000204182 001__ 204182
000204182 005__ 20190522142440.0
000204182 0247_ $$2doi$$a10.1017/S0308210513000486
000204182 022__ $$a0308-2105
000204182 02470 $$2ISI$$a000343761000008
000204182 037__ $$aARTICLE
000204182 245__ $$aBifurcation at isolated singular points of the Hadamard derivative
000204182 260__ $$c2014$$bRoyal Society of Edinburgh Scotland Foundation, Cambridge$$aCambridge
000204182 269__ $$a2014
000204182 300__ $$a39
000204182 336__ $$aJournal Articles
000204182 500__ $$aNational Licences
000204182 520__ $$aFor Banach spaces X and Y, we consider bifurcation from the line of trivial solutions for the equation F(lambda, u) = 0, where F : R x X -> Y with F(lambda, 0) = 0 for all lambda is an element of R. The focus is on the situation where F(lambda, center dot) is only Hadamard differentiable at 0 and Lipschitz continuous on some open neighbourhood of 0, without requiring any Frechet differentiability. Applications of the results obtained here to some problems involving nonlinear elliptic equations on R-N, where Frechet differentiability is not available, are presented in some related papers, which shed light on the relevance of our hypotheses.
000204182 700__ $$aStuart, C. A.
000204182 773__ $$j144$$tProceedings Of The Royal Society Of Edinburgh Section A-Mathematics$$k5$$q1027-1065
000204182 8564_ $$uhttps://infoscience.epfl.ch/record/204182/files/S0308210513000486.pdf$$zPUBLISHER'S VERSION$$s7583
000204182 909C0 $$0252057$$pANA
000204182 909CO $$particle$$ooai:infoscience.tind.io:204182
000204182 937__ $$aEPFL-ARTICLE-204182
000204182 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000204182 980__ $$aARTICLE