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Abstract	

This thesis proposes three studies that provide novel empirical evidence on how different types of proximity 

can affect innovation and science activities through various mechanisms and in different contexts. 

In the first study (second chapter of this thesis), in collaboration with Julio Raffo, we analyze the 

relationship between geography and the likelihood of duplication in inventive activities. We argue that the 

uneven diffusion of knowledge means that the duplication of inventions will not be randomly distributed 

geographically and over time. First, as knowledge diffuses over time and competitive incentives decrease, 

the probability of a claimed invention duplicating an existing one will decrease in the time distance between 

the two. Second, for recent and upcoming inventions, competitive incentives are high, and localized 

knowledge flows increase the probability of duplication. Therefore, over a brief time period, the probability 

of duplication decreases with geographic distance. Conversely, the duplication of less recent inventions is 

more likely to occur at long distances as a consequence of less awareness of a technology existing due to 

missing knowledge flows. We test our hypotheses on European Patent Office (EPO) patent bibliographical 

data on patent citation categories. Geographic distance matters significantly less in sectors in which patents 

are known to be more effective as a source of information such as discrete technologies. 

In the second study (third chapter), in collaboration with Annamaria Conti and Fabiana Visentin, we 

investigate the effects of professors’ social proximity with external universities on the level of productivity 

of PhD students hired from these universities. Researchers hired from external environments tend to have 

high scientific productivity compared to those who completed their studies in the same institution where they 

are employed. In a population of 4,666 PhD students, we further study the scientific productivity of external 

students from professors’ networks, defined as students with a master’s degree from a different university 

from that of their PhD, and also from a university with which their supervisors' co-authors are affiliated. We 

find that these students are significantly more productive, both compared to other students with a master’s 

degree from a different university, and to students with a master’s degree from the same university as that of 

their PhD. In our analyses, we control for the heterogeneity of supervisors and the heterogeneity of 

institutions where the students obtained their master's degrees, including proxies for the specific relevance of 

these universities for a given supervisor. Thus, we conclude that professors hire students with higher 

scientific productivity from universities where their co-authors are affiliated. Additional analyses further 

suggest that the reduction of information asymmetries is the main mechanism to explain this finding.  
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In the third study (fourth chapter), in collaboration with Guillaume Burghouwt, we investigate the role 

of interregional knowledge integration as a driver of firm innovative performance. We adopt an unbalanced 

panel of 3,871 innovative companies in Germany between 1992 and 2010, for a total of 15,819 observations, 

and we study their innovative productivity. In fixed effects estimations, the interregional knowledge 

integration of regions, measured as the geographic dispersion of the knowledge sources of inventions 

developed in a region, positively affects innovative productivity of local firms. To address concerns of 

endogeneity due to the possibility of reverse causality and omitted time-variant variables, we exploit airline 

liberalization in Germany. We find that the shift from monopolistic to more competitive aeronautic markets 

positively affected interregional integration. Firms located in regions where the airline liberalization induced 

a higher level of interregional knowledge integration increased their innovative productivity significantly. 

We do not find strong differences across firms located in regions with low or high levels of R&D 

investments. 

Keywords	

Geography of innovation, proximity, interregional integration, duplication, scientific productivity, innovative 

productivity. 
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Sommario	

La tesi presenta tre studi che forniscono nuova evidenza empirica su come diverse forme di prossimità 

inlfuenzano le attività di ricerca e innovazione, attraverso diversi meccanismi. 

Nel primo studio (secondo capitolo di questa tesi), in collaborazione con Julio Raffo, viene analizzata la 

relazione tra geografia e la probabilità di duplicazione in attività innovative. Si ipotizza che la diffusione 

disuniforme di conoscenza comporta che la duplicazione di invenzioni non sia distribuita casualmente nello 

spazio geografico e nel tempo. Con il passare del tempo si diffonde conoscenza, l’incentivo a comptere si 

riduce e la probabilità che un’invenzione duplichi una esistente diminuisce. Secondo, per invenzioni recenti 

o prossime ad essere scoperte, l’incentivo a competere é elevato e flussi di conoscenza localizzati aumentano 

la probabilità di duplicazione. Di conseguenza, a breve distanza di tempo, la probabilità di duplicazione 

diminuisce al crescere della distanza geografica. Al contrario, la duplicazione di invenzioni non recenti 

avviene piu probabilimente a elevate distanze geografiche in conseguenza della minore consapevolezza 

dovuta alla mancanza di flussi di conoscenza. Queste ipotesi sono testate su dati di brevetto dell’ufficio dei 

brevetti europeo (EPO). La distanza geografica ha un’effetto inferiore in settori, come le tecnologie discrete, 

dove i brevetti costituiscono una fonte di informazione piú efficace. 

Nel secondo studio (terzo capitolo), in collaborazione con Annamaria Conti e Fabiana Visentin, si studia 

come il livello di produttività scientifica media degli studenti di dottorato selezionati da università esterne sia 

determinato dalla prossimità sociale dei professori con tali università. Ricercatori assunti da ambienti esterni 

tendono ad avere una maggiore produttività scientifica rispetto a coloro che sono assunti dalla stessa 

università dove hanno completato gli studi. Abbiamo analizzato, in un campione di 4'666 studenti di 

dottorato, la produttività di studenti esterni provenienti dalla rete di conoscenze del supervisore: studenti che 

hanno completato gli studi in università diversa da quella del dottorato ma con la quale almeno un coautore 

del supervisore sia affiliato. La produttività di questi studenti risulta significativamente piú elevata sia 

rispetto alla produttività di altri studenti esterni e di studenti che hanno completato gli studi nella stessa 

università del dottorato. Nelle analisi controlliamo per l’eterogeneità dei supervisori, l’eterogeneità delle 

università dove gli studenti hanno completato gli studi, includendo proxy della rilevanza specifica di queste 

università per i supervisori. Quindi concludiamo che i professori assumono studenti con maggiore 

produttività scientifica dalle università con quali i loro coautori sono affiliati. Ulteriori analisi suggeriscono 

che la riduzione di assimmetrie informative sia il principale meccanismo alla base di questo risultato.  
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Nel terzo studio (quarto capitolo), in collaborazione con Guillaume Burghouwt, viene studiata 

l’integrazione regionale di conoscenza come determinante della produttività innovativa delle 

imprese. Si utilizza un campione di 3,871 imprese innovative in Germania tra il 1992 e il 2010, per un 

totale di 15,819 osservazioni. Con modelli ad effetti fissi, l’integrazione regionale della conoscenza, misurata 

come la dispersione geografica delle fonti di conoscenza delle invenzioni sviluppate in una regione, 

influenza positivamente la produttività innovativa delle imprese localizzate nella regione. Al fine di limitare 

il possibile problema di endogenità dovuto a causalità inversa e variabili omesse che variano nel tempo, 

viene sfruttata la liberalizzazione delle linee aere in Germania. Troviamo che il passaggio da mercati 

monopolistici a mercati piú competitivi nell’industria aereonautica ha determinato un aumento del livello di 

integrazione interregionale della conoscenza. Imprese localizzate in regioni dove la liberalizzazione ha 

determinato tale aumento vedono un incremento della loro produttività innovativa. Non troviamo differenze 

significative tra regioni con livelli diversi di investimento in ricerca e sviluppo.  

 

Parole	chiave	

Geografia dell’innovazione, prossimità, integrazione interregionale, duplicazione, produttività scientifica, 

produttività innovativa. 
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 Introduction	

1.1 Thesis	motivation	and	structure	

Knowledge is widely recognized to be the engine of economic growth (Griliches, 1979; Grossman and 

Helpman, 1993; Romer, 1986, 1990). Perhaps the most peculiar feature of knowledge, as compared to other 

economic goods, is its tendency to generate strong externalities (Foray, 2004). As a consequence, the 

productivity of investments in knowledge is a complex function that includes external existing knowledge as 

input (Cohen and Levinthal, 1990; Jaffe, 1986, 1989). Therefore, understanding knowledge diffusion and its 

impact on innovation performance is of primary importance in order to uncover the mechanisms leading to 

economic growth.  

Importantly, knowledge does not diffuse freely in the economy (Cowan et al., 2000; Gertler, 2003). The 

recognition that geography, human interactions and mobility strictly shape the way knowledge diffuses is the 

fundamental pillar of a large body of literature in economic geography (Boschma and Frenken, 2005; 

Breschi and Lissoni, 2001; Feldman and Kogler, 2010; Keller, 2004; Krugman, 1998, 1991). Proximity and 

location have been dominant concepts in the debate. The former can be summarized by the notion that a 

certain proximity along different dimensions is a prerequisite for knowledge diffusion among economic 

agents. The latter concerns the location decisions in the geographic space of economic agents, which in turn 

determine their relative proximity. The geographical concentration of human capital, institutions and firms is 

often provided as the evidence of the positive effect of knowledge externalities (knowledge spillovers) 

generated by geographic proximity. These principles have inspired numerous theoretical and empirical 

contributions as well as policies. Examples such as the Silicon Valley, well known as the “archetype of 

industrial high tech cluster” (Feldman and Kogler, 2010), have been for decades the model for policy 

interventions aimed at fostering regional economies (McCann and Folta, 2008). 

However, the debate on several aspects regarding the real benefits of proximity, and the underlying 

mechanisms explaining its effects on knowledge production, is still open. An exhaustive review of the 

literature is not within the scope of the discussion here. Existing reviews provide an excellent overview of 

the main findings and propose avenues for future investigations (Boschma and Frenken, 2005, 2011; Breschi 

and Lissoni, 2001; Cruz and Teixeira, 2009; Feldman and Kogler, 2010; Frenken et al., 2014; McCann and 

Folta, 2008). In particular, three lines of research can be identified. First, various forms of proximity, beyond 

geographic proximity, interact and affect innovation processes differently (Boschma, 2005). Second, 
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different mechanisms, beyond a simple learning process, can explain the role of proximity and of knowledge 

diffusion, affecting the level and direction of technological progress both positively and negatively (Bloom et 

al., 2013; Boschma, 2005). Third, increasing attention has been given to the importance of combining the 

exploitation of close knowledge with access to distant knowledge sources (Bathelt et al., 2004; Saxenian, 

2007). 

In the following chapters of this thesis I present three studies that contribute theoretically and empirically 

to these debates. Each study provides new evidence on how different forms of proximity and access to 

geographically distant environments might affect innovative and scientific performance. In the next 

paragraph of this introductory chapter I summarize the main previous findings and current lines of research 

that constitute a common reference framework for the studies presented in the thesis. The last paragraph 

provides a more detailed overview of the studies proposed in the thesis, highlighting the main contributions 

within the framework identified. Each chapter of the thesis includes a section that further extends the 

discussion to the literature on each specific topic of the chapter and presents in detail the results of the 

empirical analyses.  

1.2 Literature	framework	

 Forms	of	proximity	

Perhaps the first evidence regarding the effects of uneven knowledge diffusion, first pointed out by the 

seminal work of Marshall (1891), is the spatial concentration of economic activities. Subsequent evidence 

further demonstrated that innovative activities and knowledge flows are disproportionally concentrated 

geographically as compared to the distribution of production (Audretsch and Feldman, 1996; Jaffe et al., 

1993). Therefore, the literature initially focused on geographic proximity as a precondition for the diffusion 

of knowledge spillovers. The main assumption justifying this conclusion was that geographic proximity 

allows for face-to-face interactions, enabling access to tacit knowledge embedded in the individuals devoted 

to its production.  

The geographic dimension of proximity and its effects on knowledge creation are still an ongoing area of 

research (Catalini, 2012; Singh and Marx, 2013). However, these and other recent studies have pointed out 

the fuzziness of the linkage between pure geographic proximity and knowledge diffusion. These studies have 

attempted to “open the black box” of knowledge spillovers (Breschi and Lissoni, 2001). Boschma (2005) 

revises the contributions stemming from this line of research and identifies five different dimensions of 

proximity: geographic, cognitive, social, organizational and institutional. While all dimensions might be 

positively correlated, the importance of distinguishing them, theoretically and empirically, resides in their 

different effects on knowledge diffusion and their different strategic implications. For example, a large 
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number of studies have highlighted the importance of mobility and collaboration networks as determinants of 

social proximity and knowledge flows (Almeida and Kogut, 1999; Breschi and Lissoni, 2009; Song et al., 

2003). This evidence indicates the need of overcoming the focus on geographic proximity per se and account 

for all aspects related with workers mobility and networks. Furthermore, the relevance of social connections 

opens the discussion to the way knowledge can be diffused at high geographic distances (Agrawal et al., 

2006, 2008). In general, the issue of how different proximity typologies affect knowledge diffusion and 

interact among each other constitutes an ongoing area of research.  

 Effects	of	proximity	

As noted, scholars have defined knowledge spillovers as a positive externality by which agents in the 

economy can benefit from others’ investments and existing knowledge. Due to the tacit nature of knowledge, 

agents close to each other should benefit disproportionally from such an externality. Various studies, making 

use of patent citations as measures of knowledge flows, show that such knowledge flows are more likely 

among agents that are close to each other, either geographically (Jaffe et al., 1993; Singh and Marx, 2013) or 

socially (Agrawal et al., 2008; Breschi and Lissoni, 2009). Some authors found that firms located in 

innovative clusters are more likely to innovate (Baptista and Swann, 1998). Also importantly, there is 

evidence that the productivity of firms or countries are related to the R&D investments of other firms and 

countries, proportionally to their proximity, either geographically, in terms of technological specialization 

(cognitive proximity), or trade interactions (Bottazzi and Peri, 2003; Coe and Helpman, 1995; Jaffe, 1986; 

Keller, 2002; Kerr, 2008; Peri, 2005). However, and surprisingly, there is no unanimous evidence that 

proximity per se has a positive effect on innovative performance (Boschma and Frenken, 2011; Lee, 2009). 

As noted by Boschma and Frenken (2011), geographical clustering can rise without any positive effect, or 

even with negative effects of colocation. Furthermore, other and recent empirical evidences on the effect of 

proximity are mixed (Boschma and Frenken, 2011; Boschma, 2005).  

Part of the recent literature is attempting to solve this puzzle. First, some authors have proposed an 

evolutionary approach to economic geography which theorizes that product and industry life cycles 

determine the extent to which proximity and location in high concentrated clusters have a positive effect on 

performance (Audretsch and Feldman, 1996; Boschma and Frenken, 2011). In particular, emerging 

innovative industries would benefit the most from the geographical concentration of diverse economic and 

innovative activities, while mature industries are expected to profit more from distribution in smaller and 

specialized regions (Audretsch and Feldman, 1996; Frenken et al., 2014). Second, Boschma (2005) suggests 

that an optimal level of proximity can be reached. Beyond this optimal level, negative effects prevail: too 

much proximity of various forms might create a lack of sources of novelty and openness, the loss of 

economic rationales in strategic decisions and lock-in in suboptimal technological paths. Finally, part of the 

literature emphasizes the need to further tease out the mechanisms that might lead from knowledge spillovers 
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to performance, accounting for the strategic decisions of economic agents and their relative positions in the 

economy (Bloom et al., 2013; Breschi and Lissoni, 2001). For example, Bloom et al. (2013) distinguish and 

find empirical evidence of the existence of both positive technology knowledge spillovers and negative 

business stealing effects from R&D by product market rivals.  

 Proximity	and	distant	knowledge		

Despite the impact of information and communication technologies, the reduction of transportation costs 

and the increase in the geographic mobility of workers (Ding et al., 2010; Forman and van Zeebroeck, 2012; 

Salt, 1997), the bond between geography and knowledge production seems not to have loosened over time 

(McCann and Folta, 2008). Some studies suggest that knowledge flows diffuse increasingly at higher 

geographical distances, but the literature is not unanimous on this conclusion (Keller, 2002; Sonn and 

Storper, 2008). Furthermore, the tendency of innovative activities to concentrate geographically and the 

existence of large regional disparities in economic innovative performance are still a reality (Etherington and 

Jones, 2009). However, while the economic geography literature has typically emphasized the local 

dimension of regional economies, the importance of external linkages and external sources of knowledge 

have often been mentioned as an important component (Feldman and Kogler, 2010; Saxenian, 1994). Indeed, 

historical evidence shows that the most innovative environments have been often those presenting the best 

connections with external contexts and staffed with workers from all over the world (Bresnahan et al., 2001; 

Saxenian, 2005, 2007).  

There is a general consensus regarding the fact a combination of “local buzzes” (local knowledge 

spillovers) and “global pipelines” (external linkages enabling access to distant sources of knowledge), is 

beneficial for clusters’ innovative performance (Bathelt et al., 2004). From a dynamic perspective, the inflow 

of external knowledge might sustain innovative performance once opportunities arising from the exploitation 

of local knowledge decrease (Boschma, 2005). There is some evidence that regions with external linkages 

and better access to geographically distant environments have higher growth and innovative performance 

(Eisingerich et al., 2010; Redding and Sturm, 2008). Other studies show that breakthrough innovation is 

largely dependent on geographically dispersed knowledge (Phene et al., 2006). Finally, the relevance of 

geographic openness can be traced back to the contribution of immigrants and returnees (in particular, highly 

skilled) with respect to the innovation performance of regions and the creation of new innovative clusters 

(Bresnahan et al., 2001; Saxenian, 2005). The relevance of these dynamics is also related to the political 

debate and existing policies of each region promoting interregional integration (Chessa et al., 2013; 

Crescenzi et al., 2007). Nonetheless, deeper theoretical and empirical investigations on the importance of 

external linkages and sources of knowledge for innovative performance are a rather recent development, 

requiring further evidence.  
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1.3 Overview	and	contribution	of	the	thesis	

Table	1.1:	Overview	and	contribution	of	the	thesis	

  
First study 

(2nd chapter) 

Second study 

(3rd chapter) 

Third study 

(4th chapter) 

 

 Data and 
context  

1. Patent citations data and 
patent citation categories 
(PATSTAT 2012).  

2. Geo-localization of the 
inventors (REGPAT 2012) 

1. Dataset of PhD students and 
supervisors from the Ecole 
Polytechnique Fédérale de 
Lausanne and the Swiss 
Institute of Technology of 
Zurich.  

2. Curricula  

3. Publication scores from 
SCOPUS 

1. Mannheim Innovation Panel 
(MIP) on innovative firms in 
Germany.  

2. Region level patent data 
(PATSTAT 2014, REGPAT 
2014).  

3. Airlines market entry 
information from AOG 
historical flight status data. 

 

 Forms of 
proximity 

Geographic proximity: we 
measure the geographic distance 
among inventors of citing and 
cited patents. 

Social proximity: we consider 
the supervisor network in terms 
of the presence of a coauthor in 
other universities. 

Geographic (transportation 
costs): we consider the level of 
interregional knowledge 
integration (defined as the 
region’s degree of access to and 
adoption of knowledge 
developed in other 
geographically dispersed 
regions) and the effect of the 
airline liberalization in Europe.  

 

 Effects of 
proximity 

Proximity affects the likelihood 
of duplication of inventions. 
Proximity can increase the 
likelihood of duplication when 
there are incentives to compete. 
It otherwise decreases the 
probability of duplication. 

PhD students hired from 
universities where the 
supervisor had a coauthor have 
higher scientific productivity 

Access to geographically distant 
knowledge is mediated by 
airline liberalization (lower 
transportation costs).  

 

 Role of 
external 
links 

Based on our theory, the lack of 
knowledge flows from 
geographically distant 
environments put inventors at 
risk of duplicating inventions 
already existing in these 
locations.  

The results suggest that social 
proximity facilitates sharing 
information with geographically 
distant environments, thus 
reducing information 
asymmetries and affecting the 
capacity to attract external 
human capital. 

Increased access to the external 
knowledge of a region 
determines higher innovative 
productivity of firms located in 
the region. 

 

 

 First	study:	geographic	proximity	and	duplication	of	inventions	

Recent economic theory suggests that decreasing returns to scale in R&D investments, determined by the 

possibility of duplicated inventions, might affect economic growth (Gómez, 2011; Jones, 2009). The second 

chapter of this thesis first provides a theoretical discussion of how geographic proximity, affecting the 

diffusion of knowledge, is expected to impact the likelihood of duplicated inventions. The hypotheses 

derived from the theoretical discussion are tested, making use of patent data. The data allowed us to observe 

and localize geographically claimed inventions that are not novel, according to the opinion of a patent 
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examiner, when compared to an existing patent document. The form of proximity we consider is geographic 

proximity; however, we acknowledge that its effect may be mediated by other forms of proximity.  

The main contribution of the chapter relies on the implication for the debate on the effects of proximity. 

In particular, we contend that, because of localized knowledge flows, geography affects the rate of 

duplication. In our theory, proximity has opposite effects depending on the existence of incentives for 

inventors to compete on the same technological path, or instead, to avoid duplication. In particular, proximity 

and knowledge spillovers increase the risk of duplication in the first case. In the latter case, inventors instead 

run the risk to duplicate existing inventions of which they were not aware because they were located in 

distant locations. Therefore, we suggest that proximity and knowledge spillovers should not be simply 

conceived as components of a learning process allowing cumulative innovations, but that the strategic 

behaviors of economic agents determine the extent to which innovative efforts are indeed cumulative. At the 

same time, we contend that a lack of knowledge flows does not simply reduce knowledge inputs at the 

disposal of innovators but puts them at risk of duplicating existing inventions.  

 Second	study:	social	proximity	and	productive	PhD	students		

Universities are fundamental institutions in the production of knowledge (Black and Stephan, 2010). To 

the extent that the diffusion of knowledge produced in universities is also subject to the effects of proximity 

(Jaffe, 1989; Mowery and Ziedonis, 2014), local universities can spur local innovation and economic growth 

(Feldman and Kogler, 2010). Therefore, the scientific productivity of universities has also attracted the 

attention of scholars in the field of economic geography. There is extensive evidence showing that 

universities benefit, among other factors, from the inflow of external personnel, in particular foreign and 

foreign educated researchers and students (Black and Stephan, 2010; Levin and Stephan, 1999). As such, 

universities also constitute a vehicle for the attractiveness of a region with regard to international human 

capital and for the construction of international networks. However, little is known as to how universities 

attract productive researchers. Indeed, hiring processes, especially for highly skilled workers, are affected by 

strong information asymmetries (Arrow, 1972; Granovetter, 1995). As such, hiring from external 

environments may be difficult and institutions may be biased toward internal candidates, about whom they 

know more information (Horta et al., 2010).  

The third chapter compares the productivity of PhD students coming from other universities where their 

supervisors have co-authors with the average productivity of other PhD students. The empirical analysis 

isolates the relevance of the supervisors’ networks as a measure of social proximity, for the capacity of the 

university to attract productive students. Importantly, the effect of supervisors’ networks may be positive, in 

situations where they help to reduce information asymmetries, as well as negative, in situations where social 

proximity leads to favoritism. We find that students coming from other universities where their supervisor 
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have co-authors are largely more productive, thus implying a positive effect. Therefore, we suggest that 

social proximity facilitates information sharing with geographically distant environments, affecting the 

capacity to attract external human capital. 

 Third	study:	interregional	knowledge	integration	and	innovation	

The economic geography literature has empirically investigated the relationships between the economic 

and innovative performance of firms and the local characteristics of the region or cluster where they are 

located. Less evidence exists regarding the effects of the connections and knowledge flows across regions. 

However, the advent of Information and Communication Technologies and the reduction of transportations 

costs make this aspect increasingly important in understanding firm performance (Tranos, 2013). In addition, 

whether efforts to increase interregional integration lead to higher innovative performances and how they 

affect the distribution of innovation activities remains an open area of research (Cappelli and Montobbio, 

2013; Chessa et al., 2013; Crescenzi et al., 2007) 

The fourth chapter of the thesis investigates whether a region’s increased access to external sources of 

knowledge has an impact on the innovative productivity of firms located in that region. We define 

interregional knowledge integration as a region’s degree of access to and adoption of knowledge developed 

in other geographically dispersed regions. We exploit airline liberalization in Europe as a source of an 

exogenous shock to transportation costs, and consequently, an incentive for regions to access external 

knowledge. We find that firms located in regions where airline liberalization induced a higher level of 

interregional knowledge integration significantly increased their innovative productivity. The results can be 

traced back to the effect of increased proximity, under the form of lower transportation costs, on new sources 

of knowledge. The specific underlying mechanisms leading to innovative performance deserve further 

attention in future research. However, this evidence contributes to the discussion on the importance of the 

access to external sources of knowledge for regional and firm performance, with implications for firms’ 

strategy and policy makers’ initiatives. 
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 The	geography	of	

duplicated	inventions	

(With Julio Raffo) 

2.1 Introduction	

Galileo claimed the invention of the thermometer circa 1592, but this invention was subsequently also 

claimed by Van Guericke and Porta in 1606, Drebbel in 1608, Sanctorious in 1612, and Paul and Fludd in 

1617. Sir Joseph Swann and Thomas Edison both solved the problem of electric light. Other examples 

involve the invention of the telegraph, the telephone, electro-magnetic clocks, the typewriter, the discovery 

of oxygen, the periodical classification of the chemical elements, the Diesel engine, jet propulsion, and 

numerous others1. Similar examples lead Merton to the provocative hypothesis that “far from being odd or 

curious or remarkable, the pattern of independent multiple discoveries in science is in principle the dominant 

pattern” (Merton, 1961: 477).  

The duplication of inventions and multiple discoveries are natural outcomes of scientific and 

technological progress. However, from an economic perspective, duplication in research and innovation may 

be a matter of concern (Bonaccorsi et al., 2009; Dasgupta and David, 1994; Jorde and Teece, 1990; 

Scotchmer, 1991). Overlapping R&D outcomes lead to diminishing returns on R&D investments (Gómez, 

2011; Jones, 2009, 1995; Jones and Williams, 2000; Kortum, 1993; Venturini, 2012). On the one hand, 

several factors, such as the technological progress in communication technologies, might decrease the rate of 

duplication (Brannigan and Wanner, 1983). On the other hand, the probability of duplication increases with 

the density of inventors and the cumulating stock of knowledge that makes it more difficult for future 

generations of inventors to propose novel innovations and discoveries (Jones, 2009). Notably, Bessen and 

Meurer (2008) find that the number and cost of patent lawsuits has consistently increased over the last 30 

years and conclude that “..a significant and growing number of very expensive lawsuits occur each year 

                                                      

1 For a broader historical discussion of these and other examples, refer to Merton (1961) and Lamb and Easton (1984). Importantly, 
Constant (1978) and Elkana (1971) revise some of these examples claiming that in some instances the level of similarity of the 
inventions involved has been overestimated. See Bikard (2012) for a recent literature review and discussion.  
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because firms have invested millions of dollars for the research, development, and commercialization of 

technology that is allegedly owned by others” (Bessen and Meurer, 2008: 121).  

Prior research has generally addressed the characteristics and determinants of this phenomenon. Adopting 

patent data, we address the question of how temporal and geographic distance affects duplication. For this 

purpose, we refer to the stream of the literature that has discussed how proximity affects the diffusion of 

knowledge (Breschi and Lissoni, 2001; Jaffe et al., 1993). Several contributions in this literature have 

demonstrated a close connection between the distribution of economic innovation activities and innovation 

performance and identified leading technological geographical clusters as successful examples (Audretsch 

and Feldman, 1996; Baptista and Swann, 1998; Delgado et al., 2010; Porter, 1998; Saxenian, 2007). 

However, this research has primarily conceptualized localized knowledge flows as an element of a general 

learning process that enables other inventors to build on existing knowledge, generating positive 

externalities. We further contend that because of localized knowledge flows, geography affects the rate of 

duplication.  

We propose to distinguish between two different mechanisms leading to duplication. On the one hand, 

duplication may arise from imperfect knowledge flows. As such, laggard agents duplicate inventions without 

being aware of the existence of the original ones. In other words, these uninformed inventors simply 

‘reinvent the wheel’. On the other hand, high knowledge flows favor the duplication of upcoming or very 

recent inventions. This is the case for agents competing for and investing in the same technological solutions 

(Dasgupta and Maskin, 1987). As knowledge flows increase over time but are bounded geographically, we 

propose the following hypotheses: first, the probability of duplication decreases over time; second, 

geographic distance decreases the probability of the duplication of recent inventions (close in time); third, for 

inventions that are not recent (distant in time), duplication becomes more likely at greater geographic 

distances.  

We find evidence for our hypotheses in patent application data. A duplicated invention can be captured in 

patent data whenever a patent application is filed for an invention that is not novel. Recent patent 

bibliographical data from the European Patent Office (EPO) make it possible, through patent citations, to 

identify whenever, according to an EPO examiner, the cited patent document compromises the novelty of the 

citing patent application (Criscuolo and Verspagen, 2008; Guellec et al., 2012). In practical terms, including 

patent level fixed effects, we analyze the likelihood of observing this type of citation relative to the 

probability of observing a citation describing the state of the art but not threatening the novelty of a patent 

application. In so doing, we control for unobserved heterogeneity in the inventions and, importantly, we 

examine the occurrence of duplications relative to the geographical distribution of the related industrial and 

innovative activities (Alcacer and Gittelman, 2006; Jaffe et al., 1993).  
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We implicitly rely on the assumption that the knowledge disclosed in patent documents and patent 

protection is less than perfect, rendering it likely that inventors are not fully aware of the entire existing 

patent literature and partly rely on geographically close sources of knowledge (Atal and Bar, 2010; Feldman 

and Kogler, 2010; Walsh et al., 2007). However, empirical evidence is mixed, and various studies have 

found the patent literature to be an effective source of information and knowledge for inventors (Graham et 

al., 2009). We find support for the hypothesis that applicants and inventors who are revealed to be aware of 

the existence of a patent protecting a given technology (based on previous citations of the same patent) are 

less likely to duplicate the related invention. Furthermore, we account for the possibility that the 

effectiveness of knowledge disclosure in patent documents might differ across sectors. In particular, patents 

are expected to be more relevant for relatively established sectors, in which inventions can be more easily 

described in written form due to the specific characteristics of the technology and/or its stage of 

development. In keeping with this intuition, we further test our hypotheses for different sectors and for 

complex and discrete technologies separately and find that geographical proximity is less relevant for the 

duplication of discrete technologies and, in particular, chemistry-related technologies.  

2.2 Theory	and	Hypotheses	

 Knowledge,	competition	and	duplication	

We define duplication as claiming an invention that is not partially or completely novel compared to an 

existing one and has consequently a lower (or null) value relative to the initial expectations of its inventors. 

This broad definition captures the notion that inventors involved in duplications rarely invent precisely the 

same product but component and qualitative differences are often present (Collins, 1992; Dasgupta and 

Maskin, 1987). Moreover, duplication corresponds to socially sub-optimal levels of investment in R&D – at 

least ex post - and to a net loss for the “losing” inventors at the private level.  

Early literature in sociology and economics situates the phenomenon of duplication of discoveries 

(regarding both inventions and scientific discoveries) within the natural dynamic of scientific and 

technological progress (Kuhn, 1996; Lamb and Easton, 1984; Merton, 1961, 1979). Discoveries are not, or 

not exclusively, a product of the intellect of an individual (Merton, 1961). Rather, they are developed as a 

result of the process of the accumulation of knowledge, which enables further developments (Jones, 2009; 

Murray and O’Mahony, 2007). Incremental discoveries proceed along pre-established paths, where 

following steps are based on the coherent implications of previous ones. More radical breakthroughs are 

often the consequence of contradictions or limitations of the previous paradigm that become evident at some 

point (Kuhn, 1996). When “the time for an invention has come,” more than one individual can reach the 

same result. These authors also note that the systematic presence of this phenomenon is implicit in science 
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and innovation practices (Lamb and Easton, 1984; Merton, 1979; Merton, 1961). Indeed, reward is based on 

priority, which scientists and inventors constantly rush to demonstrate (Dasgupta and David, 1994; Stephan, 

1996). This perspective is useful to understand why duplication is a probable outcome in research and 

innovation. However, it leads to the conclusion that individuals facing these identical preconditions are 

exposed to a certain probability of duplicating the same effort, making the phenomenon substantially 

random.  

Merton noted first that “unnecessary multiples” result from imperfections in communication channels 

(Brannigan and Wanner, 1983; Merton, 1961; Niehans, 1995). Unawareness of the existence of a certain 

technology may be the cause of the duplication of research efforts (Brannigan and Wanner, 1983). Access to 

the knowledge related to the state of the art in a particular sector is crucial in this respect. “Accumulation of 

knowledge is not inherent to the innovation process” (Murray and O’Mahony, 2007). Inventors, firms and 

innovative regions struggle to reach and maintain the technological frontier and seek to avoid the involuntary 

duplication of research investments (Archibugi, 1992; Jorde and Teece, 1990; Ziedonis, 2004). An agent 

with access to this type of knowledge is expected to be aware of the existing technologies and able to 

formulate more accurate evaluations of future opportunities. Failures in accessing this type of knowledge 

may lead to duplicative efforts in pursuit of an invention, driven by the false belief that it does not exist 

(Bessen and Meurer, 2008). This case describes an independent duplication (Lamb and Easton, 1984): i.e., an 

invention that is duplicated without an awareness of the risk of replicating others’ research efforts. 

Independently duplicated inventions do not need to be simultaneous, depending on the accumulated state of 

knowledge in several locations and cultures in which they appear (Merton, 1961: 486).  

Under perfect knowledge flows, inventors would be fully aware of existing technologies. However, for 

upcoming or recent inventions, priority might have yet to have been established, and information regarding 

intermediated results is not typically disclosed prior to a certain level of completion. For such technologies, 

duplication might nevertheless occur and is more likely in the presence of knowledge flows if inventors 

decide to compete in the same technological space. Competition, in the presence of knowledge flows, is 

therefore a source of duplication that “encourages rivals to select overly similar (i.e., correlated) projects … 

leading to an excessive occurrence of duplications” (Dasgupta and Maskin, 1987: 594). Several related 

dynamics have been discussed in the literature. Patent races involve inventors in competitions for the same 

technology to anticipate the potential patents of competitors (Hall and Ziedonis, 2001) in which the second 

inventors inevitably receive a lower return on their investment. Similarly, an inventor might want to attempt 

to “invent around” an existing invention that has the potential for profitable improvements or to erode the 

technological advantage of a competitor (Guellec et al., 2012). This might lead to some degree of innovative 
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outputs but also to excessively small improvements, marginal changes and overlapping contributions. The 

second inventor might fail to obtain any valuable property right2. 

 Duplication	and	proximity	

Based on the mechanisms discussed above, we argue that the probability of duplication varies over time 

and geographic distance to the extent that these two dimensions affect knowledge flows and incentives to 

compete on a given invention. The hypotheses and underlying arguments are summarized in Figure 2.1. On 

the one hand, the more time that passes after an invention, the greater the extent of knowledge flows 

regarding its existence and contents that are transferred through firms, regions or social networks. Moreover, 

time allows for the distribution of goods and services that exploit the technology in question, and this 

mechanism is known to be a critical knowledge diffusion channel (Keller, 2004). On the other hand, 

incentives to compete to complete a given invention decrease over time, as it becomes more difficult to catch 

up with the leader and the (potential) market for technologies declines3. Therefore, both awareness and 

reduced competitive incentives are aligned with respect to time, where: 

H1: Time distance decreases the probability of duplication. 

Second, we argue that geographic distance affects duplication. It has been shown that knowledge flows 

among inventors are related to geographic distance. Social and professional networks, through which 

knowledge flows more efficiently, are to a large extent locally based (Almeida and Kogut, 1999; Breschi and 

Lissoni, 2009; Song et al., 2003). Geographical proximity increases the likelihood of informal and face-to-

face contacts, serendipitous information flows, low opportunity cost interactions and business relationships 

(Audretsch and Feldman, 1996; Catalini, 2012; Jaffe et al., 1993; Jaffe, 1986; Mowery and Ziedonis, 2001). 

Finally, competing inventors can monitor one another more closely and actively when they are 

geographically proximate, which facilitates the search for information that would not be otherwise available 

or that competitors are not willing to disclose4. Nonetheless, the effect of knowledge flows on duplication is 

expected to be twofold. Depending on the incentives to compete for the same invention, knowledge flows 

                                                      

2 As a representative example, Bessen and Meurer (2008) discuss how Kodak invested a considerable amount of resources to invent 
around Polaroid instant photography patents but failed. Eventually, Kodak was required to pay Polaroid $900 million and exited the 
market for instant photography. 
3 In this sense, we assume competitive incentives with respect to a new technological opportunity to be linear or monotonically 
decreasing. We acknowledge that the relationship between time and competitive incentives might be more complex than this and 
related to the technology and industry life cycle. However, our argument is based on the notion that on average, the economic return 
to investment to anticipate a competitor on a given specific technology (up to the risk of duplicating the same invention) is 
decreasing over time: first, the probability of obtaining priority on a given invention decreases substantially; second, the competitor is 
more likely to develop further mechanisms for protecting its technology.  
4 Note that our hypotheses rely on the well-documented inverse relationship between geographic distance and knowledge flows. 
However, we do not directly measure knowledge flows. Additionally, we generally refer to knowledge flows without further 
distinction in the paper among different typologies of knowledge flows mechanisms such as pure or pecuniary knowledge spillovers, 
personnel mobility, and the distribution of products (Breschi and Lissoni, 2001).  
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can either increase or decrease the probability of duplication. We exploit the asymmetry of incentives to 

compete with respect to time distance to disentangle the effect of proximity according to competition and 

unawareness. 

Figure	2.1:	Conceptual	summary	of	main	hypotheses	

 

Over brief periods of time, incentives to compete are high, and investing in a technology that is also being 

developed by a competitor could be rational. Essentially, once a technological opportunity is identified, 

agents sharing the same pool of information face the choice of racing for it or searching for an alternative 

option. Their relative position in the technological space – i.e., with respect to competitors – and search and 

switching costs will be strong factors influencing the decision. Arguably, in this context, knowledge flows 

concerning an upcoming invention increase the opportunity cost to search for alternative investments relative 

to the possibility of anticipating other inventors for a given technology. Therefore, intermediate knowledge 

flows can both cause and exacerbate a race, allowing competitors to catch up to one another (Encaoua and 

Ulph, 2005). Similarly, it has been argued that proximity – beyond a certain optimal level – might have a 

negative lock-in effect, which reduces the ability of nearby individuals to engage in original efforts 

(Boschma, 2005; Martin and Sunley, 2006). In this sense, “local buzzes” (regarding a technological 

opportunity) might cause more than one inventor to pursue the same invention (Boschma, 2005). Although 

they might not be completely aware of one another, we can nevertheless argue that they would be 

simultaneously competing for the same technological solution. For instance, a simple conference or an 

informal conversation that enables two individuals to identify an opportunity could end with two inventions 

that would not be independent because they were inspired by a “common spark” (Breschi and Lissoni, 2005). 

For upcoming and recent technologies, the rate of duplication should increase in geographic proximity. Thus 

we hypothesize the following: 

H2: Geographic distance decreases the probability of duplication. 
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In contrast, with distance in time, regarding a technology that is no longer recent, the incentive to invest 

in it declines unless there is unawareness of its existence. Local knowledge flows provide the opportunity to 

abandon valueless efforts, improve existing inventions rather than replicating the same effort, or specialize in 

complementary and differentiated technologies (Dasgupta and David, 1994). Empirical evidence has 

demonstrated that inventors make substantial use of local information or knowledge to create novel products 

and processes (Feldman and Kogler, 2010; Giuri et al., 2007). For a given existing technology, local 

knowledge flows are advantageous for proximate inventors relative to more distant ones: proximity makes it 

possible to avoid duplicating an invention when it would no longer constitute a promising investment but 

rather a piece of prior art suitable for further developments. In other words, we can argue that if duplication 

occurs for a technology that is not recent, this is more likely when there is a lack of knowledge flows and 

hence is most probable far from the location where the technology was originally developed. Therefore: 

H3: As time distance increases, geographic distance increases the probability of duplication. 

 Duplication	of	patents	and	geography	

The knowledge disclosure requirement in patent documents also relies on the assumption that given a 

certain existing technology, someone will replicate it at some point if the information regarding its existence 

and its propriety is not made public (Denicolo and Franzoni, 2003; Kitch, 1977). The disclosure of 

knowledge in patent documents is therefore a mechanism to avoid duplication. However, the evidence on the 

potential of patents as a source of information and knowledge for inventors is mixed. Graham et al. (2009) 

find that a considerable share of inventors uses the patent literature as a source of information. Similarly, 

Cohen at al. (2002) find patents to be a more effective mechanism for intra-industry knowledge flows in 

Japan than in the USA, and their results further suggest that patent documents can be a successful tool for 

knowledge diffusion. Other authors have noted that the disclosure of knowledge is not a sufficient condition 

for cumulative innovation (Murray and O’Mahony, 2007) and that codified knowledge has limited power as 

a source of knowledge for inventors at geographic distance (Feldman and Kogler, 2010). 

While evidence regarding the effective knowledge disclosure potential of patent documents is not 

unanimous, one can argue that the existence of a patent application does not guarantee that information 

regarding the invention is immediately available to each inventor in a certain sector. Notably, Jaffe et al. 

(2000) find that inventors were fully aware of less than one-third of the citations regarding their own patents. 

In a survey of academic inventors, although for a specific sector, Walsh et al. (2007) find that a very small 

percentage (5%) of the respondents reported being aware of patents relevant to their research, and the 

majority of the respondents often proceed without considering relevant patents. Moreover, patent examiners 

are responsible for a substantial and increasing share of citations (Criscuolo and Verspagen, 2008). Those 

citations of the original patent application might involve other patents, of which inventors or applicants only 
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became aware after the completion of their invention. Furthermore, other evidence questions the capacity of 

patents to provide complete information on the boundaries of intellectual property (Bessen and Meurer, 

2008; Sternitzke, 2009). Finally, one must consider that within the lead-time of an R&D project, from its 

concept stage to the first patent publication and ultimately to the granting of a patent, many concurrent and 

similar projects may be in process and reach an advanced stage before any document is disclosed.  

Based on this discussion, we can expect that technologies seeking patent protection can be subject to 

duplication and that the probability of this outcome varies over time and geographical distance, in 

accordance with our hypotheses. In other words, our first hypotheses rely on the assumption that the 

knowledge disclosure generated by patent documents and patent protection is less than perfect (Atal and Bar, 

2010; Walsh et al., 2007) and that knowledge diffusion over time and geographic distance can compensate 

for this (Feldman and Kogler, 2010). Ideally, we would like to directly measure the awareness of the 

inventors regarding the existence of a given technology or research activity of a potential competitor. 

However, to determine whether an inventor was aware of the existence of a given patent while developing an 

invention is an empirical challenge, and it is virtually impossible to be certain whether the inventor had full 

or partial unawareness. Nonetheless, it is possible to identify cases in which the inventor is revealed to be 

aware (or is very likely aware) of the existence of a patent, simply by considering whether one of her 

previous patents (or, alternatively, the applicant) cited the same patent before (Lampe, 2007). In these cases, 

irrespective of the origin of the citation, the inventor and the applicant should be aware of the existence of 

the patent. In such cases, we expect that the probability of independently duplicating the same invention 

would be nearly zero. Moreover, the competitive incentive to obtain property rights to the same invention 

should be low because it might already be protected, and in any case, it would no longer be recent. 

Therefore, we hypothesize that: 

H4: The duplication of a given invention is less likely when the inventor (or the applicant) is revealed to 

be aware of the existence of a patent protecting that invention. 

Finally, the effectiveness of patents as sources of information might vary dramatically across different 

sectors. The literature has widely discussed the greater potential for knowledge disclosure from patents on 

discrete technologies. In sectors such as chemistry and pharmaceuticals, patents define clearer property 

boundaries, and inventors exhibit a much greater awareness of the existing prior art in the patent literature. 

Inventors can better avoid independent duplication by consulting the patent literature and are also able to 

monitor competitors more easily at a distance. Understandably, patents in these sectors are, on average, of 

higher value and are less likely to be subject to litigation (Bessen and Meurer, 2008; Graham et al., 2009). 

Therefore, we expect geographic distance to have a considerably different impact across sectors, and more 

generally, we expect it to have a greater impact in the case of discrete technologies relative to complex ones. 

For this reason, we also consider our hypotheses for different sectors and separately for discrete and complex 



The geography of duplicated inventions 

17 

technologies. We expect geographic distance to be more relevant (H2 and H3) for complex than for discrete 

technologies. 

2.3 Data	and	methods	

 Patent	citations	and	duplicated	inventions	

Identifying duplications is a remarkably difficult task (Bikard, 2012). Past examples have been discovered 

through historical investigation, even decades later, and there are reasons to believe that many others 

remained undiscovered (Lamb and Easton, 1984; Merton, 1961; Ogburn and Thomas, 1922; Simonton, 

1979). Furthermore, several authors argued that the level of similarity of the cases identified is often limited 

and that related discoveries might be perceived as duplicating each other when substantial differences are 

instead present (Bikard, 2012; Constant, 1978; Elkana, 1971)5.  

Recent data on patent citations by EPO provide information suitable for our purpose. Indeed, a patent 

application constitutes an invention claim. Typically patent applications report a description of the 

technology and a list of one or more features of the technology (defined as “claims”) that are required to be 

novel, on which the applicant desires to obtain intellectual property protection. Whenever a patent 

application is filed for an invention that is not novel, this should be captured by the patent system. Examiners 

must verify the novelty of an invention relative to existing state of the art in the public domain. Whenever an 

examiner considers a piece of knowledge as proof of a lack of novelty for the claimed invention, this prior 

element – typically a document, but not necessarily so – must be cited in the search or examination report.  

Traditionally, patent citations have been used as a proxy for knowledge flows occurring among inventors. 

However, Jaffe et al. (1993) noted how this indicator could be noisy due to the presence of examiner 

citations and citations added for different scopes. Moreover, the recent debate on the use of patent citations 

has acknowledged that not all patent citations are appropriate indicators of knowledge flows (Alcácer et al., 

2009; Alcacer and Gittelman, 2004; Criscuolo and Verspagen, 2008). In particular, Breschi and Lissoni 

(2005) directly highlight the possibility that patent citations refer to duplicative efforts. Recent EPO data 

allow us to identify the original source of a citation– i.e., application, search report, examination, opposition, 

etc. – and what it represents. The EPO examiner is always the individual responsible for categorizing 

citations, regardless of whether the citation was already in the original applications. Therefore, the 

                                                      

5 See Bikard (2012) for a thorough discussion of theoretical and methodological issues related with the identification of multiples 
discoveries and inventions. The author also proposes an objective and replicable methodology to identify simultaneous multiple 
discoveries from scientific publications. However we cannot adopt his methodology especially because it is limited to the 
identification of cases of duplication very close in time and because it cannot be easily extended to EPO patent documents. The 
methodology we describe in this chapter relies on the patent examiner’s expertize to establish duplication both close and far in time.  
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duplication of inventions can be recorded in patent documents as citations to the original invention when the 

examiners have categorized the citations accordingly. 

Table	2.1:	Patent	citation	categories	

Categories Description 

A Documents defining the state of the art and not prejudicing novelty or inventive step 

Y 
Particularly relevant documents when combined with another document, such a 
combination proving the lack of an inventive step. 

X 
Citations classified under this category are such that when considered alone, a claimed 
invention cannot be considered novel or cannot be considered to involve an inventive 
step. 

E 
Any patent document relevant to novelty (same as X citation) bearing a filing or priority 
date earlier than the filing date of the application searched for but published after that 
date. 

D 
Documents cited in the original application (usually referred as to “applicant or inventor 
citations”). 

The EPO provides its examiners with precise guidelines on how to distinguish citations in several 

categories6 (Michel and Bettels, 2001). The most relevant for our study are summarized in Table 2.1. 

Category A corresponds to the typical citation, which describes the state of the art relevant and embedded in 

the citing patent document without compromising the novelty or inventive step requirements. In contrast, Y 

X and E citations refers to citations affecting the patentability of the citing application. Y-cited documents 

differ from X- and E- cited documents, as they exclusively refer to the lack of an inventive step and must be 

combined with at least one other citation. However, each X or E citation is sufficient to challenge the 

patentability or validity of a claim in the citing document. The only difference between E and X citations is 

that the former links documents that are highly proximate in time, where the citing application was filed 

between the filing and the publication dates of the cited one. As such, we consider X and E categories as the 

main indicators of duplication, where the citing application is assumed to replicate the X- or E-cited patent 

document. Finally, it is possible to distinguish citations present in the original document from those added by 

the examiner. As mentioned above, only examiners categorize citations, making all citations relevant for our 

analysis regardless of their origin. However, as it might be expected, the large majority of X and E citations 

are added by the examiner.  

Certain comments are in order here. First, many inventions are not patented or published (Arundel and 

Kabla, 1998). In this case, it is virtually impossible to identify duplications in a systematic manner. However, 

one could also contend that the duplication of non-patented technology might be fully rational and less 

problematic since the second inventor can still freely exploit the duplicated invention. Second, a patent 

application also must be filed for the replicating invention in order to observe duplication. Above, we noted 

                                                      

6 See “EPO guidelines for Examination in the European Patent Office”, http://www.epo.org/law-practice/legal-texts/guidelines.html 



The geography of duplicated inventions 

19 

that the duplication of a patented invention is not unlikely, as knowledge disclosure through patent 

documents might be imperfect. Nonetheless, in principle, the existence of a patent should discourage the 

second inventor from filing her patent even after having completed her (not novel) inventive effort. 

However, as we have noted, inventors are unaware of the majority of patents cited in their own patent 

publications, and examiners add a large number of citations. Moreover, incentives for the inventor to 

perform a patent search before and after developing her invention could be low because the cost of this 

search could exceed the cost of allowing the examiners to identify relevant patent literature (Atal and Bar, 

2010). Third, if two inventors arrive at the same invention within a relatively brief period of time, it is likely 

that the patent application for the first invention would have yet to have been published (the EPO process 

entails 18 months from the filing date to publication). Furthermore, it is even more likely that the first patent 

will have yet to have been granted. Therefore, it is likely that if an inventor has developed a technology with 

the intention to patent it, she will file a patent application regardless of the existence of a similar patent 

(regardless of whether she is aware of the risk of duplication and especially if she is not aware of it). 

Whenever an examiner identifies the prior patent, we are able to observe a citation linking the two 

inventions. However, to summarize, patent citation categories are by no means an exhaustive indicator of 

duplicative efforts, and duplicated inventions might, to a large extent, be unobservable.  

As a final concern, it is important to note that a patent citing an existing patent with an X or E citation can 

nevertheless be granted. To some extent, this might conceal the fact that X and E citations are likely a noisy 

measure of duplicative efforts and might also capture different phenomena. Nonetheless the fact that patents 

with X and E citations are often granted largely reflects that X and E citations typically refer to several but 

not necessarily all claims related to a single patent. Therefore, they generally correspond to a decline in the 

number of claims, which significantly decrease the value of the patent relative to what was originally 

claimed by the inventor (Tan and Roberts, 2010). Furthermore, the presence of X and E citations certainly 

increases the probability that the patent application will be rejected (Guellec and van Pottelsberghe de la 

Potterie, 2000).  

In conclusion, X and E citations correspond to a claimed invention that is ultimately not novel compared 

to an existing one, based on the informed opinion of an expert, the patent examiner, precisely dedicated to 

the identification of such instances. As each patent claim is costly for the applicant, we assume that in the 

majority of cases, these citations will correspond to a research effort by an inventor which did not realize any 

economic value due to the presence of a precedent patent. In this sense, two patents linked by an X or E 

citation match our definition of duplication. We conducted few unstructured interviews with patent attorneys 

and patent examiners with two objectives: to ascertain the correctness of our interpretation of patent citation 

categories and to verify the plausibility of our hypothesis and results. The interviewees were generally in line 

with our interpretation of the data. They warn us on the possibility that the difficulty to sharply distinguish 

between citation categories and the process of negotiation between examiners and applicants (and in 
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particular with patent attorneys) is likely to introduce considerable noise in the data. However we consider 

that this issue can only downward bias the significance of our estimates. Finally, the interviewees pointed to 

existing documentation and provided us with anecdotal examples in line with our methodology and 

hypotheses. To further ease the understanding of the data and the methodology, we discuss in appendix to 

this chapter an example of a citing patent reporting both a citation categorized as A and a citation categorized 

as X and their descriptions. 

 Data	and	model	

The sample is constructed using the patent citations data from EPO's Worldwide Patent Statistics 

Database (PATSTAT, September 2010) and inventor location information from the OECD’s REGPAT 

Database (December 2010). Additionally, each NUTS 3 region (the third level of the Nomenclature of 

Territorial Units for Statistics from EUROSTAT) has been geo-localized to construct a measure of the 

distance between citing and cited patents. Unfortunately, PATSTAT primarily contains citations categorized 

for EPO patent documents only. Similarly, REGPAT only contains the location information of inventors 

from EPO and PCT patent documents. This means that our sample must be restricted to EPO patent 

documents citing EPO patent documents (EP-EP). We do not consider inventor self-citations because an 

inventor (or group of inventors) can only reasonably duplicate the research efforts of other inventors. Of 

these patents, we selected those that received at least one X or E citation and at least a different citation 

(primarily A). The final sample has 302,156 EP-EP citations pairs corresponding to 108,229 EPO citing 

patents published between 1982 and 2007. We select this period because the patent citation category are 

more reliable.  

Our main hypotheses represent a prediction of the actual location of an invention (citing) in time and 

space relative to another invention (cited), as the former represents claims that are not novel due to the 

existence of the latter. For this reason, we focus on citing patents found to have at least one not novel claim 

(at least one X or E backward citation). We adopt a methodology similar to that of Alcacer and Gittelman 

(2006), who studied the distribution of examiner citations compared to inventor citations. Therefore, we 

include fixed effects for the citing patent application. In practical terms, we analyze the probability of 

observing an X or E citation with respect to observing a different one (primarily A citations) for each citing 

patent application. In so doing, we avoid the use of artificial counterfactual citation pairs, the validity of 

which might be highly sensitive to the method by which they are constructed (Thompson, 2006; Thompson 

and Fox-Kean, 2005). Furthermore, the location of a duplicated invention (XE cited) is not compared with a 

generic distribution of similar technologies but relative to the location of an invention that is directly relevant 

to the focal invention (primarily A-cited patents). The sample is also restricted to patents with at least one 
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non-XE citation to maintain a consistent reference point for the location of the duplicated invention within a 

given group of citations of a citing patent7.  

Citing patent fixed effects address also the issue of the heterogeneity across citing patent applications. 

Fixed effects estimation will not only control for sector and other patent-specific heterogeneity but also for 

any trend in the probability of duplication with respect to filing date. Furthermore, endogeneity concerning 

the possibility that the reciprocal distance between two inventions might be correlated with their relative 

characteristics, such as the innovative capacity of the inventors or applicants, are limited because the patent 

level fixed effects control for any characteristic of the citing invention, including time-variant characteristics 

of the inventors and applicants at the moment of filing.  

Accordingly, the model is specified as follows: 

ܲ൫ܺܧ௜௝ ൌ 1 ∣∣ 	 ௜ܺ௝, 0 ൏ ∑ ௜௝ܧܺ ൏ ௝ܬ ൯

ൌ ଴ߚ ൅ ௜௝ݐ݈݊ܽܿ݅݌݌ܽ	ଵܵܽ݉݁ߚ ൅ ௜௝ݕݐ݅ݎ݈ܽ݅݉݅ݏ	ଶܶ݁ܿߚ

൅ ௜௝݁ܿ݊ܽݐݏ݅݀	ሺܶ݅݉݁	ଷlogߚ ൅ 1ሻ ൅ ௜௝݁ܿ݊ܽݐݏ݅݀	݋݁ܩሺ	ସlogߚ 	൅ 1ሻ

൅ ௜௝݁ܿ݊ܽݐݏ݅݀	ሺܶ݅݉݁	ହlogߚ ൅ 1ሻ ൈ log	ሺ݋݁ܩ	݁ܿ݊ܽݐݏ݅݀௜௝ 	൅ 1ሻ

൅ ௜௝݁ݎܽݓܽ	ݐ݈݊ܽܿ݅݌݌ܣ଺ߚ ൅ ௜௝݁ݎܽݓܽ	ݎ݋ݐ݊݁ݒ݊ܫ଻ߚ ൅ ܽ௜ ൅ ௝ݑ ൅  ௜௝ߝ

 

The left-hand side represents the probability that a citation from patent document i to patent document j is 

categorized as X or E conditional on a set of independent variables (Xij) pertaining to the pair of patent 

documents. Therefore, the dependent variable (XE) is a binary variable taking value one if the citation 

linking two patents is an X or E and zero otherwise8. The model has been specified as a linear probability 

model (LPM) and estimated accordingly, although the alternative of a conditional logit has also been 

considered. The linear probability model is not inferior to a probit or logit model, provided that the “proper" 

non-linear model is unknown (Angrist and Pischke, 2008). Furthermore, it allows for a direct interpretation 

                                                      

7 Note that, at the EPO, inventors have no obligation regarding the citations included in their patent applications, and examiners 
follow a rule of parsimony in the number of citations added to a patent document. This justifies cases in which examiners only 
include citations relevant to patentability (XE) and no other citations are mentioned. Despite not being observable in patent citations, 
it is unreasonable to assume that the invention had no precedents; including cases in which only XE citations are reported would 
mechanically downward bias our estimates. 
8 We do not consider Y citations in the dependent variable. The fact that Y-cited documents only reveal the absence of an inventive 
step if combined with other documents creates ambiguity. Nonetheless, our results are robust to the inclusion of Y citations in the 
dependent variable or if they are completely excluded from the sample. 



The geography of duplicated inventions 

22 

of the coefficients, especially due to the presence of interaction terms, and facilitates comparisons of the 

effects across different specifications and samples.  

Therefore, on the right-hand side, we parameterize the model as linear function of Xij, where βk are the 

parameters of interest, ai and ݑ௝	are the fixed error terms at the citing and cited patent levels (where we 

initially only control for the former - ai - through fixed effects estimation) and εij is the idiosyncratic error 

term. Within Xij, we consider the following set of variables. As control variables, we consider whether the 

citation links two patents that have at least one applicant in common. Second, we consider the share of 

common International Patent Classification (IPC) codes as a measure of technological proximity. Time 

distance is the number of years between the priority dates of the two patents. Then, we specify the 

geographic distance in different manners for two main model specifications. First, we operationalize it as a 

continuous variable measuring the minimum great-circle distance – in units of 10 kilometers – between all 

possible pairs of NUTS3 regions where inventors of the citing and cited patent are located (Geo distance). 

However, the results were consistent when considering the average or maximum distance of such pairs. We 

use the logarithmic transformation (plus 1) of Geo distance (when continuous) and Time distance. This 

functional transformation is adopted under the assumption of a non-constant and decreasing marginal effect 

of distance9. Additionally, the interaction term of these two variables is included.  

In a second model specification, we consider geographic distance as a set of four dichotomous variables 

indicating whether at least one of the possible pairs of inventors of the citing and cited patents come from the 

same NUTS3 region, a different NUTS3 region but the same NUTS2 region, a different NUTS2 region but 

the same country, and a different country (we will refer to this measure as “Discrete distance”). In this case, 

the same NUTS3 variable is excluded as the reference category and the other three dummy variables are 

jointly included with their interaction with time distance. We use this alternative specification to show 

robustness of the results to different measures and to acknowledge the importance of regional and political 

borders as factors creating discontinuities in knowledge diffusion with respect to geographical distance 

(Singh and Marx, 2013; Thompson and Fox-Kean, 2005). Finally, we employ two dummy variables as 

indicators of revealed awareness: Applicant aware indicates whether the cited patent was previously cited in 

at least one patent of at least one applicant of the citing patent (but not in a patent of any inventor of the 

citing patent); Inventor aware indicates whether the cited patent was previously cited in at least one patent of 

at least one inventor of the citing patent. All variables used are summarized in Table 2.2. Table 2.3 also 

reports the 10th, 25th, 50th, 75th, and 90th percentiles of Time distance and Geo distance.  

                                                      

9 Similar results are obtained when considering a specification without transforming the variables or adopting a second-order 
polynomial functional form.  
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Table	2.3:	Time	and	geographic	distance	percentiles	

 

2.4 Results	

 Full	sample	

Table 2.4 reports the results of the primary models for the continuous measure of geographic distance. In 

Model 1, we first include our control variables and Geo distance, Time distance and their interaction. In 

Model 2, we add the awareness measures. In Table 2.5, we consider the alternative measure of geographic 

distance, namely Discrete distance: three dummies are included indicating citations to an invention from a 

different NUTS3 region but within the same NUTS2 region (Different NUTS3 – Same NUTS2), in a different 

NUTS2 region but in the same country (Different NUTS2 – Same country) and in a different country 

(Different country). Interactions between these dummies and Time distance are included. Again, in Model 2, 

we add the awareness measures. 

Table	2.4:	LPM	with	continuous	geographic	distance	

 

Variable p10 p25 p50 p75 p90

Time distance (years) 1.56 2.55 4.67 8.37 13.05
Geo distance (10km) 0.00 15.02 82.45 862.36 958.14

Model 1 Model 2

Same applicant -0.059*** -0.056***
(0.006) (0.006)

Tec similarity 0.117*** 0.118***
(0.007) (0.007)

Time distance (log) -0.255*** -0.250***
(0.005) (0.005)

Geo distance (log) -0.020*** -0.019***
(0.002) (0.002)

Geo distance (log) * Time distance (log) 0.015*** 0.015***
(0.001) (0.001)

Applicant aware -0.033***
(0.005)

Inventor aware -0.020***
(0.005)

Constant 0.800*** 0.799***
(0.010) (0.010)

Citing patent FE Yes Yes

Observations 302,156 302,156
Number of citing patents 108,229 108,229
F 1402 1013

*** p<0.01, ** p<0.05, * p<0.1

Robust standard errors in parentheses
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Table	2.5:	LPM	with	discrete	geographic	distance	

 

As expected, we find a significantly negative effect of Time distance, thereby supporting H1. From the 

sign of the coefficients on Geo distance and the interaction effect coefficient, we obtain initial evidence 

supporting both H2 and H3. Specifically, the coefficient is negative for Geo distance alone, meaning that the 

effect is negative for citations close in time. In other words, when the time lag between the filing dates of 

patents is brief, geographic distance decreases the probability of observing duplication. In contrast, the 

coefficient on the interaction effect is positive, indicating that the effect of Geo distance increases at higher 

values of time distance. A coherent picture is obtained by considering the discrete measure of distance; for 

recent technologies, duplication is less likely across different NUTS3 regions, different NUTS2 regions and 

different countries (Table 2.5). Conversely, the probability of overlapping claims increases across different 

regions, especially different countries, at high levels of time distance.  

Finally, as shown in Model 2 in both Table 2.4 and Table 2.5, we find that duplication is less likely when 

either inventors or applicants of the citing patent are found to be aware of the existence of the cited patent. 

This result provides support for H4. The inclusion of these variables only marginally affects the results 

Model 1 Model 2

Same applicant -0.061*** -0.059***
(0.006) (0.006)

Tec similarity 0.116*** 0.118***
(0.007) (0.007)

Time distance (log) -0.278*** -0.272***
(0.006) (0.006)

Different NUTS3 - Same NUTS2 -0.077*** -0.075***
(0.018) (0.018)

Different NUTS2 - Same country -0.108*** -0.104***
(0.013) (0.013)

Different Country -0.166*** -0.161***
(0.012) (0.012)

Different NUTS3 - Same country * Time distance (log)  0.038*** 0.036***
(0.010) (0.010)

Different NUTS2 - Same country * Time distance (log)  0.072*** 0.069***
(0.007) (0.007)

Different Country * Time distance (log) 0.119*** 0.115***
(0.006) (0.006)

Applicant aware -0.031***
(0.005)

Inventor aware -0.019***
(0.005)

Constant 0.839*** 0.837***
(0.012) (0.012)

Citing patent FE Yes Yes

Observations 302,156 302,156
Number of citing patents 108,229 108,229
F 798.8 660.3

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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concerning with time and geographic distance, indicating the robustness of the previous results. Finally, the 

two control variables have a predictable effect. Duplication is less likely among inventions from the same 

applicant, which might be due both to a higher diffusion of knowledge and reduced competitive incentives 

among inventors within a single company, regardless of time and geographic distance. Further, duplication is 

more likely between inventions with a higher share of IPC codes in common. 

While the signs of the main coefficients and that on the interaction term are supportive of hypotheses 1 to 

3, they are insufficient to conclude that the effect of time distance is always negative, as implied by H1, or 

that the effect of geographic distance becomes positive, as implied by H3, within meaningful ranges of 

variable values. Furthermore, they are not directly useful for determining the significance and magnitude of 

the effects. We address this issue in two ways. First, we compute the marginal effects of one of the two 

variables (Geo distance and Time distance) for different values of the other (Time distance and Geo 

distance). Second, we graphically plot the predicted probabilities of observing a XE citation and its 

confidence intervals as a function of both variables at different values of the other variable. Marginal effects 

and predicted probabilities, and their standard errors and confidence intervals, are computed using Delta 

method estimation, based on the estimates from Model 2 reported in Table 2.4 and Table 2.5. 

Table	2.6:	Time	distance	marginal	effects	for	
continuous	geographic	distance	percentiles	

 

Table	2.7:	Time	distance	marginal	effects	for	discrete	
geographic	distance	values	

 

Table 2.6 and Table 2.7 report the marginal effects of Time distance at different values of geographic 

distance. Table 2.6 considers the 25th the 50th and the 75th percentiles of the continuous variable Geo 

distance, while Table 2.7 considers the four different categories of Discrete geo distance. This estimation 

further confirms H1, demonstrating that geographic distance only attenuates the effect of time, which 

consistently remains significantly negative at meaningful geographic distances in our sample. This trend is to 

some extent coherent with the notion that the probability of duplication decreases over time but decreases 

more rapidly at short distances due to the effect of knowledge diffusion.  

Geo distance Time distance (log) mfx

25th percentile -0.210***
(0.003)

50th percentile -0.186***
(0.002)

75th percentile -0.151***
(0.003)

Observations 302,156

Time distance margins 

Delta method estimation

*** p<0.01, ** p<0.05, * p<0.1

Descrete geo distance Time distance (log) mfx

Same NUTS3 -0.272***
(0.006)

Different NUTS3 - Same NUTS2 -0.236***
(0.009)

Different NUTS2 - Same country -0.204***
(0.005)

Different Country -0.157***
(0.003)

Observations 302,156

Time distance margins 

Delta method estimation
*** p<0.01, ** p<0.05, * p<0.1
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Second, we compute the marginal effects of geographic distance as a function of time distance. Table 2.8 

reports the marginal effect of geographic distance – measured as continuous or discrete – for time distances 

ranging from 0 to 14 years between the cited and the citing patent documents. This range corresponds to 

more than 90% of our sample values. These estimations confirm the results discussed above. The effect of 

geographic distance, when measured as continuous, is significantly negative at a time distance from 0 to 2 

years, is not significant at 3 years and thereafter is positive and significant. Regarding the discrete measures 

of distance, it is noteworthy that within a single NUTS2 region but different NUTS3 regions, the probability 

of duplication is significantly lower at lags of up to 4 years and only becomes significantly higher at high 

values of time distance. The marginal effects of the other two categories, citations among different NUTS2 

regions and different countries, exhibit a similar pattern to that observed for continuous geographic distance. 

We find a particularly strong country border effect.  

Table	2.8:	Geographic	distance	marginal	effects	for	values	of	time	distance	

 

Continuos geo distance margins 

Time distance Geo distance (log) mfx
Different NUTS3 

Same NUTS2 mfx
Different NUTS2 

 Same country mfx
Different Country mfx

0 years -0.019*** -0.075*** -0.104*** -0.161***
(0.002) (0.018) (0.013) (0.012)

1 year -0.009*** -0.049*** -0.056*** -0.081***
(0.001) (0.012) (0.009) (0.008)

2 years -0.003*** -0.035*** -0.029*** -0.034***
(0.001) (0.009) (0.007) (0.007)

3 years 0.001 -0.024*** -0.009 -0.001
(0.001) (0.008) (0.006) (0.006)

4 years 0.004*** -0.016** 0.006 0.024***
(0.001) (0.007) (0.006) (0.006)

5 years 0.007*** -0.009 0.019*** 0.045***
(0.001) (0.008) (0.006) (0.006)

6 years 0.009*** -0.004 0.030*** 0.063***
(0.001) (0.008) (0.007) (0.006)

7 years 0.011*** 0.001 0.039*** 0.078***
(0.001) (0.009) (0.007) (0.006)

8 years 0.013*** 0.005 0.047*** 0.092***
(0.001) (0.010) (0.007) (0.007)

9 years 0.014*** 0.009 0.054*** 0.104***
(0.001) (0.010) (0.008) (0.007)

10 years 0.016*** 0.013 0.061*** 0.115***
(0.001) (0.011) (0.008) (0.008)

11 years 0.017*** 0.016 0.066*** 0.125***
(0.001) (0.012) (0.009) (0.008)

12 years 0.018*** 0.019 0.072*** 0.134***
(0.001) (0.012) (0.009) (0.008)

13 years 0.019*** 0.021* 0.077*** 0.143***
(0.001) (0.013) (0.010) (0.009)

14 years 0.020*** 0.024* 0.082*** 0.151***
(0.001) (0.014) (0.010) (0.009)

Observations 302,156 302,156 302,156 302,156

Discrete geo distance margins

Delta method estimation

*** p<0.01, ** p<0.05, * p<0.1
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An effective way to summarize these results is to graphically represent the predicted probabilities 

obtained from the models. Figure 2.2a depicts the expected probability as a function of Time distance, at the 

25th, 50th and 75th percentiles of Geo distance. Figure 2.2b depicts the predicted probability as a function of 

Geo distance considering Time distance at five different percentiles: 10th, 25th, 50th, 75th and 90th. Figure 2.3a 

and Figure 2.3b are similar and display the three discrete distance measures instead of the continuous 

measure.  

Figure	2.2:	Predicted	probabilities	as	a	function	of	time	distance	and	continuous	geographic	distance	

	

Figure	2.3:	Predicted	probabilities	as	a	function	of	time	distance	and	discrete	geographic	distance	
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The graphs further confirm the pattern implied by the marginal effects analysis and facilitate the 

discussion of the magnitude of the effects observed10. Here, we discuss selected representative examples. In 

Figure 2.2a, we observe that, when Geo distance is set at its 25th percentile (equal to 150 km), the predicted 

probability declines by approximately 82% (from 83% probability to 28%) when Time distance moves from 

0 years to 13 years (the 90th percentile of time distance). This decline is attenuated but remains pronounced at 

approximately 75%, when Geo distance is set at its 75th percentile (equal to 8,623 km). Therefore, the effect 

of Time distance is consistently strongly negative. Figure 2.2b, we can observe that the effect of Geo 

distance is negative when time distance is set at its 10th percentile value (1,6 years), although the effect is not 

strong: the probability of observing an XE citation falls from 65%, for a Geo distance close to 011 to 61% for 

a Geo distance of 8,623 km (75th percentile). Conversely, when Time distance is at its 75th or 90th percentile, 

the effect of Geo distance is strongly positive. Figure 2.3 leads to a similar conclusion and reveals significant 

differences, especially for citations linking inventors in the same NUTS3 region, inventors in different 

NUTS2 regions and in different countries. From Figure 2.3b, when Time distance is set at its 10th percentile 

value, the predicted probability is approximately 67% within the same NUTS3 region, it is significantly 

lower, at an average of 62% across different NUTS2 regions in the same country and is on average 61% 

across different countries. When Time distance is set at its 90th percentile value, the predicted probability 

within the same NUTS3 region is 20%, while it increases to 28% across different NUTS2 regions and to 

35% across different countries (an increase of 40% and 75%, respectively).  

 Sectors	and	discrete	and	complex	technologies	

In this section, we present the results of our analyses for different sectors based on the sector of the citing 

patent.12 Specifically, we distinguish five sector categories: chemistry, electrical engineering, instruments, 

mechanical engineering and other fields. In addition, we consider the distinction between complex 

technologies and discrete technologies.13 In each category, we only consider patents that report IPC codes 

corresponding to sectors assigned to that category, excluding from the analysis those assigned to both 

categories.14 These series of analyses are depicted in Table 2.9, where Models 1-5 present results for the five 

selected categories: chemistry, electrical engineering, instruments, mechanical engineering and other fields. 

In addition, Models 6 and 7 present results for complex technologies and discrete technologies, respectively. 

                                                      

10 Note that the values discussed refer to the probability that a citation is an X or E citation in our sample, where we only consider 
patents with at least one X or E citation and an A citation. These values show that the likelihood of observing an X or E citation 
varies significantly relatively to the sample average (48%). However, importantly, they cannot be interpreted as ratios of duplicated 
inventions in absolute terms.  
11 Note that continuous geographic distance is 0 when at least two inventors are located in the same NUTS3 region. 
12 We assign sectors following the World Intellectual Property Organization (WIPO) IPC-Technological field concordance table. 
13 This classification follows Von Graevenitz, G., Wagner, S., and Harhoff, D. (2013), “Incidence and Growth of Patent Thickets: 
The Impact of Technological Opportunities and Complexity”. The Journal of Industrial Economics, 61(3): 521–563. 
14 These correspond to less than the 15% of our sample. 
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For the sake of brevity, we only report models based on the continuous measure of geographic distance. The 

results remain significant for all sectors. However, as expected, the magnitude of the coefficients of 

geographic distance is considerably lower for chemistry (Model 1). Conversely, the estimate for electrical 

engineering (Model 2) exhibits the highest values. As expected, complex technologies exhibit higher 

coefficients than do discrete technologies.  

Table	2.9:	Sectors	and	discrete	and	complex	technologies

	

To provide further evidence of the significance of this difference across different technologies, Figure 2.4 

reports the predicted probabilities as a function of Time distance at different percentiles of continuous 

geographic distance for complex and discrete technologies (in Figure 2.4a and Figure 2.4b, respectively). 

The average effect of time is qualitatively identical for complex and discrete technologies, albeit slightly 

lower for discrete technologies. For complex technologies, the effect of Geo distance remains equivalent, if 

not stronger, relative to those previously discussed for the entire sample. On the contrary, for discrete 

technologies, the magnitude of the effect is lower, and for most of the values of Time distance in the sample, 

the confidence intervals of the predicted probability at different levels of geographic distance are partly 

overlapping, meaning that the difference can only be considered significant at extreme values of Time 

distance and Geo distance. 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Chemistry
Electrical 

engineering
Instruments

Mechanical 
engineering

Other fields
Complex 

technologies 
Discrete 

technologies 

Same applicant -0.016* -0.080*** -0.091*** -0.057*** -0.119*** -0.082*** -0.030***
(0.009) (0.013) (0.016) (0.010) (0.025) (0.009) (0.009)

Tec similarity 0.052*** 0.175*** 0.167*** 0.129*** 0.146*** 0.155*** 0.061***
(0.011) (0.015) (0.019) (0.012) (0.026) (0.010) (0.011)

Time distance (log) -0.229*** -0.314*** -0.318*** -0.222*** -0.213*** -0.279*** -0.222***
(0.008) (0.011) (0.013) (0.008) (0.019) (0.007) (0.007)

Geo distance (log) -0.008*** -0.035*** -0.028*** -0.017*** -0.026*** -0.026*** -0.014***
(0.003) (0.004) (0.005) (0.003) (0.008) (0.003) (0.003)

Geo distance (log) * Time distance (log) 0.009*** 0.022*** 0.021*** 0.014*** 0.015*** 0.019*** 0.011***
(0.002) (0.002) (0.003) (0.002) (0.004) (0.001) (0.001)

Applicant aware -0.046*** -0.030** -0.009 -0.033*** -0.036 -0.022*** -0.048***
(0.009) (0.012) (0.016) (0.010) (0.024) (0.008) (0.009)

Inventor aware -0.051*** 0.028** 0.022 -0.027*** -0.009 0.012 -0.048***
(0.008) (0.013) (0.015) (0.009) (0.022) (0.008) (0.008)

Constant 0.827*** 0.825*** 0.837*** 0.751*** 0.764*** 0.793*** 0.826***
(0.017) (0.024) (0.030) (0.019) (0.044) (0.016) (0.017)

Citing patent FE Yes Yes Yes Yes Yes Yes Yes

Observations 88,233 65,597 39,361 89,774 19,191 151,499 94,535
Number of groups 29,525 24,326 14,582 32,552 7,244 56,630 31,570
F 340.5 246.9 178.8 257.6 49.20 516.1 332.7

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Figure	2.4:	Predicted	probabilities	as	a	function	of	time	distance	for	complex	and	discrete	technologies	

 

Interestingly, the effects of the revealed awareness also differ substantially across sectors: they are 

negative and high in magnitude for chemistry but lower and in certain cases not significant for other sectors. 

Surprisingly, the effect of an inventor having previously cited the focal cited patent is positive in electrical 

engineering. This result is difficult to interpret, but it could be due to the high level of competition in this 

sector and the lower effectiveness of patents in communicating property boundaries. The strong effect of the 

awareness variables in chemistry, in contrast, is consistent with the hypothesis that in this sector, not only are 

patents exploited as a source of information to a greater extent but they also effectively describe the property 

boundaries of the applicant, reducing both the risk and opportunity of resulting in overlapping claims 

(Bessen and Meurer, 2008). 

2.5 Robustness	

In Table 2.10, we check the robustness of the reported results to a series of potential concerns. First, we 

also include fixed effects for the cited patents. In order to include both levels of fixed effects we employ the 

Mundlack procedure, hence including means for all regressors at both the citing patent and the cited patent 
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levels (Mundlak, 1978). Standard errors are clustered at the citing patent level15. We do not adopt this model 

as our main specification because the inclusion of cited patent fixed effects automatically downward biases 

the estimate values, as cited patent fixed effects perfectly predict the outcome variable for patents that only 

appear once as cited patents. However, the results remain significant and qualitatively equivalent (Model 1).  

Second, we consider the distinction between citations from the original patent application and those added 

by the examiner. The main rationale behind this distinction is to investigate the possibility that inventors and 

applicants add or omit citations for strategic reasons, which might bias our results. It is worth noting that we 

intentionally avoid interpreting these two categories as a sharp distinction between citations to patents of 

which the inventor was or was not aware, respectively. This is especially critical in the case of EPO patent 

applications because inventors do not have any obligation concerning citations to prior art. Therefore, the 

examiner adds the large majority of patent citations during the search and examination procedures. 

Moreover, there is no guarantee that the citations present in the original application refer to patents known by 

the inventor when the invention was in development: citations can be added later, by either the applicant or 

patent attorney. More important, it is unlikely that inventors add citations to recently filed patents, as they 

might not yet be public. Similarly, even if they are aware of such patents, inventors have incentives not to 

cite inventions from competitors, as they might jeopardize the patentability of their own inventions. In Model 

2, we only consider examiner citations and the results for the time distance and geographic distance remain 

essentially unchanged. Interestingly, citations added by the examiner, which the inventor is found to be 

aware of, are more likely to indicate duplication. This evidence is coherent with the lack of incentives for the 

inventor to report citations to such patents even if she is aware of them.  

Finally, we check the robustness of our results across countries based on the inventors’ location. In 

Models 3 to 8 in Table 10, we separately consider the top five countries in our sample according to patent 

counts (France, Germany, Italy, Japan, the USA) and aggregate all remaining countries into an additional 

category (Other countries). Patents are assigned to the geographic area where the majority of inventors are 

located. The rationale for this test is that part of the results might be driven by country-specific 

characteristics or countries being covered differently in EPO patent data (De Rassenfosse et al., 2014). 

Regarding the statistical significance and direction of the effect, the results on time and geographic distance 

variables hold for all countries; while those on the awareness variables are relatively less robust. Arguably, 

the differences observed might relate to country differences in technological specialization, institutional 

frameworks and other context-specific characteristics.  

                                                      

15 Significance levels are identical when adopting bootstrapped standard errors or block-bootstrapped standard errors with citing 
patents as clusters.  
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Table	2.10:	Robustness	

	

2.6 Conclusion	

In this paper, we discussed the determinants of duplicated inventions and empirically examined how this 

phenomenon is distributed geographically and over time, using data on patent citations. We argued that over 

time, knowledge flows increase and competitive incentives fade for a given invention. For this reason, we 

expect that the time elapsed between inventions should negatively affect the probability of duplication. 

Concerning the geographic distribution, we argued that knowledge flows on emerging technologies and 

localized opportunities encourage inventors to compete on the same technological path, which makes 

duplication for recent and upcoming technologies more likely when the inventors are geographically 

proximate. Finally, we argue that failures in knowledge flows at high geographic distances may also cause 

independent duplications for not recent inventions, such as that at high time distances, we expect to observe 

duplication at high geographic distances. 

We exploit patent citation information from EPO patents to map duplicated inventions with respect to the 

original inventions (i.e., X and E citations) and to other related inventions that do not threaten the 

patentability of the invention in question (i.e., A citations). In other words, our results are based on 

comparing the geographical, time and technological differences of the pair of duplicating-original patent 

applications to the pair of duplicating-related patent applications. In accordance with our hypotheses, when 

more proximate in time, we observe that original patents are more likely located at shorter distances and 

within the same region compared to related patents. Conversely, the effect of distance is reversed as time 

passes between the original and duplicating patents. As such, “relatively old” patent applications present 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

FE citing
 and cited

Examiner 
citations

France Germany Italy Japan Usa
Other 

countries 

Same applicant -0.054*** -0.051*** -0.090*** -0.057*** -0.146*** -0.027*** -0.071*** -0.077***
(0.008) (0.006) (0.026) (0.011) (0.034) (0.010) (0.015) (0.013)

Tec similarity 0.148*** 0.117*** 0.144*** 0.120*** 0.116*** 0.103*** 0.094*** 0.137***
(-0.010) (0.007) (0.029) (0.012) (0.033) (0.013) (0.016) (0.014)

Time distance (log) -0.247*** -0.253*** -0.218*** -0.209*** -0.216*** -0.303*** -0.286*** -0.228***
(0.007) (0.005) (0.024) (0.008) (0.025) (0.008) (0.013) (0.011)

Geo distance (log) -0.014*** -0.022*** -0.022** -0.011*** -0.022** -0.023*** -0.021*** -0.016***
(0.002) (0.002) (0.009) (0.004) (0.011) (0.003) (0.004) (0.004)

Geo distance (log) * Time distance (log) 0.011*** 0.015*** 0.018*** 0.013*** 0.014*** 0.015*** 0.015*** 0.014***
(0.001) (0.001) (0.005) (0.002) (0.005) (0.002) (0.002) (0.002)

Applicant aware -0.043*** -0.024*** -0.020 -0.045*** -0.053 -0.014 -0.046*** -0.030**
(0.006) (0.006) (0.032) (0.010) (0.036) (0.010) (0.013) (0.012)

Inventor aware -0.022*** 0.012** -0.111*** -0.052*** -0.001 0.019* 0.018 -0.024**
(0.007) (0.006) (0.024) (0.009) (0.030) (0.011) (0.013) (0.011)

Constant 0.511*** 0.807*** 0.754*** 0.733*** 0.772*** 0.868*** 0.862*** 0.747***
(0.006) (0.011) (0.054) (0.020) (0.059) (0.018) (0.028) (0.025)

Citing patent FE Yes Yes Yes Yes Yes Yes Yes Yes
Cited patent FE Yes No No No No No No No

Observations 302,156 267,040 16,148 81,836 12,704 75,709 50,996 64,763
Number of groups (citing patents) 108,229 97,342 5,899 29,309 4,638 26,460 18,543 23,380
F 347.22 882.4 36.99 244.9 31.22 399.5 206.0 175.8

Model 1: Cluster robust standard errors in parentheses; Model 2-8: Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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overlapping invention claims when inventors are geographically distant, especially in different countries. 

While several economic models have considered duplication as a random outcome (Gómez, 2011; Jones and 

Williams, 2000), our results suggest that the likelihood of duplication is unevenly geographically distributed.  

Based on this evidence, we can also discuss potential further implications. First, we infer that proximity 

and knowledge flows involve more detailed underlying dynamics than would be implied by a simple learning 

process. Proximity allows for learning from existing technologies and the identification of valuable 

opportunities, hence avoiding investments in existing technologies. Therefore, a potential crucial advantage 

of inventors located in technological clusters is the possibility to identify technological opportunities in a 

timely manner while, simultaneously, avoiding duplication. However, knowledge flows relating to upcoming 

technologies might encourage different inventors to pursue the same idea. These dynamics, combined with 

strong competition and the lack of alternative sources of knowledge and opportunities, might reduce the 

innovative capacity of a region (Audretsch and Feldman, 1996; Martin and Sunley, 2006). Our results also 

suggest that inventors in distant locations are exposed to the risk of replicating R&D efforts performed even 

years before. Therefore, these considerations suggest conceptualizing knowledge flows in accordance with a 

broader taxonomy of outcomes: 1) internalized knowledge flows that enable cumulative innovation; 2) rival 

knowledge flows exploited to anticipate competitors that might lead to a certain degree of duplicative efforts; 

3) imperfect knowledge flows that cause inventors to miss opportunities for innovation; and 4) imperfect 

knowledge flows that cause redundant (duplicative) innovation efforts.  

Second, we can reinterpret our empirical findings in the context of information disclosure through patent 

documents. Arguably, if the information disclosed in patent documents were sufficient to ensure perfect 

diffusion, we should not have observed any significant pattern in duplication with respect to geographic 

distance. It is worth noting that this does not necessarily imply that patent documents fail to disclose 

information but rather that knowledge simply is not easily diffused. It remains possible that patent 

information is more disclosed within the patent system than outside of the system. Moreover, our results 

suggest that in certain sectors – especially those related to discrete technologies – patents are a more 

successful channel for knowledge diffusion through geographic regions. In a similar vein, we also found that 

inventors and applicants are less likely to duplicate inventions protected by patents that they have cited in the 

past. To some extent, this suggests that inventors avoid duplicating patents of which they are aware. 

However, again, this result was not stable across different specifications and especially not across different 

sectors.  

Finally, our methodology also contributes to the debate on the meaning of patent citations. Our 

interpretation is primarily based on the definitions of the patent citation categories. In our framework, X or E 

citations are by definition an indication (based on the opinion of an examiner) of an overlap between two 

inventions that might or might not be the result of knowledge flows. Similar to previous studies, our results 

are consistent with the understanding of knowledge flows being geographically localized but cast further 
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doubts on the use of patent citations as direct indicators of knowledge flows. In this sense, we confirm that 

examiner citations can present significant geographical patterns with respect to inventor location (Alcacer 

and Gittelman, 2004). As a consequence, it remains highly ambiguous which patent citation category is more 

appropriate as a direct indicator of knowledge flows. Moreover, our results contribute to the concern that 

certain citations, particularly when added by the examiner, might actually reflect a lack of knowledge flows.  

A limitation of our analysis is that we cannot fully distinguish independently duplicated inventions from 

those issuing from competitive behavior. This is due to the impossibility to perfectly measure the awareness 

of inventors. Similarly we do not dispose of a measure of competitive incentives, holding constant the age of 

a technology, among inventors. Our evidence is only consistent with both the existence of inventions 

independently duplicated because of missing knowledge flows and inventions duplicated as a result of rival 

R&D strategies fostered by local knowledge flows. Another limitation concerns our having implicitly 

assumed the existence of welfare costs of duplication, issuing from suboptimal investments in inventive 

efforts. On the contrary, duplication might be, for example, the necessary side effect of virtuous competitive 

dynamics within technological clusters. More generally, considering the sub-optimality of a given level of 

duplication would require accounting for the incentives to innovate, the amount of resources allocated to a 

given inventive effort and the costs of information access and knowledge diffusion. In this sense, also 

independent duplication is only socially sub-optimal if the cost of accessing information and knowledge 

diffusion are assumed to be lower than the cost of producing redundant inventions. All this information 

cannot be included in our framework. 
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2.7 Appendix	

In this appendix we compare a citing patent application with one patent cited with a citation categorized 

as X (X-cited) and one patent cited with a citation categorized as A (A-cited). The comparison is useful in 

order to understand the methodology we adopt which is based on two fundamental characteristics of the data: 

1. the invention claimed in the X-cited document has to overlap in some substantial manner with the 

invention claimed in the citing patent application, providing the indication of duplication; 2. the invention 

claimed in the citing patent application is very close to the invention claimed in the A-cited document but 

presents some substantial novelty compared to it. The example presented is taken and summarized from the 

Patent Teaching Kit provided by EPO16 (pg. 248). Discerning different categories of citations in general 

requires a deep knowledge of the technology and a detailed analysis of the patent claims. The description 

provided in the Patent Teaching Kit EPO helps identify the peculiar characteristics of an X-cited document, 

compared to an A-cited document. Table A1 reports the descriptions of the citing patent, the X-cited patent 

and the A-cited patent.  

Table	2.11:	Appendix	‐	Citation	categories	example	

 

The citing patent application relates to a heating element for a washing machine. The A-cited patent 

identified during the prior art search shows a very similar device. However, the analysis of the patent claims 

reveals a technical difference, which translates into a technical effect and constitutes an inventive step: “The 

invention as claimed allows a much lower minimum water level than is possible with the washing machine 

shown in EP0352499, because the foil heating element is directly fitted onto the wall of the tub” (Patent 

                                                      

16 http://www.epo.org/learning-events/materials/kit/download.html  

Patent Citing X-Cited A-cited

Title A washing device heated electronically* Heating device used for a household appliance
A heating device for washing and/or drying machines 

for laundry

Publication n. EP 03005120 DE 10025539 EP 0352499 A2

Description 

A heater comprising a foil heating element which is 
attached to or integrated into the lower part of a tub, 
which has contact with the medium to be heated. The 
tub is the receptacle that contains the water and 
washing powder or liquid inside the washing machine. 
The drum rotates inside the tub around an axis, which 
in this example is slightly inclined. The foil heating 
element is attached (e.g. glued) to or integrated into 
the lower part of the tub. Thus, the foil heating 
element is also "adapted in its shape" to the bottom of 
the tub. Insulating strips may be used for dividing the 
foil heating element into different sections. The 
proposed heater is simple and inexpensive to 
manufacture, less prone to interference and provides 
the possibility to reduce water and energy 
consumption. Thanks to the simple structural design 
of the foil heater, the risk of calcification and linting is 
significantly reduced.*

Heating device comprises a ceramic-filled polymer 
layer arranged between a surface of the appliance to 
be heated and an electrically conducting heating foil. 
Preferred Features: The heating foil is covered on the 
side facing away from the polymer layer by an 
insulating molded body. The polymer layer has a 
thickness of 70-150 microns and the heating foil is an 
iron-chromium-aluminum alloy. The insulating molded 
body is made from vermiculite.

A heating device for washing and/or drying machines 
for laundry, com-prising a parallelepiped plate made 
of electrically insulating material having applied to one 
surface thereof, by the silk screen process or simi-lar 
procedures, at least one electrical resistor based on 
electrically conductive metal powders mixed with 
glass frit, the resistor having a wavy or other 
pattern.The plate is placed inside the vessel of the 
washing or dry-ing machine for laundry and the 
corresponding terminals of the resistor are then 
connected with the power supply network of the 
machine. One thus obtains an elevated heat radiating 
capacity of the plate adapted to effect rapid heating 
of the washing solution or the drying air of the 
machine in question.

* note: title and description translated and adapted from the original (German) by the authors and based on the description reported on the Patent Teaching Kit provided by EPO
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Teaching Kit EPO, pg. 251). On the contrary, the device disclosed in the X-cited patent comprises all of the 

additional features initially claimed in the citing patent: a heating foil with its supporting polymer layer and 

heat-conducting material. “There is at least one interpretation of the prior art which is conclusive and logical 

that shows all the features of the claim of our invention” (Patent Teaching Kit EPO, pg. 253). The citing 

patent could be granted only conditionally on a revision and reduction of the specific features to be protected 

(claims). Similar examples could be drawn from our sample that for the sake of brevity, are not shown here. 
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 The	scientific	productivity	

of	PhD	students	from	professors’	

networks	

(With Annamaria Conti and Fabiana Visentin) 

3.1 Introduction	

To date, academia remains a major locus of knowledge and innovation production. Within academia, 

graduate students play a fundamental role both in the creation and transfer of knowledge within academia or 

to industry (Black and Stephan, 2010; Leten et al., 2014; Stephan, 2012; Van Looy et al., 2011). Therefore, 

various scholars have studied the scientific productivity of different categories of PhD students (Gaulé and 

Piacentini, 2013; Levin and Stephan, 1999). A growing literature shows that mobile graduate students, and 

more in general researchers, hired from external environments, relative to the institution in which they are 

employed, are highly productive (Gaulé and Piacentini, 2013; Levin and Stephan, 1999; Libaers, 2007). 

Consequently, hiring from other institutions and environments appears crucial to enhance performance in 

research institutions.  

However, hiring processes are affected by strong information asymmetries (Arrow, 1972; Granovetter, 

1995) and institutions might favor internal or better known candidates (Horta et al., 2010). As a 

consequence, a large body of literature suggests that the existence of networks crossing institutional 

boundaries can impact the possibility to hire productive candidates from other environments (Granovetter, 

1973; Ponzo and Scoppa, 2010). Indeed, inter-institutional and international collaborations are increasingly a 

fundamental component of the academic profession (Adams et al., 2005; Baruffaldi and Landoni, 2012; 

Hoekman et al., 2010; Jones et al., 2008). From a theoretical standpoint their effect might be both positive 

and negative. Few studies have addressed this issue in academia (Lissoni et al., 2011; Pezzoni et al., 2012) 

and in other contests evidences are mixed (Antoninis, 2006; Castilla, 2005).  

This paper contributes to the existing literature by empirically comparing the scientific productivity of 

three different categories of students: PhD students that obtained their master’s degree from the same 
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university as the one of the PhD (hereafter “internal students”); PhD students who are hired from external 

universities with which no one of the supervisor's co-authors is affiliated (hereafter “external students outside 

professors’ network”); PhD students who are hired from external universities but with which their 

supervisor's co-authors are affiliated (hereafter “external students from professors’ network”). In particular 

we focus our discussion on this latter category of students. In principle, students in this category can have 

lower productivity if professional networks lead to favoritism (Horta et al., 2010; Prendergast and Topel, 

1996) limiting the potential benefits of hiring from external institutions. On the contrary, they could have 

higher productivity if, reducing the information asymmetries, networks allow to hire the students with the 

highest expected productivity (Cornell and Welch, 1996; Saloner, 1985). Other different mechanisms, which 

based on the literature we define as post-hiring social effects (Fernandez et al., 2000; Yakubovich and Lup, 

2006), might also explain a positive effect: for instance, the supervisor might interact more closely with the 

student because of the existence of a social connection.  

We conduct this analysis using a novel dataset of 4,666 PhD students in science or engineering who 

graduated from two major Swiss technology institutes: the Swiss Institute of Technology of Lausanne 

(EPFL) and the Swiss Institute of Technology of Zurich (ETH). In our sample, approximately one half of the 

students obtained a master from a different university from the one of the PhD (external students) and 

approximately half of them (one quarter of the entire sample) are from the supervisor's research network. In 

line with previous studies (Gaule’ and Piacentini, 2012), in our baseline analyses, we consider detailed 

controls at student and professor level, and we adopt professor fixed effect estimation. Additionally, we 

control for mutual characteristics of the student and the professor that might directly confound the effect of 

professor's network. Finally, we control for the heterogeneity of institutions where the students obtained their 

master's degrees, including proxies of the specific relevance of these universities for a given supervisor.  

We find that external students from professors’ network are significantly more productive than both 

internal students and other external students. We show that our models pass a placebo test where we 

construct our variable of interest based on the network of a different professor whose research interests are 

close as possible to those of the supervisor of the focal student. Thus, we conclude that the presence of a 

professor’s coauthor in a given university has a positive effect on the productivity of students hired from that 

same university. In the last session of the paper, we provide a series of additional analyses that suggest that 

the main mechanism likely to explain the effect encountered is the resolution of information asymmetries, 

and we rule out some of the possible alternative explanations.  

3.2 Conceptual	framework	

In this paper, we ask whether students with a master degree from a different university of the one of the 

PhD but hired from a university with which their supervisor's co-authors are affiliated (external students 
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from professors’ network) have a different average productivity as compared to other external students and 

from internal students.  

Faculty networks can affect productivity outcomes of hired PhD students in multiple ways. In principle, 

they can encourage practices, such as favoritism, that are likely negatively correlated with students’ 

productivity outcomes. In this sense, the presence of personal connections might confound the process of 

objective selection of external candidates (Prendergast and Topel, 1996). Horta et al. (2010) recognize that 

the negative effects of institutional inbreeding (defined as the practice of having researchers hired from the 

same university who trained them, that typically turn out to be less productive) can be the consequence of 

rational behavior: since internal networks and the pre-existing information on internal candidates lower the 

uncertainty regarding their quality vis-à-vis external candidates, employers might prefer internal candidates 

regardless of a lower expected productivity. Professors’ networks typically and increasingly cross 

institutional boundaries and the same arguments might apply to candidates coming from connected 

environments as compared to candidates from unconnected ones.  

Indeed, hiring processes are affected by strong information asymmetries. However, the economics and 

sociological literature have typically identified networks to be potentially beneficial for labor market 

outcomes, precisely because they might decrease asymmetric information allowing to assess the 

"unobservable habits of action" (Arrow, 1972; Granovetter, 1995). Therefore, networks can allow for the 

identification of candidates with higher expected productivity. As a consequence, the average quality of the 

applicants hired from somehow connected environments may be high in equilibrium, higher than the quality 

of employees for what the employer could only rely on formal screening mechanisms (Montgomery, 1991; 

Saloner, 1985). Notably, networks might operate reducing information asymmetries both for the employer 

and the employee, not only increasing the possibility for the employer to select better candidates, but also 

improving the complementarity of the match between the two (Fernandez et al., 2000; Yakubovich and Lup, 

2006). 

These theories, leading to the hypothesis that networks positively impact labor market outcomes, do not 

exclude the possibility of negative effects. Granovetter (1995) firstly outlined the notion that connections not 

involving a strong relationship - "weak ties" -, are sufficient to gain most of the information advantage 

leading to improvements in the labor market outcomes. On the contrary, when "strong ties" are present, such 

as strong collaborations, friendship and family ties, favoritism might prevail, leading to negative outcomes. 

In addition, recent literature has further detailed and extended the mechanisms trough that networks might 

have a positive impact. Based on this literature we distinguish broadly between hiring effects and post hiring 

effects (Antoninis, 2006; Fernandez et al., 2000). The former can be considered as strictly related to the 

effect of information asymmetries, as discussed above. On the contrary, the latter concerns possible post-

hiring social dynamics that affects differently individuals hired through a network. For instance, individuals 
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hired within one employer's network can receive better supervision or might feel more motivated to perform 

well.  

Positive effects of networks have been found in different contexts such as low skilled immigration 

(Munshi, 2003), call-center employees (Castilla, 2005) start-ups selected by venture capitalists with ethnicity 

ties (Hegde and Tumlinson, 2011). On the contrary, other studies have found negative network effects on 

economic outcomes (Ponzo and Scoppa, 2010). Negative effects are especially found when either strong 

informal connections, rather than professional connections, are present (Ponzo and Scoppa, 2010) or, 

similarly when family ties are used (Sylos Labini, 2005). The role of networks in academia is a relatively 

new development and especially the literature on PhD students has so far overlooked this aspect. Existing 

evidence indeed suggests that similar dynamics might be in place in academia. Laband and Piette (1994) and 

Brogaard et al. (Brogaard et al., 2014) find that journal editors use social connections to identify high-impact 

papers for publication. Moreover, Li (2012) finds that the presence of related reviewers improves the quality 

of research that the NIH (National Institutes of Health) supports. Social connections between candidates and 

evaluators have a positive impact on candidates' promotion in academic careers, although evidence on 

candidate research productivity is mixed (Pezzoni et al., 2012; Zinovyeva and Bagues, 2012).  

None of the above mentioned studies has considered the role of supervisors' networks in PhD student 

outcomes. This role might be crucial because, as many scholars have emphasized, PhD programs are 

predominantly populated by foreign or foreign-educated students, and information asymmetries are 

definitely a concern for these students (Black and Stephan, 2010; Gaulé and Piacentini, 2013; Stuen et al., 

2007). As suggested by Gaulé and Piacentini (2013), supervisors tend to resolve this information problem by 

selecting students from a handful of selective schools. However, the supply of students from these schools is 

limited, and even within selective schools, there is wide variability in student quality or backgrounds. We 

examine the relationship between supervisor networks and student productivity, bearing in mind that 

networks can affect productivity outcomes of hired PhD students positively or negatively, and through 

different mechanisms.  

3.3 Data	and	methods	

 Context	

Our empirical context involves PhD students from EPFL, Lausanne, and from ETH, Zurich. These 

universities are the two Federal Institutes of Technology of Switzerland. EPFL is located in the French-

speaking part of Switzerland, and ETH is in the German-speaking part. EPFL and ETH are responsible for a 

large portion of the research in science and engineering that is produced in Switzerland, and they host the 
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largest doctoral programs in these disciplines. Official statistics from 2011 reveal that EPFL and ETH hosted 

60% of the PhD students in science and engineering enrolled in Switzerland17.  

From the population of PhD students, we select a sample of 4,666 PhD students who had graduated from 

EPFL or ETH during the 2000-2008 period. Universities' human resource departments had extensive 

biographical information on the students who graduated during this time window. We complement the 

information from human resources with that extracted from student dissertations. We match this information 

with student publication records using Scopus. We also collect fine-grained data on student supervisors. 

There are 558 professors (227 at EPFL and 331 at ETH), each of whom supervised an average of eight PhD 

students at the time of our sample period. In the sample, 36% of the PhD students were affiliated with EPFL, 

and the remainders were affiliated with ETH. For EPFL, we selected all of the PhD students who had 

graduated during our sample period, whereas for ETH, which is a much larger university, we considered only 

a sub-sample. The latter was obtained by randomly selecting a sample of supervisors in each department and 

including their PhD students. In this manner, we cover approximately 30% of the PhD students who 

graduated from ETH during the 2000-2008 period.  

When classified by discipline, 14% of the EPFL PhD students are in computer science, 39% are in 

engineering, 4% are in life science, and the remaining students are in basic science. For ETH, 6% of students 

are in computer science, 42% are in engineering, 13% are in life science, and 39% are in basic science. PhD 

students are selected by professors through a formal interview process18. Once a professor hires applicants, 

they work with that professor for the entire duration of their PhD program. Hence, switching to another 

supervisor is rare.  

PhD students at both EPFL and ETH generally complete their PhDs within four years. Extensions are 

possible, but they are typically no longer than six months. The dropout rate is approximately 10% at both 

universities. PhD applicants must have already obtained their master's degrees. Hence, they spend most of 

their time performing research rather than taking courses, given that they have already taken most courses 

during their respective master's programs. In general, EPFL and ETH are multi-cultural environments with 

PhD students originating from a variety of countries and academic institutions, partly because of the high-

quality research that is pursued at these universities and the high salaries that are offered to PhD students, 

compared with other countries19. 

                                                      

17 These data were obtained from the Swiss Federal Statistical Office. They can be accessed at 
http://www.bfs.admin.ch/bfs/portal/en/index.html. 
18 Beginning in 2006, EPFL changed its rules and established that PhD applicants must submit their application to a central 
committee, which conducts an initial screening. Our sample does not include cohorts who joined after 2005. 
19 Data on salary differentials can be accessed at http://jahia-prod.epfl.ch/files/content/sites/acide/files/ activities/documents/sondage-
ACIDE-Doctorants.pdf.  
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Of the PhD students in our sample, 59% obtained their master's degrees at a university other than the 

affiliation of their PhD (the percentage is 67% at EPFL, and 54% at ETH). Moreover, 56% of students at 

EPFL and 46% at ETH were previously affiliated with universities outside of Switzerland. Not surprisingly, 

PhD students from French universities constitute the largest foreign group at EPFL: they represent nearly 

13% of all PhD students. Similarly, PhD students coming from German universities are the largest foreign 

group at ETH, representing almost 22% of the total students. Non-European students constitute a small 

minority at both universities. For instance, North American students represent approximately 1.5% of all 

PhD students at each school, whereas Chinese and Indian students together represent approximately 3%.  

Regarding the supervisors, approximately 55% of them are foreign at EPFL, whereas the percentage of 

foreign professors is 58% at ETH. At both EPFL and ETH, the largest foreign group is composed of German 

professors, who represent, respectively, 11% and 26% of total foreign professors.  

 PhD	students	categories	

First, we distinguish between internal students (PhD students with a master’s degree from the same 

university of the PhD) and external students (PhD students with a master’s degree from a different 

university). As noted above, in our sample, this latter category accounts for the 59% of students. In our 

empirical analysis we are interested in further distinguishing external students who are hired from a 

university within the network of their supervisors (external students from professors’ network). We construct 

the latter measure as an indicator that takes a value of one if the student had obtained her master's at one of 

the universities from which her supervisor draws her co-authors20. For this purpose, we searched for the 

academic institutions with which supervisor j’s co-authors are affiliated and compared them with the 

universities from which j’s students had obtained their master's degrees21. Data on coauthors' affiliations are 

available from Scopus. For each student i's affiliation, the relevant comparison is with the affiliation of 

supervisor j’s co-authors, who had written scientific articles with j up to the student's year of entry into the 

doctoral program22. We consider only those institutions in the last three quartiles of the supervisor's 

distribution of coauthor affiliations. By applying this cutoff, we aim to smooth out noise23. 47% of the 

external students, corresponding to 27% of the total sample, are hired from a university within the network of 

the supervisor. The remaining 53% (31% of the total sample) obtained their master's from a University where 

their supervisors have no co-authors.  

                                                      

20 This measure resembles that employed by Laband and Piette (1994), who measure author/editor connections with an indicator 
variable equal to one if any of the authors of a paper had received a PhD degree from the same affiliation as that of the editor. 
21 The comparison was performed by adopting a matching algorithm implemented by Raffo and Lhuillery (2009) 
22 We consider a lag of three years between the time that the coauthors begin writing an article and the time at which the article was 
published. The results are robust to applying other cutoffs. 
23 The results hold when we do not apply a cutoff. 
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Note that, taking into account previous studies (Gaulé and Piacentini, 2013; Levin and Stephan, 1999; 

Libaers, 2007), we might further distinguish these categories of PhD students based on their nationality or 

the location where they completed their studies. Nonetheless, in our sample, the category of external students 

coincides to a large extent to the one of foreign or foreign-educated students: about 87% of external students 

are also foreign or foreign-educated. Similarly, 85% of the internal students are Swiss. Therefore, we refrain 

from further detailing the categories considered in the analyses because this would lead to a high number of 

poorly represented categories. Nonetheless, the results of the analyses we present would not change if we 

further control for the nationality of the students.  

 PhD	students	productivity	

We measure productivity using two different count criteria of the scientific articles that a student 

published during her PhD program. These measures have been frequently used in studies of scientific 

productivity (Ding et al., 2010). We adopt a broad definition of scientific articles and include papers that 

have been published in conference proceedings. This definition is adopted because an important fraction of 

our students are in computer science and in electrical engineering, and in these fields, conference 

proceedings have at least the same importance as journal articles24. We count a student's publications from 

the moment that the student enters the doctoral program until one year after graduation25. This specification 

accounts for the lags between the time at which a student completes a research project and the time at which 

the results of the project are published (see, for example, Arora and Gambardella, 2005).  

In the main models we count all articles as retrieved from Scopus attributable to the PhD. Figure 3.1 

displays the distribution of PhD students by the total number of articles that they have published. As shown, 

a large percentage of the students, approximately 85%, had at least one publication, and 75% had more than 

one publication. The average student publication count is similar for EPFL and ETH: 4.61 for EPFL and 4.75 

for ETH. By discipline, the average number of student publications is 5 in computer science and basic 

science, and 4 in engineering and life science.  

In a second set of models we consider only articles above a given threshold of quality (High quality 

publications). In this case, we count only those publications having received a number of citations that is 

higher than the median number of citations received by student articles that were published in the same year 

and in the same field as student i's articles. We adopt this methodology rather than a simple citation count 

because of standard problems that are inherent to measuring research quality using citation counts. For 

                                                      

24 We do not apply any weighting based on impact factor because conference proceedings rarely have an associated impact factor. 
25 In robustness analyses that are not reported here, we also count the number of publications from the year that a PhD student begins 
the doctoral program to two years after graduation. The signs and significance of the coefficients remain unchanged. 
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instance, Amin and Mabe (2000) show that citation counts vary significantly across subject fields and that 

they are correlated with factors such as article length or article styles (whether they are reviews or not), 

which are not informative of research output quality26. As shown in Figure 3.2, by applying this criterion, we 

find that the percentage of students who had not published an article increases from 15 to 30. The average 

student publication count is now 2.34 for EPFL and 2.78 for ETH. By discipline, the average count of 

student publications is 3 in computer science and basic science and 2 in engineering and life science. 

Figure	3.1:	Distribution	of	PhD	students	by	their	publication	count	

 

Figure	3.2:	Distribution	of	PhD	students	by	their	highly	cited	publication	count	

 

                                                      

26 Furthermore, we could only gather data for the cumulative number of citations obtained for each publication up to the year 2012. 
Therefore, depending on the publication date, different truncation periods are applied to the count of citations, introducing additional 
noise in the analysis. In robustness checks that are not presented here (but are available upon request), we used the citation count as 
the dependent variable and obtained similar results. The coefficient on the main variable of interest was still positive and statistically 
significant, although at the 10% confidence level. 
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 Model	

We estimate a quasi-maximum likelihood estimation (QMLE) with fixed-effects Poisson model, given 

that our measure of student research productivity can only take positive integer values (Hausman et al., 

1986). This model has several desirable properties, including consistency in the coefficient estimates and in 

the standard errors regardless of assumptions on the variance functional form (Wooldridge, 1997). Hence, we 

estimate the following equation:  

|௜௝௧ݏܾݑܲ#ሺܧ ௜ܺ௝௧ሻ ൌ exp	ሺߚ଴ ൅ 	student	External	ଶߚ൅	network	prof’s	from	student	ଵExternalߚ

outside	prof’s	network ൅	ߚଷݔ݋ݎܲܥ௜௝௧ ൅ ௜ܦ݄ܲܥସߚ ൅ ݋ݎܲܥହߚ ௝݂௧ ൅ ௜௝ܷ݂݅݊݋ݎܲܥସߚ ൅

௧ܧܨݎܻܽ݁ݕݎݐ݊ܧ ൅ ௝ܧܨ݂݋ݎܲ ൅  ௜ሻܧܨܷ݅݊

 

Table 3.1 summarizes the variables adopted in the analyses and their definition. The main variable of 

interest is External student from prof’s network, which is equal to one if a student is an external student from 

the network of the supervisor. In addition, we include a dummy for external students outside their 

supervisors’ networks: External student outside prof’s network. These two dummies are mutually exclusive. 

We present results both for the entire sample of students and for external students only. Note that in the first 

case (full sample) the baseline category of comparison for the variable of interest External student from 

prof’s network are internal students. In the second case (sample of external students) the category of 

comparison are other external students outside the professor network.  

To capture the effect of belonging to the research network of a supervisor, we must control for factors that 

are correlated with our indicator variable and are likely to affect student productivity. Hence, we use three 

sets of controls. The first set, ݔ݋ݎܲܥ௜௝௧ includes three measures of the cultural proximity between a student 

and her supervisor and the research group. The first measure is a dummy variable that is equal to one if the 

student and the supervisor have the same nationality. We denote this variable as Prof & PhD have same 

nationality. The second measure is a dummy that is equal to one if the student obtained her master's degree 

in one of the universities with which her supervisor was previously affiliated: Prof & PhD come from same 

university. Finally, the last measure is defined as the number of students from j’s group who have the same 

nationality as i, N of Prof PhDs with same nationality as PhD i. The logic for including these variables is that 

they are likely correlated with the variable of interests and might affect at the same time scientific 

productivity. In particular, working with culturally proximate colleagues may reduce interaction costs, with a 

resulting positive impact on the productivity of the students (Fernandez et al., 2000; McPherson et al., 2001). 

. 
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Table	3.1:	Variable	description	

 

 ௜ is a matrix of controls related to PhD student i. The included variables are standard controlsܦ݄ܲܥ

potentially correlated with the productivity of a PhD candidate. Specifically, ܦ݄ܲܥ௜ encompasses a student's 

age at entry into the PhD program and a gender dummy that is equal to one for females. Previous studies 

have shown that there is a negative correlation between age and research productivity (Levin and Stephan, 

1991) and that there are gender differences in the production of scientific articles (Ding et al., 2006; Long, 

1990). We control for aspects of a student's quality that a professor can verify by examining the student's 

curriculum. For instance, we count the number of the student's publications in the two years prior to the 

beginning of her PhD studies. This variable, which we denote as Pre-sample student pubs, can be considered 

a strong signal of the research skills of the student when she applies for a PhD. We include a measure for the 

average quality of the university from which a student has obtained her master's degree, Ranking of master's 

Scientific productivity 

Student publications
Student highly cited publications 

PhD students categories
External student from prof's network

External student outside prof's network

Student-Prof pair controls
Prof & student have same nationality
Prof & student come from same university Equal to 1 if a student had obtained her master's at one of her supervisor's past affiliations.
N of Prof students with same nationality as student Number of supervisor j 's PhD students with the same nationality as student i.

Student main controls
Student age Student age.
Gender Equal to 1 for female gender.
Pre-sample student pubs Count of papers a student had published prior to starting her PhD.
Ranking of master's university

Professor-Lab main controls
Prof age Professor age.
Pre-sample prof pubs Count of articles supervisor j  had published in the five years prior to the year in which student i  begins her PhD.
Pre-sample prof patents Count of patents supervisor j  was granted in the five years prior to the year in which student i  begins her PhD.
Size PhD group Size of a supervisor j 's PhD group at the moment a PhD student i  enters the group.

Grant amount
 

Prof-University of master pair controls 
Pubs stock of master's university (by field)

Ranking of master's university (by field)

N of times master's university is cited by prof

Placebo and robustness controls
Placebo most cited author

External from prof's network w/ pre-sample pubs

External from prof's network w/o pre-sample pubs

Student with pre-sample pubs
Intensity of network ties
Share of pubs with prof

Count of student publications.

Equal to 1 if a student obtained her mater's degree from a university, different from the one of the PhD, from which her 
supervisor does not draw her coauthors.

Count of publications that had received a number of citations higher than the median of citations received by other 
student articles, published in the same year and in the same field.

Amount of basic research grants (in hundred thousands of real Swiss Francs) supervisor j  had obtained during the 
period in which she had supervised student i . This amount is averaged over the duration of the student's PhD.

Equal to 1 if a student obtained her mater's degree from a university, different from the one of the PhD, from which her 
supervisor draws her coauthors.

Share of student publications coauthored with her supervisor.

Equal to 1 if a student has the same nationality as her supervisor.

Ranking assigned by the QS World University Rankings to the university at which  student i  had obtained her master's.

Equal to 1 if External student from prof's network is = 1 and if the student had not published any paper prior to starting 
her PhD.

Share of supervisor j 's papers coauthored with scientists affiliated with student i 's master's university.
Equal to 1 if the student had published at least on paper prior to starting her PhD.

Equal to 1 if the university from which the student had obtained her master's degree is in the top 50 universities for the 
research area in which the student is specialized, according to the QS World University Rankings.

Count of the publications the university from which student i  had obtained her master's had produced in the research 
area of the student. We consider the following areas: physics, mathematics, chemistry, engineering, material science, life 
science, and computer science.

Equal to 1 if a student had obtained her master's degree from one of the universities from which the most highly cited 
scientist by supervisor j derives her coauthors 
Equal to 1 if External student from prof's network is = 1 and if the student had published at least on paper prior to 
starting her PhD.

Number of times that supervisor j cites in her articles authors who are affiliated with the same university as the one from 
which student i obtained her master's degree.
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university, which corresponds to the ranking assigned to that university by the QS World University 

Rankings27.  

݋ݎܲܥ ௝݂௧ is a matrix of controls for supervisor j. We include the age of a professor when her student began 

the doctoral program (Prof age). Moreover, we include the professor's number of publications published in 

the five years prior to the year in which a student begins her PhD (Pre-sample prof pubs). We regard this 

variable as a measure of the knowledge capital that a professor shares with her students and that 

complements her students' contributions in the production of scientific output (Waldinger, 2010). We also 

include a variable that indicates the five-year pre-sample count of US and European patents that a professor 

was granted (Pre-sample prof patents). This variable is intended to capture professor involvement with 

industry over time. When professors are involved with industry, they might be more interested in having 

their students work with industry partners than in publishing articles. Previous studies have shown a positive 

impact of grant money on scientific productivity (Ding et al., 2010; Ganguli, 2010). Consistent with these 

studies, we include the amount of basic research grants (in hundreds of thousands of real Swiss Francs) that a 

professor had obtained during the period in which she supervised student i. This amount is averaged over the 

duration of the student's PhD program. We denote the variable as Grant amount. Finally, we also control for 

the size of a supervisor's PhD group at the moment that a PhD student enters the group (Size of PhD group). 

In our base-line regressions we include all controls mentioned above and we add university-department 

fixed effects28, as there are differences in the publication patterns of PhD students across departments 

(Stephan, 2012) and across universities. Moreover, we control for year fixed effects, based on the year in 

which the student begins her PhD program. Following Gaulé and Piacentini (2013), in subsequent model 

specifications we include professors’ fixed effects. Professors’ fixed effects control also for specific 

characteristics of the subfield of specialization of the student, at a more detailed level with respect to 

university-departments fixed effects. Indeed, university-department fixed effects model is nested in the 

professor fixed effects model. More importantly, we control for any additional time invariant unobserved 

characteristic of the professor that, being correlated with her network and the average productivity of her 

students, might bias our results.  

Finally, in a last set of models, we further address the issue of the quality of the university of the master’s 

degree of the student. More generally, we consider that the network of co-authors of a professor is not 

random but likely correlated with the quality of the university to which a coauthor is affiliated. This fact 

                                                      

27 The variable was rescaled such that the coefficient represents a change in student productivity corresponding to an increment of 
100 in the university ranking. 
28 The departments we consider are the Physics, Mathematics, Chemistry, Civil Engineering, Electrical Engineering, Mechanical 
Engineering, Micro Engineering, Material Science, and Computer Science Departments. Each department is considered separately 
for ETH and EPFL. 
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makes the presence of a coauthor in a given university potentially endogenous to the average quality of 

students in that university. As a consequence, we might observe a positive effect of our variable of interest 

while more productive students would be drawn from that university anyway, regardless of the presence of a 

coauthor. Indeed, our baseline controls might not be enough to solve this issue. To overcome this concern, 

first, we include fixed effects for the university of the master’s degree of the student.  

Second, we consider an additionally set of variables (ܷ݂݅݊݋ݎܲܥ௜௝ሻ	that are meant to control for the 

specific relevance of a given university relative to the research interests of a professor. This is because, 

although student-university fixed effects are a strong control for the average characteristics of a university, 

these characteristics may vary significantly by research area. It is possible that a professor establishes 

contacts with universities that are relevant for her specific field of research and that, independently from her 

contacts, she hires students from these universities because they are specialized in her research field. 

First, we use a dummy, Ranking of master's university (by field), which is equal to one if the university 

from which the student obtained her master's degree is among the top 50 universities for the research field in 

which the student has specialized, according to the QS World University Rankings29. We consider the 

following fields: engineering, computer science, and basic sciences. Second, we construct a count of the 

publications that the university has produced in the student's research field. We collect this information from 

the Scopus publications' database. In this case, we consider a more fine-grained list of fields: physics, 

mathematics, chemistry, engineering, material science, life science, and computer science. We denote this 

variable as follows: Pubs stock of master's university (by field). Finally, we constructed a variable that is 

defined as the number of times that supervisor j cites in her articles authors who are affiliated with the same 

university as the institution from which student i obtained her master's degree (N times master's university is 

cited by prof). Associating this count with each student's past affiliation provides a strong indication of the 

relevance for a supervisor's research of that affiliation. Descriptive statistics for all variables are reported in 

Table 3.2. 

                                                      

29 Additional details can be found at http://www.topuniversities.com/university-rankings/world-university-rankings. We prefer to use 
this ranking rather than the Shanghai Jiao Tong ranking of universities because the former encompasses a more comprehensive list of 
European universities. 
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Table	3.2:	Variable	descriptive	statistics	

 

3.4 Results	

 Full	sample	

The regression results for the full sample of observations are presented in Table 3.3. The first Model 

displays the baseline results with university-department fixed effects. The coefficient of the main variable of 

interest, External student from prof’s network, is positive and statistically significant at the 1% confidence 

level. The magnitude of the coefficient suggests that external students from the professor’s network are 12% 

more productive than internal students30. Interestingly, external students outside the research network of the 

professor are not more productive than internal students. Notably, external students remain overall more 

                                                      

30 Poisson estimates are interpreted as ሺ݁ఉ െ 1ሻ ∗ 100	percentage change. 

Variable Obs. Mean Std.Dev. Min Max Obs. Mean Std.Dev. Min Max
Student publications 4,666 4.69 4.38 0.00 30.00 2,735 4.87 4.49 0.00 30.00
Student highly cited publications 4,666 2.46 2.77 0.00 20.00 2,735 2.55 2.82 0.00 20.00
External student from prof's network 4,666 0.27 0.44 0.00 1.00 2,735 0.46 0.50 0.00 1.00
External student outside prof's network 4,666 0.31 0.46 0.00 1.00 2,735 0.54 0.50 0.00 1.00

Student-Prof pair controls
Prof & student have same nationality 4,666 0.30 0.46 0.00 1.00 2,735 0.23 0.42 0.00 1.00
Prof & student come from same university 4,666 0.04 0.19 0.00 1.00 2,735 0.04 0.20 0.00 1.00
N of Prof students with same nationality as student 4,666 2.44 3.43 0.00 31.00 2,735 1.45 2.49 0.00 31.00

Student main controls
Student age 4,666 26.56 2.51 21.00 40.00 2,735 26.70 2.60 21.00 40.00
Gender 4,666 0.23 0.42 0.00 1.00 2,735 0.23 0.44 0.00 1.00
Pre-sample student pubs 4,666 0.37 1.12 0.00 16.00 2,735 0.42 1.28 0.00 16.00
Ranking of master's university 4,666 1.95 2.17 0.01 6.01 2,735 3.16 2.12 0.01 6.01

Professor-Lab main controls
Prof age 4,666 47.71 7.81 28.00 70.00 2,735 47.54 7.73 29.00 70.00
Pre-sample prof pubs 4,666 30.40 28.71 0.00 179.00 2,735 31.59 28.64 0.00 179.00
Pre-sample prof patents 4,666 0.63 1.68 0.00 16.00 2,735 0.61 1.65 0.00 16.00
Size PhD group 4,666 7.00 6.00 0.00 41.00 2,735 6.99 6.08 0.00 41.00
Grant amount 4,666 0.74 0.90 0.00 11.59 2,735 0.78 0.86 0.00 10.58  

Prof-University of master pair controls 
Pubs stock of master's university (by field) 4,666 7,266 5,655 0.00 40,801 2,735 4,377 4,368 0.00 40,801
Ranking of master's university (by field) 4,666 0.50 0.50 0.00 1.00 2,735 0.15 0.36 0.00 1.00
N of times master's university is cited by prof 4,666 24.61 39.39 0.00 292.00 2,735 4.31 12.47 0.00 155.00

Placebo and robustness controls
Placebo most cited author 4,666 0.27 0.44 0.00 1.00 2,735 0.46 0.50 0.00 1.00
External from prof's network w/ pre-sample pubs 4,666 0.06 0.24 0.00 1.00 2,735 0.11 0.31 0.00 1.00
External from prof's network w/o pre-sample pubs 4,666 0.21 0.41 0.00 1.00 2,735 0.35 0.48 0.00 1.00
Student with pre-sample pubs 4,666 0.20 0.40 0.00 1.00 2,735 0.21 0.40 0.00 1.00
Intensity of network ties 4,666 0.01 0.03 0.00 0.36 2,735 0.01 0.04 0.00 0.36
Share of pubs with prof 4,666 0.57 0.43 0.00 1.00 2,735 0.58 0.42 0.00 1.00

All students External students
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productive31. These results imply that the higher productivity of external students is mainly driven by the 

productivity of external students from the professors’ networks.  

We find that cultural proximity between a student and her supervisor and the research group (Prof & PhD 

have same nationality, Prof & PhD come from same university, and N of Prof PhDs with same nationality as 

PhD i) are not significantly different from zero. With respect to the other controls, we highlight some 

interesting results. For instance, the age of a student and female gender are negatively correlated with student 

productivity. Conversely, having scientific publications prior to beginning a PhD is positively associated 

with student productivity. Similarly, the stock of a supervisor's publications is positively associated with 

student productivity. Finally, supervisor age is negatively correlated with student productivity. The 

coefficient of the average quality of the university from which a student obtained her master's degree is 

positive, as expected, and significantly different from zero. 

In Model 2, we include supervisor fixed effects. By adding supervisor fixed effects, the coefficient of the 

variable declines but remains highly significant. Interestingly, the sign of the coefficient for the stock of a 

supervisor's publications now becomes negative and is still significant at the 1% confidence level. A possible 

reason for this result is that, holding constant time-invariant characteristics of the supervisors, therefore over 

the carrier of a professor, students benefit more from the professor research activity at the beginning of the 

career of the professor.  

In Model 3, we include fixed effects for the universities from which the students obtained their master's 

degree. Consequently, the variables External student outside prof’s network and Ranking of master's 

university drop out because they do not vary across groups. The coefficient of our variable of interest 

remains significant at the 1% confidence level, and its coefficient increases in magnitude, from 0.086 to 0.11. 

The increase in the coefficient's magnitude suggests that our student-university fixed effects may capture 

some (initially) omitted factors that are negatively correlated with student productivity, on the contrary of 

what expected.  

Finally, in the last Model of Table 3.3 we include the additional controls for the relative relevance of the 

university for the focal professor. Supervisor fixed effects and student-university fixed effects are still 

included. As expected, the coefficients of N times master's university is cited by prof and Ranking of master's 

university (by field) are positive and significant. The coefficient of Pubs stock of master's university (by field) 

it is not significant. When we include our control, the magnitude of the indicator variable External student 

from prof’s network declines slightly relative to the results in Model 3 but remains highly significant. 

                                                      

31 Considering a dummy variable for external students in the model (equal to the sum of the two dummy variables External student 
from prof’s network and External student outside prof’s network) shows that external students have on average a significantly 10% 
higher productivity.  
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Table	3.3:	QMLE	on	the	count	of	PhD	student	publications	(All	students)

	

 External	students	

We replicate the regression specifications that we present in Table 3.3, restricting the sample to external 

students: PhD students who obtained their master's degree at a university other than the affiliation of their 

PhD. This changes the interpretation of the result relative to the main variable of interest which now 

indicates the difference in scientific productivity of external students from the professor’s network as 

compared directly to other external students. The results are displayed in Table 3.4. Model 1 presents the 

baseline results, Model 2 includes supervisor fixed effects, Model 3 includes both supervisor and student-

university fixed effects, and Model 4 adds the additional university specific controls. Regardless of the 

specification that we adopt, the coefficient of External student from prof’s network is statistically significant 

at the 1% confidence level. Moreover, the magnitude increases relative to the results that we present for the 

entire sample and that are reported in Table 3.3. For instance, when we include supervisor and student-

Model 1 Model 2 Model 3 Model 4

External student from prof's network 0.113*** 0.086** 0.112*** 0.103***
(0.037) (0.035) (0.037) (0.038)

External student outside prof's network -0.010 -0.001
(0.043) (0.038)

Prof & student have same nationality 0.012 0.015 0.004 0.005
(0.029) (0.034) (0.033) (0.033)

Prof & student come from same university -0.069 -0.041 -0.044 -0.053
(0.054) (0.077) (0.075) (0.074)

N of Prof students with same nationality as student -0.004 -0.001 0.005 0.005
(0.005) (0.006) (0.006) (0.006)

Student age -0.033*** -0.026*** -0.032*** -0.032***
(0.006) (0.006) (0.006) (0.006)

Gender 0.217*** 0.192*** 0.196*** 0.198***
(0.032) (0.031) (0.031) (0.031)

Pre-sample student pubs 0.072*** 0.058*** 0.081*** 0.081***
(0.013) (0.013) (0.013) (0.013)

Ranking of master's university 0.014* 0.020***
(0.008) (0.008)

Prof age -0.010*** -0.322 -0.305 -0.302
(0.002) (0.250) (0.270) (0.268)

Pre-sample prof pubs 0.006*** -0.005*** -0.004*** -0.004***
(0.000) (0.001) (0.001) (0.001)

Pre-sample prof patents -0.009 -0.003 -0.010 -0.011
(0.007) (0.012) (0.013) (0.013)

Size PhD group -0.000 0.007 0.005 0.006
(0.003) (0.005) (0.005) (0.005)

Grant amount 0.132 0.464 0.349 0.353
(0.168) (0.420) (0.388) (0.384)

Pubs stock of master's university (by field) -0.055
(0.042)

Ranking of master's university (by field) 0.296**
(0.138)

N of times master's university is cited by prof 0.027*

Entry year FE Yes Yes Yes Yes
University-department FE Yes
Professor FE Yes Yes Yes
Student-university FE Yes Yes
Observations 4,666 4,645 4,340 4,340
Number of University-Departments 19 19 19 19
Number of Professors 558 544 535 535
Number of Student-Universities 578 576 289 289
Pr(chi2) 0.00 0.00 0.00 0.00

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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university fixed effects as well as the university specific controls (Model 4), the coefficient is 0.14, whereas 

with the entire sample it was 0.10. As a final point of interest, the coefficient of the variable N of times 

master's university is cited by prof is statistically strongly significant at the 1% level.  

Table	3.4:	QMLE	on	the	count	of	PhD	student	publications	(External	students)

	

 

 High	quality	publications	

In this section, we adopt a more restrictive definition of a student's publication count applying a citations-

based quality threshold. As described in the methodology section, we only count highly cited publications. 

Table 3.5 presents the regression results. For the sake of brevity, we only present the most complete model 

specifications, separately for the full sample (Model 1) and for the sample of external students only (Model 

1). The results of the models not presented are coherent with those discussed. In all cases, the results are very 

similar to those presented in the previous sections. External student from prof’s network continues to have a 

positive and statistically significant impact on student productivity. In general, we note that the coefficients 

on the variable of interest tend to be larger than those presented in the previous tables. As an example, 

Model 1 Model 2 Model 3 Model 4

External student from prof's network 0.156*** 0.121*** 0.166*** 0.143***
(0.038) (0.036) (0.041) (0.042)

Prof & student have same nationality -0.006 0.028 -0.006 -0.011
(0.042) (0.050) (0.053) (0.054)

Prof & student come from same university -0.114* -0.009 -0.023 -0.075
(0.067) (0.093) (0.094) (0.093)

N of Prof students with same nationality as student -0.006 -0.006 -0.002 -0.001
(0.007) (0.008) (0.009) (0.009)

Student age -0.028*** -0.022*** -0.031*** -0.031***
(0.007) (0.007) (0.009) (0.009)

Gender 0.218*** 0.205*** 0.215*** 0.217***
(0.039) (0.039) (0.041) (0.041)

Pre-sample student pubs 0.069*** 0.064*** 0.083*** 0.083***
(0.012) (0.013) (0.014) (0.014)

Ranking of master's university 0.015* 0.022***
(0.008) (0.008)

Prof age -0.009*** 0.138 0.019 0.044
(0.002) (0.322) (0.388) (0.363)

Pre-sample prof pubs 0.005*** -0.005*** -0.005*** -0.004***
(0.001) (0.001) (0.002) (0.002)

Pre-sample prof patents -0.008 -0.003 -0.018 -0.021
(0.009) (0.021) (0.024) (0.024)

Size PhD group 0.000 0.006 0.006 0.008
(0.003) (0.006) (0.006) (0.006)

Grant amount 0.020 0.230 0.036 0.073
(0.232) (0.746) (0.651) (0.644)

Pubs stock of master's university (by field) -0.046
(0.048)

Ranking of master's university (by field) 0.327**
(0.154)

N of times master's university is cited by prof 0.056***
(0.020)

Entry year FE Yes Yes Yes Yes
University-department FE Yes
Professor FE Yes Yes Yes
Student-university FE Yes Yes
Observations 2,735 2,625 2,313 2,313
Number of University-Departments 19 19 19 19
Number of Professors 522 428 408 408
Number of Student-Universities 578 567 277 277
Pr(chi2) 0.00 0.00 0.00 0.00

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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having restricted the sample to students who obtained their master's degree at a university other than their 

PhD affiliation, we find that the coefficient is equal to 0.17, whereas it was 0.14 with the simple publication 

count. These results suggest that the variable of interest has an effect also in terms of quality of the 

publications and, most importantly, provides confidence on the robustness of the results to different criteria 

of constructing the outcome variable based on quality thresholds. 

Table	3.5:	QMLE	on	the	count	of	PhD	students	highly	cited	publications	

 

 Placebo	tests	

In this section, we implement a placebo test designed to verify further whether the positive relationship 

between belonging to a supervisor's research network and student productivity captures a supervisor's 

tendency to work with students from universities that are relevant for her research, independently from the 

presence of an actual connection. Specifically, we introduce a regressor that indicates whether a student had 

studied in one of the universities from which a researcher who is as close as possible to supervisor j, in terms 

of the research interests, draws her co-authors. The idea is that the researcher whom we select (placebo) and 

supervisor j should draw their co-authors from institutions relevant for the research of both of them. 

Model 1 Model 2

All students External students

External student from prof's network 0.149*** 0.168***
(0.050) (0.053)

Prof & student have same nationality 0.060 0.040
(0.042) (0.065)

Prof & student come from same university 0.055 0.050
(0.084) (0.108)

N of Prof students with same nationality as student 0.005 -0.002
(0.008) (0.012)

Student age -0.043*** -0.047***
(0.008) (0.010)

Gender 0.204*** 0.203***
(0.040) (0.051)

Pre-sample student pubs 0.083*** 0.088***
(0.014) (0.017)

Prof age -0.258 -0.066
(0.321) (0.286)

Pre-sample prof pubs -0.005*** -0.004**
(0.001) (0.002)

Pre-sample prof patents -0.008 -0.024
(0.014) (0.024)

Size PhD group 0.006 0.012
(0.006) (0.008)

Grant amount 0.946** 1.162*
(0.472) (0.665)

Pubs stock of master's university (by field) -0.091* -0.070
(0.055) (0.061)

Ranking of master's university (by field) 0.283* 0.311*
(0.165) (0.187)

N of times master's university is cited by prof 0.027 0.061**
(0.022) (0.025)

Entry year FE Yes Yes
Professor FE Yes Yes
Student-university FE Yes Yes
Observations 4,179 2,212
Number of University-Departments 19 19
Number of Professors 501 380
Number of Student-Universities 278 268
Pr(chi2) 0.00 0.00

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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However, in our full models we should observe an effect only for students hired from the university where 

the supervisor j draws her co-authors. Hence, an evidence of a higher productivity of students within the 

network of the placebo professor would imply that our controls do not properly account for the endogeneity 

of the professor network with respect to average productivity of the students in a specific research field32.  

We present results using as placebo a researcher who is the most cited researcher by supervisor j. The 

variable Placebo most cited author is obtained constructing our variable of interest based on this placebo 

research network. In analyses not presented here (showing equivalent results and available upon request) we 

also use as placebo a professor, within our sample, affiliated with ETH, if j belongs to EPFL, or with EPFL, 

if j belongs to ETH, with the highest probability of publishing in the same scientific journals as j. Not 

surprisingly, the placebo variables are significantly positively correlated with the variable of interest: 67% of 

the students from the network of supervisor j are also from the network of the most cited researcher by 

supervisor j.  

Table 3.6 presents results for the placebo test. We present results for the entire sample (Models from 1 to 

3) and for the sample of external students (Models from 4 to 6). In Model 1 and 4 we include the placebo 

variable in our baseline model specifications, instead of the variable of interest. In Model 2 and 5 we adopt 

our full model specification with professor and student-university fixed effects and the additional controls. 

Finally, in model 3 and 6 we include both the placebo variable and the variable of interest External student 

from prof’s network. In our baseline models the variable Placebo most cited author is positive and 

significant. However, in our full specifications it is not significant. Also importantly, when including both 

variables, our variable of interest is still positive and significant. Significance is lower for the entire sample 

and the magnitude of the effect is slightly smaller; however, this might be simply due to the strong 

correlation between the variable of interest and the placebo variable. Overall, the results provide further 

confidence that the effect identified is attributable to the actual presence of the professor’s coauthors in a 

university and not to unobserved quality of the university. 

                                                      

32 An alternative strategy to further test the hypothesis of endogeneity of our variable of interest with respect to the average quality of 
students in a given university would have been to find an instrumental variable correlated with the probability of a professor having a 
coauthor affiliated with it and not correlated with the quality of students. Given the difficulties to find a variable with such a credible 
exclusion restriction we opted for the placebo test presented.  
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Table	3.6:	Placebo	tests	

 

3.5 On	mechanisms	and	alternative	explanations	

Provided that in our models we properly control for other confounding factors, our analyses implies that 

professors obtain students that turn out to be more productive from a university where they have coauthors. 

However, according to theory, different mechanisms might explain this finding. Here, we distinguish broadly 

between hiring effects or post-hiring effects. In terms of hiring effects, networks decrease asymmetric 

information allowing for a better selection of students and a better match between students and supervisor. In 

terms of post hiring effects, students from a research network may be more productive because, for instance, 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Placebo most cited author 0.072** 0.017 -0.010 0.075** 0.066 0.037
(0.029) (0.036) (0.040) (0.035) (0.043) (0.045)

External student from prof's network 0.070* 0.136***
(0.037) (0.044)

External student outside prof's network -0.083**
(0.035)

Prof & student have same nationality 0.013 0.010 0.006 0.013 -0.001 -0.010
(0.029) (0.033) (0.033) (0.040) (0.053) (0.054)

Prof & student come from same university -0.056 -0.050 -0.059 -0.071 -0.060 -0.075
(0.054) (0.072) (0.072) (0.067) (0.094) (0.093)

N of Prof students with same nationality as student -0.006 0.006 0.006 -0.005 -0.002 -0.001
(0.005) (0.006) (0.006) (0.007) (0.009) (0.009)

Student age -0.032*** -0.032*** -0.032*** -0.028*** -0.030*** -0.030***
(0.006) (0.006) (0.006) (0.007) (0.009) (0.009)

Gender 0.216*** 0.199*** 0.199*** 0.216*** 0.217*** 0.218***
(0.032) (0.031) (0.031) (0.039) (0.041) (0.041)

Pre-sample student pubs 0.073*** 0.082*** 0.082*** 0.069*** 0.083*** 0.083***
(0.013) (0.013) (0.013) (0.013) (0.014) (0.014)

Ranking of master's university 0.023*** 0.012
(0.007) (0.008)

Prof age -0.010*** 0.039** 0.038** -0.009*** 0.006 0.032
(0.002) (0.016) (0.016) (0.002) (0.373) (0.358)

Pre-sample prof pubs 0.006*** -0.005*** -0.005*** 0.005*** -0.005*** -0.004***
(0.000) (0.001) (0.001) (0.001) (0.002) (0.002)

Pre-sample prof patents -0.009 -0.011 -0.010 -0.009 -0.021 -0.020
(0.007) (0.013) (0.013) (0.009) (0.024) (0.024)

Size PhD group 0.000 0.006 0.006 -0.000 0.008 0.008
(0.003) (0.005) (0.005) (0.003) (0.006) (0.006)

Grant amount 0.125 0.360 0.361 0.002 0.126 0.086
(0.167) (0.380) (0.382) (0.230) (0.633) (0.639)

Pubs stock of master's university (by field) -0.051 -0.057 -0.037 -0.048
(0.041) (0.041) (0.048) (0.048)

Ranking of master's university (by field) 0.298** 0.295** 0.323** 0.325**
(0.135) (0.137) (0.150) (0.154)

N of times master's university is cited by prof 0.040*** 0.039*** 0.065*** 0.054***
(0.014) (0.014) (0.020) (0.020)

Entry year FE Yes Yes Yes Yes Yes Yes
University-department FE Yes Yes
Professor FE Yes Yes Yes Yes
Student-university FE Yes Yes Yes Yes
Observations 4,666 4,340 4,340 2,735 2,313 2,313
Number of University-Departments 19 19 19 19 19 19
Number of Professors 558 535 535 522 408 408
Number of Student-Universities 578 289 289 578 277 277
Log likelihood 0.00 0.00 0.00 0.00 0.00 0.00

All students External students

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1



The scientific productivity of PhD students from professors’ networks 

58 

they have lower costs of interacting with their supervisors and/or because the supervisor may feel more 

committed to students from her network.  

The importance to separate the two typologies of mechanisms relies on the fact that they clearly have 

different implications. However, to properly distinguish between the two would require to control for the 

intrinsic quality of students and possibly to observe both applicants, and also potential applicants, to a given 

PhD student position33. Since we do not dispose of this information we cannot separate the two explanations 

with specifically dedicated models. However, we provide evidence in the attempt to identify the most 

prevalent typology of mechanisms. In addition, we try to rule out some of the most trivial possible 

explanations that might justify the results encountered. This series of analyses is presented in Table 3.7 and 

is discussed below. For the sake of brevity, we only report coefficients for the main variables, and we present 

results only for the model specifications with professor and student-university fixed effects and all controls. 

We distinguish results for the full sample (Model 1, 3, 5 and 7) and for the sample of external students 

(Model 2, 4, 6 and 8). 

 Interaction	with	publication	before	the	PhD	

First, we proceed by examining instances in which networks would lead to different outcomes, depending 

on whether hiring effects or post-hiring effects are the main drivers of our results. We note that variable Pre-

sample student pubs, when is not null34, constitute a good proxy of the quality of the student. Furthermore, 

the number and the content of published papers constitute a strong signal for the professor who not only can 

be more confident in the quality of the student but can also better estimate the potential match of the 

student’s competences with her research interests. As a consequence, we can expect that information 

asymmetries are considerably lower for students with at least one publication before the PhD.  

Exploiting this idea, we interact a dummy indicating if a student has at least one publication before the 

PhD (Student with pre-sample pubs) with our variable of interest, obtaining two distinct categories of 

students: external students from the professor network with publications before the PhD (External from 

prof's network w/ pre-sample pubs) and without publications before the PhD (External from prof's network 

w/o pre-sample pubs). The results are displayed in Model 1 and 2 of Table 3.7. We expect that if there is any 

post-hiring effect, the coefficient on the first category (External from prof's network w/ pre-sample pubs) 

                                                      

33 In fact note that hiring effects imply that better students are hired from a given university, holding constant the average quality of 
students in a given university. On the contrary, post-hiring effects imply that holding constant the quality of each student, those 
within the network of supervisor turn out to be more productive.  
34 We keep in mind that many students do not have the possibility to publish before their PhD, regardless of their quality. In our 
sample, about 80% of students do not have any publication before the PhD. While we consider the number of publications a good 
proxy of quality for students having at least one publication, we rather consider this proxy simply unobserved for students without 
publications.  
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should still be significant. On the contrary, we find that it is not significant and the coefficient on the variable 

External from prof's network w/o pre-sample pubs is still significant and in the sample of external students is 

also higher in magnitude compared to the results in Table 3.3 and Table 3.4. This latter result implies that the 

effect of our variable of interest is not significant for students with publications before the PhD and is 

stronger for students without publications before the PhD. In other words, the effect is stronger when 

information asymmetries are also stronger, which suggests that hiring effects are prevalent. 

Table	3.7:	Robustness	regressions	

 

Model 1 Model 2 Model 3 Model 4

All students External students All students External students

External student from prof's network 0.090** 0.150***
(0.039) (0.043)

Intensity of network ties 1.027 -0.574
(0.840) (0.873)

External from prof's network w/ pre-sample pubs 0.091 0.059
(0.057) (0.071)

External from prof's network w/o pre-sample pubs 0.091** 0.159***
(0.039) (0.044)

Student with pre-sample pubs 0.167*** 0.264***
(0.044) (0.079)

Controls Yes Yes Yes Yes
Entry year FE Yes Yes Yes Yes
Professor FE Yes Yes Yes Yes
Student-university FE Yes Yes Yes Yes
Observations 4340 2313 4340 2313
Number of University-Departments 19 19 19 19
Number of Professors 535 408 535 408
Number of Student-Universities 289 277 289 277
Pr(chi2) 0.00 0.00 0.00 0.00

Model 5 Model 6 Model 7 Model 8

All students External students All students External students

External student from prof's network 0.088*** 0.115*** 0.086** 0.103**
(0.034) (0.037) (0.039) (0.040)

Share of pubs with prof -0.163*** -0.287***
(0.040) (0.056)

Controls Yes Yes Yes Yes
Entry year FE Yes Yes Yes Yes
Professor FE Yes Yes Yes Yes
Student-university FE Yes Yes Yes Yes
Observations 3729 2032 2225 1824
Number of University-Departments 19 19 19 19
Number of Professors 506 380 401 360
Number of Student-Universities 289 277 280 272
Pr(chi2) 0.00 0.00 0.00 0.00

Pubs with prof control Students w/o collaborative pubs

Pre-sample pubs interaction Intensity of network control

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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 Weak	and	strong	networks	

We measured membership in a research network using a dummy that takes a value of one if a student has 

studied at one of the universities from which a supervisor draws her co-authors. Having at least one coauthor 

from a given university is supposed to be sufficient to attenuate information asymmetries, while stronger 

connections should play no role, or even have a negative effect (Granovetter, 1973). On the contrary, if post-

hiring effects were the main driver of the positive effect of networks in our analyses, we might expect 

stronger ties to have an additional impact: for instance, professors would commit more to the supervision of 

students sent by co-authors with whom they collaborate more. Hence, we add the share of a supervisor's 

publications with co-authors from student i's past affiliation Intensity of network ties to our regressions. The 

results are displayed in Model 3 and 4 of Table 3.7. We find that the coefficient of Intensity of network ties is 

statistically insignificant regardless of the sample definition, whereas the coefficient of External student from 

prof’s network remains statistically significant at the 1% confidence level. This evidence is again in line with 

a hiring effect interpretation of the results. 

 Publications	coauthored	with	the	supervisors	

In this section we worry about the possibility that students hired from a professor network might result to 

be more productive because they are more directly involved in the research activity of the professor. 

Notably, in our sample, a high percentage of publications (57%) of the students are coauthored with the 

supervisor and 82% of the students with at least one publication has coauthored at least one paper with the 

professor. However, we observe some variance across students. Therefore, we construct a variable equal to 

the share of publications of a student coauthored with the supervisor (Share of pubs with prof). This variable 

is meant to capture post-hiring dynamics between a student and her supervisor and, in particular the strength 

of their interaction. Note that this variable is a “bad control” (Angrist and Pischke, 2008), if we admit that 

the likelihood that a professor collaborates with a student it is also a function of the student’s quality and 

productivity. However, this should bias downwards our estimates. We restrict the sample to those students 

who have published at least one article, since the new control variable is only defined in these cases. The 

results are displayed in Model 5 and 6 of Table 3.7. Importantly, our variable of interest remains highly 

significant. Interestingly, the coefficient on Share of pubs with prof is negative, contrary to what expected, 

which suggests that students coauthoring a higher share of their papers with their supervisors are overall less 

productive. However, note that there is no causal claim in this latter result. What matters to our purpose is to 

verify that the intensity of collaboration with the supervisor does not explain the effect encountered on our 

variable of interest. 
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 Pre‐existing	research	collaborations	

Finally, we observe that a certain number of students presents publications where both the supervisor and 

a researcher affiliated with the University of the master ’s degree are indicated as co-authors, which we label 

as “collaborative publications”. Focusing on students with at least one publication, the percentage of students 

with this type of publications is obviously particularly high for students that obtained their master’s degree 

from the same university of the PhD (about 90%), but it is also not negligible for external students (10%). 

The number of such “collaborative publications” is positively correlated with our variable of interest. 

Therefore, we worry about the fact that similar cases (especially for external students) reveal instances where 

students hired from the professor network are initially involved in pre-existing collaborations earlier during 

the PhD or, even before, during their master’s degree studies. This might be an alternative and rather trivial 

explanation of the positive effect we encountered on our variable of interest. In order to rule out this 

hypothesis, in Model 7 and 8, we estimate our model restricting the sample to students with at least one 

publication but not presenting any of the collaborative publications mentioned above. The coefficient 

remains highly significant and positive. The number of observations in both samples is substantially reduced, 

which might explain the slight decrease in the significance. Similarly to the discussion in the previous 

paragraph, these estimates might be downward biased if the likelihood of a student being involved in a 

“collaborative publication” is also a function of her quality and productivity. We conclude that collaborative 

publications do not explain the positive effect we found in our main analyses. 

3.6 Conclusion	

In this paper we examine the scientific productivity of a population of 4’666 PhD students in the two 

major engineering universities in Switzerland, ETH and EPFL. First, similar to previous studies, we 

distinguished between internal students (who obtained their master’s degree from the same university of the 

PhD) and external students (who obtained their master’s degree from a different university of the one of the 

PhD). In addition, we distinguish within the latter category, PhD students who obtained their master’s degree 

from a university within the network of their supervisors (where their supervisors have coauthors).  

As a main result, external PhD students from the network of the supervisor result to be about 12% more 

productive than internal students and 15% more productive than other external students. Also interestingly, 

other external students (not from the network of the supervisor) are not more productive than internal 

students. In our most complete model specification, we controlled for the heterogeneity of the supervisor, the 

heterogeneity of the university where the student obtained her master’s degree and for proxies of the specific 

relevance of a particular university for a given supervisor. Therefore, we conclude that the presence of the 

supervisors’ co-authors in different universities has a positive effect on the productivity of the students hired 

from these universities.  
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Such results provide evidence of positive effects of networks in hiring. Also, the results have a direct 

implication for the literature on the productivity of PhD students and researchers. While this literature has 

identified a general higher productivity of researchers from external environments (either from different 

institutions or countries), our results adds to the evidences of existing heterogeneity within this category 

(Hunt, 2011). In particular, in our case, the higher productivity of external PhD students (which notably 

largely overlaps in our sample with the category of foreign or foreign-educated students) is mainly (if not 

fully) explained by the higher productivity of external PhD students from the supervisors’ network.  

For universities and similar contexts, our study suggests that the higher productivity of external 

researchers cannot only be attributed to a simple process of indirect selection, but that informal connections 

are crucial in order to benefit from the inflow of students and researchers from external institutions and 

foreign countries. Nonetheless, normative implications are dependent on the possibility to disentangle the 

underlying mechanisms explaining the results. A series of additional analyses we performed suggest that the 

reduction of information asymmetries are likely the main explanation. Accordingly, our results would imply 

that institutions intending to attract productive researchers from other institutions might not succeed simply 

by “opening their doors”. Conversely, a more comprehensive set of initiatives aiming at increasing the 

professional integration of the institution with external environments – including the faculty professional 

networks - would be necessary.  

Our findings can be extended to a number of settings. For instance, they could be extended to research 

centers in public or private institutions in which knowledge production is a fundamental objective and in 

which the head of a research group is confronted with the problem of maximizing the research output of her 

members. The findings could also be extended to other universities as long as supervisors have some 

autonomy in choosing the PhD students whom they wish to admit to their group. Finally, our results are 

obtained from a European context, which, despite its heterogeneity in terms of a number of aspects, 

comprises fairly culturally homogeneous countries. Thus, we expect that if we were to extend this analysis to 

a broader context, the effects of supervisor's research networks on could be even larger. 

However, further research is required in order to discern different possible mechanisms and to allow for 

more informed policy initiatives. This goes together with a series of limitations of our study. First, it would 

be interesting to assess the impact of network effects on the probability that candidates are selected for PhD 

student positions. In addition, although our tests suggest that the positive relationship between belonging to a 

supervisor's research network and student productivity are driven by hiring effects, it would be important to 

corroborate our results with models and data allowing to directly control for the unobserved idiosyncratic 

quality of students. Third, it would be interesting to disentangle the typologies of tie characterizing the 

student and the coauthor of the supervisor: for instance, we could not distinguish whether the coauthor 

actually knew and recommended the student or if the coauthor simply provided general information to the 

supervisor.  
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Finally, despite the generalizability of our results, extending the analysis to other universities in other 

countries would allow an understanding of how different institutional settings affect the role of supervisors' 

networks. In particular, we do not neglect the possibility that depending on the cultural and social 

background of an institution or country, negative effects of networks might prevail. Nonetheless, our results 

show that most of the direct benefit in terms of scientific productivity from hiring external students in two of 

the main research institutions in Switzerland is mediated by the presence of networks of their faculties. 

Evidence of the high productivity of external researchers and students is sometimes equated to the need of 

more objective and centralized hiring procedures that might indeed be necessary and complementary. 

However, our evidence suggests that a virtuous adoption of professional networks in order to reduce 

information asymmetries could be an indispensable element in order to benefit from the hiring of external 

and international students. 
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 Interregional	knowledge	

integration	and	firms’	innovative	

productivity	

(With Guillaume Burghouwt) 

4.1 Introduction	

Knowledge diffusion is a determinant of technological progress, and consequently, of economic growth 

(Grossman and Helpman, 1993; Romer, 1990). Accordingly, firms’ innovative performance depends on 

access to diverse knowledge sources, beyond their own efforts in internal Research and Development (R&D) 

expenditures (Cohen and Levinthal, 1990; Jaffe, 1986). Some notable literature has found geographic 

proximity to be an antecedent of knowledge spillovers among firms located in geographical clusters 

(Audretsch and Feldman, 1996; Jaffe, et al. 1993; Marshall, 1891; Porter, 1998; Singh and Marx, 2013). 

However, other authors have documented the existence of knowledge flows crossing regional and national 

boarders (Coe and Helpman, 1995; Keller, 2004; Mancusi, 2008; Maurseth and Verspagen, 2002), and have 

discussed the role of non-geographic proximity dimensions as drivers of knowledge diffusion (Boschma, 

2005; Breschi and Lissoni, 2001; Crescenzi, 2014; Kerr, 2008; Singh, 2005). Moreover, there is some 

evidence that the distance to which knowledge diffuses is increasing over time due to the effects of 

transportation costs and information technology improvements (Keller, 2002). As a consequence, 

interregional knowledge integration, which we define as a region’s degree of access to and adoption of 

knowledge developed in other geographically dispersed regions, is an increasing phenomenon often at the 

center of attention for firms and policy makers (Archibugi and Iammarino, 2002; Chessa et al., 2013).  

While there is extensive empirical evidence on the effects of localized knowledge diffusion, only recently 

scholars have started to devote more attention to the role of interregional knowledge integration for firms’ 

innovative performance (Breschi and Lenzi, 2012; Crescenzi, 2014). Some authors have pointed out the 

presence of a dichotomy between benefits emerging from the local diffusion of knowledge in geographical 

clusters and the need to access distant knowledge in order to trigger and sustain innovation (Arikan, 2009; 

Bathelt, et al., 2004; Boschma, 2005). Indeed, historical evidence demonstrates that the most innovative and 
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competitive regions often show higher levels of knowledge integration with other regions (Bresnahan et al., 

2001; Saxenian, 1994, 2005; Kerr, 2008). However, empirical evidence on the relationship between 

interregional knowledge integration and innovative performance is still limited.  

We adopt an unbalanced panel of 3,871 innovative companies in Germany between 1992 and 2010, for a 

total of 15,819 observations, and study their innovative productivity. We measure interregional knowledge 

integration as the geographic dispersion of patent backward citations of the region toward other regions 

worldwide. In fixed effects estimations, we find that interregional knowledge integration positively affects 

innovative productivity of local firms. To address concerns of endogeneity due to the possibility of reverse 

causality and omitted time-variant variables, we exploit airline liberalization realized in Europe as a source 

of exogenous shock to the interregional knowledge integration of German regions.  

The main result of liberalization has been the entry of low cost carriers (LCCs) that introduced new direct 

connections and offered flights at extremely inferior prices as compared to previous traditional airlines 

(Calder and Laker, 2002; Dobruszkes, 2006). More generally, the entry of new airlines in an airport delimits 

the shift from mainly monopolistic markets toward more competitive markets. This airline liberalization in 

Europe was formally accomplished in 1992, but it became gradually effective only starting from 1997. 

Furthermore, the entry of LCCs in different European regions was not instantaneous, but distributed in a 

period of approximately five years. Delays in the entry of LCCs were usually determined by factors 

independent of the strategic timing of the new entrants, such as a lack of available slots in airports or the 

resistance of local administrations to effectively adopt the liberalization mandate (Calder and Laker, 2002).  

We estimate the impact of the entry of an LCC in close airports on the level of interregional integration of 

a region. The entry of an LCC determines a significant increase in our indicators of interregional knowledge 

integration. We find that firms located in regions where airline liberalization induced a higher level of 

interregional knowledge integration significantly increased their innovative productivity. Finally, we 

investigate the heterogeneity of the effect of interregional knowledge integration across regions with 

different levels of R&D. When we do not use the entry of an LCC as an instrument, firms located in regions 

with higher levels of R&D show a stronger association between innovative productivity and interregional 

knowledge integration. Interestingly, we find the opposite sign when we use the entry of an LCC as 

instrument. However, in both cases, the differences across regions are small in magnitude.  

4.2 Innovative	productivity	and	interregional	knowledge	integration	

The core research question of this paper is: what is the impact of the interregional knowledge integration 

of a region on the innovative productivity of local firms? A first series of studies have analyzed the 

relationship between firms’ performance and characteristics of the region or cluster where firms are located 
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(Cruz and Teixeira, 2009; Frenken et al., 2014). Firms located in regions endowed with a certain critical 

mass of firms and institutions performing innovative activities are expected to benefit from agglomeration 

economies: 1. broader access to specialized labor; 2. access to specialized suppliers and collaborators; 3. 

access to localized knowledge spillovers (Marshall, 1891). Baptista and Swann (1998) found that firms 

located in regions with a higher concentration of labor in their own sector are more innovative. Similar 

studies have also found that geographic proximity is effective given a certain level of technological similarity 

that enables knowledge spillovers to be captured by recipient firms (Autant-Bernard, 2001).  

Other studies have explored the extent to which knowledge diffuses at longer distances and across 

countries (Coe and Helpman, 1995; Bottazzi and Peri, 2003; Keller, 2004). Some authors have questioned 

the relative importance of local knowledge searches and exploitation, against access to knowledge external to 

the region. Boschma (2005) distinguishes five dimensions of proximity (cognitive, organizational, social, 

institutional, and geographical) and claims that while too much distance along these dimensions might 

impede communication and collaboration, too much proximity might deter innovation due to technological 

lock-in and lack of sources of novelty. Specifically, Bathelt et al. (2004) pointed out that the combination of 

“internal learning processes - local buzzes” and “communication channels” with other external environments 

- “pipelines” - is required to maintain and increase innovative performance.  

Important previous studies have investigated the relationship between innovative performance and distant 

knowledge (Breschi and Lenzi, 2012; Crescenzi, 2014; Eisingerich et al., 2010; Frenz and Ietto-Gillies, 

2009; Lecocq et al., 2012). Many of these have focused on the innovative performance of multinational 

companies and have found a positive correlation between the presence of firms in different regional contexts 

and their innovative performance. Phene et al. (2006) suggest that the types of external knowledge 

combinations, in terms of technology and geographical distant knowledge, determine the likelihood of 

breakthrough innovation. Breschi and Lenzi (2012) find that the coexistence of dense internal collaborations 

within a city and a certain number of external connections, measured through co-inventor network indicators, 

is positively associated with patenting productivity.  

In line with these contributions, we expect interregional knowledge integration to have a positive impact 

on innovative productivity for several, non-exclusive, reasons. First, the inflow of new knowledge developed 

in another context might constitute a novel input to the knowledge production function of firms located 

within a region (Coe and Helpman, 1995). These knowledge externalities potentially overcome diminishing 

returns to the exploitation of knowledge internal to the firm and the region. Second, innovation requires the 

recombination of different technologies and approaches; different sources of knowledge might result in 

complementarity (Cassiman and Veugelers, 2006; Cohen and Levinthal, 1990). Firm-level analyses have 

demonstrated that internal R&D strategies and searches for external knowledge at a broad international level 

are complementary strategies (Cassiman and Veugelers, 2006). Finally, higher knowledge integration to 

other regions worldwide might allow for the timely identification of technological opportunities and of 
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potential areas of specialization in order to develop competitive advantages and investment in high 

productivity sectors, as compared to competitors (McCann and Ortega-Argilés, 2013). Accordingly, we 

formulate the hypothesis that firms located in regions with a higher level of interregional knowledge 

integration have higher innovative productivity.  

A further point of interest is whether interregional knowledge integration differently affects firms located 

in regions with different characteristics. In particular, we address the question as to whether regional 

knowledge integration has a stronger impact on firms located in large regions with high levels of investments 

in R&D or, on the contrary, firms located in smaller regions benefit the most. In other words, we wonder if 

the phenomenon enhances (loosens) the effect of agglomeration economies increasing (decreasing) the 

attractiveness of large existing geographical clusters. From a theoretical stand point, there exist arguments in 

favor of both hypotheses. On the one hand, regions with a higher level of R&D investments might be 

endowed with the necessary absorptive capacity required to adopt external knowledge and translate it into 

successful innovative products (Cohen and Levinthal, 1990; Mancusi, 2008). To the extent that geographic 

proximity in large technological clusters can be complementary to other forms of proximity to 

geographically distant environments (Eisingerich et al., 2010), the attractiveness of specific locations might 

increase, and agglomeration economies might become strengthened (Sonn and Storper, 2008). Furthermore, 

larger innovative clusters might become more attractive toward external resources and sources of knowledge 

once a stronger connection with the external environment is established. As such, firms located in larger 

regions would benefit the most from interregional knowledge integration. On the other hand, small regions 

might be more flexible and capable in adapting to the changes required by the adoption of external 

knowledge (Menzel and Fornahl, 2010). Also, larger regions might already have a higher level of integration 

with other regions and, compared to them, smaller regions might benefit proportionally more from the 

phenomenon (Mancusi, 2008). 

4.3 European	airline	liberalization	

There is a general consensus on the fact that progress in information technology and the reduction of 

transportation costs are expected to allow for easier access to distant knowledge and to possibly reduce the 

relative importance of geographic proximity per se (Tranos, 2013). We explicitly take into account the latter 

of these two factors as a driver of a region’s capacity to access external environments. Exploiting the 

exogenous shock to the transportation costs provided by European airline liberalization, we also attempt to 

explicitly address the endogeneity issue, which is likely to affect the relationship under study. First, firms 

and regions showing the ability to reach and connect with different sources of knowledge might also be 

endowed with other unobserved characteristics, such as better infrastructures, and organizational and 

managerial skills, which are likely to affect performance. Second, reverse causality can affect the results if 
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the most innovative regions and firms are more capable of reaching distant knowledge and of developing 

technologies with a broader geographic scope. Simply considering the level of a region’s connectivity, for 

example, in terms of airport proximity or number of flights, might be subject to similar concerns to those 

previously discussed: the level of investment in transportation infrastructures and transportation costs from 

and towards a certain region can, themselves, be a function of the innovativeness and attractiveness of a 

region. Particularly for this reason, we exploit airline liberalization in Europe as a source of an exogenous 

shock to transportation costs, therefore affecting interregional knowledge integration.  

Before this regulation change, European aviation markets were mainly regulated by bilateral agreements 

and were dominated by monopolistic markets. Airline liberalization was a deregulation process started in 

1986 and accomplished in 1992 with the Third Aviation Liberalization Package (Calder and Laker, 2002). 

However, effective implementation of the deregulation was considerably delayed in many countries and, 

even afterwards, the entry of new airlines in several European airports was constrained by a lack of available 

slots or the resistance of local administrators. Calder (2002) summarizes the process: “Europe’s skies... have 

officially been open since 1997. But leading airports remain effectively closed to newcomers because of the 

shortage of available slots…And in parts of Europe, obstructive governments act...to constrict the freedom of 

the skies.” As a consequence, the effects of liberalization propagated gradually in European regions for 

reasons mostly independent of the strategic planning of new entrants and of the time-variant characteristics 

of the regions. Most importantly for our purposes, the consequences of airline liberalization were likely 

diffused independently of time-specific shocks to the demand of flight connections in a region. 

In each airport, the effects of liberalization materialized with the entry of new airlines operating at 

substantially lower prices and toward destinations previously not reachable with direct connections: low-cost 

carriers (LCCs). More generally, the entry of an LCC determined the shift from monopolistic to competitive 

markets. LCC prices have been from one-half to eight times lower than the average of previous traditional 

carrier prices. Traditional flag carriers reacted to the higher competition by also reducing prices, offering, for 

temporary periods, prices at the levels of LCCs and entering new markets. Therefore, prices decreased 

substantially while the number of direct destinations and the frequency of connections increased.  

Overall, generalized travel costs decreased towards most of the main destinations. While enthusiastic, the 

following words by Calder (2002) provide a feeling about the perceived strength of the impact of LCC entry 

on connectivity: “Thanks to low-cost airlines, second home ownership abroad has rocketed. Lifestyles have 

been transformed, and long-distance relationships formed, thanks to a newly affordable Europe.” We 

hypothesize that airline liberalization had a considerable positive impact on the interregional integration of 

European regions, and we consider the entry of an LCC to be a potential instrument of our variables of 

interest. 
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4.4 Data	and	methods	

 Data	and	variables	

In order to test our hypothesis, we combine data from different sources. We use the Mannheim Innovation 

Panel (MIP) as a source of information on the innovative firms in Germany. The MIP combines survey 

information on innovation activities of German firms from 1992 to 2010 and constitute a representative 

sample of innovative firms in Germany. Firms participating in the survey report on several indicators related 

to their economic and innovation activities. By considering firms observed for at least 2 periods and with a 

positive amount of innovative sales for at least one period, we obtained an unbalanced panel of 3,871 firms 

for a total of 15,819 observations within the period just mentioned. We assigned firms based on the postal 

code of their addresses to regions in Germany at level 3 of the Eurostat nomenclature of territorial units for 

statistics (NUTS3 level of the NUTS classification). While the total of the NUTS3 regions in Germany is 

428, only 405 are represented because not all regions host innovative firms in our sample.  

We constructed region and firm patent based indicators combining information from the European Patent 

Office (EPO) Worldwide Patent Statistical Database 2013 (PATSTAT) and the REGPAT 2013 Database 

provided by the Organization for Economic Co-operation and Development (OECD). REGPAT 2013 

contains information on EPO and PCT (Patent Cooperation Treaty) patents and the geographic location of 

inventors and applicants at the level of the NUTS3 regions. Finally, information regarding the entry of LCCs 

in airports relevant to German regions was obtained by the Official Airline Guide (OAG) database on 

historical flight status. The data have been used to obtain yearly information on European airports relevant to 

German regions and on the airlines operating in these airports. Whenever possible, we categorized airlines as 

LCCs or traditional airlines based on the categorization proposed by the literature in transportation 

economics (e.g., Dobruszkes, 2006). Few airlines not found in this literature have been categorized based on 

complementary search on the Internet, and specifically, airline web-sites.  

We assigned airports in Germany and those close to the German borders based on their relative distance. 

Therefore, both airports and the NUTS3 regions have been localized according to their longitude and latitude 

(considering the NUTS3 regions for their geographic center). For each region and airport pair, we estimated 

their average travel time distance through a query in the Google API geocoding database. Finally, for each 

region, we kept only airports at a maximum of 3 hours driving distance, since this is approximately the 

minimum travel time at which all regions considered could reach at least one airport. As alternatives, we 

considered airports at a maximum of 2 hours and 1 and-a-half hours of driving distance, matching regions 

with no accessible airports in this travel time with their closest airport. Table 4.4 reports the list of variables 

considered in the analyses, their description and descriptive statistics.  
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Table	4.1:	Variable	description	and	descriptive	statistics	

 

Among the variables reported, we focus primarily on their innovative productivity as a dependent 

variable, defined as the amount of innovative sales per employee. Innovative sales are defined as the amount 

of sales that respondents consider attributable to innovative products (new to the market). The main variables 

of interest are the indicators of interregional knowledge integration which we measure through indicators of 

the geographic dispersion of the knowledge sources of technologies developed within a region. As an 

indicator of dispersion we adopt the inverse Herfindahl index (invH). Region citations’ invH corresponds to 

the inverse Herfindahl index of the distribution of citations from patents belonging to a NUTS3 German 

region across other worldwide regions at the NUTS2 level. Region copatents’ invH corresponds to the 

inverse Herfindahl index of the distribution of co-patenting activities of NUTS3 German region inventors 

with inventors across other worldwide regions at the NUTS2 level abroad. The inverse Herfindahl index is 

defined by:  
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where H is the Herfindahl index, i, which goes from 1 to N, represents the regions cited (or where at least 

one coinventor is located), and s is the share of citations to (or co-patenting activities with inventors in) 

region i, in a given year. Here, the inverse Herfindahl index is a measure of the geographic dispersion of the 

citations (or co-patenting activities), which has a direct intuitive interpretation as the effective number of 

Variable Description Data source Obs Mean Std.Dev Min Max

Dependent variable:
Innovative productivity Innovative sales per employee MIP 1992-2010 15,819 0.0325212 0.2226614 0 22.08855

Interregional knowledge integration:
Region citations' invH Inverse Herfindahl Index of the distribution of citations of a NUTS3 german 

region across worldwide NUTS2 regions (excluding self inventor citations)
REGPAT 2013 and
 PATSTAT 2013

15,819 14.33042 8.277598 1 40.33333

Region copatents' invH Inverse Herfindahl Index of the distribution of copatenting activities of a 
NUTS3 german region across worldwide NUTS2 regions abroad

REGPAT 2013 and
 PATSTAT 2013

15,819 9.353444 10.99868 0 63.77087

Firm controls:
N of employees* Number of employees MIP 1992-2010 15,819 867.852 7,006.66 1 282,758

R&D_employee R&D expenditure per employee MIP 1992-2010 15,819 0.0233492 0.2809853 0 11.88121

Export_employee Export per employee MIP 1992-2010 15,819 0.3147266 3.626616 0 165.2895

Patent stock Firm patent stock (discounted at the 15% discount rate) PATSTAT 2013 15,819 4.799182 59.41618 0 3,642.41

Region controls:
Region R&D* Aggregated value of firms' R&D expenditure in the region MIP 1992-2010 15,819 323.5177 1,952.69 0 39,720.49

Region N of employees* Total number of employees in the region MIP 1992-2010 15,819 25,711.26 88,732.38 4 953,992

Region export* Aggregated value of firms export of the region MIP 1992-2010 15,819 3,576.41 20,046.92 0 305,108.80

Region patents** Number of patents of the region REGPAT 2013 15,819 106.081 307.4564 1 2,629

Firm R&D collaboration:
R&D coop in DE Each year equals 1 if the focal firm has engaged in R&D collaborations with 

firms or institutions within Germany in the first of the previous years where 
the information is available 

MIP 1992-2010 15,819 0.250648 0.4333999 0 1

R&D coop abroad Each year equals 1 if the focal firm has engaged in R&D collaborations with 
firms or institutions abroad in the first of the previous years where the 
information is available 

MIP 1992-2010 15,819 0.1340793 0.3407482 0 1

Instrument:
LCC entry Equal to 1 if a low cost carrier is operating in an airport close to the region 

(max. 3 hours driving distance)
AOG 15,819 0.4717744 0.4992185 0 1

Interaction:
Pre-entry region R&D* Aggregated average value of firms' R&D expenditure in the region  over the 

period 1992-1995
MIP 1992-2010 15,819 347.0625 1,500.89 0 13,310.70

Note: * the variable is rescaled by 1,000 in the analyses. ** The variable is rescaled  by 100 in the analyses. 
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regions cited (or involved in co-patenting activities). In other words, the backward citations (co-patenting 

activities) of a region are distributed across other regions in such a way that they are as concentrated as they 

would be if they were divided evenly across a number of regions corresponding to the value of the variable 

Region citations’ invH (Region copatents’ invH).  

We further consider three sets of variables. First, we consider basic controls at the firm level: the number 

of employees, R&D expenditure per employee, exports per employee and the patent stock. The first three are 

survey-based variables. The patent stock is calculated as the cumulated number of patents in PATSTAT 

reporting the firm as an applicant up to the year before the focal year, discounting previous years with a 15% 

discount rate. Second, we consider a set of controls at the regional level: R&D expenditure, exports, the 

number of employees and the number of patents filed in the focal year. The first three variables are obtained 

by aggregating the amount of R&D expenditure, exports and employees at regional level, as reported in the 

MIP survey by all firms in the region (also including firms not considered in our analyses that appear for 

only one period or those that do not have innovative sales). The number of patents corresponds to the number 

of EPO patents reporting inventors located in the region, as reported in REGPAT. Importantly, these are the 

same patents adopted to construct the citation-based indicators of interregional integration. Therefore, this 

variable also controls for a possible omitted variable problem caused by the positive correlation of our 

citation based indicators and the amount of patenting activity in the region. 

Third, we consider two variables related with the R&D collaboration activities of the firm. These are two 

dummy variables that indicate respectively if the firm collaborated in R&D with partners within Germany or 

abroad. These variables are only available every four years in the MIP. In order not to lose observations, a 

company (not) reporting a collaboration in a given year is considered (not) to have collaborated in the 

following years where the information was not available. Finally, we consider a variable indicating the level 

of R&D expenditure within a region before the entry of LCCs in European airports across all periods, which 

we adopt as interaction variable with our variable of interest. In particular, we consider the average R&D 

expenditure within the region in the period 1992-1995 (Pre-entry region R&D). Considering shorter periods 

does not change the results. 

 Model	

In our main model, we relate innovative productivity with the indicators of interregional knowledge 

integration. Given the characteristics of the dependent variable, non-negative and with potential zero-

inflation, we adopt a Quasi Maximum Likelihood Estimation (QMLE) method with fixed effects. The 

QMLE method has desirable properties for the analyses under study, such as consistency of the estimates 

independently from the variance functional form and robustness to zero-inflation (Wooldridge, 1997, 2010). 

The model specification includes firm fixed effects and year fixed effects. Year fixed effects control for any 
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shock to productivity over time, common to all firms in Germany. Firm fixed effects control for time-

invariant characteristics of the firms.  

௜௥௧݀݋ݎܲ݊݊ܫ 	ൌ expሺߚ଴ ൅	ߚଵܴ݁݃݊݋݅ݐܽݎ݃݁ݐ݊ܫ௥௧ ൅ ௜௥௧ݏ݈ݎݐܥ݉ݎ݅ܨଶߚ ൅ ௜௥௧ݏ݈ݎݐܥଷܴ݁݃ߚ

൅	ߚସܧܨ݉ݎ݅ܨ௜௥ ൅ ௧ሻܧܨݎହܻ݁ܽߚ ൅	ߝ௜௥௧ ( 1 ) 

Note that these two levels of fixed effects control for several potentially omitted variables such as policy 

changes at the country level, the diffusion of ICT technologies, geographic position, sector-specific 

characteristics, etc., as far as these are not correlated with the firm-year specific idiosyncratic error term. 

Also, region fixed effects would be quasi-perfectly collinear with respect to firm fixed effects: controlling for 

firm fixed effects automatically implies that regional time-invariant characteristics are controlled for, with 

the exception of a few firms that appeared over time in different regions (6%). Removing these firms does 

not change the results. In order to further control for the most relevant time-variant variables, the three sets 

of controls (firm level controls, region controls, and firm R&D collaborations) are considered and added 

incrementally.  

Unobservable variables correlated with interregional knowledge integration and affecting innovative 

productivity might be time variant so that controlling for fixed effects at the relative level of analysis might 

not solve the problem. Also, reverse causality is not solved by fixed effects estimation. Taking into account 

lagged independent variables might partially address this issue. Nonetheless, innovative performance based 

on patent indicators are already measured with delays determined by the patent application process, which 

raises concerns on the right timing to consider. Finally, the indicators used to measure knowledge flows, 

especially patent-based indicators, are subject to considerable measurement errors leading to a downward 

bias of the estimations (Alcacer and Gittelman, 2006; Breschi and Lissoni, 2005; Criscuolo and Verspagen, 

2008; Jaffe et al., 2000). We attempt to address these issues by exploiting the entry of LCCs as an exogenous 

shock to the level of interregional knowledge integration. We adopt a two-stage IV model. In the first-stage 

equation, we estimate the Region citations’ invH (or alternatively, the Region copatents’ invH) as a function 

of firm fixed effects, year fixed effects and the set of firm and region controls. 

௥௧݊݋݅ݐܽݎ݃݁ݐ݊ܫܴ݃݁ ൌ 	 ଴ߛ ൅ ௥௧ିଷݕݎݐ݊ܧܿܿܮଵߛ ൅ ௜௥௧ݏ݈ݎݐܥ݉ݎ݅ܨଶߛ

൅	ߛଷܴ݁݃ݏ݈ݎݐܥ௥௧ ൅ ௜ܧܨ݉ݎ݅ܨସߛ ൅ ௧ܧܨݎହܻ݁ܽߛ ൅ ߳௜௥௧

( 2 ) 

We use a linear model with fixed effects and robust errors to estimate this equation. Accordingly to the 

analyses presented in the following paragraph, LCC entry is considered with a lag of 3 years in order to 
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optimize the power of the estimation. In a second-stage equation equivalent to equation (1), we include the 

fitted values of the indicator of interregional knowledge integration from the first-stage equation instead of 

the original variable. In the second-stage equation, errors are bootstrapped to take into account the non-

normality of the residuals in the two-step IV estimation. We consider a variant of the model discussed where 

we interact the indicator of interregional integration with the level of R&D expenditure in the region before 

the period of entry of an LCC, Pre-entry region R&D, in European airports. In this case, when adopting the 

two-stage IV model, we will have two first-stage equations with dependent variables the indicator of 

interregional integration and the interaction between interregional integration and Pre-entry region R&D, 

respectively. In both equations, two instruments are included: LCC entry and the interaction between LCC 

entry and Pre-entry region R&D. The second-stage equation includes the fitted values from the two first-

stage equations (Wooldridge, 2010).  

Our two-stage IV model estimation strategy is based on the assumption that the entry of an LCC is 

uncorrelated with the firm-year specific idiosyncratic error term: that is, it is not directly correlated with 

firms’ innovative productivity having controlled for firm and region controls and, in particular, year and 

firm-region specific characteristics. In other words, our estimation strategy is valid as far as the entry of an 

LCC is uncorrelated with year-firm specific factors (exogeneity) and if it affects innovative productivity 

solely through the higher interregional knowledge integration of regions (exclusion restriction). Our 

confidence in the exogeneity assumption is based on the modalities of European airline liberalization, as 

described in the previous paragraph. The use of important control variables and the robustness of the results 

to the introduction of these controls provide some evidence regarding the validity of the exclusion restriction. 

However, the exogeneity and exclusion restriction cannot be formally tested, and we discuss potential 

challenges in the last section of the chapter. 

4.5 Descriptive	statistics	

 Interregional	knowledge	integration	indicators	

We report descriptive graphs relative to our variables of interest. The graphs reported in Figure 4.1 show 

the effective number of regions cited by inventors in German regions - Region citations’ invH – (Figure 4.1a) 

and the effective number of regions involved in co-patenting activities - Region copatents’ invH - (Figure 

4.1b). Both measures increased significantly over the period considered. Interestingly, Breschi and Lenzi 

(2012) found a similar trend for the indicator of geographic distance connection of US cities. This evidence 

indicates an increasing average interregional integration of regions with other regions worldwide.  
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Figure	4.1:	Citations	and	co‐patenting	activities	inverse	Herfindahl	index	over	time	

 

In addition, we show in Figure 4.2 the trend of citations abroad, citations to other German regions and 

citations to the same NUTS2. Similarly, in Figure 4.3, we show the trend of co-patenting activities abroad, 

co-patenting activities with other German regions and co-patenting activities in the same NUTS2. It is 

interesting to note that the number of citations abroad is consistently higher than the number of citations 

within Germany and within the same region. The number of citations abroad also appears to have sharply 

increased over time, although proportionally to the increase in the total number of citations. Similarly, the 

total number of co-patenting activities abroad increased from an average of 4 in 1992 to approximately 20 in 

2009. However, this increase is proportional to the increase of co-patenting activities in general, and, in this 

case, co-patenting activities within the region and in Germany remain largely prevalent.  

11
12

13
14

15
16

R
eg

io
n 

ci
ta

tio
ns

 in
vH

1990 1995 2000 2005 2010
Year

a. Average citations invH of German regions

3
4

5
6

7
8

9
R

eg
io

n 
co

pa
te

nt
s 

in
vH

1990 1995 2000 2005 2010
Year

b. Average copatents invH of German regions



Interregional knowledge integration and firms’ innovative productivity 

76 

Figure	4.2:	Average	number	of	citations	of	German	regions	to	other	regions	

 

Figure	4.3:	Average	number	of	German	regions’	co‐patents	with	other	regions	
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 LCC	entry		

The graph reported in Figure 4.4 shows the entry pattern of LCCs in German regions. Each line 

corresponds respectively to the share of regions with access to at least one airport with an LCC operating in 3 

hours driving distance, 2 hours driving distance (or closest airport) and 1 and-a-half hours driving distance 

(or closest airport). Importantly to note, the first entries are registered in 1997, and the number of regions 

with access to LCC flights sharply increase in a period of approximately 5 years. After 2003, the totality of 

regions in Germany had access to at least one airport with LCCs operating at a reasonable travel distance.  

Figure	4.4:	LCC	entry	in	German	regions	

 

 Effect	of	LCC	entry	on	interregional	knowledge	integration	

In the following graphs (Figure 4.5 and Figure 4.6), we present a graphical semi-parametric analysis to 

explore the effect of LCC entry on interregional integration. We estimate the relative averages of Region 

citations’ invH and Region copatents’ invH at different periods before, after and at the moment of LCC entry 

(time 0) having controlled for region fixed effects and year fixed effects. Averages are plotted in reference to 

the average in the period minus 1, one year before LCC entry.  

The analyses allow us to observe that the averages of these indicators, especially Region citations’ invH, 

once controlling for year and region fixed effects, are approximately constant up to the year of LCC entry 

and significantly increase after three years from LCC entry. While this indicates that the effect of LCC entry 

is not sharp at the moment of entry, it is consistent with a gradual penetration of LCCs in the airport and 

other airport destinations. Furthermore, observed citations and co-patenting activities are the results of 
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innovation activities likely performed in the previous few years, such that is natural to expect a delay in the 

observable consequences of LCC entry. Most importantly, the lack of a pre-trend - an increase of the 

indicators previous to entry - provides descriptive support to the exogeneity of the entry decision that does 

not seem to be anticipated by a demand shock.  

Figure	4.5:	Effect	of	LCC	entry	on	Region	citations’	invH	

 

Figure	4.6:	Effect	of	LCC	entry	on	Regions	copatents	invH	
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4.6 Results	

In this section, we present the results for the analyses relative to the variable Region citations’ invH. 

Table 4.2 presents the results for the productivity equation without instrumenting the variable of interest. 

Table 4.3 presents the first stage of the two-step IV estimation, while Table 4.4 presents results for the 

second-stage equation where Region citations’ invH is replaced by its predicted value from the first-stage 

equation. In both tables, we include the control variables gradually from Model 2 to Model 4. Model 1 does 

not include controls. Model 2 includes controls at the firm level. In Model 3, region-level controls are 

considered. Finally Model 4 includes additional controls at the firm level to control whether the firm is 

directly involved in R&D cooperation activities in Germany or abroad. Beyond being standard controls, the 

firm-level controls limit the concern that the effect of LCC entry on the innovative productivity of firms can 

be mediated by factors other than the level of interregional knowledge integration. A reduction in 

generalized transportation costs might determine higher growth of the firm (number of employees), free 

resources that could be dedicated to innovation (R&D expenditure), ease exports with an effect on incentives 

to innovate and on knowledge acquisition from customers abroad (Salomon and Shaver, 2005), or it might 

directly affect the patenting activities of the company (patent stock). Similarly, a reduction of transportation 

costs might have an impact at region level on the total amount of employees, R&D performed, exports and 

inventions (patents), consequently to the entry (or exit) of new firms in the region, as well. These variables 

can have a spillover effect on the innovative productivity of the company. Finally, R&D cooperation in 

Germany and abroad are included to test whether the effect of interregional integration is fully mediated by 

direct R&D collaborations of the firm.  

From Table 4.2, we observe the results when the variable of interest is treated as exogenous. Interregional 

integration, as measured by the Region citations’ invH variable, has a positive effect on innovative 

productivity, and the result is robust to the inclusion of the listed controls. The magnitude of the coefficient 

is not high, indicating that one additional region effectively cited by a region increases innovative 

productivity of firms by approximately 2%35. However, this corresponds to an effect of 16% higher 

innovative productivity for a standard deviation of the variable. Controls have the sign that might be 

expected, especially regarding R&D expenditure per employee, export per employee and patent stock. R&D 

expenditure per employee and patent stock in particular show significant and positive coefficients. On the 

contrary, innovative productivity decreases with the number of employees, but is weakly significant only in 

Model 2. Among the region control variables, it is interesting to note that the amount of R&D performed in 

the region negatively affects the outcome variable, although the coefficient is only weakly significant. Other 

regional characteristics do not show a significant impact. Finally, among the R&D collaboration variables, 

                                                      

35 QMLE estimates are interpreted as ሺ݁ఉ െ 1ሻ ∗ 100	percentage change. 
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R&D collaborations abroad positively affect innovative productivity, but the inclusion of these variables 

does not affect the result on the variable of interest. 

Table	4.2:	QMLE	on	innovative	productivity	(Region	citations’	invH)	

Model 1 Model 2 Model 3 Model 4

Region citations' invH 0.018** 0.018** 0.018** 0.018***
(0.008) (0.008) (0.007) (0.007)

N employees -.009* -0.008 -0.008
(0.004) (0.005) (0.005)

R&D_employee 4.961** 5.080** 4.743**
(2.269) (2.328) (2.081)

Export_employee 0.312 0.305 0.305
(0.281) (0.284) (0.285)

Patent stock 0.002** 0.002** 0.002**
(0.001) (0.001) (0.001)

R&D coop in DE -0.190
(0.152)

R&D coop abroad 0.283*
(0.146)

Region R&D -0.024* -0.024*
(0.012) (0.013)

Region export 0.003* 0.003*
(0.002) (0.002)

Region N employees 0.001 0.001
(0.001) (0.001)

Region patents -0.065 -0.067
(0.055) (0.056)

Year dummies Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes

Observations 15,819 15,819 15,819 15,819
Number of firms 3,871 3,871 3,871 3,871
Chi-squared test 162.4 192.9 204.5 237.7

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1  

The first-stage results (Table 4.3) show that the entry of an LCC significantly affects Region citations’ 

invH. The indicator increases approximately by 1 unit, and the F-test on the omitted instrument has a value 

higher than 30, largely beyond the indicative threshold of strong instruments. It is interesting to note that 

firm-level variables have no significant impact on the Region citations’ invH variable. On the contrary, 

region-level variables affect the indicator, as it might be expected. In particular, Region R&D and Region 

Patents have the expected positive sign. More surprisingly Region export is negatively associated with 

Region citations’ invH36.  

                                                      

36 However, note that the significance of the coefficient of Region Patents and Region export is not robust to cluster robust standard 
errors at the NUTS3 regional level. We discuss in paragraph 4.7 how the results on the main variable of interest are affected by 
considering cluster robust standard errors.  
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Table	4.3:	First‐stage	regression	on	Region	citations’	invH	

Model 1 Model 2 Model 3 Model 4

LCC entry (lag 3 years) 1.184*** 1.185*** 1.156*** 1.157***
(0.185) (0.185) (0.185) (0.185)

N employees 0.002 0.001 0.000
(0.014) (0.014) (0.014)

R&D_employee 1.396 1.127 1.074
(2.130) (2.116) (2.123)

Export_employee -0.408 -0.428 -0.430
(0.341) (0.342) (0.342)

Patent stock -0.002 -0.003 -0.003
(0.003) (0.003) (0.003)

R&D coop in DE 0.148
(0.173)

R&D coop abroad -0.044
(0.214)

Region R&D 0.101*** 0.101***
(0.013) (0.013)

Region export -0.004*** -0.004***
(0.001) (0.001)

Region N employees 0.001 0.001
(0.001) (0.001)

Region patents 0.098* 0.098*
(0.052) (0.052)

Year dummies Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes
Constant 10.802*** 10.798*** 10.717*** 10.687***

(0.189) (0.190) (0.194) (0.196)

Observations 15,819 15,819 15,819 15,819
Number of firms 3,871 3,871 3,871 3,871
F-test on ommitted instrument 41.08 41.21 39.06 39.18
Chi-squared test 49.12 40.67 36.61 34.30

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1  

The second-stage results (Table 4.4) again report a significant effect of Region citations’ invH on 

innovative productivity, importantly, robust across different specifications. The estimation coefficient 

increases considerably, passing from 0.02 to about 0.33. This coefficient would imply, after correction for 

the logarithm approximation, an effect of about a 40% higher innovative productivity per unit increase of 

Region citations’ invH. This sharp increase is typical, to some extent, of IV estimators: in this sense, it might 

be due to the lower efficiency of the two-step IV estimation method and to a considerable measurement error 

of the endogenous variable, as mentioned in section 4.4. Also, the possibility must be acknowledged that 

unobserved variables determine a downward bias of the estimation if interregional integration is treated as 

exogenous. First, a higher number of citations toward other regions might be pushed by a negative shock to 

the marginal productivity of internal knowledge exploitation, such that the search and use of external novel 

inputs might be simultaneous to lower innovation performance. Second, an increase in the number of 

citations toward other regions might be driven by the emergence of new firms and regions operating in 

similar sectors, as such representing a sign of higher external competition from other regions negatively 
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affecting innovative sales37. Indeed, it is important to note that the coefficient resulting from the QMLE 

model in Table 4.2 and the coefficient from the two-step IV estimation in Table 4.4 are significantly 

different, revealing, under our assumptions, endogeneity of the variable of interest.  

Table	4.4:	Second‐stage	regression	on	innovative	productivity	(Region	citations’	invH)	

Model 1 Model 2 Model 3 Model 4

Region citations' invH 0.297*** 0.309*** 0.330*** 0.327***
(0.102) (0.115) (0.101) (0.095)

N employees 0.009 0.007 0.007
(0.014) (0.014) (0.009)

R&D_employee 4.495** 4.665** 4.385**
(2.130) (2.033) (2.048)

Export_employee 0.446 0.456 0.455
(0.425) (0.405) (0.475)

Patent stock 0.002** 0.003*** 0.003**
(0.001) (0.001) (0.001)

R&D coop in DE -0.228
(0.152)

R&D coop abroad 0.283*
(0.150)

Region R&D -0.058*** -0.057**
(0.021) (0.024)

Region export 0.004* 0.004*
(0.002) (0.002)

Region N employees 0.001 0.001
(0.001) (0.001)

Region patents 0.098 0.099
(0.063) (0.063)

Year dummies Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes

Observations 15,819 15,819 15,819 15,819
Number of firms 3,871 3,871 3,871 3,871
Chi-squared test 273.5 327.9 323.0 245.7

Bootstrap standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1  

In Table 4.5, we interact the variable Region citations’ invH with the variable Pre-entry region R&D. In 

Model 1, all variables are treated as exogenous. We find a positive effect of the interaction term, implying 

that firms located in regions with higher levels of R&D expenditure at the beginning of the period considered 

increase their innovative productivity more when Region citations’ invH increases. However, the effect is 

small in magnitude, and the difference is weakly significant. The coefficient of Region citations’ invH varies, 

from a mean of 0.013 for firm in regions with Pre-entry region R&D equal to the 25th percentile, to a mean 

0.014 for firm in regions with Pre-entry region R&D equal to the 75th percentile, and the difference is not 

significant. The difference is only appreciable for firms in regions beyond the 95th percentile, for which the 

coefficient value is 0.032. Still, the difference is significant only at the 10% confidence level. In the 

                                                      

37 In the paragraph 4.7. we discuss how considering cluster robust standard errors decreases the F-test on the omitted instruments 
which might imply the presence of a weak instrument bias. This could be a further explanation of the large difference in the 
coefficients.  
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following models, we adopt the two-stage IV method. As a first result, we find that the entry of an LCC has a 

stronger impact for firms in smaller regions with lower levels of R&D expenditures (Model 2). Interestingly, 

in the second-stage equation, we observe that the effect of the interaction effect is inverted, in this case, 

implying that the effect of Region citations’ invH is stronger for smaller regions. However, again, the 

variation is not strong in magnitude and is not significant for reasonable values of the interacting variable.  

Table	4.5:	Regression	results	for	models	with	interaction	with	Pre‐entry	region	R&D

	

Table 4.6 reports the main models, considering the entire list of controls, of the analyses using the 

variable Region copatents’ invH as an indicator of interregional integration. Model 1 reports the results for 

the QMLE model on innovative productivity, where Region copatents’ invH is treated as exogenous. Model 

2 reports the first-stage analysis on the same variable. Model 3 shows the second-stage equations. The results 

are significant and equivalent to those obtained with the citation-based indicator. However, the instrument 

does not pass the threshold of 10 of the F-test; and the instrument cannot be considered strong in this case. 

Also importantly, the interaction effect with the level of R&D expenditure in the region is not significant. In 

the two-stage IV model the instruments are not significant (therefore, the model is not presented). 

Model 1 Model 2 Model 3 Model 4
QMLE First stage First stage (interaction)  Second stage

Region citations' invH 0.013** 0.333***
(0.006) (0.111)

Region citations' invH * Pre-entry region R&D 0.017** -0.041**
(0.007) (0.017)

LCC entry (lag 3 years) 1.276*** 15.222***
(0.186) (2.410)

LCC entry (lag 3 years) *  Pre-entry region R&D -0.337*** -34.79***
(0.072) (7.95)

N employees 0.008 0.001 0.409 0.005
(0.006) (0.014) (0.741) (0.005)

R&D_employee 4.772** 1.149 -1.191 4.348**
(2.108) (2.126) (20.171) (2.054)

Export_employee 0.304 -0.426 -4.389 0.438
(0.272) (0.342) (4.467) (0.508)

Patent stock 0.002** -0.002 0.052 0.003**
(0.001) (0.003) (0.071) (0.001)

R&D coop in DE -0.162 0.148 -3.494** -0.242
(0.154) (0.174) (1.616) (0.162)

R&D coop abroad 0.259* -0.033 2.063 0.289**
(0.149) (0.214) (2.168) (0.137)

Region R&D -0.026** 0.103*** 0.063*** -0.032*
(0.013) (0.013) (0.006) (0.018)

Region export -0.003* -0.003* -0.059* -0.003
(0.001) (0.002) (0.072) (0.002)

Region N employees -0.001 -0.001 -0.012 -0.001
(0.002) (0.001) (0.023) (0.001)

Region patents -0.075 0.125** 9.44*** -0.072
(0.057) (0.053) (2.077) (0.076)

Year dummies Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes

Observations 15,819 15,819 15,819 15,819
Number of firms 3,871 3,871 3,871 3,871
F-test on omitted instruments 31.09 20.51
F-test 33.98 11.10
Chi-squared test 254.2 945.8

Model 1-3:  Robust standard errors in parentheses;  Model 4: Bootstrap standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Two-stage IV model



Interregional knowledge integration and firms’ innovative productivity 

84 

Table	4.6:	Regression	results	on	innovative	productivity	with	copatents’	indicator	(Region	copatents’	invH)

Model 1 Model 2 Model 3 Model 4
QMLE First stage  Second stage  Interaction

Region copatents' invH 0.024*** 0.767*** 0.019***
(0.007) (0.220) (0.007)

Region copatents' invH * Pre-entry region R&D 0.003
(0.003)

LCC entry (lag 3 years) 0.493**
(0.193)

N employees -0.009* 0.051 -0.041*** -0.009*
(0.004) (031) (0.016) (0.005)

R&D_employee 4.881** -1.349 5.770*** 4.850**
(2.124) (2.470) (2.051) (2.125)

Export_employee 0.302 0.231 0.137 0.296
(0.289) (0.311) (0.456) (0.289)

Patent stock 0.002** 0.002 0.001 0.002**
(0.001) (0.003) (0.001) (0.001)

R&D coop in DE -0.175 -0.228 -0.005 -0.165
(0.155) (0.155) (0.125) (0.155)

R&D coop abroad 0.261* -0.025 0.288** 0.252*
(0.144) (0.184) (0.122) (0.145)

Region R&D -0.022* 0.024 -0.043** -0.020*
(0.012) (0.027) (0.017) (0.011)

Region export 0.003* 0.003 0.001 0.003
(0.002) (0.005) (0.002) (0.002)

Region N employees 0.001 0.001 -0.002** 0.001
(0.001) (0.002) (0.001) (0.001)

Region patents -0.084 1.026*** -0.854*** -0.092
(0.059) (0.089) (0.219) (0.062)

Year dummies Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes

Observations 15,819 15,819 15,819 15,819
Number of firms 3,871 3,871 3,871 3,871
F-test on ommitted instrument - 6.50 - -
F-test - 60.30 - -
Chi-squared test 240.4 - 555.9 240.9

Two-stage IV model

Model 1, 2, 4:  Robust standard errors in parentheses;  Model 3: Bootstrap standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1 		

4.7 Robustness	

In this section, we discuss two main possible concerns on the robustness of our results. For the sake of 

brevity, we only discuss the main conclusions without reporting the relative results. First of all, in our 

models, we assumed independence of the error terms across observations. However, this assumption is likely 

not valid, especially due to the fact that some of the variables varied at the regional level. To address this 

issue, we estimated our models with cluster robust standard errors and with bootstrapped cluster robust 

standard error estimations, where clusters are considered at the level of the NUTS3 regions. The coefficient 

on the effect of Region citations’ invH on innovative productivity remains significant at the 1% confidence 

level in all model specifications. The effect of LCC entry on Region citations’ invH also remains significant, 
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however, the associated F-test is lower. Furthermore the indicative threshold of the F-test equal or higher 

than 10 is not valid if the errors are not identically or independently distributed (i.i.d). In order to further 

explore this issue, we estimated a linear regression IV model with fixed effects and clustered robust standard 

errors. In this model, the Anderson-Rubin Wald test and the Stock-Wright LM statistic (weak instruments 

robust statistics) both reject the null hypotheses that the coefficient of the endogenous repressor is null, 

providing confidence at least on the significance and the sign of the results. The same conclusion applies for 

the model where we included the interaction with Pre-entry region R&D. In the first stage, we do not find a 

significant interaction term any more in the first of the two first-stage equations; however, the excluded 

instruments are jointly significant in both equations. On the contrary, the two-stage IV models where we 

adopt Region copatents’ invH as an indicator of interregional knowledge integration, are not robust to the 

cluster robust standard errors estimation methods and yield insignificant estimates.  

A second aspect to take into account is that the results we obtained might be driven by the entry choices 

of new firms in a region. More (or less) innovative firms might show a preference to settle in regions 

showing higher levels of interregional knowledge integration and with lower transportation costs toward 

other destinations. Fixed effect estimation is supposed to partly take this issue into account. Nevertheless, it 

is still possible that new entrant firms have different growth trends of innovative productivity, which would 

imply that also fixed effect estimations might be biased. In order to address this issue, we estimated our 

models in a sample of firms that always appeared in the same region and with a foundation year lower than 

1996 (earlier than the entry of an LCC). Results are mostly unchanged. 

4.8 Conclusion	

The geography of innovation is gradually evolving due to the increasing level of connectivity among 

regions, driven by communication technology improvement, the reduction of transportation costs, as well as 

political initiatives (Chessa et al., 2013; Tranos, 2013). Firms, regions and policy makers have invested 

increasingly in the search for distant knowledge in order to be connected with different locations. Overall 

interregional integration has been increasing. However, only recently have scholars started to explore the 

dynamics and effects of the phenomenon on innovative activities.  

In this chapter, we study the innovative productivity of 3,871 innovative firms in Germany between 1992 

and 2010, for a total of 15,819 observations. We find that higher levels of a region’s interregional knowledge 

integration - measured as the geographic dispersion of the knowledge sources of inventions developed in the 

region and of co-patenting activities - lead to higher innovative productivity of local firms. We exploit airline 

liberalization in Germany and find that the entry of new operators (LCCs) in airports accessible to a region 

affects its interregional knowledge integration. The effect of interregional integration on innovative 

productivity, when measured as the geographic dispersion of backward citations in the patents of the region, 
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is robust and increases in magnitude when we adopt the entry of an LCC in a close airport as an instrument 

of interregional knowledge integration of the region. Results were similar when adopting a measure of 

interregional knowledge integration based on copatenting activities. However, the analyses showed a 

problem of weak instruments in this case, when adopting a two-stage IV model. 

Different theories would predict that the effect of interregional knowledge integration on innovative 

performance might vary accordingly with the size of the region where companies are located (here measured 

as the average amount of R&D expenditure in the region at the beginning of the period considered). When 

we adopt the citation-based measure of interregional knowledge integration, we find a positive interaction 

effect in models where we do not use LCC entry as instrument. On the contrary, the effect is negative in the 

two-stage IV model. However, in both cases, the moderating effect of the regional R&D expenditure is not 

strong and is only weakly significant for extreme values of the interacting variable. Furthermore, we do not 

find any significant interaction effect when adopting the measure based on co-patenting activities and the 

analyses. Therefore, we conclude that there is no evidence of strong differences of the effect of interregional 

knowledge integration across firms located in regions with low or high levels of R&D investment.  

This evidence supports policies oriented to improve interregional integration and has implications for the 

location and investment decision of companies. To the extent that access to distant knowledge is important 

for firms and regions’ innovative productivity, a location in a smaller, but well-integrated region might be 

convenient, compared to a location in a relatively bigger geographical cluster with a lower level of 

interregional integration. Further research is needed to confirm these results and to disentangle the different 

mechanisms underlying the relationships observed here. A series of limitations of the analyses presented and 

considerations for future research are discussed in the following.  

First, LCC entry is likely not the only factor affecting interregional integration in the period analyzed. 

Importantly, Information and Communication Technologies (ICT) are diffused in the same period. In this 

respect, year fixed effects and region fixed effects are expected to control for any factor affecting 

interregional integration over time and across regions, as far as this is not correlated with the entry of an 

LCC in a specific airport in a specific year. Since the timing of entry of an LCC in different airports has been 

mainly determined by exogenous factors or by the time invariant-characteristics of a region, we consider it 

unlikely that LCC entry is correlated with region-year specific characteristics determining the level of 

interregional integration, including the diffusion of ICT technologies. 

Second, the reduction of generalized transportation costs, determined by the entry of an LCC, may affect 

innovative productivity via factors other than a higher level of interregional knowledge integration. We tried 

to limit this concern by showing the robustness of the results to the inclusion of several variables at the firm 

and regional levels. However, future research might further investigate the effects of transportation costs on 
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regional economic systems and other possible mechanisms through which these effects might lead to 

innovative performance.  

Third, the scope of our results is limited by a lack of firm-level indicators equivalent to the indicators of 

interregional integration. These indicators cannot be computed based on the patent data in our sample, given 

that most of the firms did not apply for a patent or did it very seldom over time. However, it would be 

important to study whether it is correct to conceptualize interregional knowledge integration as a property of 

the region, generating externalities within the region, or, alternatively, the effect encountered emerges as an 

average effect of firms actually investing in access to distant knowledge.  
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 Conclusion	

Proximity affects the possibility of individuals sharing information and knowledge, thereby influencing 

the process of knowledge production and innovation. Three broad areas of research have been the object of 

recent debates. First, various forms of proximity, beyond geographic proximity, interact with and differently 

affect innovation processes. Second, different mechanisms, beyond a simple learning process, might explain 

the role of proximity, both positively and negatively affecting the level and direction of technological 

progress. Third, increased attention has been devoted to the importance of combining the exploitation of 

proximate knowledge with access to distant knowledge sources. This thesis proposes three studies that, while 

being heterogeneous for the contexts of their analyses, provide novel empirical evidence on how different 

types of proximity can affect science and innovation activities through various mechanisms. In addition, 

particular attention is given to the importance of accessing relatively distant knowledge and information. In 

this final chapter, I summarize the main conclusions and insights for future research.  

Previous literature has primarily conceptualized knowledge spillovers and knowledge flows as the 

antecedents of cumulative innovation. By sharing and accessing existing knowledge, economic agents gain 

an awareness and understanding of the existing state of the art in one field, which enables them to develop 

novel technologies. The second chapter of this thesis further suggests that the diffusion of knowledge 

determines the extent to which innovative efforts lead to duplicate inventions. Accordingly, the phenomenon 

of duplication is not randomly distributed geographically. Proximity allows inventors to avoid duplication, 

while inventors run the risk of duplicating inventions already discovered in distant environments, even 

several years before. However, proximity can also potentially increase the rate of duplication if economic 

agents, sharing the same pool of knowledge, end up competing on the same technological path. Indeed, for 

recent inventions, we find that duplication is more likely at short distances. This evidence suggests that 

failing to access relevant knowledge not only might impede innovation, but can also cause duplication. The 

extent to which the mechanisms of knowledge diffusion at higher distances (such as, for instance, ICT and 

the patent system itself) can or can better address this issues remain a relevant policy issue. At the same time, 

whether proximity and knowledge diffusion lead to cumulative innovation also depends on the strategic 

decisions of economic agents.  

The third chapter of the thesis analyses how social proximity to distant environments might affect the 

possibility to attract human capital. The role of networks and referrals in hiring processes has been widely 

acknowledged in the economics and sociology literature. Accordingly, the results have shown that most of 

the benefit from hiring external students for PhD positions in two of the main research institutions in 
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Switzerland is mediated by the presence of their faculty networks. As such, the results suggest that social 

proximity with geographically distant environments helps attract external human capital with higher 

productivity, beyond the possible indirect benefits from network constructions and knowledge diversity. 

Conversely, institutions, and, more in general, innovation systems lacking in connections with external 

environments might face excessive information asymmetries and screening costs required to successfully and 

profitably attract external resources and knowledge. However, further research is needed in order to assess 

the extent to which our results are generalizable to other cultural and institutional contexts. Also, social 

proximity might be rather heterogeneous and networks might take different forms (such as professional or 

personal networks) that we could only explore partially.  

Finally, the fourth chapter looks at the effects of interregional knowledge, defined as a region’s degree of 

access to and adoption of knowledge developed in other geographically dispersed regions, on innovative firm 

performance. We empirically test the hypothesis that interregional knowledge integration positively affects 

the innovative productivity of local firms. We find evidence for this hypothesis, which is robust to the 

adoption of the LCC entry in European airports as an exogenous shock to the level of interregional 

knowledge integration of regions in Germany. As such, access to external sources of knowledge appears, 

indeed, as a determinant of local innovative performance. Therefore, we suggest that the phenomenon of 

interregional integration, which descriptive evidence shows to be increasing, has the potential to positively 

increase innovation. Based on our framework, competition in the upstream sectors determining the costs to 

access external environments is emerging as an important policy target. However, further research is needed 

to understand how the reduction of transportation costs and other determinants of the phenomenon (above all 

ICT) interact to determine knowledge diffusion and innovative performance.  

The geography of innovation has been a flourishing area of research that has thoroughly documented the 

relationship between the geographic distribution of economic activities, knowledge diffusion and innovation. 

Decreasing transportation costs, ICT improvements and the increasing size and geographic extension of 

professional networks and human capital mobility promise to further shape the relationship between 

proximity and innovative and scientific performance. This thesis discussed few selected aspects of these 

phenomena which are likely to open new important areas of investigation for future research.  
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