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Band-edge positions in GW : Effects of starting point and self-consistency
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We study the effect of starting point and self-consistency within GW on the band-edge positions of
semiconductors and insulators. Compared to calculations based on a semilocal starting point, the use of a
hybrid-functional starting point shows a larger quasiparticle correction for both band-edge states. When the
self-consistent treatment is employed, the band-gap opening is found to result mostly from a shift of the
valence-band edge. Within the non-self-consistent methods, we analyse the performance of empirical and
nonempirical schemes in which the starting point is optimally tuned. We further assess the accuracy of the
band-edge positions through the calculation of ionization potentials of surfaces. The ionization potentials for
most systems are reasonably well described by one-shot calculations. However, in the case of TiO2, we find that
the use of self-consistency is critical to obtain a good agreement with experiment.
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I. INTRODUCTION

Band-edge positions of solids, i.e., the valence-band max-
imum (VBM) and the conduction-band minimum (CBM),
are fundamental to a variety of technologically relevant
problems in condensed matter physics and material science.
One of the most prominent examples is the band offset at
the interface of a heterojunction [1–3]. The size of the band
offset regulates the electrical properties of the heterojunction,
and its determination depends to a large extent on the relative
band-edge positions of the two components with respect to the
electrostatic-potential lineup at the interface [2,4]. A similar
scenario occurs at semiconductor-electrolyte interfaces, which
are gaining attention for applications in solar energy conver-
sion. Specifically, to achieve photocatalytic water splitting, the
VBM and the CBM of the semiconducting photoelectrode need
to straddle the hydrogen reduction and the water oxidation
potentials [5]. Another class of applications involves the
determination of defect energy levels in solids. For localized
defects, the accuracy of the defect energy levels is closely
associated to the band-edge positions predicted by the adopted
theoretical scheme [6–10].

In spite of the ubiquity and elementary role of band
edges in various applications, accurate determinations of their
positions from theory remain difficult. For instance, band-edge
positions through (semi)local density functional theory (DFT)
are destined to be problematic as the band gap is severely
underestimated. This is clearly manifested by the severely
underestimated ionization potentials calculated within the
Perdew-Burke-Ernzerhof (PBE) functional [11], implying that
the alignment of the VBM with respect to the vacuum level
is not correct at this level of theory [12]. More realistic band
gaps can be achieved within the class of hybrid functionals,
in which a fraction of Fock exchange is incorporated and
admixed with (semi)local exchange [13]. The higher accuracy
and particularly the ability to reproduce the experimental band
gap have made the use of hybrid functionals a routine practice
in electronic-structure calculations.

Many-body perturbation theory in Hedin’s GW approxi-
mation is a formally more accurate approach to tackle the
band-edge problem [14]. The exchange and correlation effects
are taken into account by the electronic self-energy as the

convolution of the Green’s function G and the dynamically
screened Coulomb interaction W . The obtained quasiparticle
(QP) energies of the VBM and the CBM can be immediately
interpreted as the ionization potential and electron affinity in
photoemission experiments. While the GW approximation
has shown great promise in the band-gap prediction for
semiconductors and insulators, very few studies have been
devoted to the band edges and the accuracy of GW band-edge
positions remains unsettled [12,15]. In particular, as GW

QP calculations are usually carried out perturbatively on top
of the one-particle Kohn-Sham (KS) equation (denoted as
G0W0 hereafter) [16], the QP spectrum of G0W0 is inevitably
associated with the density functional starting point. The
G0W0 starting from a semilocal functional description of the
electronic structure has become the de facto standard for GW

calculations nowadays. It yields reasonable band gaps for
small-gap semiconductors, whereas for wide-gap insulators
and semiconductors with shallow d electrons the achieved
band gap is still sizably smaller than experiment [15,17],
leading to ambiguity in the accuracy of the predicted band
edges. Indeed, Jiang et al. showed that G0W0 on top of
PBE is inclined to underestimate the ionization potentials
of semiconductors as a consequence of the small size of the
calculated band gaps [12].

To address the issue of the (semi)local starting point in
G0W0, one could either use a starting point which gives an
improved description of the electronic structure, or rely on
a self-consistent scheme to get rid of the dependence on the
starting point. In the former case, Fuchs et al. showed that
G0W0 on top of hybrid functionals results in systematically
more accurate band gaps and d-band binding energies com-
pared to the semilocal starting point [18]. The latter approach,
while being computationally much more demanding due to
the self-consistent update of the energies and wave functions,
provides an unbiased and accurate description of the band gap
irrespective of the starting point [17,19–21].

In this paper, we investigate the effect of different starting
points and the self-consistency within the GW approximation.
We focus on the band-edge positions as obtained with the
PBE0 hybrid functional [22], the perturbative G0W0 (either on
top of PBE or of PBE0), and the quasiparticle self-consistent
GW . We consider a series of representative materials, covering
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simple sp semiconductors (Si, Ge, SiC, AlN, MoS2, and C),
semiconductors with shallow d electrons (GaAs, GaP, GaN,
ZnO, and ZnSe), and wide-gap oxides and insulators (TiO2,
HfO2, SiO2, MgO, and LiF). In particular, we investigate
the band-edge positions when the starting point of the G0W0

method is optimally tuned by varying the mixing parameter.
Finally, the accuracy of the calculated band-edge positions
is examined through ionization-potential calculations for
surfaces.

This paper is organized as follows. In Sec. II, we outline
the theoretical framework of the various schemes. In Sec. III,
the detailed computational techniques and parameters are
provided. We then discuss the band gaps in Sec. IV. The
band-edge positions are studied in detail in Sec. V, and the
performance of one-shot G0W0 schemes based on optimally
chosen initial states is investigated in Sec. VI. The accu-
racy of band-edge positions is assessed in the context of
ionization potentials in Sec. VII. Conclusions are drawn in
Sec. VIII.

II. THEORETICAL FRAMEWORK

In this section, we briefly outline the different levels of
theory used throughout this paper. We start with the KS density
functional theory, the basis of all methods used in this paper.
The KS eigenvalues (εKS

n ) are found by solving the equation
(in atomic units){− 1

2∇2 + vext(r) + vH(r) + vxc(r) − εKS
n

}|ψn(r)〉 = 0, (1)

where vext(r) and vH(r) are the external potential and the
Hartree potential, respectively. The exchange-correlation ef-
fect is accounted for in vxc(r).

In the PBE0 hybrid functional, a fraction α (0.25 by default)
of Fock exchange �x is mixed with the PBE exchange vPBE

x (r),
giving rise to a nonlocal exchange vx :

vx(r,r′) = α�x(r,r′) + (1 − α)vPBE
x (r). (2)

The shift �εn of the band-edge state |n〉 with respect to the
PBE calculation is obtained as

�εn = (
εPBE0
n − V PBE0

ref

) − (
εPBE
n − V PBE

ref

)
, (3)

where εn is the eigenvalue of the state |n〉, and Vref refers to
a universal reference level in both calculations. However, the
universal reference level is ill defined in a three-dimensional
periodic system as the potential energy is determined up
to a constant. Here, we take for Vref the averaged sum of
the electrostatic potential and the local potential. As will be
shown in Sec. VII for surfaces, Vref defined with respect to the
common vacuum level does not change by more than 0.1 eV
when going from PBE to PBE0. As such, the difference in Vref

in Eq. (3) can be safely discarded, and the band-edge shift can
be obtained as the eigenvalue difference provided the same
alignment convention is adopted in the two bulk calculations.
When performed perturbatively, Eq. (3) can then be expressed
as

�εn = α〈n|�x(r,r′) − vPBE
x (r)|n〉, (4)

and the shift is hence proportional to α.

In the one-shot GW calculations, QP corrections to the
band edges are obtained through the Taylor expansion of the
self-energy �(r,r′) around the (generalized) KS (e.g., PBE or
PBE0) eigenvalue

�εn = Zn〈n|�(
r,r′; εKS

n

) − vxc(r)|n〉, (5)

where Zn is the renormalization factor defined as (1 −
∂�/∂E)−1|E=εKS

n
. The self-energy is a product of the Green’s

function G and the screened Coulomb interaction W = ε−1v,
with v being the bare Coulomb interaction. The dielectric
screening ε−1 = 1 + vχ is obtained using the random phase
approximation (RPA) for the polarizability χ .

To go beyond the G0W0, we adopt the concept of the QP
self-consistent GW approximation (QSGW ) of Faleev, van
Schilfgaarde, and Kotani [19,20,23]. The idea is to find an
optimum noninteracting Hamiltonian within the QP picture
using Hedin’s GW approximation. For a set of trial QP
eigenvalues and amplitudes {εi,|i〉}, one choice of such a
model self-energy is proposed as

〈i|�|j 〉 = 1
2 Re[〈i|�(εi)|j 〉 + 〈j |�(εj )|i〉], (6)

where Re implies that the Hermitian parts of the matrix are
taken. A new set of orthogonal QP amplitudes can be obtained
by diagonalizing �, which gives rise to a new electron density
and corresponding Hartree potential, and eventually a new �.
This procedure is carried out iteratively until the QP energies
are converged. We note that in this paper, both QP energies and
wave functions are updated. On the other hand, the screened
interaction W can be either updated self-consistently or fixed
at the PBE level (W PBE

0 ) with no further iteration. Interestingly,
the latter often leads to a more favorable agreement with
experimental band gaps than using the self-consistent W

in QSGW [17]. This is tentatively attributed to the lack
of the electron-hole interaction (or vertex correction) in the
polarizability χ within the RPA, which underestimates the
dielectric screening and thereby overshoots the band gap in
QSGW [17,20]. Indeed, to some extent, the static dielectric
constant ε∞(ω = 0) obtained through a semilocal functional
(e.g., PBE) agrees well with that calculated from the self-
consistent W with vertex corrections [17]. This justifies the
practice of fixing W at W PBE

0 for band-gap predictions. In this
paper, we provide both the full QSGW and the QSGW PBE

0
results.

We finally note that the QSGW is different from the fully
self-consistent GW where the Dyson equation for the Green’s
function G = G0 + G0�G is directly updated in terms of
the GW self-energy and the noninteracting Green’s function
G0 [24]. Compared to the fully self-consistent GW , QSGW

has been shown to produce more accurate band gaps and
bandwidths [20]. For this reason, we here adopt the QSGW

technique to investigate the effect of self-consistency in the
GW approximation.

III. COMPUTATIONAL DETAILS

A. Pseudopotentials

Our calculations use the plane-wave basis set implemen-
tation in ABINIT [25]. Core-valence interactions are described
by norm-conserving pseudopotentials (NCPPs). The reference
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TABLE I. Setup of the norm-conserving pseudopotentials used
in this paper. The angular momentum l of the local channel, cutoff
radius r (in bohr), and the kinetic energy cutoff Ecut (in Ry) are given.

Valence l (local) rs rp rd Ecut

Si 2s2p 1 1.95 1.95 50
Ge 3s3p4s4p3d 1 0.80 0.80 0.80 330
Ga 3s3p4s4p3d 1 0.80 0.80 0.80 330
As 4s4p 0 1.58 1.75 100
Mo 4s4p5s4d 0 1.50 1.60 1.70 80
N 2s2p 0 1.35 1.54 65
P 3s3p 0 1.40 1.45 50
Al 2s2p3s3p 0 0.97 0.97 180
Ti 3s3p4s4p3d 0 1.28 1.28 1.70 100
Zn 3s3p4s4p3d 1 0.80 0.80 0.80 330
O 2s2p 2 1.15 1.25 80
Se 4s4p 1 1.82 1.95 100
C 2s2p 2 1.45 1.55 50
Hf 5s5p6s5d 0 1.78 1.80 1.80 65
Mg 2s2p3s3p 2 1.00 1.15 150
Li 1s2s2p 0 1.05 1.05 150

configurations, the cutoff core radii, and the kinetic energy
cutoffs of the NCPPs are listed in Table I. The quality of
the NCPPs is of vital importance, in particular for GW

calculations. Since the evaluation of both the polarizability
and the self-energy requires the sum over a large number
of unoccupied states, we construct the NCPPs so that their
scattering properties are accurate up to 10 Ry above the
vacuum level. This leads to small cutoff radii and high cutoff
energies. In addition, for systems with Ga and Zn, it is
necessary to include the 3s and the 3p shells among the valence
states in order to give a reasonable 3d binding energy and
band gap [26]. For the sake of consistency, a similar valence
configuration is also applied to Ge, even though these semicore
states have much less influence on the band edges since the
localized 3d states of Ge lie much deeper [27]. For cationic
species (Li, Mg, and Al), semicore states are also considered
explicitly. The present setup of NCPPs ensures a highly faithful
description of the electronic structures in both ground-state and
excited-state calculations.

B. Ground-state calculations

We use the PBE exchange-correlation functional for the
semilocal DFT calculations. Lattice parameters are determined
from the PBE ground-state calculations for most materials,
except for GaAs and Ge for which the experimental lattice
constants are used, as their band gaps are very sensitive to the
variation of the lattice constant. Using the PBE lattice constants
for GaAs and Ge results in too small band gaps, even in the
QSGW method. The crystal structures, lattice parameters, and
k-point samplings used in the Brillouin zone (BZ) integration
are listed in Table II.

Our hybrid-functional calculations use the PBE0 func-
tional, which by default combines 25% of Fock exchange
with 75% PBE exchange. The PBE correlation is retained
in the PBE0. We note that the present implementation of
PBE0 is conceptually akin to the QSGW . Instead of the

TABLE II. Crystal structures, lattice parameters a and c (in
Å), and k-point samplings (
 centered) used in the calculations.
Additionally, the number of the bands (nb) used in the GW

calculations is given.

Structure a c k points nb

Si Diamond 5.475 8 × 8 × 8 250
Ge Diamond 5.658 8 × 8 × 8 750
GaAs Zinc-blende 5.648 8 × 8 × 8 750
GaP Zinc-blende 5.511 8 × 8 × 8 750
GaN Wurtzite 3.215 5.237 6 × 6 × 6 750
AlN Zinc-blende 4.412 6 × 6 × 6 600
TiO2 Rutile 4.642 2.964 5 × 5 × 7 900
MoS2 Hexagonal 3.216 12.541 6 × 6 × 2 900
ZnO Wurtzite 3.279 5.288 6 × 6 × 4 900
ZnSe Zinc-blende 5.716 6 × 6 × 6 800
SiC(4H-) Hexagonal 3.096 10.138 6 × 6 × 3 500
C Diamond 3.559 6 × 6 × 6 250
HfO2 Fluorite 5.000 6 × 6 × 6 500
SiO2 β-cristobalite 7.506 4 × 4 × 4 2000
MgO Rocksalt 4.260 6 × 6 × 6 500
LiF Rocksalt 4.069 6 × 6 × 6 500

full GW self-energy, only the exchange part �x = iGv of
the self-energy enters the model self-energy in Eq. (6).
It follows immediately that the new model self-energy is
Hermitian by construction and corresponds exactly to the Fock
exchange. Analogous to QSGW , the eigenvalues and wave
functions are started from the PBE input and iterated until self-
consistency is reached. Moreover, calculations with only the
first iteration correspond to the one-shot or non-self-consistent
PBE0 calculations [28,29]. To evaluate Fock exchange, we use
the regular q points generated from the same k-point meshes
as in the PBE calculations. The singularity appearing in the
Fock exchange is treated by the auxiliary-function technique
of Gygi and Baldereschi [30]. The k-point convergence issue
will be discussed in detail in Sec. III D.

C. GW quasiparticle calculations

A central quantity in the GW approximation is the screened
Coulomb interaction W , which is nonlocal and dynamic.
Here, we adopt a full frequency treatment within the contour
deformation technique to calculate the frequency dependence
of the polarizability within the RPA [31]. This implies that
the self-energy is also calculated with the explicit frequency
dependence. Although a plasmon-pole model (e.g., that of
Godby and Needs [32]) is often good for states in the vicinity
of the Fermi level [33–35], it becomes inadequate in QSGW

where the states far from the band edges also need to be
considered. In general, we find that about 20 (10) frequency
points along the real (imaginary) axis are sufficient for the
QP energies to converge within 0.02 eV. We constantly use an
energy cutoff of 30 Ry for the dielectric matrix. The dielectric
matrices are evaluated on 
-centered k-point meshes, except
in the case of ZnO for which a shifted mesh is used to
accelerate the convergence. For certain systems, in particular
those with shallow 3d electrons, a very large cutoff energy of
over 300 Ry is needed for the pseudopotentials. Nevertheless,
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FIG. 1. (Color online) (a) Convergence of the G0W0 QP correc-
tions to the VBM and CBM of GaAs with respect to the energy cutoff
of the dielectric matrix ε−1, and (b) convergence of the QP corrections
with respect to the number of bands used in the self-energy. In (a),
we use 750 bands in the self-energy. In (b), the energy cutoff of the
dielectric matrix is taken at 30 Ry.

even for these materials, we find that an energy cutoff of
30 Ry for the dielectric function is sufficient for achieving
well-converged band-edge energies. This is clearly seen in the
case of GaAs shown in Fig. 1(a). For ZnO, a good convergence
with a cutoff of 30 Ry in the dieletric function has also been
demonstrated [34]. It should be pointed out that the relatively
low cutoffs required for the dielectric function stem from
the use of the contour deformation method [34]. The use of
the Hybertsen-Louie plasmon-pole model is known to require
higher cutoff values [34,36].

Another important parameter relates to the number of
unoccupied states entering W and �. We include unoccupied
states with energies up to 400 eV in our G0W0 calculations,
equivalent to a total number of about 500 to 2000 bands
(occupied and unoccupied) depending on the materials. In
Fig. 1(b), we show the convergence of the QP energies of
the VBM and the CBM with respect to the number of bands
included in the GW self-energy for GaAs. Both band-edge
energies are already well converged with 500 bands. For the
highly demanding QSGW calculations, we only update and
diagonalize the subspace of the lowest ∼100 to 150 bands
and keep the higher-lying states at the PBE level. We estimate
that the QP energies are converged within 0.05 eV within the
current calculation scheme.

Table III summarizes the various GW approaches along
with the nomenclature used in this paper. The one-shot method

TABLE III. Nomenclature of various GW methods used in this
paper. α denotes the fraction of Fock exchange used in the hybrid-
functional (PBE0) starting point.

Notation Type Starting point

G0W0(0) One-shot PBE
G0W0(α) One-shot PBE0(α)
G0W

PBE
0 (α) One-shot PBE0(α) for G; PBE for W

QSGW Self-consistent PBE
QSGW PBE

0 Self-consistent W fixed at the PBE level

starts either from a PBE calculation, or a PBE0(α) calculation
with the mixing parameter α. G0W0(0) hence corresponds to
the widely used G0W0 method on top of PBE, and G0W0(0.25)
stands for the one-shot G0W0 calculation on top of standard
PBE0. In some cases, we purposely keep the PBE eigenvalues
in the calculation of the polarizability for reasons already
mentioned in Sec. II.

D. Coulomb singularity and k-point convergence

As mentioned in Sec. III B, there is a singularity in the
Fock exchange, for which the (diagonal) matrix element can
be expressed in the form [31]

〈k,n|�x |k,n〉 = −4π



∑
q

occ∑
m

∑
G

∣∣Mmn
G (k,q)

∣∣2

|q + G|2 , (7)

where the summation runs over all occupied states,
 is the volume of the unit cell, and Mmn

G (k,q) =
〈k − q,n|e−i(q+G)r|k,m〉. The matrix element contains a sin-
gularity for G = 0 and m = n, and diverges as 1/q2 for
q → 0. The singularity leads to a slow convergence of the
Fock exchange with respect to the number of k points,
and it affects the determination of the VBM in the hybrid-
functional calculation [37]. Gygi and Baldereschi showed
that the divergence can be circumvented by introducing an
auxiliary function f (q) [30]. The auxiliary function should
exhibit the same 1/q2 divergence as q → 0 but be smooth
elsewhere. Adding and removing f (q) eliminates the divergent
term (G = 0) in the summation [37,38]:

−4π



∑
m

∑
q 	=0

[∣∣Mmm
0

∣∣2

|q|2 − ∣∣Mmm
0

∣∣2
f (q)

]

−4π



∑
m

∣∣Mmm
0

∣∣2
∫

BZ
dq f (q). (8)

Here, we demonstrate the treatment of the singularity using
two different auxiliary functions. One general choice of the
auxiliary function first adopted by Gygi and Baldereschi has
the form [39,40]

f GB(q) =
∑

G

e−γ |q+G|2

|q + G|2 , (9)

where γ controls the width of the Gaussian and can be
optimized to accelerate the convergence. For this auxiliary
function, the mean value over the BZ reads as∫

BZ
dqf GB(q) = 2π

√
π/γ . (10)

The other auxiliary function that we use has been proposed by
Carrier and Görling and reads as [38]

f CG(q) = (2π )2

⎧⎨
⎩4

3∑
j=1

[bj sin(aj · q/2)]2

+ 2
3∑

j=1

[bj sin(aj · q)] · [bj+1sin(aj+1 · q)]

⎫⎬
⎭

−1

,

(11)
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where aj (a1 ≡ a4) are the lattice vectors, and bj are the corre-
sponding reciprocal lattice vectors. The numerical integration
of f CG(q) over the BZ can be performed iteratively on an
adaptive grid.

In GW calculations, apart from the bare exchange, the
correlation part of the self-energy also possesses an integrable
divergence. The matrix element of the correlation part �c can
be expressed as [40]

〈k,n|�c(ω)|k,n〉 = 2i



∑
q

∑
m

∑
G1G2

[
Mmn

G1
(k,q)

]∗
Mmn

G2
(k,q)

|q + G1||q + G2|

×
∫

dω′ ε
−1
G1G2

(k − q,ω′) − δG1G2

ω + ω′ − εk−qm ± iη
, (12)

where the sum runs over all the states, εk−qm is the energy of
the state |k − q,m〉, and η is positive infinitesimal. The 1/q2

divergence in the correlation self-energy for G1,G2 = 0 and
m = n can be treated with the same technique as described in
Eq. (8) for the bare exchange.
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FIG. 2. (Color online) Convergence of the VBM energies with
respect to the number of k points in the PBE0 and the G0W0

calculations. Triangles and disks correspond to the use of Carrier-
Görling (CG) and Gygi-Baldereschi (GB) auxiliary functions. For
4H-SiC, the PBE0 values using the anisotropic meshes (4 × 4 × 4
and 8 × 8 × 8) are denoted with open symbols. The eigenvalues are
aligned through the local reference potential.

Figure 2 shows the k-point dependence of the VBM
energies using the two auxiliary functions in the PBE0 and
G0W0 calculations. Two typical materials, the semiconductor
4H-SiC and the oxide MgO, are used for illustration. The
parameter γ is fixed to 150/Ecut, where Ecut is the exchange
cutoff energy (in Hartree). For the MgO, both functions
enable a rapid convergence of the VBM energies. The
6 × 6 × 6 mesh is sufficient for a full convergence in the
PBE0 and the G0W0 calculations. At variance, for the 4H-
SiC, f GB(q) shows a superior performance (full convergence
with a 6 × 6 × 3 mesh) and it works equally well with the
anisotropic (n × n × n) k-point meshes. The use of the f CG(q)
function does not guarantee the convergence within 0.01 eV
in the G0W0 calculation, not even with a 10 × 10 × 5 mesh.
The convergence is also unsatisfactory with the anisotropic
meshes. Throughout this paper, we adopt the Gygi-Baldereschi
auxiliary function f GB(q) to treat the singularity in PBE0 and
G0W0 calculations.

IV. BULK BAND GAPS

We first assess the band gaps of the bulk systems. The
KS and QP band gaps obtained from various methods are
given in Table IV, and the comparison with experimental
data is shown in Fig. 3. Band gaps predicted by the PBE
functional are considerably smaller than experiment by a
mean absolute relative error (MARE) of 46%. It should be
borne in mind that the KS single-particle band gap does
not correspond to the fundamental band gap probed in
photoemission experiments [53–55]. Most of the error in the
predicted band gap arises from the derivative discontinuity
in the potential [56,57]. The residual errors are ascribed
to the self-interaction error inherent to approximate density
functionals [58]. Incorporating Fock exchange in the hybrid
functional PBE0 significantly increases the band gap. With
the default mixing parameter α = 0.25, the PBE0 tends
to overestimate the band gaps of semiconductors, but for
wide-gap insulators the band gaps are still underestimated. In
other words, the optimal α is material dependent [2,6,22]. The
rationale of choosing the optimal α is related to the dielectric
screening ε−1 of the material [2,59]. A smaller α is suitable for
small-gap semiconductors, whereas wide-gap insulators need
a much larger α to achieve the experimental band gaps.

We now turn to the GW band gaps. The one-shot G0W0

shows a considerable dependence on the starting point: G0W0

on top of PBE tends to underestimate the band gaps in
particular for the wide-gap materials, while G0W0 on top
of standard PBE0 results in an overall overestimation. For
semiconductors, G0W0 typically leads to good agreement
with experiment. Noticeable discrepancies are found for
systems with the shallow d bands (e.g., GaN and ZnO). In
particular, the band gap of ZnO has been a long-standing
issue as the one-shot G0W0 on top of the semilocal functional
underestimates the band gap by over 30%, unusually large for
a semiconductor [34,60]. Its origin has been assigned to the
spurious pd hybridization stemming from the underestimation
of 3d binding energies [36]. The hybrid functional PBE0
lowers the localized 3d bands owing to the reduced self-
interaction error, thereby serving as a better starting point for
these materials. G0W0 rectifies the largely underestimated or
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TABLE IV. Band gaps (in eV) calculated with PBE, PBE0(0.25), one-shot GW on top of PBE [G0W0(0)] or PBE0 [G0W0(0.25)], and
self-consistent QSGW and QSGW PBE

0 methods. The absolute error (ME), mean absolute error (MAE), and the mean absolute relative error
(MARE) are provided.

PBE PBE0(0.25) G0W0(0) G0W0(0.25) QSGW PBE
0 QSGW Expt.

Si 0.67 1.84 1.26 1.75 1.37 1.54 1.17 a

Ge 0.00 1.32 0.63 1.00 0.77 0.90 0.74 a

SiC 2.25 3.87 3.08 3.74 3.31 3.80 3.30 b

AlN 3.33 5.26 4.81 5.79 5.07 5.37 4.90 c

C 4.22 6.17 5.62 6.34 5.86 6.43 5.48 a

GaAs 0.53 1.93 1.21 1.83 1.35 1.60 1.52 a

GaP 1.58 3.07 2.42 2.97 2.55 2.87 2.35 d

GaN 1.77 3.73 2.75 3.67 3.11 3.73 3.51 c

ZnO 0.78 3.01 2.02 3.32 2.81 4.36 3.44 e

ZnSe 1.23 2.92 2.28 3.06 2.56 3.26 2.80 f

MoS2 0.87 1.96 1.39 1.69 1.29 1.40 1.29 g

TiO2 1.86 4.02 3.27 3.96 3.37 4.23 3.30 h

HfO2 4.08 6.38 5.67 6.63 6.38 7.38 5.8 i

SiO2 5.33 7.77 8.36 9.39 8.76 10.50 8.90 j

MgO 4.38 6.80 6.71 8.02 7.29 9.07 7.80 k

LiF 8.85 11.85 13.13 14.43 14.29 16.17 14.20 l

ME (eV) −1.80 0.09 −0.37 0.44 −0.02 0.76
MAE (eV) 1.80 0.70 0.42 0.46 0.24 0.76
MARE (%) 46.1 23.7 11.0 16.9 6.9 17.7

aReference [41].
bReference [42].
cReference [43].
dReference [44].
eReference [45].
fReference [46].
gReference [47].
hReference [48].
iReference [49].
jReference [50].
kReference [51].
lReference [52].

overestimated band gaps obtained from PBE and PBE0 starting
points, and provides a closer agreement with experiment.

The QSGW method systematically predicts larger band
gaps with a MARE of 17% compared to experiment. This is
a known behavior of the QSGW as the dielectric constants
are typically overestimated, and it prompts some empirical
practices of scaling the QP correction by a factor of 0.8 as
in the hybrid QSGW scheme [61,62]. In fact, the achieved
overestimation has been rationalized by effects that are
beyond the treatment of the QSGW , including vertex cor-
rections [63], lattice polarizations [64], and electron-phonon
interactions [65,66]. To illustrate this point, we take diamond
as an example, for which QSGW predicts a band gap of 6.4 eV.
Shishkin et al. found that the vertex correction in the W reduces
the gap by 0.4 eV [63]. Giustino et al. showed an anomalously
large renormalization of 0.6 eV due to the electron-phonon
coupling [65]. The lattice polarization does not contribute since
diamond is nonpolar. As a whole, these effects lead to a 1.0-eV
reduction in the QSGW band gap, bringing the theoretical
band gap in excellent agreement with the experimental value
(5.5 eV). As pointed out earlier [64], this shows that the
overestimation is not due to the deficiency in the treatment of
the electronic self-energy in the QSGW method, but rather to

the lack of higher-order diagrammatic terms and to interactions
with phonons. It is not trivial to take into account all these
effects, but it has been argued that they can be accounted for
by an effective dielectric screening, which can be achieved by
the PBE description within the RPA [63]. Indeed, when the
W is fixed at the PBE-RPA level (QSGW PBE

0 ), the band gaps
are systematically in much better agreement with experiment
as evidenced by the MARE of 7%. However, the band gap
of ZnO still remains unsatisfactory. The sizable discrepancies
can be traced to the unrealistic dielectric constant which is
either too low in QSGW (ε∞ = 2.1) or too high in QSGW PBE

0
(ε∞ = 5.3) compared to the experimental value of 3.7 [63].
Therefore, an explicit treatment of the vertex corrections and
the phonon contribution turns out to be ineluctable for ZnO.

V. BAND-EDGE POSITIONS

Band-edge positions from the semilocal PBE calculations
are deemed to be inaccurate due to the systematic underestima-
tion of the band gaps as shown in Sec. IV. Here, we investigate
the band-edge positions, or more specifically the band-edge
shifts with respect to the PBE description through PBE0 and
GW calculations with different levels of approximations. In
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FIG. 3. (Color online) Band gaps (theoretical vs experimental) of
various semiconductors and insulators. LiF is not included in here.
The band-gap values are collected in Table IV.

addition to the absolute shifts of the VBM and the CBM,
we introduce the relative band-edge shift with respect to the
band-gap variation (e.g., δVBM for the VBM) [7,15]. The
materials considered here can be grouped into four categories

in order of increasing band gaps: simple sp semiconductors,
semiconductors with shallow 3d electrons, transition metal
compounds, and sp oxides and insulators. In the following, we
illustrate the band-edge shifts for each of these categories. The
values of the band-edge shifts are summarized in Table V and
shown graphically in Fig. 4. We note that this section aims at
identifying the differences in the band-edge positions as they
result from the application of various levels of theory. The
accuracy of the predicted band-edge positions is then assessed
in Sec. VII by direct comparison with experimental ionization
potentials.

A. sp semiconductors

Simple sp semiconductors include Si, Ge, AlN, SiC,
and diamond. In these materials, the VBM and CBM are
characterized by the bonding and antibonding states of p

orbitals, respectively. As shown in Fig. 4 and Table V, PBE0
opens the band gaps of these materials in a symmetric fashion,
with the �εVBM accounting for 50%–60% of the band-gap
increase. The relative VBM shift enhances as the bonding has
a stronger ionic character (as in AlN). These characteristic
shifts are seen as the effect of the incorporated Fock exchange
[cf. Eq. (3)].

The one-shot G0W0 shows a very different scenario as
the VBM shift accounts for most of the band-gap opening
irrespective of the starting point. The dominant VBM shift
is most notable for small band-gap semiconductors (e.g., Si
and Ge) where the QP correction to the CBM is appreciably
smaller. The band-edge shift is somewhat less biased for
diamond.

TABLE V. Band-edge shifts (in eV) with respect to PBE energy levels obtained with PBE0(0.25), one-shot GW on top of PBE [G0W0(0)]
or PBE0 [G0W0(0.25)], and self-consistent QSGW and QSGW PBE

0 . The relative shift of the VBM δVBM (in %) is defined as �εVBM/�Eg

where �Eg is the change in the band gap.

PBE0(0.25) G0W0(0) G0W0(0.25) QSGW PBE
0 QSGW

�εVBM �εCBM δVBM �εVBM �εCBM δVBM �εVBM �εCBM δVBM �εVBM �εCBM δVBM �εVBM �εCBM δVBM

Simple sp semiconductors
Si −0.68 0.53 −56 −0.66 −0.07 −112 −0.88 0.19 −82 −0.83 −0.13 −119 −0.91 −0.04 −105
Ge −0.62 0.56 −53 −0.62 −0.14 −129 −0.95 −0.09 −110 −0.87 −0.24 −138 −0.93 −0.17 −122
SiC −0.97 0.65 −60 −0.67 0.16 −81 −1.03 0.46 −69 −0.91 0.15 −86 −1.18 0.37 −76
AlN −1.29 0.63 −67 −1.20 0.28 −81 −1.79 0.67 −73 −1.43 0.30 −83 −1.48 0.56 −73
C −1.03 0.93 −53 −0.95 0.43 −69 −1.30 0.79 −62 −1.11 0.52 −68 −1.40 0.79 −64

3d semiconductors
GaAs −0.71 0.70 −50 −0.61 0.07 −90 −0.89 0.41 −68 −0.77 0.05 −94 −0.92 0.15 −86
GaP −0.78 0.53 −60 −0.77 −0.12 −118 −1.05 0.15 −88 −1.00 −0.22 −128 −1.14 −0.03 −103
GaN −1.20 0.76 −61 −0.87 0.10 −90 −1.40 0.49 −74 −1.31 0.03 −98 −1.61 0.35 −82
ZnO −1.61 0.63 −72 −1.08 0.17 −86 −1.81 0.73 −71 −1.88 0.15 −93 −2.75 0.83 −77
ZnSe −1.02 0.71 −59 −0.93 0.12 −89 −1.28 0.55 −70 −1.18 0.14 −89 −1.53 0.49 −76

Transition-metal compounds
MoS2 −0.73 0.36 −67 −0.22 0.31 −42 −0.57 0.25 −70 −0.53 0.11 −83 −0.63 −0.10 −119
TiO2 −1.26 0.90 −58 −0.40 1.01 −28 −0.95 1.16 −45 −0.94 0.57 −62 −1.37 1.00 −58
HfO2 −1.39 0.91 −60 −0.94 0.66 −60 −1.50 1.05 −59 −1.69 0.62 −73 −2.12 1.18 −64

sp oxides and insulators
SiO2 −1.68 0.74 −69 −2.07 0.96 −68 −2.80 1.26 −69 −2.51 0.91 −73 −3.69 1.48 −71
MgO −1.59 0.83 −66 −1.61 0.72 −70 −2.41 1.23 −66 −2.08 0.83 −72 −3.23 1.45 −69
LiF −2.11 0.89 −72 −2.80 1.48 −65 −3.63 1.95 −65 −3.87 1.57 −71 −4.96 2.36 −68
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FIG. 4. (Color online) The VBM (solid-filled) and CBM (pattern-filled) shifts of the bulk materials relative to PBE references.

Including the self-consistency in QSGW PBE
0 and QSGW

shows a more pronounced effect on the VBM than on the CBM.
Compared to G0W0(0), QSGW and QSGW PBE

0 give rise to a
larger QP correction of VBM by ∼−0.2 to −0.4 eV, whereas
the CBM is marginally shifted by typically less than 0.1 eV. On
the whole, we see that all GW variants predict a predominant
shift in the VBM for sp semiconductors, qualitatively at
variance with the symmetric band-gap opening obtained with
the hybrid functional.

B. 3d semiconductors

The 3d semiconductors (Ga- and Zn-based compounds)
are characterized by the occurrence of shallow 3d electrons
which hybridize with the p electrons of the anions. The VBM
is, however, still mostly composed of p states, and the CBM
has a mixed sp character. PBE0 yields a δVBM of −50% for
GaAs and the value progressively reaches −71% for ZnO as
the ionicity increases (cf. Table V).

In the one-shot G0W0(0), the relative VBM shift turns out
to be predominant, analogous to the sp semiconductors. The
VBM-shift dominance is clearly visible in Fig. 4 regardless
of the starting point, although the effect on δVBM is less
pronounced in the G0W0(0.25).

It is recognized that self-consistency is essential for these
3d semiconductors owing to the too shallow 3d bands in
the semilocal description [17]. The band edges, in partic-
ular those of the valence band, are influenced by the 3d

shell through the pd hybridization. The lowering of the
VBM is accompanied by the shift of the 3d bands to
deeper levels. In the case of ZnO, the self-consistency in
QSGW PBE

0 leads to a further shift of the VBM by −0.4 eV
relative to the one-shot G0W0(0). The CBM is, however, less
sensitive to the self-consistency. Meanwhile, we note that the
self-consistency is also necessary in the PBE0 calculations
of the 3d semiconductors. Compared to the perturbative
PBE0, the self-consistent PBE0 shifts the VBM downward
by 0.4 eV. These results substantiate that the prescription of
self-consistency is essential in predicting the VBM position for
3d semiconductors. In terms of the relative band-edge shift,

QSGW and QSGW0 still favor the dominant role of the VBM,
in line with the one-shot methods.

We remark that our current NCPP-based GW calcula-
tions disagree with a previous study adopting the projector-
augmented-wave (PAW) formalism [15]. The discrepancy is
particularly significant for 3d semiconductors. For instance,
the PAW G0W0 finds a dominant QP correction to the CBM,
distinctly different from the present NCPP result. Such a
deviation is tentatively ascribed to the incomplete onsite basis
sets of the partial waves, which affects the description of
localized 3d states. The NCPP scheme does not suffer from
such an incompleteness and therefore conceivably yields a
more reliable QP correction to the band edges. The accuracy
of the predicted band-edge shifts for GaAs will be further
explored in the ionization potential calculation in Sec. VII.

C. Transition-metal compounds

A typical feature of transition-metal compounds (e.g.,
MoS2, TiO2, and HfO2) that distinguishes themselves from
other materials is the substantial d character in the CBM.
The VBM consists of mainly p states of the anions. With
PBE0, we see the usual pattern of the VBM shift relative
to the band gap, ranging from about 60% to 70% of the
band-gap variations. The situation is more diverse within
the GW methods. We first discuss the case of rutile TiO2.
The one-shot G0W0(0) on top of the PBE starting point assigns
the majority of the band-gap opening to the QP correction in the
CBM. The band-gap opening becomes more symmetric when
one switches to the PBE0 starting point as in G0W0(0.25)
(cf. Fig. 4 and Table V). In addition, compared to the
one-shot G0W0(0), the incorporation of self-consistency in the
QSGW PBE

0 significantly shifts the CBM of rutile downwards
by 0.5 eV (cf. Fig. 4). As a result, the whole band structure
of TiO2 in QSGW PBE

0 is found to be about 0.5 eV lower
than that in G0W0(0). Such a pronounced downward shift
of the CBM due to self-consistency is also present in the
PBE0 calculation: the non-self-consistent PBE0 is found to
place the CBM at an 0.8-eV higher energy with respect to the
self-consistent one. This is likely associated with the inherent

165133-8



BAND-EDGE POSITIONS IN GW : EFFECTS OF . . . PHYSICAL REVIEW B 90, 165133 (2014)

FIG. 5. (Color online) The VBM (filled symbols) and the CBM (open symbols) positions obtained by varying α in the PBE0 and the
one-shot G0W0 calculations starting from the PBE0(α). In G0W

PBE
0 , the screened interaction is fixed at the PBE level.

self-interaction error of semilocal functionals, affecting most
notably the highly localized electronic states (e.g., Ti 3d

states). We note that a similar decrease in the CBM energy of
TiO2 has been reported by Patrick and Giustino when Hubbard
U corrections are included in the PBE starting point [67]. In
addition, Marom et al. found that the PBE0 starting point gives
a better agreement with experimental photoemission spectra
for TiO2 clusters [68]. It is thus persuasive to conclude that
a starting point beyond the semilocal treatment is essential to
describe the electronic structure of rutile TiO2.

The scenario of TiO2 discussed above is transferable to
MoS2. Notably, the QSGW PBE

0 band gap is even smaller than
the G0W0(0) one as a consequence of the drastic decrease
of the CBM energy when self-consistency is initiated. In the
case of HfO2, self-consistency beyond PBE, however, has a
much smaller effect on the CBM energy. Unlike TiO2 and
MoS2 where the CBM is nearly of pure d character, the CBM
of HfO2 comprises a significant amount of O 2p states. For
HfO2, the PBE starting point is thus still adequate.

D. sp oxides and insulators

The remaining materials (e.g., SiO2, MgO, and LiF) are
highly ionic insulators. The VBM has a strong p character,
and the CBM is characterized by hybridized sp orbitals.
Interestingly, we observe a nearly constant δVBM of about
−70% for these materials, irrespective of the adopted method
and starting point. The PBE starting point therefore gives a
satisfactory result for sp-bonded materials.

VI. DEPENDENCE ON THE MIXING PARAMETER α

The fraction of Fock exchange α in the PBE0 functional
has been hitherto fixed at the default value (0.25). Varying
the α modifies the eigenvalues of the starting point, thereby
influencing the screening and the QP corrections of the
ensuing G0W0 calculations. The effect of α on the ionization
potentials of molecules and clusters has been demonstrated
in the framework of G0W0 [69–71]. For solids, it is, however,
unclear how the band-edge positions within the one-shot G0W0

are affected by the mixing parameter α in the starting point.
To shed light on the dependence on α, we here choose five

representative materials (Si, ZnSe, ZnO, TiO2, and MgO) and
show the α dependence of the band-edge positions within the
hybrid-functional and the one-shot G0W0 schemes.

The evolution of the band-edge positions with respect to α is
illustrated in Fig. 5. For the PBE0 calculations, the energies of
VBM and CBM scale linearly with the mixing parameter α as
is expected [6]. Within the one-shot G0W0 on top of PBE0, we
also record a nearly linear evolution of the band-edge positions
with respect to α. The dependence on α within the G0W0

scheme is, however, not as pronounced as that within PBE0.
We further show the G0W

PBE
0 (α) scheme in Fig. 5. A similar

linear scaling of the band-edge energies is maintained within
this scheme, while the band-edge positions become even less
sensitive to α as a result of the stronger screening.

The observed dependence of the G0W0 band-edge positions
raises a question: What is the best α for the starting point
used in a one-shot G0W0 calculation? To shed light on this
aspect, we next explore the possibilities of determining the
optimal value of α based on two methodologies: an empirical
and a nonempirical one. We are particularly interested in the
band-edge positions given by the various choices of the optimal
starting point.

A. Empirical tuning

In hybrid-functional calculations, the fraction of Fock
exchange is often adjusted to reproduce the experimental band
gap. Such a pragmatic approach is adopted when a realistic

TABLE VI. Valence band-edge shifts achieved with PBE0(α) and
G0W0(α). The fraction of Fock exchange α is empirically tuned so
that the calculated band gap Eg matches the experimental one.

Empirical (Eg ≡ Eexpt.
g )

αPBE0 αG0W0 Eexpt.
g �εPBE0

VBM �ε
G0W0
VBM

Si 0.11 0.00 1.2 −0.3 −0.7
ZnSe 0.23 0.17 2.8 −0.9 −1.2
ZnO 0.30 0.27 3.4 −1.9 −1.9
TiO2 0.17 0.01 3.3 −0.8 −0.4
MgO 0.35 0.21 7.8 −2.3 −2.3
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FIG. 6. (Color online) Discrepancies in the VBM positions be-
tween PBE0 and G0W0 calculations when both are empirically tuned
to reproduce the experimental band gap. The eigenvalues are aligned
through the local reference level. A positive (negative) value indicates
that G0W0 predicts a deeper (higher) VBM compared to PBE0.

description of the band gap is appreciated. Following this
strategy, the optimal mixing parameter α to be used in the
PBE0(α) starting point for G0W0 can also be determined. As
shown in Table VI, we obtain a vanishing α for Si since the
PBE starting point already enables a good band gap. This is
also true for rutile TiO2, but the band-edge energies are shifted
to higher values compared to the QSGW PBE

0 ones, as pointed
out in Sec. V C. For ZnSe, ZnO, and MgO, an α between 0.2
to 0.3 satisfies the tuning criterion. We see that G0W0 requires
a smaller amount of Fock exchange so as to reproduce the
experimental band gap. The optimal α for a G0W0 calculation
is typically below 0.3.

While empirically tuned PBE0 and G0W0 are designed to
give the same band gap as experiment, there is no guarantee
that the individual band-edge positions will also agree. To trace
how the PBE0 band-edge positions deviate from the G0W0

ones, we plot the difference between the empirically tuned
PBE0 and G0W0 calculations in Fig. 6. As shown in Fig. 6, for
simple sp semiconductors, PBE0 is prone to place the VBM
(or CBM) about 0.2 to 0.3 eV higher in energy compared
to the tuned G0W0, consistent with the trend described in
Sec. V A. Similar discrepancies have also been noticed for
some other semiconductors [4]. At variance, the band-edge
positions are deeper in PBE0 for the two transition-metal
compounds, i.e., MoS2 and TiO2. Note that for these materials,
the empirical G0W0 actually corresponds to the standard
G0W0(0) on top of the PBE electronic structure, which tends
to overestimate the CBM energy (cf. Sec. V C). It is hence
more relevant to use the QSGW PBE

0 as the GW reference for
these two materials. In the case of rutile TiO2, we indeed find a
good alignment of band-edge positions between the empirical
PBE0 and QSGW PBE

0 calculations, and the deviation of the
associated VBM positions is less than 0.1 eV (cf. Table VI).
Finally, we find that the empirically tuned PBE0 and G0W0

agree well in terms of band-edge positions for wide band-gap
materials, except for LiF for which a deviation of ∼0.4 eV
is found.

B. Nonempirical tuning

We note that the practice of tuning α empirically is subject to
ambiguities regarding the choice of the experimental reference.
While the target quantity usually refers to the fundamental
band gap, the true electronic band gap could differ due
to the effects that are not included in our present study,
such as electron-phonon interactions and lattice polarizations.
These effects can lead to prominent band-gap renormalizations
for wide-gap semiconductors and insulators [64,65]. Here,
we consider two criteria for tuning the mixing parameter
nonempirically within G0W0. First, we propose to define an
optimal αA in the sense that it gives rise to the same band gap
in the PBE0(αA) and the succeeding G0W0(αA) calculations.
In other words, we look for an optimal starting point for the
one-shot G0W0 calculation as far as the band gap is concerned.
As shown in Table VII, αA ranges from 0.22 (for Si) to 0.45
(for MgO), and it is much higher than the α empirically tuned
for G0W0. The ensuing band gaps are thereby systematically
larger than the experimental values. Interestingly, we find that
for most of the materials considered in this paper the band
gaps obtained with the optimal αA agree with the QSGW

ones within 0.2 eV (except for ZnO and TiO2). Turning to
the band-edge positions, we find a good agreement (within
0.2 eV on average) between the nonempirically tuned PBE0
and G0W0 calculations evaluated at αA. The agreement is
also preserved between the VBM positions calculated with
G0W0(αA) and QSGW for materials other than ZnO and TiO2

(cf. Table VII).
Alternatively, for the optimal mixing parameter to be used

in the one-shot G0W0, one could rely on the band gap given by
the QSGW calculation since the latter is completely parameter
free. We designate this optimal mixing parameter by αB .
As shown in Table VII, the band-edge positions obtained
from the tuned G0W0(αB) are commensurate to those from
the QSGW , and the differences are typically no more than
0.2 eV. Hence, the nonempirically tuned hybrid-functional
starting point enables the one-shot G0W0 to provide equivalent
band-edge positions to those obtained with the much more
demanding QSGW method.

One drawback of using the nonempirical tuning parameter
αB is that the band gap is too large compared to experiment. We
further propose a nonempirical tuning scheme which is based
on the same tuning criterion as for αB but with the screened
interaction kept at the PBE level, as the band gaps obtained
with the QSGW PBE

0 method generally are in good agreement
with experiment (cf. Sec. IV). The resultant optimal mixing
parameter is denoted by αC in Table VII. In analogy with the
previous nonempirical schemes, the deviations remain small
between the VBM positions obtained with the tuned one-shot
G0W0(αC) and the respective self-consistent scheme. For sp

systems, the difference is typically less than 0.1 eV. Larger
discrepancies are found for ZnO (0.4 eV) and TiO2 (0.3 eV).

As a side note, we remark that the optimal mixing parameter
α proposed in this section relies solely on the band gap as
tuning criterion. The choice of such an optimal α is favorable
in the context of band-edge positions, but it is less clear whether
these optimal α also give rise to a reasonable description of
other physical properties. To this end, we show in Table VIII
the equilibrium lattice parameter a of the five representative
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TABLE VII. Valence band-edge shifts achieved with PBE0(α) and G0W0(α) when the fraction of Fock exchange α is optimized through a
nonempirical scheme. In scheme A, α is optimized by ensuring that the same band gap Eg is achieved in PBE0(α) and G0W0(α). In scheme B
(C), α is fixed by the condition that G0W0(α) achieves the same band gap as QSGW (QSGW PBE

0 ).

Nonempirical A Nonempirical B Nonempirical C
EPBE0

g ≡ EG0W0
g EG0W0

g ≡ EQSGW
g Same as B, but with W PBE

0

αA Eg �εPBE0
VBM �ε

G0W0
VBM αB Eg �ε

G0W0
VBM �ε

QSGW

VBM αC Eg �ε
G0W0
VBM �ε

QSGW0
VBM

Si 0.22 1.7 −0.6 −0.8 0.14 1.5 −0.8 −0.9 0.10 1.4 −0.7 −0.8
ZnSe 0.29 3.2 −1.2 −1.3 0.31 3.3 −1.4 −1.5 0.25 2.6 −1.1 −1.2
ZnO 0.33 3.7 −2.2 −2.1 0.45 4.4 −2.4 −2.7 0.45 2.8 −1.5 −1.9
TiO2 0.24 3.9 −1.2 −0.9 0.35 4.2 −1.2 −1.4 0.32 3.4 −0.6 −0.9
MgO 0.45 8.9 −3.0 −2.9 0.46 9.0 −3.0 −3.2 0.30 7.3 −2.0 −2.1

materials for different α in the PBE0 hybrid functional.
Compared to PBE, the default mixing of 25% Fock exchange
noticeably improves the description of the lattice parameters,
showing an MAE of 0.02 Å with respect to the reference value
derived from experiment (cf. Table VIII). The good agreement
with experiment is preserved, and even enhanced with the
empirical and nonempirical mixing parameters. Indeed, we
find that the lattice parameters depend moderately on α, in
accord with earlier studies [77,78]. In the most significant
case where the mixing parameter increases from the default
0.25 to the nonempirical value of 0.45 for MgO, the change
in the lattice constant a is merely 0.03 Å. Hence, the optimal
mixing parameters can be regarded as globally effective, not
only for the band gap but also for the structural parameters.

VII. BENCHMARKING OF BAND-EDGE POSITIONS:
IONIZATION POTENTIALS

The accuracy of the band-edge positions obtained from
various DFT and GW methods is assessed in this section
through the calculation of ionization potentials (IPs). We
consider eight semiconductor surfaces for which experimental
IPs are available, including the (111) 2 × 1 reconstructed
surface (i.e., the π -chain model [79]) for Si, Ge, and diamond;
the (110) surface of zinc-blende GaAs, GaP, ZnSe, and rutile

TABLE VIII. The theoretical lattice parameters are compared
to reference values obtained by subtracting out the zero-point
anharmonic expansion [72,73] from the experimental values. Such
contributions amount to 0.01 − 0.02 Å. The experimental values are
taken from Refs. [74–76]. The values of the empirical αPBE0 and
nonempirical αA are given in Tables VI and VII. For the wurtzite
ZnO and rutile TiO2, the c/a ratio is not varied and corresponds to
the value obtained from the PBE optimization.

PBE PBE0(0.25) PBE0(αPBE0) PBE0(αA) Ref.

Si 5.47 5.44 5.46 5.44 5.42
ZnSe 5.72 5.67 5.66 5.67 5.66
ZnO 3.28 3.24 3.23 3.23 3.22
TiO2 4.64 4.59 4.64 4.59 4.58
MgO 4.26 4.21 4.19 4.18 4.19

ME (Å) 0.06 0.02 0.02 0.01
MAE (Å) 0.06 0.02 0.02 0.01
MARE (%) 1.4 0.4 0.5 0.3

TiO2; and the (1010) surface of ZnO. We employ the slab
model to calculate the IP of the solids. The IP is formally
defined as the energy difference between the vacuum level Evac

and the VBM. To speed up the convergence with the thickness
of the slab, it is convenient to determine the VBM in a separate
bulk calculation and to align it to the electronic structure in the
slab calculation through a local reference potential Vref . For
Vref , we here consider the sum of the local potential and the
electrostatic potential. The IP is then calculated as

IP = (
Evac − V s

ref

) − (
εb

VBM − V b
ref

)
, (13)

where the superscripts s and b refer to the slab and the bulk,
respectively. Equation (13) is valid as long as the measurement
is not drastically perturbed by the surface states. The slab
model is taken sufficiently thick so that the local reference
potential inside the slab corresponds to that of the bulk.
More specifically, we use a slab of 13 atomic layers for
the (110) surface of the zinc-blende structures. For the (111)
reconstructed surface of Si, Ge, and diamond, a slab model
of 24 atomic layers is used. The other surfaces are modeled
by a slab of 12 atomic layers. The thickness of the vacuum
region is chosen to be the same as that of the slab. During
structural relaxation, several layers in the middle of the slab
are fixed at their bulk positions. Detailed parameters in the
slab calculations are given in Table IX.

To obtain IPs within the semilocal PBE, we calculate
the quantities of both the bulk and the slab in Eq. (13)
self-consistently. Slab calculations become cumbersome at
higher theoretical levels and are eventually intractable in
the GW approximation. Nevertheless, it has been found

TABLE IX. Number of layers and k-point sampling used in the
slab calculations. The number of layers that are kept fixed during the
structural relaxation is given in parentheses.

Number of layers k-point mesh

Ge(111) 24 (4) 6 × 4 × 1
Si(111) 24 (4) 6 × 4 × 1
C(111) 24 (4) 6 × 4 × 1
GaAs(110) 13 (3) 6 × 4 × 1
GaP(110) 13 (3) 6 × 4 × 1
ZnSe(110) 13 (3) 6 × 4 × 1
ZnO(1010) 12 (4) 6 × 4 × 1
TiO2(110) 12 (6) 6 × 4 × 1
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TABLE X. Ionization potentials (in eV) of various semiconductor surfaces. The PBE values are obtained from self-consistent slab
calculations. PBE0 and GW values are obtained by applying the corresponding bulk corrections to the PBE results. The notations of the
methods follow the convention described in Table III.

PBE PBE0(α) PBE0(αA) G0W0(0) G0W0(α) G0W0(αA) G0W
PBE
0 (αC) QSGW PBE

0 Expt.

Ge(111) 4.37 4.75 4.78 4.99 5.08 5.20 5.11 5.24 4.80a,4.74b

Si(111) 4.98 5.26 5.57 5.64 5.64 5.83 5.69 5.81 5.10a, 5.25c, 5.35d

C(111) 5.59 6.25 6.76 6.54 6.47 6.94 6.66 6.70 6.50e

GaAs(110) 4.71 5.21 5.33 5.32 5.46 5.56 5.38 5.48 5.47a, 5.56f

GaP(110) 5.38 5.84 6.08 6.15 6.15 6.40 6.22 6.38 6.01f

ZnSe(110) 5.58 6.51 6.76 6.51 6.75 6.92 6.64 6.76 6.82g

ZnO(1010) 5.97 7.88 8.12 7.05 7.86 8.03 7.49 7.85 7.82g

TiO2(110) 7.30 8.14 8.51 7.70 7.70 8.23 7.78 8.24 8.0h, 8.2i

ME (eV) −0.86 −0.11 0.14 −0.11 0.04 0.29 0.03 0.24
MAE (eV) 0.86 0.15 0.21 0.31 0.18 0.29 0.26 0.24
MARE (%) 13.0 2.4 3.1 4.7 3.0 5.1 4.3 4.2

aReference [81].
bReference [82].
cReference [83].
dReference [84].
eReference [85].
fReference [86].
gReference [87].
hReference [88].
iReference [89].

that a PBE description of the electrostatic potential is often
adequate [4,6,33,80]. Here, we find that in the case of the
Si(111) 2 × 1 reconstructed surface, the electrostatic potential
Evac − V s

ref differs by merely 0.02 eV between the PBE and
the PBE0(0.25) calculations. For the more ionic TiO2(110)
surface, the difference is still within 0.1 eV. Further, the
band-offset study of Shaltaf et al. revealed a limited variation
(20 meV) of the electrostatic potential at the Si/SiO2 interface
at the QSGW level [33]. We hence infer that the use of the
PBE electrostatic potential is a reasonable approximation for
the calculations of the IP. Here, IPs within the PBE0 and
GW schemes are thus determined by applying the bulk VBM
shifts to the PBE lineup. We estimate that such a scheme
introduces an error in the VBM positions of at most 0.1 eV
in fully self-consistent PBE0 and GW calculations (one-shot
G0W0 calculations are not affected since the charge density
remains unmodified), and this should be taken into account
when comparing the theoretical IPs to experimental values.

In addition to the standard PBE, the one-shot G0W0(0), and
the self-consistent QSGW PBE

0 , we consider the empirically
tuned PBE0(α) and G0W0(α), and the nonempirically tuned
PBE0(αA), G0W0(αA), and G0W

PBE
0 (αC), as introduced in

Sec. VI. We do not take into account the QSGW and
G0W0(αB) schemes as they overestimate band gaps and
thereby tend to predict too large IPs.

The calculated IPs are reported in Table X. We also plot
the calculated IPs against the experimental values in Fig. 7.
Apart from the PBE which significantly underestimates the
IPs with a mean absolute error (MAE) of nearly 0.9 eV, all the
other methods predict the IPs reasonably well. In particular,
the PBE0 hybrid functional yields excellent IPs over the whole
set of surfaces, particularly when it is empirically tuned. This
substantiates the use of hybrid functionals as a practical tool
in electronic-structure calculations.

Let us now focus on the performance of the various GW

schemes. The standard one-shot G0W0 on top of PBE already
produces IPs that are in good agreement with experiment,
and the errors are found to correlate with the quality of
the predicted band gaps. In the case of semiconductors with
shallow 3d bands (e.g., GaAs, ZnO, and ZnSe) for which
G0W0(0) underestimates the band gaps, the calculated IPs are
too small as well. The band-gap issue is lifted in the empirical
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FIG. 7. (Color online) Ionization potentials (theoretical vs exper-
imental) of various semiconductor surfaces. The data are taken from
Table X. For systems with multiple experimental references, the
adopted experimental IP corresponds to the average value.
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G0W0 method, which brings the IPs of the 3d semiconductors
closer to experimental values and scores a MAE smaller than
0.2 eV. However, the IP of rutile TiO2 remains underestimated
by as much as 0.4 eV within the one-shot G0W0(0) method
even though the band gap is well accounted for. This evidences
the problematic band-edge positions of TiO2 obtained with the
PBE starting point.

The two nonempirically tuned G0W0 schemes considered
in this section achieve a comparable MAE, but they behave
somehow differently. With the optimal mixing parameter αA,
the calculated IPs are larger than the experimental values
by a mean error (ME) of ∼0.3 eV as a result of the too
large band gaps. The other nonempirical scheme G0W

PBE
0 (αC)

describes the IPs as well as the self-consistent QSGW PBE
0

does, except for ZnO and TiO2. In particular, we note that
the problematic IP of TiO2 found in the one-shot G0W0

calculations is successfully remedied with the self-consistent
treatment in QSGW PBE

0 .
We note that the IPs within GW give an overestimation

by about 0.3 eV for semiconductors such as Si, Ge, GaP,
and diamond. Grüneis et al. recently reported that, for
semiconductors, the additional inclusion of ladder diagrams
(or vertex corrections) in the screened interaction and the
self-energy shift the band-edge states (mostly the VBM)
upward by 0.2−0.3 eV relative to the standard GW approx-
imation [90]. This renormalization of the VBM compensates
for the overestimation of the IPs seen in our GW calculations.
As a further implication, the QP correction to the VBM is
expected to be less predominant for semiconductors when
vertex corrections are taken into account in GW .

VIII. CONCLUSIONS

We extensively studied the effect of starting point and self-
consistency within the GW method on the band-edge positions
of semiconductors and insulators. The dependence of starting
point was investigated by one-shot G0W0 calculations on top
of hybrid-functional calculations with varying fraction of Fock
exchange α, whereas self-consistency was considered within
the QP picture. Compared to G0W0 on top of PBE, the use
of a PBE0 hybrid-functional starting point enhances the shifts
of both the VBM and the CBM. At variance, the inclusion of
self-consistency generally enhances the downwards shift of the
VBM while leaving the CBM less perturbed. Overall, when

compared to G0W0 on top of PBE, the predominant role of the
VBM shift in the band-gap opening is maintained. However,
for transition-metal compounds, the semilocal starting point
is less adequate particularly for the CBM. As a result, the
band-edge positions of TiO2 and MoS2 show a qualitative
difference between the one-shot calculation on top of PBE
and the self-consistent calculation.

We next sought optimal mixing parameters α to be used
in the starting point for G0W0 calculations in the context of
empirical and nonempirical tuning. When tuned empirically to
reproduce the experimental band gap, PBE0 and G0W0 show
distinct band-edge positions, which differ up to 0.3 eV for sp

semiconductors. The difference reduces in the nonempirical
scheme in which α is varied until the PBE0 starting point and
the subsequent G0W0 calculations achieve the same band gap,
although the band gaps are then normally overestimated. We
further proposed two other nonempirical tuning schemes in
which the band gap achieved in G0W0(α) is matched to that
in either QSGW or QSGW PBE

0 . In both cases, we recorded a
good agreement of the band-edge positions (typically within
0.2 eV) between one-shot G0W0 on top of the optimal starting
point and the corresponding self-consistent calculations.

The accuracy of the band-edge positions was finally
estimated by addressing ionization potentials at surfaces. We
found that the description of ionization potentials improves
with that of the band gap, as both empirically tuned PBE0
and G0W0 yield good ionization potentials. Moreover, the
one-shot G0W0 which reproduces the band gap achieved
with QSGW PBE

0 showed comparable accuracy with its more
computationally demanding self-consistent counterpart. Nev-
ertheless, for systems such as TiO2 and MoS2, the prescription
of self-consistency is necessary in order to obtain a reasonable
ionization potential. For these materials, a starting point
beyond the semilocal description or ideally a self-consistent
treatment is therefore warranted whenever the absolute posi-
tions of the band edges are important.
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