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Abstract: High-temperature Fischer-Tropsch (HTFT)
process aims to produce lighter cuts such as gasoline
and diesel. For many years there have been studies and
improvements on HTFT process to make the existing
reactors more efficient. Recent studies proposed new
configurations such as dual-type membrane reactor
and coupling configurations reactor, which improved
the performances of this process. This achievement per-
suades us to update the existing knowledge about the
available reactors for HTFT process. In this article, fea-
tures and performances overview of two classes of reac-
tors are reviewed. The first class consists of the reactors
which are based on older studies, and the second one
includes recent studies which are called product inten-
sifier reactors. Finally, it is shown that the product
intensifier reactors have higher CO conversions and
lower selectivity of undesired by-products which results
in higher production yield of gasoline. Furthermore, the
place of product intensifier reactor among common
reactors with regard to the influence of the process
parameters on the product distribution has been
estimated.
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1 Introduction

Gas-to-liquid processes of Fischer-Tropsch synthesis (FTS)
attracted attention from academic and industrial interests,
considering the growth rate in the international oil price [1].
FTS which converts synthesis gas (CO + H,) derived from
coal or natural gas [2] or biomass complex multi-component
mixture of linear and branched hydrocarbons and oxyge-
nated products is a well-established technology [3, 4].
Fischer-Tropsch (FT) plants are often classified in terms
of feed material as coal-to-liquids [5], gas-to-liquids (GTL)
[6], or biomass-to-liquids [7-13] plants; the feed material
does not determine the type of FT technology or the product
composition. The feed material has effect only on the gasi-
fier type [14], and once the feed has been converted to
synthesis gas, the gas loop can be configured to suit the
FT technology. Figure 1 briefly presents the overall process
of liquid fuel production by FTS [7].

The FTS is production of a range of products by
catalytic hydrogenation of CO. This range of products
covers the production of high-quality diesel fuel, gaso-
line, and linear chemicals such as 1-alkenes, alkenes, and
oxygenated hydrocarbons [16, 17]. Table 1 exhibits the
basic reactions in the FTS.

The FT reaction is highly exothermic, and the enthalpy
change per mol of CO converted is about 165-180 kJ mol ™
(depends on the precise product composition). This enthalpy
of reaction is much higher than for the processes which take
place in the oil industry [18, 19]. In consequence, all FT
reactors are designed to maximize heat removal.
Inadequate cooling system will result in lower selectivity of
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Table 1 Major overall reactions in the FTS [16] »
Probability
Main reactions :
Paraffins (2n + 1)Hy +nCO — CyHaniz + nH0 1-a
Olefins 2nH, +nCO — CyHan + NH,0 CH; — CH, 1-a
Water/gas shift reaction CO + H,0 < CO, +H,
Side reactions v 1
-
Alcohols ‘ 2nH; + nCO — CyHa 420 + (n — 1)H,0 C,Hs C,He a(1=a)
Boudouard reaction 2C0 — C+CO,
Catalyst modifications o
Catalyst oxidation/ MOy +yCO < yCO, + xM \
reduction
MOy + yH; < yH,0 + xM
Bulk carbide formation yC + xM — M,Cy @
\ 4 1-a 1

preferred products and higher catalyst deactivation and in CnH2pii—p CHopo o"(1-0)

the worst-case scenario may induce a runaway [19].
Hydrocarbon formation in the FT reaction is closely simi-
lar to polymerization kinetics in which hydrocarbons are
formed by the addition of activated C; groups on the end
of an absorbed growing hydrocarbon chain [19]. A math-
ematical expression which is used for describing hydro-
carbon production is the Anderson—Schulz-Flory (ASF)
distribution as:

In(Wn/n) = nln(a) + In((1 — «)2/a);

where a = probability of chain growth, Wn =weight frac-
tion of molecules with chain length, and n = carbon num-
ber of chain length [15, 17]. Figure 2 provides a graphical
representation of the ASF distribution [17, 20].

Several metals such as nickel, cobalt, ruthenium, and
iron have been shown to be active for FTS. On a relative
basis, among different metals capable of commercial appli-
cations for FT process if the scrap iron price is 1.0 $, then the
costs of Ni, Co, and Ru are considered approximately 250,
1000 and 50000 $, respectively. Furthermore, Ni produces
too much CH, under practical operating conditions, and the
amount of Ru is insufficient besides its high price. Therefore,
only Fe and Co are practical catalysts for FT process [4] and
appear to be economically feasible in an industrial scale.
Iron-based catalyst is used in both high-temperature

Figure 2 Probability of chain growth to different hydrocarbons in FT
reactions [21]

Fischer-Tropsch (HTFT) and low-temperature Fischer—
Tropsch (LTFT), while cobalt based catalyst is used usually
in LTFT. Moreover, Saeidi et al. [22] has proved that the effect
of reactor configuration on hydrocarbon production effi-
ciency is much more than the effect of catalyst type mod-
ifications and operating condition changes.

Guillou et al. [23] studied the reaction over a Co/SiO,
catalyst in a wall-coated microreactor. Three points of
non-uniform injection of H, were introduced: 11% of H,
in the main injection, 22% in the second, and 66% in the
third. The C,-C, cut yields were halved without reducing
the C5+cut yield, which, even though a decrease in CO
conversion was observed, lead to an improvement in the
overall production and use of hydrogen. Rafiee and
Hillestad [24] carried a simulation study over an iron-
based catalyst. They optimized the hydrogen distribution
over three membrane reactors in series in order to get a
maximum wax production and carbon monoxide conver-
sion. They concluded that with an inlet ratio of H,/CO of
0.5 and a continuous introduction of the rest of the
hydrogen through the membrane reactors, increased
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selectivity toward heavy hydrocarbons and increased wax
concentration could be obtained.

Florent Allain et al. [25] concentrated on the possibilities
of investigation to shift an equilibrium reaction to maximize
the conversion by reactant staging. The analytical expres-
sion of global conversion has been derived for a series of
two continuously stirred-tank reactors. While in this
research place of product intensifier reactor among common
reactors with regard to the influence of the process para-
meters on the product distribution has been estimated.

As shown in Figure 1, there are two operating modes
of natural gas production based on FT process technol-
ogy which are called LTFT [26] and HTFT [4, 15]. Table 2
presents the practical information about these two oper-
ating modes (FT processes of Sasol). As it is shown in
Table 2 and Figure 1, the high-temperature process with
iron-based catalysts at temperature range of about 300-
350°C is usually used to produce gas and linear low
molecular mass olefins (C,—Cy;) [6]. The product cuts
and its distribution are not the case in this paper.

Table 2 General commercial information about LTFT and HTFT
processes of Sasol [27]

FT process LTFT HTFT

Temperature 220-260°C 320-350°C

Catalyst Fe/Co? Fe

Traditional reactor ARGE Synthol

Type Tubular Circulating bed

Advanced reactor Sasol Slurry-Phase Sasol Advanced
Distillate Synthol

Type Slurry (Three-phase) Fluidized-bed

Note: *Base catalyst proposed for the ORYX GTL plant (Qatar).

Indeed, reactor type is one of the most important factors
affecting the products of FTS in both HTFT and LTFT
technologies, therefore many studies have been per-
formed on reactor types [22, 28]. In current research,
most of these studies on reactor types merely in HTFT
mode and their impacts have been collected from an
open literature and discussed.

In this paper, the review of HTFT with focus on the
reactors, and also, consequences of previous research in
this field are evaluated. An extensive literature review to
find the best reactor which could be obtained the high
product conversion was compiled. The reactors were
divided into two main categories of earlier reactors and
recent ones. First the features and performances of earlier
reactors are investigated, and their weaknesses for HTFT
synthesis are discussed. Then the same study is done for
product intensifier reactors which are recent innovative
configurations [29-33]. Ultimately, results show that
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product intensifier reactor can be feasible and beneficial
for achieving the renewable energy.

1.1 High-temperature Fischer-Tropsch
processes

The high-temperature process with iron-based catalysts
at temperature range of 300-350°C is mainly used to
produce gasoline [34] and linear low molecular mass
olefins. In HTFT, as a result of the process conditions
and the catalysts involved, the produced syncrude
includes a high percentage of short chain (i.e. <10 carbon
atoms) with significant amounts of propane and butane
mixed with olefins (e.g. propylene and butylene) which
are extracted from the tail gas stream, utilizing cryogenic
separation. Then, the resultant lean tail gas is recycled
and mixed with additional lean feed gas for further syn-
gas production [35].

The products of HTFT process are mostly fuels such
as gasoline and diesel which are more closely to products
of conventional oil refining. These produced GTL fuels
are sulfur-free, but contain some aromatics [36]. Typical
process operation conditions for HTFT are temperature of
~320°C and pressure of ~2.5 MPa with conversion of >85%
[6], however not all the products are capable of produ-
cing high-quality transport fuels or usable. HTFT pro-
cesses commonly take place in either circulating
fluidized-bed (CFB) reactors or fluidized-bed reactors [37].

1.2 Scope of the current review

The main aim of this study is to review the existing
literature regarding the reactor type for HTFT process
owing to the reactor type which is one of the significant
factors affecting the sustainable products. The fixed-bed
and fluidized-bed as well as slurry-phase systems cate-
gorized as the common HTFT reactors which are appro-
priate for producing gas-phase products [15, 38, 39].
Besides these three reactor types for HTFT, the other
configurations such as dual-type membrane reactors
and coupling configuration reactors also have been
investigated as product intensifier reactors [40-42]. This
review first summarizes the evolution of coupling reactor
types used for HTFT process and classification of differ-
ent alternatives for HTFT process. For convenience, these
data are brought in two tables. Thereafter, the new idea is
to estimate the place of product intensifier reactor among
common reactors with regard to the influence of the
process parameters on the product distribution.
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1.3 The evolution of HTFT reactors

Considering the fact that the FT reactions are highly
exothermic, to avoid overheating of the catalyst it is
vital to remove the heat of reaction from the catalyst
particles rapidly in an appropriate configuration; other-
wise rate of deactivation increases due to sintering and
fouling and also it may result in undesirable high pro-
duction of methane. So, one of the main issues is select-
ing the reactor type and configuration [4, 15, 43] which
will be discussed in this article. Figures 3 and 4 indicate
the trend of publications for HTFT reactors, the modern
FT processes for production of liquid fuels. Figure 3
clarifies the amount of attention to the publications
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Year

Figure 3 % Published papers on HTFT reactors from 1982 to 2012

Figure 4 Distribution of published papers for each HTFT reactor
from 1980 to 2012
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related to HTFT reactors in the recent decade. Figure 4
also obviously shows that great attention has been paid
to the product intensifiers as a new technology which is
evolved recent years. Actually, the recent studies are
mainly focusing on product intensifier reactors, and the
researchers try to understand the behavior of these reac-
tors better, in order to commercialize them. On the other
hand, the main goal of the articles in earlier years was to
investigate the fixed-bed, fluidized-bed, and slurry reac-
tors as the available choices for FTS.

In this section, the outlook of experimental and the-
oretical research that has been done from 1982 to 2012 on
each reactor type at high temperatures is presented.
Despite there is a large number of publications through
this period, there is not the opportunity to describe all
papers. Therefore, the more important papers published
in this period have been mentioned here.

The first category of reactors is the configurations
that have been utilized very early and have been com-
mercialized many years ago. This is the main reason that
there are not enough tendencies for the researchers to
study the different features and performances of these
kinds of reactors.

In contrast, there is another scenario for the second
category. They are new configurations such as combina-
tion of two different types of reactors which are invented
recently. There is a huge interest from the researchers to
study the different aspects and performances of these
reactors as they are more flexible to manipulate and
invent new configurations.

2 HTFT reactor type and
developments

In principle, different reactor technologies are suitable for
performing the highly exothermic FTS. Several of these
concepts have been proven on laboratory, pilot plant,
and industrial scale [44, 45].

Although, in general, the reactors are characterized
based on their catalysts mode i.e. if the catalyst is fixed in
the reactor it is called fixed-bed reactor, the other way to
characterize the FTS is based on the temperature range in
which these reactors operate. Different types of reactor
configurations and their suitable working conditions are
illustrated in Figure 5. When the temperature is increased
to produce low boiling products, the appropriate reactor
is the fluidized-bed reactor, and in order to achieve high
boiling products with decreasing temperature, the fixed-
bed reactors and slurry-phase reactors are the choices. At
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high temperatures, in order to intensify the products,
other reactors such as dual, membrane as well as cou-
pling loop reactors can be placed between fixed-bed and
fluidized-bed reactors.

At the end of this article, an updated version of the
diagram shown in Figure 5 will be presented to express the
effect of different parameters such as pressure, tempera-
ture, feed ratio, the content of inert, catalyst concentration,
and gas velocity on the performances of reactors including
product intensifier reactors. For slurry reactor, we should
increase the parameters such as temperature, pressure, and
feed ratio to produce gasoline, and for fluidized-bed reactor
which is naturally utilized for producing gasoline, we have
to increase some parameters such as catalyst concentra-
tion, gas velocity while reducing other parameters such as
temperature, pressure, and feed ratio to produce wax.
Finally, it should be taken into consideration that fixed-
bed reactor stands in between these two reactors; therefore,
it functions in a wide range of the parameters.

2.1 Fixed-bed reactors

The first industrial fixed-bed reactor was Ruhrchemie
atmospheric fixed-bed reactor (1935). This reactor con-
sisted of a box divided into sections by vertical metal
sheets and horizontal cooling tubes crossing the sheets.
The place between sheets and tubes was for loading the
catalyst [47, 48].
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Influence of the process parameters in the different types of reactor on the product distribution [46]

The most important feature of fixed-bed reactors is
that there is no need to another section for catalyst separa-
tion. It is also easier to scale up these reactors from a tube
in laboratory scale to a pilot plant. These facts made fixed-
bed reactors very interesting for FTS [49].

The general configuration of fixed-bed reactor con-
sists of a long steel tube with a desired diameter. This
tube is covered with a steel jacket containing high-pres-
sure dowtherm. The electrical heating elements around
the jacket provide the required energy for heating the
dowtherm. Different temperatures of the jacket are satis-
fied by boiling the dowtherm under different pressures.
Due to the circulation of the dowtherm, the temperature
will be constant along the length of the reactor. For each
experiment, the reactor tubes will be filled partially with
catalyst from the bottom to the top. This is also a pre-
heating section which supplies the preheating energy for
the reacting mixture. Thermocouples are placed in the
packing through the tips located at the center of the tube
and specified apart along the length of reactor [50].

The conventional fixed-bed reactors may face some
problems for removing the produced heat by FTS reac-
tion. The best practical solution to this problem is to use
a couple of tubes instead of a single tube and install the
cooling system between them. This configuration is
named multi-tubular reactor. For further explanation,
this reactor consists of a multi-tube reactor which has
the bed of catalyst inside the tube, and the syngas enters
the reactor from the top. The syngas flow is in plug-flow
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Figure 6 Multi-tubular fixed-bed reactor

regime. Simultaneously, water is circulating in the shell
side of the reactor to maintain the temperature of the
reactor constant and satisfy the isothermal condition. In
fact, water will remove the produced heat by FTS reaction
[51]. Configuration of a multi-tubular fixed-bed reactor is
shown in Figure 6 [15].

As the main goal of HTFTS is to produce lighter cuts
such as gasoline, there are good enhancement on these
reactors to produce diesel, kerosene, and gasoline.
Considering the high selectivity of the catalyst toward
this cut, the amount of wax in the final product is
decreased to zero. On the other hand, the production of
light gasses should be as low as possible leading to high-
est possible production of transportation fuels. So one of
the most important steps in FTS for production of diesel
and gasoline is to reduce the amount of heavy hydrocar-
bons to enhance the production of desired cut which is
transportation fuels [52].
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Pellegrini et al. [53] as the result of their model con-
cluded that increase in temperature has a positive effect
on hydrocracking. In fact, due to the kinetic of the reac-
tions, it will proceed more quickly. The heaviest lump is
more sensitive to temperature changes, since it presents
higher cracking activation energy, while in lighter lumps
cracking products come mainly from heavier lumps.

On the other hand, the impact of pressure on the
reaction is not significant. A high pressure works against
dehydrogenation of paraffin and consequently for iso-
merization and cracking. The other point that they con-
clude is that the ratio of H,/wax does not affect kinetics
but it affects the condition of liquid—vapor equilibrium in
the mixture which is very important for product distribu-
tion. A high quantity of hydrogen increases the degree of
vaporization and causes a higher concentration in the
liquid phase of the heaviest species, which are more
reactive [53].
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In 2005, Marvast et al. [54] modeled a fixed-bed
reactor for FTS with Fe-HZSM5 catalyst. They also studied
the parameters which have effect on the reactor perfor-
mance. The configuration of the reactor is a water-cooled
fixed-bed FT reactor packed with Fe-HZSM5 catalyst mod-
eled in two dimensions (radial and axial).

Based on these parameters, finally they suggested
the optimized operating condition to produce high octane
gasoline from syngas. Result of the parametric sensitivity
analysis is very interesting. Increasing the temperature in
FTS reaction leads to an increase in the released heat of
reaction. This fact means that the system will face tem-
perature runaway. Increasing the temperature is also not
recommended, considering gasoline and CO, production
rate. These two points express that fixed-bed reactors will
face problems by increasing the temperature. In other
words, although fixed-bed reactors are suitable reactors
for LTFT synthesis, but they will show low performances
for HTFTS reaction. It is also reported that the increase in
the H,/CO ratio in the feed is not favorable for the gaso-
line production yield. The optimized H,/CO ratio for the
reactor with this configuration is decided to be 0.8. The
results for the optimum working conditions are shown in
Table 3 [54].

In 2011, Khadzhiev et al. [55] reported performances
of a fixed-bed reactor for HTFT during their experiments.
In a fixed-bed reactor under 30.1 bar and 573 K, the
conversion of CO on the commercial catalyst was 60%,

n Reactors for High-Temperature Fischer-Tropsch Process —— 645

and the selectivity for liquid hydrocarbons (Sc/) was
66%. The yield of liquid hydrocarbons was 68 g/m> [55].

Due to the fixed-bed reactor configuration and char-
acteristics, this kind of reactors are more used for LTFT
synthesis. Considering this point, researchers do not con-
sider fixed-bed reactors and their performances as their
main goal of study. This configuration, which is called
conventional reactor (CR), is mostly used to compare the
performances between different configurations. As a
result, there are several articles that used the results from
a fixed-bed reactor which was a pilot plant, for validation
of their modeling and comparison of their results.

For instance, Rahimpour et al. in 2011 [56] reported a
working condition and performances of a pilot plant
which was a fixed-bed configuration. The scheme of the
reactor which is reported as CR is shown in Figure 7.

This reactor is working under 17-bar pressure and the
feed temperature of 565 K. Considering this working con-
dition, the CO conversion is reported 77.94% and the
gasoline production yield is 700 g/g feed. It is also
reported that the highest temperature reached inside the
reactor is 578 K considering the temperature profile [56].
In Table 3, the reported working condition and perfor-
mances for fixed-bed reactors are shown.

Considering L.C.A. Mazzone simulation in 2006, the
H,/CO ratio for the optimum operating condition in order
to reach higher production yield of heavy olefins is
between 1.45 and 1.75. On the other hand, to maximize

Table 3 Summary of some experimental reports on CO conversion values based fixed-bed, fluidized-bed, and slurry bubble column

reactors for a few selected results

Number Reactor Catalyst Temp. (K) Press. (bar) H,/CO in feed CO conversion Reference

Fixed-bed

1 Fixed-bed Fe-HZSM5 600 18 1.08 Xco =92.8% [54]

2 Fixed-bed Fe—Cu 573 30.1 2 Xco =60% [55]

3 Fixed-bed Fe-HZSM5 578 17 0.96 Xco =78% [56]

4 Fixed-bed Pt-Silica Alumina 674 47.5 H2/wax Gasoline in product [53]
=0.105 =10% wt/wt

Fluidized-bed

1 Fluidized-bed Fe-based 543 10 1.6 Gasoline yield [60]

=0.148

2 Fluidized-bed Fe-based 553 20.5 0.67 Xco =83.65% [62]

3 Fluidized-bed Fe-based 553 19.9 0.67 Xco =78.07% [62]

4 Fluidized-bed Fe-based 543 20 0.67 Xco =74.13% [62]

Slurry bubble column

1 Slurry Fe 563 30 1.5 Xco+H2 =97% [67]

2 Slurry Fe—Mn 573 20 1.5 Xco =76% [68]

3 Slurry Fe—Cu 573 30.1 2 Xco = 61% [55]
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the production yield of the light olefins, this ratio should
be between 0.50 and 0.90. Yields are lower than 5% in
mass weight, in this configuration. For some commercia-
lized catalysts the yields are higher than 15% in mass
weight. It means that using this type of iron-based cata-
lyst is not economically viable [51].

Rafiq et al. in 2011 studied fixed-bed reactor with a
model bio-syngas at different gas hour space velocities
(GHSVs). Results show that the CO and H, conversion
reached a maximum at lower GHSV. Selectivity of C;—C,
decreased, while C. selectivity and productivity of HCs
increased with an increase in the GHSV. This modeling
was also performed, and the obtained results from the
simulation were validated with the experimental work. At
last, parametric sensitivity analysis specified the impact
of different parameters and developed a good under-
standing of the behavior of the fixed-bed FTS system.
They also showed that an increase in the temperature
of wall increases the CO and H, conversion and C.
productivity in a continuous manner, but a momentous
increase in the CH, productivity was observed. However,
upon increasing the wall temperature, the temperature
runaway in the system was occurred most likely due
to the release of extensive heat of reaction from the
FTS [49].

Fernandes and Teles in 2007 [52] proved that lower
temperatures (550 K) satisfy the cracking into diesel and

higher temperatures (650 K) accomplish a better cracking
to produce higher amounts of gasoline. To produce
lighter cuts, they proposed to use several reactors in
series but with different working conditions [52].

2.2 Fluidized-bed reactors

Fluidized-bed reactors are used in many chemical pro-
cesses especially the processes involve gas—solid and
solid-catalyzed gas-phase reactions [57]. There are a lot
of examples for industrial applications of these reactors
such as catalytic cracking of hydrocarbons, coal gasifica-
tion, ore roasting, and synthesis reactions like FTS
[58, 59].

The fluidized-bed reactor in FTS includes two differ-
ent phases. Synthesis gas and inert gases enter the bot-
tom of the reactor through a distributor, and then split to
form the bubble and the emulsion phases. There is no
need to excess gas to maintain the minimum fluidization
condition. The remaining gases, which are non-reacted,
exit from the top of the reactor through a disengaging
zone. The diameter of this zone is usually larger than the
catalytic bed zone. This difference in the diameter is for
gas velocity reduction and facilitating the settling of cat-
alyst particles. A reactor cyclone will separate the parti-
cles that pass through the disengaging zone from the gas
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phase and afterward they will be returned to the flui-
dized-bed reactor. These returned particles normally
enter from near the top of the reactor. While the process
is running, hydrocarbons are continuously formed and
non-reacted syngas removes the product from the reactor.
Cooling tubes are provided in the reactor for heat removal
and to control the temperature, maintaining the isother-
mal conditions, despite the high heat of reaction [60].

CFB reactors were the choice for the first Sasol plant
at Sasolburg that is shown in Figure 8. This reactor
worked under the pressure of about 2 MPa and tempera-
ture of 340°C. After some time, optimizations on the
process and improvement on the catalyst made this con-
figuration well suited for this process, and they operated
for many years. The improved reactors were named
Synthol reactors. There are two phases of fluidized cata-
lyst in a CFB reactor. Catalyst moves down the standpipe
in dense phase, while it is transported up the “reaction”
zone in lean phase [4].
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The commercial FT reactors in the Brownsville, TX
plant, which only operated for a brief period, were of the
fixed fluidized-bed (FFB), and it is shown in Figure 9. FFB
reactors operated under 2 MPa and 300°C same larger
type of CFB reactors [37].

To avoid the feed gas going up the standpipe, the
differential pressure over the standpipe must always
exceed that over the reaction zone. At the high operating
temperature, carbon is deposited on the iron-based cata-
lyst which decreases the bulk density of the catalyst and
the differential pressure over the standpipe. It is therefore
not possible to raise the catalyst loading in the reaction
section in order to compensate for the normal decline of
catalyst activity with time-on-stream. The main advan-
tages of FFB over CFB reactors are as follows:

— The construction cost is 40% lower. For the same
capacity the FFB reactor is much smaller in overall.
— Because of the wider reaction section more cooling
coils can be installed to increase its capacity. (More

——>
Outlet
y Catalyst
Wat X
'eaezr > Steam
Gas inlet
e

Figure 8 A CFB reactor
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fresh gas can be fed by either increasing the volu-
metric flow or increasing the operating pressure.
Pressures up to 4 MPa are feasible.)

At any moment all of the catalyst charge participates
in the reaction, whereas in the CFB only a portion of
it does.

For the reasons previously discussed, the decrease in
the bulk density by carbon deposition is of less sig-
nificance in the FFB and thus a lower rate of on-line
catalyst removal and replacement with fresh catalyst
is required to maintain high conversions. This lowers
the overall catalyst consumption.

Because the iron carbide catalyst is very abrasive and
the gas/catalyst linear velocities in the narrower sec-
tions of the CFB reactors are very high, these sections
are ceramic lined and regular maintenance is essen-
tial. This problem is absent in the lower linear velo-
city FFB reactors, and this allows longer on-stream
times between maintenance inspections [4].

Fernandes [61] developed a mathematical model of a
fluidized-bed reactor which was used for polymerization

of syngas. They studied the carbon monoxide polymer-
ization with this model. For maximizing the diesel
production yield, the optimum operating condition must
be under low catalyst load, high pressure, and low-
superficial gas velocity, but for maximum gasoline pro-
duction yield, high catalyst load, and low pressure is
needed. High H,:CO ratios favor production of low mole-
cular weight products as gasoline, while low H,:CO ratios
deviate production toward heavy hydrocarbons, such as
diesel [60].

In 2012, Mohammad Kazemeini et al. [62] studied the
impact of different process condition parameters on FTS
in fluidized-bed reactors. Their investigations show that
the increase in the temperature will increase the CO con-
version. The increase in the pressure of the process also
favors the higher CO conversions. At last, they presented
the optimum condition for highest reached CO conversion
which is 83.65%. The condition and results are shown in
Table 3 [62].

The disadvantage of a fluidized system is that if any
catalyst poison such as H,S enters the reactor; all of the
catalyst is deactivated, whereas in a fixed-bed reactor all
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the H,S is adsorbed by the top layers of catalyst, leaving
the rest of the bed unscathed [4].

2.3 Slurry bubble column reactors

The slurry bubble column reactors and its applications
studied in by different researchers. Sasol R&D proved
that the selectivities and conversions of slurry and
fixed-bed reactors are almost the same. In 1993, a 5-m
i.d. commercial unit was designed and its capacity is
about 100 x 103 t/year which equals that of the com-
bined production of the original five ARGE reactors.
Scheme of a slurry bubble column reactor is shown in
Figure 10.

The advantages of slurry over multi-tubular reactors
are as follows:
e The cost of a reactor train is only 25% of that for a

multi-tubular system.
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e The lower catalyst loading translates into fourfold
lower catalyst consumption per tonne of product.

e The slurry bed is more isothermal and so can operate
at a higher average temperature resulting in higher
conversions.

e On-line removal/addition of catalyst allows longer
reactor runs.

e Small solid particle size results in good productivity [4].

In a slurry bubble column, at relative low gas velocities,
the homogeneous flow regime dominates. Synthesis gas
enters and is distributed from the bottom. Carbon mon-
oxide and hydrogen dissolve into the liquid phase as the
gas passes through the suspension of catalyst and liquid
products [63, 64]. Then, the reaction takes place on the
catalyst surface. In the homogeneous flow regime the gas
phase consists of small bubbles, typically smaller than 5
mm. Liquid products and catalyst exit from the top. On
the other hand, the fresh catalyst enters the reactor at the

e The differential pressure over the reactor is about four bottom. It means that the reactor is in a co-current mode
times lower which results in lower gas compression with respect to slurry and gas. The counter-current opera-
costs (low pressure drop). tion is not recommended because of the high degree of
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back mixing in the slurry phase. However, the co-current
operation avoids catalyst settling tendencies, which may
result in serious heat transfer problems (hot spots). The
cooling tubes remove the heat produced by the synthesis
reaction [65].

At higher gas velocities, this is the churn-turbulent
flow regime prevails in slurry bubble column reactors.
The gas enters the bottom of the reactor and then it is
divided into two parts: a part of the gas pass through the
reactor in the form of large bubbles and the remaining
are in the form of small bubbles. The large bubbles rise
with a high velocity through the slurry (their rise velocity
can easily exceed 1 m/s). Considering this fact, large
bubbles impel circulation patterns in the suspension of
liquid and catalyst. These circulation patterns severely
mix up the small bubble population. Catalyst feed, liquid
products removing, and reactor heat removal are
the same as what was discussed in the homogeneous
case [66].

Deckwer et al. [67] presented a modeling of a three-
phase reactor system exhibited by the description of the
FTS in a slurry phase. The relevant reactors are only
bubble agitated, and their length to diameter ratios are
in the range of 5-10. As the FTS in the slurry phase is
accomplished in the slow reaction regime of mass trans-
fer with reaction theory, the space—time-yield reaches a
maximum value depended on the gas velocity.
Calculations are based on the rate data of the
Rheinpreussen—Koppers plant yield. As a result that the
production capacity of the Sasol I1 plant could be
achieved in only 11 slurry reactors of 5-m diameter and
14-m height. For isothermic conditions, the pressure of
the reactor does not have effect on the conversion. If the
reactor operates under non-isothermic conditions, the
temperature rises and this makes the conversion to
increase.

They studied the effect of different parameters on
the performance of the reactor. The results show that
an increase in temperature from 531 to 563 K under
non-isothermic conditions plus increase in pressure up
to 3 MPa will change the overall conversion from 0.79 to
0.97 [67].

In 2008, Wang et al. [68] modeled an FTS in a slurry
bubble reactor. Then, they used the result from the ana-
lysis of different parameters to optimize the process.
Their studying range for process conditions were T =
523-573 K, P = 1-3 MPa, and H,/CO = 1-3. The result is
as expected. Higher gas velocities will result in lower
conversion of synthesis gas due to the lower retention
time of the component. The increase in the temperature
of the reaction will increase the selectivity of gasoline

DE GRUYTER

and diesel. Furthermore, above 550 K the selectivity of
methane and CJ; will decrease. It means that the higher
temperature is favorable for gasoline production with
FTS. The effect of pressure is also considerable. The
higher pressures will increase the selectivity of
C;,dramatically and also decrease the selectivity of gaso-
line. So as an optimum condition for gasoline production
it is better to work in higher temperatures and lower
pressures. The impact of H,/CO ratio is interesting,
because it shows an optimum point for the highest selec-
tivity of gasoline. Increasing the H,/CO ratio in the feed
will decrease the selectivity of Cj; continuously and
increase the selectivity of methane. The optimum ratio
for highest gasoline production is 1.5. The optimum
process condition and the Co conversion are shown in
Table 3 [68].

In 2011, Khadzhiev et al. studied the FTS over
Fe-based catalyst in a slurry reactor. Although the main
goal of their article was to study the catalyst itself, but the
data they gathered for the slurry reactor are useful. Under
the conditions of T = 573 K, P = 30.1 bar, and H,/CO
ratio of 2, they found the CO conversion of 61% which is
much lower than that was reported by Wang et al. [55, 64].

Fernandes [61] approved the liquid phase enters the
reactor at very low velocities so that the products can be
withdrawn continuously. The syngas passes through the
reactor as bubbles and exchanges mass with the liquid
phase. To produce large and small bubbles, the velocity of
the gas is high enough in a commercial process. As dis-
cussed, the reactor operates either at a churn-turbulent
flow regime or heterogeneous regime. Thousands of cool-
ing tubes or cooling coils are installed on the slurry reac-
tor, with a heat exchange area that can be as high as 20 m?
per m> of reactor (AH=-170 kJ/mol of CO). With direct
FTS it is not possible to produce paraffins of a specified
carbon number range in high yields, but it may possible
by directing the synthesis toward heavy paraffins, which
are subsequently cracked selectively in a second reactor.
Considering the simulations, to achieve maximum produc-
tion yield of diesel, the optimized operating condition is at
high pressures, a low catalyst holdup, and high gas super-
ficial velocity. Higher H,/CO ratios satisfy higher produc-
tion of low molecular weight products such as gasoline, on
the other hand, lower H,/CO ratios favor the maximum
production yield of heavy hydrocarbons [61].

Although slurry bubble column reactor are very good
choice for LTFT synthesis, but for HTFT it is not the same.
Besides this fact, this reactor presents also some
drawbacks:

(1) Considering low catalyst concentration compared to
fixed-bed, large reactors are required;
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(2) Reliable scale-up and design criteria are still miss-
ing: for instance a too high liquid recirculation
could generate catalyst attrition and internals
abrasion;

(3) The continuous separation of fine solid catalyst par-
ticles from the liquid products is difficult;

(4) Slurry handling requires careful design to avoid

plugging

2.4 Product intensifier reactor
2.4.1 Dual-type membrane reactor

A dual-type reactor consists of a shell and tube heat
exchanger reactor in which this reactor, water-cooled
reactor, is combined in series with the second one, synth-
esis gas-cooled reactor. In the proposed configuration,
hydrogen is withdrawn from the fresh feed synthesis gas
and is injected to the ending segment of reactor in order to
control dozing of hydrogen along the reactor and preven-
tion of hydrogen waste. The cold feed synthesis gas is
preheated inside the tubes of the fluidized-bed reactor,
then it is fed into the tubes of the water-cooled reactor
that is an isothermal reactor, and the chemical reactions
are initiated by the catalyst. In this stage, synthesis gas is
partly converted to hydrocarbons. The reacting gas leav-
ing water-cooled reactor is directed into the shell side of
the gas-cooled reactor in counter-current mode with
synthesis gas flowing through the tubes and the reactions
are completed in shell side. Due to highly exothermic
chemical reactions, the fluidized-bed membrane dual-
type reactor concept for FTS is considered, and the two-
phase theory of fluidization is used to model and simulate
the proposed reactor. The wall of the tubes in the gas-
cooled reactor is coated with the perm-selective Pd mem-
brane which transmits hydrogen to the reaction side in
consequence of the hydrogen partial pressure driving
force. In many hydrogen-related reaction systems, Pd-
alloy membranes on a stainless steel support were used
as the hydrogen-permeable membrane. Palladium-based
membranes have been used for decades in hydrogen
extraction because of their high permeability and good
surface properties. Moreover, palladium is 100% selective
for hydrogen transport. These membranes combine excel-
lent hydrogen transport and discrimination properties
with resistance to high temperatures, corrosion, and sol-
vents. Key requirements for the successful development of
palladium-based membranes are low costs as well as
perm-selectivity combined with good mechanical, ther-
mal, and long-term stability [69, 70].
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The distributed feed of reactants through a membrane
allows for better temperature control. Furthermore, the
methane selectivity can be influenced, because it depends
on the H,/CO ratio. Thus, a distribution of H, in a stream
of CO can lead to an increase in the yield of heavy
products. The group of Schaub from the University of
Karlsruhe in Germany investigated in situ water removal
with membranes. Water produced during FTS may nega-
tively influence the reaction by re-oxidation of catalysts,
increasing water/gas shift activity, and decreasing partial
pressures of the educts. The in situ removal of water
requires highly selective membranes for effective removal
of water without loss of educts and enhancement of CO,
conversion to long-chain hydrocarbons by equilibrium
displacement through the selective removal of H,0 [15].

The benefits of the fluidized-bed membrane reactor
concept over fixed-bed membrane reactor concept are the
absence of radial and axial temperature gradients due to
the excellent heat transfer characteristics of fluidization,
much better utilization of the catalyst particles (no inter-
nal diffusion limitations), because very small catalyst
particles can be used while maintaining a very small
pressure drop, very high flexibility for insertion of mem-
branes in the reactor because of minimizing thermal
stress in the membrane, the particle size in fluidized-
bed reactors is not constrained by the pressure drop
and can be chosen to achieve optimal catalyst utilization
and isothermal operation. Membranes can improve flui-
dization behavior as a result of compartmentalization
and reduced average bubble size due to enhanced bubble
breakage resulting in improved bubble to emulsion mass
transfer [71, 72].

A combination of fixed-bed and slurry bubble col-
umn membrane reactors for FTS was proposed by
Rahimpour et al. in 2012 [31]. In the first catalyst bed
which is fixed-bed reactor, a part of syngas is converted
to hydrocarbons. In the second bed, the heat of reaction
is used to preheat the feed synthesis gas to the first
reactor. This reactor is a membrane-assisted slurry bub-
ble column reactor, as it is shown in Figure 11. The
change in the gasoline yield is small, from 660 g/g feed
to 710 g/g feed.

Although the obtained results propose that utiliza-
tion of this type of reactor may be feasible and beneficial,
experimental tests are required to prove the validity and
safe operation of the suggested reactor [31].

In 2009, Rahimpour et al. [71, 72] optimized a config-
uration which is a fixed- and fluidized-bed hydrogen
perm-selective membrane reactor (FMDR) by mean of
genetic algorithm. Configuration of this reactor is shown
in Figure 12. The optimization results show that the best
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condition should change a bit. The final parameters are
shown in Table 4. In the optimized FMDR, the gasoline
production vyield is increased up to 1,000 g/g feed. The
CO conversion shows a slight increase to 81%. More
important, there is a significant decrease in production

of carbon dioxide and methane which are about half of
the amount before the optimization [71, 72].

In 2011, a new configuration has been proposed by
Rahimpour et al. [56]. In this configuration a fixed-bed
water perm-selective membrane reactor is followed by a
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Table 4 Summary of some theoretical reports on CO conversion values based product intensifier reactors for a few selected results

Number Reactor Catalyst Temp. (K) Press. (bar) H2/CO in feed CO conversion (%) Reference
Dual-type membrane reactors

1 SDMR Fe-HZSM5 573 17 0.96 79 [76]
2 FMD Fe-HZSM5 573 23 1.02 81 [71, 72]
3 FMFMDR Fe-HZSM5 565 17 0.96 84 [56]
4 TCMDR Fe-HZSM5 565 17 0.96 94 [56]
5 CFMR Fe-HZSM5 569 17 0.96 92 [78]
6 FMFMDR Fe-HZSM5 573 17 0.96 84 [80]
7 MDR Fe-HZSM5 569 17 0.96 77 [78]
8 MR Fe-HZSM5 569 35 0.96 80 [75]
Thermally coupled reactors

1 TCR Fe-HZSM5 623 23 0.96 99.8 [78]
2 TCMR Fe-HZSM5 614 23 1.4 97 [81]
3 DCTCMR Fe—Cu-K-SiO, 614 17 0.96 86 [82]
4 CTCMR Fe-Cu-K-SiO, 614 17 0.96 88 [73]
5 TCTCMR Fe-HZSM5 565 17 0.96 81 [79]
6 CLLTCR Fe-HZSM5 565 17 0.96 78 [76]

fluidized-bed hydrogen perm-selective membrane reactor
[(fixed-bed membrane and fluidized-bed membrane dual
reactor (FMFMDR)] which is shown in Figure 13. The tube
walls of the fixed-bed reactor of FMFMDR configuration
are coated by a high water perm-selective membrane
layer. To show the improvements in this design, the
obtained result of the performance is compared with a
fluidized-bed membrane dual-type reactor (FMDR) and a

N; & HO

CR for FTS. CO conversion in FMFMDR is 84% which is
higher than 81% for FMDR and 78% for CRs. Results show
that the gasoline yield in FMFMDR is higher than the one
in FMDR. The FMFMDR configuration not only decreases
the production of undesired product such as CO, but also
produces more gasoline [56].

Rahimpour et al. used the thermally coupled reactor
concept and made a combination with dual reactors
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Figure 13 fixed-bed membrane and fluidized-bed membrane reactor (FMFMDR)
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concept in 2012. The scheme of this configuration is
shown in Figure 14. For simultaneous hydrogen produc-
tion and utilization in GTL technology, they proposed a
thermally coupled membrane dual-type reactor (TCMDR).
To improve the heat transfer between exothermic and
endothermic sides, in this configuration dehydrogenation
of decalin is coupled with FTS reaction. Pd—Ag and
Hydroxy-Sodalite membrane layers are used to improve
the mass transfer between exothermic/endothermic side
and permeation side. The results show that the gasoline
yield in TCMDR is about 17% higher than the yield in
FMDR and 29% higher in comparison with CR. The
increase in gasoline and hydrogen yields illustrates the
preference of TCMDR to the FMDR and CRs [73, 83].

A cascading fluidized-bed membrane reactor (CFMR)
has been proposed in 2011 by Rahimpour et al. [56]. The
different features and performances of this kind of reactor

have been studied. Finally, they compared this new con-
figuration with a fixed-bed membrane cascading with flui-
dized-bed membrane reactor (FMFMDR). As shown in
Figure 15, the CFMR configuration consists of a fluidized-
bed water perm-selective membrane reactor followed by a
fluidized-bed hydrogen perm-selective membrane reactor.
On the other side, a fixed-bed concept is used in the first
reactor for the FMFMDR. The performance of CFMR is
compared with FMFMDR in order to demonstrate the effect
of fluidization concept on the reactor performance. The
modeling results show an increase of 5.3% in the gasoline
production yield and 12% decrease in CO, production yield
in CFMR in comparison with FMFMDR. This fact means
that it is better to apply the fluidized-bed concept instead
of a fixed-bed concept [56].

In 2010, Rahimpour et al. [74] made a comparison of
co-current and counter-current modes of operation for a
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novel hydrogen perm-selective membrane reactor. In
both modes of operations, a system with two catalyst
bed instead of one single catalyst bed is developed for
FTS reactions. The first reactor is a conventional water-
cooled fixed-bed reactor and the second reactor is a
membrane fixed-bed reactor. In the first catalytic reactor,
the synthesis gas is partially converted to products, then
in the second reactor the FTS reactions are completed
and heat of reaction is used to preheat the entering
syngas to the first reactor. In the co-current mode, feed
gas enters the tubes of the second reactor in the same
direction with the reacting gas flow in shell side, while in
the counter-current mode the gas streams are in the
opposite direction. The counter-current mode of opera-
tion decreases undesired products such as CO, and CH,
and also produces more gasoline [74]. A summary of the
different dual-type membrane reactors are shown in the
first part of Table 4. The CO conversions and correspond-
ing working conditions are categorized in this table.

In 2009, Forghani et al. [75] proposed a hydrogen
perm-selective membrane reactor for FTS. This reactor is
simulated, and finally it is compared with the CRs for
HTFTS. The results of the simulation show 4.45%
increase in gasoline production yield in comparison

with CR and also 6.16% reduction in CO, formation.
Obtained results demonstrate that the proposed mem-
brane FTS reactor system is an interesting candidate for
increasing the gasoline production from synthesis gas.
Summary of the working condition and performance of
this reactor is shown in Table 4 [75].

Membrane reactors can be utilized separately for FTS
without any combination with other reactors or coupling.
In this configuration, the synthesis gas enters the tube
side, and reacting gas mixture is fed to the shell side of
the reactor. The flows are in co-current mode. The synth-
esis gas can be preheated by heat which is produced by
the reaction. Due to the hydrogen partial pressure differ-
ence, hydrogen can penetrate from the feed synthesis gas
side into the reaction side. The exiting synthesis gas from
tube side is recycled to shells, and the chemical reaction
takes place in catalytic bed. This way the reacting gas in
shell side is cooled simultaneously with passing gas in
tube and saturated water in outer shell [75]. A conven-
tional scheme of membrane reactor is shown in Figure 16.

The general advantages of membrane reactors as
compared to sequential reaction-separation systems are:
(1) Increased reaction rates.

(2) Reduced byproduct formation.
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(3) Lower energy requirements.

(4) The possibility of heat integration.

(5) Distributed feed of reactants.

(6) In situ removal of water forced through membrane
contactor.

(7) Zeolite encapsulated catalysts.

These advantages potentially lead to compact process
equipment that can be operated with a high degree of
flexibility [76].

A membrane reactor was suggested to convert the
refineries natural purge gases into liquid hydrocarbons
in 2011 by Rahimpour et al. [56]. This process is supposed
to be an alternative to gas flaring. The ultimate objective
of this work was to evaluate the possibility of using a
typical GTL synthesis loop for recycling waste natural gas
in refineries for minimizing CO, emissions and producing
liquid fuel such as gasoline. To achieve this goal, purged
natural gas is converted to syngas in a novel hydrogen
perm-selective membrane reactor with recycle stream,
and then it is converted to liquid fuel in FT membrane
reactor. In this design, a loop is constructed by returning
and mixing a part of the product with the original feed
through recycle stream. The simulation results of the
aforesaid loop show decrease in CO, emission rate with
a value of 1/10 to that of flaring, with production of 0.018
kg mol/s of hydrogen and more than 90 barrels per day of
heavy fraction hydrocarbons containing gasoline and

Feed
(Saturated water)

Cooling

water

butane fraction for a specified value of (about 4
MMscfd) purge gases [56].

2.4.2 Coupling configurations reactor

Thermally coupled reactor, in fact, works like a shell and
tube heat exchanger in which an exothermic reaction
operates as a heat source of an endothermic reaction
that modified using a hydrogen perm-selective membrane
as the shell of the reactor to separate the produced
hydrogen from the dehydrogenation process [77].
Permeated hydrogen enters another section called per-
meation side to be collected by Argon, known as the
sweep gas. With the help of this novel configuration,
there is no need to consume some amount of energy for
cooling operation, and in addition there is a better con-
trol on the thermal energy generated from the exothermic
reaction. Some other advantages of coupled reactors in
comparison with CR are as follows: both exothermic and
endothermic reactions are carried out simultaneously in a
single vessel, and the equipment size will be reduced.
Furthermore, the heat loss in this condition will be less
than CRs, and at last the capital and operational costs
will reduce [31]. In 2010, Rahmipour et al. [78] optimized
a thermally coupled reactor with differential evolution
method. This coupled reactor contains dehydrogenation
of cyclohexane besides FTS. The objective of the
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optimization is to optimize the gasoline production yield.
The proposed reactor is a heat exchanger reactor consists
of two fixed bed of catalysts separated by the tube wall
with the ability to transfer the produced heat from the
exothermic side to the endothermic side. The working
temperature range of benzene synthesis is between 423
K and 523 K which takes place on Pt/Al,O; catalyst.
Considering the result of the optimization, the best inlet
temperature of the reactant for exothermic side decided
to be 623 K which is a bit higher than the limiting tem-
perature suggested by Marvast et al. to avoid catalyst
deactivation. The optimized temperature for the
endothermic side is 498 K. The results show that the CO
conversion is 100% which is 22% higher than the CR. The
objective of the study is satisfied by increasing the gaso-
line production yield to 14 g/g (H, + CO) in the reactor
outlet which means 100% increase in the yield [74].

An optimization of a thermally coupled membrane
reactor (TCMR) has been done in 2009 by Rahimpour
et al. [71, 72] in order to increase the hydrogen production
in the endothermic side and the gasoline production yield
in the exothermic side. The authors used differential
evolution method to achieve their goal. The selected
reaction for the endothermic side is dehydrogenation of

decalin. The reactor scheme is shown in Figure 17. As the
result of optimization, the different parameters have been
decided. Inlet temperature of FTS feed is 614.28 K, The
inlet pressure is 23 bar, and the H,/CO ratio in the feed is
1.4. The optimized reactor has 14.8% more production
yield of gasoline in comparison with CRs. The CO conver-
sion is also increased up to 97% [56].

In 2011, the impact of different reactions in the
endothermic side, on the performance of the thermally
coupled reactors, has been studied by Rahimpour et al.
[56]. The reactors are decalin TCMR (DCTCMR) which
contains dehydrogenation of decalin in the endothermic
side and cyclohexane TCMR (CTCMR) in which the dehy-
drogenation of cyclohexane takes place in the endother-
mic side. The results show that the CO conversion is 86%
for DCTCMR which is a bit lower than 88% of CTCMR.
Both reactors show much higher CO conversion in respect
to 77% for CRs. The gasoline production yield is also
increased from 700 g/g feed for CR to 910 g/g feed for
DCTCMR and 940 g/g feed for CTCMR. Although CTCMR
shows higher CO conversion and gasoline production
yield but a comparison between the modeling results of
two reactors indicates that DCTCMR is better considering
the higher hydrogen production compared with CTCMR
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which is 17 times higher. Moreover, higher H, recovery
yield which is about 12 times higher and faster
dehydrogenation reaction rate in DCTCMR than CTCMR
demonstrates that decalin is one of the best hydrogen
carriers [56].

A novel thermally coupled multi-tubular two-mem-
brane has been proposed by Bayat and Rahimpour in
2012 to increase the gasoline production vyield.
Decomposition of ammonia takes place in the endother-
mic side. This reactor has two different membranes, one
is for permeation of pure hydrogen from exothermic into

Sweeping gas

DE GRUYTER

endothermic side and the other one is for separation of
water from exothermic side. The scheme of this reactor is
shown in Figure 18. Although the inlet temperature of the
exothermic side is 565 K which is a bit lower than 673 K,
the minimum temperature for HTFTS range, we can
assume this condition as high-temperature synthesis
because the temperature will reach 573 K inside the reac-
tor. The obtained results show that with this new config-
uration gasoline production yield is increased 27.14% in
comparison with conventional fixed-bed reactor.
Furthermore, there is 35.2% decrease in CO, production

Pd/Ag membrane \ [0 HOS Ha'$
l ~4 1 e
ayer : . .
i . W H*®
R s HO o
iR
3 M
gl N
- * HO?"
H-SOD membrane S i : ,o‘!_
layer AT ¢ Haer
Y
T I ¢ Heer

Water

NH;
H;
CH,
Ar

Figure 18 Thermally coupled multi-tubular two-membrane reactor (TCTCMR)
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yield which is a very important enhancement for this
synthesis [79].

In 2012, Rahimpour et al. [31] made a comparison
between two different thermally coupled reactors. One
contains the dehydrogenation of cyclohexanol (CLL) in
the endothermic side (TCR1), and the other one contains
dehydrogenation of cyclohexane (CLN) in that side (TCR2).
The reactor scheme with two different feeds for the
endothermic side is shown in Figure 19. The results show
that the CO conversion in TCR1 is almost the same as CR
which is about 78% while the CO conversion in TCR2 is
81%. On the other hand, the gasoline production yield for
TCR1 is 1,100 g/g feed in its optimized working condition,
the value which is much higher than 900 g/g feed of
gasoline production yield for TCR2. Selectivity of CO, is
decreased dramatically in TCR1. This reduction is from
339% in CR to 173% in TCR1. As we can find the config-
uration with dehydrogenation of cyclohexanol in
endothermic side shows better performances in gasoline
production yield and reduction of undesired products [31].

Table 4 is a summary of the reactors studied in the
section of product intensifier reactors. Although some of
the simulations need further studies and experimental
tests to demonstrate the practicality of the reactors but
as it is discussed before, the new novel configurations for
HTFTS show higher CO conversions.

3 Discussion and conclusion

As mentioned before, the main goal of HTFTS reaction is
to produce lighter cuts such as diesel and gasoline. Thus
features of different types of reactor investigated

considering mainly CO conversion and gasoline produc-
tion yield. The other important aspects were the ease of
operation, safety, and economic issues. The main points
for each reactor are summarized to decide the best choice
for HTFTS.

The first reactor reviewed in this paper was fixed-bed
reactors. This reactor was the first reactor for FTS. Fixed-
bed reactors will be commercialized very soon even if
they have some problems. The main problem for this
reactor is the cooling system to remove the heat produced
by the synthesis. There were some improvements to
satisfy the heat removing system needed. Multi-tubular
reactor was a result of this modification. Even with the
modifications and optimizations of multi-tubular reac-
tors, the CO conversions in working plants are very low.
The value for the conversion reported to be 78%.
Although multi-tubular reactors are more efficient than
earlier ones in cooling system, there are still safety pro-
blems in controlling the temperature of the reactor espe-
cially in the case of temperature runaway. Figure 20
shows the temperature increase in a fixed-bed reactor
which is about 23°C.

As shown in Table 3, the slurry reactor is used nor-
mally for LTFT process which results in the production of
high boiling temperature products such as wax and for
this reason if we want to use this reactor for HTFT process
in order to produce C; products such as gasoline we have
to increase the temperature for example from 543 to 573°C
and the pressure from 10 to 30.1 bar, while the feed ratio
increases from 1.6 to 2 in comparison with fluidized-bed
reactor which is naturally used for HTFT process.
Moreover, the fixed-bed reactor functions in a wide
range of temperature, pressure, and feed ratio and as it
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Figure 20 Axial temperature distribution of CO hydrogenation in the fixed-bed reactor [46]

can be seen from Table 3 the temperature differs from 573
to 674°C while the pressure increases from 18 to 47.5 bar
with the feed ratio increase from 0.96 to 2; therefore, it is
concluded that fluidized-bed reactor is the most appro-
priate reactor for HTFT process, since fixed-bed ranks
second and slurry reactor ranks the last one.

Dual-type reactor is formed from a series of two
reactors either fixed-bed reactor and fluidized-bed reactor
or fixed-bed reactor and slurry reactor. As it can be seen
from Table 4 for SDMR and FMFMDR with the same
pressure and the same feed ratio, SDMR has got higher
temperature but it still produces lower percentage of CO
conversion; therefore, it can be concluded that dual-type
reactor which includes fixed-bed and fluidized-bed reac-
tor produces higher percentage of CO conversion for
lower temperature, lower pressure, and lower feed ratio
in comparison with the dual-type reactor which includes
slurry reactor and fixed-bed reactor and that is why
according to Table 4 Rahimpour and his colleagues
have totally focused on the dual-type reactor which
includes the fixed-bed and fluidized-bed reactors.
Moreover, thermally coupled reactors have the ability to
perform both endothermic and exothermic reactions in
two sides of a reactor, connected with membrane; as it

can be seen from Table 4, thermally coupled reactor
(TCR) has got the highest level of CO conversion among
the other TCRs with the 99.8% of CO conversion; there-
fore, TCR has been presented as the best type of reactor
for HTFT process.

Recent studies and innovative reactor configurations
for HTFTS eclipse our knowledge about the available reac-
tors for HTFT. Higher performances and ease of operation
provided by the product intensifier reactors persuade us to
update the previous knowledge which was available about
the utilizable reactors for HTFT. The diagram shown in
Figure 5 at the beginning of the article is a famous diagram
of available reactors for FTS which lacks the presence of
product intensifier reactors. As the result of this article,
this diagram is improved by considering recent studies. In
Figure 21, the updated diagram is shown which contains
the best reactor choice for HTFT product intensifiers.
According to this figure HTFT product intensifier reactors
cover a wide range while over lapping from slurry reactor
zone to fluidized-bed reactor zone. Moreover, as it is seen
when our HTFT product intensifier reactors include slurry
and fixed-bed reactors, we need to increase the tempera-
ture and pressure strongly to get higher levels of gasoline
production while HTFT product intensifier reactors
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consisting of fixed-bed and fluidized-bed reactors produce
higher amount of gasoline in lower temperature and lower
pressure condition and TCR location as the best HTFT
product intensifier reactor is shown in Figure 21.
Therefore, it can be said that this figure summarizes the
results of Tables 3 and 4.

Abbreviations

FTS Fischer-Tropsch synthesis

GTL Gas-to-liquids

ASF Anderson-Schulz-Flory

LTFT Low-temperature Fischer-Tropsch

HTFT High-temperature Fischer-Tropsch

Xco Carbon monoxide conversion

GHSV Gas hour space velocity

CFB Circulating fluidized bed

FFB Fixed fluidized bed

FMDR Fluidized-bed hydrogen perm-selective membrane
reactor

FMD Fixed-bed cascading fluidized-bed membrane dual
reactor

FMFMDR  Fixed-bed membrane and fluidized-bed membrane dual
reactor

TCMDR  Thermally coupled membrane dual-type reactor

CR Conventional reactor

Influence of the process parameters in the different types of reactors on the product distribution including product intensifier

CFMR Cascading fluidized-bed membrane reactor

TCMR Thermally coupled membrane reactor

DCTCMR  Declaim thermally coupled membrane reactor

CTCMR Cyclohexane thermally coupled membrane reactor

TCTCMR  Thermally coupled multi-tubular two-membrane reactor

SDMR Slurry bubble column dual-type FTS membrane
reactor

MDR Hydrogen perm-selective membrane reactor

MR Membrane reactor

TCR Thermally coupled reactor

CLLTCR  Cyclohexanol thermally coupled reactor
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