, A. S. S. M. B., Sarker, R., Cornforth, D., and Lokan, C. (2007). An agent-based memetic

algorithm (ama) for solving constrainted optimization problems. In Proceedings of the

IEEE Congress on Evolutionary Computation, CEC 2007, pages 999–1006. IEEE.

Ullah, A. S. S. M. B., Sarker, R., Cornforth, D., and Lokan, C. (2009a). Ama: a new approach

for solving constrained real-valued optimization problems. Soft Computing - A Fusion of

Foundations, Methodologies and Applications, 13(8–9):741–762, doi:10.1007/s00500-008-

0349-1.

Ullah, A. S. S. M. B., Sarker, R., and Lokan, C. (2009b). An agent-based memetic algorithm

(ama) for nonlinear optimization with equality constraints. In Proceedings of the IEEE

Congress on Evolutionary Computation, CEC 2009, pages 70–77. IEEE.

Ursem, R. (1999). Multinational evolutionary algorithms. In Proceedings of the IEEE Congress

on Evolutionary Computation, volume 3 of CEC 1999, pages 1633–1640.

Valente, D., Golani, I., and Mitra, P. (2007). Analysis of the trajectory of drosophila melanogaster

in a circular open field arena. PLoS ONE, 2(10):e1083, doi:10.1371/journal.pone.0001083.

Von Neumann, J. (1966). Theory of Self-Reproducing Automata. University of Illinois Press,

Champaign, IL, USA.

Wang, Y. and Cai, Z. (2011). Constrained evolutionary optimization by means of (µ+λ)-

differential evolution and improved adaptive trade-off model. Evolutionary Computation,

19(2):249–285, doi:10.1162/EVCO_a_00024.

151

http://dx.doi.org/10.1109/TSMCA.2009.2013333
http://dx.doi.org/10.1162/106365603766646816
http://dx.doi.org/10.1017/S0140525X01000097
http://dx.doi.org/10.1162/evco.1997.5.1.61
http://dx.doi.org/10.1007/s00500-008-0349-1
http://dx.doi.org/10.1007/s00500-008-0349-1
http://dx.doi.org/10.1371/journal.pone.0001083
http://dx.doi.org/10.1162/EVCO_a_00024

Bibliography

Wang, Y., Cai, Z., Zhou, Y., and Zeng, W. (2008). An adaptive tradeoff model for constrained

evolutionary optimization. IEEE Transactions on Evolutionary Computation, 12(1):80–92,

doi:10.1109/TEVC.2007.902851.

Ward, A. B., Sali, A., and Wilson, I. A. (2013). Integrative structural biology. Science,

339(6122):913–915, doi:10.1126/science.1228565.

Wessing, S. (2013). Repair methods for box constraints revisited. In Proceedings of the 16th

European Conference on Applications of Evolutionary Computation, EvoApplications ’13,

pages 469–478, Berlin, Heidelberg. Springer-Verlag.

While, R. L. and Hingston, P. (2013). Usefulness of infeasible solutions in evolutionary search:

An empirical and mathematical study. In Proceedings of the IEEE Congress on Evolutionary

Computation, CEC 2013, pages 1363–1370. IEEE.

Whitley, D. (1989). The genitor algorithm and selection pressure: Why rank-based allocation of

reproductive trials is best. In Schaffer, J. D., editor, Proceedings of the third international

conference on genetic algorithms, pages 116–121. George Mason University.

Wilson, C. J. and Groves, P. M. (1981). Spontaneous firing patterns of identified spiny neurons

in the rat neostriatum. Brain Research, 220(1):67–80.

Wineberg, M. and Oppacher, F. (2003). The underlying similarity of diversity measures used in

evolutionary computation. In Proceedings of the 2003 International Conference on Genetic

and Evolutionary Computation: PartII, GECCO ’03, pages 1493–1504, Berlin, Heidelberg.

Springer-Verlag.

Wischmann, S., Floreano, D., and Keller, L. (2012). Historical contingency affects signaling

strategies and competitive abilities in evolving populations of simulated robots. PNAS,

109(3):864–868, doi:10.1073/pnas.1104267109.

Wolf, F. W., Rodan, A. R., Tsai, L. T.-Y., and Heberlein, U. (2002). High-resolution analysis

of ethanol-induced locomotor stimulation in drosophila. The Journal of Neuroscience,

22(24):11035–11044.

Yang, X.-S. and Deb, S. (2010). Engineering optimisation by cuckoo search. Interna-

tional Journal of Mathematical Modelling and Numerical Optimisation, 1(4):330–343,

doi:10.1504/IJMMNO.2010.03543.

Zhang, G., Cheng, J., Gheorghe, M., and Meng, Q. (2013). A hybrid approach based on

differential evolution and tissue membrane systems for solving constrained manufac-

turing parameter optimization problems. Applied Soft Computing, 13(3):1528–1542,

doi:10.1016/j.asoc.2012.05.032.

Zhang, W., Yen, G. G., and He, Z. (2014). Constrained optimization via artificial immune system.

IEEE Transactions on Cybernetics, 44(2):185–198, doi:10.1109/TCYB.2013.2250956.

152

http://dx.doi.org/10.1109/TEVC.2007.902851
http://dx.doi.org/10.1126/science.1228565
http://dx.doi.org/10.1073/pnas.1104267109
http://dx.doi.org/10.1504/IJMMNO.2010.03543
http://dx.doi.org/10.1016/j.asoc.2012.05.032
http://dx.doi.org/10.1109/TCYB.2013.2250956

Bibliography

Zielinski, K. and Laur, R. (2006). Constrained single-objective optimization using particle

swarm optimization. In Yen, G. G., Lucas, S. M., Fogel, G., Kendall, G., Salomon, R., Zhang,

B.-T., Coello Coello, C. A., and Runarsson, T. P., editors, Proceedings of the IEEE Congress

on Evolutionary Computation, CEC 2006, pages 443–450. IEEE.

Zou, D., Liu, H., Gao, L., and Li, S. (2011). A novel modified differential evolution algorithm

for constrained optimization problems. Computers & Mathematics With Applications,

61(6):1608–1623, doi:10.1016/j.camwa.2011.01.029.

153

http://dx.doi.org/10.1016/j.camwa.2011.01.029

Andrea Maesani - Curriculum Vitae

September 2010 – October 2014
PhD in “Computer, Communication and Information sciences”, EPFL, Lausanne

 Enrolled within Laboratory of Intelligent Systems, Prof. Dario Floreano

 Main thesis research on artificial intelligence, computational neuroscience
and evolutionary robotics

 Collaborated on research in neurotechnologies for stroke recovery and on soft robotics

 Teaching assistant for the “Mobile Robots” and “Bio-Inspired Artificial Intelligence” class
o Supervised 10 semester student projects

 Education on entrepreneurship and business creation
o “CTI Business Creation” (2014), course on start-up creation
o “Management of Innovation and Technology Transfer” (2013), course on IP management
o “Venture Challenge” (2012/2013), 6 months business course on start-up creation
o “Pre-Seed Workshop” (2012), workshop on start-up creation

September 2007 – October 2009
Master of Science, Computer Engineering, Politecnico di Milano, Milan, Italy

 Thesis on data management for novel search engine platform within the EU
project “Search Computing”

 Semester Projects: “EKG peak detection techniques”, “Memory garbage
collectors for Java Virtual Machine ” and “Emotion classification from
biometric data”

 Final Mark: 110/110 cum laude

September 2004 – July 2007
Bachelor of Science, Computer Engineering, Politecnico di Milano, Milan, Italy

 Thesis on object recognition with stereovision-based distance measurement for humanoid robots

January 2010 – August 2010
Software Engineer, Peripheral Systems Laboratory, École Polytechnique Fédérale de Lausanne (EPFL)

 Hardware development of a planar gonio-spectrophotometer

 Printer drivers development for precision printing to support document-security applications

November 2009 – December 2009
Software Engineer , Politecnico di Milano

 Java SE/EE design and implementation of software components for the Search Computing project

2005-2009
Self-Employed Web Developer

 Freelance consultant for PhP-based web solutions, Web development and Flash Design

Italian Native language
English Professional working proficiency
French Good working proficiency
German Basic school proficiency

Programming Languages/Development: C/C++, Java
SE/EE, Python, Matlab, PhP, HTML, JavaScript, SQL
Embedded Systems: Atmel ASF, Impulse C, Arduino
Fabrication: Solidworks, 3D Printing, Soft Polymers,
PneuNets, Skills in fast-prototyping
Machine learning and Statistics

Education

Work Experience

Languages Skills

155

Evolutionary computation

 A. Maesani, P. R. Fernando and D. Floreano. Artificial Evolution by Viability Rather Than

Competition, in PLOS One, vol. 9, num. 1, p. e86831, 2014

 A. Maesani, G. Iacca, and D. Floreano, Memetic Viability Evolution for constrained optimization, in

review at IEEE Transactions on Evolutionary Computation

 A. Maesani and D. Floreano, Viability Principles for Constrained Optimization Using a (1+1)-CMA-ES.

13th International Conference on Parallel Problem Solving From Nature, Ljubljana, Slovenia,

September 13-17, 2014

Computational biology

 A. Maesani*, P. Ramdya*, S. Cruchet, K. Gustafson, A. Massouras, B. Deplancke, R. Benton, and D.

Floreano, Neural noise shapes Drosophila behavior, in revision, * = Equal Contributions

 G. Tamo, A. Maesani et al., Prediction of symmetric protein assemblies without aggregating energy

functions with geometric restraints, in preparation

Soft robotics

 J. M. Germann, A. Maesani, R. Pericet Camara and D. Floreano. Soft Cells for Programmable Self-

Assembly of Robotic Modules, accepted in journal “Soft Robotics”, 2014

 J. M. Germann, A. Maesani, M. Stöckli and D. Floreano. Soft Cell Simulator: A tool to study Soft

Multi-Cellular Robots. IEEE International Conference on Robotics and Biomimetics, Shenzhen,

China, December 12-14, 2013

Various

 J. Auerbach, D. Aydin, A. Maesani et al., RoboGen: Robot Generation through Artificial Evolution,

Artificial Life 14, New York, NY, USA, July 30-August 2, 2014

 T. Bugnon, A. Maesani and R. D. Hersch. Enhancing the Specular Effect of Metallic Color Prints by

Reducing the Use of Yellow Ink, in Journal of Imaging Science and Technology, vol. 55, 2011

 A. Campi, S. Ceri, A. Maesani, and S. Ronchi, Designing Service Marts for Engineering Search

Computing Applications, ICWE, 2010

 Co-inventor of : Neuroprosthetic system restoring upper limb function through coordinated

electrical stimulation, 2013, Provisional Patent Application (PCT/IB2014/065417)

 Co-inventor of : Non-invasive drawable electrodes for transcutaneous electrical stimulation or

biological signal sensing, 2014, Provisional Patent Application (PCT filing expected Dec 2014)

 Sports: Swimming, Running, Snowboarding

 Other hobbies: Reading, Travelling, Electronics DIY

Publications – Peer-Reviewed Journals and Conference Proceedings

Publications - Patents

Other Activities

156

	Cover page

	Acknowledgements
	Abstract (English, Italian)
	Contents

	List of Figures

	List of Tables

	Introduction
	A brief historical view of evolutionary computation
	The canonical paradigm of evolutionary computation
	The Viability Evolution paradigm
	Contributions of this thesis to Viability Evolution
	Applications to neuroscience and biology
	Organization of the thesis

	Artificial evolution by viability rather than competition
	Introduction
	A simple Viability Evolution algorithm
	Experimental Setup
	Results
	ViE maintains higher diversity in ``single-objective'' search landscapes
	ViE compares favourably in ``multi-objective'' search landscapes against a multi-objective method with explicit diversity preservation
	Comparisons against methods that explicitly encourage diversity
	Contribution of each component of ViE in the discovery of unique solutions

	Discussion
	Conclusion
	Supporting Information

	Information from viability boundaries to build efficient adaptive algorithms
	Introduction
	Related Work
	(1+1)-CMA-ES with active covariance matrix adaptation
	Introducing viability principles in CMA-ES
	Results
	Conclusions

	Constrained multimodal optimization using viability evolution principles
	Introduction
	Related Work
	CMA-ES-based methods
	Differential Evolution-based methods
	Memetic Computing approaches
	Viability Evolution

	Memetic Viability Evolution (mViE)
	Local search step
	Global search step
	Scheduler for selection of local/global search operator
	Termination conditions

	Experimental Setup
	Results
	Engineering problems
	Sample algorithm runs
	Performance dissection

	Discussion and Conclusions
	Supporting Information: Parameter Analysis
	Supporting Information: CEC 2006 problem results - Error values achieved at different level of NFES

	Application of evolutionary computation to neuroscience
	Introduction
	Analysis of Drosophila walking
	A high-resolution, high-throughput assay for measuring Drosophila spontaneous and odor-evoked walking patterns
	Walking patterns are diverse but reproducible across genetically distinct strains of Drosophila

	An automated circuit model discovery approach
	Evolutionary Computation for neural circuit discovery

	Results
	Noise-driven multistable circuit models reproduce Drosophila spontaneous walking
	Circuit models for spontaneous behavior also reproduce odor-evoked walking dynamics
	Noise creates a circuit memory of odor-evoked dynamics
	A circuit output threshold determines behavioral sensitivity to neural noise

	Discussion
	Methods
	Drosophila strains
	Drosophila behavior apparatus
	Drosophila behavior experiments
	Drosophila behavioral analysis
	Dendrogram generation
	Genome Wide Association Study
	Neural circuit modeling framework
	Circuit model parameter optimization
	Variable bin-width weighted histogram generation
	Dynamical systems stability analysis
	Trajectory density maps
	Testing the role of noise and threshold on spontaneous walking frequency
	2-neuron multistable circuit model classification
	Lyapunov exponent computation

	Supporting Information

	Conclusions
	Main contributions
	Future Directions
	Appendix
	Application of mViE to macromolecular assembly prediction
	Bibliography
	Curriculum Vitae

	Appendix

	Bibliography

	Curriculum Vitae

